
SciPost Physics Codebases Submission

QDFlow: A Python package for physics simulations of quantum1

dot devices2

Donovan L. Buterakos1,2⋆, Sandesh S. Kalantre1,2,4, Joshua Ziegler2,3

Jacob M Taylor1,2,3,5 and Justyna P. Zwolak 1,2,3†
4

1 Joint Center for Quantum Information and Computer Science, University of Maryland,5

College Park, MD 20742, USA6

2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA7

3 Department of Physics, University of Maryland, College Park, MD 20742, USA8

4 Department of Physics, Stanford University, Stanford, CA 94305, USA9

5 Axiomatic AI, Inc., Cambridge, MA 02139, USA10

⋆ dbuterak@umd.edu , † jpzwolak@nist.gov11

Abstract12

Recent advances in machine learning (ML) have accelerated progress in calibrating and13

operating quantum dot (QD) devices. However, most ML approaches rely on access to14

large, representative datasets designed to capture the full spectrum of data quality en-15

countered in practice, with both high- and low-quality data for training, benchmarking,16

and validation, with labels capturing key features of the device state. Collating such17

datasets experimentally is challenging due to limited data availability, slow measure-18

ment bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source19

physics simulator for multi-QD arrays that generates realistic synthetic data with ground-20

truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capac-21

itance model, and flexible noise modules to simulate charge stability diagrams and ray-22

based data closely resembling experiments. With an extensive set of parameters that23

can be varied and customizable noise models, QDFlow supports the creation of large,24

diverse datasets for ML development, benchmarking, and quantum device research.25

Copyright attribution to authors.
This work is a submission to SciPost Physics Codebases.
License information to appear upon publication.
Publication information to appear upon publication.

Received Date
Accepted Date
Published Date

26

27

28
Contents29

1 Introduction 230

2 Physics simulation 431

2.1 Nanowire model 432

2.2 Thomas-Fermi solver 633

2.3 Capacitance model 734

3 Data generation 935

4 Noise 1136

5 Benchmarking and limitations 1437

1

https://orcid.org/0000-0002-2286-3208
mailto:dbuterak@umd.edu
mailto:jpzwolak@nist.gov


SciPost Physics Codebases Submission

6 Conclusion 1638

References 1739

40

41

1 Introduction42

Among the various quantum computing platforms, quantum dots (QDs) stand out for their43

scalability potential, compact size, and long coherence times [1]. Operating QD devices, how-44

ever, remains a formidable challenge, with complexity growing rapidly—often exponentially—45

as the number of qubits increases. Recent advances in integrating machine learning (ML) with46

quantum device operation have begun to mitigate these difficulties, offering promising auto-47

mated control and calibration strategies. For example, ML algorithms have been developed for48

the fabrication [2, 3], characterization [4, 5], tuning [6–13], and gate virtualization [14, 15]49

of QD devices.50

Developing robust ML models requires access to large and diverse datasets representative51

of the multi-dimensional parameter space typical of QD devices. Crucially, for supervised ML52

applications, these datasets must also include metadata that identifies key features, such as53

the global state (i.e., the number of QDs formed), the charge configuration, and the type of54

transition lines present. Unfortunately, large volumes of high-quality experimental data can be55

challenging to obtain as companies and research groups often keep such data proprietary [16].56

Limited measurement bandwidth in real-world experiments also constrains the efficient explo-57

ration of the entire high-dimensional parameter space in a reasonable time. Generating ac-58

curate feature labels for publicly available data is a labor-intensive and time-consuming task59

that can produce subjective and potentially erroneous labels. Physics-based simulations offer60

a practical solution: they enable the generation of arbitrarily large datasets while providing di-61

rect access to the ground-truth charge states, thereby simplifying the labeling process needed62

for ML training.63

Here, we introduce QDFlow, an open-source Python package for simulating QD systems64

and generating synthetic data tailored for ML training and applications. The core physics65

engine in QDFlow employs the Thomas-Fermi approximation to numerically solve for the semi-66

classical charge density n(x) along a one-dimensional (1D) nanowire. While the current state-67

of-the-art devices are typically realized by confining charges (electrons or holes) within a two-68

dimensional (2D) heterostructure, the QDs are ultimately formed within quasi-1D channels69

within those heterostructures, motivating our choice of a 1D model. In practice, the simulated70

data produced by QDFlow closely resembles that of linear QD arrays in 2D heterostructures.71

ML models trained on QDFlow-generated data have been shown to generalize effectively to72

larger 2D QD arrays [14].73

There are several open-source QD device simulators that rely on the constant capacitance74

model, treating the array of QDs and their associated electrostatic gates as nodes in a network75

of fixed capacitors [17–19]. Additionally, Ref. [19] allows the capacitances to vary with re-76

spect to the number of charges n by introducing an n-dependent correction to the capacitance77

matrix. In contrast, in QDFlow the capacitance parameters are physics-informed, obtained di-78

rectly from the self-consistent Thomas-Fermi solution rather than imposed heuristically. All key79

physical observables—such as current, charge states, and sensor readouts—are derived from a80

capacitance model constructed based on the computed charge density n(x). This ensures that81

the capacitances evolve dynamically with gate voltages, yielding a more realistic description of82

device behavior. Furthermore, QDFlow allows for modeling regions with low barriers between83

2



SciPost Physics Codebases Submission

PhysicsRandomizati

on

CSDOutput

random_physics()

calc_2d_csd()

calc_transitions()

Distribution

Uniform

Normal

ThomasFermi

PhysicsParameters

NumericsParameters

qdflow

physics generate

simulation

util

distribution

NoiseGenerator

NoiseParameters

NoiseRandomization

noise

Figure 1: Diagram illustrating the QDFlow library organizational structure. Each of
QDFlow’s four modules is listed, along with the most important classes or functions
within those modules.

dots, leading the dots on either side to combine into a single centralized dot. Finally, QDFlow84

incorporates a flexible noise module, enabling the addition of experimentally relevant effects85

such as thermal broadening, charge offset drift, and voltage fluctuations. These features make86

the simulated data qualitatively comparable to experimental measurements while maintain-87

ing full access to the ground truth labels required for ML applications. Building on QFlow—a88

legacy implementation of the QD simulator that applied the Thomas-Fermi approximation to89

model charge densities and stability diagrams [20,21]—QDFlow extends these methods into90

a flexible, open-source framework that integrates physics-informed capacitance modeling with91

realistic noise processes tailored for ML applications.92

QDFlow has already demonstrated its utility in advancing ML-driven QD research, con-93

firming that ML models trained exclusively on simulated data can be successfully deployed94

in experimental settings, on samples fabricated in an academic cleanroom as well as on an95

industrial 300-mm process line, and on 1D and 2D QD arrays. The legacy version of the96

simulator was used to generate the QFlow-lite dataset [21, 22], which enabled the train-97

ing of several ML models for global state recognition. The utility of these ML models was98

demonstrated both offline, by navigating the voltage space within pre-measured experimen-99

tal datasets [13, 20], and in closed-loop experiments [9, 12, 23]. The dataset also supported100

the development of a novel classification framework for simple high-dimensional geometri-101

cal structures, known as the ray-based classification (RBC) framework [24]. The expanded102

dataset, QFlow 2.0:Quantum dot data for machine learning [22], generated103

using the Thomas-Fermi solver with integrated realistic noise processes, further advanced ML-104

based approaches to QD tuning. In particular, models trained with data from the QFlow 2.0105

dataset have been successfully applied to tasks such as data quality assessment [25], physics-106

informed RBC and ray-based navigation in 1D QD arrays [13], and the development of a full107

virtualization stack for 1D and 2D QD arrays in Ge/SiGe [14] and in Si/SiGe. These successes108

confirm the compatibility of QFlow 2.0-generated with real-world experiments. They also109

highlight the value of physics-informed synthetic datasets for accelerating the development of110

automated control tools for QD systems.111

QDFlow is available for download from the Python Package Index, with the source code112

released under the GNU General Public License in the QDFlow GitHub repository [26]. Com-113

prehensive API documentation is provided via docstrings embedded in the source code and as114

HTML pages hosted on Read the Docs. The library includes type hints for all classes and func-115

tions to support clarity, maintainability, and extensibility. Unit and benchmark tests are also116

distributed with the QDFlow repository to facilitate validation and performance evaluation.117

3

https://pypi.org/project/qdflow/
https://qdflow-sim.readthedocs.io/


SciPost Physics Codebases Submission

2 Physics simulation118

QDFlow has three main modules: simulation, noise, and generate, and one utility119

module, distribution, as depicted in Fig. 1. The simulation and noise modules are120

part of the physics package. The core physics-based engine of the simulator is contained121

in the simulation module. It uses a Thomas-Fermi solver to find the stable charge config-122

uration and sensor output of a particular QD device defined by a set of physical parameters.123

The QDFlow Thomas-Fermi solver was first introduced in Ref. 21, but has since been refined124

and extended within QDFlow to improve flexibility, physical relevance, and integration with125

downstream ML workflows. The PhysicsParameters dataclass, which is used to initialize126

the simulation, specifies over twenty parameters governing the properties of the QD device.127

These parameters include both material characteristics and device-specific features such as128

gate geometry and positioning. Importantly, the gate voltages—experimentally relevant con-129

trol knobs—are explicitly included among the simulation inputs. By sweeping these voltages,130

QDFlow produces the final outputs: 2D CSDs and 1D rays, directly mirroring the tuning pro-131

cedures used in real QD experiments.132

The noisemodule is responsible for adding noise to the final datasets, as well as for apply-133

ing certain post-processing to the data. The generate module contains high-level functions134

to assist in generating datasets. It is the module that the user would most often interact with.135

Finally, the distribution module, contained within the util package, contains classes136

defining random variable distributions.137

To generate data with QDFlow, the user first chooses whether to run the default configu-138

ration or adjust the distributions and ranges over which physics parameters are randomized.139

Next, they create one or more sets of randomized device parameters, and for each device,140

generate a CSD using the functions in the generate module. Once the physics parameters141

have been specified, an instance of the ThomasFermi class is instantiated. This class serves142

two main purposes: first, it solves for the charge density function n(x); and second, it uses143

n(x) to construct a capacitance model and compute physical quantities such as the device’s144

charge state and sensor response. QDFlow then runs the physics simulation for every pixel in145

each diagram and compiles the results into a CSDOutput dataclass, which is returned to the146

user. By repeating this process over a range of gate voltages, QDFlow generates data that can147

be assembled into CSDs or rays, depending on the application. The output, stored as NumPy148

arrays, can be directly analyzed and plotted, or optionally augmented with noise to emulate149

experimental data.150

In the following sections, we provide a more detailed account of the nanowire model151

physics underlying the simulation. We then explain how the Thomas-Fermi approximation152

is applied to construct the capacitance model that drives the CSD simulation.153

2.1 Nanowire model154

QDFlow employs a 1D physics model in which charges are assumed to be confined to a linear155

nanowire that lies along the x-axis. The ends of the nanowire are connected to electron reser-156

voirs, and a bias voltage can be applied between them. Electrostatic gates are positioned at a157

height h below the xy-plane, and are modeled as infinite cylindrical conductors with central158

axis parallel to the y-axis, as shown in Fig. 2(a). The arrangement makes our nanowire model159

a hybrid between a true nanowire device and other QD device architectures. Gates biased to160

low potential act as plunger gates, while those biased to high potential act as barrier gates (for161

positive charge carriers, with the convention reversed for negative carriers).162

The plunger and barrier gates define an electrostatic potential V (x), where x is the distance163

along the nanowire. Note that because we are using a 1D model, we are only concerned164

with the potential along the x-axis. The potential at a distance r from the center of a single165

4



SciPost Physics Codebases Submission

S4

(a)

−200 0 200
−4

−2

0

2

4

6

−V (x) (meV)

x (nm)

µ

−200 0 200

0.00

0.01

0.02

0.03

n(x) (1/nm)

x (nm)

(b)

Figure 2: (a) The nanowire model used in QDFlow. (b) The potential V (x) created
by the electrostatic gates (left) and the charge density n(x) induced by the potential
(right).

cylindrical gate (in the absence of other gates) can be expressed as the potential of a screened166

line charge:167

Vgate(r) = Vh
K0 (r/λ)
K0 (h/λ)

(1)

where Vh is the potential at a reference distance r = h (chosen as the separation between the168

gate and the nanowire), λ is the screening length, and K0(z) is the modified Bessel function169

of the second kind. Specifically, we note that Vh is not the voltage of the gate itself; rather, it170

is the voltage that the nanowire feels due to the gate (in the absence of other gates). This is171

essentially the voltage of the gate multiplied by the lever arm of the gate.172

Because the presence of nearby gates induces additional charges on each of the gates,173

and consequently changes Eq. (1), we cannot obtain V (x) by simply summing Vgate(r) over174

all gates. Determining the exact potential in the presence of multiple gates is a challenging175

electrostatics problem, even in the purely classical setting. It requires solving the screened176

Laplace equation with boundary conditions determined by the voltages on each of the gates.177

While such a calculation can be performed numerically, it must be repeated whenever any gate178

voltage is changed.179

To make the problem tractable, we adopt the simplifying assumption that the induced180

charges on each gate are rotationally symmetric about the axis of the gate. Under this ap-181

proximation, the induced charges act as a line charge that lies along the central axis of the182

gate. Because the gate is rotationally symmetric, the potential Vgate(r) also acts as a single line183

charge at the center of the gate, and thus the induced charges effectively rescale Vgate(r) by a184

constant factor. Let V ′i be the rescaled value of Vh for gate i after including the effects of the185

induced charges on gate i, and let Vi be the value of Vh necessary for Vgate(r) to give the actual186

potential of gate i. Then by the superposition principle, Vi can be determined by adding the187

potential contributions from each of the gates:188

Vi =
∑

j
Ai jV

′
j (2)

where Ai j denotes the ratio between the contribution from gate j to the potential at gate i189

and the effective potential V ′j . In the absence of other gates, Vi = V ′i , so Aii is simply 1. The190

contribution from one gate to another is given by Vgate(r), where r is the distance between191

gates. Thus, Ai j can be expressed as follows:192

Ai j =

¨

1 if i = j

Vgate(x j − x i)/Vgate(ρ j) otherwise,
(3)

where x j is the x-coordinate of the central axis of gate j and ρ j is the radius of the gate j.193

Calculating and inverting the matrix A allows us to determine the effective potentials V ′i from194

the applied gate voltages Vi . We then obtain V (x) by summing Vgate

�p

(x − x i)2 + h2
�

over195

all gates and using the effective potentials V ′i in place of Vh in Eq. (1).196

5



SciPost Physics Codebases Submission

2.2 Thomas-Fermi solver197

Having established how to compute the effective gate potentials and construct V (x), we now198

turn to the resulting charge distribution along the nanowire. Define n(x) to be the linear199

charge density at a point x along the nanowire, which is determined in response to the po-200

tential V (x), as illustrated in Fig. 2(b). However, due to the Coulomb interaction between201

charges, the presence of an induced charge in the nanowire will create a correction to V (x).202

This self-interaction results in the following integral equations, which must be solved self-203

consistently:204

n(x) =

∫ ∞

ε′(x)

g0

1+ eβ(ε−µ)
dε=

g0

β
sp
�

β(µ− ε′(x))
�

(4)

ε′(x) = qV (x) +

∫

R

K(x , x ′)n(x ′)d x ′ (5)

The physical parameters µ, g0, and β in Eq. (4) indicate the Fermi level, the density of states205

in the conduction band (which is constant in 2D), and the inverse temperature, respectively,206

and sp(z) = ln(1+ ez) is the softplus function. Parameter q in Eq. (5) controls the sign of the207

charge carriers, with −1 indicating electrons and +1 indicating holes, while K(x , x ′) gives the208

strength of the Coulomb interaction between points x and x ′, and is defined as follows:209

K(x , x ′) =
K0
p

(x − x ′)2 +σ2
(6)

where K0 defines the energy scale of the interaction and σ is a softening parameter added to210

prevent a numerical singularity at x = x ′, which occurs due to the 1D model breaking down at211

scales less than the radius of the nanowire. The value of σ can be chosen to be 3πr/8, where212

r is the nanowire radius, to maintain consistency with the potential energy of two uniformly213

charged disks as the spacing between them approaches zero [27], or alternatively, a custom214

interaction K(x , x ′) can be provided.215

The Coulomb integral in Eq. (5) is formally taken over the entire nanowire. Because216

K(x , x ′) scales for large x ′ as 1/|x ′|, this introduces concerns that the integral might diverge.217

At the same time, the integrand is weighted by n(x ′), which becomes exponentially small for218

V (x ′)−µ≫ β−1. This condition is satisfied at the external barriers, see Fig. 2(b), provided that219

the external barrier voltages are sufficiently high. In addition, it is assumed that at distances220

far away from the nanowire, the system is connected to an electron reservoir where n(x ′) is221

large. However, the Coulomb interaction in semiconductors tends to include a screening term222

that suppresses contributions past a certain range. Thus, in practice, it is sufficient to evaluate223

the integral between the two external barrier gates.224

For convenience, we define a linear operator K to be the result of evaluating the Coulomb225

integral as follows:226

K f (x) =

∫

R

K(x , x ′) f (x ′)d x ′ (7)

This allows us to combine Eqs. (4) and (5) to obtain:227

n(x) =
g0

β
sp [β(µ− qV (x)−Kn(x))] . (8)

The basic method we employ to solve Eq. (8) is successive iteration. Starting from an initial228

guess n0(x), the right-hand side of Eq.(8) is evaluated with n(x) = n0(x), yielding an updated229

function n1(x). This procedure is then repeated until n(x) converges, if at all. The conver-230

gence tolerance and the maximum number of allowed iterations are specified through the231

6



SciPost Physics Codebases Submission

NumericsParameters dataclass, which can be provided when instantiating the Thomas-232

Fermi class. If the iteration does not converge to the specified tolerance within the allowed233

number of iterations, a ConvergenceWarning is issued.234

The convergence can be problematic for certain parameter regimes. For example, if we235

define ∆(x) to be the difference between an initial guess n0(x) and the true value n(x):236

n0(x) = n(x) +∆(x), (9)

then evaluating the right-hand side of Eq. (8) yields:237

n1(x) =
g0

β
sp [β(µ− qV (x)−Kn(x)−K∆(x))] (10)

We now use the approximation sp(z) ≈ z, which is valid for z≫ 1. Although this assumption238

does not always hold (particularly for small β), it is useful for analyzing certain convergence239

issues that may arise. Under this approximation, Eq. (10) simplifies to:240

n1(x)≈ n(x)− g0K∆(x) (11)

If all eigenvalues of g0K are smaller than 1, the error term -g0K∆(x) will be smaller in241

magnitude than the initial error ∆(x), and successive iterations will therefore converge to242

n(x). Conversely, if g0K possesses eigenvalues greater than 1, the iterative scheme will gen-243

erally diverge. Physically, this divergence corresponds to strong coupling between charges, a244

regime that is well known to cause convergence difficulties in condensed matter systems [28].245

Fortunately, this issue can be partially mitigated by solving Eq. (9) for ∆(x), substituting the246

result into Eq. (11), and solving for n(x), yielding the following expression:247

n(x)≈ (1+ g0K)−1 [g0Kn0(x) + n1(x)] (12)

If we discretize the x-axis, the operator (1+ g0K)−1 can be computed through direct matrix248

inversion. This expression can then be incorporated into the successive iteration scheme by249

applying Eq. (12) after each iteration. Although there are still parameter regimes where the250

process diverges, this modified approach drastically enlarges the domain of convergence. In251

the weak-interaction limit, where the eigenvalues of g0K≪ 1, the right-hand side of Eq. (12)252

simplifies to n1(x) to leading order in g0K. Thus, in this limit, the method naturally recovers253

the standard successive iteration procedure.254

2.3 Capacitance model255

After calculating n(x), QDFlow employs a capacitance model to determine the stable charge256

configuration and other properties. Similar techniques have been implemented in other QD257

simulations [17–19]. In most of those approaches, the capacitance matrix is assumed to be258

constant, i.e., the interdot capacitances remain fixed as the gate voltages are swept. The259

simulation introduced in Ref. 19 allows for variable capacitances by applying a correction260

to the capacitance matrix based on the particle number. In contrast, QDFlow derives the261

capacitance matrix directly from the charge density n(x), which depends explicitly on the262

gate voltages. This feature enables charge-transition slopes and spacings to vary across a single263

CSD. Moreover, constructing the capacitance model from n(x) naturally captures transitions264

between a double dot and a merged single dot as the interdot barrier is lowered.265

The first step in creating the capacitance model is determining the regions of the nanowire266

where significant amounts of charge are induced. This is achieved by applying a threshold267

to n(x), configurable through the NumericsParameters dataclass, and identifying con-268

tinuous intervals of points that lie above the threshold. This will result in a set of intervals269

7



SciPost Physics Codebases Submission

of the form [ai , bi], which we call “charge islands.” The thresholding is also responsible for270

determining whether or not adjacent QDs should be handled as individual dots. Specifically,271

if n(x) exceeds the threshold throughout the region between the two QDs, they are merged272

and treated as a single dot. Otherwise, they are considered to be two separate QDs with a273

potential barrier between them.274

Once the charge islands are identified, the energy E of the resulting capacitance model is275

defined as follows:276

E =
∑

i, j

Ei j(Q i − Zi)(Q j − Z j) (13)

Zi =

∫ bi

ai

n(x)d x (14)

Ei j =
1

Zi Z j



ckδi j

∫ bi

ai

n(x)2d x +
1
2

∫ bi

ai

∫ b j

a j

K(x , x ′)n(x)n(x ′)d xd x ′



 (15)

where Zi is the (potentially noninteger) charge induced by the gates on island i under the277

Thomas-Fermi approximation, and Q i is the integer number of charges on island i under a278

specific charge configuration Q⃗. The ck term of Eq. (15) incorporates the kinetic energy of279

the charges. Since, for our purposes, the energy matrix fully characterizes the system, we do280

not compute the capacitances explicitly and instead work directly with the energy matrix. If281

desired, the capacitance matrix C can be obtained from the energy matrix via the relationship282

C= (2E)−1.283

After calculating the energy matrix, the next step is to determine the charge configuration284

Q⃗ that minimizes the total energy E, subject to the constraint that all Q i must be nonneg-285

ative integers. This is an instance of an integer optimization problem, which in general is286

NP-complete. However, for a moderate number of gates, a brute-force search is sufficient to287

find the minimum. In particular, we first locate the minimum in the continuous space, which288

occurs at Z⃗ , and then evaluate E(Q⃗) over all Q⃗ such that for each integer Q i , |Q i − Zi| < 1.289

Once a stable charge configuration is identified, the potential at each of the sensors is calcu-290

lated under the assumption that each island i hosts a line of charge with total charge q Q i and291

charge density proportional to n(x). The Coulomb potential at each of the sensors arising from292

these charge islands is calculated, and the result is normalized by dividing by the potential of293

a single point charge located at a point on the nanowire closest to the sensor in question. This294

means that a single transition should have a height of no more than 1 after normalization.295

Finally, QDFlow allows the current across the nanowire to be found. For this calculation,296

the left and right sides of the nanowire are assumed to be connected to electron baths with po-297

tentials VL and VR, respectively. The dynamics of the charges are modeled using a semi-classical298

approach, treating them as particles that travel at the Fermi velocity. Each time they collide299

with a barrier, the particles have a chance to either tunnel through it or be reflected back. The300

tunneling probability across each barrier is determined by the transmission coefficient, which301

we calculate using the WKB approximation. This allows the tunneling rates between islands302

and the tunneling rates to and from the external charge baths to be obtained. These tunnel303

rates are then used to define a Markov graph which encodes the dynamics of the transitions304

between charge states. The current through the nanowire is obtained by evaluating the net305

rate at which charges enter and leave the charge baths at the steady state of this Markov graph.306

8



SciPost Physics Codebases Submission

3 Data generation307

The data generation is carried out within the generate module. A single instance of the308

ThomasFermi class calculates quantities of interest for a single point in voltage-space only309

based on the device configuration specified in the physics module. To generate a complete310

CSD, a new simulation instance must be created for each pixel. However, since the gate volt-311

ages of neighboring pixels vary only slightly, it follows that the corresponding charge density312

n(x) will also not change significantly between adjacent pixels. To optimize QDFlow per-313

formance, the result of the n(x) calculation at one pixel is used as an initial condition when314

calculating n(x) at adjacent pixels. This means that n(x)must only be calculated from scratch315

once for each diagram.316

QDFlow contains convenience functions for generating CSDs and rays in the generate317

module. Since the primary purpose of QDFlow is to generate data for training specialized ML318

models, it is essential that the resulting dataset captures the full range of variability observed319

in contemporary QD devices. To achieve this, QDFlow includes functionality to randomize320

nearly all physics parameters and to control the distributions from which each parameter is321

drawn. This capability is implemented via the PhysicsRandomization dataclass, which322

specifies each physics parameter as either a fixed value (when no randomization is desired,323

e.g., to allow regeneration of the same QD device), or a Distribution from which to draw324

the random values. A code example in Listing 1 shows how to import QDFlow and how to325

initialize a random configuration of physical parameters, with µ drawn from a distribution326

provided by the user.327

The Distribution, defined in the distribution module, is an abstract base class328

that encodes how a given parameter should be randomized. Several standard distributions,329

including Uniform, Normal, and LogNormal, are implemented in QDFlow as wrappers to330

the NumPy random generator functions of the same name. In addition, user-defined distri-331

butions can be easily created by extending the Distribution class and implementing the332

draw() method to generate random values in an arbitrary manner. The CorrelatedDis-333

tribution class handles cases where it is desired or necessary for multiple random variables334

to be related to one another in some way.335

This randomization framework, along with the dozens of configurable physics parame-336

ters, enables QDFlow to generate a highly diverse set of CSDs. Figure 3 shows six examples337

from qdflow import generate
from qdflow.util import distribution

# Create a new dataclass instance that contains the default
# randomization distributions for each physics parameter
phys_rand = generate.PhysicsRandomization.default()

# Change the range from which mu can be drawn
phys_rand.mu = distribution.Uniform(0, 1.2)

# Generate a list of 6 sets of random device parameters
n_devices = 6
phys_params = generate.random_physics(phys_rand, n_devices)

Listing 1: Example code to generate a list of 6 randomized sets of device parameters.
First, a PhysicsRandomization object is created, which defines the ranges
and distributions, as appropriate, from which the physics parameters should be
randomized. Distributions for each parameter can then be set as desired.

9



SciPost Physics Codebases Submission

Figure 3: (a)-(f) Examples of CSDs generated with randomized physics parameters.
(g) Examples of ray data generated along the rays shown on the CSD in panel (f).

of CSDs generated with QDFlow. A snippet of code allowing to generate CSD data from a338

PhysicsParameters object is shown in Listing 2.339

While CSDs are extremely useful for visualizing charge states, they require extensive data340

collection. In practice, only a relatively small subset of points—the charge transitions—are341

of primary importance. As the number of dots grows, so does the dimensionality of the gate342

voltage space, rapidly making the exploration of the complete, multidimensional voltage space343

infeasible. This challenge is typically handled by measuring multiple 2D CSDs, each defined344

by a different pair of gates.345

In Ref. 12, an alternative method for assessing the charge state in QD devices, with 1D rays346

measured in multiple directions in the voltage space used in place of the 2D CSDs. This method347

greatly reduces the amount of data required for assessing the charge state of the device, but348

sacrifices some of the intuitive human interpretability provided by CSDs, necessitating the349

use of ML tools. To support the development of ML methods for ray-based analysis, QDFlow350

from qdflow import generate
import numpy as np

# Create a set of physics parameters
phys = generate.default_physics(n_dots=2)

# Set ranges (in mV) and resolution of plunger gate sweeps
V_x = np.linspace(2., 16., 100)
V_y = np.linspace(2., 16., 100)

# Generate a charge stability diagram
csd = generate.calc_2d_csd(phys, V_x, V_y)

# Obtain the sensor readout in the form of a numpy array
sensor_num = 0
sensor_readout = csd.sensor[:, :, sensor_num]

Listing 2: Example code demonstrating how to generate a CSD from a
PhysicsParameters object.

10



SciPost Physics Codebases Submission

from qdflow import generate
import numpy as np
from scipy.stats import qmc

# Create a set of physics parameters
phys = generate.default_physics(n_dots=2)

# Generate quasirandom points inside a given area
v_min, v_max = 2., 16.
point_generator = qmc.Halton(d=2, scramble=False)
initial_points = qmc.scale(point_generator.random(n=50), v_min, v_max)

# Define a list of rays that will extend out from each point
ray_length = 3. # length of rays in mV
num_rays = 8
rays = ray_length * np.array([[np.cos(2*np.pi*i/num_rays),

np.sin(2*np.pi*i/num_rays)] for i in range(num_rays)])

# Generate ray data
resolution = 100 # points per ray
ray_data = generate.calc_rays(phys, initial_points, rays, resolution)

Listing 3: Example code demonstrating how to generate ray data from a
PhysicsParameters object.

includes functionality for generating ray-based datasets, as shown in Listing 3.351

4 Noise352

The simulations described thus far capture many essential physical features of QD devices but353

omit one critical ingredient: noise. In experimental data, noise strongly influences both the354

visibility of charge transitions and the reliability of automated analysis.355

To more faithfully emulate experimental conditions, QDFlow includes the noisemodule,356

which contains functionality for adding noise to both CSDs and rays, as well as several postpro-357

cessing functions designed to mimic effects of experimental measurements. The module imple-358

ments several types of noise, including the white noise, pink (1/ f ) noise, telegraph noise, and359

latching effects, as well as stray transitions arising from nearby unintended dots [25,29]. Post-360

processing functions include adding gate-sensor coupling, adding a sech2 x blur, and adding361

Coulomb peak effects. Each noise in QDFlow can be controlled individually, with its mag-362

nitude defined relative to the scale of the CSD data, or as a predefined mixture. Similar to363

the physical parameter randomization discussed in Sec. 3, QDFlow supports designating the364

distributions from which each noise parameter is drawn via the NoiseRandomization dat-365

aclass.366

Figure 4(a) shows an example of a noiseless CSD simulated with QDFlow. CSDs with367

noise implementations adapted from QFlow—white, pink, and telegraph noise and Coulomb368

peak—are depicted in panels (b), (c), (d), and (e), respectively. CSDs with latching, sech2
369

blur, unintended QD, and sensor-gate coupling—new to QDFlow—are presented in panels370

(f), (g), (h), and (i), respectively.371

The simplest, white noise, is implemented by adding to each pixel a value drawn from a372

normal distribution with standard deviation given by the magnitude of the white noise. Pink373

noise is implemented by generating white noise in Fourier space with a uniform random phase374

11



SciPost Physics Codebases Submission

Figure 4: Examples of noise added to a CSD. (a) The original CSD data, (b) white
noise, (c) pink noise, (d) telegraph noise, (e) Coulomb peak, (f) latching, (g) Sech
blur, (h) unintended QD, and (i) sensor-gate coupling.

and magnitude proportional to 1/
q

f 2
x + f 2

y , where fx and f y are the components of each point375

in Fourier space, and then applying an inverse Fourier transform. This configuration allows for376

greater variability compared to telegraph noise. Alternatively, QDFlow also provides the op-377

tion to add pink noise correlated along only the primary measurement axis, which corresponds378

to the more physical model of pink noise correlated in time.379

Telegraph noise is applied along an axis corresponding to the primary measurement direc-380

tion in experimental data. It consists of adding a value (drawn from a normal distribution with381

nonzero mean) to a line of several contiguous pixels. The length of the added line is randomly382

drawn from a geometric distribution. This allows the distribution of lengths of the telegraph383

noise to follow an exponential, as expected for two-level systems with finite excited-state life-384

times. This process is then repeated across the CSD, alternating the sign of the value added385

each time.386

Transitions from spurious QDs are emulated by adding functions of the form tanh(( x⃗− x⃗0)·a⃗),387

where x⃗ gives the coordinates of each pixel, x⃗0 is the location on the CSD of the transition,388

and a⃗ determines how strongly each of the gates plotted on the x- and y-axes are coupled389

to the unintended dot. Values of x⃗0 and a⃗ are randomized, but a single a⃗ is used if multiple390

unintended transitions appear on a single diagram.391

The latching noise implemented in QDFlow can be controlled using one of two meth-392

ods. The first and simpler legacy method to simulate latching is to shift each row of pixels393

by a random number of pixels drawn from a geometric distribution. This process produces394

a latching-like effect along the charge transitions; however, it is somewhat unrealistic since395

12



SciPost Physics Codebases Submission

Figure 5: (a)-(c) Examples of CSDs with all noise types combined. (d) Ray data
without noise (dotted line) and with noise added (solid line).

all transitions on the same row are shifted by the same amount, and because pixels far away396

from transitions are also displaced. A more physically realistic method relies on the nanowire397

simulation to calculate the sensor readout for both an excited charge state and a stable state398

at each pixel, similar to what is implemented in Ref. 18. The excited state chosen corresponds399

to the charge configuration most recently occupied prior to the most recent transition when400

sweeping the gate voltages. When latching noise is added, the sensor readout from the ex-401

cited state replaces the stable-state readout for the first few pixels after each transition, with402

the number of pixels randomized each instance. In general, the second method is preferable403

as it more accurately reflects the experimental conditions; however, the first, legacy method404

is provided as a fallback when excited-state data are unavailable or computationally inconve-405

nient, or impossible to obtain.406

In addition to noise, several postprocessing functions can be applied to the data. A sensor-407

gate coupling in the form of a linear gradient along a random direction can be added. Con-408

volving with a sech2 x kernel along the measurement axis introduces smoothing of the sharp409

transitions.410

Finally, it is important to note that the physics simulation returns the value of the potential411

at each of the sensors; however, experimentally, the conductance of the sensor is the quantity412

that is measured. Therefore, we convert from potential to conductance by using a Coulomb413

peak lineshape of the form G∝ sech2[A(V −V0)], where G is the conductance of the sensor, A414

is a parameter that determines the width of the Coulomb peak, V is the potential at the sensor415

(the simulation output), and V0 is the peak center [30].416

CSDs with a mixture of noises optimized for compatibility with experimental data are417

presented in Fig. 5(a)-(c). Figure 5(d) shows two rays with added noise. The exact amounts418

of each type of noise are randomized for each diagram. A code example showing how to419

generate noisy CSD data for a previously simulated sample CSD is shown in Listing 4.420

Given the computational complexity of Thomas-Fermi calculations, the noise module is421

configured to assume that a complete noiseless CSD (or a ray-based data) has already been422

generated using the generate module. This approach gives us several advantages. First, it423

significantly reduces the computational overhead since multiple noise realizations with differ-424

ent relative noise strengths can be generated from a single noiseless CSD. Secondly, the mod-425

ular approach adopted in QDFlow provides flexibility that cannot be achieved experimentally,426

where it is not possible to calibrate individual noise sources to the desired level. Additionally,427

it allows us to specify the magnitudes of each of the noise types relative to the local scale of428

the surrounding data points, which is important since the scale of the data points can vary429

across large CSDs. Finally, it allows for systematic benchmarking of ML algorithms since the430

noise level and type can be modified independently of the underlying physical configuration.431

For example, one can generate a single noiseless dataset and then apply different realizations432

of noise to study the robustness of a given algorithm under varying experimental conditions,433

13



SciPost Physics Codebases Submission

from qdflow.physics import noise
from qdflow.util import distribution
import numpy as np

# Use data from previous example
data = np.load("sensor_readout.npy")

# Create a new dataclass instance that contains the default
# randomization distributions for each noise type
noise_rand = noise.NoiseRandomization.default()

# How much noise to add, relative to the transition height upper bound
noise_amount = 0.15

# Use a CorrelatedDistribution to randomize the white, pink, and
# telegraph noise so that the total always equals noise_amount
num_dists = 3
dists = distribution.SphericallyCorrelated(num_dists,

noise_amount).dependent_distributions()
noise_rand.white_noise_magnitude = dists[0].abs()
noise_rand.pink_noise_magnitude = dists[1].abs()
noise_rand.telegraph_magnitude = dists[2].abs()

# Generate a random set of noise parameters
noise_params = noise.random_noise_params(noise_rand)

# Add noise to the data
noisy_data = noise.NoiseGenerator(noise_params).calc_noisy_map(data)

Listing 4: Example code to add noise to a charge stability diagram. First,
a NoiseRandomization object is created, which defines the ranges and
distributions, as appropriate, from which the noise parameters should be
randomized. A CorrelatedDistribution is used to randomize the different
noise types while ensuring that the total noise amount is constant.

as was done in Ref. 13.434

5 Benchmarking and limitations435

To benchmark QDFlow, we find the mean runtime of the physics simulation for 10,000 ran-436

domly generated sets of physics parameters. Each simulation is run with at most 1,000 it-437

erations and a relative convergence tolerance of 10−3. We are interested in comparing the438

contribution to the overall runtime from calculating n(x) with the remaining portion of the439

simulation as the number of QDs increases. For each number of dots N , we obtain two run-440

times: (i) the time required to compute the charge density profile n(x), and (ii) the remaining441

time to construct the capacitance model, minimize Eq. (13), and evaluate the sensor output.442

The results for small- and mid-sized QD arrays are shown in Fig. 6(a) and Fig. 6(b), respec-443

tively.444

For a small number of dots (N ≤ 20), the main bottleneck is the initial part of the simulation445

where n(x) is calculated. However, as the number of dots N is increased, the minimization of446

Eq. (13) over integer charge configurations Q⃗ ∈ ZN for which the runtime scales exponentially447

in N begins to dominate. In practice, we expect most use cases to involve no more than ten448

14



SciPost Physics Codebases Submission

2 3 4 5 6 7 8 9 10

0.000

0.005

0.010

0.015

0.020

runtime (s)

N

(a)

solve for n(x)
solve cap. model

5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

runtime (s)

N

(b)

solve for n(x)
solve cap. model

Figure 6: Average runtime versus number of dots N for (a) Thomas-Fermi solver and
(b) capacitance model solver. Benchmarks were performed on a 2.8 GHz AMD Ryzen
5 7520U processor.

QDs, as long-range interactions tend to be negligible due to screening from the material and449

the nearby gates; thus, we focus attention on the cost of computing n(x) in this regime.450

Because QDFlow calculates the capacitance model at each point in the CSD by explic-451

itly solving for n(x), it requires several orders of magnitude more runtime to generate CSDs452

than simulations based on constant capacitance models. Thus, for applications that require453

real-time data, faster simulations such as QDsim [17] or QArray [18] may be more suitable.454

On the other hand, for applications such as generating datasets for training and validation455

of ML models for autonomous control of QD systems, the higher-fidelity data provided by456

QDFlow—including effects such as QDs merging across low barriers—often justifies the addi-457

tional computational cost.458

In addition to its relatively long runtime, QDFlow has several modeling limitations. While459

QDFlow is based on an underlying physical nanowire model, it is designed only to produce460

qualitatively realistic behavior. For example, gates are modeled as infinite cylinders arranged461

in a simple, idealized geometry, whereas in real devices, the shapes and arrangements of gates462

can be considerably more complex. Furthermore, the electron density n(x) is calculated only463

in 1D, an approximation that can introduce errors for systems with non-negligible transverse464

extent. Despite being a 1D simulation, data generated with QDFlow is qualitatively similar to465

that from 2D QD arrays, provided that crosstalk is not too large. Influence from other dots can466

be included either during the simulation phase by extending the nanowire to include additional467

dots on the left and right sides, or during the noise-adding phase as unintended dot noise.468

However, the ability to model crosstalk from other dots remains somewhat limited, as QDFlow469

cannot reproduce data features from 2D architectures with tight couplings between nearby470

dots. Finally, the simulation uses a semiclassical approach and therefore does not include471

certain quantum effects, such as finite tunnel coupling effects and charge-state hybridization,472

which would be captured by more complex models such as the Hubbard model. Taken together,473

these approximations prevent QDFlow from generating quantitatively accurate data.474

QDFlow also lacks certain capabilities present in other simulators. For example, it can-475

not currently model closed systems with a fixed number of charges isolated from the source476

and drain contacts—a functionality available in QArray [18]. Additionally, QDFlow does477

not currently model quantum effects due to finite tunnel coupling, which can cause broad-478

ening of the interdot transitions and rounding of sharp corners around the triple-points due479

to hybridization of charge states. For applications involving virtualization of gates, quantum480

effects are generally small enough that a semiclassical approximation is sufficient. However,481

for applications such as readout, where fine control of gates is needed, quantum effects are482

more important. If these features are relevant, QDarts contains a simulation of the finite483

tunnel coupling effect [19]. Finally, QDFlow is configured to model the state that minimizes484

15



SciPost Physics Codebases Submission

the energy of the capacitance model, implicitly assuming that the system can transition freely485

between charge configurations. However, this assumption can break down for large arrays of486

QDs. For example, if a charge must transition between non-neighboring QDs passing through487

an intermediate QD that forms a large barrier, it may get “stuck” on one side even if it is ener-488

getically favorable to move to the other side. This will result in much more extreme latching489

effects than QDFlow can model.490

QDFlow has been tested both modularly and holistically, through extensive unit testing and491

by comparing its output to experimental data. The QDFlow repository includes unit tests for492

every function in the package, ensuring coverage of all lines of code. The validity of QDFlow493

has been confirmed by performance of multiple specialized ML models trained on QDFlow-494

generated data and deployed in real-world applications, as we discuss in Sec. 1 and in Sec. 6.495

6 Conclusion496

Progress toward scalable quantum information technologies based on QD systems depends497

critically on overcoming the complexity of device operation and calibration with increasing498

number of QDs. Novel ML-based methods have emerged as powerful tools to address these499

challenges, but their effectiveness relies on access to large, diverse, and accurately labeled500

datasets. QDFlow was developed precisely to meet this need.501

QDFlow differs from existing QD simulations in that it fully simulates the charge density502

function n(x). By integrating a self-consistent Thomas-Fermi solver with a dynamic capac-503

itance model, QDFlow provides a physics-informed simulation framework that goes beyond504

constant-capacitance approximations. This enables the generation of CSDs and ray-based data505

with features that evolve naturally with gate voltages, mimicking experimental behavior such506

as dot merging and transition slope variation.507

The modular data generation tools allow for extensive randomization over physical param-508

eters, yielding highly diverse synthetic datasets suitable for ML applications, while the noise509

module introduces experimentally relevant effects—including thermal broadening, telegraph510

noise, latching, and unintended transitions—in a controllable fashion. Together, these fea-511

tures make QDFlow uniquely positioned to support both the development and benchmarking512

of ML algorithms implemented in a wide range of tuning procedures, device architectures,513

and material platforms. Early use cases, such as the QFlow-lite and QFlow 2.0 datasets,514

have already demonstrated QDFlow’s ability to accelerate the training of ML models for global515

state recognition [9,20], ray-based navigation and charge tuning [12,13], data quality assess-516

ment [25], detection of spurious QDs [31], and virtualization of QD arrays [13, 14]. As an517

open-source, extensible platform with comprehensive documentation, QDFlow is designed to518

serve as both a research tool and a community resource.519

QDFlow represents a paradigm shift among QD simulators. Whereas other simulations520

typically rely on constant-capacitance models that impose static couplings regardless of de-521

vice state, QDFlow ties these parameters directly to the underlying physics through its self-522

consistent charge density, producing capacitances and observables that evolve dynamically523

with gate voltages. This distinction not only improves the connection with the experiment but524

also allows for the capture of nontrivial behaviors—such as QDs merging, fluctuating slopes,525

and disorder-induced effects—that are inaccessible to static-capacitance approaches.526

As QD systems advance toward larger arrays and integration into functional quantum pro-527

cessors, the need for such realism will only grow. QDFlow package is currently being used528

to generate datasets for multiple ongoing research projects and we intend to support it for529

the foreseeable future. Although the current release is stable, we anticipate adding further530

modules and functionality to the package. Possible future extensions of QDFlow, including531

16



SciPost Physics Codebases Submission

multi-dimensional modeling, adding additional quantum effects, hybridization with experi-532

mental feedback loops, and systematic studies of robustness under different noise and disor-533

der regimes, could establish it as a cornerstone for bridging theory, experiment, and ML in534

the quest for scalable quantum technologies. We have designed the core class structure to535

allow for seamless addition of new physical parameters and functions, and plan to update the536

generate module to provide support for parallelization. By releasing QDFlow as an open-537

source package, we aim to foster a shared foundation for accelerating progress in quantum dot538

technologies. We anticipate that the package will not only continue to advance automated QD539

control but also provide a flexible testbed for exploring broader questions at the intersection540

of condensed matter physics, quantum information, and machine learning.541

Acknowledgements542

Funding information D.B. was supported in part by an ARO grant no. W911NF-24-2-0043.543

S.S.K. acknowledges financial support from the S.N. Bose Fellowship during this project. This544

research was performed in part while J.Z. held an NRC Research Associateship award at NIST.545

The views and conclusions contained in this paper are those of the authors and should not be546

interpreted as representing the official policies, either expressed or implied, of the U.S. Govern-547

ment. The U.S. Government is authorized to reproduce and distribute reprints for Government548

purposes, notwithstanding any copyright noted herein. Any mention of commercial products549

is for information only; it does not imply recommendation or endorsement by NIST.550

Code availability QDFlow is available on the Python Package Index, with the source code re-551

leased under the GNU General Public License, and can be installed using pip install QD-552

Flow command. The associated GitHub repository is https://github.com/QDFlow/QDFlow-553

solver. Documentation is available at https://qdflow-sim.readthedocs.io/. Any discovered554

bugs should be reported using GitHub issues. If you find this package useful, please star the555

repository and cite this paper.556

References557

[1] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol and J. R. Petta, Semiconductor spin qubits,558

Rev. Mod. Phys. 95(2), 025003 (2023), doi:10.1103/RevModPhys.95.025003.559

[2] A. B. Mei, I. Milosavljevic, A. L. Simpson, V. A. Smetanka, C. P. Feeney, S. M. Seguin, S. D.560

Ha, W. Ha and M. D. Reed, Optimization of quantum-dot qubit fabrication via machine561

learning, Appl. Phys. Lett. 118(20), 204001 (2021), doi:10.1063/5.0040967.562

[3] C. Shen, W. Zhan, K. Xin, M. Li, Z. Sun, H. Cong, C. Xu, J. Tang, Z. Wu, B. Xu, Z. Wei,563

C. Xue et al., Machine-learning-assisted and real-time-feedback-controlled growth of inas/-564

gaas quantum dots, Nat. Commun. 15(1), 2724 (2024), doi:10.1038/s41467-024-565

47087-w.566

[4] D. Schug, T. J. Kovach, M. A. Wolfe, J. Benson, S. Park, J. P. Dodson, J. Corrigan,567

M. A. Eriksson and J. P. Zwolak, Automation of quantum dot measurement analysis568

via explainable machine learning, Mach. Learn.: Sci. Technol. 6(1), 015006 (2025),569

doi:10.1088/2632-2153/ada087.570

[5] E. Corcione, F. Jakob, L. Wagner, R. Joos, A. Bisquerra, M. Schmidt, A. D. Wieck, A. Lud-571

wig, M. Jetter, S. L. Portalupi, P. Michler and C. Tarín, Machine learning enhanced evalua-572

17

https://pypi.org/project/qdflow/
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://github.com/QDFlow/QDFlow-solver
https://qdflow-sim.readthedocs.io/
https://github.com/QDFlow/QDFlow-sim/issues
https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.1063/5.0040967
https://doi.org/10.1038/s41467-024-47087-w
https://doi.org/10.1038/s41467-024-47087-w
https://doi.org/10.1038/s41467-024-47087-w
https://doi.org/10.1088/2632-2153/ada087


SciPost Physics Codebases Submission

tion of semiconductor quantum dots, Sci. Rep. 14(1), 4154 (2024), doi:10.1038/s41598-573

024-54615-7.574

[6] J. D. Teske, S. S. Humpohl, R. Otten, P. Bethke, P. Cerfontaine, J. Dedden, A. Ludwig, A. D.575

Wieck and H. Bluhm, A machine learning approach for automated fine-tuning of semicon-576

ductor spin qubits, Appl. Phys. Lett. 114(13), 133102 (2019), doi:10.1063/1.5088412.577

[7] R. Durrer, B. Kratochwil, J. Koski, A. Landig, C. Reichl, W. Wegscheider, T. Ihn and E. Gre-578

plova, Automated tuning of double quantum dots into specific charge states using neural net-579

works, Phys. Rev. Appl. 13(5), 054019 (2020), doi:10.1103/PhysRevApplied.13.054019.580

[8] J. Darulová, S. J. Pauka, N. Wiebe, K. W. Chan, G. C. Gardener, M. J. Manfra, M. C. Cassidy581

and M. Troyer, Autonomous tuning and charge-state detection of gate-defined quantum dots,582

Phys. Rev. Appl. 13(5), 054005 (2020), doi:10.1103/PhysRevApplied.13.054005.583

[9] J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. Dodson, E. R. MacQuarrie, D. Savage,584

M. Lagally, S. Coppersmith, M. A. Eriksson and J. M. Taylor, Autotuning of double-585

dot devices in situ with machine learning, Phys. Rev. Appl. 13(3), 034075 (2020),586

doi:10.1103/PhysRevApplied.13.034075.587

[10] N. M. van Esbroeck, D. T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L. C. Camenzind,588

L. Yu, D. M. Zumbühl, G. A. D. Briggs, D. Sejdinovic and N. Ares, Quantum device589

fine-tuning using unsupervised embedding learning, New J. Phys. 22(9), 095003 (2020),590

doi:10.1088/1367-2630/abb64c.591

[11] H. Moon, D. T. Lennon, J. Kirkpatrick, N. M. van Esbroeck, L. C. Camenzind, L. Yu,592

F. Vigneau, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, E. A. Laird593

et al., Machine learning enables completely automatic tuning of a quantum device faster594

than human experts, Nat. Commun. 11(1), 4161 (2020), doi:10.1038/s41467-020-595

17835-9.596

[12] J. P. Zwolak, T. McJunkin, S. S. Kalantre, S. F. Neyens, E. R. MacQuarrie, M. A. Eriksson597

and J. M. Taylor, Ray-based framework for state identification in quantum dot devices, PRX598

Quantum 2(2), 020335 (2021), doi:10.1103/PRXQuantum.2.020335.599

[13] J. Ziegler, F. Luthi, M. Ramsey, F. Borjans, G. Zheng and J. P. Zwolak, Tuning arrays600

with rays: Physics-informed tuning of quantum dot charge states, Phys. Rev. Appl. 20(3),601

034067 (2023), doi:10.1103/PhysRevApplied.20.034067.602

[14] A. S. Rao, D. Buterakos, B. van Straaten, V. John, C. X. Yu, S. D. Oosterhout, L. Stehouwer,603

G. Scappucci, M. Veldhorst, F. Borsoi and J. P. Zwolak, Modular Autonomous Virtualiza-604

tion System for Two-Dimensional Semiconductor Quantum Dot Array, Phys. Rev. X 15(2),605

021034 (2025), doi:10.1103/PhysRevX.15.021034.606

[15] G. A. Oakes, J. Duan, J. J. L. Morton, A. Lee, C. G. Smith and M. F. G. Zalba, Auto-607

matic virtual voltage extraction of a 2x2 array of quantum dots with machine learning,608

doi:10.48550/arXiv.2012.03685 (2024).609

[16] J. P. Zwolak, J. M. Taylor, R. W. Andrews, J. Benson, G. W. Bryant, D. Buterakos, A. Chat-610

terjee, S. Das Sarma, M. Eriksson, E. Greplová, M. J. Gullans, F. Hader et al., Data needs611

and challenges for quantum dot devices automation, npj Quantum Inf. 10(1), 105 (2024),612

doi:10.1038/s41534-024-00878-x.613

[17] V. Gualtieri, C. Renshaw-Whitman, V. Hernandes and E. Greplova, Qdsim: A user-friendly614

toolbox for simulating large-scale quantum dot devices, SciPost Phys. Codebases p. 46615

(2025), doi:10.21468/SciPostPhysCodeb.46.616

18

https://doi.org/10.1038/s41598-024-54615-7
https://doi.org/10.1038/s41598-024-54615-7
https://doi.org/10.1038/s41598-024-54615-7
https://doi.org/10.1063/1.5088412
https://doi.org/10.1103/PhysRevApplied.13.054019
https://doi.org/10.1103/PhysRevApplied.13.054005
https://doi.org/10.1103/PhysRevApplied.13.034075
https://doi.org/10.1088/1367-2630/abb64c
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1103/PRXQuantum.2.020335
https://doi.org/10.1103/PhysRevApplied.20.034067
https://doi.org/10.1103/PhysRevX.15.021034
https://doi.org/10.48550/arXiv.2012.03685
https://doi.org/10.1038/s41534-024-00878-x
https://doi.org/10.21468/SciPostPhysCodeb.46


SciPost Physics Codebases Submission

[18] B. van Straaten, J. Hickie, L. Schorling, J. Schuff, F. Fedele and N. Ares, Qarray: A gpu-617

accelerated constant capacitance model simulator for large quantum dot arrays, SciPost618

Phys. Codebases p. 35 (2024), doi:10.21468/SciPostPhysCodeb.35.619

[19] J. A. Krzywda, W. Liu, E. van Nieuwenburg and O. Krause, QDarts: A quantum dot array620

transition simulator for finding charge transitions in the presence of finite tunnel couplings,621

non-constant charging energies and sensor dots, SciPost Phys. Codebases p. 43 (2025),622

doi:10.21468/SciPostPhysCodeb.43.623

[20] S. S. Kalantre, J. P. Zwolak, S. Ragole, X. Wu, N. M. Zimmerman, M. D. Stewart and J. M.624

Taylor, Machine learning techniques for state recognition and auto-tuning in quantum dots,625

npj Quantum Inf. 5(1), 6 (2019), doi:10.1038/s41534-018-0118-7.626

[21] J. P. Zwolak, S. S. Kalantre, X. Wu, S. Ragole and J. M. Taylor, QFlow lite dataset: A627

machine-learning approach to the charge states in quantum dot experiments, PLoS ONE628

13(10), e0205844 (2018), doi:10.1371/journal.pone.0205844.629

[22] National Institute of Standards and Technology, Qflow 2.0: Quantum dot data for machine630

learning, Database: data.nist.gov, https://doi.org/10.18434/T4/1423788 (2022).631

[23] A. Zubchenko, D. Middlebrooks, T. Rasmussen, L. Lausen, F. Kuemmeth, A. Chatterjee632

and J. P. Zwolak, Autonomous bootstrapping of quantum dot devices, Phys. Rev. Appl.633

23(1), 014072 (2025), doi:10.1103/PhysRevApplied.23.014072.634

[24] J. P. Zwolak, S. S. Kalantre, T. McJunkin, B. J. Weber and J. M. Taylor, Ray-based classifi-635

cation framework for high-dimensional data, In Third Workshop on Machine Learning and636

the Physical Sciences (NeurIPS 2020), pp. 1–7. Vancouver, Canada, ArXiv:2010.00500637

(2020).638

[25] J. Ziegler, T. McJunkin, E. S. Joseph, S. S. Kalantre, B. Harpt, D. E. Savage,639

M. G. Lagally, M. A. Eriksson, J. M. Taylor and J. P. Zwolak, Toward robust au-640

totuning of noisy quantum dot devices, Phys. Rev. Appl. 17(2), 024069 (2022),641

doi:10.1103/PhysRevApplied.17.024069.642

[26] D. L. Buterakos, S. S. Kalantre, J. Ziegler, J. M. Taylor and J. P. Zwolak, QDFlow: A643

Python package for physics simulations of quantum dot devices, GitHub (2025).644

[27] O. Ciftja, Electrostatic interaction energy between two coaxial parallel uniformly charged645

disks, Results Phys. 15, 102684 (2019), doi:10.1016/j.rinp.2019.102684.646

[28] A. Alexandradinata, N. P. Armitage, A. Baydin, W. Bi, Y. Cao, H. J. Changlani, E. Chertkov,647

E. H. da Silva Neto, L. Delacretaz, I. E. Baggari, G. M. Ferguson, W. J. Gannon et al.,648

The future of the correlated electron problem, SciPost Phys. Comm. Rep. p. 8 (2025),649

doi:10.21468/SciPostPhysCommRep.8.650

[29] J. Darulová, M. Troyer and M. C. Cassidy, Evaluation of synthetic and experimental train-651

ing data in supervised machine learning applied to charge-state detection of quantum dots,652

Mach. Learn.: Sci. Technol. 2(4), 045023 (2021), doi:10.1088/2632-2153/ac104c.653

[30] C. W. J. Beenakker, Theory of coulomb-blockade oscillations in the conductance of a quan-654

tum dot, Phys. Rev. B 44, 1646 (1991), doi:10.1103/PhysRevB.44.1646.655

[31] J. Ziegler, F. Luthi, M. Ramsey, F. Borjans, G. Zheng and J. P. Zwolak, Automated extraction656

of capacitive coupling for quantum dot systems, Phys. Rev. Appl. 19(5), 054077 (2023),657

doi:10.1103/PhysRevApplied.19.054077.658

19

https://doi.org/10.21468/SciPostPhysCodeb.35
https://doi.org/10.21468/SciPostPhysCodeb.43
https://doi.org/10.1038/s41534-018-0118-7
https://doi.org/10.1371/journal.pone.0205844
https://doi.org/10.18434/T4/1423788
https://doi.org/10.1103/PhysRevApplied.23.014072
https://doi.org/10.1103/PhysRevApplied.17.024069
https://doi.org/10.1016/j.rinp.2019.102684
https://doi.org/10.21468/SciPostPhysCommRep.8
https://doi.org/10.1088/2632-2153/ac104c
https://doi.org/10.1103/PhysRevB.44.1646
https://doi.org/10.1103/PhysRevApplied.19.054077

	Introduction
	Physics simulation
	Nanowire model
	Thomas-Fermi solver
	Capacitance model

	Data generation
	Noise
	Benchmarking and limitations
	Conclusion
	References

