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We consider a class of spinless-fermion Lindblad equations that exhibit decoupled BBGKY hier-
archies. In the cases where particle number is conserved, their late time behaviour is characterized
by diffusive dynamics, leading to an infinite temperature steady state. Some of these models are
Yang-Baxter integrable, others are not. The simple structure of the BBGKY hierarchy makes it pos-
sible to map the dynamics of Heisenberg-picture operators on few-body imaginary-time Schrödinger
equations with non-Hermitian Hamiltonians. We use this formulation to obtain exact hydrody-
namic projections of operators quadratic in fermions, and to determine linear response functions in
Lindbladian non-equilibrium dynamics.
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I. INTRODUCTION

Understanding the effects of dissipation on the dynam-
ics of many-particle systems is an important challenge.
Significant simplifications occur in cases where the envi-
ronmental degrees of freedom can be treated in a Marko-
vian approximation, which allows a description in terms
of a Lindblad equation (LE)[1–3]. Many-particle LEs are
generally difficult to analyze and most studies are based
on perturbative [4, 5] or numerical approaches [6–10].
This poses the question whether there are examples in
which exact results can be obtained. One such class of
models are LEs that can be written as imaginary-time
Schrödinger equations with non-Hermitian “Hamiltoni-
ans” that are quadratic in fermionic or bosonic field op-
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erators [11–20]. These are very special in that the den-
sity matrix retains its Gaussian form under time evolu-
tion. A wider and richer class of exactly solvable LEs
was identified more recently with the discovery of Lind-
bladians that can be mapped to interacting Yang-Baxter
integrable models [21–31]. Some models were found to
exhibit operator-space fragmentation [32–34] – the Lind-
bladian analog of Hilbert-space fragmentation [35, 36]–
which gives rise to novel kinds of Yang-Baxter integra-
bility and free fermion structures respectively. In a sepa-
rate development unrelated to integrability LEs that give
rise to decoupled BBGKY hierarchies were identified [37–
48], which hugely simplifies the analysis of correlation
functions. Importantly, these models typically cannot be
mapped onto LEs with Lindbladians that are quadratic
in bosons or fermions, and do not preserve Gaussianity
of density matrices under time evolution. Interestingly
some LEs are both Yang-Baxter integrable and exhibit
decoupled BBGKY hierarchies [21].

The purpose of our work is to exploit the simplifica-
tions afforded by decoupled BBGKY hierarchies to ad-
dress three issues of current interest.
• First, we obtain analytic results for exact hydrodynamic
projections [49]. We analyze LEs with a continuous U(1)
symmetry related to particle number conservation and
infinite temperature steady states, which exhibit diffu-
sive behaviour at late times. The presence of a conser-
vation law then implies that certain observables will ex-
hibit hydrodynamic power-law tails at late times, which
are related to the existence of diffusive eigenmodes of the
Lindbladian. A generally unsolved problem is to deter-
mine the projection of a given operator onto these dif-
fusive modes. Generically only symmetry arguments are
available to gain some information on such projections,
see e.g. [50] for a recent example. In order to put some
of our results into context we briefly review the usual ar-
guments pertaining to diffusive late-time dynamics and
its relation to conservation laws. Let us consider a lat-
tice model with U(1) symmetry corresponding to particle
number conservation. The particle density nm then fulfils
a continuity equation

d

dt
nm(t) = jm−1(t)− jm(t) , (1)

where jm is the particle current density at sitem. Coarse-
graining turns this into

∂

∂t
ρ(t, x) = − ∂

∂x
J(t, x) . (2)

Using that the expectation value of the current (in a spa-
tially inhomogeneous state) is related to the gradient of
the density

⟨J(t, x)⟩ = −D ∂

∂x
⟨ρ(t, x)⟩+ . . . (3)

then gives a diffusion equation for ⟨ρ(t, x)⟩. Its solution

can be cast in the form

⟨ρ(t > 0, x)⟩ =
∫

dk

2π
e−Dk2t

∫ ∞

−∞
dx′eik(x−x′)⟨ρ(0, x′)⟩ .

(4)
This implies that the Heisenberg-picture operator at late
times has hydrodynamic tails

ρ(t→ ∞, x) ∼ A(x)√
t

+ . . . (5)

In practice one often is not interested in coarse grained
quantities but rather microscopic ones. The question is
then how the existence of slow coarse-grained operators
translates to the late-time behaviour of lattice operators,
e.g. (nmnm+1)(t). This ”hydrodynamic projection” is
a difficult problem whose solution is generally not know.
Eqn (4) further implies that the (super)operator L[.] gen-
erating time evolution

d

dt
X̂ = L[X̂] (6)

must have eigenvalues in the momentum representation
that behave for small momenta like λ(k) = −Dk2 + . . . .
The corresponding eigenoperators are referred to as dif-
fusive eigenmodes of the time evolution operator. Their
construction is another difficult problem whose solution
is not known. In our work we derive explicit expressions
for them.
• Second, we consider linear response functions on top of
Lindbladian time evolution [51]. This is relevant in the
context of pump-probe experiments, and in particular the
question how dissipation affects the line shapes seen in
linear response functions. Analyzing linear response on
top of Lindbladian time evolution is generally a difficult
problem, but as we show in the following, this becomes
feasible in a class of models with decoupled BBGKY hi-
erarchies.
• Third, we utlize the fact that some LEs with decoupled
BBGKY hierarchies are Yang-Baxter integrable while
others are not to investigate what effects integrability
has. In contrast to unitary quench dynamics [52] inte-
grability in LEs does not imply the existence of conser-
vation laws. This is immediately obvious from the fact
that many integrable LEs have unique steady states that
are completely mixed, i.e. correspond to infinite temper-
ature density matrices.
The outline of this manuscript is as follows. In sec-

tion II we introduce the class of LE studied in our work.
Section IV shows that by an appropriate vectorization
the equations of motion in the Heisenberg picture can be
mapped onto imaginary time Schrödinger equations with
non-Hermitian Hamiltonians. The latter take the form of
spin-1/2 fermions with purely imaginary hopping terms
and short-ranged interactions. Section V focuses on the
time evolution of operators quadratic in fermions in U(1)
symmetric models and presents a detailed analysis of the
corresponding eigenvalue spectrum of the non-Hermitian
Hamiltonians. In section VI closed-form expressions for



3

the hydrodynamic projections of U(1) invariant opera-
tors are derived. These describe the late-time behaviour
of such operators. Section VII discusses the time evo-
lution in LEs with decoupled BBGKY hierarchies that
break particle-number conservation. Here the decoupling
results in a triangular form of the BBGKY hierarchy,
and we show how to solve the resulting equations of mo-
tion for operators quadratic in fermions. Operators cubic
in fermions decay exponentially in time in all LEs stud-
ied here, and Section VIII reports the corresponding de-
cay rates. In contrast, operators quartic in fermions can
again display hydrodynamic tails. Section IX discusses
the spectra of the non-Hermitian Hamiltonians relevant
to the late time behaviour, focusing in particular on a
Yang-Baxter integrable case in which an analytic under-
standing is possible. In sections X and XI we apply our
results to the study of non-equal time correlation func-
tions in the steady state and linear response functions
after quantum quenches respectively. Finally, we sum-
marize our results and discuss lines of future enquiry in
Section XII.

II. LINDBLAD EQUATIONS WITH
DECOUPLED BOGOLIUBOV HIERARCHIES

The evolution equation for the reduced density matrix
ρ(t) in an open quantum system described by a Lindblad
equation reads

L[ρ(t)] = −i [H, ρ(t)] +
∑
α

2Lαρ(t)L
†
α −

{
L†
αLα, ρ(t)

}
,

∂tρ(t) = L[ρ(t)] , (7)

Here H is the effective Hamiltonian of the system and
Lα are the jump operators characterising the interaction
between the system and the environment. For our pur-
poses it is convenient to work in the Heisenberg picture,
where time evolution of operators is governed by the dual
Lindbladian

L∗[A(t)] = i [H, A(t)]+
∑
α

2L†
αA(t)Lα−

{
L†
αLα, A(t)

}
.

(8)
If the set {Lα} of jump operators is closed under Hermi-
tian conjugation the Lindblad equation takes the simpler
form

L∗[A(t)] = i [H, A(t)]−
∑
α

[
L†
α, [Lα, A(t)]

]
. (9)

From hereon we focus on many-particle system of spinless
fermions

{cj , cℓ} = 0 , {cj , c†ℓ} = δj,ℓ . (10)

The equations of motions for products of fermion op-
erators then generically give rise to a generalization of
the celebrated Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy [53]. However, if we choose both

the Hamiltonian H and all jump operators Lα to be
quadratic in fermion operators, the hierarchy decouples
as a result of the double-commutator structure of the
Lindbladian (9), and one obtains closed systems of equa-
tions for operators involving at most n fermion operators.
It is worthwhile to stress the following points:

• Such models are not free (there is no Wick’s theo-
rem) and an intially Gaussian density matrix does
not remain Gaussian under time evolution.

• The decoupling of the BBGKY hierarchy is possible
in any number of spatial dimensions.

These observations have already been exploited to ob-
tain exact results for equal-time observables in some such
models [30, 31, 54]. We go beyond these works here in
order to study linear response functions and obtain an
exact description of the hydrodynamic behaviour that
arises at late times.
We choose the Hamiltonian part to be a one-

dimensional tight-binding model with periodic boundary
conditions

H = −J
L∑

j=1

(
c†j+1cj + c†jcj+1

)
. (11)

The Hamiltonian preserves fermion number and has a
global U(1) symmetry

cj → cje
iα . (12)

We consider the following choices of jump operators (all
of which lead to decoupled BBGKY hierarchies)

I. On-site dephasing noise .

Lj =
√
γc†jcj . (13)

The corresponding Lindblad equation maintains
the U(1) symmetry and is known to be Yang-Baxter
integrable [21]. More precisely it can be mapped
to the Hubbard model with imaginary interaction,
which will be useful in the following.

II. “Two-channel” dephasing noise acting across a
bond.

Lj,1 =

√
γ

2
c†jcj+1 , Lj,2 =

√
γ

2
c†j+1cj . (14)

This is characterized by two dissipation channels
with equal rates. The resulting Lindblad equation
is non-integrable and generalizes the Quantum Sim-
ple Symmetric Exclusion Process [32, 55–59] by in-
troducing a Hamiltonian part.

III. Single channel dephasing noise acting across a
bond. This is an elaboration of Model I. We con-
sider the following jump operators:

Lj =

√
γ

2
(nj + ν nj+1) , ν ∈ {±1}. (15)
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IV. Single channel dephasing noise acting across a
bond. This is an elaboration of Model II. Here we
consider the following two choices:

(a) Lj =

√
γ

2

(
c†jcj+1 + c†j+1cj

)
,

(b) Lj = i

√
γ

2

(
c†jcj+1 − c†j+1cj

)
. (16)

V. Finally we consider jump operators that break the
U(1) symmetry:

Lj,1 =

√
γ

2
cjcj+1 , Lj,2 =

√
γ

2
c†j+1c

†
j . (17)

All the models have the infinite temperature (equilib-
rium) state as their steady state. Models III and IV are
chosen in order to give a clear picture of how the spatial
structure of the jump operators affects the properties of
the hydrodynamic modes, without making the analysis
overly tedious.

III. OVERVIEW OF MAIN RESULTS

In order make the manuscript easier to read we now
provide a brief overview of the main results derived in
the remainder of the manuscript.

A. Exact expressions for diffusive eigenoperators

Models I-IV have eigenoperators of the dual Lindbla-
dian that exhibit diffusive behaviour at small momentum

L∗[Φ̂(p)] = λ(p)Φ̂(p) , λ(p→ 0) = −Dp2 + . . . . (18)

We derive explicit expressions for these eigenoperators
in the sector with one fermion creation and annihilation
operator each. These have the form

Φ̂(p) =
∑
j,ℓ

eip
j+ℓ
2 ϕ(p; j − ℓ)c†jcℓ , (19)

where the amplitudes ϕ(p; j − ℓ) are model-dependent.
In all cases they describe ”particle-hole bound states”
in the sense that ϕ(p; j − ℓ) decay exponentially with
respect to the distance |j − ℓ|. The corresponding decay
length, or size of the bound state, tends to zero in the
zero momentum limit p→ 0.

B. Exact hydrodynamic projections

The existence of diffusive eigenoperators implies the
presence of long-time tails in the expressions of certain

Heisenberg-picture operators. We derive explicit expres-
sions for these hydrodynamic projections. In particular
we show that(

c†x0
cy0

)
(t≫ γ−1) ≃

∑
x,y

ψx0,y0(x, y; t)c
†
xcy , (20)

where the amplitudes ψx0,y0
(x, y; t) are model-

dependent, but are all expressed in terms on confluent
hypergeometric functions, cf. (109). At asymptotically
late times they reduce to (decaying) power-laws in t,
with exponents that depend on X = |x − y| + |x0 − y0|
and Y = (x− x0) + (y − y0)

ψx0,y0
(x, y; t)

∣∣∣∣∣
leading

=

{
Ae (Dt)−

1+X
2 Y even ,

Ao (Dt)−
2+X

2 Y odd .
(21)

Here D is model-dependent.

C. Non-equal time steady-state correlations

The steady state of models I-IV is a simple infinite-
temperature state. We show that equilibrium dynamics
in this state can be efficiently analyzed. In particular,
signatures of the hydrodynamic modes can be seen in
dynamical correlation functions. We show this for the
case of the Fourier transform of the density-density cor-
relation function

G(q, ω) =
∑
q

∫ ∞

0

dt ei(ωt−qx)

[
1

2L
Tr [nj(t)nℓ]−

1

4

]
∼ A

iω +Dq2
, ω, q → 0. (22)

D. Linear response functions in non-equilibrium
states

Linear response on top of non-equilibrium time evo-
lution describes certain ”pump-probe” experiments. We
analyze this setting for Lindblad equations with decou-
pled BBGKY hierarchies. In particular we consider the
case of the density response to an infinitesimal density
perturbation, described by the Lindblad equation

dρ(t)

dt
= Lt[ρ(t)] = L0[ρ(t)]− i

∑
j

ξj(t)[nj , ρ(t)] . (23)

The linear response is given by the term linear in ξj(t)

Tr[njρ(t)]− Tr[njρ0(t)] =

∫ ∞

0

dt′
∑
j

ξj(t
′)χ(j, ℓ; t, t′),

(24)
where ρ0(t) in density matrix in absence of the pertur-
bation. We determine the Fourier transform of the sus-
ceptibility χ(j, ℓ; t, t′) for initial density matrices corre-
sponding to the ground state of dimerized tight-binding
models and show how dissipation affects the dynamical
response.
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IV. STRUCTURE OF THE EQUATIONS OF
MOTION

Let us consider the following set of operators

O(⃗jn, ℓ⃗m) = c†j1 . . . c
†
jn
cℓ1 . . . cℓm ,

Ψ̂n,m =
∑
j⃗n,ℓ⃗m

Ψ(⃗jn, ℓ⃗m)O(⃗jn, ℓ⃗m) . (25)

In order to derive the equations of motion of Ψ̂n,m we
vectorize

1j −→ |0⟩j ,
c†j −→ c†j,↑|0⟩j ,
cj −→ (−1)jc†j,↓|0⟩j ,

c†jcj −→ (−1)jc†j,↑c
†
j,↓|0⟩j . (26)

The equations of motion then take the form of an imag-
inary time Schrödinger equation with a non-Hermitian
Hamiltonian for the vectorized operator Ψ̂n,m

d

dt
|Ψn,m(t)⟩ = H|Ψn,m(t)⟩ ,

|Ψn,m(0)⟩ =
∑
j⃗n,ℓ⃗m

Ψ(⃗jn, ℓ⃗m)

n∏
r=1

c†jr,↑

m∏
s=1

c†ℓs,↓|0⟩

× (−1)
∑m

s=1 ℓs . (27)

The factors of (−1)ℓs have been introduced in order for
the Hamiltonians to have the same hopping terms for
spin-up and spin-down fermions. It is important to note
that this leads to a shift in total momentum by π in the
vectorized formalism compared to the underlying equa-

tion of motion for the operators O(⃗j, ℓ⃗).
The various choices of jump operators above give rise

to the following Hamiltonians:

• Model I:

H =− iJ
∑
j,σ

(
c†j,σcj+1,σ + h.c.

)
+ 2γ

∑
j

[
(nj,↑ −

1

2
)(nj,↓ −

1

2
)− 1

4

]
. (28)

This is the one-dimensional Hubbard model with
imaginary hopping term. In this case the equiv-
alence of the equations of motion for n-particle
Green’s functions and wave functions of the Hub-
bard model was first observed in Ref. [21].

• Model II:

H =− iJ
∑
j,σ

[c†j,σcj+1,σ + h.c.]− γ
∑
j

[P †
j+1Pj + h.c.]

+ γ
∑
j,σ

[
(nj,σ − 1

2
)(nj+1,σ − 1

2
)− 1

4

]
, (29)

where we have defined a pair annihilation operator
Pj = cj,↓cj,↑.

• Model III:

H =− iJ
∑
j,τ

(
c†j,τ cj+1,τ + h.c.

)
− νγ

∑
j

Sz
j S

z
j+1

+ 2γ
∑
j

[
(nj,↑ −

1

2
)(nj,↓ −

1

2
)− 1

4

]
, (30)

where Sz
j = nj,↑ −nj,↓ and we have used that ν2 =

1.

• Models IV:

H =− iJ
∑
j,σ

[c†j,σcj+1,σ + h.c.]

+ γ
∑
j,σ

[
(nj,σ − 1

2
)(nj+1,σ − 1

2
)− 1

4

]
− γ

∑
j

[P †
j+1Pj − ξS+

j+1S
−
j + h.c.], (31)

where S−
j = c†j,↓cj,↑ are spin lowering operators.

We have ξ = ±1 for models IV(a) and IV(b) re-
spectively, while setting ξ = 0 recovers Model II.

• Model V:

H =− iJ
∑
j,τ

(
c†j,τ cj+1,τ + h.c.

)
+ γ

∑
j,σ

[
(nj,σ − 1

2
)(nj+1,−σ − 1

2
)− 1

4

]
+ γ

∑
j

(P †
j Pj+1 + P †

j+1Pj − PjPj+1)

+ γ
∑
j

(−1)j
[
(nj − 1)Pj+1 − Pj(nj+1 − 1)

]
, (32)

where we have defined nj = nj,↑ + nj,↓. A key
feature of this Hamiltonian is that in all terms there
are at least as many fermion annihilation operators
as there are creation operators.

A. Formal solution of the equations of motion

In order to solve the equations of motion for the op-
erators of interest we proceed along the same lines as in
few-particle Quantum Mechanics: we first solve the time-
indepedent Schrödinger equation for the right eigenstates

H|ΦR,α⟩ = λα|ΦR,α⟩ , (33)

and then obtain the solution of the time-dependent prob-
lem as

|Ψn,m(t)⟩ =
∑
α

⟨ΦL,α|Ψn,m(0)⟩eλαt |ΦR,α⟩ . (34)

Here ⟨ΦL,α| are left eigenstates with eigenvalue λα, nor-
malized such that

⟨ΦL,α|ΦR,β⟩ = δα,β . (35)
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The eigenvalues λα have non-positive real parts and
at sufficiently late times the decay of the operator will
therefore be governed by the eigenvalue whose real part
is closest to zero. We call

∆n,m = max
α

{Re(λα)} (36)

the decay rate of the operator Ψ̂n,m. The structure of
the right eigenvalue equation in models I-IV is simple
because

1. The vaccum state |0⟩ defined by cj,σ|0⟩ = 0 is an
exact eigenstate with eigenvalue zero;

2. The Hamiltonians commute with the number oper-
ators of spin up and spin down fermions

[H, Nσ] = 0 , Nσ =
∑
j

nj,σ . (37)

This means we can consider eigenstates in sectors
with fixed numbers Nσ of fermions with spin σ, i.e.

|ΦR,α⟩ =
∑

j⃗N↑ ,ℓ⃗N↓

Φα(⃗jN↑ , ℓ⃗N↓)

N↑∏
r=1

c†jr,↑

N↓∏
s=1

c†ℓs,↓|0⟩. (38)

In model V the fermion vacuum |0⟩ is still an exact eigen-
state, and while particle number is no longer conserved
the structure of the Hamiltonian implies that eigenstates
have the form

|ΦR,α⟩ =
∑
n≤N↑
m≤N↓

∑
j⃗n,ℓ⃗m

Φ(n,m)
α (⃗jn, ℓ⃗m)

n∏
r=1

c†jr,↑

m∏
s=1

c†ℓs,↓|0⟩ ,

(39)
where in the sums over n and m the difference n−m =
N↑ −N↓ is kept fixed.

B. Single-fermion operators

For all models considered here the momentum space
creation and annihilation operators

c(q) =
1√
L

∑
j

eiqjcj , q =
2πn

L
, 0 ≤ n < L , (40)

are eigenoperators of the dual Lindbladian. The Heisen-
berg picture operators take the simple form

c(k; t) = e(2iJ cos(k)−γ)tc(k) . (41)

The decay rates are momentum independent

∆0,1 = −γ . (42)

V. DYNAMICS OF OPERATORS QUADRATIC
IN FERMIONS IN U(1)-SYMMETRIC MODELS

We next turn to the dynamics of operators quadratic
in fermions. It is convenient to treat Model V separately
froms models I-IV, as particle number is not conserved.
We recapitulate the steps set out above:

1. We consider operators of the form (34) with n+m =
2, e.g.

Ψ̂1,1 =
∑
j,ℓ

Ψ(j, ℓ)c†jcℓ . (43)

2. The vectorized form of the equation of motion in
the Heisenberg picture then becomes, cf. (27)

d

dt
|Ψ1,1(t)⟩ = H|Ψ1,1(t)⟩ . (44)

This is a 2-particle imaginary time Schrödinger
equation with non-Hermitian Hamiltonian.

3. This is solved by expanding |Ψ1,1(t)⟩ in a basis of
two-particle right eigenstates of H, see eqn (34).
We therefore require the two-particle right eigen-
states of H

H|ΦR,α⟩ = λα|ΦR,α⟩. (45)

These are most easily constructed in the position
representation, which we discuss in detail in the
following. Some of the corresponding steps in the
momentum representation are briefly summarized
in Appendix A.

A. Position representation for the eigenvalue
equation with N↑ = N↓ = 1

The position representation of the eigenvalue equation
(33) reads∑

x′,y′

H(x, y|x′, y′)ΦR,α(x
′, y′) = λαΦR,α(x, y) , (46)

where for Model I and III

H(x, y|x′, y′) =− iJ
∑
τ=±1

(δx,x′+τδy,y′ + δx,x′δy,y′+τ )

− 2γ (1− δx,y) δx,x′δy,y′

+ ν
∑
τ=±1

δx,y+τδx,x′δy,y′ , (47)

while for Models II and IV we have

H(x, y|x′, y′) = −iJ
∑
τ=±1

(δx,x′+τδy,y′ + δx,x′δy,y′+τ )

− γ
∑
τ=±1

(δx,yδx,x′+τδy,y′+τ + ξδx,y+τδx,y′δy,x′)

− 2γδx,x′δy,y′ . (48)



7

The eigenvalue equation for Model I is identical to the
eigenvalue equation in the one dimensional Hubbard
model with imaginary hopping in the sector with one
spin-up and one spin-down fermion [60], cf. Ref. [21].
We can construct eigenfunctions of H for Models I-IV by
a plane-wave ansatz

ΦR,α(x, y) =


Aei(k1x+k2y) +Bei(k2x+k1y) if x > y,

T (x) if x = y,

Cei(k1x+k2y) +Dei(k2x+k1y) if x < y.

(49)
Solving the Schrödinger equation for |x−y| ≫ 1 fixes the
eigenvalue in terms of the wave numbers k1,2

λα = −2γ − 2iJ(cos(k1) + cos(k2)) . (50)

The coefficients A, B, C, D and T (x) are determined
by the combination of the eigenvalue equation, overall
normalization and the boundary conditions

Φα(L+1, y) = Φα(1, y) , Φα(x, L+1) = Φα(x, 1) . (51)

Eqns (51) give

C = Ae−ik2L , D = Be−ik1L , (52)

1 = ei(k1+k2)L . (53)

The last equation quantizes the centre-of-mass momen-
tum

k1,2 =
pn
2

± qn , pn =
2πn

L
, n = 1, . . . , L . (54)

The remaining equations fix the ratio B/A and quantize
the momentum qn of the relative motion. We find

1. Model I: Either B = −A and

k1,2 =
2πn1,2
L

, −L
2
≤ n1 < n2 <

L

2
, (55)

or B = Aeik1L and

(−1)neiqnL =
2J cos(pn/2) sin(qn) + γ

2J cos(pn/2) sin(qn)− γ
. (56)

We note that the first class of solutions corresponds
to SU(2) descendants of spin highest-weight states
of the Hubbard model [61, 62].

2. Model II: Either B = −A and

k1,2 =
2πn1,2
L

, −L
2
≤ n1 < n2 <

L

2
, (57)

or B = Aeik1L and

(−1)neiqnL =
2J cos(pn/2) sin(qn)− γ cos(pn)

2J cos(pn/2) sin(qn) + γ cos(pn)
. (58)

3. Model III: Either B = −Aeik1L and

(−1)neiqnL =
2J cos(pn/2)− iνγeiqn

2J cos(pn/2)− iνγe−iqn
(59)

or B = Aeik1L and

(−1)neiqnL =
2J cos(pn/2)(2J cos(pn/2) sin(qn) + γ) + νγeiqn(2J cos(pn/2) cos(qn)− iγ)

2J cos(pn/2)(2J cos(pn/2) sin(qn)− γ)− νγe−iqn(2J cos(pn/2) cos(qn)− iγ)
. (60)

4. Model IV: Either B = −Aeik1L and

(−1)neiqnL =
2J cos(pn/2)− iξγeiqn

2J cos(pn/2)− iξγe−iqn
(61)

or B = Aeik1L and

(−1)neiqnL =
2J cos(pn/2)(2J cos(pn/2) sin(qn)− γ cos(pn))− ξγeiqn(2J cos(pn/2) cos(qn) + iγ cos(pn))

2J cos(pn/2)(2J cos(pn/2) sin(qn) + γ cos(pn)) + ξγe−iqn(2J cos(pn/2) cos(qn) + iγ cos(pn))
. (62)

1. Eigenvalue spectrum for Model I

The (finite size) spectrum of eigenvalues is easily com-
puted numerically. Given that we are dealing with trans-
lationally invariant systems we can label the eigenvalues

by their total momentum pn. Results for L = 100 and
γ = 3 are shown in Figs 1 and 2. We see that there
is a continuum of eigenvalues with non-vanishing imag-
inary parts and real parts close to −2γ, cf. Fig. 1. In
addition there is a band of real eigenvalues that tends
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FIG. 1. Complex eigenvalues as a function of total momentum
for Model I with γ = 3, J = 1 and L = 100. The real parts are
approximately −2γ, indicating that the corresponding modes
are strongly damped.
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FIG. 2. Real eigenvalues as a function of total momentum for
Model I with γ = 3, J = 1 and L = 100. The eigenvalues
vanish as (pn − π)2 for pn → π, reflecting the existence of a
diffusive hydrodynamic mode.

to zero as (pn − π)2 for total momentum pn ≈ π. The
mode occurs around pn = π in our two-particle problem
because of the alternating sign introduced in the vector-
ization (26) of the annihilation operators cj . This leads
to a shift in total momentum by π in the vectorized for-
malism compared to the underlying equation of motion

for the operators O(⃗j, ℓ⃗). In the original (unvectorized)
problem the mode therefore corresponds to a family of
eigenoperators of the time evolution of the form

Φ̂(P ) =
∑
x,y

ΦR,P+π(x, y)(−1)yc†xcy , (63)

which have eigenvalues

λ(P → 0) = −J
2

γ
P 2 + . . . . (64)

For small momenta these are diffusive hydrodynamic
modes related to the particle number U(1) symmetry of
the model, see the discussion in the introduction. Both
types of solutions shown in Figs 1 and 2 are easily un-
derstood in the infinite volume limit, in which both pn

and qn turn into continuous variables. The two classes
of solutions shown in Figs 1 and 2 respectively then give
rise to eigenvalues of the following form:

• q ∈ R and λ(p, q) = −2γ−4iJ cos(p2 ) cos(q) This de-
scribes a two-parameter continuum of eigenstates,
cf. Fig. 1.

• q = κ + iη ∈ C with κ = −π
2 sgn

(
J cos(p2 )

)
and

η = arccosh
(∣∣ γ

2J cos(p/2)

∣∣). This solution ex-

ists if | 2J cos(p/2)
γ | < 1 and gives rise to a single

momentum-dependent mode with real eigenvalues

λ(p) = −2γ

(
1−

√
1−

(2J cos(p/2)

γ

)2 )
. (65)

In a finite volume L the qn’s are quantized via the
Bethe equations (56). However, for large L the par-
ticular solutions of interest here can be obtained as
(cf. [60, 63])

qn = κn + iηn +O(e−δL) , δ > 0 ,

κn = −π
2
sgn

(
J cos(

pn
2
)
)
,

ηn = arccosh
(∣∣ γ

2J cos(pn/2)

∣∣), (66)

where we recall that pn = 2πn/L. This is a key
simplification we exploit in the following. The cor-
responding wave function is

ΦR,n(x, y) ≃Ane
ipn

x+y
2

[
e(iκn−ηn)|x−y|

+ (−1)ne(iκn−ηn)(L−|x−y|)
]
, (67)

where the normalization constant is

|An|2 =
1

L tanh(ηn)
+ o(L−1) . (68)

The wave-function (67) describes a two-particle bound
state, and is the analog [21] of the k-Λ-string excitation
in the one-dimensional Hubbard model [60, 64] in the
case where the hopping amplitude is purely imaginary.
The fact that we are dealing with a bound state solu-
tion implies that the associated eigenoperators (19) of
the Lindbladian are sums of terms that are exponentially
localized around the centre of mass between the creation
and annihilation operator.

2. Eigenvalue spectrum for Model II

The same two classes of solutions as in Model I exists
here as well. In the L→ ∞ limit solutions with real k1,2
give rise to the same two-parameter continuum of states
as in Model I, cf. Fig. 1. Complex solutions to the quanti-
zation conditions (58) have the form q = κ+ iη with κ =
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π
2 sgn

(
J cos(p2 ) cos(p)

)
and η = arccosh

(∣∣∣ γ cos(p)
2J cos(p/2)

∣∣∣)
and exists provided that | 2J cos(p/2)

γ cos(p) | < 1. They corre-

spond to momentum-dependent real eigenvalues of the
form

λ(p) = −2γ
(
1 + cos(p)

√
1−

(2J cos(p/2)

γ cos(p)

)2 )
. (69)

The dispersion (69) is shown in Fig. 3 for γ = 3 and
L = 100. The wave function corresponding to this state
in the large-L limit can again be written in the form (67).
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FIG. 3. Real eigenvalues corresponding to bound modes for
Model II with γ = 3, J = 1 and L = 100. The eigenvalues
vanish as (pn − π)2 for pn → π, reflecting the existence of a
diffusive hydrodynamic mode.

3. Eigenvalue spectrum for Model III

In Model III we again have a two-parameter continuum
of complex eigenstates in the thermodynamic limit, cf.
Fig. 1. In contrast to Models I and II there are now two
different classes of solutions with complex wavenumbers,
which arise respectively from the two quantization con-
ditions (59) and (60). The bound state solutions to eqn
(59) are of the form q = κ+ iη, where for L→ ∞ we find

that κ = −π
2 sgn(Jν cos(

p
2 )) and η = − log

(∣∣∣ 2J cos(p/2)
νγ

∣∣∣).
This corresponds to q = −i log

(
− 2iJ cos(p/2)

νγ

)
and gives

rise to real eigenvalues

λ(p) = −(2− ν)γ − 4J2 cos(p/2)2

νγ
. (70)

These solutions exist only if
∣∣∣ 2J cos(p/2)

γ

∣∣∣ < 1. The eigen-

values (70) are shown as functions of the total momen-
tum in Fig. 4. For large values of L the corresponding
wavefunction is given by

ΦR,n(x, y) ≃ Ane
ipn

x+y
2 (−i)|x−y|

[(
2J cos(pn/2)

νγ

)|x−y|

−(−1)n+L/2+|x−y|
(
2J cos(pn/2)

νγ

)L−|x−y|
]
. (71)

The finite-size corrections are again exponentially small
in L.
The second class of solutions arises from the quanti-

zation conditions (60). These can be written as a third
order polynomial equation for x = eiκ−η (with η > 0)

Jγν cos
(p
2

)
x3 − i

(
2J2 cos

(p
2

)2
+ νγ2

)
x2 + Jγ(2 + ν) cos

(p
2

)
x+ 2iJ2 cos

(p
2

)2
= 0. (72)

In contrast to the previous two models the eigenvalues
generally have non-zero imaginary parts

λ(p) = −2γ − 2iJ cos(p/2)
(
x+ x−1

)
. (73)

The corresponding wave function can again be expressed
in the form (67). The real and imaginary parts of the
eigenvalues (73) are shown as functions of the total mo-
mentum in Fig. 4.

4. Eigenvalue spectrum for Model IV

Model IV has the same structure as Model III. The
first class of solution fulfil the quantization conditions

(61). The wavenumber is q = −i log
(
− 2iJ cos(p/2)

ξγ

)
with

real eigenvalues

λ(p) = −(2− ξ)γ − 4J2 cos(p/2)2

ξγ
. (74)

These solutions exist as long as
∣∣∣ 2J cos(p/2)

γ

∣∣∣ < 1. The

corresponding wavefunction is

ΦR,n(x, y) = Ane
ipn

x+y
2 (−i)|x−y|

[(
2J cos(pn/2)

ξγ

)|x−y|

−(−1)n+L/2+|x−y|
(
2J cos(pn/2)

ξγ

)L−|x−y|
]
. (75)

The eigenvalues (74) are shown as green lines in Figs 6
and 7 for Models IV (a) and Models IV (b) respectively.
We observe that the real part is always strictly negative.
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FIG. 4. Real (red) and imaginary (blue) parts of the eigenval-
ues (73) as a function of total momentum for Model III with
ν = 1, γ = 3, J = 1 and L = 100. The eigenvalues vanish as
(pn − π)2 for pn → π, reflecting the existence of a diffusive
hydrodynamic mode. The green symbols show the purely real
eigenvalues (70) for the same parameters.
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FIG. 5. Same as Fig. 4 with ν = −1. Here all eigenvalues
(73) are real.

The second class of solutions arise from the quantiza-
tion conditions (62). They lead to a third order polyno-
mial

Jξγ cos
(p
2

)
x3 + i

(
2J2 cos

(p
2

)2
+ ξγ2 cos (p)

)
x2 + Jγ cos

(p
2

)
(2 cos (p) + ξ)x− 2iJ2 cos

(p
2

)2
= 0 , (76)

where x = eiκ−η (with η > 0). Just as in Model III, the
eigenvalues can have non-zero imaginary parts. They are
given by

λ(p) = −2γ − 2iJ cos(p/2)
(
x+ x−1

)
. (77)

The wavefunction has the same form as in Model I, II
and III (67). The real and imaginary parts of the eigen-
values (77) are shown in Figs 6 and 7 for Models IV (a)
and Models IV (b) respectively. We observe that the
eigenvalues vanish as (p − π)2 for p → π, reflecting the
existence of a diffusive hydrodynamic mode.
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FIG. 6. Eigenvalues (74) (green) and (77) (red/blue) as func-
tions of total momentum for Model IV (a) with γ = 3, J = 1
and L = 100. A diffusive eigenmode with quadratic disper-
sion is visible at pn ≈ π.
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FIG. 7. Same as Fig. 6 for Model IV (b).

B. Position representation for the eigenvalue
equation with N↑ = 2

We now turn to the time evolution of operators
quadratic in fermions that carry non-zero U(1) charge

Ψ̂2,0 =
∑
x>y

Ψ(x, y)c†xc
†
y . (78)

The vectorized form of their equations of motion is given
by (27) with N↓ = 0, N↑ = 2. To proceed we again
solve the corresponding eigenvalue equation (33) in the
position representation, which reads∑

x′,y′

H(x, y|x′, y′)ΦR,α(x
′, y′) = λαΦR,α(x, y) . (79)
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The Hamiltonian in the position representation for Model
I is now given by

H(x, y|x′, y′) =− iJ
∑
τ=±1

(δx,x′+τδy,y′ + δx,x′δy,y′+τ )

− 2γδx,x′δy,y′ , (80)

while for Models II, III and IV we have

H(x, y|x′, y′) =− iJ
∑
τ=±1

(δx,x′+τδy,y′ + δx,x′δy,y′+τ )

− γ
(
2 + β

∑
τ=±1

δx,y+τ

)
δx,x′δy,y′ . (81)

The parameter β = −1 for Models II and IV, while β = ν
for Model III. The Schrödinger equations are easily solved
using a plane wave ansatz

ΦR,α(x, y) =


Aei(k1x+k2y) +Bei(k2x+k1y) if x > y,

0 if x = y,

−ΦR,α(y, x) if x < y.

(82)
Inspection of the eigenvalue equation for x≫ y fixes the
eigenvalue as a function of k1,2

λα = −2γ − 2iJ(cos(k1) + cos(k2)) . (83)

The coefficients A, B are related by the boundary condi-
tions

ΦR,α(L+ 1, y) = −ΦR,α(y, 1) , (84)

which give

Aeik1L = −B , ei(k1+k2)L = 1 . (85)

The resulting quantization conditions for k1,2 are:

1. Model I:

k1,2 =
2πn1,2
L

, −L
2
≤ n1 < n2 <

L

2
. (86)

2. Models II, III and IV:

k1,2 =
pn
2

± qn , pn =
2πn

L
, n = 1, . . . , L ,

(−1)neiqnL =
2J cos(pn

2 ) + iβeiqnγ

2J cos(pn

2 ) + iβe−iqnγ
. (87)

1. Eigenvalue spectrum for Model I

Numerical results for the finite size eigenvalue spec-
trum are shown in Fig. 8. We see that all eigenvalues
have a real part of −2γ. This implies that all operators
O(x, y) decay exponentially in time. This is expected for
charged operators.
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FIG. 8. Eigenvalues for N↑ = 2 as a function of total momen-
tum for Model I with γ = 3, J = 1 and L = 100. The real
parts are −2γ leading to strongly damping of the correspond-
ing modes.

2. Eigenvalue spectra for Models II, III and IV

In Models II, III and IV, there are two classes of solu-
tions to the quantization conditions (87). One class is the
two-particle continuum discussed above for Model I and
shown in Fig. 8. The second class of solutions involves
complex wavenumbers, but real eigenvalues. These so-
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FIG. 9. Real eigenvalues for N↑ = 2 as a function of total
momentum in Model III with ν = +1 (green) and Models II,
III with ν = −1 and IV (red) with γ = 3, J = 1 and L = 100.

lutions have the form q = κ + iη, where for large L we
have (up to exponentially small finite-size corrections)

κ = π
2 sgn(Jβ cos(

p
2 )) and η = − log

(∣∣∣ 2J cos(p/2)
βγ

∣∣∣). The

corresponding eigenvalues are

λ(p) = −γ(2 + β) +
4J2 cos(p/2)2

βγ
. (88)

These solutions exist as long as
∣∣ 2J cos(p/2)

γ

∣∣ < 1. For

β = 1, we have that λ(p) < −2γ. The eigenvalues are
shown for γ = 3, J = 1 and L = 100 in Fig 9. Putting
everything together we obtain the following result for the
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decay rate of the operators Ψ̂2,0

∆2,0 =

{
−γ β = −1

−2γ β = +1
. (89)

VI. HYDRODYNAMIC PROJECTIONS

We now turn to the problem of hydrodynamic projec-
tions in the N↑ = N↓ = 1 sector. We have seen that
in the models with U(1) symmetry there exists a single-
particle mode in this sector, which has a vanishing real
part at p = π. Clearly this mode will dominate the late-
time behaviour. The corresponding eigenstates are

|ΦR,n⟩ =
∑
x,y

ΦR,n(x, y)c
†
x,↑c

†
y,↓|0⟩ , (90)

where the wave functions are given by (67). At late times
we may therefore simplify the expression (34) for the time
evolved state by restricting the sum over eigenstates to
the subset of states (90)

|Ψ1,1(t≫ γ−1)⟩ ≈
∑
n

⟨ΦL,n|Ψ1,1(0)⟩eλnt |ΦR,n⟩ . (91)

We now show how to explicitly evaluate (91) for Model I,
Models II, III and IV can be dealt with in the same way.
A related analysis was recently carried out for Model I
to study non-equilibrium evolution from domain-wall ini-
tial conditions [30, 31]. We start by noting that the left
eigenstates are simply related to the conjugates of the
right eigenstates by

⟨ΦL,α| = ⟨ΦR,α|
∣∣∣
J→−J

. (92)

To simplify the discussion we now restrict our analysis to
two cases:

A. Operators carrying a definite momentum: As an ex-
ample we consider

Ψ̂q
1 =

∑
x

c†xcx+de
iqx (93)

where we take |d| ≪ L and q = 2πm/L. These operators
carry definite momentum q. The wave function of the
corresponding state is

ψq
1(x, y) = δy,x+de

iqx . (94)

The overlap of the corresponding state with left eigen-
states corresponding ⟨ΦL,n| is

⟨ΦL,n|Ψq
1(0)⟩

A∗
nL

=
1

A∗
nL

∑
x

ΦL,n(x, x+ d)eiqx(−1)x+d

= (−1)de−ipn
d
2 δpn,q+π

{
e(iκn−ηn)|d| q ̸= 0,

δd,0 q = 0 .
(95)

This leads to exponential decay of all Ψq ̸=0
1 with decay

rate

∆(q) = −2γ

1−
√
1−

(
2J

γ
sin
(q
2

))2
 . (96)

Finally, Ψ̂q=0
1 (t) has a vanishing projection on the hydro-

dynamic mode unless d = 0, in which case it is simply the
(conserved) particle number. The time-evolved operators
are of the form

Ψ̂q
1(t) =

∑
x,y

ψq
1(x, y; t)c

†
xcy . (97)

A useful measure of the exponential decay in time is then

F (q, d; t) ≡ 1

L

∑
x,y

|ψq
1(x, y; t)| . (98)

In Fig. 10 we show the time-dependence of F (q, d; t) for
several values of the momentum q and the separation
d on a log-linear scale for L = 100, J = 1 and γ = 1.5.
We observe excellent agreement with the decay rate (96).
For (q, d) = (π5 , 10) we observe two regimes: at early
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FIG. 10. Exponential decay of the operators Ψ̂q
1(t) for several

values of (q, d), with parameters L = 100, J = 1 and γ = 1.5.
The dashed lines show the predicted exponential decay rates
(96).

times the operator decays exponentially with a rate of
approximately −2γ, which is set by the real part of the
two-particle continuum shown in Fig. 1. At late times
the decay rate is set by the bound state solution shown
in Fig. 2. As we are considering an operator with defi-
nite momentum, only a single momentum of the bound
state solution will contribute (as long as the latter exists).
However, this has a very small overlap with the operator
under consideration, which is why this behaviour only be-
comes visible at late times, when the contributions due
to the two-particle continuum have already decayed to
negligible values.
Our results show that quadratic operators carrying a

definite momentum do not acquire diffusive power-law
(in t) tails. This is a result of the kinematics of the
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hydrodynamic modes, which is a direct consequence of
the decoupling of the BBGKY hierarchy.

B. Spatially local operators: We focus on the operators

Ψ̂x0,y0
= c†x0

cy0
, where we restrict the positions to fulfil

|x0 − y0| ≪ L and 1 ≪ x0, y0 ≪ L. The wave function
ψx0,y0

(x, y) of the corresponding state |Ψx0,y0
(0)⟩ is

ψx0,y0(x, y) = δx,x0δy,y0 . (99)

Dropping terms that are exponentially small in L we find

⟨ΦL,n|Ψx0,y0(0)⟩ = ΦL,n(x0, y0)(−1)y0

≃ (−1)y0A∗
ne

−ipn
x0+y0

2 e(iκn−ηn)|x0−y0|. (100)

For late times γt≫ 1 we then have

ψx0,y0
(x, y; t) ≃

∑
n

⟨ΦL,n|Ψx0,y0
(0)⟩eλntΦR,n(x, y)(−1)y

≃ (−1)y+y0

L

∑
n

coth ηne
λnt+i pn

2 Y+(iκn−ηn)X , (101)

where we have defined

X = |x−y|+ |x0−y0| , Y = (x−x0)+(y−y0) . (102)

For large L we can turn the sum into an integral

ψx0,y0
(x, y; t) ≃ (−1)y+y0

∫ 2π−p0

p0

dp

2π
coth(η(p))eλ(p)t+i p

2Y

× e(iκ(p)−η(p))X , (103)

where we have assumed that J > 0 and defined

λ(p) = −2γ
[
1−

√
1−

(2J
γ

cos
(p
2

))2 ]
,

η(p) = arccosh
(∣∣∣ γ

2J cos (p/2)

∣∣∣) ,
κ(p) = −π

2
sgn
(
cos
(p
2

))
,

p0 = 2arccos(
γ

2J
) θ(2J − γ) (104)

In order to extract the late time asymptotics of the inte-
gral it is useful to introduce

z(p) =
2J cos (p/2)

γ
, (105)

and note that for 0 < z ≪ 1

e−η(p) =
z

2

(
1 +

z2

4
+
z4

8
+ . . .

)
,

coth(η(p)) = 1 +
z2

2
+

3z4

8
+ . . . (106)

Folding the integral around π, and expanding the inte-
grand around p = π we obtain

ψx0,y0(x, y; t) ≃ (−1)y+y0

∫ π

p0

dp

2π

[J(π − p)

2γ

]X
e−Dt(π−p)2

× c(π − p)
[
ei

p
2Y−iπ

2 X + (−1)Y e−i p
2Y+iπ

2 X
]
. (107)

Here we have defined

c(q) = 1 +
[ J2

2γ2
− X

24

(
1− 6J2

γ2
)]
q2 + . . . ,

D =
J2

γ
. (108)

Finally we change the integration variable to q = π − p
and extend the upper integration boundary to infinity.
The integral then can be expressed in terms of confluent
hypergeometric functions

ψx0,y0
(x, y; t) ≈ (−1)min(x−y,0)+max(x0−y0,0)

1

2π

( J
2γ

)X[
g(X,Dt, Y ) +

1

2

d2c(q)

dq2

∣∣∣∣
q=0

g(X + 2, Dt, Y ) + . . .
]
,

g(n,Dt, Y ) =
n!

2n
(Dt)−

1+n
2

Re
(
U( 1+n

2 , 12 ,− Y 2

16Dt )
)

if Y even,

i sgn(Y ) Im
(
U( 1+n

2 , 12 ,− Y 2

16Dt )
)

if Y odd.
(109)

This exhibits power-law tails at late times (for fixed x, y)

ψx0,y0
(x, y; t)

∣∣∣∣∣
leading

=

{
Ae (Dt)−

1+X
2 Y even ,

Ao (Dt)−
2+X

2 Y odd ,

(110)
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where

Ae = (−1)min(x−y,0)+max(x0−y0,0)
1

2π

( J
2γ

)X
Γ
(1 +X

2

)
,

Ao = −iAeY
Γ(1 + X

2 )

2Γ( 1+X
2 )

. (111)

Some of these power-laws were recently calculated in [48]
using a transfer matrix approach. To summarize, we have
established that at late times γt ≫ 1 the Heisenberg-
picture operator takes the following form(

c†x0
cy0

)
(t) ≃

∑
x,y

ψx0,y0
(x, y; t)c†xcy , (112)

where ψx0,y0(x, y; t) is given by (109). This is a key result
of our work. The slowest decaying operator is obtained
by taking x0 = y0, which at late times behaves as(

c†x0
cx0

)
(t) =

∑
x

ψx0,x0
(x, x; t)c†xcx + . . . (113)

This operator spreads diffusively, as is shown in Fig. 11
(see also [65]).
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FIG. 11. Diffusive spreading of the operator
(
c†L/2cL/2

)
(t),

with L = 250, J = 1 and γ = 3.

In Figs 12 and 13 we compare the analytic expressions
(109) and (110) to numerically exact results for the am-
plitudes ψx0,y0

(x, y; t).

A. Hydrodynamic projections in Models II, III, IV

Hydrodynamic projections in Models II, III and IV can
be determined along the same lines as in Model I. The
wave function of the hydrodynamic mode has the same
form in terms of the parameters κn and ηn, and all we
have to do is to substitute the appropriate expressions
for these in Models II-IV.
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t

FIG. 12. Amplitude ψL/2,L/2(x, x; t) with x = L
2
+∆x of the

operator (c†L/2cL/2)(t) for L = 500, J = 1 and γ = 3. The

symbols, continuous lines and dashed lines show respectively
the numerically exact result, the analytic expression (109)
and the leading power law (110). The stationary value 1/L
reached at late times is shown by the dotted line.
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FIG. 13. Amplitude of
(
c†L/2cL/2

)
(t), with L = 500, J = 1

and γ = 3. The plot shows the amplitude at different ∆y val-
ues. The dashed lines show the leading power law behaviour
(110), t−1/2, t−3/2, t−5/2, t−7/2, t−9/2 respectively.

A. Operators carrying a definite momentum: The opera-

tors Ψ̂q
1 defined in (93) decay exponentially in time. The

decay rate ∆(q) is given in terms of the eigenvalues λ(p)
(69) (Model II),(70), (73) (Model III) and (74), (77)
(Model IV) as ∆(q) = max(Re(λ(q + π))). Here the
maximum is taken over the different modes at fixed mo-
mentum. In Model II a simple closed-form expression is
available

∆(q) = −2γ
[
1− cos(q)

√
1−

(2J sin (q/2)

γ cos (q)

)2 ]
. (114)

As for Model I, the projection of Ψ̂0
1 on the hydrodynamic

mode vanishes unless d = 0, in which case it reduces to
the conserved particle number.

B. Spatially local operators: The wave-functions describ-

ing the evolution of the operators Ψ̂2 = c†x0
cy0

at late
times are again of the form (103). The difference com-
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pared to our analysis for Model I arises from the expan-
sions of λ(p) and η(p) around p = π. In Model II we
obtain

λ(p) = −J
2 + γ2

γ
(π − p)2 + . . . ,

e−η(p) =
J(π − p)

2γ

(
1 +

6J2 + 11γ2

24γ2
(π − p)2 + . . .

)
,

coth η(p) = 1 +
J2

2γ2
(π − p)2 + . . . . (115)

Substituting this into the integral representation (107)
leads to the same form (109) for the late time asymp-
totics, with the replacements

c(q) = 1 +
[ J2

2γ2
+
X

24

(6J2

γ2
+ 11

)]
q2 + . . . ,

D =
(J2 + γ2)

γ
. (116)

The same analysis for Models III and IV leads again to
(109), where D and c(q) are now given by
Model III:

c(q) = 1 +
[ J2

2γ2
− X

24

(
1− 6J2(2 + ν)

γ2(2− ν)

)]
q2 + . . . ,

D =
2J2

(2− ν)γ
, (117)

Model IV:

c(q) = 1 +
[ J2

2γ2
+
X

24

(
11 +

6J2(2− ξ)

γ2(2 + ξ)

)]
q2 + . . . ,

D =
2J2 + (2 + ξ)γ2

(2 + ξ)γ
. (118)

All models show the same leading behaviour (110), with
appropriately rescaled time. Differences arise in the sub-
leading terms. Note that taking the limit ν → 0 or ξ → 0
recovers the results for Models I and II, as expected.

VII. DYNAMICS OF OPERATORS
QUADRATIC IN FERMIONS IN MODEL V

We now turn to Model V, which does not have parti-
cle number conservation and we therefore do not expect
any hydrodynamic behaviour at late times. On the other
hand, the absence of particle number conservation makes
the solution of the equations of motion in the Heisenberg
picture more interesting. The vectorized Hamiltonian
(32) has the key property that its interaction terms in
H contain at least as many annihilation operators as cre-
ation operators. This results in a triangular structure of
the corresponding eigenvalue equations, which facilitates
their solution.

A. Position representation for the eigenvalue
equation with at most N↑ = N↓ = 1 fermions

Our aim is to solve the time evolution equation for the
operator

Ψ̂1,1 =
∑
x,y

Ψ(x, y)c†xcy . (119)

In our vectorized notations this reads

|Ψ1,1⟩ =
∑
x,y

Ψ(x, y)(−1)yc†x,↑c
†
y,↓ |0⟩ . (120)

The eigenvalue equations of the Hamiltonian H needed
to work out |Ψ1,1(t)⟩ are

H|0⟩ = 0 ,

H|ΦR,α⟩ = λα|ΦR,α⟩ , (121)

where

|ΦR,α⟩ =
∑
x,y

ΦR,α(x, y)c
†
x,↑c

†
y,↓|0⟩+ vα|0⟩ . (122)

We then have

|Ψ1,1(t)⟩ =
∑
α

⟨ΦL,α|Ψ1,1⟩ eλαt|ΦR,α⟩ , (123)

which includes a contribution proportional to the iden-
tity. The position representation of (121) reads∑

x′,y′

H(x, y|x′, y′)ΦR,α(x
′, y′) = λαΦR,α(x, y) ,

2γ
∑
x

(−1)xΦR,α(x, x) = λαvα , (124)

where

H(x, y|x′, y′) =− iJ
∑
τ=±1

(δx,x′+τδy,y′ + δx,x′δy,y′+τ )

− 2γ
(
1−

∑
τ=±1

δx,y+τ

)
δx,x′δy,y′

+ δx,y
∑
τ=±1

δx+τ,x′δy+τ,y′ . (125)

To solve this, we can use the same plane wave ansatz
(49) as in the U(1) symmetric models. The eigenvalue
and the boundary conditions are the same as in the U(1)
symmetric models (50) and (51). We find two solutions,
either B = −Aeik1L and the relative momentum is quan-
tised by

(−1)neiqnL =
2J cos(pn/2)− ieiqnγ

2J cos(pn/2)− ie−iqnγ
, (126)

or B = Aeik1L and
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(−1)neiqnL =
2J cos(pn/2)(2J cos(pn/2) sin(qn) + γ cos(pn)) + eiqnγ(2J cos(pn/2) cos(qn)− iγ cos(pn))

2J cos(pn/2)(2J cos(pn/2) sin(qn)− γ cos(pn))− e−iqnγ(2J cos(pn/2) cos(qn)− iγ cos(pn))
. (127)

We note that (127) is the same as in Model IV (a) with
the replacement γ → −γ. It turns out that there is only
a single eigenstate (122) for which vα ̸= 0, namely

ΦR,0(x, y) = A0(−1)yδx,y , v0 = −A0
L

2
. (128)

The corresponding eigenoperator of the dual Lindbladian
has eigenvalue λ0 = −4γ and is given by

Φ̂0 = A0

(∑
x

c†xcx − L

2
1
)
. (129)

To see that vα = 0 for all other eigenoperators we use
that the Lindbladian time evolution is trace preserving

Tr(Φ̂α(t)) = eλαtTr(Φ̂α) . (130)

All eigenvalues are non-zero, which implies that all eigen-
operators must be traceless. This implies that

vα = −1

2

∑
x

(−1)xΦR,α(x, x) . (131)

Substituting (131) into the eigenvalue equation (124) im-
poses that either vα = 0 or λα = −4γ. We find numer-
ically that the eigenvalue −4γ is non-degenerate. The
corresponding eigenoperator is given above, which estab-
lishes our assertion.

1. Eigenvalue spectrum

The eigenvalue spectrum is easily computed numeri-
cally. Like in Models I-IV, there is a continuum of states
with real wavenumbers cf. Fig. 1. In addition there
are two classes of eigenvalues with complex wavenum-
bers, which are shown in Fig. 14. The first class of
solutions arises from the quantization condition (126)

with wavenumbers q = −i log
(
− 2iJ cos(p/2)

γ

)
. The cor-

ersponding eigenvalues are real, and up to finite-size cor-
rections take the simple form

λ(p) = −γ − 4J2 cos(p/2)2

γ
. (132)

These solutions exist as long as |2J cos(p/2)/γ| < 1, and
the corresponding wavefunction is, up to finite-size cor-
rections, given by

ΦR,n(x, y) = Ane
ipn

x+y
2 (−i)|x−y|

[(
2J cos(pn/2)

γ

)|x−y|

−(−1)n+L/2+|x−y|
(
2J cos(pn/2)

γ

)L−|x−y|
]
. (133)
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FIG. 14. Real (red) and imaginary (blue) parts of the eigen-
values (127) as a function of total momentum for Model V
with ν = 1, γ = 3, J = 1 and L = 100. The green symbols
show the purely real eigenvalues (126) for the same parame-
ters.

The second class of solutions arises from the quantization
conditions (127). These can be cast in the form of a third
order polynomial equation for x = eiκ−η with η > 0

Jγ cos
(p
2

)
x3 − i

(
2J2 cos

(p
2

)2
+ γ2 cos (p)

)
x2

+ Jγ cos
(p
2

)
(2 cos (p) + 1)x+ 2iJ2 cos

(p
2

)2
= 0 .

(134)

The eigenvalues are (up to finite size corrections)

λ(p) = −2γ − 2iJ cos(p/2)
(
x+ x−1

)
, (135)

and just as in Models III and IV λ(p) can have a non-zero
imaginary part. The corresponding wave functions have
the same form as in Models I-IV (67). As all eigenval-
ues have strictly negative real parts, all operators decay
exponentially.
A physical process that could be analyzed in model

V would be the time evolution of particle density and
its fluctuations in a quantum quench starting from an
initially empty state.

VIII. OPERATORS CUBIC IN FERMIONS

Operators cubic in fermions cannot have hydrody-
namic projections as a result of their odd fermion par-
ity and are therefore expected to decay exponentially in
time. We start by considering the following class of op-
erators

Ψ̂0,3 =
∑

j<k<l

Ψ(j, k, l)cjckcl . (136)
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In Model I, the corresponding equation of motion maps
onto an imaginary time Schrödinger equation for three
non-interacting particles and it is easy to see that the
decay rate for Ψ̂0,3 is

∆0,3 = −3γ . (137)

In Models II-IV we have determined the spectrum nu-
merically and observe that

∆0,3 =

{
−γ − 2J2

γ β = −1

−3γ β = +1
, (138)

where we recall that β = −1 for Models II and IV, while
β = ν = ±1 for Model III.
The second class of operators we consider are of the

form

Ψ̂1,2 =
∑
j;k<l

Ψ(j, k, l)c†jckcl . (139)

We find the following result (analytically for Model I and
numerically for Models II-IV) for the decay rate of these
operators

∆1,2 = −γ. (140)

IX. OPERATORS QUARTIC IN FERMIONS

Finally we consider operators quartic in fermions. Ar-
guably the most interesting operators are U(1) symmet-
ric ones

Ψ̂2,2 =
∑

j<k,l<n

ψ(j, k, l, n)c†jc
†
kclcn . (141)

Under time evolution these are expected to acquire hy-
drodynamic power-law tails at late times. In terms of
the vectorized notations (26) the equations of motion for

Ψ̂2,2 map onto a four-particle imaginary time Schrödinger
equation. For Model I this can in principle still be solved
exactly by using integrability methods [60]. However,
in Models II, III and IV exact results can no longer be
obtained following the same steps as in the two-particle
sector, because the wave-functions of eigenstates of the
Hamiltonians H no longer take simple forms in terms of
superpositions of plane waves. This is because the two
existing conserved quantities – momentum and the eigen-
value of H – are no longer sufficient to fix a set of four
single-particle rapidities. As a result, in contrast to the
situation in the two-particle sector, the wave functions of
four-particle eigenstates in these models no longer takes
(nested) Bethe ansatz form. We expect this to lead to
quantifiably different behaviours of appropriate quanti-
ties related to Ψ̂2,2(t) in Models II-IV compared to Model
I. However, this line of enquiry goes beyond the scope of
the present work and will be pursued elsewhere.

A. Model I: Bethe ansatz

As was noted in [21] the general eigenstates of H (28)
in Model I have Bethe ansatz form and are parametrized
in terms on N = N↑ + N↓ rapidity variables {kj |j =
1, . . . , N} and M = N↓ rapidity variables {Λα|α =
1, . . . ,M}. The two sets of rapidities fulfil the nested
Bethe ansatz equations

eikjL =

M∏
α=1

Λα − sin kj + γ/2

Λα − sin kj − γ/2
,

N∏
j=1

Λα − sin kj + γ/2

Λα − sin kj − γ/2
=
∏
β ̸=α

Λβ − Λα + γ

Λβ − Λα − γ
. (142)

The eigenvalue of H for a given solution is

λ({kj ; Λα}) = −2iJ

N∑
j=1

cos kj −Nγ. (143)

In the case N↑ = N↓ = 1 (142) and (143) recover (56) and
(50) as required. The solutions of (142) corresponding to
the hydrodynamic modes were identified in Ref [21] and
are given in terms of the dissipative analog of k-Λ strings
[60, 64], which up to finite-size corrections take the form

k
(m)
α,j = arcsin(iλ(m)

α − (m− 2j + 2)
γ

2
),

k
(m)
α,j+m = π − arcsin(iλ(m)

α + (m− 2j + 2)
γ

2
),

Λ
(m)
α,j = iλ(m)

α +
γ

2
(m+ 1− 2j), 1 ≤ j ≤ m. (144)

The eigenvalues of H are expressed in terms of the string
centres as

λ = 4
∑
(m,α)

Im

√
1−

(
i|λ(m)

α | −m
γ

2

)2 − γN. (145)

In the 4-particle sector we need to consider four classes
of solutions:

1. A single k-Λ string of length 2

This corresponds to taking m = 2 in (144),
(145). Up to finite-size corrections the correspond-
ing eigenvalues can be expressed in terms of the
total momentum p

λ(p) = −4γ
[
1−

√
1−

( sin(p/2)
γ

)2 ]
. (146)

This goes to zero as p2 for small momenta, sig-
nalling the diffusive nature of this mode.

2. Two k-Λ strings of length 1

This corresponds to combining two strings with

m = 1 in (144), (145). The string centres λ
(1)
1,2 fulfil
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the Bethe equations [21]

Lf1(λ
(1)
α ) = 2πJ (1)

α +
∑
β ̸=α

θ
(λ(1)α − λ

(1)
β )

γ

)
, (147)

where θ(x) = 2arctan(x) and f1(x) = sgn(x)
(
π −

arcsin(ix+γ/2)+arcsin(ix−γ/2)
)
. The (half-odd)

integers J
(1)
α have range

|J (1)
α | ≤ L− 3

2
, (148)

and the total momentum is p = 2π
L (J

(1)
1 + J

(1)
2 ).

3. η-pairing descendants [61, 62] of a length-1 k-Λ
string

In terms of our vectorized notations these eigen-
states take the form

η†|λ(1)⟩ , η† =
∑
j

(−1)jc†j,↓c
†
j,↑ , (149)

where |λ(1)⟩ denotes eigenstates in the N↑ = N↓ =
1 sector corresponding to length-1 k-Λ string solu-
tions to the Bethe equations (142), i.e.

Lf1(λ
(1)) = 2πJ (1) , |J (1)| ≤ L

2
− 1 . (150)

The eigenvalues of these states can be expressed
(up to finite-size corrections) in terms of the total
momentum p as

λ(p) = −2γ
[
1−

√
1−

(2 sin(p/2)
γ

)2 ]
. (151)

4. η-pairing descendant of the vacuum state

(η†)2|0⟩ (152)

This state has eigenvalue zero.

In Fig. 15 we show exact diagonalization results for the
eigenvalues of H in the 4-particle sector with N↑ = N↓ =
2 in Model I, for parameter values γ = 3, J = 1 and
L = 26. We observe that the eigenvalues with small
real parts are given in terms of the four classes of Bethe
states discussed above in the framework on the string
hypothesis. In addition there are eigenstates with larger
negative real parts, which are given in terms of other
solutions of the Bethe equations (142).

In Fig. 16 we compare the eigenvalues obtained by us-
ing the string hypothesis as outlined above for γ = 2.5,
J = 1 and L = 26 to results obtained by exact diago-
nalization of the Hamiltonian H in the 4-particle sector.
We observe excellent agreement for all eigenvalues. This
shows that it is possible to extend our analysis of section
VI to the four-particle sector and determine exact hydro-
dynamic projections of U(1) invariant operators quartic
in fermions for Model I. However, this is beyond the scope
of our present work.

FIG. 15. Real parts of the eigenvalues of H with N↑ = N↓ = 2
as a function of total momentum for Model I with γ = 3,
J = 1 and L = 26. The black line is the eigenvalue of a
length-2 k−Λ string (class 1 in main text), and the gray area
shows the continuum of two length-1 k−Λ strings (class 2 in
main text).
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FIG. 16. Comparison of results obtained by the string hy-
pothesis to exact diagonalization (circles) for the real parts of
the eigenvalues as a function of total momentum for Model I
with γ = 2.5, J = 1 and L = 26. The four different classes of
solutions (see main text) are shown as green, blue, red, and
pink dots.

B. Non-integrable models

In Models II-IV we still expect hydrodynamic modes,
but as these models are not integrable a detailed analytic
understanding of the eigenvalues of the various Hamilto-
nians H is not available. On the other hand, the nu-
merical spectrum of eigenvalues can be straightforwardly
obtained by exact diagonalization techniques. As an ex-
ample we show results for Model II with γ = 3, J = 1
and L = 26 in Fig. 17. The eigenvalues with the largest
real parts form a 2-particle scattering continuum, which
we observe to approximately coincide with the continuum
obtained by treating the eigenvalues in the N↑ = N↓ = 1
sector (69) as corresponding to non-interacting ”excita-
tions” and adding two of them in a restricted range of
momenta p, which we fix by requiring that λ(p) ≥ −γ.
This requirement is motivated by the observation that
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FIG. 17. Real parts of the eigenvalues of H in the sector
N↑ = N↓ = 2 as a function of total momentum for Model
II with γ = 3, J = 1 and L = 26. The gray area shows the
continuum of two non-interacting N↑ = N↓ = 1 ”excitations”.

other eigenvalues from a continuum of states starting at
−2γ, cf. Fig. 17. It would be interesting to pursue a more
precise description by treating the ”particles” as inter-
acting and extracting their ”scattering length” from the
finite-size spectrum of the Lindbladian. The analogous
analysis for the two-particle scattering continuum on the
non-integrable spin-1 chain was carried out in Ref. [66].

C. Non U(1) symmetric operators

Operators that are not U(1) symmetric are expected
to decay exponentially in time. We first consider opera-
tors involving four annihilation operators. In Model I the
corresponding imaginary-time Schrödinger equation de-
scribes non-interacting particles, and all eigenvalues have
Re(λα) = −4γ. In Models II-IV we have

∆0,4 =

{
−γ β = −1

−4γ β = +1
. (153)

For operators involving a single creation and three anni-
hilation operators, we can only investigate the spectrum
numerically and find that

∆1,3 =

{
−2γ Models I, III (ν = +1)

−γ Models II, IV, III (ν = −1)
. (154)

X. NON-EQUAL TIME CORRELATION
FUNCTIONS IN THE STEADY STATE

Using the results obtained above we can evaluate non-
equal time correlation functions of quadratic operators in
the infinite temperature steady state, e.g.

g(x, y|x0, y0; t) =
1

2L
Tr
[(
c†x0

cy0

)
(t)c†xcy

]
− 1

4
δx,yδx0,y0

.

(155)

This has a simple form in terms of wave-functions

g(x, y|x0, y0; t) =
1

4
ψx0,y0(y, x; t) . (156)

As a particular example we consider the Fourier trans-
form of the connected density-density correlation func-
tion

G(q, ω) =
∑
x

∫ ∞

0

dt ei(ωt−qx)g(x, x|0, 0; t) . (157)

As a result of the presence of a diffusive zero energy mode
in Models I-IV, G(q, ω) diverges at small momentum and
energy like

G(q, ω) ∝ 1

iω +Dq2
. (158)

Here the model dependent parameter D was previously
obtained in our derivation of hydrodynamic projections
in (108), (116), (117) and (118) respectively. In Figs 18
and 19 we show numerical results for Im

(
G(q, ω)

)
in re-

spectively Model I and II, for system size L = 500 and
parameters J = 1 and γ = 3. The diffusive mode is
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FIG. 18. Fourier transform of the connected density-density
correlation function in the steady state, with parameters L =
500, J = 1 and γ = 3, in Model I.

clearly visible at small momentum and energy.

XI. LINEAR RESPONSE IN LINDBLAD
DYNAMICS

The theory of linear response in Lindblad equations
was worked out in Ref.[51] and we now briefly review
the relevant results. The starting point is a Lindblad
equation with Lindbladian L0. The corresponding time
evolution operator for the reduced density matrix ρ is

ρ0(t) = E0(t) ∗ ρ , E0(t) = eL0t . (159)
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FIG. 19. Fourier transform of the connected density-density
correlation function in the steady state, with parameters L =
500, J = 1 and γ = 3, in Model II.

One then considers a weak perturbation to the Lindbla-
dian L0 of the form

L(t) = L0 + ξ(t)L1 , (160)

which induces time-evolution of the density matrix by

ρ(t) = E(t) ∗ ρ , E(t) = Te
∫ t
0
dτ L(τ) . (161)

The expectation value of an observable A can then be
expanded in powers of the small parameter ξ

Tr [Aρ(t)]− Tr [Aρ0(t)] =

∫ ∞

0

dt′ξ(t′)χAL1
(t, t′)

+ higher order in ξ , (162)

where the linear susceptibility is given by

χAL1
(t, t′) = θ(t− t′)Tr

(
A
(
E0(t− t′)L1E0(t′)

)
∗ ρ
)
.

(163)
Focusing on perturbations of the form

L1[ρ] = −i[B, ρ] , (164)

and moving to the Heisenberg picture this can be written
as

χAB(t, t
′) = iθ(t− t′)Tr

(
ρE∗

0 (t
′) ∗

[
B, [A(t− t′)]

])
.

(165)
Here the time evolution of operators is obtained by acting
with the dual map

A(t) = E∗
0 (t) ∗A . (166)

In general this is quite a complicated object, but for the
Lindblad equations considered in our work it simplifies
significantly as we will see. In the following we will focus
on the density response to a density perturbation, i.e.

B = nℓ , A = nj , (167)

where nj is the number operator for spinless fermions
on site j. The corresponding dynamical susceptibility is
then denoted by

χ(j, ℓ; t, t′) = iθ(t− t′)Tr
(
ρE∗

0 (t
′) ∗

[
nℓ, [nj(t− t′)]

])
.

(168)

A. Linear response in the steady state

The steady state of the unperturbed Limdblad evolu-
tion fulfils

E0(t) ∗ ρSS = ρSS . (169)

The linear response in the steady state takes a particu-
larly simple form [51]

χSS
AB(t) = iθ(t)Tr

(
ρSS
[
B,A(t)

])
. (170)

Given that the steady state density matrix is equal to
the identity (or the identity in a sector with fixed particle
number), density response functions (170) in the steady
state vanish.

B. Linear response functions after a quantum
quench

We now focus on the particular case of density-density
response functions after a quantum quench (168). These
are of interest e.g. for pump-probe experiments. As our
initial state we take a Gaussian fermionic state ρ0 char-
acterized by the correlation matrix (all other two-point
functions vanish)

Cj,ℓ = Tr
[
ρ0c

†
jcℓ

]
= f(j − ℓ) + (−1)ℓg(j − ℓ) . (171)

An example is the ground state of a tight-binding model
with dimerization [67], in which case we have

f(j) =
1

L

∑
k>0

eikj
(−1)j + h2(k)

1 + h2(k)
,

g(j) =
1

L

∑
k>0

eikj
ih(k)

1 + h2(k)

(
(−1)j − 1

)
,

h(k) =
2J cos k − ϵ−(k)

2Jδ sin k
,

ϵ−(k) = −2J
√
δ2 + (1− δ2) cos2 k . (172)

It is convenient to consider the following Fourier trans-
form of the linear response function (168)

χ(Q,Q′, ω, t′) =
1

L

∑
j,ℓ

∫ ∞

t′
dt eiω(t−t′)+iQj+iQ′ℓ

× χ(j, ℓ; t, t′) . (173)
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Due to broken translational invariance in the initial state
there are two contributions

χ(Q,Q′, ω, t′) = δQ,−Q′ χsm(Q,ω, t
′)

+ δQ,π−Q′ χst(Q,ω, t
′) . (174)

As χsm(Q,ω, t
′) is independent of t′ in absence of dissi-

pation we focus on χst(Q,ω, t
′). For γ = 0, i.e. purely

unitary time evolution, we have for all our models

χ0
st(Q,ω, t

′) =
1

L

∑
k

[g̃(−k)− g̃(k)]e2iϵ(k)t
′

ω + iδ + ϵ(k)− ϵ(k +Q)
, (175)

where δ is a positive infinitesimal and

g̃(k) =
∑
j

eijkg(j) . (176)

We stress that even in absence of dissipation, i.e. γ = 0,
the staggered dynamical suceptibilities χ0

st(Q,ω, t
′) van-

ish in the late time limit as a result of the restoration
of translational invariance [52]. In Fig. 20 we show the
real part of χ0

st(Q,ω, t
′ = 0) as a function of ω and Q.

The main features are particle-hole scattering continua,
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FIG. 20. Real part of χ0
st(Q,ω, t

′ = 0) for dimerization δ =
0.25.

which exhibit square root singularities when

ω → ±4J sin(Q/2) . (177)

This behaviour can be straightforwardly understood from
(175) by first turning the sum into an integral in the
L→ ∞ limit and then using that

Im
1

ω + iδ + z(k)
= −πδ

(
ω + z(k)

)
. (178)

to extract the most singular part. In Fig. 21 we show the
real part of χ0

st(Q,ω, t
′ = 2) as a function of ω and Q.

We observe that the magntiude of χ0
st diminishes with
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FIG. 21. Real part of χ0
st(Q,ω, t

′ = 2) for dimerization δ =
0.25.

increasing t′, in agreement with the fact that at late t′

translational symmetry gets restored. We also observe an
”interference pattern” inside the particle-hole continuum.

We now turn to the effect of non-vanishing dissipation
on density-density response functions. In Fig. 22 we show
the real part of χst(Q,ω, t

′ = 0) in Model I for dimeriza-
tion δ = 0.25 and dissipation rate γ = 0.5. A comparison
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FIG. 22. Real part of χst(Q,ω, t
′ = 0) in Model I for dimer-

ization δ = 0.25 and dissipation rate γ = 0.5.

with Fig. 20 reveals the effects of a non-zero dephasing
rate: sharp features like the aforementioned square root
singularities visible in absence of dissipation get washed
out. These effects are compounded by the time evolution
of the density matrix itself, i.e. considering the response
function for t′ > 0. In Fig. 23 we show the real part of
χst(Q,ω, t

′ = 2) for L = 500, dissipation rate γ = 0.1
and dimerization δ = 0.25. Comparing this to Fig 21 we
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FIG. 23. Real part of χst(Q,ω, t
′ = 2) for L = 500, dissipation

rate γ = 0.1 and dimerization δ = 0.25.

see that dissipation has essentially erased the modula-
tions inside the particle-hole continuum that are clearly
visible in the γ = 0 evolution.
In order to get a clearer view of how dissipation affects

the lineshapes observed in the linear response under uni-
tary time evolution we show some constant momentum
cuts in Fig. 24.
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FIG. 24. Constant momentum cuts of the real part of
χst(Q,ω, t

′ = 0) at different Q values and dissipation rates
γ = 0 (black), γ = 0.1 (green), γ = 0.5 (blue), and γ = 5
(red).

We observe that, as expected, the square root singu-
larities in χ0

st(Q,ω, t
′ = 0) are smoothed out by even a

small dissipation rate γ. For smaller values of Q signa-
tures of the diffusive mode present in the Lindbladian
evolution begin to emerge at low frequencies and larger
dissipation rates. This can be seen by substituting the
hydrodynamic projection (109) for nj(t) into the expres-

sion for the linear response function and comparing this
to the full result.
The linear response functions in Models II-IV are qual-

itatively similar to the ones in Model I, and we therefore
refrain from presenting results for them.

XII. SUMMARY AND CONCLUSIONS

In this work we have considered a class of LEs for spin-
less fermions, which have the property that their respec-
tive BBGKY hierarchies decouple. In cases with a U(1)
symmetry related to particle number conservation this
leads to linear equations of motion for operators involv-
ing a fixed number of fermion creation and annihilation
operators. Importantly, these are not reducible to the
equations of motion for fermion bilinears. We have shown
that this makes it possible to obtain exact results for the
Heisenberg picture time evolution of operators quadratic
in fermions, irrespective of whether the LEs are Yang-
Baxter integrable or not. In particular, we have obtained
closed-form expressions for the exact hydrodynamic pro-
jections of such operators at late times. The relatively
simple structure of the Heisenberg equations of motion
also makes it possible to determine linear response func-
tions out of equilibrium in the framework of LEs. We
have determined the density-density response functions
after a quantum quench initialized in the ground state of
a tight-binding chain with dimerized hopping. The main
effects of dissipation are to wash out sharp features in the
lineshapes of dynamical response functions, and to gen-
erate signatures of the diffusive mode of the Lindbladian
that drives the relaxation towards the steady state at
late times. Our work also establishes an interesting new
perspective regarding the question how Yang-Baxter in-
tegrability affects Lindbladian dynamics, given that the
latter converges to the same steady state irrespective of
the initial conditions. As we have shown, the Heisenberg-
picture dynamics of operators in our LEs can be mapped
onto few-particle imaginary time Schrödinger equations
with non-Hermitian Hamiltonians. Integrability then im-
poses simple forms of the eigenfunctions of these Hamil-
tonians.
Our work opens the door to several lines of enquiry.

First, the decoupling of the BBGKY hierarchy holds on
any lattice in any number of dimensions. It would be
interesting to investigate whether explicit results e.g. for
hydrodynamic projections can be obtained in higher di-
mensions. Second, we believe that the simpler struc-
ture of eigenstates of the aforementioned non-Hermitian
Hamiltonians should lead to qualitative differences be-
tween integrable and non-integrable LEs in appropriated
chosen complexity measures of time-evolved operators,
cf. [68] for related work. This question is currently un-
der investigation. Finally, it would be interesting to con-
sider the effects of dissipative boundaries that preserve
the truncation of the BBGKY hierarchy [69–74]. This
would enable the study of transport properties involving
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two-particle Green’s functions.
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Appendix A: Diagonalizing the dual Lindbladian in
momentum space

When carrying out numerical computations it is some-
times convenient to consider the equations of motion in

momentum space. We use conventions such that

cj =
1√
L

∑
q

e−iqjc(q) , q =
2πn

L
, −L

2
≤ n <

L

2
, (A1)

and consider the following set of operators

On,m(k) = c†(k1) . . . c
†(kn)c(kn+1) . . . c(kn+m) . (A2)

These carry non-zero momentum

Q =

n∑
j=1

kj −
m∑
j=1

kn+j . (A3)

The dual Lindbladian acts as

L∗[On,m(k)] =

( n∑
j=1

ϵ∗(kj) +

m∑
j=1

ϵ(kn+j)

)
On,m(k) +

2γ

L

n+m∑
α<β=1

∑
p

S(α,β)(p)[On,m(k)] , (A4)

where

ϵ(q) = 2iJ cos(q)− γ , (A5)

and S(α,β)(p) are model-dependent, momentum conserv-
ing kernels acting in the following way

I: S(α,β)(p)[On,m(k)] =

{
On,m

(
k+ p(eα + eβ)

)
if α ≤ n < β ,

0 else ,
(A6)

II: S(α,β)(p)[On,m(k)] =

{
[cos(k(eα − eβ))]On,m

(
k+ p(eα + eβ)

)
if α ≤ n < β ,

cos(p) On,m

(
k+ p(eα − eβ)

)
else ,

(A7)

III: S(α,β)(p)[On,m(k)] =

{
[1 + ν cos(p)]On,m

(
k+ p(eα + eβ)

)
if α ≤ n < β ,

cos(p) On,m

(
k+ p(eα − eβ)

)
else ,

(A8)

IV: S(α,β)(p)[On,m(k)] =

{
[cos(k(eα − eβ)) + ξ cos(k(eα + eβ) + p)]On,m

(
k+ p(eα + eβ)

)
if α ≤ n < β ,

cos(p) On,m

(
k+ p(eα − eβ)

)
else ,

(A9)

V: S(α,β)(p)[On,m(k)] =

{
(cos(k(eα − eβ))− cos(p))Tα,β [On,m

(
k+ p(eα + eβ)

)
] if α ≤ n < β ,

0 else .
(A10)

Here eα are unit vectors with a single entry at position α. Finally, for Model V we have introduced operators
Tα,β that act on On,m as

Tα,β [On,m(k)] = c†(k1) . . . c
†(kα−1)c(kβ)c

†(kα+1) . . . c
†(kn)c(kn+1) . . . c(kβ−1)c

†(kα)c(kβ+1) . . . c(kn+m) . (A11)

”Normal-ordering” this expression such that all creation operators are on the right generates contributions involv-
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ing On−1,m−1 and On−2,m−2.
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