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Abstract

In this work we obtain the exact solution of quantum integrable system associated with
the Lie superalgebra gl(1|1), both for periodic and for generic open boundary condi-
tions. By means of the fusion technique we derive a closed set of operator identities
among the fused transfer matrices. These identities allow us to determine the complete
energy spectrum and the corresponding Bethe ansatz equations of the model. Our ap-
proach furnishes a systematic framework for studying the spectra of quantum integrable
models based on Lie superalgebras, in particular when the U(1) symmetry is broken. The
derivation of the Bethe states from the exact spectrum is also addressed.
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1 Introduction33

Quantum integrable models [1–3] possess significant applications in quantum field theory,34

condensed matter physics and statistical physics, because the exact solutions of these mod-35

els are crucial for understanding various strongly correlated effects and many-body physical36

mechanism.37

Quantum integrable models associated with Lie superalgebras constitute a broad subclass38

of integrable systems [4]. Typical examples include the SU(m|n) supersymmetric spin chains39

[5, 6], the Hubbard model [7–9], and the supersymmetric t-J model [10–12]. These models40

have applications in a variety of fields, such as disordered electronic systems [13], critical41

phenomena in statistical mechanics [14], and the AdS/CFT correspondence in string theory42

[15].43

The eigenvalue problem for this class of models can be tackled by either the coordinate44

Bethe ansatz (CBA) or the (nested) algebraic Bethe ansatz (ABA) [16–20]. These approaches45

hinge on the existence of a reference (or pseudo-vacuum) state. In the presence of a U(1)46

symmetry, the reference state is readily constructed. However, when the U(1) charge is ab-47

sent, the construction of the reference state becomes highly non-trivial and often impossible,48

severely limiting the applicability of the conventional Bethe ansatz techniques.49

It has been recognized that a reference state is not indispensable for solving the spectral50

problem. The off-diagonal Bethe ansatz (ODBA) [21] bypasses this requirement by exploiting51

operator identities satisfied by the transfer matrix, from which Baxter’s T -Q relation can be52

constructed directly. Nevertheless, extending the ODBA to models based on Lie superalgebras53

encounters several technical obstacles. A prominent example is the Hubbard model: in order to54

obtain the full set of Bethe ansatz equations one still has to perform a conventional coordinate55

Bethe ansatz or algebraic Bethe ansatz at the first nested level [18, 22], which re-introduces56
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the need for a suitable reference state.57

Although significant progress has been made, solving integrable models associated with Lie58

superalgebras without invoking any reference state remains an open problem. In this work59

we address this challenge and propose a reference-state-free framework for these quantum60

integrable systems.61

In the present study, we focus on gl(1|1), one of the most elementary Lie superalgebras.62

In Ref. [23] Grabowski and Frahm derived the spectrum of the gl(1|1) superspin chain for63

diagonal and quasi-diagonal boundary conditions, imposing certain constraints. Their analysis64

relied on the graded algebraic Bethe ansatz method, i.e., eigenstates were constructed by65

acting with creation operators on a properly chosen reference state. For generic non-diagonal66

boundary conditions, however, the construction of such a reference state becomes exceedingly67

difficult, rendering the conventional algebraic Bethe ansatz method inapplicable.68

The purpose of the present paper is to extend the rigorous fusion techniques introduced69

in Refs. [24–29] to the graded case. Unlike the standard fusion procedure, we perform fusion70

along two branches. This yields a closed set of operator identities among the fused transfer71

matrices, from which the eigenvalue problem of the gl(1|1) quantum integrable model are72

solved exactly. With the exact spectrum in hand, we employ the separation of variables (SoV)73

approach [30–32] to construct the Bethe state [21,33,34].74

The paper is organized as follows. In Section 2, we study the integrable model associated75

with gl(1|1) under periodic boundary condition. The fusion procedure is employed to build76

the fused transfer matrices. We obtain a closed set of operator identities that determine their77

eigenvalues, which are parameterized by the well-known T -Q relation. In Section 3, we extend78

the fusion technique to the open boundary case. The eigenvalue problem of the system is79

solved through the operator identities regarding the fused transfer matrices. Section 4 presents80

the construction procedure for the Bethe states of the open gl(1|1) integrable model. We81

provide a conclusion in Section 582

2 gl(1|1) integrable model with periodic boundary83

2.1 Integrability84

Let V be a 2-dimensional Z2-graded linear space with a basis {|i〉|i = 1,2}, where the Grass-85

mann parities are p(1) = 0 and p(2) = 1, which endows the 2-dimensional representation of86

the exceptional gl(1|1) Lie superalgebra. The R-matrix R(u) ∈ End(V1 ⊗s V2) of the supersym-87

metric gl(1|1) model is [23,35]88

R1,2(u) =







u+η
u η

η u
u−η






, (1)

where u is the spectral parameter and η is the crossing parameter. Here and below we adopt89

the standard notations: for any matrix A∈ End(V ⊗s V ), Ai, j is a super embedding operator of90

A in the graded tensor space, which acts as identity on the spaces except for the i-th and j-th91

ones.92

The R-matrix (1) possesses the following properties:93

regularity : R1,2(0) = ηP1,2, (2)

unitarity : R1,2(u)R2,1(−u) = ρ1(u)× I, ρ1(u) = −(u−η)(u+η), (3)

crossing-unitarity : Rst1
1,2(−u)Rst1

2,1(u) = ρ2(u)× I, ρ2(u) = −u2, (4)
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where P1,2 is the super permutation operator. Here, st i is the partial super transposition94

(Ast i
i, j = A j,i(−1)p(i)[p(i)+p( j)]) [36] and the super tensor product of two operators satisfies the95

rule (A⊗s B)ikjl = (−1)[p(i)+p( j)]p(k)Ai
jB

k
l . The R-matrix (1) satisfies the graded Yang-Baxter96

equation (GYBE) [35,37,38]97

R1,2(u− v)R1,3(u)R2,3(v) = R2,3(v)R1,3(u)R1,2(u− v). (5)

We can construct the monodromy matrix T (u) via the R-matrix (1) as98

T0(u) = R0,1(u− θ1)R0,2(u− θ2) · · ·R0,N (u− θN ) =

�

A(u) B(u)
C(u) D(u)

�

. (6)

Here, {θ j| j = 1, . . . , N} are inhomogeneous parameters, the subscript 0 denotes the auxiliary99

space V0, and the tensor product V⊗sN represents the physical (quantum) space, where N is100

the number of lattice sites.101

The monodromy matrix T (u) satisfies the graded RTT relation102

R1,2(u− v)T1(u)T2(v) = T2(v)T1(u)R1,2(u− v), (7)

and can be expressed as a 2 × 2 matrix in the auxiliary space, whose entries are operators103

acting on V⊗sN .104

Under periodic boundary condition, the transfer matrix of the system is defined as the105

super trace of the monodromy matrix in the auxiliary space106

tp(u) = str0{T0(u)}=
2
∑

α=1

(−1)p(α)[T0(u)]
α
α. (8)

With the help of the RTT relation (7), one can prove that the transfer matrices with different107

spectral parameters commute with each other, i.e., [tp(u), tp(v)] = 0, which guarantees the108

integrability of the system.109

The Hamiltonian is given by the logarithmic derivative of the transfer matrix110

Hp = η
∂ ln tp(u)

∂ u

�

�

�

�

u=0,{θ j=0}
=

N
∑

j=1

Pj, j+1

=
N
∑

j=1

�

E11
j E11

j+1 + E12
j E21

j+1 + E21
j E12

j+1 − E22
j E22

j+1

�

,

(9)

where {E i j
k } are generators of the superalgebra gl(1|1), which act on the k-th quantum space,111

and the periodic boundary implies that E i j
N+1 ≡ E i j

1 . The generator E i j
k can be expressed in112

terms of the standard fermionic representation113

E11
k = 1− nk, E12

k = ck, E21
k = c†

k, E22
k = nk,

where c j , c†
j and nk denote the fermionic annihilation, creation, and particle number operators,114

respectively. Therefore, the Hamiltonian (9) can be rewritten as [23]115

Hp =
N
∑

j=1

H j, j+1 =
N
∑

j=1

�

c†
j c j+1 + c†

j+1c j − n j − n j+1

�

+ N . (10)

The Hamiltonian in Eq. (10) describes a model of free fermions, which can be diagonalized116

directly. In this paper, we solve this model in the framework of Bethe ansatz.117
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2.2 Fusion of the R-matrix118

Fusion is a powerful and standard method for solving integrable models, particularly for those119

associated with high-rank Lie algebras. The R-matrix in integrable models degenerates into120

projection operators at some special points of spectral parameter u, which makes it possible to121

carry out the fused R-matrices and transfer matrices [24–29]. Within the conventional fusion122

approach, the procedure follows a single branch, as illustrated by the sequence123

t(u)→ t(1)(u)→ t(2)(u) · · · → t(k)(u).

The fusion procedure is considered closed when the highest-level fused transfer matrix t(k)(u)124

either becomes directly solvable [39, 40] or coincides with a transfer matrix of lower level125

[41, 42]. In many ordinary (non-graded) models this closure occurs after a finite number of126

fusion steps.127

For the Lie superalgebra gl(1|1) the situation is qualitatively different. The fusion of the128

R-matrix along a single branch does not yield a closed form; instead, it requires a procedure129

carried out along two branches, as detailed in Sections 2.2.1 and 2.2.2.130

2.2.1 First fusion branch131

First-level fusion At the point u = η, the R-matrix (1) degenerates into a 2-dimensional132

supersymmetric projection operator P(+)1,2133

R1,2(η) = 2ηP(+)1,2 . (11)

Operator P(+)1,2 is defined by134

P(+)1,2 =
2
∑

i=1

|ψi〉〈ψi|, P(+)1,2 = P(+)2,1 , (12)

|ψ1〉= |1,1〉, |ψ2〉=
1
p

2
(|1, 2〉+ |2, 1〉), (13)

with the parities135

p(ψ1) = 0, p(ψ2) = 1,

and projects the original 4-dimensional tensor space V1 ⊗s V2 into a new 2-dimensional space136

spanned by |ψ1〉 and |ψ2〉. The projectors P(+)1,2 and P(+)2,1 can be obtained by exchanging two137

spaces V1 and V2, i.e., |kl〉 → |lk〉.138

Using the projector P(+)2,1 , we can construct the fused R-matrices139

R〈1,2〉,3(u) = (u+
1
2η)
−1P(+)2,1 R1,3(u−

1
2η)R2,3(u+

1
2η)P

(+)
2,1 ≡ R1̄,3(u), (14)

R3,〈1,2〉(u) = (u+
1
2η)
−1P(+)1,2 R3,1(u−

1
2η)R3,2(u+

1
2η)P

(+)
1,2 ≡ R3,1̄(u), (15)

where we denote the projected space by V1̄ = V〈1,2〉 = V〈2,1〉.140

The fused R-matrix R1̄,n(u) given by (14) is a 4×4 matrix acting on the tensor space V1̄⊗sVn.141

Its explicit form is142

R1̄,n(u) =











u+ 3
2η

u− 1
2η

p
2η

p
2η u+ 1

2η

u− 3
2η











. (16)
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Second-level fusion At the point of u = −3
2η, the fused R-matrix defined in R1̄,2(u) (14)143

degenerates into another projector144

R1̄,2(−
3
2η) = −3ηP(−)

1̄,2
. (17)

Here, P(−)
1̄,2

is a 2-dimensional supersymmetric projector145

P(−)
1̄,2
=

2
∑

i=1

|φi〉〈φi|, (18)

where146

|φ1〉=
1
p

3
(
p

2|ψ1〉 ⊗s |2〉 − |ψ2〉 ⊗s |1〉), |φ2〉= |ψ2〉 ⊗s |2〉. (19)

The basis vectors |φ1〉 and |φ2〉 have parities147

p(φ1) = 1, p(φ2) = 0.

We see that the operator P(−)
1̄,2

projects the original 4-dimensional tensor space V1̄ ⊗s V2 into a148

new 2-dimensional space spanned by |φ1〉 and |φ2〉.149

Performing the fusion procedure on R1̄,n(u) with the projector P(−)
1̄,2

yields the following150

second-level fused R-matrices151

R〈1̄,2〉,3(u) = u−1P(−)
1̄,2

R2,3(u+η)R1̄,3(u−
1
2η)P

(−)
1̄,2
≡ R1̃,3(u), (20)

R3,〈1̄,2〉(u) = u−1P(−)
2,1̄

R3,2(u+η)R3,1̄(u−
1
2η)P

(−)
2,1̄
≡ R3,1̃(u). (21)

Here, the projected space is denoted by V1̃ = V〈1̄,2〉 = V〈2,1̄〉. The fused R-matrix R1̃,n(u) is a152

4× 4 matrix defined in the tensor space V1̃ ⊗s Vn and reads153

R1̃,n(u) =









u+ 2η
u−η −

p
3η

−
p

3η u+η
u− 2η









. (22)

2.2.2 Second fusion branch154

It should be noted that the R-matrix of the gl(1|1) algebra admits another distinct fusion branch155

beyond the one discussed above. Given the similarity of the procedure, we only present the156

final results and detail the second fusion branch in Appendix A.157

At the point u= −η, the R-matrix (1) is proportional to a projector P(−)1,2158

R1,2(−η) = −2ηP(−)1,2 . (23)

By performing the fusion with the projector P(−)2,1 , we obtain the first-level fused R-matrices159

R〈1,2〉′,3(u) = (u−
1
2η)
−1P(−)2,1 R1,3(u+

1
2η)R2,3(u−

1
2η)P

(−)
2,1 ≡ R1̄′,3(u), (24)

R3,〈1,2〉′(u) = (u−
1
2η)
−1P(−)1,2 R3,1(u+

1
2η)R3,2(u−

1
2η)P

(−)
1,2 ≡ R3,1̄′(u), (25)

where the projected space is denoted as V1̄′ = V〈1,2〉′ = V〈2,1〉′ .160

6
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R1,2(u)

R1̄,2(u)

P(+)2,1

R1̄′,2(u)

P(−)2,1

R1̃,2(u)

P(−)
1̄,2

P(+)
1̄′,2

R1̃′,2(u)=

Figure 1: The fusion procedure of R-matrix.

At the point of u = 3
2η, the fused matrix R1̄′,2(u) given by Eq. (24) degenerates into a161

projector P(+)
1̄′,2

162

R1̄′,2(
3
2η) = 3ηP(+)

1̄′,2
. (26)

With the help of P(+)
1̄′,2

, we obtain the following second-level fused R-matrices163

R〈1̄′,2〉,3(u) = u−1P(+)
1̄′,2

R2,3(u−η)R1̄′,3(u+
1
2η)P

(+)
1̄′,2
≡ R1̃′,3(u), (27)

R3,〈1̄′,2〉(u) = u−1P(+)
2,1̄′

R3,2(u−η)R3,1̄′(u+
1
2η)P

(+)
2,1̄′
≡ R3,1̃′(u), (28)

where we denote the projected space as V1̃′ = V〈1̄′,2〉 = V〈2,1̄′〉.164

2.2.3 Closure of the fusion165

By a direct analysis, we find that R1̃,2(u) given by (20) and R1̃′,2(u) given by (27) are identical166

R1̃,2(u) = R1̃′,2(u). (29)

We perform fusion along two branches and connect the resulting fused R-matrices at the167

second fusion level. This connection thereby closes the fusion procedure, a mechanism quite168

different from the standard one. The fusion procedure of the R-matrix is briefly illustrated in169

Fig. 1.170

2.3 Fused transfer matrices171

The fused R-matrices satisfy the following graded Yang-Baxter equations172

Rα,β(u− v)Rα,γ(u)Rβ ,γ(v) = Rβ ,γ(v)Rα,γ(u)Rα,β(u− v), (30)

where the indices α,β ,γ may label either the original spaces or the projected spaces.173

Using the fused R-matrices defined in (14), (20), (24), and (27), we define the fused174

monodromy matrices175

Tα(u) = Rα,1(u− θ1)Rα,2(u− θ2) · · ·Rα,N (u− θN ), (31)

7
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where the subscript α ∈ {0̄, 0̃, 0̄′, 0̃′} refers to the fused auxiliary spaces. Here, 0̄ and 0̃ corre-176

spond to the first-level and second-level of the first fusion branch respectively; whereas 0̄′ and177

0̃′ correspond to the first-level and second-level of the second fusion branch respectively. All178

the fused monodromy matrices in Eq. (31) satisfy the graded RTT relations179

Rα,β(u− v) Tα(u) Tβ(v) = Tβ(v) Tα(u)Rα,β(u− v). (32)

The super traces of the fused monodromy matrices in the auxiliary spaces give the corre-180

sponding fused transfer matrices181

t(1)p (u) = str0̄{T0̄(u)}, t(2)p (u) = str0̄′{T0̄′(u)},

t̃(1)p (u) = str0̃{T0̃(u)}, t̃(2)p (u) = str0̃′{T0̃′(u)}.
(33)

From Eq. (29), we conclude that the fused transfer matrices t̃(1)p (u) and t̃(2)p (u) are identical,182

we therefore denote them collectively as t̃p(u):183

t̃p(u) = t̃(1)p (u) = t̃(2)p (u). (34)

The graded RTT relations in (32) imply that the transfer matrices tp(u), t(1)p (u), t(2)p (u) and184

t̃p(u) commute with each other, namely,185

[tp(u), t(1)p (v)] = [tp(u), t(2)p (v)] = [t
(1)
p (u), t(2)p (v)] = 0,

[ t̃p(u), tp(v)] = [ t̃p(u), t(1)p (v)] = [ t̃p(u), t(2)p (v)] = 0.
(35)

2.4 Operator identities186

The definitions of the fused R-matrices in (14), (20), (24), and (27) directly yield the following187

relations for the fused monodromy matrices188

P(+)2,1 T1(u)T2(u+η)P
(+)
2,1 = a(u+η)T1̄(u+

1
2η),

P(−)2,1 T1(u)T2(u−η)P
(−)
2,1 = a(u−η)T1̄′(u−

1
2η),

P(−)
1̄,2

T2(u+η)T1̄(u−
1
2η)P

(−)
1̄,2
= a(u)T1̃(u),

P(+)
1̄′,2

T2(u−η)T1̄′(u+
1
2η)P

(+)
1̄′,2
= a(u)T1̃′(u),

(36)

where189

a(u) =
N
∏

j=1

(u− θ j). (37)

From the graded RTT relations (32) at specific points, together with the properties of the190

projectors, we derive191

T1(θ j)T2(θ j +η) = P(+)2,1 T1(θ j)T2(θ j +η),

T1(θ j)T2(θ j −η) = P(−)2,1 T1(θ j)T2(θ j −η),

T2(θ j)T1̄(θ j −
3
2η) = P

(−)
1̄,2

T2(θ j)T1̄(θ j −
3
2η),

T2(θ j)T1̄′(θ j +
3
2η) = P(+)

1̄′,2
T2(θ j)T1̄′(θ j +

3
2η),

(38)

8
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where j = 1, . . . , N . Taking the super trace of Eq. (36) over the auxiliary space and using Eq.192

(38), we obtain the operator product identities193

tp(θ j)tp(θ j +η) = a(θ j +η)t
(1)
p (θ j +

1
2η),

tp(θ j −η)tp(θ j) = a(θ j −η)t(2)p (θ j −
1
2η),

t(1)p (θ j −
3
2η)tp(θ j) = a(θ j −η) t̃p(θ j −η),

t(2)p (θ j +
3
2η)tp(θ j) = a(θ j +η) t̃p(θ j +η),

(39)

with j = 1, . . . , N .194

Figure 2 shows a schematic of the transfer matrix fusion. Unlike the conventional ap-195

proach, the procedure follows two fusion branches:196

(1) : tp(u)→ t(1)p (u)→ t̃(1)p (u), (2) : tp(u)→ t(2)p (u)→ t̃(2)p (u). (40)

The fusion procedure is closed by the identity t̃(1)p (u) = t̃(2)p (u). This suggests a novel strat-197

egy for solving integrable models associated with Lie superalgebra: building multiple fusion198

branches and connecting them to achieve a closed system.199

tp(u1) tp(u2)×

× ×t(1)p (u3) t(2)p (u4)tp(u5) tp(u6)

t̃p(u7)

Figure 2: Schematic diagram of the transfer matrix fusion procedure. The blue and
red lines represent the fist and second fusion branches respectively. The spectral
parameter u j must be set to a specific value at each step, as shown in Eq. (39).

2.5 T -Q relation200

Let Λp(u), Λ(1)p (u), Λ
(2)
p (u) and Λ̃p(u) denote the eigenvalues of the transfer matrices tp(u),201

t(1)p (u), t(2)p (u) and t̃p(u), respectively. As the fused transfer matrices mutually commute, the202

operator product identities in (39) directly lead to the following functional relations203

Λp(θ j)Λp(θ j +η) = a(θ j +η)Λ
(1)
p (θ j +

1
2η),

Λp(θ j −η)Λp(θ j) = a(θ j −η)Λ(2)p (θ j −
1
2η),

Λ(1)p (θ j −
3
2η)Λp(θ j) = a(θ j −η)Λ̃p(θ j −η),

Λ(2)p (θ j +
3
2η)Λp(θ j) = a(θ j +η)Λ̃p(θ j +η),

(41)

9
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where j = 1, . . . , N . Since Λp(u), Λ(1)p (u), Λ
(2)
p (u), and Λ̃p(u) are degree-(N − 1) polynomials204

in u, the 4N constraints in Eq. (41) completely determine these functions.205

We can parameterize the eigenvalues Λp(u), Λ(1)p (u), Λ
(2)
p (u) and Λ̃p(u) in terms of the206

following T -Q relations207

Λp(u) = [a(u)− a(u−η)]
Q(u+η)

Q(u)
,

Λ(1)p (u) = [a(u−
1
2η)− a(u− 3

2η)]
Q(u+ 3

2η)

Q(u− 1
2η)

,

Λ(2)p (u) = [a(u−
3
2η)− a(u− 1

2η)]
Q(u+ 3

2η)

Q(u− 1
2η)

,

Λ̃p(u) = [a(u− 2η)− a(u−η)]
Q(u+ 2η)
Q(u−η)

,

(42)

where208

Q(u) =
M
∏

k=1

(u−µk), (43)

and M is the number of Bethe roots {µk} and ranges from 0 to N . The analyticity of Λp(u),209

Λ(1)p (u), Λ
(2)
p (u) and Λ̃p(u) requires that the Bethe roots {µk} must satisfy the Bethe ansatz210

equations (BAEs)211
N
∏

j=1

µk − θ j −η
µk − θ j

= 1, k = 1, . . . , M . (44)

The eigenvalue of the Hamiltonian (10) can be given by the Bethe roots as follows212

Ep = η
∂ lnΛp(u)

∂ u

�

�

�

�

u=0,{θ j=0}
=

M
∑

k=1

η2

(η−µk)µk
− N . (45)

Numerical results for the N = 3 and N = 4 cases are presented in Tables 1 and 2 respec-213

tively. It can be seen that the eigenvalue Ep derived from the Bethe roots coincides with that214

from the direct diagonalization of the Hamiltonian (10).215

Table 1: Numeric results of Bethe roots {µk} and eigenvalues of the Hamiltonian
(10). Here, N = 3, η= 1 and {θ j = 0}.

µ1 µ2 µ3 Ep

– – – −3

∞ – – −3
3−i
p

3
6 – – 0

3+i
p

3
6 – – 0

3−i
p

3
6 ∞ – 0

3+i
p

3
6 ∞ – 0

3+i
p

3
6

3−i
p

3
6 – 3

3+i
p

3
6

3−i
p

3
6 ∞ 3

10
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Table 2: Numeric results of Bethe roots {µk} and eigenvalues of the Hamiltonian
(10). Here, N = 4, η= 1 and {θ j = 0}.

.

µ1 µ2 µ3 µ4 Ep

– – – – −4

∞ – – – −4
1+i
2 – – – −2

1−i
2 – – – −2
1
2 – – – 0

∞ 1+i
2 – – −2

∞ 1−i
2 – – −2

∞ 1
2 – – 0

µ1 µ2 µ3 µ4 Ep

1+i
2

1−i
2 – – 0

1+i
2

1
2 – – 2

1−i
2

1
2 – – 2

∞ 1+i
2

1−i
2 – 0

∞ 1−i
2

1
2 – 2

∞ 1+i
2

1
2 – 2

1+i
2

1−i
2

1
2 – 4

∞ 1+i
2

1−i
2

1
2 4

Under periodic boundary conditions, the gl(1|1) integrable model possesses U(1) symme-216

try, and common eigenstates of the transfer matrix and the Hamiltonian can be constructed217

as [3]218

|µ1, . . . ,µM 〉=
M
∏

k=1

B(µ1)|0〉1 ⊗s |0〉2 · · · ⊗s |0〉N , (46)

where {µ1, . . . ,µM} satisfy BAEs (44) and |0〉 is the vacuum of the fermion.219

3 gl(1|1) integrable model with open boundary220

3.1 Integrability221

In this section, we consider the gl(1|1) integrable model under open boundary condition. Let222

us introduce the K-matrices K−(u) and K+(u). The matrix K−(u) satisfies the graded reflection223

equation (RE) [43,44]224

R1,2(u− v)K−1 (u)R2,1(u+ v)K−2 (v) = K−2 (v)R1,2(u+ v)K−1 (u)R2,1(u− v), (47)

while K+(u) satisfies the graded dual reflection equation225

R1,2(v − u)K+1 (u)R2,1(−u− v)K+2 (v) = K+2 (v)R1,2(−u− v)K+1 (u)R2,1(v − u). (48)

The generic solutions for the K±(u) are [23]226

K±(u) = I+ u





a± b±E

f±E ♯ −a±



 , (49)

where a±, b± and f± are complex boundary parameters, E is the sole generator of complex227

Grassmann algebra CG1, and E ♯ is the adjoint of E , i.e., E ♯ = −iE . Further details about228

Grassmann numbers E and E ♯ are provided in Appendix B.229

11
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We should note that for the supersymmetric gl(1|1)model, the K-matrices must be diagonal230

if they do not possess an additional internal space, i.e., all the elements are c-numbers. This231

implies that in a conventional Boson-Fermion mixture, bosons cannot transform into fermions232

upon boundary reflection. In contrast, the introduction of Grassmann numbers in Eq. (49)233

allows for non-vanishing off-diagonal matrix elements.234

We notice that [K−(u), K+(v)] ̸= 0, which means that they cannot be diagonalized simul-235

taneously. In this case, it is quite hard to obtain the eigenvalues via the conventional Bethe236

ansatz methods due to the lack of a proper reference state.237

The transfer matrix t(u) is constructed as238

t(u) = str0{K+0 (u)T0(u)K
−
0 (u)T̂0(u)}, (50)

where T̂ (u) is the reflecting monodromy matrix239

T̂0(u) = RN ,0(u+ θN ) · · ·R2,0(u+ θ2)R1,0(u+ θ1). (51)

By using the graded Yang-Baxter relations (5) and reflection equations (47)-(48) repeat-240

edly, we can prove that the transfer matrices with different spectral parameters commute with241

each other. Therefore, t(u) serves as the generating function of conserved quantities. The242

Hamiltonian is generated from the second-order derivative of the transfer matrix [23]243

H =
1

8ηN (1+ a+η)
∂ 2 t(u)
∂ u2

�

�

�

�

u=0,{θ j=0}

=
N−1
∑

j=1

H j, j+1 +
ηN−1

2

�

a− − 2a−n1 + b−Ec1 + f−E ♯c
†
1

�

+
ηN−1

2(1+ a+η)

�

a+ − 2a+nN + b+EcN + f+E ♯c
†
N

�

.

(52)

The Hermiticity of Hamiltonian (52) requires b± = f ∗± and a± ∈ R.244

3.2 Fusion procedure245

The fusion approach introduced in Section 2 is also applicable to open systems. In Section 2.2,246

we have demonstrated the fusion of the R-matrices and subsequently applied it to construct247

the fused monodromy matrices given by Eq. (31).248

The fused analogues for the reflection monodromy matrix T̂ (u) are constructed in the same249

way, specifically250

T̂α(u) = RN ,α(u+ θN ) · · ·R2,α(u+ θ2)R1,α(u+ θ1), α ∈ {0̄, 0̄′, 0̃, 0̃′}. (53)

3.2.1 Fused K-matrices251

For open systems, we should also perform the fusion procedure of the K-matrices using the252

same projectors as those used for the R-matrices, which are introduced in Section 2.2.253

The first-level fused K-matrices are254

K−
1̄
(u) =
�

[1+ (u− 1
2η)a−](u+

1
2η)
�−1

P(+)2,1 K−1 (u−
1
2η)R2,1(2u)K−2 (u+

1
2η)P

(+)
1,2 ,

K+
1̄
(u) =
�

[1+ (u+ 1
2η)a+](u−

1
2η)
�−1

P(+)1,2 K+2 (u+
1
2η)R1,2(−2u)K+1 (u−

1
2η)P

(+)
2,1 ,

K−
1̄′
(u) =
�

[1− (u+ 1
2η)a−](u−

1
2η)
�−1

P(−)2,1 K−1 (u+
1
2η)R2,1(2u)K−2 (u−

1
2η)P

(−)
1,2 ,

K+
1̄′
(u) =
�

[1− (u− 1
2η)a+](u+

1
2η)
�−1

P(−)1,2 K+2 (u−
1
2η)R1,2(−2u)K+1 (u+

1
2η)P

(−)
2,1 .

(54)

12
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The second-level fused K-matrices read255

K−
1̃
(u) =
�

2[1− (u+η)a−](u−
1
2η)
�−1
P(−)

1̄,2
K−2 (u+η)R1̄,2(2u+ 1

2η)K
−
1̄
(u− 1

2η)P
(−)
2,1̄

,

K+
1̃
(u) = [2(1− ua+)(u+η)]

−1 P(−)
2,1̄

K+
1̄
(u− 1

2η)R2,1̄(−2u− 1
2η)K

+
2 (u+η)P

(−)
1̄,2

,

K−
1̃′
(u) =
�

2[1+ (u−η)a−](u+
1
2η)
�−1 P(+)

1̄′,2
K−2 (u−η)R1̄′,2(2u− 1

2η)K
−
1̄′
(u+ 1

2η)P
(+)
2,1̄′

,

K+
1̃′
(u) = [2(1+ ua+)(u−η)]

−1 P(+)
2,1̄′

K+
1̄′
(u+ 1

2η)R2,1̄′(−2u+ 1
2η)K

+
2 (u−η)P

(+)
1̄′,2

.

(55)

It should be remarked that all fused reflection matrices defined in Eqs. (54) and (55)256

are 2 × 2 matrices in their respective fused spaces, and their matrix elements are operator257

polynomials in u of degree at most one. The fused K-matrices satisfy the following fused258

(dual) reflection equations259

Rα,β(u− v)K−α (u)Rβ ,α(u+ v)K−β (v) = K−β (v)Rα,β(u+ v)K−α (u)Rβ ,α(u− v), (56)

Rα,β(v − u)K+α (u)Rβ ,α(−u− v)K+β (v) = K+β (v)Rα,β(−u− v)K+α (u)Rβ ,α(v − u), (57)

where indices α,β may label either the original spaces or the projected spaces.260

Using Eq. (29), we can finally get261

K−
1̃
(u) = K−

1̃′
(u), K+

1̃
(u) = K+

1̃′
(u). (58)

The situation now is quite similar to the fusion of R-matrices described in Section 2.2. Specif-262

ically, the K-matrix fusion also follows two branches that subsequently interconnect after two263

fusion levels, as illustrated in Fig. 1 (with R(u) replaced by K±(u)).264

3.2.2 Fused transfer matrices265

The fused transfer matrices are defined as266

t(1)(u) = str0̄{K
+
0̄
(u)T0̄(u)K

−
0̄
(u)T̂0̄(u)},

t(2)(u) = str0̄′{K
+
0̄′
(u)T0̄′(u)K

−
0̄′
(u)T̂0̄′(u)},

t̃(1)(u) = str0̃{K
+
0̃
(u)T0̃(u)K

−
0̃
(u)T̂0̃(u)},

t̃(2)(u) = str0̃′{K
+
0̃′
(u)T0̃′(u)K

−
0̃′
(u)T̂0̃′(u)}.

(59)

From Eqs. (29), (58), and (59), it follows that the fused transfer matrices t̃(1)(u) and t̃(2)(u)267

are identical. We therefore denote them collectively as t̃(u)268

t̃(u) = t̃(1)(u) = t̃(2)(u). (60)

Equations (30), (56) and (57) allow us to prove that t(u), t(1)(u), t(2)(u), and t̃(u) are mutually269

commutative.270

3.3 Operator identities271

Operator product identities We introduce the function272

α(u) = (1+ ua−)[1+ (u+η)a+]
N
∏

j=1

(u+ θ j +η)(u− θ j +η). (61)
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The fused transfer matrices defined in Eq. (59) satisfy the following operator product identities273

t(±θ j)t(±θ j +η) = −
1
4

±θ j(±θ j +η)

(±θ j +
1
2η)2

α(±θ j)t
(1)(±θ j +

1
2η),

t(±θ j −η)t(±θ j) = −
1
4

±θ j(±θ j −η)

(±θ j −
1
2η)2

α(∓θ j)t
(2)(±θ j −

1
2η),

t(1)(±θ j −
3
2η)t(±θ j) = −

±θ j(±θ j −
3
2η)

(±θ j −
1
2η)(±θ j −η)

α(∓θ j) t̃(±θ j −η),

t(2)(±θ j +
3
2η)t(±θ j) = −

±θ j(±θ j +
3
2η)

(±θ j +
1
2η)(±θ j +η)

α(±θ j) t̃(±θ j +η),

(62)

where j = 1, . . . , N . A detailed proof of (62) is provided in Appendix C.274

Transfer matrices at specific points The properties of the R-matrices and K-matrices enable275

the direct evaluation of transfer matrices at specific points276

t(0) = 0, t(1)(0) = 0, t(2)(0) = 0, t̃(0) = 0, t(1)(−1
2η) = −2t(−η),

t(1)(1
2η) = −2t(η), t(2)(−1

2η) = 2t(−η), t(2)(1
2η) = 2t(η), t̃(η) = 2

3 t(1)(3
2η).

(63)

Asymptotic behavior Through a straightforward analysis, we obtain the following asymp-277

totic forms of the transfer matrices t(u), t(1)(u), t(2)(u) and t̃(u)278

t(u)|u→∞ = 2κu2N+1 × I+ · · · ,

t(1)(u)|u→∞ = −8κu2N+1 × I+ · · · ,

t(2)(u)|u→∞ = 8κu2N+1 × I+ · · · ,

t̃(u)|u→∞ = −8κu2N+1 × I+ · · · ,

(64)

where κ= a+ + a− + a+a−η.279

3.4 T -Q relation280

The transfer matrices t(u), t(1)(u), t(2)(u), and t̃(u) commute with each other and conse-281

quently possess common eigenstates. Let Λ(u), Λ(1)(u), Λ(2)(u), and Λ̃(u) denote their respec-282

tive eigenvalues. Then, Eqs. (62)–(64) directly imply283

Λ(±θ j)Λ(±θ j +η) = −
1
4

±θ j(±θ j +η)

(±θ j +
1
2η)2

α(±θ j)Λ
(1)(±θ j +

1
2η),

Λ(±θ j −η)Λ(±θ j) = −
1
4

±θ j(±θ j −η)

(±θ j −
1
2η)2

α(∓θ j)Λ
(2)(±θ j −

1
2η),

Λ(1)(±θ j −
3
2η)Λ(±θ j) = −

±θ j(±θ j −
3
2η)

(±θ j −
1
2η)(±θ j −η)

α(∓θ j)Λ̃(±θ j −η),

Λ(2)(±θ j +
3
2η)Λ(±θ j) = −

±θ j(±θ j +
3
2η)

(±θ j +
1
2η)(±θ j +η)

α(±θ j)Λ̃(±θ j +η),

(65)
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where j = 1,2, . . . , N and284

Λ(0) = 0, Λ(1)(0) = 0, Λ(2)(0) = 0, Λ̃(0) = 0,

Λ(1)(−1
2η) = −2Λ(−η), Λ(1)(1

2η) = −2Λ(η),

Λ(2)(−1
2η) = 2Λ(−η), Λ(2)(1

2η) = 2Λ(η), Λ̃(η) = 2
3Λ
(1)(3

2η),

(66)

Λ(u)|u→∞ = 2κu2N+1 + · · · , Λ(1)(u)|u→∞ = −8κu2N+1 + · · · ,

Λ(2)(u)|u→∞ = 8κu2N+1 + · · · , Λ̃(u)|u→∞ = −8κu2N+1 + · · · .
(67)

From the definitions of the transfer matrices in Eqs. (50) and (59), we know that Λ(u),285

Λ(1)(u), Λ(2)(u), and Λ̃(u) are all polynomials in u of degree 2N + 2. The 8N + 13 equations286

in (65) - (67) thus provide sufficient constraints to determine these functions completely.287

We can parameterize Λ(u), Λ(1)(u), Λ(2)(u), and Λ̃(u) by the following T -Q relations288

Λ(u) =
2u

2u+η
[α(u)−α(−u−η)]

Q(u−η)
Q(u)

,

Λ(1)(u) = −
4u

u+η

�

α(u+ η
2 )−α(−u− 3

2η)
� Q(u− 3η

2 )

Q(u+ η
2 )

,

Λ(2)(u) =
4u

u+η

�

α(u+ η
2 )−α(−u− 3

2η)
� Q(u− 3η

2 )

Q(u+ η
2 )

,

Λ̃(u) = −
8u

2u+ 3η
[α(u+η)−α(−u− 2η)]

Q(u− 2η)
Q(u+η)

,

(68)

where289

Q(u) =
M
∏

k=1

(u−λk)(u+λk +η), 0≤ M ≤ N . (69)

The Bethe roots {λ1, . . . ,λM} satisfy the following BAEs290

α(λk)
α(−λk −η)

= 1, k = 1, . . . M . (70)

The eigenvalue of the Hamiltonian (52) in terms of the Bethe roots is given by291

E =
1

8ηN (1+ a+η)
∂ 2Λ(u)
∂ u2

�

�

�

�

u=0,{θ j=0}

= ηN
M
∑

k=1

1
λk(λk +η)

+
ηN−2

2

�

2N − 1+ a−η−
1

1+ a+η

�

.

(71)

Numerical results for the Bethe roots with system size N = 3 are presented in Table 3. We292

note that the eigenvalue of the Hamiltonian derived from the Bethe roots coincides with that293

given by the direct diagonalization of the Hamiltonian.294

Since Grassmann numbers are absent from equations (65) - (67), it follows directly that the295

eigenvalues of the transfer matrix and the Hamiltonian are independent of them. In contrast,296

the eigenstates are strongly dependent on these Grassmann numbers.297

We observe that the presence of boundary Grassmann numbers breaks the U(1) symmetry298

of the system. Nevertheless, the T -Q relations in Eq. (68) share similar structures to the ones299

in the periodic case (Eq. (42)). The T -Q relation in Eq. (68) matches the earlier conjecture300

in Ref. [23], which was only checked numerically for small systems without an analytic proof.301

We address this problem by obtaining the relation analytically via the fusion approach.302

The derivation of the exact spectrum of the model allows us to retrieve the Bethe state,303

which we will demonstrate in the following section.304

15



SciPost Physics Submission

Table 3: Numeric results of Bethe roots {λk} and eigenvalues of the Hamiltonian
(52) with N = 3, η= 1 and a+ = 0.5, a− = 1.2 and {θ j = 0}.

λ1 λ2 λ3 E

– – – 2.7667

−0.5000−1.5235i – – 2.3777

−0.5000−0.2187i – – −0.5911

−0.5000−0.5565i – – 0.9800

−0.5000−1.5235i −0.5000−0.2187i – −0.9800

−0.5000−1.5235i −0.5000−0.5565i – 0.5911

−0.5000−0.2187i −0.5000−0.5565i – −2.3777

−0.5000−1.5235i −0.5000−0.2187i −0.5000−0.5565i −2.7667

4 Bethe state of the open gl(1|1) integrable model305

The Bethe-type eigenstates of integrable models with generic open boundary conditions can be306

constructed [21,33,34,45–47]. In this work, we apply the approach in Refs. [33,34] to retrieve307

the Bethe states of the open gl(1|1) model. By employing two sets of gauge transformations,308

we obtain appropriate generators and a reference state for constructing the Bethe vectors,309

respectively. To verify the Bethe state, we also construct a complete basis of the Hilbert space310

via the separation of variables (SoV) approach [30–32].311

4.1 Gauge transformation312

For convenience, we denote the double-row monodromy matrix as313

U (u) = T (u)K−(u)T̂ (u) =

�

A (u) B(u)
C (u) D(u)

�

. (72)

The transfer matrix t(u) in Eq. (50) can be expressed as a linear combination of the elements314

of double-row monodromy matrix315

t(u) = K+11(u)A (u) + K+12(u)C (u)− K+21(u)B(u)− K+22(u)D(u). (73)

The reflection matrix K+(u) (49) can be diagonalized as follows316

K̃+(u) = G̃K+(u)G̃−1 =

�

K̃+11(u) 0
0 K̃+22(u)

�

=

�

1+ ua+ 0
0 1− ua+

�

,

where the gauge transformation matrix G̃ and its reverse G̃−1 are317

G̃ =
1

2a+

�

2a+ b+E
− f+E ♯ 2a+

�

, G̃−1 =
1

2a+

�

2a+ −b+E
f+E ♯ 2a+

�

. (74)

By applying the same gauge transformation to the R-matrices and K−(u), we arrive at318

t(u) = str0{K̃+0 (u)Ũ (u)}= K̃+11(u)Ã (u)− K̃+22(u)D̃(u), (75)
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where319

Ũ (u) = G̃T (u)K−(u)T̂ (u)G̃−1 = G̃T (u)G̃−1K̃−(u)G̃ T̂ (u)G̃−1 =

�

Ã (u) B̃(u)
C̃ (u) D̃(u)

�

, (76)

and K̃−(u) is defined as320

K̃−(u) = G̃K−(u)G̃−1 =

�

K̃−11(u) K̃−12(u)
K̃−21(u) K̃−22(u)

�

=
1
a+

�

a+(1+ ua−) (a+b− − b+a−)uE
(a+ f− − a− f+)uE ♯ a+(1− ua−)

�

. (77)

The entries of U (u) and Ũ (u) satisfy the following relations321

Ã (u) =A (u)−
f+

2a+
E ♯B(u) +

b+
2a+

EC (u),

B̃(u) = −
b+

2a+
E
�

A (u)−D(u)
�

+B(u),

C̃ (u) = −
f+

2a+
E ♯
�

A (u)−D(u)
�

+C (u),

D̃(u) = −
f+

2a+
E ♯B(u) +

b+
2a+

EC (u) +D(u).

(78)

It is important to note that Grassmann numbers commute with the diagonal elements,322

but anti-commute with the off-diagonal elements, of the double-row monodromy matrix—a323

property that holds for both its original and gauge-transformed versions.324

The commutation relations among Ã (u),B̃(u), C̃ (u), D̃(u) are the same as those among325

the untransformed operators. A number of useful specific relations are provided in Appendix326

D.327

4.2 SoV Basis328

To begin, we rewrite the R-matrices R0, j(u), R j,0(u) in the auxiliary space V0329

R0, j(u) = R j,0(u) =

�

u+η n̄ j η c†
j

η c j u−ηn j

�

, (79)

where c j , c†
j and nk denote the fermionic annihilation, creation, and particle number operators,330

respectively. By applying the gauge transformation G̃ to the Lax operator, we obtain331

R̃0, j(u) = G̃0R0, j(u)G̃
−1
0 =

�

u+η ˜̄n j η c̃†
j

η c̃ j u−η ñ j

�

, (80)

where332

˜̄n j = 1− n j +ρ1c j −ρ2c†
j , c̃†

j = c†
j −ρ1, c̃ j = c j −ρ2, ñ j = n j −ρ1c j +ρ2c†

j , (81)

and333

ρ1 =
b+E
2a+

, ρ2 =
f+E ♯

2a+
. (82)

Let us introduce the following local state on site n334

|0̃〉n = |0〉n −ρ2|1〉n, n= 1, · · · , N , (83)
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which satisfies335

�

R̃0, j(u)
�

2,1 |0̃〉n = 0,
�

R̃0, j(u)
�

1,1 |0̃〉n = (u+η)|0̃〉n,
�

R̃0, j(u)
�

2,2 |0̃〉n = u|0̃〉n. (84)

Analogously, the following local bra vector can also be constructed336

n〈0̃|= n〈0| − n〈1|ρ1, n= 1, · · · , N , (85)

which satisfies337

n〈0̃|
�

R̃0, j(u)
�

1,2 = 0, n〈0̃|
�

R̃0, j(u)
�

1,1 = n〈0̃|(u+η), n〈0̃|
�

R̃0, j(u)
�

2,2 = n〈0̃|u. (86)

We then introduce two global product states338

|ω0〉= |0̃〉1 ⊗s |0̃〉2 · · · ⊗s |0̃〉N , 〈ω0|= 1〈0̃| ⊗s 2〈0̃| · · · ⊗s N〈0̃|. (87)

From the definition of the gauged double-row monodromy matrix, it can be shown that |ω0〉339

and 〈ω0| are eigenstates of C̃ (u) and B̃(u), respectively340

C̃ (u)|ω0〉= K̃−21(u)w−(u)w+(u+η)|ω0〉, (88)

〈ω0|B̃(u) = 〈ω1|K̃−12(u)w−(u+η)w+(u), (89)

where341

w±(u) =
N
∏

j=1

(u± θ j). (90)

Let’s construct the SoV vectors342

|p1, . . . , pn〉= Ã (θp1
) . . .Ã (θpn

)|ω0〉, (91)

where p j ∈ {1, . . . , N}, p1 < p2 < · · ·< pn. With the help of the following identity343

C̃ (θ j)|ω0〉= 0, (92)

and Eqs. (D.1), (D.5), we can prove that the vectors defined in Eqs. (91) are all the eigenstates344

of C̃ (u)345

C̃ (u)|p1, . . . , pn〉= h(u, {p1, . . . , pn})|p1, . . . , pn〉, (93)

with the corresponding eigenvalues being346

h(u, {p1, . . . , pn}) = K̃−21(u)w−(u)w+(u+η)
N
∏

l=1

(u+ θpl
)(u− θpl

+η)

(u− θpl
)(u+ θpl

+η)
. (94)

We see that the vector |p1, . . . , pn〉 does not depend on the order of Ã (θp j
), i.e.,

| . . . , p j , . . . , pk, . . . 〉= | . . . , pk, . . . , p j , . . . 〉.

Furthermore, vectors {|p1, . . . , pn〉} with distinct configurations {p1, . . . , pn} are mutually or-347

thogonal due to the difference in their corresponding spectra. As the total number of the SoV348

vectors in (93) equals the Hilbert space dimension, they form a complete basis.349

Similarly, we can construct another set of Sov basis of the Hilbert350

〈p1, . . . , pn|= 〈ω0|Ã (−θp1
) . . .Ã (−θpn

), (95)

where p j ∈ {1, . . . , N}, p1 < p2 < · · ·< pn. It can be proved that the vectors in Eq. (95) all are351

eigenstates of B̃(u).352
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4.3 The Scalar Product 〈Ψ|p1, . . . , pn〉353

We introduce the scalar product354

Fn(p1, . . . , pn) = 〈Ψ|p1, . . . , pn〉, (96)

where 〈Ψ| is a common eigenstate of the transfer matrix t(u). By inserting an operator t(θpn+1
)355

between the bra vector 〈Ψ| and the ket vector |p1, . . . , pn〉, and alternately acting it to the left356

and to the right, we obtain the following relation357

Λ(θpn+1
)Fn(p1, . . . , pn)

= K̃+11(θpn+1
)Fn+1(p1, . . . , pn, pn+1)− K̃+22(θpn+1

)〈Ψ|D̃(θpn+1
)

n
∏

l=1

Ã (θpl
)|ω0〉. (97)

Introduce a useful identity358

D̃(θk)|ω0〉=
η

2θk +η
Ã (θk)|ω0〉, k = 1, . . . , N , (98)

The commutation relations (D.5), together with Eqs. (93), (94) and (98) lead to the following359

identity360

D̃(θpn+1
)

n
∏

l=1

Ã (θpl
)|ω0〉=

n
∏

l=1

Ã (θpl
)D̃(θpn+1

)|ω0〉

=
η

2θpn+1
+η

n
∏

l=1

Ã (θpl
)Ã (θpn+1

)|ω0〉=
η

2θpn+1
+η
|p1, . . . , pn, pn+1〉. (99)

Therefore, we obtain361

Λ(θpn+1
)Fn(p1, . . . , pn) =

(2θpn+1
+η)K̃+11(θpn+1

)−ηK̃+22(θpn+1
)

2θpn+1
+η

Fn+1(p1, . . . , pn+1), (100)

which allows us to get the expression of {Fn(p1, . . . , pn)}362

Fn(p1, . . . , pn) =
n
∏

l=1

(2θpl
+η)Λ(θpl

)

(2θpl
+η)K̃+11(θpl

)−ηK̃+22(θpl
)

F0, (101)

where F0 = 〈Ψ|ω0〉 is an overall factor. Substituting the explicit expression of the eigenvalue363

Λ(u) given by T -Q relation (68), we further derive364

Fn(p1, . . . , pn) =
n
∏

l=1

(1+ θpl
a−)w−(θpl

+η)w+(θpl
+η)

Q(θpl
−η)

Q(θpl
)

F0, (102)

where Q(u) is defined in Eq. (69). Since the SoV basis is complete, the set {Fn(p1, . . . , pn)}365

can completely determine the form of Bethe state 〈Ψ|.366

4.4 Bethe state367

Introduce another gauge transformation368

Ḡ = G̃
�

�

{a+,b+, f+}→{a−,b−, f−}
, (103)

19



SciPost Physics Submission

so that K−(u) becomes diagonal under this transformation369

K̄−(u) = ḠK−(u)Ḡ
−1 =

�

K̄−11(u) 0
0 K̄−22(u)

�

=

�

1+ ua− 0
0 1− ua−

�

. (104)

Applying the same gauge transformation to the double-row monodromy matrix yields370

Ū (u) = ḠU G−1 =

�

Ā (u) B̄(u)
C̄ (u) D̄(u)

�

. (105)

Define the following global vectors371

|ω̄0〉= |ω0〉{a+,b+, f+}→{a−,b−, f−}, 〈ω̄0|= 〈ω0|{a+,b+, f+}→{a−,b−, f−}. (106)

The state 〈ω̄0| in (106) satisfies372

〈ω̄0|B̄(u) = 0, 〈ω̄0|Ā (u) = K̄−11(u)w−(u+η)w+(u+η)〈ω̄0|. (107)

The aforementioned equation (107) together with two other identities373

〈ω̄0|C̃ (θk)|p1, . . . , pn〉= 0, k /∈ {p1, . . . , pn}, (108)

Ã (u) =
�

f−
2a−
−

f+
2a+

�

E ♯B̄(u) +
�

b+
2a+
−

b−
2a−

�

EC̃ (u) + Ā (u), (109)

allow us to get374

〈ω̄0|p1, . . . , pn, pn+1〉= 〈ω̄0|Ã (θn+1)|p1, . . . , pn〉
= 〈ω̄0|Ā (θn+1)|p1, . . . , pn〉
= K̄−11(θpn+1

)w+(θpn+1
+η)w−(θpn+1

+η)〈ω̄0|p1, . . . , pn〉. (110)

Furthermore, we can derive the expression of the overlap 〈ω̄0|p1, . . . , pn〉 from the recursive375

relation (110)376

〈ω̄0|p1, . . . , pn〉=
n
∏

k=1

K̄−11(θpk
)w+(θpk

+η)w−(θpk
+η)〈ω̄0|ω0〉. (111)

Bethe state The left Bethe state can be parameterized as377

〈λ1, . . . ,λN |= 〈ω̄0|
M
∏

l=1

C̃ (λl), (112)

where {λ1, . . . ,λN} are the Bethe roots satisfying BAEs (70), the generator C̃ (u) and the ref-378

erence state 〈ω̄0| are defined in Eqs. (76) and (106) respectively.379

The proof of our Bethe state is straightforward. A combination of Eqs. (93), (94), and380

(111) yields381

〈λ1, . . . ,λN |p1, . . . , pn〉=
n
∏

l=1

(1+ θpl
a−)w−(θpl

+η)w+(θpl
+η)

Q(θpl
−η)

Q(θpl
)

×
M
∏

k=1

K̄−21(λk)w−(λk)w+(λk +η)〈ω̄0|ω0〉. (113)

The factor on the second line of Eq. (113) is a normalization factor. By comparing Eqs. (102)382

and (113), we can conclude that 〈λ1, . . . ,λN | is an eigenstate of the transfer matrix.383
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Analogously, the right Bethe state can also be constructed384

|λ1, . . . ,λN 〉=
M
∏

l=1

B̃(λl)|ω̄0〉. (114)

It should be remarked that the generation operators, the Bethe roots and the reference385

states in Eqs. (112) and Eqs. (114) all have well-defined homogeneous limits of {θ j → 0}.386

Under the condition a− f+ = f−a+, the state |ω̄0〉 reduces to |ω0〉, and the resulting Bethe387

state (114) coincides with the one given in Ref. [23]. In this case, we can use the gauge matrix388

G̃ to simultaneously diagonalize K+(u) and triangularize K−(u) (see Eq. (77)), making the389

conventional algebraic Bethe ansatz applicable.390

5 Conclusion391

The exact solution of the supersymmetric gl(1|1) integrable models with both periodic and392

generic non-diagonal open boundary conditions is presented in this paper. Using the fusion393

procedure, we construct a hierarchy of fused transfer matrices, from which a closed set of394

operator identities is derived. These identities yield the energy spectrum of the model, includ-395

ing the T -Q relation and the corresponding Bethe ansatz equations. With the exact spectrum396

obtained, we then construct the corresponding Bethe states, notably for the open chain with397

generic non-diagonal boundary conditions.398

The method developed in this work can be applied to other quantum integrable models399

associated with Lie superalgebra. In particular, it extends straightforwardly to the Uq(gl(1|1))400

quantum algebra, for which the R–matrix and the reflection K–matrices retain the same graded401

structure as those of the undeformed gl(1|1) superalgebra [48]. In a parallel investigation of402

the quantum integrable model associated with the Lie superalgebra gl(2|2), we have succeeded403

in establishing virtually all of the operator identities. For higher rank cases, the fusion proce-404

dure involves additional levels and branching structures.405
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A The second fusion branch415

Let us introduce the second fusion branch of R-matrix in Section 2.2.2 detailedly. When416

u= −η, the R-matrix in (1) becomes417

R1,2(−η) = −2ηP(−)1,2 = −2η(1− P(+)1,2 ), (A.1)
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where P(−)1,2 is a 2-dimensional supersymmetric projector with the following form418

P(−)1,2 =
2
∑

i=1

|ψ̄i〉〈ψ̄i|, P(−)1,2 = P(−)2,1 , (A.2)

|ψ̄1〉=
1
p

2
(|1,2〉 − |2,1〉), |ψ̄2〉= |2, 2〉. (A.3)

The corresponding parities are419

p(ψ̄1) = 1, p(ψ̄2) = 0.

The operator P(−)1,2 projects the 4-dimensional product space V1⊗s V2 into a new 2-dimensional420

space spanned by {|ψ̄i〉|i = 1,2}.421

By fusing the R-matrix with this projector P(−)1,2 , we can obtain the specific form of R1̄′,n(u)422

defined in (24), which is423

R1̄′,n(u) =









u+ 3
2η

u− 1
2η −

p
2η

−
p

2η u+ 1
2η

u− 3
2η









. (A.4)

At the point of u= 3
2η, the fused R-matrix R1̄′,2(u) in (24) degenerates into424

R1̄′,2(
3
2η) = 3ηP(+)

1̄′,2
, (A.5)

where P(+)
1̄′,2

is a 2-dimensional supersymmetric projector with the form of425

P(+)
1̄′,2
=

2
∑

i=1

|φ̃i〉〈φ̃i|, (A.6)

and the corresponding vectors are426

|φ̃1〉= |ψ̄1〉 ⊗s |1〉, |φ̃2〉=
1
p

3
(
p

2|ψ̄2〉 ⊗s |1〉 − |ψ̄1〉 ⊗s |2〉). (A.7)

Here, the |ψ̄1〉 and |ψ̄2〉 are given in Eq. (A.3). The parities read427

p(φ̃1) = 1, p(φ̃2) = 0.

Similarly, we can get the specific form of the R1̃′,n(u) given in Eq. (27)428

R1̃′,n(u) =









u+ 2η
u−η −

p
3η

−
p

3η u+η
u− 2η









. (A.8)

From Eqs. (22) and (A.8), we can easily see that R1̃,2(u) given by (20) and R1̃′,2(u) given by429

(27) are the same, i.e., Eq. (29).430
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B Grassmann Numbers431

Grassmann numbers are the anticommuting algebraic variables that play a central role in su-432

persymmetric models and integrable systems with Z2 grading. The Grassmann algebra CGN is433

generated by N generators E1, E2,· · · , EN , where the generators satisfy the nilpotency condition434

E2
i = 0, (B.1)

and the anticommutation relations435

EiE j = −E jEi . (B.2)

C Proof of Eq. (62)436

We know that the reflecting monodromy matrix T̂ (u) in Eq. (51) and its fused analogues437

satisfy the graded RTT relations438

Rα,β(u− v)T̂α(u)T̂β(v) = T̂β(v)T̂α(u)Rα,β(u− v), (C.1)

where the indices α,β may label either the original spaces or the projected spaces.439

Because the (fused) R-matrices collapse to projectors at certain special values of the spec-440

tral parameter, the (fused) monodromy matrices T̂α(u) satisfy the following relations441

P(+)1,2 T̂1(u)T̂2(u+η)P
(+)
1,2 =

N
∏

l=1

(u+ θl +η)T̂1̄(u+
1
2η),

P(−)1,2 T̂1(u)T̂2(u−η)P
(−)
1,2 =

N
∏

l=1

(u+ θl −η)T̂1̄′(u−
1
2η),

P(−)
2,1̄

T̂2(u+η)T̂1̄(u−
1
2η)P

(−)
2,1̄
=

N
∏

l=1

(u+ θl)T̂1̃(u),

P(+)
2,1̄′

T̂2(u−η)T̂1̄′(u+
1
2η)P

(+)
2,1̄′
=

N
∏

l=1

(u+ θl)T̂1̃′(u),

(C.2)

where the projectors P(+)1,2 , P(−)
2,1̄

, P(−)1,2 and P(+)
2,1̄′

are given by (12),(18), (A.2) and (A.6), respec-442

tively.443

We define the degenerate point of the R-matrix as δ, at which we have Rα,β(δ) = P(d)
α,βSα,β ,444

where P(d)
α,β is a d-dimensional projector and Sα,β is a constant matrix. Employing the property445

of the projector that P(d)
α,βRα,β(δ) = Rα,β(δ), the RTT relations (7) and (32) at the degenerate446

point give447

Tα(u)Tβ(u+δ)P
(d)
β ,α = P(d)

β ,αTα(u)Tβ(u+δ)P
(d)
β ,α. (C.3)

Similarly, from the graded RTT relations (C.1), we have448

T̂α(u)T̂β(u+η)P
(d)
α,β = P(d)

α,β T̂α(u)T̂β(u+η)P
(d)
α,β , (C.4)

Using the properties of projector, one can derive the following identities from Eq. (C.2)449

T̂1(−θ j)T̂2(−θ j +η) = P(+)1,2 T̂1(−θ j)T̂2(−θ j +η),

T̂1(−θ j)T̂2(−θ j −η) = P(−)1,2 T̂1(−θ j)T̂2(−θ j −η),

T̂2(−θ j)T̂1̄(−θ j −
3
2η) = P

(−)
2,1̄

T̂2(−θ j)T̂1̄(−θ j −
3
2η),

T̂2(−θ j)T̂1̄′(−θ j +
3
2η) = P(+)

2,1̄′
T̂2(−θ j)T̂1̄′(−θ j +

3
2η),

(C.5)

23



SciPost Physics Submission

where j = 1, . . . , N .450

We can combine Eq. (36) for the monodromy matrices Tα(u) and Eq. (C.5) for the reflect-451

ing monodromy matrices T̂α(u) and finally get the following equations452

t(u)t(u+η) = [ρ2(2u+η)]−1str1,2{K+2 (u+η)R1,2(−2u−η)K+1 (u)T1(u)T2(u+η)

× K−1 (u)R2,1(2u+η)K−2 (u+η)T̂1(u)T̂2(u+η)},
(C.6)

453

t(1)(u− 1
2η)t(u+η) = [ρ3(2u+ 1

2η)]
−1str1̄,2{K

+
1̄
(u− 1

2η)R2,1̄(−2u− 1
2η)K

+
2 (u+η)

× T2(u+η)T1̄(u−
1
2η)K

−
2 (u+η)R1̄,2(2u+ 1

2η)K
−
1̄
(u− 1

2η)T̂2(u+η)T̂1̄(u−
1
2η)},

(C.7)

454

t(2)(u+ 1
2η)t(u−η) = [ρ4(2u− 1

2η)]
−1str1̄′,2{K

+
1̄′
(u+ 1

2η)R2,1̄′(−2u+ 1
2η)K

+
2 (u−η)

× T2(u−η)T1̄′(u+
1
2η)K

−
2 (u−η)R1̄′,2(2u− 1

2η)K
−
1̄′
(u+ 1

2η)T̂2(u−η)T̂1̄′(u+
1
2η)}.

(C.8)

Substituting Eq. (38), (54)-(55) and (C.3)-(C.5) into Eq. (C.6) and letting u= ±θ j ,±θ j−η455

respectively, we get the first two lines of Eq. (62); substituting Eq. (38), (54)-(55) and (C.3)-456

(C.5) into Eq. (C.7) and letting u= ±θ j−η, we get the third line of Eq. (62); substituting Eq.457

(38), (54)-(55) and (C.3)-(C.5) into Eq. (C.8) and letting u= ±θ j +η, we get the fourth line458

of Eq. (62).459

D Commutation relations460

Some useful commutation relations used in Section 4 are461

C̃ (u)Ã (v) =
(u− v +η)(u+ v)
(u+ v +η)(u− v)

Ã (v)C̃ (u)

−
η

u+ v +η

¦

D̃(u)C̃ (v) +
u+ v
u− v
Ã (u)C̃ (v)
©

, (D.1)

D̃(v)C̃ (u) =
(u− v −η)(u+ v)
(u+ v −η)(u− v)

C̃ (u)D̃(v)

+
η

u+ v −η

¦

C̃ (v)Ã (u) +
u+ v
u− v
C̃ (v)D̃(u)
©

, (D.2)

Ã (u)Ã (v) = Ã (v)Ã (u) +
η

u+ v +η

¦

B̃(v)C̃ (u)− B̃(u)C̃ (v)
©

, (D.3)

D̃(u)D̃(v) = D̃(v)D̃(u)−
η

u+ v −η

¦

C̃ (v)B̃(u)− C̃ (u)B̃(v)}, (D.4)

D̃(u)Ã (v) = Ã (v)D̃(u)−
η(u+ v)

(u− v)(u+ v +η)

¦

B̃(v)C̃ (u)− B̃(u)C̃ (v)
©

, (D.5)

B̃(u)B̃(v) = −
u− v −η
u− v +η

B̃(v)B̃(u), (D.6)

C̃ (u)C̃ (v) = −
u− v +η
u− v −η

C̃ (v)C̃ (u). (D.7)
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