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Abstract

In this work we obtain the exact solution of quantum integrable system associated with
the Lie superalgebra gl(1]|1), both for periodic and for generic open boundary condi-
tions. By means of the fusion technique we derive a closed set of operator identities
among the fused transfer matrices. These identities allow us to determine the complete
energy spectrum and the corresponding Bethe ansatz equations of the model. Our ap-
proach furnishes a systematic framework for studying the spectra of quantum integrable
models based on Lie superalgebras, in particular when the U(1) symmetry is broken. The
derivation of the Bethe states from the exact spectrum is also addressed.
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1 Introduction

Quantum integrable models [1-3] possess significant applications in quantum field theory,
condensed matter physics and statistical physics, because the exact solutions of these mod-
els are crucial for understanding various strongly correlated effects and many-body physical
mechanism.

Quantum integrable models associated with Lie superalgebras constitute a broad subclass
of integrable systems [4]. Typical examples include the SU(m|n) supersymmetric spin chains
[5,6], the Hubbard model [7-9], and the supersymmetric t-J model [10-12]. These models
have applications in a variety of fields, such as disordered electronic systems [13], critical
phenomena in statistical mechanics [14], and the AdS/CFT correspondence in string theory
[15].

The eigenvalue problem for this class of models can be tackled by either the coordinate
Bethe ansatz (CBA) or the (nested) algebraic Bethe ansatz (ABA) [16-20]. These approaches
hinge on the existence of a reference (or pseudo-vacuum) state. In the presence of a U(1)
symmetry, the reference state is readily constructed. However, when the U(1) charge is ab-
sent, the construction of the reference state becomes highly non-trivial and often impossible,
severely limiting the applicability of the conventional Bethe ansatz techniques.

It has been recognized that a reference state is not indispensable for solving the spectral
problem. The off-diagonal Bethe ansatz (ODBA) [21] bypasses this requirement by exploiting
operator identities satisfied by the transfer matrix, from which Baxter’s T-Q relation can be
constructed directly. Nevertheless, extending the ODBA to models based on Lie superalgebras
encounters several technical obstacles. A prominent example is the Hubbard model: in order to
obtain the full set of Bethe ansatz equations one still has to perform a conventional coordinate
Bethe ansatz or algebraic Bethe ansatz at the first nested level [18,22], which re-introduces
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the need for a suitable reference state.

Although significant progress has been made, solving integrable models associated with Lie
superalgebras without invoking any reference state remains an open problem. In this work
we address this challenge and propose a reference-state-free framework for these quantum
integrable systems.

In the present study, we focus on gl(1]|1), one of the most elementary Lie superalgebras.
In Ref. [23] Grabowski and Frahm derived the spectrum of the gl(1|1) superspin chain for
diagonal and quasi-diagonal boundary conditions, imposing certain constraints. Their analysis
relied on the graded algebraic Bethe ansatz method, i.e., eigenstates were constructed by
acting with creation operators on a properly chosen reference state. For generic non-diagonal
boundary conditions, however, the construction of such a reference state becomes exceedingly
difficult, rendering the conventional algebraic Bethe ansatz method inapplicable.

The purpose of the present paper is to extend the rigorous fusion techniques introduced
in Refs. [24-29] to the graded case. Unlike the standard fusion procedure, we perform fusion
along two branches. This yields a closed set of operator identities among the fused transfer
matrices, from which the eigenvalue problem of the gl(1|1) quantum integrable model are
solved exactly. With the exact spectrum in hand, we employ the separation of variables (SoV)
approach [30-32] to construct the Bethe state [21,33,34].

The paper is organized as follows. In Section 2, we study the integrable model associated
with gl(1]|1) under periodic boundary condition. The fusion procedure is employed to build
the fused transfer matrices. We obtain a closed set of operator identities that determine their
eigenvalues, which are parameterized by the well-known T-Q relation. In Section 3, we extend
the fusion technique to the open boundary case. The eigenvalue problem of the system is
solved through the operator identities regarding the fused transfer matrices. Section 4 presents
the construction procedure for the Bethe states of the open gl(1|1) integrable model. We
provide a conclusion in Section 5

2 gl(1]1) integrable model with periodic boundary

2.1 Integrability

Let V be a 2-dimensional Z,-graded linear space with a basis {|i)|i = 1,2}, where the Grass-
mann parities are p(1) = 0 and p(2) = 1, which endows the 2-dimensional representation of
the exceptional gl(1]1) Lie superalgebra. The R-matrix R(u) € End(V; ®; V) of the supersym-
metric gl(1|1) model is [23, 35]

u+mn

s 3

Rl,Z(u) = s @D

S =

u—m

where u is the spectral parameter and 1) is the crossing parameter. Here and below we adopt
the standard notations: for any matrix A € End(V ®, V), A; ; is a super embedding operator of
A in the graded tensor space, which acts as identity on the spaces except for the i-th and j-th
ones.

The R-matrix (1) possesses the following properties:

regularity : Ry 5(0) =nP; 5, (2)
unitarity : Ry 2(W)Ry 1 (—u) = p1(u) xI, py(u) =—(u—n)(u+mn), (3)
crossing-unitarity : Rsltl2 —u)Rsztl1 (w) = po(u) X I, pou) =—u?, 4
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where P, , is the super permutation operator. Here, st; is the partial super transposition
(Asfj‘ = Aj’i(—l)p(i)[p(i”p(j)]) [36] and the super tensor product of two operators satisfies the
rule (A ®; B);’{ = (—1)[P(i)+P(j)]p(k)A§.Blk. The R-matrix (1) satisfies the graded Yang-Baxter
equation (GYBE) [35,37,38]

Ry 2(u—Vv)Ry 3(u)R23(v) = Ry 3(V)Ry 3(w)Ry o(u—v). (5)

We can construct the monodromy matrix T(u) via the R-matrix (1) as

TO(U) = Ro,1(U— GI)RO,Z(U — 92) .. 'RO,N(u _ QN) — ( Ié((lli)) ggzg ) .

(6)
Here, {6;]j = 1,...,N} are inhomogeneous parameters, the subscript 0 denotes the auxiliary
space V,, and the tensor product V®¥ represents the physical (quantum) space, where N is
the number of lattice sites.

The monodromy matrix T (u) satisfies the graded RTT relation

Ry o(u—v)T;(W)Ty(v) = To(v) Ty ()R o(u —v), )

and can be expressed as a 2 x 2 matrix in the auxiliary space, whose entries are operators
acting on V&V,

Under periodic boundary condition, the transfer matrix of the system is defined as the
super trace of the monodromy matrix in the auxiliary space

2
t, (1) = stro{To(u)} = > (—1)P[ Ty(w)]% ®)

a=1

With the help of the RTT relation (7), one can prove that the transfer matrices with different
spectral parameters commute with each other, i.e., [t,(u), t,(v)] = 0, which guarantees the
integrability of the system.

The Hamiltonian is given by the logarithmic derivative of the transfer matrix

N
z : j,j+1

u=0,{6]-:0} j=1

d1nt,(u)

p=1 du

9)

N

11511 12 21 2112 22122
> (EVEY, + ERE2 + ERER? —E2E2)),
=1

where {E, iJ } are generators of the superalgebra gl(1|1), which act on the k-th quantum space,

and the periodic boundary implies that E N T E” The generator E,i] can be expressed in
terms of the standard fermionic representation

El'=1-n, E’=¢, E'l=c

22 _
K’ E” =ny,

where ¢ i c}' and n;, denote the fermionic annihilation, creation, and particle number operators,
respectively. Therefore, the Hamiltonian (9) can be rewritten as [23]

ZHJJ+1 Z( ]+1 +C]+1 j nj—nj+1)+N. (10)
j=1
The Hamiltonian in Eq. (10) describes a model of free fermions, which can be diagonalized

directly. In this paper, we solve this model in the framework of Bethe ansatz.

4
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2.2 Fusion of the R-matrix

Fusion is a powerful and standard method for solving integrable models, particularly for those
associated with high-rank Lie algebras. The R-matrix in integrable models degenerates into
projection operators at some special points of spectral parameter u, which makes it possible to
carry out the fused R-matrices and transfer matrices [24—-29]. Within the conventional fusion
approach, the procedure follows a single branch, as illustrated by the sequence

t(w) = VW) - DWW - - tH).

The fusion procedure is considered closed when the highest-level fused transfer matrix ()
either becomes directly solvable [39, 40] or coincides with a transfer matrix of lower level
[41,42]. In many ordinary (non-graded) models this closure occurs after a finite number of
fusion steps.

For the Lie superalgebra gl(1|1) the situation is qualitatively different. The fusion of the
R-matrix along a single branch does not yield a closed form; instead, it requires a procedure
carried out along two branches, as detailed in Sections 2.2.1 and 2.2.2.

2.2.1 First fusion branch

First-level fusion At the point u = 7, the R-matrix (1) degenerates into a 2-dimensional
supersymmetric projection operator Pl(z)

Ryp(n) = anl(;)~ (11
0 +) - X
perator Py, is defined by
2
P =Sy wil, P =P, (12)
i=1
1
Y1) =11,1), [Y2) =—=(1,2) +(2,1)), (13)
Y1) ) a) 7 ) )

with the parities

p(¥1)=0, p(Yy)=1,

and projects the original 4-dimensional tensor space V; ®, V, into a new 2-dimensional space
spanned by |¢;) and |v,). The projectors P1(,J;) and Pz(j) can be obtained by exchanging two
spaces V; and V,, i.e., |kl) — |lk).

Using the projector P, we can construct the fused R-matrices

2,1°
Rp1,2y3() = (w+ 3n) T P{YR, 5(u— 3mRy 5(u+ 30)PLY =Ry 5(w), (14)
Ry 10y(W) = (u+ %n)‘leE)Rg,l(u — 3MR3,(u+ %H)Pl(;) =Ry 1(u), (15)

where we denote the projected space by Vi = Vi; o)y = Vi3 1).
The fused R-matrix Ry ,(u) given by (14) is a 4x 4 matrix acting on the tensor space Vi ®;V,.
Its explicit form is

u-+ %n
Ry () = u=3n V2
b v2n  u+in

3
u—in

(16)
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Second-level fusion At the point of u = —%n, the fused R-matrix defined in Ri,z(u) (14)
degenerates into another projector

Ri,(~3n) = —BnP({Z). (17)

Here, P(1_2) is a 2-dimensional supersymmetric projector

2
P(1_2) = Z 19:){¢il, (18)
i=1
where 1
1) = ﬁ(‘/ﬁh/)l) ®; 12) —1v2) ® (1)),  |¢2) = [P3) ®; [2). (19)

The basis vectors |¢,) and |¢,) have parities

p(¢1)=1, p(¢,)=0.

We see that the operator P(l_z) projects the original 4-dimensional tensor space Vj ®; V, into a
new 2-dimensional space spanned by |¢;) and |¢,).

Performing the fusion procedure on Rj ,(u) with the projector ]P’(l_z) yields the following
second-level fused R-matrices

R(12,3(0) =" B Ry 5(u+ m)Ry (u— 3m)PS) = Ry (), (20)
Ry, (1.2 () = u™ P )Ry p(u+ mIRs 1 (u— 5m)PJ = Ry (). 21)

Here, the projected space is denoted by V; = V/j 5y = V|5 7). The fused R-matrix Ry ,(u) is a
4 x 4 matrix defined in the tensor space V; ®; V,, and reads

u+2n
u—mn —+/3
Ry (1) = ! \/%’7 o 1;7 (22)

u—2n

2.2.2 Second fusion branch

It should be noted that the R-matrix of the gl(1|1) algebra admits another distinct fusion branch
beyond the one discussed above. Given the similarity of the procedure, we only present the
final results and detail the second fusion branch in Appendix A.

At the point u = —n), the R-matrix (1) is proportional to a projector Pl(,_z)
Ry 5(—n) =—21P,. (23)
By performing the fusion with the projector PZ(,_I)’ we obtain the first-level fused R-matrices
R1,2y3(u) = (= 37) 1Py )Ry 3(u+ §m)Ry 3(u — 30)P5 ) = Ry 5(u), (24)
Ry 1,2y (1) = (= 37) 1P )Rs 1 (t+ $1)R3 2(u— 3P, = Ry 1,(1), (25)

where the projected space is denoted as Vi, = Vi; o = Vi3 1y
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Ry 5(u)

(+) =)
P 2,1 P 2,1
Ri,z(u) Ri',z(u)
(=) (+)
Pi,z Pi/,z

Rip(u)| = |Ry ()

Figure 1: The fusion procedure of R-matrix.
At the point of u = %n, the fused matrix Ry, ,(u) given by Eq. (24) degenerates into a
projector 7352
Ri2(3n) =3nPy). (26)

With the help of P™) | we obtain the following second-level fused R-matrices

1,2
R/ 3w) = U_1P§2R2,3(U —mRy 3(u+ %77)7353 =Ry 5(u), (27)
Ry, (1.2 () = u " Py R o(u—=mIRs 1(u + 5m)PLY) =Ry 1,(w), (28)

where we denote the projected space as Vi, = Vij/ 5y = Vi3 1)

2.2.3 Closure of the fusion
By a direct analysis, we find that Rj ,(u) given by (20) and Ry, ,(u) given by (27) are identical

We perform fusion along two branches and connect the resulting fused R-matrices at the
second fusion level. This connection thereby closes the fusion procedure, a mechanism quite
different from the standard one. The fusion procedure of the R-matrix is briefly illustrated in
Fig. 1.

2.3 Fused transfer matrices

The fused R-matrices satisfy the following graded Yang-Baxter equations
Ry p(u—v)R,, (WRp(v)=Rg ,(VIRy (WR, p(u—v), (30)

where the indices a, 8,y may label either the original spaces or the projected spaces.
Using the fused R-matrices defined in (14), (20), (24), and (27), we define the fused
monodromy matrices

To(u) = Ra,1(u - 91)Ra,2(u —6;)-- 'Ra,N(u —Oy), (31
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where the subscript a € {0,0,0’,0’} refers to the fused auxiliary spaces. Here, 0 and 0 corre-
spond to the first-level and second-level of the first fusion branch respectively; whereas 0’ and
0’ correspond to the first-level and second-level of the second fusion branch respectively. All
the fused monodromy matrices in Eq. (31) satisfy the graded RTT relations

Ry p(u—v)To(u) Tg(v) = Tg(v) To(w) Ry p(u—v). (32)

The super traces of the fused monodromy matrices in the auxiliary spaces give the corre-
sponding fused transfer matrices

t,f,l)(u) = strp{Tp(w)}, tg,z)(u) = strg { T (W)},

EVW) =strg{ T}, E2w) = strg { T (W)} &3

From Eq. (29), we conclude that the fused transfer matrices El()l)(u) and flgz)(u) are identical,
we therefore denote them collectively as fp(u):

£, (w) = EV(w) = P W), (34)

The graded RTT relations in (32) imply that the transfer matrices t,(u), tél)(u), tgz)(u) and
fp(u) commute with each other, namely,

[t,(), €M =[t,@), (2] =[(Pw), (DM =0,

. . 3 (35)
[Ep (), £,(1)] = [, (), P = [£,(w), (P ()] =0

2.4 Operator identities

The definitions of the fused R-matrices in (14), (20), (24), and (27) directly yield the following
relations for the fused monodromy matrices

PIOT () To(u +m)PLY = alu+m)Ti(u + 3n),

PTy () To(u—n)PY = alu—n) Ty (u—3n),

(36)
P( ITa(u+ )Ty —5n)PS) = a@Ty(w),
73(” DTy (u— )Ty (u+ 2n)7?(,+; = a(u)T;(u),
where
N
a(w) = J—0). (37)

j=1

From the graded RTT relations (32) at specific points, together with the properties of the
projectors, we derive

T1(0,)To(0; + 1) = PLYT1(0,)To(6; + ),
T1(0,)To(6; — 1) = Py ) T1(8;,)T5(6; — ),
Ty(6))T1(6; — 3m) = P ) To(6))T1(6; — 3m),
T,(0,)T1.(6; + 31) —7><+> T,(6,)T1.(6; + 2n),

(38)
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where j =1,...,N. Taking the super trace of Eq. (36) over the auxiliary space and using Eq.
(38), we obtain the operator product identities

tp(6))tp(6; +m) = a(8; + M)t (6, + 5m),
R,
t0(6; — 3m)t,(6;) = a(6; — m)E,(6; —n),

570+ 3m)t5(6) = a(6; +mEy(6; +m),

(39)

with j=1,...,N.
Figure 2 shows a schematic of the transfer matrix fusion. Unlike the conventional ap-
proach, the procedure follows two fusion branches:

(D) tp(w) = tPW) = EP W), (2): ty(w) = (P () = TP (w). (40)

The fusion procedure is closed by the identity fgl)(u) = f}(,z)(u). This suggests a novel strat-
egy for solving integrable models associated with Lie superalgebra: building multiple fusion
branches and connecting them to achieve a closed system.

s

TN}

Ep(u7)

Figure 2: Schematic diagram of the transfer matrix fusion procedure. The blue and
red lines represent the fist and second fusion branches respectively. The spectral
parameter u; must be set to a specific value at each step, as shown in Eq. (39).

2.5 T-Q relation

Let Ap(uw), Ag)(u), Agz)(u) and f\p(u) denote the eigenvalues of the transfer matrices t,(u),

tlgl)(u), tl()z)(u) and Ep(u), respectively. As the fused transfer matrices mutually commute, the
operator product identities in (39) directly lead to the following functional relations

Ap(B)A,(6; +m) = a(0; + mAD(6; + 3n),
Ay (6;—m)A,(6;) = a(6; — mAP(6; — ),
AM(6; —31)A,(6;) = a(6; —m)A,(6; —n),

AG0; + 3, (6) = a(0; +MA,(0; +1),

(41)

9
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204 where j =1,...,N. Since A,(u), Ag)(u), Agz)(u), and A, (u) are degree-(N — 1) polynomials
205 in u, the 4N constraints in Eq. (41) completely determine these functions.

206 We can parameterize the eigenvalues A, (w), Al()l)(u), A;z)(u) and A,(u) in terms of the
207 following T-Q relations

A,(w) =[a(u) —a(u—mn)] ((121("')7))’
AD W) = [a(u—Ln)—alu—32n )]Qiuifn;
Qu+ 3n) (42)
_77
A;Z)(u) =[a(u— %7)) —a(u— %n)]r;))’
A,w) =[a(u—2n)—a(u— n)]QQ((l;;_ZT”I’I)),
208 where )
Q) = [ Jaw—w), )

k=1
200 and M is the number of Bethe roots {u,} and ranges from 0 to N. The analyticity of A,(u),

Ag)(u), A;Z)(u) and /N\p(u) requires that the Bethe roots {u;} must satisfy the Bethe ansatz
1 equations (BAEs)

21

(=)

2

[

N —0. —
]_[“"—anL k=1,...,M. (44)
o1 M=
212 The eigenvalue of the Hamiltonian (10) can be given by the Bethe roots as follows
dInA,(u) M 2
p, = S0 STy, 5)
du u=0,{0;=0} k=1 (N — Wi )uk
213 Numerical results for the N = 3 and N = 4 cases are presented in Tables 1 and 2 respec-

214 tively. It can be seen that the eigenvalue E, derived from the Bethe roots coincides with that
215 from the direct diagonalization of the Hamiltonian (10).

Table 1: Numeric results of Bethe roots {u;} and eigenvalues of the Hamiltonian
(10). Here, N =3, n =1 and {6, = 0}.

w
=
P

8 8

w
+
)
w
T
3

w
Lo
3

T

L ool
3

10
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Table 2: Numeric results of Bethe roots {u;} and eigenvalues of the Hamiltonian
(10). Here, N =4, n =1 and {0, = 0}.

[ U2 U3 g E, U [ U3 g E,
1+i 1—i
- - - - —4 =2 | =z - - 0
(e%e) - - - —4 % % - - 2
1+i 1—i 1
= - - - —2 T 2 - - 2
1—i 1+i 1—i
= - - - —2 S e - 0
1 1—i 1
3 — - - 0 oo -5 3 - 2
1+i 1+i 1
oo -5 - — -2 oo -5 3 - 2
1—i 1+i 1—i 1
o | 7 - - —2 =z | = 2 - 4
1 1+i 1—i 1
00 2 - - 0 00 =2 | T 2 4

Under periodic boundary conditions, the gl(1|1) integrable model possesses U(1) symme-
try, and common eigenstates of the transfer matrix and the Hamiltonian can be constructed
as [3]

M
|M1""9MM>:l_[B(IIJ’1)|O>1®S |0>2'“®s |O>N9 (46)
k=1

where {uy,..., Uy} satisfy BAEs (44) and |0) is the vacuum of the fermion.

3 gl(1]1) integrable model with open boundary

3.1 Integrability

In this section, we consider the gl(1|1) integrable model under open boundary condition. Let
us introduce the K-matrices K~ (u) and K*(u). The matrix K~ (u) satisfies the graded reflection
equation (RE) [43,44]

Ry o(u—v)K] (u)Ry1(u+v)K; (v) = K5 (VIR 5(u + v)K] (u)Ry 1 (u—v), “47)
while K (u) satisfies the graded dual reflection equation
Ry (v —wK; (u)Ry 1 (—u—v)K; (v) = Ky (V)R o(—u—v)K; (WRy (v — ). (48)
The generic solutions for the K*(u) are [23]

ay big
K*(w)=I+u s (49)
f:l:gﬁ —ay

where a., by and f, are complex boundary parameters, £ is the sole generator of complex
Grassmann algebra CG;, and &Y is the adjoint of &, i.e., &Y = —i&. Further details about
Grassmann numbers £ and £ are provided in Appendix B.

11
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We should note that for the supersymmetric gl(1|1) model, the K-matrices must be diagonal
if they do not possess an additional internal space, i.e., all the elements are c-numbers. This
implies that in a conventional Boson-Fermion mixture, bosons cannot transform into fermions
upon boundary reflection. In contrast, the introduction of Grassmann numbers in Eq. (49)
allows for non-vanishing off-diagonal matrix elements.

We notice that [K~(u), K*(v)] # 0, which means that they cannot be diagonalized simul-
taneously. In this case, it is quite hard to obtain the eigenvalues via the conventional Bethe
ansatz methods due to the lack of a proper reference state.

The transfer matrix t(u) is constructed as

t(u) = stro {Kg () To(w)Ky () To(w)}, (50)
where T'(u) is the reflecting monodromy matrix
To(u) = Ryo(u+ 6y) -+~ Ry o + 0,)Ry o(u + 6;). (51

By using the graded Yang-Baxter relations (5) and reflection equations (47)-(48) repeat-
edly, we can prove that the transfer matrices with different spectral parameters commute with
each other. Therefore, t(u) serves as the generating function of conserved quantities. The
Hamiltonian is generated from the second-order derivative of the transfer matrix [23]

_ 1 22t(w)
8nN(1+a,m) Ju? u=0,{6,=0}

N-1 nN—l
= ZHJ'J“ + 5 [a_—2a_n; +b_Ec +f_€ncI:| (52)

N—-1
’)’) -
+ m |:a+ —2Cl+TlN + b+gCN +f+€ﬁc]'v] .

The Hermiticity of Hamiltonian (52) requires b, = f;* and a,. € R.

3.2 Fusion procedure

The fusion approach introduced in Section 2 is also applicable to open systems. In Section 2.2,
we have demonstrated the fusion of the R-matrices and subsequently applied it to construct
the fused monodromy matrices given by Eq. (31).

The fused analogues for the reflection monodromy matrix T'(u) are constructed in the same
way, specifically

To(W) =Ry o(u+6y) -+ Ryo(u+ 05)Ry o(u+6y), ac{0,0,0,0}. (53)

3.2.1 Fused K-matrices

For open systems, we should also perform the fusion procedure of the K-matrices using the
same projectors as those used for the R-matrices, which are introduced in Section 2.2.
The first-level fused K-matrices are

Ky W =[[1+@u—3ma_lu+3in)]
K@) =[[1+ @+ 3na.Ju—3m)]

[
Kl,(u)—[[l—(u+%n)a_](u—l )
=

1 —

P(+)K (u— ZT))R2,1(ZU)K2 (U+%TI)P1(;)’

1

P(+)K+(u+ 3MR1 2(—2u)K ] (u— zn)Pz(j?’

1pe) o P

] P, 'Ky (u+ 3MR21(2u)K, (“_277)P12’
1

[1-(—gmaJu+zm)] P( 2K (w—3m)Ry 2(—20K (u+ 3m)P5 .

12
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255 The second-level fused K-matrices read

— =1 _ (=), — _ —
Ky @) = [201 = (u+maJu—3m]" PR, (w+mRi (2 + 3mK; (u—5m)P, 7,

K ()= [201 —ua )+ m)] 7 BKS (w— 3m)Ry 1 (—2u— 3K (u+ mBL),

(55)
_ -1 _ _
Kp @) = [201+ @—ma_lu+5m]" PLK; (w—mRyo(2u — 3Ky (u+ 3mPLy,
K{C(u) =[2(1 +ua;)(u— T))]_1 Pé;),K;,(u + %n)RZ’i/(—Zu + %n)K;(u — T))'Ps’—;.
256 It should be remarked that all fused reflection matrices defined in Eqgs. (54) and (55)

257 are 2 x 2 matrices in their respective fused spaces, and their matrix elements are operator
253 polynomials in u of degree at most one. The fused K-matrices satisfy the following fused
250 (dual) reflection equations

Ry p(u—v)K, (u)Rp o(u+ v)K/;(v) = K/;(V)Ra’ﬂ (u+v)K (WRp o(u—v), (56)
Ry p(v =K, (WRp o(—u—v)K; (v) = Kg(V)Rg p(—u—V)K; (WRp (v —w), (57)

260 where indices a, 8 may label either the original spaces or the projected spaces.
261 Using Eq. (29), we can finally get

K7 (w) = K5, (w), K;(u) = K;(u). (58)

262 The situation now is quite similar to the fusion of R-matrices described in Section 2.2. Specif-
263 ically, the K-matrix fusion also follows two branches that subsequently interconnect after two
264 fusion levels, as illustrated in Fig. 1 (with R(u) replaced by K=(u)).

265 3.2.2 Fused transfer matrices

266 The fused transfer matrices are defined as
(D () = str (K () To(wk; W 5w},
t®(u) = strg {K () To (w)K5, (W) Ty (W)},
F(w) = strg{K (W Ta(wK: W),
(3 () = strg {KZ (W) To, (WK, (W) T, ()}

(59)

267 From Eqgs. (29), (58), and (59), it follows that the fused transfer matrices {V)(u) and {®(u)
268 are identical. We therefore denote them collectively as t(u)

fw) = V() = i9@). (60)

260 Equations (30), (56) and (57) allow us to prove that t(u), t(u), t**(u), and #(u) are mutually
270 commutative.

onn 3.3 Operator identities

272 Operator product identities We introduce the function

N
a(w) = (1+ua )1+ @+mn)a]] Jw+6;+n)u—6;+n). 61)
j=1

13
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273 The fused transfer matrices defined in Eq. (59) satisfy the following operator product identities

1£0;(x0; +n)

t(£0)E(£0; +n)=—-—1— L~ a(+6.)tM (0, + 1n),

(£6,)t(£6; +n) 2 @0+ Iy a(£0;)c(£6; + 37m)
L Ve J 7 N4(2) 1

(et~ ) = - T O — g

(62)

+6;(£6;—37)

(iej - %ﬂ)(iej -n)
+0;(£0; + 31)
(£6; + 31)(£6; + 1)

t(£6; — Fn)e(£6)) =~ a(F,)E(£6; — 1),

tB(£0; + 3n)e(x0,) = — a(£0,)E(£06; +n),

274 where j =1,...,N. A detailed proof of (62) is provided in Appendix C.

275 Transfer matrices at specific points The properties of the R-matrices and K-matrices enable
276 the direct evaluation of transfer matrices at specific points

t(0)=0, tW)=0, t@)=0, #0)=0, tP(—3n)=-2t(-n),

. (63)
tDAn)==2t(n), tP(=in)=2t(-n), tPGn)=2t(n), in)=2WD:3n).

277 Asymptotic behavior Through a straightforward analysis, we obtain the following asymp-
278 totic forms of the transfer matrices t(w), tM(w), t®(u) and #(u)

t(“)lu—»oo =2k x T+ 5

t(l)(u)lu—m)o = —8k u2N+1 XIT4+--- s (64)
t(z)(u)luaoo = 8k u2N+1 XT+--- ,
E(u)lu—n)o = —8k u2N+1 XIT+--- s

279 wherek =a, +a_+a,a_n.

20 3.4 T-Q relation

251 The transfer matrices t(u), tM(w), t®(u), and f(u) commute with each other and conse-
282 quently possess common eigenstates. Let A(u), AD @), A® (W), and A(u) denote their respec-
283 tive eigenvalues. Then, Egs. (62)-(64) directly imply

1£0;(£0; +n)

AEOIA(EO, +1) = ———1—T 7 4(+£0.)AD (0, + 1
(£0,)A(£06; +n) 4 20,1 Inp a(£60;)A(£6; + 37),

1£6;(£6; —n)
A, —A£D) =—-——L Z a(70)AP (20, — Ly),
( j T)) ( ]) 4 (:l:@]—%n)z a(:F J) ( j 277)

(65)
+6;(£6; — 3n)
(&0; — 31)(6; —n)
iej(iej"‘%n)
(£0; + %n)(i% +m)

AD(£60; — 3n)A(0;) = — a(F0,)A(£0; — 1),

APD(£6; + 3n)A(6;) = —

a(£0,)A(£6; + 1),

14
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284 Where j=1,2,...,N and
A0)=0, AD)=0, A®0)=0, A(0)=0

AD(=gm)==28(=n),  A(3n)=—2A(n), (66)

AP(—zm)=2A(-n), AP(Gn)=2A(n), An)=3A(n),

AWlysoo =2ku 4o AD@)] 00 = —8k u2N+1 4+

A(Z)(u)lu_>OO =8kuN ... AW)ysoo = =8k 2Nt 4.0, ©7)
285 From the definitions of the transfer matrices in Egs. (50) and (59), we know that A(u),

286 AD(w), AP (w), and A(u) are all polynomials in u of degree 2N + 2. The 8N + 13 equations
287 in (65) - (67) thus provide sufficient constraints to determine these functions completely.
288 We can parameterize A(u), AV(w), A®(u), and A(u) by the following T-Q relations

u Q(u—mn)
Alu) = a(u)—a(—u— _,
(= 5 et —atu—m) =
4u Qu—3)
AV (W) = - [a(u+ D) —a(—u—3n)] 2
u+ u+g)’
n (Q( )) 68)
4u Qu—
AP ) = au+n a(—u—32
W= [atur H-al m]Q(+n)
y u Q(u—2n)
Aw) =— +n)—a(—u—2n)]=——
W=—5— 3n [a(u+n)—al-u—2n)] Qutn)’
280 Where
M
Qw =] Jw—-20w@+2rc+m), o<sM<N. (69)
k=1
200 The Bethe roots {A,..., Ay} satisfy the following BAEs
a(A)
—— =1, k=1,...M. (70)
a(=Ax—n)
201 The eigenvalue of the Hamiltonian (52) in terms of the Bethe roots is given by
_ 1 2%A(u)
8MN(1+ay,m) Ju? u=0,{6,=0)
(71)
N Z S (2N 1+ L )
= —14+a_n— .
Ak(7tk‘i'”f)) 2 K 1+a.n
202 Numerical results for the Bethe roots with system size N = 3 are presented in Table 3. We

203 note that the eigenvalue of the Hamiltonian derived from the Bethe roots coincides with that
204 given by the direct diagonalization of the Hamiltonian.

2905 Since Grassmann numbers are absent from equations (65) - (67), it follows directly that the
206 eigenvalues of the transfer matrix and the Hamiltonian are independent of them. In contrast,
207 the eigenstates are strongly dependent on these Grassmann numbers.

208 We observe that the presence of boundary Grassmann numbers breaks the U(1) symmetry
200 of the system. Nevertheless, the T-Q relations in Eq. (68) share similar structures to the ones
300 in the periodic case (Eq. (42)). The T-Q relation in Eq. (68) matches the earlier conjecture
so1  in Ref. [23], which was only checked numerically for small systems without an analytic proof.
302 We address this problem by obtaining the relation analytically via the fusion approach.

303 The derivation of the exact spectrum of the model allows us to retrieve the Bethe state,
304 which we will demonstrate in the following section.
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Table 3: Numeric results of Bethe roots {A,} and eigenvalues of the Hamiltonian
(52) withN=3,n=1and a, =0.5,a_=1.2 and {6; = 0}.

A Ay As E

- - - 2.7667
—0.5000—1.5235i - - 2.3777
—0.5000—0.2187i - - —0.5911
—0.5000—0.5565i - - 0.9800
—0.5000—1.5235i | —0.5000—0.2187i - —0.9800
—0.5000—1.5235i | —0.5000—0.5565i - 0.5911
—0.5000—0.2187i | —0.5000—0.5565i - —2.3777
—0.5000—1.5235i | —0.5000—0.2187i | —0.5000—0.5565i | —2.7667

4 Bethe state of the open gl(1|1) integrable model

The Bethe-type eigenstates of integrable models with generic open boundary conditions can be
constructed [21,33,34,45-47]. In this work, we apply the approach in Refs. [33,34] to retrieve
the Bethe states of the open gl(1]|1) model. By employing two sets of gauge transformations,
we obtain appropriate generators and a reference state for constructing the Bethe vectors,
respectively. To verify the Bethe state, we also construct a complete basis of the Hilbert space
via the separation of variables (SoV) approach [30-32].

4.1 Gauge transformation

For convenience, we denote the double-row monodromy matrix as

< (u) %(u))

Uw)=TWK WTw)= (fg(u) 2(u) (72)

The transfer matrix t(u) in Eq. (50) can be expressed as a linear combination of the elements
of double-row monodromy matrix

t(u) = KlJ’l(u)sz(u) + Kfz(u)%(u) —K2+1 (u) B (u)— K;z(u)@(u). (73)

The reflection matrix K*(u) (49) can be diagonalized as follows

N . . Kf(w) o0 1+ua 0
+ — + 1_ 11 - — +

KW= 6K WG ( 0 K;Z(u)) ( o 1 —ua+)’
where the gauge transformation matrix G and its reverse G~! are

. 1 2a b, & ~ 1 (2a, —-b,€&

G=— o), Gl=— | 4 . 74

2a, (_f+5lj 2a+) 2a, fiE 2a, 7

By applying the same gauge transformation to the R-matrices and K~ (u), we arrive at

t(u) = stro{kar(u)@z(u)} = I?;rl(u),ef(u) —f(;z(u)@(u), (75)

16
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%W)=GTWK WT W6 =6TWE K- (TG = (

W) Bu)
G (u) @(u))’ (76)

K, (W) Ky(u)

_ 1 a,(14+ua) (a b_—bya_)u& 77)
B ay (a+f_—a_f+)u5ﬁ a;(1—ua_)
21 The entries of % (u) and % (u) satisfy the following relations
W) = AW — B+ 2w w),
2a, 2a,
9B(u) = —szJré’[sz(u) —9(w) ]|+ B,
I (78)
Gu)=—=1& g (W) - 2(w) ]|+ 6w,
2a,
() =~ L el B(u) + 26w+ ().
2a, 2a,

322

323

324

325

326

327

328

329

330

331

332

333

334

4.2 SoV Basis

It is important to note that Grassmann numbers commute with the diagonal elements,
but anti-commute with the off-diagonal elements, of the double-row monodromy matrix—a
property that holds for both its original and gauge-transformed versions.

The commutation relations among ./ (1), B(u), € (u), Z(u) are the same as those among
the untransformed operators. A number of useful specific relations are provided in Appendix

To begin, we rewrite the R-matrices Ry j(u), R; o(u) in the auxiliary space V,

u+nn; cl
Ro,j(u)=Rj,o(u):( RO ), (79)
T)Cj U—T)le

c}f' and n; denote the fermionic annihilation, creation, and particle number operators,

respectively. By applying the gauge transformation G to the Lax operator, we obtain

N . . u+nn; il
Ry j(u) = GoRo j(w)Gy ! = ( o ne ) (80)
T]Cj u—nnj
—PZC;‘, NJ' = C}L—PL Cj=c¢j—p2, Mj=n—piC; +P2C;, (81)
b & &
p1=—=,  py= L& (82)
2a, 2a,

Let us introduce the following local state on site n

|6>n=|0>n_p2|1>n> n=1,---,N, (83)
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which satisfies

[Ro,j(u)]z)l |6>n = O: [RO,j(u)]l’l I())n = (u + n)|6>n) [RO,j(u)]z’z |6>n = u|6>n' (84)

Analogously, the following local bra vector can also be constructed
n(0l =5 (0l=n(llp1, n=1,--,N, (85)
which satisfies
n(0I[Ro ;@] , =0, W(OI[Ro;],, =nlOlu+n), W(0l[Ro;)],,=rn(0lu. (86
We then introduce two global product states
|wo) = 10)1 ®[0)3 -+ - ®; [0}y, {wol = 1(01 ®; (0] - -~ ®; (0. (87)

From the definition of the gauged double-row monodromy matrix, it can be shown that |w)
and (w,| are eigenstates of 4 (u) and %(u), respectively

G(Wlwo) = Ky (Ww-(Ww. (u+n)lwo), (88)
(00| B (1) = (01 Ry (ww—(u+mw.. (u), (89)
where
N
wa@ =] o). (90)
j=1

Let’s construct the SoV vectors
Ip1--sPn) = A (6p)... (6, )lwo), oD
where p; € {1,...,N}, py <py <--- < p,. With the help of the following identity
6(0;)|wo) =0, (92)

and Egs. (D.1), (D.5), we can prove that the vectors defined in Egs. (91) are all the eigenstates
of € (u)

(é(u)lplf tee :pn> = h(u; {plz cee ,Pn})|P1, v 3Pn>} (93)
with the corresponding eigenvalues being

No(u+ 0, )(u—06,, +n)

h = K;; '
(u> {p1: 5pn}) KZl(u)W_(u)W+(u i n) !:1[ (u - sz)(u + Gpl T T’)

(94)

We see that the vector |py,...,p,) does not depend on the order of sz(Gpj), ie.,

|eoosDjseeesPhsees) = ooy PhseeesDjsens )

Furthermore, vectors {|p;,...,p,)} with distinct configurations {p;,...,p,} are mutually or-
thogonal due to the difference in their corresponding spectra. As the total number of the SoV
vectors in (93) equals the Hilbert space dimension, they form a complete basis.

Similarly, we can construct another set of Sov basis of the Hilbert

(pli"':pnlz<w0|=ﬂi(_9p1)---ﬂi(_9pn): (95)

where p; € {1,...,N}, p; <p, <:-- < p,. It can be proved that the vectors in Eq. (95) all are
eigenstates of % (u).
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4.3 The Scalar Product (¥|p,,...,p,)

We introduce the scalar product

Fn(pl’---:pn):(lp|p1""’pn)’ (96)

where (¥| is a common eigenstate of the transfer matrix t(u). By inserting an operator t(6,,.,)
between the bra vector (¥| and the ket vector |p4,...,p,), and alternately acting it to the left
and to the right, we obtain the following relation

A(epnﬂ)Fn(pl’ . -’pn)

n
= K3,(0p,. . Fur1(P1. - - P Prsn) — Ky (6, )®19(6,, )| |90, )levg). 97
=1

Introduce a useful identity

n

@(Ok)kﬂ)o) = 20, + 1

A (0)|wy), k=1,...,N, (98)

The commutation relations (D.5), together with Egs. (93), (94) and (98) lead to the following
identity

50, )| |90y =] [ 9(6,)9(8,,, )lwo)
=1 [=1

- K l_["qi(epl)ﬂ;(epnﬂ)lw()) = |p1""’pn’pn+1>- (99)
=1

20, . +ni_

_n
Pn+1 29 + n

Pn+1
Therefore, we obtain

(26,,,, + MK (6,,,,) —nK5(6, )
29pn+1 + n

A(Qpn+1)Fn(p1:...;pn): Fn+1(p1"":pn+1), (100)

which allows us to get the expression of {F,(p1,.--,Pn)}

n (20, +MA(6,)

Fn(p :"'apn): 7> I 4
' !:1[ (29191 + n)Kfl(epl) _nKJZ(QPI) ’

(101)

where Fy = (¥|w,) is an overall factor. Substituting the explicit expression of the eigenvalue
A(u) given by T-Q relation (68), we further derive

" Q(6,,—n)
Fo(pr, o) = [ [(1+ 6,00 0w_(8,, + mw, (6, + M) —oo—"F,,  (102)

where Q(u) is defined in Eq. (69). Since the SoV basis is complete, the set {F,(py,...,P,)}
can completely determine the form of Bethe state (¥|.

4.4 Bethe state

Introduce another gauge transformation

G =Gla, b, f)la by (103)

19



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

SciPost Physics Submission

so that K~ (u) becomes diagonal under this transformation

R(u) = GK_(u)G! = (Kﬂo(”) k;f(u)) _ (1 +(;‘a— ) _Oua_). (104)

Applying the same gauge transformation to the double-row monodromy matrix yields

W(u)=GUG = (:Z((Z)) g((;‘))) (105)
Define the following global vectors
|0) = lwo)ia, b, f.1—tab_f} (Dol ={Wolia, b,.f,}>{ab_f }- (106)
The state (&q| in (106) satisfies
(o] Bw) =0, (@l (u) =K w-_(u+n)w,(u+n){dl. (107)
The aforementioned equation (107) together with two other identities
(@0l € (0P, .- Pn) =0, k& {p1,...,Pn}, (108)
)= (;T__—Z{Ti)é'ﬁﬁ(u)+(%—;T__)Sﬁf(u)+ﬂi(u), (109)
allow us to get
(@olp1s- -+ P> Prs1) = (@0l (6 1)IP1s -, D)
= (@0l (0n11)IP1, -+, )
= K110y, W4 (0p,,, + mMwW_(6,,,, +n)(@olp1s .-, Pn)- (110)

Furthermore, we can derive the expression of the overlap (@&ylpy,...,p,) from the recursive
relation (110)

n
<('50|p1> oo ’pn> = l_[I_<1_1(9Pk)W+(9Pk + U)W—(ka + 77)(0_)0|600) (111)
k=1
Bethe state The left Bethe state can be parameterized as
M
(Arseos Al = (ol [ [0, (112)
=1

where {A;,..., Ay} are the Bethe roots satisfying BAEs (70), the generator % (u) and the ref-
erence state (&| are defined in Egs. (76) and (106) respectively.

The proof of our Bethe state is straightforward. A combination of Egs. (93), (94), and
(111) yields

. Q(6, —n)
(A’lﬁ ceey A'N |p1: e ’pn> = l_[(]- + Qpla_)W_(Qpl + n)W+(9pl + n)%
=1 P1
M p—
x [ TRy Qudw_udw 4 (A +m){oleoo). (113)
k=1

The factor on the second line of Eq. (113) is a normalization factor. By comparing Egs. (102)
and (113), we can conclude that (14,...,Ay| is an eigenstate of the transfer matrix.
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384 Analogously, the right Bethe state can also be constructed
M
A =] [ B )lG0). (114)
=1
385 It should be remarked that the generation operators, the Bethe roots and the reference
3s6 states in Egs. (112) and Egs. (114) all have well-defined homogeneous limits of {Gj — 0}.
387 Under the condition a_f, = f_a,, the state |@,) reduces to |w,), and the resulting Bethe

sss  state (114) coincides with the one given in Ref. [23]. In this case, we can use the gauge matrix
380 G to simultaneously diagonalize K*(u) and triangularize K~ (u) (see Eq. (77)), making the
300 conventional algebraic Bethe ansatz applicable.

10 5 Conclusion

302 The exact solution of the supersymmetric gl(1]|1) integrable models with both periodic and
303 generic non-diagonal open boundary conditions is presented in this paper. Using the fusion
304 procedure, we construct a hierarchy of fused transfer matrices, from which a closed set of
305 operator identities is derived. These identities yield the energy spectrum of the model, includ-
306 ing the T-Q relation and the corresponding Bethe ansatz equations. With the exact spectrum
397 obtained, we then construct the corresponding Bethe states, notably for the open chain with
398 generic non-diagonal boundary conditions.

399 The method developed in this work can be applied to other quantum integrable models
a0 associated with Lie superalgebra. In particular, it extends straightforwardly to the U,(gl(1]1))
401 quantum algebra, for which the R-matrix and the reflection K—matrices retain the same graded
402  structure as those of the undeformed gl(1|1) superalgebra [48]. In a parallel investigation of
a03 the quantum integrable model associated with the Lie superalgebra gl(2|2), we have succeeded
a04 in establishing virtually all of the operator identities. For higher rank cases, the fusion proce-
a0s dure involves additional levels and branching structures.
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as A The second fusion branch

a6 Let us introduce the second fusion branch of R-matrix in Section 2.2.2 detailedly. When
417 u = —n), the R-matrix in (1) becomes

R 5(—n) =—20P{;) = —2n(1—P{}), (A1)
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a1s where P{_Z) is a 2-dimensional supersymmetric projector with the following form

2

P =)Wl PG =P, (A.2)
i=1

i 1 i

|¢1)=E(|1,2>—|2,1)), [¥a) =12,2). (A.3)

419 The corresponding parities are
P(lﬁl) =1, P(‘/jz) =0.

420 The operator Pl(,_z) projects the 4-dimensional product space V; ®; V, into a new 2-dimensional
a1 space spanned by {|v;)]i = 1,2}.

422 By fusing the R-matrix with this projector P
423 defined in (24), which is

(=)

12> We can obtain the specific form of Ry, ,,(u)

u+ %n
1
u—sn —+v/2n
Rz, = 2 A.
1,n(u) _ﬁn u+%n ( 4)
u— %n
424 At the point of u = %n, the fused R-matrix Ry, »(u) in (24) degenerates into
Ri(5m) = 37779%2, (A.5)
425 where 7352 is a 2-dimensional supersymmetric projector with the form of
2
P =D 1) (il (A.6)
i=1
226 and the corresponding vectors are
- - - 1 - .
|p1) =1p1) & 11), [¢2) = ﬁ(ﬁh/)z) ®; [1) — 1) & 12)). (A.7)
a7 Here, the |3;) and |v,) are given in Eq. (A.3). The parities read
P(<I§1) =1, P(¢;2) =0.
428 Similarly, we can get the specific form of the Ry, ,(u) given in Eq. (27)
u+2n
) B u—n —+3n
Ry (W) = "3 uen (A8)
u—2n

420 From Egs. (22) and (A.8), we can easily see that Ri,z(u) given by (20) and Ri,’z(u) given by
430 (27) are the same, i.e., Eq. (29).
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B Grassmann Numbers

Grassmann numbers are the anticommuting algebraic variables that play a central role in su-
persymmetric models and integrable systems with Z, grading. The Grassmann algebra CGy; is
generated by N generators &;, &,, - -, £y, where the generators satisfy the nilpotency condition

2
£ =0, (B.1)
and the anticommutation relations

C Proof of Eq. (62)

We know that the reflecting monodromy matrix T(u) in Eq. (51) and its fused analogues
satisfy the graded RTT relations

Ry p(u— V)Ta(u)f"ﬁ (v)= Tﬁ (V)Ta(u)Ra,ﬁ (u—v), (C.D

where the indices a, § may label either the original spaces or the projected spaces.
Because the (fused) R-matrices collapse to projectors at certain special values of the spec-
tral parameter, the (fused) monodromy matrices T,(u) satisfy the following relations

N

POT W Tyu+ )P =] [+ 6 +m)T5+3n),
l=1

P Ty u—n)P{) = H(uw )Ty (u—3n),
1=1

N (C.2)
PO Ty + Py —3mpS) =] [+ )ty
=1

PO Tyu—m) T+ 3Pl = l_[(u + 6T (W),
=1

where the projectors p) p) P( ) and P are given by (12),(18), (A.2) and (A.6), respec-

127727 2,1
tively.
We define the degenerate point of the R-matrix as &, at which we have R, 5(5) = P(%Sa,ﬁ,
where Pffg is a d-dimensional projector and S, g is a constant matrix. Employing the property

of the projector that Po(td/;Ra’ p(8) =R, 3(0), the RTT relations (7) and (32) at the degenerate
point give

To()Tp(u+ )P = PEOT, () Tg(u + 5)Py . (C.3)
Similarly, from the graded RTT relations (C.l) we have
Ty (W) Tp(u + n)p(d) p(d) T, (W) Tp(u + n)pédﬁ?, (C.4)

Using the properties of projector, one can derive the following identities from Eq. (C.2)
11(=0))T5(=0; +m) = P{Y) 11 (=6, To(—6; +m),
11(~0))2(~6; —m) = P{; 11 (=6))T5(~6; =),

(~60,)T4(—0; — ) = B T,(—0) (=0, — $), (2

TZ(—ej)Ti,(—eﬁzn)—Pgﬁ’,TZ( 0,)15.(—6; + 3n),
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450 wWhere j=1,...,N.
451 We can combine Eq. (36) for the monodromy matrices T,(u) and Eq. (C.5) for the reflect-
ss2  ing monodromy matrices T, (1) and finally get the following equations

t(wt(u+mn)=[p(2u+ n)]_lstrl,z {K;(U + MRy o(—2u— n)Kf(u)Tl(u)Tz(u +n)
x Ky )Ry 1 (2u + K, (u+n) Ty (w) To(u +n)},

(C.6)

453

W u—3net(u+mn) = [p3(2u + 3m)] sty o {K; (u— 31)Ry 1 (—2u— 37K (u+1n) -
.7
x Ty(u+n)Ty(u— 3Ky (u+nRi ,2u+ 3mK; (w— 3 Tau+n) Ty — 3},

(B u+ 3m)e(u—mn) = [pa(2u— 3m]  stry H{KS (u+ 31m)Ry 1/(—2u + 51)K5 (u—1n)

454

1 1 1\ A 1 (C.8)

X To(u—n) Ty (u+ 3mK; (u—nRy 5(2u— 5mKL (u+ 3m) To(u—n) Ty (u+ 3m)}

455 Substituting Eq. (38), (54)-(55) and (C.3)-(C.5) into Eq. (C.6) and lettingu = :I:QJ-, :I:Gj—n
as6  respectively, we get the first two lines of Eq. (62); substituting Eq. (38), (54)-(55) and (C.3)-
a5z (C.5) into Eq. (C.7) and letting u = +6; —n, we get the third line of Eq. (62); substituting Eq.
a5 (38), (54)-(55) and (C.3)-(C.5) into Eq. (C.8) and letting u = iGj + 1, we get the fourth line
450 of Eq. (62).

w0 D Commutation relations

461 Some useful commutation relations used in Section 4 are

(u—v+n)u+v)

C(u)d(v)= O — AOKAM)
Ui ~ 5 u+v .o s
- m{@(u)cg(v) +— dWEm)}, (D.1)
N 5oy w—v=—m)u+v) ; | -
G = (= S EWG)
+ L<{<67(1/)=;z£7(u) + utrv ‘é(v)@(u)}, (D.2)
u+v—mn u—v
WA V)= INF W)+ ——{ B)EW) ~ BWEW)}, (D.3)
u+v+n
FWI() = G0 — ——{ €M) BW) — CWBM}, (D.4)
u+v—n
~ SN NG n(u+v) N 50\ ~
G (v) = TP~ e {BEwW) - BwEM)}, (D.5)
B BW) = ——— G() B (w), (D.6)
u—v+n
G € =—“ 1 G()E ). (D.7)
u—v—n
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