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Abstract

Recent advances in machine learning (ML) have accelerated progress in calibrating and
operating quantum dot (QD) devices. However, most ML approaches rely on access to
large, representative datasets designed to capture the full spectrum of data quality en-
countered in practice, with both high- and low-quality data for training, benchmarking,
and validation, with labels capturing key features of the device state. Collating such
datasets experimentally is challenging due to limited data availability, slow measure-
ment bandwidths, and the labor-intensive nature of labeling. QDF Low is an open-source
physics simulator for multi-QD arrays that generates realistic synthetic data with ground-
truth labels. QDF Llow combines a self-consistent Thomas-Fermi solver, a dynamic capac-
itance model, and flexible noise modules to simulate charge stability diagrams and ray-
based data closely resembling experiments. With an extensive set of parameters that
can be varied and customizable noise models, QDF Low supports the creation of large,
diverse datasets for ML development, benchmarking, and quantum device research.
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1 Introduction

Among the various quantum computing platforms, quantum dots (QDs) stand out for their
scalability potential, compact size, and long coherence times [1]. Operating QD devices, how-
ever, remains a formidable challenge, with complexity growing rapidly—often exponentially—
as the number of qubits increases. Recent advances in integrating machine learning (ML) with
quantum device operation have begun to mitigate these difficulties, offering promising auto-
mated control and calibration strategies. For example, ML algorithms have been developed for
the fabrication [2, 3], characterization [4, 5], tuning [6-13], and gate virtualization [14, 15]
of QD devices.

Developing robust ML models requires access to large and diverse datasets representative
of the multi-dimensional parameter space typical of QD devices. Crucially, for supervised ML
applications, these datasets must also include metadata that identifies key features, such as
the global state (i.e., the number of QDs formed), the charge configuration, and the type of
transition lines present. Unfortunately, large volumes of high-quality experimental data can be
challenging to obtain as companies and research groups often keep such data proprietary [16].
Limited measurement bandwidth in real-world experiments also constrains the efficient explo-
ration of the entire high-dimensional parameter space in a reasonable time. Generating ac-
curate feature labels for publicly available data is a labor-intensive and time-consuming task
that can produce subjective and potentially erroneous labels. Physics-based simulations offer
a practical solution: they enable the generation of arbitrarily large datasets while providing di-
rect access to the ground-truth charge states, thereby simplifying the labeling process needed
for ML training.

Here, we introduce QDFlow, an open-source Python package for simulating QD systems
and generating synthetic data tailored for ML training and applications. The core physics
engine in QDF Low employs the Thomas-Fermi approximation to numerically solve for the semi-
classical charge density n(x) along a one-dimensional (1D) nanowire. While the current state-
of-the-art devices are typically realized by confining charges (electrons or holes) within a two-
dimensional (2D) heterostructure, the QDs are ultimately formed within quasi-1D channels
within those heterostructures, motivating our choice of a 1D model. In practice, the simulated
data produced by QDFLow closely resembles that of linear QD arrays in 2D heterostructures.
ML models trained on QDFlow-generated data have been shown to generalize effectively to
larger 2D QD arrays [14].

There are several open-source QD device simulators that rely on the constant capacitance
model, treating the array of QDs and their associated electrostatic gates as nodes in a network
of fixed capacitors [17-19]. Additionally, Ref. [19] allows the capacitances to vary with re-
spect to the number of charges n by introducing an n-dependent correction to the capacitance
matrix. In contrast, in QDF Low the capacitance parameters are physics-informed, obtained di-
rectly from the self-consistent Thomas-Fermi solution rather than imposed heuristically. All key
physical observables—such as current, charge states, and sensor readouts—are derived from a
capacitance model constructed based on the computed charge density n(x). This ensures that
the capacitances evolve dynamically with gate voltages, yielding a more realistic description of
device behavior. Furthermore, QDF Low allows for modeling regions with low barriers between
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[ qgdflow ]
[ physics ] [ generate ] [ util ]
PhysicsRandomizati
q o . on q o g
simulation ] [ noise ] { distribution ]
CSDOutput
ThomasFermi NoiseGenerator random_physics () Distribution
PhysicsParameters NoiseParameters calc_2d_csd() Uniform
NumericsParameters NoiseRandomization calc_transitions() Normal

Figure 1: Diagram illustrating the QDF Low library organizational structure. Each of
QDFlow’s four modules is listed, along with the most important classes or functions
within those modules.

dots, leading the dots on either side to combine into a single centralized dot. Finally, QDF Low
incorporates a flexible noise module, enabling the addition of experimentally relevant effects
such as thermal broadening, charge offset drift, and voltage fluctuations. These features make
the simulated data qualitatively comparable to experimental measurements while maintain-
ing full access to the ground truth labels required for ML applications. Building on QF Low—a
legacy implementation of the QD simulator that applied the Thomas-Fermi approximation to
model charge densities and stability diagrams [20,21]—QDF Low extends these methods into
a flexible, open-source framework that integrates physics-informed capacitance modeling with
realistic noise processes tailored for ML applications.

QDFlow has already demonstrated its utility in advancing ML-driven QD research, con-
firming that ML models trained exclusively on simulated data can be successfully deployed
in experimental settings, on samples fabricated in an academic cleanroom as well as on an
industrial 300-mm process line, and on 1D and 2D QD arrays. The legacy version of the
simulator was used to generate the QF Low-11 te dataset [21,22], which enabled the train-
ing of several ML models for global state recognition. The utility of these ML models was
demonstrated both offline, by navigating the voltage space within pre-measured experimen-
tal datasets [13,20], and in closed-loop experiments [9, 12,23]. The dataset also supported
the development of a novel classification framework for simple high-dimensional geometri-
cal structures, known as the ray-based classification (RBC) framework [24]. The expanded
dataset, QFlow 2.0: Quantum dot data for machine learning [22], generated
using the Thomas-Fermi solver with integrated realistic noise processes, further advanced ML-
based approaches to QD tuning. In particular, models trained with data from the QF low 2.0
dataset have been successfully applied to tasks such as data quality assessment [25], physics-
informed RBC and ray-based navigation in 1D QD arrays [13], and the development of a full
virtualization stack for 1D and 2D QD arrays in Ge/SiGe [14] and in Si/SiGe. These successes
confirm the compatibility of QF Low 2.0-generated with real-world experiments. They also
highlight the value of physics-informed synthetic datasets for accelerating the development of
automated control tools for QD systems.

QDFlow is available for download from the Python Package Index, with the source code
released under the GNU General Public License in the QDF Low GitHub repository [26]. Com-
prehensive API documentation is provided via docstrings embedded in the source code and as
HTML pages hosted on Read the Docs. The library includes type hints for all classes and func-
tions to support clarity, maintainability, and extensibility. Unit and benchmark tests are also
distributed with the QDF Low repository to facilitate validation and performance evaluation.


https://pypi.org/project/qdflow/
https://qdflow-sim.readthedocs.io/
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2 Physics simulation

QDFlow has three main modules: simulation, noise, and generate, and one utility
module, distribution, as depicted in Fig. 1. The simulation and noise modules are
part of the physics package. The core physics-based engine of the simulator is contained
in the simulation module. It uses a Thomas-Fermi solver to find the stable charge config-
uration and sensor output of a particular QD device defined by a set of physical parameters.
The QDFlow Thomas-Fermi solver was first introduced in Ref. 21, but has since been refined
and extended within QDFlow to improve flexibility, physical relevance, and integration with
downstream ML workflows. The PhysicsParameters dataclass, which is used to initialize
the simulation, specifies over twenty parameters governing the properties of the QD device.
These parameters include both material characteristics and device-specific features such as
gate geometry and positioning. Importantly, the gate voltages—experimentally relevant con-
trol knobs—are explicitly included among the simulation inputs. By sweeping these voltages,
QDFlow produces the final outputs: 2D CSDs and 1D rays, directly mirroring the tuning pro-
cedures used in real QD experiments.

The noi se module is responsible for adding noise to the final datasets, as well as for apply-
ing certain post-processing to the data. The generate module contains high-level functions
to assist in generating datasets. It is the module that the user would most often interact with.
Finally, the distribution module, contained within the util package, contains classes
defining random variable distributions.

To generate data with QDF Low, the user first chooses whether to run the default configu-
ration or adjust the distributions and ranges over which physics parameters are randomized.
Next, they create one or more sets of randomized device parameters, and for each device,
generate a CSD using the functions in the generate module. Once the physics parameters
have been specified, an instance of the ThomasFermi class is instantiated. This class serves
two main purposes: first, it solves for the charge density function n(x); and second, it uses
n(x) to construct a capacitance model and compute physical quantities such as the device’s
charge state and sensor response. QDF Low then runs the physics simulation for every pixel in
each diagram and compiles the results into a CSDOutput dataclass, which is returned to the
user. By repeating this process over a range of gate voltages, QDF Low generates data that can
be assembled into CSDs or rays, depending on the application. The output, stored as NumPy
arrays, can be directly analyzed and plotted, or optionally augmented with noise to emulate
experimental data.

In the following sections, we provide a more detailed account of the nanowire model
physics underlying the simulation. We then explain how the Thomas-Fermi approximation
is applied to construct the capacitance model that drives the CSD simulation.

2.1 Nanowire model

QDF low employs a 1D physics model in which charges are assumed to be confined to a linear
nanowire that lies along the x-axis. The ends of the nanowire are connected to electron reser-
voirs, and a bias voltage can be applied between them. Electrostatic gates are positioned at a
height h below the xy-plane, and are modeled as infinite cylindrical conductors with central
axis parallel to the y-axis, as shown in Fig. 2(a). The arrangement makes our nanowire model
a hybrid between a true nanowire device and other QD device architectures. Gates biased to
low potential act as plunger gates, while those biased to high potential act as barrier gates (for
positive charge carriers, with the convention reversed for negative carriers).

The plunger and barrier gates define an electrostatic potential V (x), where x is the distance
along the nanowire. Note that because we are using a 1D model, we are only concerned
with the potential along the x-axis. The potential at a distance r from the center of a single

4
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Figure 2: (a) The nanowire model used in QDF Low. (b) The potential V(x) created
by the electrostatic gates (left) and the charge density n(x) induced by the potential
(right).

cylindrical gate (in the absence of other gates) can be expressed as the potential of a screened
line charge:

Ko (r/2)
Ko(h/2)
where Vj, is the potential at a reference distance r = h (chosen as the separation between the
gate and the nanowire), A is the screening length, and Ky(2) is the modified Bessel function
of the second kind. Specifically, we note that V;, is not the voltage of the gate itself; rather, it
is the voltage that the nanowire feels due to the gate (in the absence of other gates). This is
essentially the voltage of the gate multiplied by the lever arm of the gate.

Because the presence of nearby gates induces additional charges on each of the gates,
and consequently changes Eq. (1), we cannot obtain V(x) by simply summing Vy,.(r) over
all gates. Determining the exact potential in the presence of multiple gates is a challenging
electrostatics problem, even in the purely classical setting. It requires solving the screened
Laplace equation with boundary conditions determined by the voltages on each of the gates.
While such a calculation can be performed numerically, it must be repeated whenever any gate
voltage is changed.

To make the problem tractable, we adopt the simplifying assumption that the induced
charges on each gate are rotationally symmetric about the axis of the gate. Under this ap-
proximation, the induced charges act as a line charge that lies along the central axis of the
gate. Because the gate is rotationally symmetric, the potential Vg, (r) also acts as a single line
charge at the center of the gate, and thus the induced charges effectively rescale V() by a
constant factor. Let V. be the rescaled value of V;, for gate i after including the effects of the
induced charges on gate i, and let V; be the value of V}, necessary for Vg, (1) to give the actual
potential of gate i. Then by the superposition principle, V; can be determined by adding the
potential contributions from each of the gates:

_ /
Vi= Z j Aijvj 2
where A;; denotes the ratio between the contribution from gate j to the potential at gate i
and the effective potential Vj’ . In the absence of other gates, V; = V/, so A;; is simply 1. The
contribution from one gate to another is given by Vg, (r), where r is the distance between
gates. Thus, A;; can be expressed as follows:

1 ifi=j
Aij = (3)

Voate(Xj — X;)/ Vgare(pj)  otherwise,

Vgate(r) =V ¢))

where x; is the x-coordinate of the central axis of gate j and p; is the radius of the gate j.
Calculating and inverting the matrix A allows us to determine the effective potentials Vl.’ from

the applied gate voltages V;. We then obtain V(x) by summing Vg (\/ (x—x;)%+ h2) over
all gates and using the effective potentials V! in place of V;, in Eq. (1).

5
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2.2 Thomas-Fermi solver

Having established how to compute the effective gate potentials and construct V(x), we now
turn to the resulting charge distribution along the nanowire. Define n(x) to be the linear
charge density at a point x along the nanowire, which is determined in response to the po-
tential V(x), as illustrated in Fig. 2(b). However, due to the Coulomb interaction between
charges, the presence of an induced charge in the nanowire will create a correction to V(x).
This self-interaction results in the following integral equations, which must be solved self-
consistently:

n(x) = L(X) T de =g splBu—¢ ()] )
€'(x)=qV(x) +f K(x,x)n(x")dx’ (5)
R

The physical parameters u, gy, and f in Eq. (4) indicate the Fermi level, the density of states
in the conduction band (which is constant in 2D), and the inverse temperature, respectively,
and sp(z) = In(1 + €7) is the softplus function. Parameter g in Eq. (5) controls the sign of the
charge carriers, with —1 indicating electrons and +1 indicating holes, while K(x, x") gives the
strength of the Coulomb interaction between points x and x’, and is defined as follows:

Ko
vV (x—=x")?+02

where K, defines the energy scale of the interaction and o is a softening parameter added to
prevent a numerical singularity at x = x’, which occurs due to the 1D model breaking down at
scales less than the radius of the nanowire. The value of o can be chosen to be 37r /8, where
r is the nanowire radius, to maintain consistency with the potential energy of two uniformly
charged disks as the spacing between them approaches zero [27], or alternatively, a custom
interaction K(x, x’) can be provided.

The Coulomb integral in Eq. (5) is formally taken over the entire nanowire. Because
K(x,x") scales for large x” as 1/|x’|, this introduces concerns that the integral might diverge.
At the same time, the integrand is weighted by n(x’), which becomes exponentially small for
V(x")—u > B~!. This condition is satisfied at the external barriers, see Fig. 2(b), provided that
the external barrier voltages are sufficiently high. In addition, it is assumed that at distances
far away from the nanowire, the system is connected to an electron reservoir where n(x’) is
large. However, the Coulomb interaction in semiconductors tends to include a screening term
that suppresses contributions past a certain range. Thus, in practice, it is sufficient to evaluate
the integral between the two external barrier gates.

For convenience, we define a linear operator K to be the result of evaluating the Coulomb
integral as follows:

K(x,x")= (6)

Kf(x)= J K(x,x")f (x")dx’ 7
R
This allows us to combine Egs. (4) and (5) to obtain:
n(x) = % sp[B(u—qV(x)—Kn(x))]. ®)

The basic method we employ to solve Eq. (8) is successive iteration. Starting from an initial
guess ny(x), the right-hand side of Eq.(8) is evaluated with n(x) = ny(x), yielding an updated
function n;(x). This procedure is then repeated until n(x) converges, if at all. The conver-
gence tolerance and the maximum number of allowed iterations are specified through the

6
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NumericsParameters dataclass, which can be provided when instantiating the Thomas-
Fermi class. If the iteration does not converge to the specified tolerance within the allowed
number of iterations, a ConvergenceWarning is issued.

The convergence can be problematic for certain parameter regimes. For example, if we
define A(x) to be the difference between an initial guess ny(x) and the true value n(x):

no(x) = n(x) + A(x), C)

then evaluating the right-hand side of Eq. (8) yields:

g
m(x) = " sp[A(k—qV(x) ~Kn(x) ~KA(x))] (10)
We now use the approximation sp(z) & z, which is valid for z > 1. Although this assumption
does not always hold (particularly for small 3), it is useful for analyzing certain convergence
issues that may arise. Under this approximation, Eq. (10) simplifies to:

1y () & n(x) — goKA(x) (1D

If all eigenvalues of gyK are smaller than 1, the error term -g,KA(x) will be smaller in
magnitude than the initial error A(x), and successive iterations will therefore converge to
n(x). Conversely, if goK possesses eigenvalues greater than 1, the iterative scheme will gen-
erally diverge. Physically, this divergence corresponds to strong coupling between charges, a
regime that is well known to cause convergence difficulties in condensed matter systems [28].
Fortunately, this issue can be partially mitigated by solving Eq. (9) for A(x), substituting the
result into Eq. (11), and solving for n(x), yielding the following expression:

n(x) ~ (1+ goK) ' [goKng(x) +ny(x)] (12)

If we discretize the x-axis, the operator (1 + g,K) ! can be computed through direct matrix
inversion. This expression can then be incorporated into the successive iteration scheme by
applying Eq. (12) after each iteration. Although there are still parameter regimes where the
process diverges, this modified approach drastically enlarges the domain of convergence. In
the weak-interaction limit, where the eigenvalues of goK < 1, the right-hand side of Eq. (12)
simplifies to n;(x) to leading order in gyK. Thus, in this limit, the method naturally recovers
the standard successive iteration procedure.

2.3 Capacitance model

After calculating n(x), QDF Low employs a capacitance model to determine the stable charge
configuration and other properties. Similar techniques have been implemented in other QD
simulations [17-19]. In most of those approaches, the capacitance matrix is assumed to be
constant, i.e., the interdot capacitances remain fixed as the gate voltages are swept. The
simulation introduced in Ref. 19 allows for variable capacitances by applying a correction
to the capacitance matrix based on the particle number. In contrast, QDF low derives the
capacitance matrix directly from the charge density n(x), which depends explicitly on the
gate voltages. This feature enables charge-transition slopes and spacings to vary across a single
CSD. Moreover, constructing the capacitance model from n(x) naturally captures transitions
between a double dot and a merged single dot as the interdot barrier is lowered.

The first step in creating the capacitance model is determining the regions of the nanowire
where significant amounts of charge are induced. This is achieved by applying a threshold
to n(x), configurable through the NumericsParameters dataclass, and identifying con-
tinuous intervals of points that lie above the threshold. This will result in a set of intervals
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of the form [a;, b;], which we call “charge islands.” The thresholding is also responsible for
determining whether or not adjacent QDs should be handled as individual dots. Specifically,
if n(x) exceeds the threshold throughout the region between the two QDs, they are merged
and treated as a single dot. Otherwise, they are considered to be two separate QDs with a
potential barrier between them.

Once the charge islands are identified, the energy E of the resulting capacitance model is
defined as follows:

E= ZEij(Qi —Z)(Q;—Z;) (13)
i,j
b;
Zi= j n(x)dx (14)
1 b; LN
Ejj= 77 Ck5ijf n(x)*dx + EJ J K(x,x"In(x)n(x")dxdx’ (15)
=] a; a; Ja;

where Z; is the (potentially noninteger) charge induced by the gates on island i under the
Thomas-Fermi approximation, and Q; is the integer number of charges on island i under a
specific charge configuration Q. The ¢, term of Eq. (15) incorporates the kinetic energy of
the charges. Since, for our purposes, the energy matrix fully characterizes the system, we do
not compute the capacitances explicitly and instead work directly with the energy matrix. If
desired, the capacitance matrix C can be obtained from the energy matrix via the relationship
c=(E)L

After calculating the energy matrix, the next step is to determine the charge configuration
Q that minimizes the total energy E, subject to the constraint that all Q; must be nonneg-
ative integers. This is an instance of an integer optimization problem, which in general is
NP-complete. However, for a moderate number of gates, a brute-force search is sufficient to
find the minimum. In particular, we first locate the minimum in the continuous space, which
occurs at Z , and then evaluate E (Q) over all Q such that for each integer Q;, |Q; — Z;| < 1.
Once a stable charge configuration is identified, the potential at each of the sensors is calcu-
lated under the assumption that each island i hosts a line of charge with total charge qQ; and
charge density proportional to n(x). The Coulomb potential at each of the sensors arising from
these charge islands is calculated, and the result is normalized by dividing by the potential of
a single point charge located at a point on the nanowire closest to the sensor in question. This
means that a single transition should have a height of no more than 1 after normalization.

Finally, QDF Low allows the current across the nanowire to be found. For this calculation,
the left and right sides of the nanowire are assumed to be connected to electron baths with po-
tentials V; and Vj, respectively. The dynamics of the charges are modeled using a semi-classical
approach, treating them as particles that travel at the Fermi velocity. Each time they collide
with a barrier, the particles have a chance to either tunnel through it or be reflected back. The
tunneling probability across each barrier is determined by the transmission coefficient, which
we calculate using the WKB approximation. This allows the tunneling rates between islands
and the tunneling rates to and from the external charge baths to be obtained. These tunnel
rates are then used to define a Markov graph which encodes the dynamics of the transitions
between charge states. The current through the nanowire is obtained by evaluating the net
rate at which charges enter and leave the charge baths at the steady state of this Markov graph.
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3 Data generation

The data generation is carried out within the generate module. A single instance of the
ThomasFermi class calculates quantities of interest for a single point in voltage-space only
based on the device configuration specified in the phys-ics module. To generate a complete
CSD, a new simulation instance must be created for each pixel. However, since the gate volt-
ages of neighboring pixels vary only slightly, it follows that the corresponding charge density
n(x) will also not change significantly between adjacent pixels. To optimize QDF low per-
formance, the result of the n(x) calculation at one pixel is used as an initial condition when
calculating n(x) at adjacent pixels. This means that n(x) must only be calculated from scratch
once for each diagram.

QDFlow contains convenience functions for generating CSDs and rays in the generate
module. Since the primary purpose of QDF Low is to generate data for training specialized ML
models, it is essential that the resulting dataset captures the full range of variability observed
in contemporary QD devices. To achieve this, QDF Low includes functionality to randomize
nearly all physics parameters and to control the distributions from which each parameter is
drawn. This capability is implemented via the PhysicsRandomization dataclass, which
specifies each physics parameter as either a fixed value (when no randomization is desired,
e.g., to allow regeneration of the same QD device), or a Distribution from which to draw
the random values. A code example in Listing 1 shows how to import QDFlow and how to
initialize a random configuration of physical parameters, with u drawn from a distribution
provided by the user.

The Distribution, defined in the distribution module, is an abstract base class
that encodes how a given parameter should be randomized. Several standard distributions,
including Uniform, Normal, and LogNormal, are implemented in QDF Low as wrappers to
the NumPy random generator functions of the same name. In addition, user-defined distri-
butions can be easily created by extending the Distribution class and implementing the
draw () method to generate random values in an arbitrary manner. The CorrelatedDis-
tribution class handles cases where it is desired or necessary for multiple random variables
to be related to one another in some way.

This randomization framework, along with the dozens of configurable physics parame-
ters, enables QDFlow to generate a highly diverse set of CSDs. Figure 3 shows six examples

from qgqdflow import generate
from gdflow.util import distribution

# Create a new dataclass instance that contains the default
# randomization distributions for each physics parameter
phys_rand = generate.PhysicsRandomization.default()

# Change the range from which mu can be drawn
phys_rand.mu = distribution.Uniform(e, 1.2)

# Generate a list of 6 sets of random device parameters
n_devices = 6

phys_params generate.random_physics(phys_rand, n_devices)

Listing 1: Example code to generate a list of 6 randomized sets of device parameters.
First, a PhysicsRandomization object is created, which defines the ranges
and distributions, as appropriate, from which the physics parameters should be
randomized. Distributions for each parameter can then be set as desired.
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Figure 3: (a)-(f) Examples of CSDs generated with randomized physics parameters.
(g) Examples of ray data generated along the rays shown on the CSD in panel (f).

of CSDs generated with QDFlow. A snippet of code allowing to generate CSD data from a
PhysicsParameters object is shown in Listing 2.

While CSDs are extremely useful for visualizing charge states, they require extensive data
collection. In practice, only a relatively small subset of points—the charge transitions—are
of primary importance. As the number of dots grows, so does the dimensionality of the gate
voltage space, rapidly making the exploration of the complete, multidimensional voltage space
infeasible. This challenge is typically handled by measuring multiple 2D CSDs, each defined
by a different pair of gates.

In Ref. 12, an alternative method for assessing the charge state in QD devices, with 1D rays
measured in multiple directions in the voltage space used in place of the 2D CSDs. This method
greatly reduces the amount of data required for assessing the charge state of the device, but
sacrifices some of the intuitive human interpretability provided by CSDs, necessitating the
use of ML tools. To support the development of ML methods for ray-based analysis, QDF Low

from gqdflow import generate
import numpy as np

# Create a set of physics parameters

phys = generate.default_physics(n_dots=2)

# Set ranges (in mV) and resolution of plunger gate sweeps
V_x = np.linspace(2., 16., 100)

V_y = np.linspace(2., 16., 100)

# Generate a charge
csd = generate.calc

stability diagram
_2d_csd(phys, V_x, V_y)

# Obtain the sensor readout in the form of a numpy array

sensor_num = 0

sensor_readout = cs

Listing 2:

d.sensor[:,

PhysicsParameters object.

10

:, sensor_num]

Example code demonstrating how to generate a CSD from a
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from qdflow import generate
import numpy as np
from scipy.stats import gmc

# Create a set of physics parameters
phys = generate.default_physics(n_dots=2)

# Generate quasirandom points inside a given area

v_min, v_max = 2., 16.

point_generator = gmc.Halton(d=2, scramble=False)

initial_points = gmc.scale(point_generator.random(n=50), v_min, v_max)

# Define a list of rays that will extend out from each point

ray_length = 3. # length of rays in mV

num_rays = 8

rays = ray_length * np.array([[np.cos(2*np.pi*i/num_rays),
np.sin(2*np.pi*i/num_rays)] for i in range(num_rays)])

# Generate ray data
resolution = 100 # points per ray
ray_data = generate.calc_rays(phys, initial_points, rays, resolution)

Listing 3: Example code demonstrating how to generate ray data from a
PhysicsParameters object.

includes functionality for generating ray-based datasets, as shown in Listing 3.

4 Noise

The simulations described thus far capture many essential physical features of QD devices but
omit one critical ingredient: noise. In experimental data, noise strongly influences both the
visibility of charge transitions and the reliability of automated analysis.

To more faithfully emulate experimental conditions, QDF Low includes the noi se module,
which contains functionality for adding noise to both CSDs and rays, as well as several postpro-
cessing functions designed to mimic effects of experimental measurements. The module imple-
ments several types of noise, including the white noise, pink (1/f) noise, telegraph noise, and
latching effects, as well as stray transitions arising from nearby unintended dots [25,29]. Post-
processing functions include adding gate-sensor coupling, adding a sech? x blur, and adding
Coulomb peak effects. Each noise in QDFlow can be controlled individually, with its mag-
nitude defined relative to the scale of the CSD data, or as a predefined mixture. Similar to
the physical parameter randomization discussed in Sec. 3, QDF Low supports designating the
distributions from which each noise parameter is drawn via the Noi seRandomi zation dat-
aclass.

Figure 4(a) shows an example of a noiseless CSD simulated with QDF low. CSDs with
noise implementations adapted from QF Low—white, pink, and telegraph noise and Coulomb
peak—are depicted in panels (b), (c), (d), and (e), respectively. CSDs with latching, sech?
blur, unintended QD, and sensor-gate coupling—new to QDF Low—are presented in panels
(), (g), (), and (i), respectively.

The simplest, white noise, is implemented by adding to each pixel a value drawn from a
normal distribution with standard deviation given by the magnitude of the white noise. Pink
noise is implemented by generating white noise in Fourier space with a uniform random phase

11
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Figure 4: Examples of noise added to a CSD. (a) The original CSD data, (b) white
noise, (c) pink noise, (d) telegraph noise, (¢) Coulomb peak, (f) latching, (g) Sech
blur, (h) unintended QD, and (i) sensor-gate coupling.

and magnitude proportionalto 1/,/f2 + fyz, where f, and f, are the components of each point
in Fourier space, and then applying an inverse Fourier transform. This configuration allows for
greater variability compared to telegraph noise. Alternatively, QDF Low also provides the op-
tion to add pink noise correlated along only the primary measurement axis, which corresponds
to the more physical model of pink noise correlated in time.

Telegraph noise is applied along an axis corresponding to the primary measurement direc-
tion in experimental data. It consists of adding a value (drawn from a normal distribution with
nonzero mean) to a line of several contiguous pixels. The length of the added line is randomly
drawn from a geometric distribution. This allows the distribution of lengths of the telegraph
noise to follow an exponential, as expected for two-level systems with finite excited-state life-
times. This process is then repeated across the CSD, alternating the sign of the value added
each time.

Transitions from spurious QDs are emulated by adding functions of the form tanh((X—X;)-d),
where X gives the coordinates of each pixel, X, is the location on the CSD of the transition,
and d determines how strongly each of the gates plotted on the x- and y-axes are coupled
to the unintended dot. Values of X, and d are randomized, but a single d is used if multiple
unintended transitions appear on a single diagram.

The latching noise implemented in QDFlow can be controlled using one of two meth-
ods. The first and simpler legacy method to simulate latching is to shift each row of pixels
by a random number of pixels drawn from a geometric distribution. This process produces
a latching-like effect along the charge transitions; however, it is somewhat unrealistic since

12
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Figure 5: (a)-(c) Examples of CSDs with all noise types combined. (d) Ray data
without noise (dotted line) and with noise added (solid line).

all transitions on the same row are shifted by the same amount, and because pixels far away
from transitions are also displaced. A more physically realistic method relies on the nanowire
simulation to calculate the sensor readout for both an excited charge state and a stable state
at each pixel, similar to what is implemented in Ref. 18. The excited state chosen corresponds
to the charge configuration most recently occupied prior to the most recent transition when
sweeping the gate voltages. When latching noise is added, the sensor readout from the ex-
cited state replaces the stable-state readout for the first few pixels after each transition, with
the number of pixels randomized each instance. In general, the second method is preferable
as it more accurately reflects the experimental conditions; however, the first, legacy method
is provided as a fallback when excited-state data are unavailable or computationally inconve-
nient, or impossible to obtain.

In addition to noise, several postprocessing functions can be applied to the data. A sensor-
gate coupling in the form of a linear gradient along a random direction can be added. Con-
volving with a sech? x kernel along the measurement axis introduces smoothing of the sharp
transitions.

Finally, it is important to note that the physics simulation returns the value of the potential
at each of the sensors; however, experimentally, the conductance of the sensor is the quantity
that is measured. Therefore, we convert from potential to conductance by using a Coulomb
peak lineshape of the form G oc sech?[A(V —V,)], where G is the conductance of the sensor, A
is a parameter that determines the width of the Coulomb peak, V is the potential at the sensor
(the simulation output), and Vj, is the peak center [30].

CSDs with a mixture of noises optimized for compatibility with experimental data are
presented in Fig. 5(a)-(c). Figure 5(d) shows two rays with added noise. The exact amounts
of each type of noise are randomized for each diagram. A code example showing how to
generate noisy CSD data for a previously simulated sample CSD is shown in Listing 4.

Given the computational complexity of Thomas-Fermi calculations, the noise module is
configured to assume that a complete noiseless CSD (or a ray-based data) has already been
generated using the generate module. This approach gives us several advantages. First, it
significantly reduces the computational overhead since multiple noise realizations with differ-
ent relative noise strengths can be generated from a single noiseless CSD. Secondly, the mod-
ular approach adopted in QDF Low provides flexibility that cannot be achieved experimentally,
where it is not possible to calibrate individual noise sources to the desired level. Additionally,
it allows us to specify the magnitudes of each of the noise types relative to the local scale of
the surrounding data points, which is important since the scale of the data points can vary
across large CSDs. Finally, it allows for systematic benchmarking of ML algorithms since the
noise level and type can be modified independently of the underlying physical configuration.
For example, one can generate a single noiseless dataset and then apply different realizations
of noise to study the robustness of a given algorithm under varying experimental conditions,
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from gqdflow.physics import noise
from gdflow.util import distribution
import numpy as np

# Use data from previous example
data = np.load("sensor_readout.npy'")

# Create a new dataclass instance that contains the default
# randomization distributions for each noise type
noise_rand = noise.NoiseRandomization.default()

# How much noise to add, relative to the transition height upper bound
noise_amount = 0.15

# Use a CorrelatedDistribution to randomize the white, pink, and
# telegraph noise so that the total always equals noise_amount
num_dists = 3
dists = distribution.SphericallyCorrelated(num_dists,
noise_amount) .dependent_distributions()
noise_rand.white_noise_magnitude = dists[0].abs()
noise_rand.pink_noise_magnitude = dists[1].abs()
noise_rand.telegraph_magnitude = dists[2].abs()

# Generate a random set of noise parameters
noise_params = noise.random_noise_params(noise_rand)

# Add noise to the data
noisy_data = noise.NoiseGenerator(noise_params).calc_noisy_map(data)

Listing 4: Example code to add noise to a charge stability diagram. First,
a NoiseRandomization object is created, which defines the ranges and
distributions, as appropriate, from which the noise parameters should be
randomized. A CorrelatedDistribution is used to randomize the different
noise types while ensuring that the total noise amount is constant.

as was done in Ref. 13.

5 Benchmarking and limitations

To benchmark QDF low, we find the mean runtime of the physics simulation for 10,000 ran-
domly generated sets of physics parameters. Each simulation is run with at most 1,000 it-
erations and a relative convergence tolerance of 10™2. We are interested in comparing the
contribution to the overall runtime from calculating n(x) with the remaining portion of the
simulation as the number of QDs increases. For each number of dots N, we obtain two run-
times: (i) the time required to compute the charge density profile n(x), and (ii) the remaining
time to construct the capacitance model, minimize Eq. (13), and evaluate the sensor output.
The results for small- and mid-sized QD arrays are shown in Fig. 6(a) and Fig. 6(b), respec-
tively.

For a small number of dots (N < 20), the main bottleneck is the initial part of the simulation
where n(x) is calculated. However, as the number of dots N is increased, the minimization of
Eq. (13) over integer charge configurations Q € Z" for which the runtime scales exponentially
in N begins to dominate. In practice, we expect most use cases to involve no more than ten

14



449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

SciPost Physics Codebases Submission
(a) runtime (s) (b) runtime (s)
0.30
0.0204 -4 solve for n(x) n 4 solve for n(x) ’
e solve cap. model ’ 0.25- “® solve cap. model i
0.0157 0.20-
0.010 - A 0.15
o | s
— . * 0.10 . .
0.005 e
0.05 g
P i [ S Sy i e e
0.0004_° . . . . 0.00 YT 52 AR 00 S0 APPSR
T T T T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 N 5 10 15 20 25 N

Figure 6: Average runtime versus number of dots N for (a) Thomas-Fermi solver and
(b) capacitance model solver. Benchmarks were performed on a 2.8 GHz AMD Ryzen
5 7520U processor.

QDs, as long-range interactions tend to be negligible due to screening from the material and
the nearby gates; thus, we focus attention on the cost of computing n(x) in this regime.

Because QDFlow calculates the capacitance model at each point in the CSD by explic-
itly solving for n(x), it requires several orders of magnitude more runtime to generate CSDs
than simulations based on constant capacitance models. Thus, for applications that require
real-time data, faster simulations such as QDs<im [17] or QArray [18] may be more suitable.
On the other hand, for applications such as generating datasets for training and validation
of ML models for autonomous control of QD systems, the higher-fidelity data provided by
QDF low—including effects such as QDs merging across low barriers—often justifies the addi-
tional computational cost.

In addition to its relatively long runtime, QDF Low has several modeling limitations. While
QDFlow is based on an underlying physical nanowire model, it is designed only to produce
qualitatively realistic behavior. For example, gates are modeled as infinite cylinders arranged
in a simple, idealized geometry, whereas in real devices, the shapes and arrangements of gates
can be considerably more complex. Furthermore, the electron density n(x) is calculated only
in 1D, an approximation that can introduce errors for systems with non-negligible transverse
extent. Despite being a 1D simulation, data generated with QDF Low is qualitatively similar to
that from 2D QD arrays, provided that crosstalk is not too large. Influence from other dots can
be included either during the simulation phase by extending the nanowire to include additional
dots on the left and right sides, or during the noise-adding phase as unintended dot noise.
However, the ability to model crosstalk from other dots remains somewhat limited, as QDF Low
cannot reproduce data features from 2D architectures with tight couplings between nearby
dots. Finally, the simulation uses a semiclassical approach and therefore does not include
certain quantum effects, such as finite tunnel coupling effects and charge-state hybridization,
which would be captured by more complex models such as the Hubbard model. Taken together,
these approximations prevent QDF Low from generating quantitatively accurate data.

QDFlow also lacks certain capabilities present in other simulators. For example, it can-
not currently model closed systems with a fixed number of charges isolated from the source
and drain contacts—a functionality available in QArray [18]. Additionally, QDF Low does
not currently model quantum effects due to finite tunnel coupling, which can cause broad-
ening of the interdot transitions and rounding of sharp corners around the triple-points due
to hybridization of charge states. For applications involving virtualization of gates, quantum
effects are generally small enough that a semiclassical approximation is sufficient. However,
for applications such as readout, where fine control of gates is needed, quantum effects are
more important. If these features are relevant, QDarts contains a simulation of the finite
tunnel coupling effect [19]. Finally, QDF Low is configured to model the state that minimizes
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the energy of the capacitance model, implicitly assuming that the system can transition freely
between charge configurations. However, this assumption can break down for large arrays of
QDs. For example, if a charge must transition between non-neighboring QDs passing through
an intermediate QD that forms a large barrier, it may get “stuck” on one side even if it is ener-
getically favorable to move to the other side. This will result in much more extreme latching
effects than QDF Low can model.

QDFlow has been tested both modularly and holistically, through extensive unit testing and
by comparing its output to experimental data. The QDF Low repository includes unit tests for
every function in the package, ensuring coverage of all lines of code. The validity of QDF Low
has been confirmed by performance of multiple specialized ML models trained on QDF Low-
generated data and deployed in real-world applications, as we discuss in Sec. 1 and in Sec. 6.

6 Conclusion

Progress toward scalable quantum information technologies based on QD systems depends
critically on overcoming the complexity of device operation and calibration with increasing
number of QDs. Novel ML-based methods have emerged as powerful tools to address these
challenges, but their effectiveness relies on access to large, diverse, and accurately labeled
datasets. QDFlow was developed precisely to meet this need.

QDF low differs from existing QD simulations in that it fully simulates the charge density
function n(x). By integrating a self-consistent Thomas-Fermi solver with a dynamic capac-
itance model, QDF Low provides a physics-informed simulation framework that goes beyond
constant-capacitance approximations. This enables the generation of CSDs and ray-based data
with features that evolve naturally with gate voltages, mimicking experimental behavior such
as dot merging and transition slope variation.

The modular data generation tools allow for extensive randomization over physical param-
eters, yielding highly diverse synthetic datasets suitable for ML applications, while the noise
module introduces experimentally relevant effects—including thermal broadening, telegraph
noise, latching, and unintended transitions—in a controllable fashion. Together, these fea-
tures make QDF Low uniquely positioned to support both the development and benchmarking
of ML algorithms implemented in a wide range of tuning procedures, device architectures,
and material platforms. Early use cases, such as the QF low-"lite and QF low 2.0 datasets,
have already demonstrated QDF Low’s ability to accelerate the training of ML models for global
state recognition [9,20], ray-based navigation and charge tuning [12,13], data quality assess-
ment [25], detection of spurious QDs [31], and virtualization of QD arrays [13,14]. As an
open-source, extensible platform with comprehensive documentation, QDF Low is designed to
serve as both a research tool and a community resource.

QDFlow represents a paradigm shift among QD simulators. Whereas other simulations
typically rely on constant-capacitance models that impose static couplings regardless of de-
vice state, QDFlow ties these parameters directly to the underlying physics through its self-
consistent charge density, producing capacitances and observables that evolve dynamically
with gate voltages. This distinction not only improves the connection with the experiment but
also allows for the capture of nontrivial behaviors—such as QDs merging, fluctuating slopes,
and disorder-induced effects—that are inaccessible to static-capacitance approaches.

As QD systems advance toward larger arrays and integration into functional quantum pro-
cessors, the need for such realism will only grow. QDFlow package is currently being used
to generate datasets for multiple ongoing research projects and we intend to support it for
the foreseeable future. Although the current release is stable, we anticipate adding further
modules and functionality to the package. Possible future extensions of QDF low, including
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multi-dimensional modeling, adding additional quantum effects, hybridization with experi-
mental feedback loops, and systematic studies of robustness under different noise and disor-
der regimes, could establish it as a cornerstone for bridging theory, experiment, and ML in
the quest for scalable quantum technologies. We have designed the core class structure to
allow for seamless addition of new physical parameters and functions, and plan to update the
generate module to provide support for parallelization. By releasing QDFlow as an open-
source package, we aim to foster a shared foundation for accelerating progress in quantum dot
technologies. We anticipate that the package will not only continue to advance automated QD
control but also provide a flexible testbed for exploring broader questions at the intersection
of condensed matter physics, quantum information, and machine learning.

Acknowledgements

Funding information D.B. was supported in part by an ARO grant no. W911NF-24-2-0043.
S.S.K. acknowledges financial support from the S.N. Bose Fellowship during this project. This
research was performed in part while J.Z. held an NRC Research Associateship award at NIST.
The views and conclusions contained in this paper are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes, notwithstanding any copyright noted herein. Any mention of commercial products
is for information only; it does not imply recommendation or endorsement by NIST.

Code availability QDF Low is available on the Python Package Index, with the source code re-
leased under the GNU General Public License, and can be installed using pip install QD-
Flow command. The associated GitHub repository is https://github.com/QDFlow/QDFlow-
solver. Documentation is available at https://qdflow-sim.readthedocs.io/. Any discovered
bugs should be reported using GitHub issues. If you find this package useful, please star the
repository and cite this paper.

References

[1] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol and J. R. Petta, Semiconductor spin qubits,
Rev. Mod. Phys. 95(2), 025003 (2023), doi:10.1103/RevModPhys.95.025003.

[2] A.B. Mei, I. Milosavljevic, A. L. Simpson, V. A. Smetanka, C. P Feeney, S. M. Seguin, S. D.
Ha, W. Ha and M. D. Reed, Optimization of quantum-dot qubit fabrication via machine
learning, Appl. Phys. Lett. 118(20), 204001 (2021), doi:10.1063/5.0040967.

[3] C. Shen, W. Zhan, K. Xin, M. Li, Z. Sun, H. Cong, C. Xu, J. Tang, Z. Wu, B. Xu, Z. Wei,
C. Xue et al., Machine-learning-assisted and real-time-feedback-controlled growth of inas /-
gaas quantum dots, Nat. Commun. 15(1), 2724 (2024), doi:10.1038/s41467-024-
47087-w.

[4] D. Schug, T. J. Kovach, M. A. Wolfe, J. Benson, S. Park, J. P Dodson, J. Corrigan,
M. A. Eriksson and J. P Zwolak, Automation of quantum dot measurement analysis
via explainable machine learning, Mach. Learn.: Sci. Technol. 6(1), 015006 (2025),
doi:10.1088/2632-2153/ada087.

[5] E. Corcione, E Jakob, L. Wagner, R. Joos, A. Bisquerra, M. Schmidt, A. D. Wieck, A. Lud-
wig, M. Jetter, S. L. Portalupi, P Michler and C. Tarin, Machine learning enhanced evalua-

17


https://pypi.org/project/qdflow/
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://qdflow-sim.readthedocs.io/
https://github.com/QDFlow/QDFlow-sim/issues
https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.1063/5.0040967
https://doi.org/10.1038/s41467-024-47087-w
https://doi.org/10.1038/s41467-024-47087-w
https://doi.org/10.1038/s41467-024-47087-w
https://doi.org/10.1088/2632-2153/ada087

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

SciPost Physics Codebases Submission

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

tion of semiconductor quantum dots, Sci. Rep. 14(1), 4154 (2024), do0i:10.1038/s41598-
024-54615-7.

J. D. Teske, S. S. Humpohl, R. Otten, P Bethke, P Cerfontaine, J. Dedden, A. Ludwig, A. D.
Wieck and H. Bluhm, A machine learning approach for automated fine-tuning of semicon-
ductor spin qubits, Appl. Phys. Lett. 114(13), 133102 (2019), doi:10.1063/1.5088412.

R. Durrer, B. Kratochwil, J. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Thn and E. Gre-
plova, Automated tuning of double quantum dots into specific charge states using neural net-
works, Phys. Rev. Appl. 13(5), 054019 (2020), doi:10.1103/PhysRevApplied.13.054019.

J. Darulov4, S. J. Pauka, N. Wiebe, K. W. Chan, G. C. Gardener, M. J. Manfra, M. C. Cassidy
and M. Troyer, Autonomous tuning and charge-state detection of gate-defined quantum dots,
Phys. Rev. Appl. 13(5), 054005 (2020), doi:10.1103/PhysRevApplied.13.054005.

J. P Zwolak, T. McJunkin, S. S. Kalantre, J. Dodson, E. R. MacQuarrie, D. Savage,
M. Lagally, S. Coppersmith, M. A. Eriksson and J. M. Taylor, Autotuning of double-
dot devices in situ with machine learning, Phys. Rev. Appl. 13(3), 034075 (2020),
doi:10.1103/PhysRevApplied.13.034075.

N. M. van Esbroeck, D. T. Lennon, H. Moon, V. Nguyen, E Vigneau, L. C. Camenzind,
L. Yu, D. M. Zumbiihl, G. A. D. Briggs, D. Sejdinovic and N. Ares, Quantum device
fine-tuning using unsupervised embedding learning, New J. Phys. 22(9), 095003 (2020),
doi:10.1088/1367-2630/abb64c.

H. Moon, D. T. Lennon, J. Kirkpatrick, N. M. van Esbroeck, L. C. Camenzind, L. Yu,
E Vigneau, D. M. Zumbiihl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, E. A. Laird
et al., Machine learning enables completely automatic tuning of a quantum device faster
than human experts, Nat. Commun. 11(1), 4161 (2020), do0i:10.1038/s41467-020-
17835-9.

J. B Zwolak, T. McJunkin, S. S. Kalantre, S. E Neyens, E. R. MacQuarrie, M. A. Eriksson
and J. M. Taylor, Ray-based framework for state identification in quantum dot devices, PRX
Quantum 2(2), 020335 (2021), doi:10.1103/PRXQuantum.2.020335.

J. Ziegler, E Luthi, M. Ramsey, E Borjans, G. Zheng and J. P Zwolak, Tuning arrays
with rays: Physics-informed tuning of quantum dot charge states, Phys. Rev. Appl. 20(3),
034067 (2023), doi:10.1103/PhysRevApplied.20.034067.

A. S. Rao, D. Buterakos, B. van Straaten, V. John, C. X. Yu, S. D. Oosterhout, L. Stehouwer,
G. Scappucci, M. Veldhorst, E Borsoi and J. P Zwolak, Modular Autonomous Virtualiza-
tion System for Two-Dimensional Semiconductor Quantum Dot Array, Phys. Rev. X 15(2),
021034 (2025), doi:10.1103/PhysRevX.15.021034.

G. A. Oakes, J. Duan, J. J. L. Morton, A. Lee, C. G. Smith and M. E G. Zalba, Auto-
matic virtual voltage extraction of a 2x2 array of quantum dots with machine learning,
doi:10.48550/arXiv.2012.03685 (2024).

J. P Zwolak, J. M. Taylor, R. W. Andrews, J. Benson, G. W. Bryant, D. Buterakos, A. Chat-
terjee, S. Das Sarma, M. Eriksson, E. Greplova, M. J. Gullans, E Hader et al., Data needs
and challenges for quantum dot devices automation, npj Quantum Inf. 10(1), 105 (2024),
doi:10.1038/s41534-024-00878-x.

V. Gualtieri, C. Renshaw-Whitman, V. Hernandes and E. Greplova, Qdsim: A user-friendly
toolbox for simulating large-scale quantum dot devices, SciPost Phys. Codebases p. 46
(2025), doi:10.21468/SciPostPhysCodeb.46.

18


https://doi.org/10.1038/s41598-024-54615-7
https://doi.org/10.1038/s41598-024-54615-7
https://doi.org/10.1038/s41598-024-54615-7
https://doi.org/10.1063/1.5088412
https://doi.org/10.1103/PhysRevApplied.13.054019
https://doi.org/10.1103/PhysRevApplied.13.054005
https://doi.org/10.1103/PhysRevApplied.13.034075
https://doi.org/10.1088/1367-2630/abb64c
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1103/PRXQuantum.2.020335
https://doi.org/10.1103/PhysRevApplied.20.034067
https://doi.org/10.1103/PhysRevX.15.021034
https://doi.org/10.48550/arXiv.2012.03685
https://doi.org/10.1038/s41534-024-00878-x
https://doi.org/10.21468/SciPostPhysCodeb.46

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

SciPost Physics Codebases Submission

[18] B. van Straaten, J. Hickie, L. Schorling, J. Schuff, E Fedele and N. Ares, Qarray: A gpu-
accelerated constant capacitance model simulator for large quantum dot arrays, SciPost
Phys. Codebases p. 35 (2024), doi:10.21468/SciPostPhysCodeb.35.

[19] J. A. Krzywda, W. Liu, E. van Nieuwenburg and O. Krause, QDarts: A quantum dot array
transition simulator for finding charge transitions in the presence of finite tunnel couplings,
non-constant charging energies and sensor dots, SciPost Phys. Codebases p. 43 (2025),
doi:10.21468/SciPostPhysCodeb.43.

[20] S. S.Kalantre, J. P Zwolak, S. Ragole, X. Wu, N. M. Zimmerman, M. D. Stewart and J. M.
Taylor, Machine learning techniques for state recognition and auto-tuning in quantum dots,
npj Quantum Inf. 5(1), 6 (2019), doi:10.1038/s41534-018-0118-7.

[21] J. P Zwolak, S. S. Kalantre, X. Wu, S. Ragole and J. M. Taylor, QFlow lite dataset: A
machine-learning approach to the charge states in quantum dot experiments, PLoS ONE
13(10), e0205844 (2018), doi:10.1371/journal.pone.0205844.

[22] National Institute of Standards and Technology, Qflow 2.0: Quantum dot data for machine
learning, Database: data.nist.gov, https://doi.org/10.18434/T4/1423788 (2022).

[23] A. Zubchenko, D. Middlebrooks, T. Rasmussen, L. Lausen, E Kuemmeth, A. Chatterjee
and J. P Zwolak, Autonomous bootstrapping of quantum dot devices, Phys. Rev. Appl.
23(1), 014072 (2025), doi:10.1103/PhysRevApplied.23.014072.

[24] J. P Zwolak, S. S. Kalantre, T. McJunkin, B. J. Weber and J. M. Taylor, Ray-based classifi-
cation framework for high-dimensional data, In Third Workshop on Machine Learning and
the Physical Sciences (NeurIPS 2020), pp. 1-7. Vancouver, Canada, ArXiv:2010.00500
(2020).

[25] J. Ziegler, T. McJunkin, E. S. Joseph, S. S. Kalantre, B. Harpt, D. E. Savage,
M. G. Lagally, M. A. Eriksson, J. M. Taylor and J. P Zwolak, Toward robust au-
totuning of noisy quantum dot devices, Phys. Rev. Appl. 17(2), 024069 (2022),
doi:10.1103/PhysRevApplied.17.024069.

[26] D. L. Buterakos, S. S. Kalantre, J. Ziegler, J. M. Taylor and J. P Zwolak, QDFlow: A
Python package for physics simulations of quantum dot devices, GitHub (2025).

[27] O. Ciftja, Electrostatic interaction energy between two coaxial parallel uniformly charged
disks, Results Phys. 15, 102684 (2019), d0i:10.1016/j.rinp.2019.102684.

[28] A. Alexandradinata, N. P Armitage, A. Baydin, W. Bi, Y. Cao, H. J. Changlani, E. Chertkov,
E. H. da Silva Neto, L. Delacretaz, 1. E. Baggari, G. M. Ferguson, W. J. Gannon et al.,
The future of the correlated electron problem, SciPost Phys. Comm. Rep. p. 8 (2025),
doi:10.21468/SciPostPhysCommRep.8.

[29] J. Darulova, M. Troyer and M. C. Cassidy, Evaluation of synthetic and experimental train-
ing data in supervised machine learning applied to charge-state detection of quantum dots,
Mach. Learn.: Sci. Technol. 2(4), 045023 (2021), doi:10.1088/2632-2153/ac104c.

[30] C. W. J. Beenakker, Theory of coulomb-blockade oscillations in the conductance of a quan-
tum dot, Phys. Rev. B 44, 1646 (1991), doi:10.1103/PhysRevB.44.1646.

[31] J. Ziegler, E Luthi, M. Ramsey, E Borjans, G. Zheng and J. P Zwolak, Automated extraction
of capacitive coupling for quantum dot systems, Phys. Rev. Appl. 19(5), 054077 (2023),
doi:10.1103/PhysRevApplied.19.054077.

19


https://doi.org/10.21468/SciPostPhysCodeb.35
https://doi.org/10.21468/SciPostPhysCodeb.43
https://doi.org/10.1038/s41534-018-0118-7
https://doi.org/10.1371/journal.pone.0205844
https://doi.org/10.18434/T4/1423788
https://doi.org/10.1103/PhysRevApplied.23.014072
https://doi.org/10.1103/PhysRevApplied.17.024069
https://doi.org/10.1016/j.rinp.2019.102684
https://doi.org/10.21468/SciPostPhysCommRep.8
https://doi.org/10.1088/2632-2153/ac104c
https://doi.org/10.1103/PhysRevB.44.1646
https://doi.org/10.1103/PhysRevApplied.19.054077

	Introduction
	Physics simulation
	Nanowire model
	Thomas-Fermi solver
	Capacitance model

	Data generation
	Noise
	Benchmarking and limitations
	Conclusion
	References

