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Abstract

We consider the remote manipulation of the quantum state of the edge emer-
gent spins of Haldane spin chains using a weak local perturbation on the
opposite edge. We derive an effective four-level model that correctly captures
the response of the local magnetization to local perturbations and we use it to
show that applying a small local field on one edge of the chain induces a strong
variation of the magnetization on the opposite edge. Using a Landau-Zener
protocol, we show how local control of the field on one edge of the chain, im-
plemented for instance with a spin-polarized scanning tunnel microscope tip,
can adiabatically switch the magnetization direction on the other side of the
chain.
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1 Introduction

Haldane spin chains [1, 2] with periodic boundary conditions have an S = 0 ground state
and a gapped spin excitation spectrum, making them different from S = 1/2 Heisenberg
chains, that feature a gapless excitation spectrum [3]. This difference is even more striking
in the case of open-end chains, as the lowest energy levels of the Haldane chains are a
quasi-degenerate singlet-triplet quartet, associated with the emergence of two effective
S = 1/2 degrees of freedom localized in a few sites at the edges of the chains [4]. The
splitting of the singlet-triplet quartet j decays exponentially with the chain size, j ≃
Je−N/ξ so that, effectively, in the thermodynamic limit N ≫ ξ, the two effective edge spins
become independent. However, there is a mesoscopic range, where N/ξ is not large and
temperature is small where the effective coupling j ≫ kBT , so that the system occupies,
with large probability, a non-degenerate singlet ground state where the two emergent edge
S = 1/2 spins, physically separated, are entangled.

Here, we address the question of whether it would be possible to leverage this non-
local entanglement in Haldane spin chains to achieve a non-local manipulation of the
effective spin in one edge of the Haldane chain by acting locally on the opposite edge. We
refer to this as remote manipulation. The idea of using spin chains as channels to transfer
information, either quantum or classical, has been thoroughly explored theoretically [5–16].
The experimental demonstration of these ideas has only become possible with the advent
of physical platforms that allow to fabricate and probe individual spin chains, using as
building blocks magnetic adatoms [17–19], nanographenes [20–22], quantum dots [23],
donors in silicon [24], cold-atoms [25], trapped ions [26] and Rydberg atoms [27]. Transfer
of classical information across an adatom spin chain was demonstrated experimentally [18],
and transmission, control, and manipulation of quantum states have been achieved using
quantum dots [28], cold atoms [25], and magnetic atoms on surfaces [29].

The specific case where the end-states of Haldane spin chains are exploited to enhance
their performance as information channels seems to remain unexplored. Some works have
considered the role of quantum phase transitions to enhance the channel capacity of S = 1
Haldane chains [10,13]. There are at least two different realizations of the Haldane phase
for which the discussion of this work is relevant. First, the original formulation of Haldane
[1, 2], with S = 1 antiferromagnetically coupled spins, that may or may not have a non-
linear exchange β. Second, the alternate exchange S = 1/2 Heisenberg model, with two
coupling constants J1, J2, where at least one of them has to be antiferromagnetic [30].
There are several physical platforms where individual Haldane spin chains, made either
with S = 1 and constant exchange or with S = 1/2 and alternate exchange, can be
implemented or are expected to be realizable: magnetic nanographenes [20,21], magnetic
adatoms [31], cold atoms [32], and phosphorous dopants in silicon [33]. Very similar physics
can also be implemented with cold hard-core bosons [34]. The implementation of Haldane
spin chains has also been proposed using Rydberg atoms [35] and quantum dots [36,37].
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Figure 1: (a) Alternating exchange Heisenberg model (AEHM) chain with S=1/2 (left),
S=1 Haldane spin chain (right). (b) Schematic representation of a spin chain where a local
magnetic field is applied to the first spin, and its resulting magnetization is measured on
the last spin.

2 Spin chain Hamiltonians for the Haldane phase

Having in mind the case of nanographenes [20, 21], we thus consider two spin-rotational
invariant Hamiltonians, build with the Heisenberg coupling hi,j = S⃗i · S⃗j . The first one is
the S = 1 Haldane spin chain model [38] (See Fig. 1(a) right panel):

H(S=1)
H =

∑
n=1,N−1

J

[
hn,n+1 + βh2n,n+1

]
(1)

where we consider J > 0, to ensure antiferromagnetic interactions, and 0 ≤ β ≤ 1
3 , to

ensure a gap ∆H in the excitation spectrum in the case with periodic boundary conditions
(PBC). The second case is the alternate exchange Heisenberg model [30, 39, 40] (AEHM)
for S = 1/2 (See Fig. 1(a) left panel):

H(S=1/2)
H =

∑
n=0,N−2

2

(J1h2n,2n+1 + J2h2n+1,2n+2) (2)

In both cases, we take N as an even number, ensuring that the ground state has S = 0.
The AEHM also features a gap ∆H for PBC and J1 ̸= J2 when at least one of the
two exchange parameters is positive. We note that the gapped phases of AEHM are
adiabatically connected to the Haldane model [30], by making either J1 or J2 negative
and very large. Therefore, we refer to the gapped phases of both the S = 1 model and the
AEHM with antiferromagnetic exchange and J1 ̸= J2 as the Haldane phase.

In the Haldane phase, chains with open boundary conditions (OBC) feature four low
energy levels, formed by a singlet S and a triplet (T0, T+, T−), reflecting the emergence
of S = 1/2 edge spins. The singlet-triplet splitting can be written as j ≃ Je−N/ξ1 in the
S = 1 chains, and as j ≃ J1e

−(N−2)/ξ1/2 in the S = 1/2. Hence, in the thermodynamic
limit and OBC, both models have a fourfold degenerate ground state.
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3 Derivation of the effective model for the emergent edge
spins

Here we are interested in finite-size chains where kBT ≪ j ≪ ∆H, so that only the ground
state of the low-energy manifold is occupied and controls the response of the system. We
can thus derive an analytical theory, valid for large spin chains, to model the effect of the
application of a local magnetic field b coupled to the outermost spin on one edge of the
chain. We consider the following Hamiltonian:

H = H(S)
H + V = H(S)

H − gµBbŜ
z
1 (3)

The local field b could be induced, for instance, through local exchange with an STM
tip [41], as well as the exchange field with a nearby magnetic atom or molecule [42]. The
discussion that follows would be the same if the local field acts on a few spins on one edge,
instead of only one. We assume that the effect of the local field b is small compared to the
size of the Haldane gap, ∆H, an assumption easy to meet in the case of nanographene spin
chains. Therefore, we treat the effect of the local field in the first spin using first-order
degenerate perturbation theory. To do so, we label the states of the singlet-triplet ground
state manifold with G = (S, T0, T+, T−). To leading order, the effective Hamiltonian in
the G subspace reads

Heff (b) = ⟨G|V|G′⟩ (4)

In order to write the effective Hamiltonian matrix, we note that the expectation value
of the local spin Sz1 , computed in the ground state manifold, vanishes for S, T0, as these
are states with Sz = 0. Therefore, the only non-null matrix elements for the local spin
operators are:

Szi ≡ ⟨S|Ŝzi |T0⟩, T (±)
i ≡ ⟨T±|Ŝzi |T±⟩ (5)

The matrix elements Szi and T (±)
i play a central role in the rest of the paper. In

Figs. 2(a) and 2(b), we plot them both respectively for the S = 1 chain. They peak at
the edges, and Szi has antiferromagnetic inter-edge correlation. We note that these matrix
elements are computed with the unperturbed Hamiltonian and are therefore independent
of b. The dependence on b enters via the prefactors in the V operator:

ϵ0(b) ≡ −gµBbSz1 , ϵ±(b) ≡ −gµBbT (±)
1 (6)

We find that |T (±)
1 | = |Sz1 |. We thus write:

Heff (b) =


− j

2 ϵ0(b) 0 0

ϵ0(b)
j
2 0 0

0 0 j
2 + ϵ+(b) 0

0 0 0 j
2 + ϵ−(b)

 (7)

This Hamiltonian is analogous to the one describing singlet-triplet qubits [43] and edge
spin states in a rectangular zigzag ribbon [44]. Thus, we see that the two states of the
Sz = ±1 sector, with energies j

2 + ϵ±(b), are decoupled from those of the Sz = 0 sector,
that are described by an effective two-level model in the S, T0 subspace:

h(b) = − j
2
τz + ϵ0(b)τx = b⃗(b) · τ⃗ (8)

where τx, τz are Pauli matrices and b⃗ =
(
ϵ0(b), 0,− j

2

)
. The eigenvalues of this two-level

system are given by h(b)|ψ±(b)⟩ = ±E(b)|ψ±(b)⟩, with

E(b) =
1

2

√
j2 + 4ϵ0(b)2 (9)
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Figure 2: Haldane S=1 non-vanishing matrix elements of the local spin operators, (a) Szi
and (b) T (±)

i , for each spin with no local field applied. (c) Energy level scheme with the
Haldane gap, ∆H, separating bulk states and the low-energy manifold, and the singlet-
triplet gap, j. (d) Energy diagram of the ground state manifold in the S=1 Hamiltonian,
Eq. (1), as a function of the local magnetic field applied to the first spin, expressed in
units of the singlet-triplet splitting j. Simulation parameters: N=12, β=0.32, resulting in
j = 3.55× 10−5 J).

In Fig. 2(d), we plot the energies of the 4 low energy states of the Hamiltonian 7, for
a spin chain with N=12 and β = 0.32. In Appendix A, we show that exact numerical
diagonalization of this effective model yields identical results for both the S = 1 and the
AEHM S = 1/2 models using Eq. (1) and 2, respectively. It is apparent that the state ψ−
of the Sz = 0 manifold is always the ground state. The physical properties of the Sz = 0
manifold are governed by the eigenstates:(

|ψ−⟩
|ψ+⟩

)
=

(
cos θ(b)2 − sin θ(b)

2

sin θ(b)
2 cos θ(b)2

)(
|S⟩
|T0⟩

)
(10)

where cos θ(b) = −j
2E(b) , sin θ(b) =

ϵ0(b)
E(b) . From Eq. (10), it is straightforward to obtain the

local magnetization in response to a field applied on site 1 of the chain:

⟨ψ±|Ŝzi |ψ±⟩ =
±2ϵ0(b)Szi√
4ϵ0(b)2 + j2

=
∓2gµBSz1Szi b√
4ϵ0(b)2 + j2

(11)

This is the central result of this paper. It shows how the application of a local magnetic
field in just one edge spin of the Haldane spin chains, described by Hamiltonians 1 and 2,
affects the magnetic state of the entire chain. Specifically, given the very large antiferro-
magnetic inter-edge spin correlation, it affects the opposite edge with equal intensity, and
opposite sign, on account of the profile of the matrix element Szi . Equation (11) shows that
the key figure of merit that controls the average local magnetization of the Haldane spins
is the ratio ϵ0(b)

j . For b = 0 the magnetization of the entire chain vanishes, as expected for
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Figure 3: (a) Ground-state expectation values ⟨Szi ⟩ obtained from the full Hamiltonian, Eq.
(1), for different local fields gµBb applied at the first spin, i = 1. (b) Total magnetization
of the left and right halves of the chain, computed with the effective model 11, as a function
of the local field applied on the first spin. Parameters: N = 12 and β = 0.32.

the Sz = 0 states of the ground state manifold. Equation 11 also allows us to derive the
ground-state non-local spin susceptibility,

gµB⟨ψ−|Ŝzi |ψ−⟩ = χikbk (12)

i.e., the magnetization at site i in response to a small field bk applied to spin k. The
expression for the non-local susceptibility is:

χik =
2(gµB)

2

j
Szi Szk (13)

In the opposite limit, |ϵ0| ≫ j, we have

⟨ψ±|Ŝzi |ψ±⟩ ≃ ±Szi (14)

so that both edges have a local magnetization of order 1µB, with opposite magnetization at
the two ends of the chain. Thus, in this limit, a local perturbation at one edge can saturate
the magnetization at the opposite edge. Figure 3(a) shows the ground-state expectation
values ⟨Szi ⟩ along the chain for different values of the local field gµBb acting on the first
spin. The magnetization is confined to the edges, with only a negligible response in the
bulk. Figure 3(b) shows the total magnetization of the left and right halves of the chain
as a function of the local field using the effective model.
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4 Remote control

The extremely non-local character of the spin response of the Haldane chains opens the
door for different applications. First, as a consequence of 8, application of an AC local
field b(t) = b0 cosωt will result in resonant excitation of transitions between the singlet
and triplet when ℏω = j. Thus, a local AC field could provides a driving mechanism for
electron spin resonance with STM [45] in individual Haldane spin chains [46]. Second,
for non-local sensing: a field acting on one edge of the chain has an impact on the other
edge, where a local probe could be placed (see Fig. 1(b)). Third, non-local adiabatic
manipulation of the edge magnetization. Equation 7 shows that the Sz = 0 manifold of
the Haldane chains with a local magnetic field is described with a two-level Hamiltonian
with an avoided level crossing. Therefore, adiabatic control of the ground-state wave
function would allow dynamic control of the magnetization at one edge by applying a
local field at the other.

To illustrate this, in Fig. 4(a), we simulate a Landau–Zener sweep in an S = 1 Haldane
spin chain of N = 8 sites with β = 0.32. A local magnetic field b applied to one edge of
the chain is ramped linearly as b1(t) = b0 + vst, where the sweep rate vs = db

dt sets the
driving speed and, at the avoided crossing, induces Landau–Zener (LZ) transitions. The
initial point must be positioned far from the avoided crossing.

Figure 4: (a) Ground–state magnetization of the left (solid) and right (dashed) halves as
a function of gµBb/j for four sweep rates using Eq. (1). (b) Landau–Zener non-adiabatic
transition probability, 1−PGS, as a function of the sweeping rate vs/vs,0, vs,0 = j2/(ℏgµB).
The black curve corresponds to the effective model and the white dots are numerical results
using the complete Hamiltonian, Eq. (1). Parameters: N = 8, β = 0.32.
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We first model the Landau–Zener sweeps using the full numerical solution of the Hamil-
tonian in Eq. (1). At ti = 0, we take the system to be in its ground state for a negative
local field gµBb0 = −4j, and we compute the dynamical evolution of the quantum state
as b is ramped so that, at t = tf , gµBb = +4j. The time it takes for the LZ-sweep is given
by ∆tLZ = ∆b

vs
. At each time step, we compute the state |Ψ(t)⟩ = |Ψ(b)⟩ of the sweep and

evaluate the average magnetization of each half of the chain,
∑

i∈half ⟨Ψ(b)| Ŝzi |Ψ(b)⟩. We
repeat this procedure for various values of the sweep rate vs. We focus on the probability
of exciting the system out of the adiabatic ground state during the sweep, as a function
of the sweep velocity vs. If the system remains in the ground state, the magnetization is
reversed. On the contrary, if the system undergoes a transition from the ground to the
excited state, the magnetization remains constant throughout the sweep.

Using the only intrinsic energy scale of the low-energy spectrum, j, we define the

natural scale for the magnetic sweep rate, vs,0 ≡ j2

ℏgµb . We find that, for large sweep
velocities, vs ≫ vs,0, the magnetization remains constant during the sweep of the local
field. This clearly implies that the quantum state of the system, |Ψ(tf )⟩, is no longer
in the adiabatic ground state for gµBb1 ≫ j. In the opposite limit, when vs ≪ vs,0,
the magnetization is reversed during the Landau-Zener sweep, which reflects an adiabatic
evolution. We also show two intermediate situations.

In Fig. 4(b) we compare our numerical results, obtained for a chain with 38 = 6561
states, to the Landau-Zener formula [47–49] for the probability of exciting the system out
of the adiabatic ground state during the local field sweep, valid for our two-level model of
Eq. (8):

PLZ = exp

[
− πvs,0
4Sz1vs

]
. (15)

We find a very good agreement between the full numerical calculation and the LZ model.
This extends the validity of the effective model to the time-dependent case. More im-
portantly, it showcases the potential of Haldane spin chains as platforms to carry out
non-local adiabatic manipulation of distant quantum states.

We now discuss the experimental conditions required so that the approximations used
for our model can be applied. These can be summarized in the following inequalities:

kBT < j < gµBb≪ ∆H. (16)

the correlation lengths ξ1 and ξ1/2 that, in turn, are controlled by the dimensionless

parameters β and δ = J1−J2
J1+J2

, respectively. In the case of S = 1 nanographenes [20], the
relevant values are β = 0.09, J = 19meV that, according to our DMRG calculations, give
ξ1 ≃ 4.13 and ∆H = 7.8 meV, for the S = 1 chains. In turn, for the S = 1/2 AHEM, the
relevant values are J1 = 21 meV, J2 = 37 meV, δ ≃ −0.28; that yield ξ = 2.41 ∆H = 22
meV Hence, the condition j ≪ ∆H is easily met by increasing chain length. For instance,
for S = 1 nanographene chains [20], the singlet–triplet gap for a chain of N = 22 spins is
of the order of j ≃ 94µeV.

The condition j < gµBb is required to fully polarize the edge spins (see Fig. 3 and
Eq. (11)), the Zeeman energy of the local field must be at least two times j, gµBb > 2j,
a total ∆gµBb = 4j for the complete sweep. For the above value of j ∼ 94µeV, this
translates into a ∆b ∼ 3.2 T, that can easily be achieved, for instance, with a scanning
tunnel microscope (STM) tip [41]. The practical realization of this setup is discussed
in detail in Appendix C. The thermal energy must be at least one order of magnitude
smaller (see Appendix B for a numerical analysis of the ground state thermal occupation),
corresponding to approximately T < 0.1K feasible in state-of-the-art experiments. In
turn, if we express the LZ velocity as vs = ηvs,0, where η is dimensionless parameter,
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and we take gµB∆b = 4j, the LZ sweep time is ∆tLZ = ℏ
ηj ≃ 0.28ns, for η ≃ 0.127,

the value of Fig. 4. Hence, triangulene’s Haldane chain with N = 22 units would allow
for remote control between edge spins at a distance of 13 nanometers in a fraction of
nanosecond. Much faster sweeping times can be achieved with multiple sweeps in the
so-called Landau-Zener-Stuckelberg-Majorana [49,50].

5 Conclusion

In conclusion, we have demonstrated that Haldane spin chains provide a suitable platform
to achieve remote control of magnetization. The formation of a singlet between two spins
located at opposite sides of the chain can be exploited to induce a local magnetization in
one edge upon application of a local field on the other. We derive a simple singlet-triplet
qubit Hamiltonian that encodes the many-body information in matrix elements from Eq.
5 that can be computed with DMRG (see Appendix D). Using our Hamiltonian, we show
that the remote control to switch the magnetization in nanographene spin chains in a
fraction of nanosecond are feasible with state-of-the-art.
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A Comparison between the effective model and the full
Hamiltonian

In this Appendix, we assess the validity of the effective Hamiltonian description (Eq. (8))
against the exact numerical diagonalization of the full Hamiltonians Eq.(1) and Eq.(2),
the S = 1 Haldane spin chain and the alternating exchange Heisenberg model (AEHM)
with S = 1/2, respectively. For both models, we compute, as a function of the local
field b applied to the first spin, the energies of the low-energy manifold and the local spin
expectation value ⟨ψ±|Ŝzi |ψ±⟩.

Fig. 5 summarizes our results. Panel a) corresponds to the S = 1 Haldane model,
showing, respectively, the difference in energy for the ground state and the difference in
⟨Szi ⟩ between the two models. Panel b) shows the same quantities for the AEHM. For the
S = 1 Haldane chain, the relative difference in energy is of the order of 10−4 for gµBb > j,
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and the absolute difference in ∆⟨Ŝzi ⟩ remains below 10−7 for the example. For the AEHM,
the differences are slightly higher but of the same order of magnitude. We also note that
there can be a mismatch due to numerical error in the ED calculation.

Figure 5: Comparison between the full Hamiltonian (FH) from Eq. (1) and (2) and the
effective model (Eff) from Eq. (8). a) show the difference in the energies of the ground
state, ∆EFH−Eff and the difference in the local spin expectation value, ∆⟨Ŝzi ⟩FH−Eff ,
as a function of the local field b applied to the first spin for the S = 1 model. b) shows the
same results for the AEHM model. Parameters for the S = 1 model: N = 10, β = 0.32,
Parameters for the AEHM S = 1/2 model: N=12, δ=-0.4.

B Occupation of the ground state: energy scales

For the effective Hamiltonian of Eq. (8) to remain valid, all the relevant energy scales,
the singlet–triplet splitting j, the global magnetic field, the local magnetic field b, and the
thermal energy kBT , must be much smaller than the Haldane gap ∆H. This condition is
naturally fulfilled for sufficiently long chains, since j decreases exponentially with system
size and ∆H can be in the order of tens of meV in the case of nanographene-based chains
[20,21].

In order to apply the dynamical sweeps discussed in Section 4 while keeping the system
in its ground state, we must control the sweeping velocity, but additionally, we need to
ensure that the ground state is also the most thermally occupied state within the four-level
manifold. This requires kBT ≪ j, so that the thermal population of the excited states
is negligible. Given a spectrum {En}, the ground state occupation probability at finite

temperature is given by PGS = e
−Eψ−/kBT

Z , where Eψ− is the ground state energy and Z
is the partition function.

Fig. 6 shows PGS as a function of temperature and local field b, both expressed in units
of j. The contour lines indicate 90% and 99% ground state occupation. As expected, PGS

decreases with increasing T , but for a fixed T , the occupation saturates for large values of
b. This saturation comes from the constant energy separation between the state ψ− and
one of the triplet states that is also sensitive to the local field. In our simulations, the
convergence occurs for kBT ≃ 0.11 j.

10
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Figure 6: Ground state thermal occupation probability PGS as a function of local field b
and temperature T . Contour lines mark 90% and 99% occupation. Parameters: N = 12,
β = 0.32.

An external magnetic field applied uniformly to the chain does not affect the ψ− and
ψ+ states, since both have total Sz = 0. However, the Zeeman term is present in the
Sz = ±1 states and would shift their energies linearly, affecting the thermal occupation of
the ground state. Hence, the external field should be of the same order of magnitude as
the thermal energy.

The local perturbation can be applied not only on one edge of the chain but on any
spin. Possible solutions to overcome the effect of external magnetic fields can be used
to boost the occupation of the ground state. For instance, two local perturbations with
opposite signs at each edge of the chain can also be used to polarize the chain, dividing
the total local field needed for the sweep between two sources of perturbation. In that
arrangement, the local perturbations with opposite signs cancel each other’s effect on the
triplet states with Sz = ±1, and hence the avoided crossing level is realizable while the
T± states remain at the same energy. Their distance from the ground state increases,
promoting its thermal occupation.

Another solution is to use a controlled external field in real time, where the local
perturbation can be matched at each step of the sweep with a similar external field of
similar magnitude (half of the local perturbation in the case of a single local perturbation
on one edge). This would leave the evolution of the energy in the T± states constant,
again promoting the occupation of the ground state.

C Realizations of the controlled sweep

In order to perform the adiabatic control of the edge spin, from one polarized state to
the other, the sign of the local perturbation needs to change. Here, we propose different
scenarios where this could be realized.

The simplest scenario involves the use of an additional magnetic atom or molecule
close to the chain with an almost classical behavior, for example, a Ho atom with a long
lifetime for each state. This almost classical magnet can be positioned next to the chain
at a distance where the stray field induced at the edge of the chain polarizes the chain
and serves as the initial position for the sweep. Then, a magnetic STM tip, generating a
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stray field with opposite sign to the magnetic atom (or the same sign if the STM tip is on
the other edge), can be brought close to the chain edge in a controlled manner, eventually
overcoming the other stray field and changing the sign of the perturbation.

Another possible approach is to combine a local tip-induced field with a uniform back-
ground field from a ferromagnetic substrate, separated from the spin chain by a decoupling
layer. On ferromagnetic surfaces, domain walls can be manipulated to change the local
magnetization under the chain. The advantage of this method is that the ferromagnetic
surface can generate very large local fields.

D Density Matrix Renormalization Group (DMRG) com-
putation details

We computed the singlet–triplet gap of the S = 1 Haldane Hamiltonian and the S =
1/2 AEHM with finite-size two-site DMRG, implemented with ITensors.jl [52]. For
the range discussed in the examples (N = 20 to N = 70), the calculations used up to
nsweeps = 30 and a maximum bond dimension mmax = 100 with open boundary conditions
and Sz conservation. In Fig. 7, we show our computed j for different chain lengths, N .
We fit the exponential decay to j ≃ Je−N/ξ and we find a ξ = 4.09

Figure 7: Exponential fit of the effective coupling j as a function of the chain length N .
The data (dots) are well described by j ≃ J e−N/ξ (solid line), from which we extract a
correlation length ξ = 4.09.

For the effective model it is necessary to obtain the matrix elements Si, which appear
in the expression for the mixing term ε0. These quantities can be accessed experimentally,
for example, through electron spin resonance with STM (ESR-STM) magnetometry [53],
or evaluated numerically by computing the overlap between the singlet and the T0 states.

This task can become challenging within DMRG for large systems. However, the
relation |Si| = |T ±

i | allows us to obtain this value in a less computationally demanding
way. In practice, during the DMRG calculation, we artificially promote one of the Sz = ±1
triplet states by introducing a Zeeman term. With a well-defined ground state, the DMRG
simulation converges faster and more accurately. Once the local magnetic moments of each
spin are obtained, it is sufficient to flip the sign of half of the chain to recover exactly the
value of Si. These elements were obtained with dmrgpy [54].
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[39] K. Diederix, H. Blöte, J. Groen, T. Klaassen and N. Poulis, Theoretical and
experimental study of the magnetic properties of the singlet-ground-state system
Cu(NO3)2·2.5H2O: An alternating linear Heisenberg antiferromagnet, Physical Re-
view B 19(1), 420 (1979).

[40] J. C. Bonner, S. A. Friedberg, H. Kobayashi, D. L. Meier and H. W. Blöte, Alter-
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