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Abstract

We introduce a new renormalisation scheme to construct the Landau quasiparticles of
Fermi fluids. The scheme relies on an energy cutoff A which removes the quasi-resonant
couplings, enabling the dressing of the particles into quasiparticles via a unitary transfor-
mation. The dynamics of the quasiparticles is then restricted to low-energy transitions
and is fully determined by an effective Hamiltonian which unifies the Landau interaction
function f and the collision amplitude in a single amplitude A regularized by A. Our
effective theory captures all the low-energy physics of Fermi fluids that support Landau
quasiparticles, from the equation of state to the transport properties, both in the normal
and in the superfluid phase. We apply it to an atomic Fermi gas with contact interaction
to compute the speed of zero sound in function of the scattering length a. We also recover
the Gork’ov-Melik Barkhudarov correction to the superfluid gap and critical temperature
as a direct consequence of the dressing of particles into Landau quasiparticles.
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Introduction

Originally formulated as a phenomenological theory, Fermi liquid theory is based on a quadratic
action [1], in which fermionic quasiparticles are described by a semiclassical density field 6n
fluctuating about the Fermi sea and interacting through a static interaction function f. The
physical origin of quasiparticles is not elucidated; their existence is merely justified by the
heuristic assumption that the noninteracting states can be adiabatically followed when inter-
actions are switched on [2]. When Landau’s semi-classical action becomes insufficient—for
instance to describe the transport phenomena or the superfluid transition—additional phe-
nomenological parameters are introduced [3], such as a collision or pairing amplitude. Micro-
scopic approaches were later proposed [4-6] to interpret the parameters of Landau’s theory
in terms of two-particle correlation functions, which relies in particular on the introduction of
a quasiparticle residue.
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In a more modern perspective, Landau’s theory has been reinterpreted as a low-energy
effective theory emerging from a renormalization process [7-12]. This moves beyond the
phenomenological nature of the theory and provides it with a fundamental justification. In
the renormalization picture, the quasiparticle energies and interactions arise from the pro-
gressive integration of the high-energy degrees of freedom. Although the renormalization
group generates in principle a complete effective action for the quasiparticle field, in practice
one follows Landau’s original formulation by concentrating on specific “interaction channels”,
i.e., restrictions of the quasiparticle scattering processes to specific geometries [13,14]. The
forward-scattering channel collects the collisions in which the scattering angle tends to zero;
the pairing or Bardeen—Cooper—Schrieffer (BCS) channel describes head-on collisions, where
the angle of incidence approaches 7. Restricting the attention to such channels is insufficient
in three-dimensional (3D) Fermi liquids, where resonant collisions between quasiparticles of
the Fermi surface are not limited to small momentum transfers nor to small center-of-mass
momenta. In 3D, the collision probability depends on two independent angles, in contrast to
the static interaction function f, which depends only on the angle between the quasiparticle
momenta p and p’. In this respect, the 3D case is fundamentally different from its 2D coun-
terpart, where resonant collisions depend on a single angle and thus fall into either one of
the two channels [15, 16]. Although effective-theory approaches are a natural starting point
to derive the quasiparticle transport equation, and thus access the density and polarization
response functions, they are often restricted to the collisionless regime, neglecting the ergodic
processes contained in the collision integral. An effective theory that fully captures the Boltz-
mann equation of the Fermi liquid would then be particularly valuable, for instance to assess
the corrections to transport properties beyond the Born—-Markov approximation [17].

In fact, a convincing low-energy effective theory should be able to describe, within a unified
formalism, all low-energy phenomena, from the low-temperature thermodynamics to the hy-
drodynamic equations, in both the normal and superfluid phases (provided that superfluidity
itself remains a low-energy phenomenon). In this work, we construct an effective Hamiltonian
that captures the full dynamics of Landau quasiparticles, and thereby the whole low-energy
physics of fermionic fluids in which these quasiparticles are well defined. Our formalism re-
lies on a unitary transformation that connects the quasiparticle states to the noninteracting
Fock states; such unitary transformations are common in atomic physics [18-20] when one
applies a perturbation to multiplets of quasidegenerate energy levels. Our construction of the
quasiparticle states thus excludes from the dressing any quasidegenerate state in a narrow
energy band of width A. The unitary operator exp(S) of this dressing block-diagonalizes the
Hamiltonian, thereby decoupling levels whose energy separation exceeds A. This is not the
same as introducing a momentum cutoff [7-12], and the renormalization group generated by
infinitesimal variations of A is different. To ensure that the physical quantities predicted by
the effective theory are independent of A, the cutoff must be small compared to the Fermi
energy €p yet remain large compared to the typical evolution frequencies of the fluid, such as
the quasiparticle damping rate T' in the normal phase, or the gap A in the superfluid phase.
In Heisenberg picture, the transformation generated by $ relates particle operators to their
quasiparticle counterparts; this allows us in particular to construct the quasiparticle annihila-
tion operator 7 [6].

The adiabaticity condition usually invoked to justify the existence of the quasiparticles
translates, in our formalism, into a condition of weak mixing between (significantly coupled)
energy levels. Two quasiparticle states must be resonant at the scale A if and only if the cor-
responding particle states are resonant as well. In a generic many-body system, this condition
would restrict the theory to the lowest orders of perturbation theory. In a Fermi liquid, it re-
mains valid all the way to the strongly interacting regime, and the dressed states, free from
low-energy couplings, can be followed adiabatically. The conservation of a spectrum that
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vanishes linearly at the Fermi level thus appears as a necessary condition to the existence of
Landau quasiparticles.

Our unitary transformation constructs the low-energy effective theory by a direct renor-
malisation of the underlying microscopic theory, without introducing emergent degrees of free-
dom. The renormalisation group emerging from the infinitesimal generator S(A) —S(A —dA)
[21,22] acts on the full Hamiltonian. It is not restricted to a gradient expansion, nor to an
expansion in powers of the quasiparticle field 7. Only after the renormalization procedure do
we expand the Hamiltonian in powers of the fluctuations §(777) of the density field about its
expectation value in the quasiparticle Fermi sea (defined as the image of the non-interacting
Fermi sea through the unitary transform). The effective Hamiltonian obtained in this way
is not limited to specific interaction channels: its diagonal part in the Fock basis coincides
with Landau’s semi-classical Hamiltonian, but its off-diagonal part contains the generic colli-
sion amplitude. It allows us to derive the Boltzmann equation—including the collision inte-
gral—without leaving the effective picture, i.e., without returning to particle Green’s functions
and without using the quasiparticle residue. The Born—-Markov approximation can be used to
truncate the Bogoliubov-Born-Green—Kirkwood-Yvon (BBGKY) hierarchy in the quasiparticle
picture, even though the problem is strongly correlated in the particle picture.

Our construction of an effective Hamiltonian for Fermi fluids is motivated by experimental
considerations, particularly in the context of ultracold atomic gases. The Fermi gas with con-
tact interactions, long considered as an academic model [23-25], can nowadays be prepared
and manipulated with great flexibility using laser trapping techniques [26-30]. At low tem-
perature, its microscopic physics is fully characterized by the scattering length a of the contact
interactions, which therefore fixes all the parameters of our low-energy effective theory. While
it supports Landau quasiparticles only in the weakly-interacting regime (a — 0), the contact
gas gives access to several observables whose dependence on a is highly nontrivial. The Landau
quasiparticles are then a powerful, and likely inevitable, heuristic tool to derive quantitatively
predictions of mesurable quantities such as the velocity and damping of zero sound [31], the
transport coefficients [24,32], or the collective modes of the superfluid [33, 34].

This article is divided into three sections.

In Section 1, we construct the low-energy effective theory of Landau quasiparticles. We
introduce the unitary transformation that allows us to define the quasiparticle Fock states, the
operators acting on these states, and in particular their effective Hamiltonian. We illustrate
our formalism by applying it perturbatively to the Fermi gas with contact interactions. We
compute to second order in kpa the effective parameters of the theory: the quasiparticle energy,
the interaction functions, and the collision amplitude. Finally, we return to a more general
framework and derive the quasiparticle Boltzmann equation from the effective Hamiltonian.

In Section 2, we study the density and spin responses of the contact Fermi gas. In particular,
we analyze the collisionless regime and compute the expansion of the zero-sound velocity c,
in powers of the interaction strength kpa. A major result is the presence of a log-perturbative
correction in the deviation cy—vy between this velocity and the Fermi velocity v, which results
into a prefactor exp(6) for the density mode and exp(—2) for the spin mode. We further
investigate the role of collisions on zero sound and show that they lead to a collisional damping
proportional to 1/7, where 7 is the mean collision time. This damping is universal in the sense
that its dependence on kpa enters only through 7. Finally, we present a numerical method that
solves the transport equation exactly throughout the crossover from the hydrodynamic to the
collisionless regime.

In Section 3, we show that the effective theory describes the superfluid instability and
the paired ground state. We express the zero-temperature order parameter A and the critical
temperature T, in terms of a parameter a,; appearing in the effective Hamiltonian, which
corresponds to the residual value of the collision amplitude A regularized of its logarithmic
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divergence in A [7,10,35,36]. We then apply this result to the contact gas: by computing
the pairing parameter a;| to order (kpa)?, we obtain a log-perturbative correction to the BCS
gap and critical temperature, a correction that coincides with the result of Gor’kov and Melik-
Barkhudarov [37].

1 The low-energy effective Hamiltonian of Fermi liquids

We consider a 3D fluid made of N spin-1/2 fermionic particles evolving in a volume V under
the Hamiltonian

H=Hy+V €))
This section will discuss the construction of the Landau quasiparticles on general grounds,

so we make minimal assumptions on the form of H. We write the generic noninteracting
Hamiltonian and the generic two-body interaction between opposite spin fermions as

HOZ Z waaalg&ao (2)
a€Do
V=2 Viaplr,8)al,dj d, ds 3
afyseD

where d,, annihilates a fermion of spin o in mode a. We use fi = kg = 1 throughout this
article. This implies that momenta p and wavenumber k are not differentiated, in particular
pr = kg for the Fermi momentum/wavenumber.

1.1 Landau quasiparticles in quasi-degenerate perturbation theory

The quasiparticles states are often viewed [2,38] as the states in which the eigenstates of H,
evolve after an adiabatic ramp of the interactions of the form V(t) = A(t)V, with A(0) = 0
and A(tg) = 1. It is then argued that the ramping time t; [2] should be long enough to ensure
an adiabatic evolution, but short enough to prevent the quasiparticle decay. This picture is
problematic since the existence of a finite time t; fulfilling the adiabatic theorem [39] is ques-
tionable in a gapless, strongly-interacting fluid. Instead, we develop here a rigorous method
to construct the quasiparticles states from the eigenstates of H,, and to continuously follow
them from the non-interacting to the strongly-interacting regime.

Given an eigenstate |n), of Hy, we decompose the rest of the eigenstates of H into quaside-
generate and energetically well-separated states. An eigenstate |m), is quasidegenerate with |n),
if its energy Egl is within a narrow energy band A, IES - E?nl < A, and it is well-separated if
|Eg — E,?J > A. One can then construct the quasiparticle states by a unitary transformation

In) = e |n) o, where we impose that the hermitian operator § has no matrix elements between
quasidegenerate states. This construction is similar to the van Vleck transformation in quasi-
degenerate perturbation theory [18-20,40].

Rather than an adiabaticity condition, the possibility of such a construction is tied to a non-
crossing condition: the only level crossings' that occur as interactions are increased should be
between states |n) and |m) that are already quasidegenerate in the non-interacting state, i.e.

|E, —En| <A < [EC—E°| <A 4)

This is a reformulation of the usual assumption that the (low-energy) quasiparticles have a
gapless spectrum similar to the spectrum of the particles in the ideal Fermi gas.

10ur acceptation of level crossings is restricted to states |n), and |m), that are significantly coupled by V. In
the thermodynamic limit, this excludes in particular states with different densities of excitation.
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E/\

Figure 1: Construction of the quasiparticle states within quasi-degenerate
perturbation theory. An unpertubed Fock state |i), is dressed via the operator § by
its interactions with the off-resonant states |f ),, whose unperturbed energy verifies
|Ejfy, — Eji),| > A (here Epy), = o{Y|Hol|Y)o). The dressed state |i) can then be
followed adiabatically as the interaction strength V increases. However, due to its
incomplete dressing, it is not an eigenstate of H, and it remains coupled to the
nearly degenerate states |f') of energies |E|; — Ejy| < A, (here E}, = (YHPY).
This construction applies in particular to the particle Fermi sea |FS),, which evolves
into a quasiparticle Fermi sea |FS) (red curve). In general the quasiparticle Fermi
sea is not the ground state of H, and therefore not the ground state of our effective
Hamiltonian.

Clearly, the quasiparticle states |n) are not the exact eigenstates of H since there remain
quasi on-shell couplings between them, (n|H|m) # 0 if |E, — E,,| < A. These coupling ensure
that the quasiparticle states, which are described by the same quantum numbers as the nonin-
teracting states (i.e. the set of fermionic occupation numbers {n, },,), decay to the ergodic
eigenstates. In this picture the eigenstates appear as ergodic mixtures of all quasiparticle states
at energy E, in accordance with the Eigenstate Thermalization Hypothesis [41].

The cutoff A used to construct the quasiparticle description should be tuned so that all
physical quantities are independent of it. This constrains it to a plateau between a low- and a
high-energy bound. As an upper bound we want A to single-out the low-energy region, and
incorporate in it the off-resonant couplings from the high-energy part of the spectrum. This is
achieved by

AL e (5)

As a lower-bound, we want the couplings between quasiparticle states to vary smoothly over
the frequencies at which the system evolves. In the case of an isolated system prepared in
some excited quasiparticle state, the evolution frequencies are set by the intrinsic decay rate

6
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Iiyp of the quasiparticles. In the case of a system driven at frequency ., by an external force,
all the transitions due to the external force should remain in the same A shell:

Typs Wext < A 6)

This inequality, combined with Eq. (5), constrains the states and the frequencies that one can
excite without breaking the quasiparticle description.

1.1.1 Partition of the Hilbert space and unitary transformation

To classify the quasidegenerate and well-separated states, we introduce the projector

By(E) = T\ (E — Ho)ln)o(nlo )

[n)o

where the summation runs over the eigenstates |n), of H,. As long as the filtering function
1, (E) verifies that IT,(E < A) = 1 and 1, (E > A) = 0, its precise shape does not matter. We
shall thus use
{1 if |[E|<A
M\(E)= (8)
0 else

To defined the properties of the quasiparticles, we will focus on the energy shell centered
around the energy Eg of the particle Fermi sea |FS), (the ground state of H, at fixed chemical
potential u). However, we want our description to apply to states, such as thermal or super-
fluid states, that have a macroscopic excitation or condensation energy, obtained through the
excitation of a macroscopic number of low-energy quasiparticles. We therefore slice the whole
spectrum into A shells centered around E,, = Eg +2nA with n € Z. The projector onto the n-th

energy window is
b, = P,\(E,) 9)

with P, projecting onto the shell of the Fermi sea.
We then construct an antihermitian operator S

§t=-§ (10)
which generates the quasiparticle states by a unitary transform applied to the eigenstates |n),
of Ii\Ioi

In) = e%|n), 1n

This is the unitary, or canonical, van Vleck transformation [ 19] known in atomic and molecular
physics [18,20,40]. The operator § couples only well-separated states, i.e. all its diagonal
blocks vanish

b8P, =0, foralln (12)

A

To construct the off-diagonal blocks P, SP., m # n, we impose that the couplings between
transformed states vanish, (m|H|n) = 0, if |n) and |m) belong to different energy shells, that
is, if |E2 — E,?J > A. In other words, we impose that the effective Hamiltonian

& A

I:\Ieff = e_SHeé (13)

is block-diagonal:
ﬁmHeffﬁn =0, n 7é m (14)

At this stage, we view the effective Hamiltonian as the operator which, acting on the un-
perturbed basis, provides the matrix elements of H in the transformed basis:

(n|H|m) = o(n|Heglm)o (15)
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Using Baker-Campbell-Hausdorff formula, H,g is expressed in terms of iterated commutators
between H and $:

Hye=H+[A,81+=[[H,51,8]+... (16)

N =

1.1.2 Perturbative calculation of § and H.g
When V is controlled by a small parameter, one can construct § and H, order-by-order in V:
§=8 +8,+... where §; =0(V), $,=0(V?),... (17)
Expanding condition (14) to first order in V, we obtain for example
P (V+[Ho,58.1) P, =0 (18)
This relation provides the elements of $; in the unperturbed basis:

olfIVli) : 0 0

A 00 if |E —E | > A

olfIS1liYo={ 5% L7 (19)
0 if |E? — E}’I <A

One can also express the restriction of $; to a given energy shell P, in terms of the unperturbed

resolvent Go(E) = 1/(E — H,) evaluated at the corresponding energy E,, of the shell:

818, ~Q,[Go(EV ] P, (20)

where Q,, = 1—P, projects orthogonally to the shell. Note however that §, unlike G,, does not
depend on energy and allows to (block) diagonalize the whole spectrum, not just the vicinity
of a particular energy level.

Injecting expansion (17) of §, we obtain? a perturbative expression of the effective Hamil-

tonian: 1
Piflgnh, =B, (Ho+ 0+ 510.8,1400v) B, )

1.1.3 Quasiparticle operators

The quasiparticle states are deduced from the particle Fock states |{n,})o through Eq. (11)

Hnaod) = € 1{nae 1o (22)

Switching to Heisenberg picture, S can be used to construct the operators acting on this new
basis. Consider an operator O whose action is known in the unperturbed basis |{n,})o. The
operator O, having the same action in quasiparticle basis [{n,s}) is then

(A)Y =e°0e™® (23)
Annihilation operator The most straightforward example is the quasiparticle annihilation
operator ¥ which we construct from the particle annihilation operator @ through

A S A _& A A A A A 1 A A N A
Yac = esaaoe 5 =dgo + [Slzaaa] + [82>aa0] + E [Sl’ [Sbaaa]] + O(Vs) (24)

Since y follows from a through a unitary transformation, it automatically obeys fermionic
anticommutation relations

{}A/acr’ }A/Z/g/} = 5aa’5oa” {?aa: ?a’a’} =0 (25)

>We have used that P, [H,, 3, +8,1P, = 0 since § is block off-diagonal and P, commutes with H,, together with
Eq. (18) to simplify to double commutator B, [[ﬁo,ﬁl],ﬁl]ﬁn =—p, [\7,§1:| p,.

8
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Hamiltonian Another example is the operator PAIY which acts on the quasiparticle states as
H acts on the particle states:

H}/ =e’H Z waO'Yao'YaO' + Z V(a, /5|75)YaTYﬂlel76T (26)
afyéeD

The quasiparticle states, like any other state, do not evolve under the Hamiltonian HY but

under the true Hamiltonian H. Inverting Eq. (26) to express H in terms of HY allows us to
reinterpret the effective Hamiltonian which appeared in Eq. (16):

PI = e_gﬁyeﬁ = Ifleff’), (27)

In other words, H is written in terms of the { operators exactly like H. is written in terms of
the @ operators.

Number operator A third example is the quasiparticle number operator

A

N, = Z ofac with N=>al a, (28)
aoc

This case is special since N commutes separately with H, and V. One can then show (order-
by-order in V) that it commutes with S. We recover in this way the Luttinger theorem

A

N, =N (29)

Projectors Finally, in the quasiparticle picture, the projector onto an energy-shell becomes

Py (B)=eSBy(E)e™® = >~ TL(E— o) {nao}) (g} (30)

{nao}

and correspondingly }A’n,y = ﬁA’Y(En). The operators ISY thus project the quasiparticle states
l{nq}) according to their unperturbed energy ).,, ®qoNgo, rather than their full energy
({ngo HH|{n4}). In a generic many-fermion system, this would render this van Vleck transfor-
mation useless. In a Fermi liquid, this limitation is lifted by the non-crossing condition Eq. (4),
which we may rewrite has

|(n|ﬁ|n) - (m|I—AI|m)| <A = |0<n|ﬁo|n>o —o(m|ﬁo|m>o| <A (31

1.1.4 Energy, residue and interaction functions of the quasiparticles

In Ref. [32], we related the energy of the quasiparticles to the average value of H in quasi-
particle states with one or two excitations above the Fermi sea. Let us here generalize this
definition to any quasiparticle reference state |1)). To this aim, We introduce states with either
one quasiparticle or one quasihole (depending on whether n = (|p" roTaclP) =0or 1)
added to |v) in mode ac

|w> e 1Y)
if =1 f =0
lao, ) = {““ f e @, y) = {'f” ) =0 )
Tlolw) else Tacly) else
The energy €, ) of the qua31part1c1e ao is then a functional of |v)) (more precisely of its occu-

pations numbers in modes a’0’ # ao):

W’) = (ao,Y|H|ao,y) — (ac,y|H|ao, ) (33)

9
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To define the interaction functions f in an arbitrary state |1}, one should iterate the nota-
tion Eq. (32) to allow for the creation or annihilation of two (or more) quasiparticles®

V) _

|alo-1:'")ano-n:ﬂlo-lw":ﬂmo-m: ) ifnlao‘ -
lac, @101, ..., @000, P1O1, -, B O ) =4
Piolaioy, .., 0,0, 101, ., Bpom, ) else
(34)
We can now define the interaction functions as functionals of |):
) _ __ _p_ _ _
V0! (8 B) = Eiao.pory) + Eigs gy = Eias poryy ™ Blao pore) (35)

where Ejy = (y)|H|p) and the volume factor V makes sure that f, . has a finite thermo-
dynamic limit. Our definition is a quantum version of the semi-classical definition of f as a
second derivative fclfg),(a, B) = 0°E}y)/0ny,0np,

In the same spirit, one can define the residue of the quasiparticle as the variation of the
number &Z »4qc of particle in mode ac when the quasiparticle ao is added to the fluid:

ZW) = (a0, la]_dgqlac, ) — (@o,lal_d..lac, ) (36)

Although conceptually important to identify the origin of the quasiparticles, the residue breaks
the low-energy effective description, as it involves measuring a microscopic quantity &Z olac>
unlike e.g. €,, which involves only the energy. All the low-energy properties should then be
formulated without it.

Using the unitary transformation of the operators Eq. (23), there a dual interpretation of
the residue as the variation of the number of quasiparticle in ao upon adding the correspond-
ing particle:

ZW0) = o(a0, P17l Taolac, ¥)o —o{@T, Y171, Tao @0, 4) 37)

In the case of an homogeneous system (where a stands for the wavevector p), we will
relate the residue, as defined in Eq. (36), to the discontinuity of the momentum distribution at

the Fermi level (see Sec. 1.2.5). We already note that the leading term in 1 —ZJ:? is of second

order in V, in contrast to the leading term in elée,) — W, Which is of order V. This is because

dz ,lqo (unlike H) commutes with the projectors P, .

1.1.5 Collision amplitudes

Contrarily to a widespread believe, the effective description of the Fermi fluid is not exhaustive
if we restrict ourselves to the eigenenergy €, and interaction functions f,,. defined above.
In fact these two quantities characterize only the diagonal elements of H, while for many
equilibrium and dynamical properties, a knowledge of the off-diagonal elements is required:

A = (fIHD) (38)

Even though it is restricted to quasi on-shell couplings (A;_,; # 0 only if |[E;—E¢| < A), H can
generate high-order collisions between quasiparticules. From Eq. (16), one can easily count
that there are up to n + 1 < n + 1 quasiparticle collisions if V describes 2 «— 2 particles
collisions and H g is truncated to order V™. However, we shall see that 2 < 2 quasiparticle
collisions remain the more likely if excited quasiparticles are confined to a low-energy shell
about the Fermi level.

Just like the interaction functions f ./, the 2 «— 2 transitions amplitudes depend on the
reference state |1) in which we compute them. Let |i) = |ac, Bo’,yo’,60,) be a reference

3Together with this piling rule, the states obey a fermionic permutation rule: |a’c’, ac) = —|ac,a’c’).
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state in which we made sure that quasiparticles are absent in ao, o’ and present in yo’, §0.
Then let

) =Flot b trotsall)  (ao,po’)#(60,v0"), (yo',50) (39)

be the final state not proportional to |i). We then define the collision amplitude A, between
o and o’ quasiparticles through

A (aplys)
A =—F——— 40

i—f Vv (40)
From the fermionic commutation relation and the hermiticity of the Hamiltonian, these am-
plitudes verify the relations

AD(BrIBa) = A, (aplyd) (41)
Af(Balys) = Af(aploy)=—Ap(aply5) (42)

In a spin-symmetric fluid, they verify in addition

AD (Balsy) =AY (aplys) 43)

Note that our van Vleck transformation a priori restricts Ag)a,(a[j |y&) to transitions between
quasi-degenerate states |E; — E;| < A. Comparing E; = (i|Hi) and Ef =(f |H|f), this can be
turned in the thermodynamic limit* into a resonance condition on the energies (in |i)) of the
colliding quasiparticles:

|i)
Bo’

If)

yo’

61274-6 —€ —eléizT <A (44)

1.1.6 Low-energy effective Hamiltonian in the vicinity of the quasiparticle Fermi sea

So far, we have described the matrix elements of H between arbitrary quasiparticle states,
noticing that even if we restrict to few-quasiparticle transitions the matrix elements retain a
dependance on the reference state |¢). This can be seen as a consequence of Eq. (27), where
the expression of H (at strong coupling) contains an infinite number of 7.

One can however derive a tractable truncation of H, containing few operators 7, and valid
for quasiparticle states |{n,,}) and |{m,,}) that deviate from each other only at low energy
(nyy # Mgye only when |w,, —€p| < A). One truncation plays a special role, this is the one
based on the quasiparticle Fermi sea:

eS|FS), (45)
(FS|H|FS) (46)

[FS)
Egg

Note that |FS) is in general not the ground state of H, such that Egg is larger than the ground
state energy E,. In the following, we drop the |FS) superscript when using the Fermi sea as
. — _|FS — ¢IFS) ) )
the reference state: €,, = e[w), foor =Efop and Ager = A
As the main result of this section we write this truncation of the Hamiltonian in the vicinity
of the quasiparticle Fermi sea, including the collision amplitudes between resonant states. The

truncation is written in terms of the fluctuations of the quasiparticle-hole operator,

5(}?20?[30) = ?Zza?ﬁa_ngo(gaﬁ (47)
Shar = 5Ly Tas) (48)

[i) [) [i) 1
ﬁa’_eyo’_e +O(v)

*One can show that E; —E; = €l +¢ 5
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where ng o= (FS|)“/2; -V ac|FS) is the Fermi sea occupation of mode ao. The fluctuation of the

quasiparticle number &7 can be viewed as the quantum version of the classical field on (the
semi-classical “number of quasiparticles”) in which Fermi liquid theory is often formulated.
Restricting to terms quadratic in §(7'7), we can write

A= Eest) anBhugtoy D, 041y Baa(aBly8)8(rlyY5a)5(rhy 110 ) +OB(F 1))

ao afydeD
oo’'=1|
(49
The function By, is straighforwardly related to f;; and A; by
Br(a, BB, ) = fr(a,B) (50)

Conversely, the indistinguishability of the colliding oo quasiparticles leaves us some freedom
in the choice of B,,. Without affecting the matrix element of H, we can constrain 3, by the
following conditions®:

Boa(a:ﬂla:ﬂ) = 0 (52)
Baa(ﬁ>a|5:)/) = Bao(a;ﬂl}’>5) (53)

While these choices may seem arbitrary at this stage, we will show in the next subsection that
these constraints arise naturally in perturbative calculations of the truncated Hamiltonian. To
reproduce f,, and A, the function B, must now satisfy

Bao(a>ﬂ|ﬂ:a) = faa(a:ﬂ) (54)
BUO’(aaﬁl}/a6)_800'([3’(1'}/75) = AO’U(a)ﬂ|Y)6)> a;éY36 (55)

Eq. (49) is exact for the matrix elements between |FS) and states connected to |FS) by up to
4 operators 7. It is valid up to corrections in O(e) for states [1)), whose excited quasiparticles
are contained in a low-energy shell

(16T145 (1Y) = 0if 640 — 1l > €9 (56)

with
€0 <AL €p (57)
The omission of terms cubic or higher in §(777) in Eq. (49) then leads to errors in the energy

and transition amplitudes controlled by €,/ €.
We recover the usual semi-classical Hamiltonian of Fermi liquid theory

1
E=E+ ZeaUénaU + @ Z fo’o"(a, ﬂ)5na05nﬁ0’ + O(5n)3 (58)
ac apeD
oo'=1l

as the restriction of Eq. (49) to terms a = 9, i.e. to terms diagonal in the basis of quasiparticle
Fock states. The off-diagonal elements a # 6 in Eq. (49) are however crucial to accurately
describe quasiparticle collisions. Thus, unless we are interested only in the collisionless dy-
namics of the Fermi liquid, our effective theory should specify not only f,,/(a, ), but also

Boa’(a:ﬂh/:é) for a 7é 0.

>The first constraint ensures that the particle-hole operators & ()/LT)/M) and 6 (}/};TYYT) commute in Eq. (49), and
the second constraint ensures the symmetry with respect to the double exchange a «— f3, y <= 6.

12



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

SciPost Physics Submission

In fluids where the index a describes a continuous sets of modes, one may think, looking at
Egs. (50) and (54), that the Landau functions f - are continuously connected to the amplitude
B,s(a, BB —da,a+da) as da — 0. However, the energy cutoff A separates two limits:

Jim By, Bl —da,a+da) = Blemward (g gy (59)
|Ea_63+da|>>/\
dloicr—l}o Byo(a,Blp —da,a+da) = fo(a,p) (60)

|E(x_6a+da |<<A

The amplitude Bg’;‘?’ard obtained for energy transfer €, — €, 4, large compared to A but small
compared to ey is called the forward-scattering amplitude. It is related to f,, by a Bethe-
Salpeter equation [4], which was understood, within the functional renormalization group
approach [10-12], as a fixed point of the renormalization group equation. In our formalism,
an equivalent equation could be obtained by computing the change of 15 under the action of
the infinitesimal generator $(A —dA) — $(A) of the continuous unitary transform [21,22].

The forward-scattering approximation, common in the literature on 3He, consists in replac-
ing the full amplitude B(a, 8|y, d) by Bg’g’,"ard(a, B). This uncontrolled approximation com-
pensates the lack of knowledge on the collision amplitude. In *He where the Landau function
f has a large isotropic component (FZJ;0 > 10), the Bethe-Salpeter equation is particularly
useful to obtain a correct order of magnitude of the scattering amplitudes.

Finally, in fluids where the modes are indexed by a 3D wavevector p, we may rewrite
Eq. (49) in real space by performing a Wigner transform of the quasiparticle distribution

Bhpo () = Ze—iq.r5(}?;+%o}7p_%0) (61)
q

In terms of 67(r), we have

A d3r . 1 d3r,d®r, , . .
A=Eps+ | Srepobipa@ts D0 | =52 Boor (0,0l =128 50 (11)8 (1)
po pp'ED
oo’=1l

+0(67)° (62)
The Wigner transform of the amplitude B is

1 iq-(r,— q q
Byo/(p,p'lry —15) = v Z 4B, (P - E,P/ + 5

q

/9 q)
—2p+= 63
P—5 Pt (63)

It plays the role of a finite-range interaction potential between po and p’o’ quasiparticles. A
gradient expansion [13] would replace this finite-range interaction by a short-range one.

1.2 Application to an homogeneous Fermi gas with contact interactions

We now evaluate the truncated Hamiltonian Eq. (49) in a 3D homogeneous Fermi gas with
contact interactions. In this system, contrarily to most Fermi liquids, one can compute the
effective parameters €, and B, in function of a unique microscopic parameter: the s-wave
scattering length a. Here, we perform a perturbative calculation of €, and B, to second-
order in kpa.
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1.2.1 The lattice model for contact interactions

The kinetic and interaction Hamiltonian which describe our Fermi gas are:

Hy = Y wpltl b (64)
peD,o

~ 8o P3HDP4at AT A

vV = e Z 5p1+p2ap1Tap2lapglap4T (65)

P1,P2,P3,P4€D

where w,, = p?/2m. We assume that the gas is held in a cubic volume V = L3 (with L — +00 in
the thermodynamic limit). To regularize the UV divergences inherent to the contact potential,
we have discretized real space [42] into a cubic lattice of step I, thereby restricting the set of
momenta p to D = (2nZ/L)? N [—n/l, /I[3. Solving the two-body problem, we express g,
in terms of a through the Lippman-Schwinger equation

1 1 d3
=z _f p3 22 (66)
& & [—r/Lm/I[3 (2m)3 p

where g = 4ma/m.

1.2.2 Expansion of the quasiparticle annihilation operator

The ground state of H, at fixed density p is the particle Fermi sea

FS)o = | | @pr—pal, 10 (67)
pED
o=",l

where pp = (312p)/? is the Fermi momentum and |0), the particle vacuum. The occupation
numbers of |FS) are then

ng=©(pr—p), iy =1—n)=0(p—pr) (68)

Eq. (18) and Eq. (24) applied to the contact interaction potential V provides the expression
of § and §. To first order in g, we have:

5 _ 8o At At A A Py tPs 1
51= L3 Z apaTapﬁlaPrlapéTSPaerﬁ Pa Wy, + Wy —wp — (69)
18 5 Pa pﬁ

PaPpPyPsED
N A &o P,+Ps 1 At A oA 2
Tpr =lpy + = Z 6ptp, PA ( )a (Ap 14p,p + 0(g) (70)
v PpPyPs€D ’ “p, + Wp, T Wp— “pg Ppr T
In these expressions, the function
1\ 1—TI,(E)
Pa(5) =R 71
a7 E (71)

originates in the projectors P, and prevents the denominators from vanishing. Eq. (70) is a
rigorous formulation of the standard first-order picture of the spin T quasiparticle as a cloud
of spin | particle surrounding a spin T particle. It is reminiscent of the Chevy Ansatz for
polarons [43].
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1.2.3 Expression of the Hamiltonian in terms of y

To avoid carrying along a quasi-resonance condition, we define an Hamiltonian H’ where the
energy constraint has been released

A A A 1 .

H = HO’Y+VY+§[Vy,SLY]+O(g)3 (72)
+o0

A = > B, AP, +0(g) (73)
n=—oo

Injecting in Eq. (72) the expressions of ISIO’W \A/'Y and Sl,w we obtain

r i &o Z PytPs ot AT & A
H = Z wangpa + 13 D5pa+p,3 YpaTYpﬁlYpylap5T
po PoPpPyPs<
1(80)? G s PPy :
+ 2\ 13 PatPp Ptps LA O + O — W —
PaPpPyP5ED Pq Pp Pc P4
PaPyPPa €D

% I:Yl')aTYI'JﬁlYPYlYPET’ Ypdm'acﬂpbwpn] +0(g)” (74

This Hamiltonian truncated to second order in V is thus sextic in #, with up to 3 < 3 transi-
tions as discussed above.

We proceed to linearizing H’ in the vicinity of the quasiparticle Fermi sea |FS), using the
expansion Eq. (48) of the particle-hole operators about their average value in |[FS). We note
that there is no ambiguity in the pairing of the ¥ operators, since the window function P,
guarantees that a # d, b # ¢ and thus

S NN N W SN A s ot o ot
ot 7o T, TP 1T 1 Topt Pput) = (T 1 T )Ty 1 Py DT p iy Y PPy ) (75)
The expansion of the unconstrained Hamiltonian H’ in powers of &(79) has the form of

Eq. (49):

A . 1 P, +P A A
H' = EFS + Z epénpa + ﬁ Z 6pz+p; B;a/(papﬁ |pyp6)6(er,ag7/p50')5(Ypﬁa/7/pycr’)
po DPsP;P5ED
oo’'=1|

+0(5(7'9)°)  (76)

and the expansion of the true Hamiltonian H follows from Eq. (76) simply by replacing the
unconstrained amplitudes B’ by the constrained ones

Byo/(PaPplPyPs) = By (PaPplPyPs)IA(Ep, + €5 —€p —€p)) (77)
The term of order 5(777)° in Eq. (76) is the energy of the quasiparticle Fermi sea

_ 0, 8§ Z 0..0
Eps = Z wpl, + L3 MpMpy
peD,o p,p’eD

&Y Py*Ps 0 0 (20 =0 _ 1 s
* (L3) Z 5pa+Pﬂ npa"pﬁ(npynpa P © Lo —o —w +0(g>) (78)
PuPsP,Ps€D Pa Pg Py Ps

Note that we have used the standard perturbative renormalization procedure [25, 32] to re-
place g, by g, such that Eq. (78) is free from UV divergence when | — 0. The explicit of

15



446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

SciPost Physics Submission

calculation of Egg(kpa) from Eq. (78) leads to the Lee-Huang-Yang equation of state to second
order in kga [25].
Then, the eigenenergy of the quasiparticles in Eq. (76) is

_ &Z 0
ep—cop+L3 np,

p’eD
+ (%Y ST %P nd 70 A% +%nl nl | P L +0(g)?
L3 PP P2 P3 P4 P2 Ps Pp, |1 A Wn+ W — W —w 8
P2p3p4€D P P2 P3 P4
79

Since the quasiparticle dynamics is restricted to the vicinity of the Fermi level, this eigenenergy
can be expanded in powers of p — pg.

€p— U= %(p—pFHO(p—pF)2 (80)

An explicit expression of the effective mass m* in powers of kza was computed by Galitskii [44].
Finally, the (unconstrained) collision amplitudes B’ are

2
y _ 8 0-0 =0 _0
ng(papﬂlp)fp5) " 9I3 Z [nP1 an nplnpz]
p1pP2€D
x [PA ( ! ) 5P Pe P ( ! ) 5"2+"ﬂ] +0(g)°
_ _ p1+p _ _ P1+D
Wp, T Wp, —Wp —p, ) T Wpy + Wp, —Wp; —wp, ) T

(81)

2
8 -0 = +
51, (PaPplP,Ps) — By (PuPplpPs) = 8 + 0 D :D (75,70, —nd n) —1]8p! e
P1P2€

1 1
X [PA( )+7DA( )] +0(g)® (82)
Wp, T Wp, — Wp, — Wy, Wp F Wp, — Wp, —Wp,

Remark that we have symmetrized B, towards the full exchange B, (8, |6, v) = B,,(a, Bly, 5),
and that the function P, imposes B, (pp’|pp’) = 0, in accordance with the constraints (52)-
(53). The Landau interaction function f,,. are simply the value of B, for p =p, = ps and

P =ps =p;:

2
n_ 8 0 -0 _ =0 0 |sP+p: 1 3
fo-g(P,P ) - L3 Z [nplnpz nP1np2] 6P+P2 PA (w W — W —w ) + O(g) (83)
pP1P2€D p P2 p P:

2
_ 8 _0 -0 0.0 p1+p
f@,p)—foo,p) =g+ I Z [npl Ay —np np = 1] CHS
p1p2€D
1

- wP1 - sz

x Py ( ) +0(2)° (84)
wpa + w

1.2.4 Explicit expressions of the collision amplitudes with the A dependence

Pp

To illustrate the role of the cutoff A in connecting the collision amplitudes .4, to the interac-
tion functions f, ./, we return to the explicit expressions obtained in Ref. [32]. We parametrize
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the A dependence through

EAN = = (85)

and we are interested in the limit ¢, — 0. Restricting to wavevectors of the Fermi surface
(p1 = p2 = p3 = P4 = pr), the amplitude B depends only on the angles 6;; = (p;, p;):

B, (P1,P2|P3,P4) 2kra

I ; = 1+ ; [15(612) + Ja(6:13)]+0(a®) (86)

B.(P1, P2IP3, P4) 2k

ML 2 (6,5) 4+ 0(a?) (87)
g TT

The functions I, and J, that characterize the crossed A,0 dependence of B are depicted on
Figs. 2-3, and explicit expressions are given in Appendix A.

T T T T T T T
1 er=0 —
ep = 0.0 —
171n(4/z7r70)) .-

Inlea/) 2
9oL
—25
3 L ) L ) L ) L
/4 /2 3m/4 ™
0

Figure 2: Angular dependence of the function I, appearing in Aj;; and f;,. For

€, = 0 (black curve), the function displays a logarithmic divergence
~In(t—0)+1—1n4 when 6 — 7 (black dashed curve). For €, # 0 (red curve) the
divergence is regularized, and the function saturates at In(e, /2) + 2+ O(€,) in

0 = 1 (red dashed curve).

When €, — 0, these functions converge pointwise in the open interval (0, t) to the func-
tions I and J usually found in this context [25,32]

0 _ . _ 6

I(0) =lim,, _oI,(0) = 1 2lnl_s, s=sin_, c=cos (88)
. 1 2 1+s

J(0) =lim,, _,0Js(0) = 2 (1 + % ln1 —s) (89)

While J is a smooth function in [0, 7], we note a logarithmic divergence in I when 6 — 7 (see
Fig. 2).
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1.6 T T T T T T T

1.2 .

0.6 i

04 B

/2 3r/4 ™

0
Figure 3: Angular dependence of the function J, appearing in both Ay, f;; and
Ao foo- As €4 — 0, the function converges pointwise to J(0) (black curve) on

(0, r]. It is however cancelled in an interval of width ~ 2¢, about 8 =0 (red
curve).

1
/4

The convergence of I, and J, to I and J is however not uniform: €, regularises the diver-
gence of I in O = 7, and cancels J in a neighborhood of size ~ €, about 8 = 0. Taking the
limit & — 0, 7 before €, — 0, we have:

limg_,,1,(8) = ln%A +2+0(ey) (90)
limEAHOlime_)()JA(Q) =0 (91)

We recover with these two points of non-uniform convergence the forward (6 = 0) and BCS
(6 = m) collision channels. The singular behavior of J, (6 — 0) is reminiscent of the behavior
of the 4-point vertex found in Ref. [11] (see Fig. 4 therein).

From the expression of 3., one obtains the Landau function f (Egs. (50)-(54)) by taking
P =p; =p4 and p’' = p, = p; (that is, 61, = 0,5 = (p,p’) = 6):

f“(lg)’—p b 2’:a [13(8) +J,(6)] +0(a®) 2
fO’O‘(p’ P/) — 2kFaJA(9) + O(Clz) (93)
g T

Similarly, one obtains the collision amplitudes (Eqgs. (55)-(51)) as Ay} = B;; and A, (p1, P2l
P3,P4) = Byo(P1,P2IP3, P4) — Boo (P1; P2IP4s P3):

A% (p1,P2IP3> P4)

e = 1+ 21 (0) + (0] + O(a?) o1
A% (P1, P2|Ps> P4) 2k

i - = ;“ [JA(613) = JA(610)] + O(a®) (95)
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481 With the A-dependence we may now reinterpret the mismatch between f; and the forward-
ag2  scattering limit of Ay;. Both quantities follow from the limit q = p; —p4 — 0 (that is 6,4 — 0)
483 in Eq. (95). However this limit does commute with the limit A — 0: the Landau function
s« f is obtained in the limit of energy transfer €, , — €,,, ~ vgq small compared to A (that is
a5 014 < €,), while the forward-scattering amplitude is for vgqg > A (that is 014 > €,):

. 2kga
(. p) = Tim Ay (p+ 5.0/ = 3[p+ 5.p— 5 ) =g == /(6)=1]+0(a) (96)

2 2
VeSS A
486 2k
N= i ( + 3y Ay, d —ﬂ)z FaJG +0(a® 7
frr(p,p) lim Anlp LR R S (6)+0(a”) 97)
VEqKLA

as7  The Bethe-Salpeter relating Ag"{‘”ard to fy1 is then derived by renormalizing the effective ac-
ags tion from A; > vgq to A, < vgq, which involves the differential unitary operator exp (§ (Az))

480 €Xp (—§ (Al)). Finally, we note that A°™2 coincides with f;, to second-order in kga; a mis-
a90 match between the two quantities will however appear at higher orders.

401 1.2.5 Residue and momentum distribution

02 We compute here the residue Z,,, of the quasiparticles in powers of kga. With [v) = |FS) our
493 definition Eq. (36) can be reinterpreted6 as the discontinuity of the momentum distribution at

494  Dg:
Zpo = <po,Fs|a;Uapg|pa,FS> —(po, Fsld] , 4, [P, FS) (98)
= (Fs|a] ,a, ,—a' ,a, ;[FS) (99)

PO p o

a5 where p, = pp+0%. The (particle) momentum distribution in an arbitrary quasiparticle state
a6 |{nps}) is given to second order in g by

H{nyor}) A A At A Ir .+ . A A
npcrp = <{np’o’}|a;gap0|{np’o/}> = 0<{np’o’}|alto-apa+§ I:[a;)gapoysl]:slil |{np’cr’})0+o(g3)

+ ( g )2 Z Ps+Ps np’a np2’_a nps;_a np4’a B np’o- nPZ’_G np3’_0 np4’o'
po

v pP+p; _ _ 2
14 (wp + wp, —wp, —wp, )

P2Psp4ED
X Qplwp + wp, —wp, —wp, )+ 0(g®) (100)

497 with Q(x) =1—T1I,(x). Applying (98), we obtain
70 0 0 0 -0 0

( Z 5P3+p4 Pz —0 P30 nP4 o P2,—0 nP3;_U nP4,C7
PtP2 _ 2
(wp + wp, —wp, —wp,)

pO’
P2P3P4€D

X Qplwp + wp, —wp, —wp, )+ o(g®) (@o1)

408 In p = pg, the residue has a well-defined A — 0 limit, which recovers the result of Belyakov
a90 [45]:

, 2a* 1\] o 2a° 1 5
(FS|fips|FS) = [1—§(ln2+§):|+npa 2 (1n2—§)+0(g ) (102)
4a°
z, = 1—Fln2+0(g3) (103)
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Particle Fermi sea

Quasiparticle Fermi sea,
kra=-1

4p/(9p*)

4

[GV) S, S —

p/pr

Figure 4: (Main pannel) Difference between the particle momentum distribution
ng S) = (FSl&; U&pUIFS) (see Eq. (100)) and the zero-temperature Fermi-Dirac
distribution n® as a function of p/pg. The difference is scaled to (kpa/m)? so as to
be independent of a in the weak-coupling limit. The discontinuity across the Fermi
surface, i.e. between the asymptotic values in pp — 0~ and pp + 0" (black dashed

lines), is given by 1—Z,, . At large momenta, the distribution follows a 1/ p*

behavior, from which the contact C = 4q> /912 can be extracted (orange dashed
curve). (Inset) The bare distribution nES) in function of p/pg, evaluated in
second-order perturbation theory at kra = —1. The distribution displays the
familiar shape of a depleted Fermi sea, with n, <1 down to p =0.

Contrarily to Z, the momentum distribution nLFS) of the particles in the quasiparticle Fermi
sea is well defined for all values of p/pr. We depict it on Fig. 4 using the expressions given
in [46], which correct the original calculation of Belyakov [45]. We first remark that the
depletion of the particle Fermi sea is not limited to the vicinity of pp but extends all the way
to p = 0. Then, at large momenta, the distribution decays as 1/p*:

C
Npo = l? (104)
This provides a way to identify the first perturbative contribution to Tan’s contact [47]:
€= -2 (k) (105)
om2" F

Finally, besides the discontinuity in py, we note two corner points in p/pr = ¥/2 and 3.

®We use the continuity of the residue at the Fermi level Zy,o = Z,,, and the relations

(p+a,FS|&;+g&p+alp+a,FS)=(FSI&;J& |FS), (p_o,FS|a’ a4, ,Ip_o,FS)=(FS|a’ a, ,|FS)

p-o p_o P-0O p+0 P+0
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1.3 Derivation of the Fermi liquid kinetic equations

Knowing the energy and transition amplitudes of the quasiparticle fluid, we can now attempt
to describe its dynamics by a kinetic equation. We recall that Fermi systems at intermediate
temperatures T ~ Ty and strong interactions do not obey a kinetic equation, as there is no
separation of timescales to break the BBGKY hierarchy. By introducing the long-lived states
lp) = e°|1p)o, the quasiparticle description manages to overcome this limitation in the low
temperature limit T < Ty, irrespectively of the interaction strength (as long as the quasiparti-
cle picture holds).

This section uses the effective Hamiltonian Eq. (49) to rigorously derive the kinetic equa-
tion, and discuss its domain of validity. In Sec. 1.3.1, we consider the case of an homogeneous
system with an out-of-equilibrium quasiparticle distribution. We show that if the cloud of ex-
cited quasiparticles is contained in a low-energy shell €5 < €, one can treat the evolution of
the quasiparticle distribution in the Born-Markov approximation. This results in a nonlinear
kinetic equation, from which we extract the thermal lifetime of the quasiparticles.

In Sec. 1.3.2 and 1.3.3, we study transport phenomena, where the quasiparticle gas is
excited by a perturbation periodic in space and time, at frequency w and wavenumber q. We
assume that the corresponding energy scales are comparable and small compared to A:

Ve A 0 <A (106)

In presence of the dynamical parameters g and w, there exists several ways to take the low
temperature limit. In Sec. 1.3.2, we derive the collisional transport equation in the limit

T
T — 0 at fixed vgq7, w7 (107)
F

where the mean collision time 7 scales, as we shall see, as 1/T2. In this regime, all the lower
bounds on A in Eq. (6) are of order T2:

Veq, @, Liyp & T2 (108)

Varying the parameter w7 (after the limit T — O is taken), this regime describes the crossover
from hydrodynamic wT < 1 to collisionless transport w7t > 1.
In Sec. 1.3.3 instead, we take the limit:

T
7 0 at fixed vgq, w < €g (109)
F

In this regime, the excitation energy vgq sets the high energy tail of the quasiparticle distri-
bution and the lower bound on A. The collision integral vanishes as (vgq/€g)?, such that
transport is collisionless to leading order in g.

1.3.1 Kinetic equation in a spatially homogeneous state

Equation of motion of the quasiparticle distribution We assume that the initial state ¢ of
the system describes an uncorrelated distribution of quasiparticles

00 =] ] buo (110)

The reduced density matrix g, is a function of 7, and )?L - only which defines the occupation
of mode ao
6145 =Tr(04e6Ma0) 11D
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We assume that the excited quasiparticles are contained in a low-energy shell of width p,

6npe =0 for |p—pgl>pog (112)
Note that this is more restrictive than just assuming a “low density of excitation” ), . 6n,, < N.
In fact, exciting even a low energy density in highly energetic modes would result in a break-
down of the quasiparticle picture.

We describe the evolution of 6n,, in Heisenberg picture using the expansion Eq. (49) of
the Hamiltonian, which we rewrite in the form

H=Ey,+H,+H]+AX+0(5(7'1)%) (113)
where
Hy= > €5M, (114)
pED,o

and we have splitted the terms quadratic in 5(777) into diagonal and off-diagonal parts

N 1

Hfr = o3 Z foU/(p,p)Snpg5npU, (115)
pp'eD
o,0'=1,|

A 1 P, +P .

A = 55 >, B pr+py Boo'(PaPpIPP&)Ty oY p, o T, V50 (116)
(Pa-Pp)#(Ps:Py)
o,0'=1,0

The equation of motion of 6n,,, is triggered only by PAIZ‘

. 1 . N
lafénpa = 2I.3 > pr |: O'O"AO'O'/ (P, P2|P3: P4) 5511)1:4 YP UYI" U/Yp3o Yp a) C~:| +O(5(YTY))3
2:P3,P4
o'=1]
(117)

where (0) = Tr(60) and sy, =1 and sy; = 1/2 is a counting factor. Notice that the bare B,
amplitudes have been replaced by the symmetrized ones A, .

Born-Markov approximation Eq. (117) is not a closed system, due to the presence of terms
quartic in y. To perform a Born-Markov approximation on the dynamics of those quartic terms,
similar to the classical “molecular chaos hypothesis”, we introduce the quartic cumulants

Z[C;)//S = (’)/}j;o' A[Tjg/?ya’?ﬁa)c (118)
(fl'i'i)T(A:cAi)c = a'fi)'i'éa _ d"’&(?f’é) _ B'i‘é(&t&) +4 6(31&) + Ei‘&(awa
+ (a'd)(b'e)—(a'e)(b'd) (119)

and we note that the contracted terms )7; 0}7;20,}71,30/}71,40 Qgg PaPa drop out from Eq. (117).

The quartic cumulant is described by the equation of motion
i0 Qaﬁy5 (€50 + &0 —Epor — a0 ) Q07 +sggy5(t) (120)

where

877 5 =105 5 AT = 515 2 B [elb@BET LG b o P50 der (P, Pl Py P, e
abcd
(121)
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557 is the source term of the equation of motion. The “local energy” energy of the quasiparticle
558 appears as an operator in our formalism:

A 1 .
EPO' = 61.)0' + E Zfo.o./(p, p/)5np/0/ (122)

p/o-/

ss0 The deviation 6€,,, = €,,—€p, from the Fermi sea eigenenergy originates from ﬁjlr: [Ypos Hg] = 6€psTpos
seo in the low-energy state @, it is negligible (§é,, + €5, — 5€,5/ — 5é5,) = O(po/pr)*.

561 In the Born approximation, we assume that the correlations among quasiparticle modes
se2 remain small at all times. We then replace (S) by its Wick contraction
A / A /(aﬁ |')/5) _ _ _ _
(Sg/?w) = UUT [naanﬁo’nya’n5o - naanﬁo’nya’n&y] + O(Po/pF)2 (123)

s63 where np;(t) = W;;a?pa(t))’ and we use the short-hand notations 7 = 1 —n. The contrac-
s64 tions have imposed imposed (o,,0) = (0,0") or (0,,0,) = (0/,0) and removed all the
ses summations over momentum in Eq. (121). The correction of order O(p,/pr)? to this Born
se6 approximation is discuss in Appendix.

567 With the Born approximation, the source term $ becomes independent of Q, such that we
ses can formally integrate Eq. (120)

0
R , . I —i(eg+e,—ep— a)t/A / /
Zgys(t)——lj_mdte (Cotermep=et'§o0 (t+t') (124)

seo Modelling the slow time-dependence of § as $ g/‘;; s(t+ t')= §g[§’; 5(t)e"t, we obtain the Marko-

s70 vian approximation of Q:

S50

€st€,—€g—€,+in

Q8 5(t) =~ (125)

s71 Anticipating on Eq. (128) which gives the time scale at which n,(t) and $(t) vary, one can
sz estimate 11 = O(py/pg)>.

s73  Nonlinear kinetic equation Replacing the expression of Q in the kinetic equation (117) and
s7a using the Plemelj formula 1/(x +i0%) = P —ind(x), we obtain

27 +
0, 6np, = Ipy[6n] = Te Z 551;2)45(6;, +€p, — €p, —€p,)

P2,P3,p4€D

(Wu(P: P21P3, P4) [p1 1, i, 1 fip, 1 = Tippitp,  Mp 1,1 ]
1 _ o
+ §WTT(P’ P2IP3, P4) [ 9171y, 17p,17ip, 1 = Tipt g, 11ip, 71p, 1 ] ) +0(po/pr)’  (126)
s75  where

2
Wao”(Pl: P2|P3, P4) = [AUU’(PD P2|P3, P4)] (127)

576 are the collision probabilities. Note that W inherits symmetry properties from Egs. (43)-(42).
577 The collision integral I,; is a functional of the quasiparticle distribution 6n. If p is inside
578 the low-energy shell (|p — pr| < po), then, by the conservation of energy and the absence
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of highly-excited quasiparticles, so are all the collision momenta’ p,, p; and p,. In other
words, the low-energy space is stable under collisions. The double summation over p, and p4
(assuming that p, is fixed by momentum conservation) is then restricted to a small interval
[Pr — DPo> Pr + Po about the Fermi momentum, which allows us to estimate

Po 2
ng =0 (—) (128)
Pr

Subleading terms O(p,/py)° in the collision integral then arise either from the Markov approx-
imation 1 — 0% in Eq. (125) or from the omission of the local energy é,, = €,, + O(po/pr)-

Thermal lifetime In its general form, the kinetic equation Eq. (126) is a nonlinear differen-
tial equation where we cannot single-out the lifetime of quasiparticles in mode po'.

To linearize the kinetic equation, we assume that the initial state is a thermal equilibrium
state, which we approximate® by the matrix density

1 N N
éeq — Ee—(Hz—,UN)/T (129)
Here u is the chemical potential, Z = Tr(e_(HZ_“N )/T) is a low-temperature approximation of

the partition function, and N is the number of quasiparticles (see Eq. (29)). The state @eq
populates the quasiparticle modes according to the Fermi-Dirac distribution

1

1+ el /T (130)

nEQ(T) = Tr(éeqﬁpa) =

It then fullfills the low-energy condition Eq. (112) with pgp > py > T/vg.
We excite the quasiparticle in mode po, leaving the rest of the gas in the thermal state,
which amounts to preparing the initial distribution

(A ) — {Tl;q(']")+5n§%_, plo-/zpo- (131)

Ny 57
#o) = \n5r), plo’ # po

As long as it remains much below pg, the excited quasiparticle does not need to be inside the
thermal window.
The kinetic Eq. (126) then describes the thermal relaxation of & nf,%:

o, 5n§‘}7 S 5n§c(l7 (132)

The thermal damping rate is given by Fermi’s golden rule

— 2n P3tP. —eq—eq , —eq
Lo = T6 Z W (P, P2IPs3, P4)0p, 6(€p + €p, — €p, — €p,) [n;‘inpgnp4 + npzn;‘in;j]
P2P3P4€D
(133)
with the spin-averaged collision probability
1
W(P1, P2P3; P4) = Wi (P1, P2[Ps, P4) + S Woo (P2, P2IP3, Ps) (134)

"Energy conservation guarantees that one of the outgoing wavevector is at low energy, say |p, — pg| < po. Then
if the remaining wavevectors p, and p, are at high energy, they are necessarily on the same side of the Fermi level,
ngz = ngz. The collision in the state 9 is then suppressed by the factor n ;= ngz ﬁgz in the square bracket of
Eq. (126).

8At low temperatures, n;q differs from the zero-temperature Fermi-Dirac distribution ng by a O(T). In omitting

p20’ lp3or

H'4 (and higher order terms) from ¢., we commit a small error, of order O(T?) on n;q.
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600 Integrating over energies and angles, as detailed in [32] (see the End Matter), we recover the
eo1 standard result for [}, :

*\ 3 w
Lo = (%) < 5 > |:7T2T2 + (€p —,u)z)] (135)
0,9

Cos 5

602 We have reparametrized the probability W in terms of the two angles 8 = (p1, p,) and ¢ = (p; —TZ,E— P4)
o3 that locate the four momenta py, p,, P3, P4 of norm pp: W(p;,P2|P3, P4) = W(6O, ¢). We have
604 then introduced the average over solid angles

T 21
(flop= 4%]0 J;) f(6,¢)sin6dOd¢ (136)

e0s Since |e, —u| and T are both below vgp,, Eq. (135) illustrates the O(p,/ pr)? scaling of the
606 collision integral.

e07 1.3.2 Linearized transport equation at nonzero temperature

s0s Linear response approximation We now imagine that the system is driven out-of-equilibrium
600 by an external field U, coupled to quasiparticle density operators

Hee= ), Uo(q, 0, (137)
peD,o

610 Where we use Anderson’s notations for the quasiparticle-quasihole excitation operator
g () =T g/ To-a/20 (138)
611 One can also see H.,,, as driving the density of quasiparticles in real space:
Heye = J &> Uy (e, O9F (0, 4 (x) (139)
o
612 where’ 1/3%0(1‘) = [73/2 Dipe

e13 and U, (r) = U,(q)e!9". Placing ourselves in the linear response regime, we assume a weak
614 driving compared to the temperature

Deip'r?pa is the field operator associated to the quasiparticles,

U, | < T (140)

615 and we decompose the state of the system at time t as

0(t) = eq +60(1) (141)

616 with 60 = O(U,/T). In the linear response regime, the fluctuations about the thermal state
617 are small ﬁpa—nf,q = O(U), and we approximate the contribution of the drive to the Heisenberg
618 equation of motion by

(8 o] = Up (@) (ipsg.0 = fip3.0) = Ug @) (1

—32 p+3

€q 2
np_%) +0(U?) (142)

°Note that taking the continuous limit [ — 0, we have converted the discreet sum [° Zr over the sites r of the
lattice model into the fd3r integral.
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610 Quantum Boltzmann equation We obtain the streaming term' of the Boltzmann equation
620 as the contribution of H, + H d:

(A pG’H2+H 1= (Ap—q/Z,G_ép+q/2,a)ﬁga (143)

21 The contribution of H 4 is no longer antihermitian

_ 1 q p3+p o
[npo"Hi}(] - ﬁ Z# 500’[A00’ (P_ Ea P2|p3’ P4) 51’3_%_:1)2 Yp+ U}’ng/}’pgo Yp4o
P4,P27P3

o’'=1]
ps+p AT AT A
— Ao (P + :P2|p31 P4) 5Pi%‘:132 YI,;4UY;,3U/YPZU’Yp—%g1:|44)

622 where s, = 1 and s;y = 1/2. We treat this contribution using the cumulant expansion
623 (Eq. (119)) to obtain:

qQ .9
[ SU,H"]—(n eq LSZAUU( ,p +- |p’—§,p+§) s, o +ilpe  (145)

624 Where fpg is the cumulant part of Eq. (144). Restricting to leading order in U, we have replaced
625 the average values in the partially contracted terms by thermal averages:

(y;;ayp,a,) = Spp ooy +O(U/T) (146)
626 To recognize the Vlasov force in those terms, we use Eq. (60) and the condition vgq < A:
Agor (p— 1+ —Ip - —,p +3 ) foor (P P') +0(vgq/A) (147)

627 Note that the partial contractions also replace the local energies in Eq. (143) by their thermal
628 value (€p5) = (€pg)eq +O(U).

620 Collision integral Following the steps discussed in Sec. 1.3.1, we compute the collision in-
e30 tegral [, in the Born-Markov approximation. Restricting to leading order in vgq/T,we obtain
631 the transport equation

an T
(i, + vequ) i}, — vequ aquze (U (q)+LSwa (p,p)npg):ﬂgg(n% (148)

p'o’

632 where u = cos(p, q), neq(€) = 1/(1+ ele=W/TY "and the collision integral linearized about the
633 thermal state takes the form

Ilm[ q]—— Z 5;125(ep+e/5 €, —€5)
B,y,6€D

o [+ mnson?] (Wi Gp. 180+ T Woo .1y 80 )
1 ,
+ [ ;qn;qneq + neqn;qneq] (Wu(p’ Bly, 5) Lt Ewgo(p,ﬁly, 5)ngT)
_eq€q | - . 1 .
— [ngqn;qn;q + nz_qn;qn;q] (WTL(P’ Bly, 5)Tl;},l + EWao(p’ Bly, 5)n;}T)

_eq _ 1 .
— [n;qngqn;q + n;qngqn;ﬂ (Wu(p, Bly, )+ S Woo (P, By, 5)) ngT} (149)

1°We have used the property f,,(p+q/2,p—q/2) = 0, valid for vzq < A, which guarantees that ﬁga commutes
with 6€,.q/20
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We may interpret the linearized transport equation in real space by performing an inverse
Wigner transform

ny(p,q) = (i) = ‘/% f d’re™"8n, (p,1) (150)

The Wigner transform of (fgg) is then interpreted as a collision integral linearized for small
spatial fluctuations: .
Ipo [0+ &n(r)] = (I32(r)) + 0(6n)’ (151)

where I,,;[n] is defined by Eq. (126). The transport equation may now be written in real space

de on ond 1
a po . g po . E , /
Mo + dp or dp \ I3 p,olfw ®.p)

3nU/
o

. +Ua(r))=1pg[neq+5n(r)] (152)

We stress that this transport equation in real space is linearized. Obtaining a nonlinear equa-
tion in real space appears far from obvious in our formalism; in particular it is not clear, when
looking at Eq. (62), if the Vlasov force (the first term between bracket in Eq. (152)) still de-

pends only on f,,/(p,p’) or also on A,/ (P, P2|P3, P4) at Velp — p4| > A.

1.3.3 Transport equation at T =0

We now let T — 0 at fixed g and w. We describe the state of the system in presence of H,,, by
0(t) = [FS)(FS| + 60(t) (153)

The linear response regime (i.e. the absence of second harmonic generation) ensures that only
the momenta that differs from py by g are excited. The fluctuations of the quasiparticle distri-
bution thus remain zero for |p — pg| > q, and the wavenumber q acts as the small parameter
Do of the low-energy expansion. The linearized transport equation is then

. N 1 .
(lat + €p+q/2— Ep—q/z) ngo' - (n12+% - ng_%) (Ua(q) + ﬁ chro’(P: P/)ngzax)
P/O-/
=il (A9, T =0) (154)
0

P
the nonzero temperature expression (149); it is of order O(q/pg)? to leading order, with non-

Markovian corrections of order O(q/pg)® (see Egs. (125) and (128)). To leading order in q/pg
the transport equation (154) then reduces to its collisionless left-hand side.

The zero-temperature collision integral flljg(ﬁq, T = 0) is obtained by replacing nf,% — n in

2 Transport dynamics in Fermi liquids

2.1 The transport equation as a linear integral equation

In this section, we study the linear integral kernel contained in the collision integral Eq. (149)
at nonzero temperature.

2.1.1 Collision kernel

We express the collision collision integral in terms of the collision kernel

Naa’(P: P/) = _F(P)L35ao’5pp’ - an’(p: P/) + Sao’(p; P/) (155)
i 1
@) = 752 Noo®. P () (156)
p/o-/
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Note the transposed order of p’c’ and po in Eq. (156). The diagonal part of \ is given by the
quasiparticles damping rate Eq. (133) and the off-diagonal part involves the four subkernels:

21

W, (P/; P|p3: p4) pP3tp /
Eyo(p,p) = s Z ~ 2 6,y 0(ep+ey —€p —€p INP (157)
P3,p4€D
27‘[ +p /
Ene.p) = T3 D Wii(p',Plps, P4)SEL 5 (e, + ey — €, — € INE (158)
p3.p4€D
21 +p’
Sao®:P) = T3 2, [Woul®,P2IPs P) + Wiy (P, P2IP4, P)] 657, 6(ep + €, — €y — €, )Nt
P2,p4€D
27 / +
Sue.p) = T3 D5 Wil palp.pa)sy 5 6 (ep + p, — ey — e, Npr, (159)
P2,p4€D
where Ny?, = nf,?nf,gﬁ;‘i +ﬁ;‘}ﬁ;§n§2. The collisions kernels E,,. describe the coupling be-

tween quasiparticles in mode po and p’o”’ through collisions where p and p’ are on the same
side of the collision (either incoming or outgoing). Conversely, S, describes the couplings
where p and p’ are on opposite sides.

2.1.2 Conservation laws

Collisions obey a few conservation laws which play a prominent role in transport phenomena:
the numbers of spin T and | particles, the momentum and the energy are the same before
and after any collision. In mathematical terms, this means that the collision kernel N has 6
zero eigenfunctions (counting the 3 components of the momentum). Since the kernel is not
symmetric, it has distinct left and right eigenfunctions.

To recognize the conservation laws on our collision kernel, let us contract it with some
arbitrary functions n,(p) to the left and v, (p) to the right:

2m P3P P
Z g (p)Naa’(p) P/) Vcr’(p/) = F Z 6P?+P;6(6P1 + €p, ~ €ps ~ Eps )NP;P4
pp'€D,c0’=1] P1P2P3P4ED,0=T|

x [%WTT(P1:P2|p3:p4) (vo(P1) + v6 (P2) — Vo (P3) — v (P4))

+ Wp(P1, P2|P3, P4) (Vo (P1) + v (P2) — v—(P3) — vg(p4))]ng(pl) (160)

The 6 functions v, which cancel this expression for all n,, i.e. the right zero-energy eigen-
functions, are v;(p) = 8,1, 85,|> Px> Py P; and €,. The corresponding conserved physical
quantities are the density fluctuations 6 p,;, the macroscopic velocity v and the energy density
oe:

1
5oy = 75, m0(P) (161)
peD
1
mv = NanU(p) (162)
peD
1
Se = EZepna(p) (163)
peD

Unsurprisingly, opposite spin collisions (with probability W;|) are responsible for the absence
of conservation of the velocity imbalance vy —v; and energy imbalance e; —e;.
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2.1.3 Total density and polarization

In our unpolarized Fermi liquid, fluctuations of the density n, = n; + n; and polarisation
n_ = n; —n_ are decoupled, by the transport equation in general, and by the collision integral
in particular. The corresponding collision kernel are:

Ni(p,P) =—T(P)L%6 0 6py —E+(p,p) +25:(p,p),  L(pP)=I"(P)£1;"(p) (164)

with
/ 1 / P3+P4 p’
Ei(P:P ) = E Z WEi(p:p |p3> p4) 5P+p 5(61) + ep’ - €p3 - 61)4)]\11331,4 (165)
P3P4
1 /
S:l:(P: P/) = E Z WS:l:(pa P2|P/; P4) 5}:—:;;46(6p + 6p2 - ep’ - 6p4)N1§)/2P4 (166)

P2P4

We have defined the (anti)-symmetrized probabilities Wy, and Wg, :

We+(P1,P2lP3,P4) = —WTT(P1,P2|P3’P4):|: (WTL(P1,P2|P3’P4)+WTL(P1,P2|P4’P3)) (167)
Wi+ (P1, P2lP3,P4) = EWTT(P1:p2|p3;p4) £ (WTL(P1:P2|p3:p4) + Wy, (Py, P2IP4, P3)) (168)

Remark that Wy, = Ws,. We have used the symmetry properties (inherited from Egs. (41)-
(43)):

W(Pp4, P3lP2, P1) = W(P2, P11P4> P3) = W(P1, P2IP3, P4) (169)

Among the conserved quantities Eqs. (161)-(163), NV, inherits §p,+6p, vand &e, while
N_ inherits only §p; —8p.

2.1.4 Quasiparticle distribution in the thermal window

To focus on the thermal energy window, to which the fluctuations of n(p) are limited, we
reparametrized the quasiparticle distributions as

Ui(CI)

ne(p) = (170)

. 1
——8() v(y,0), with  g(y) 220 /D)
We have parametrized the 3D momentum p with y = (ep,—u)/T, 6 = (P, q) and an azimuthal
angle ¢, of which v is independent due to the rotational invariance about q. In the spirit of
linear response theory, we have scale the distribution v to the intensity Uy = U; £ U| of the
drive. By taking out the thermal broadening function dn.,/de = —1/(T g(y)), the change of
variable Eq. (170) smoothens the dependence of v, on y. It also transposes'! the collision
kernels
gy’)

g(y)

and similarly for E; and S;. In term of v, the collision integral becomes (compare with
Eq. (156))

N, p) = N(p,p") (171)

_eq eq

I;"(p,n) = ZNi(p,p )v+(p") (172)

eq eq

Tl
5 €q 4, e — »%d..¢q /
eq eq and using 7 o quf pe = My Ty N}‘)’ pe for 4 wavectors p, p’, p; and p,

g _
80 T

constrained by energy-momentum COHSEI’VathIl

This can be seen by writing
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@ )

Figure 5: (a) The angular parametrization where p; + p, is chosen as the polar axis
of the spherical frame. This parametrization is used for Wy in Eq. (173). (b) The
angular parametrization where p; — p5 is chosen as the polar axis of the spherical
frame. This parametrization is used for Wy in Eq. (174) . The last parametrization
where p; —p, is chosen as the polar axis is not shown here.

2.1.5 Angular parametrization of 4 momentum-conserving wavevectors of the Fermi
surface

To leading order in temperature, collisions of wavenumbers within the thermal window de-
pend solely on the angles between these wavevectors. Four wavevectors of the Fermi surface
constrained by momentum conservation p; + p, = ps + p4 are advantageously expressed in
the orthogonal frame made of (p; +p,, p; —P3, P1 —P4). Depending on which vector is chosen
as the z axis frame, this leaves three different ways of parametrizing the angles, depicted on
Fig. 5. Since p and p’ play the role of p; and p, in E, we use the parametrization of Fig. 5a
for this kernel:

615 = (P1,P,)
Wi (012, P1234) = Wi (P1, P2IP3, P4) With { 15,34 = (P1 — P2, P3 —P4)
cos O3 = cos 6, = cos %, 0, = (p1/+—pz\,pi)
(173)
where the third line is the angular version of the momentum conservation constraint. For S in
which p and p’ play the role of p; and p; we use the parametrization of Fig. 5b:

013 = (19/1:?3)
We1 (613, P13524) = W (P1, P2lP3, P4) With { ¢354 = (p1 + m +Pp4)
- —ein?B 0. —(p —p 1
cos 0, = —cos 04 = sin -, 0, = (p; — P3, P;)
174)

Since the collision amplitudes A, are more readily expressed, as in Egs. (94)—(95) in
terms of the angles 6;; between p; and p;, we use geometrical relations to express the angles
of a given parametrization. For example for the parametrization of Fig. 5a:

2 913 2 912 2 2 ¢12—>34

sin“ — = sin“—=sin“ ——— (175)
2 2 2
0 ] N
sin2 24 = sinzﬁcosZm (176)
2 2 2

The angular integration in different parametrizations are related by the change of variable

f sin 0,3d6,3d¢ 13,04 sin 61,d0;5dP 15,34

W(913: ¢13—>24) = f
Zsin% 2COS%

W(b12, P1234)  (177)
for any function W (613, ¢13-24) = W(612, $12-34)-
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2.1.6 Low temperature factorization of the kernel

Among the fluids described by a Boltzmann equation, Fermi liquid have a remarkable property:
their collision kernel A/(p, p’) can be factorized into a radial (or energy) dependance and an
angular dependence on

a=(p,p/), cosa=cos0Ocosd’ +sinbsinb’ cose (178)

This a consequence of the restriction of both the collision probabilities and energy-conservation
constraint to the Fermi surface, such that the only remaining energy dependence in the kernel
stems from the thermal populations n®d.

We illustrate this decoupling in the calculation of S..:

/ (m*)Z dQZ / / . a
S+(p,p) = 4rpglsing] f N oy Y f EWSi(p,pzlp ,P—P' +P2)0 (cos 0, + sin 5)

+0(T?) (179)

with N)7V13y2 = n(y;)n(y,)n(ys) + a(y;)n(y,)n(y;) and n(y) = 1/(1 + e”). From the original
expression (166), we have eliminated p, using momentum conservation, and switched the

radial integration from p, to y, using the relation, valid for a function h(p,) peaked about pg:

&’p m’p do
n )23 h(py) = 2 ;ZJ J Zh(y2,92,¢2)+O(T) (180)

where the solid angle d2, = sin 6,d09,d¢, locates p, on the spherical frame of axis p—p’, as
depicted by Fig. 5b (with p = p;, p’ = p3). To leading order in T, the resonance condition is

2pF sin(a/2)

. (sing + cos 02)+O(T) (181)
m

€p T €p, ~€p ~ Epipyp/
and allows us to integrate over 6, in Eq. (179). Recognizing the angles of Eq. (174), we replace
Ws.(p, PP, P — P’ + P2) by wss(a, ¢5), and there remains to integrate separately over the
energy coordinate y, and the angle ¢,. The same calculation for E leads to an expression
similar to Eq. (179) with p; playing to role of p,.
We thus obtain the factorized kernels

’ (m*)z 2

E.(y,y ,a) = 2 S(y,—y (@) +0(T?) (182)
/ (m*)*T 9

S:(y,y',a) T S(y, ¥y )s(a) +0O(T?) (183)

Here, S is an energy kernel independent of the collision probabilities and thus universal to all
Fermi liquids:
y— y’ 1 cosh %’

) 7
2 sinh 5L cosh %

The angular kernel Q(a) follows from an azimuthal integration over ¢ in the appropriate
spherical frame

Sy, y)= (184)

27
Qpi(a) = J d9 wi(a, @) (185)
0

2m 2|cosg|

(186)

27
. (@) f d¢ wsa(a,¢)
0

2 2[sing|
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730 Changing the summation over p’ into integrals over y’ and 6’, we express the collision
740 integral in Eq. (172) as

10 0) = L6 T007.0:0)

/ Q Q
+ J dy’iﬂ (S(y, 2 gy, @)
T Qr Qr

)vi(y’,e')} (187)

721 We have extracted a typical collision time T which gives the order of magnitude of the collision
742 integral:

1 B (m*)STZ <WE+(9’¢)> (188)
0,9

T (2n)3 2cos0/2

73 where (...)g, is the average over solid angles, see Eq. (136). The damping rate Eq. (135) also
7as scales with 1/7:

I(p) = %f(y), I(y)=n*+y? (189)

745 Note that this can also be deduced from the number conservation law I'(p) = (1/L?%) Zp/ S.(p,p)=(1/7) fj:; S|

726 2.1.7 Transport equation in the thermal window

727 We conclude this subsection by giving a dimensionless form of the transport equation (148)
74 in the thermal window. Assuming a periodic driving U,(q,t) = Uy(q)e™“" and taking the
720 average of (148) in 0 = P.q(T) + 60(t), we get:

3neq 1 / / s rlin
(@ = vpqu) o (p) +vpqu—-— L_E Us(@)+ 7 > Foor .0 MG (0) | =il (p,n)  (190)
P p/U./

750 where the quasiparticle distribution n(p, q, t) = n(p, q)e'" is defined by Eq. (150) and I}Tm(p, n)= (fgg(ﬁ_q)).
751 Inserting the change of variable Eq. (170) we obtain:

/
(2 —cos 0) v.(y,0)+cosBO (1 — % J dy’i%Fi(a)g(y/)Vi(y’, 9/)) =

wWo

i (= dq’ Qre(a) Qqi(a)
— {F(y)vi(y, 0) +J dy’ (S(y, RPN y’)Si—) v.(y',0)
woT 2T QF QF
(191)
752 where
wo = Vgq (192)
753 is the typical excitation frequency, and
* a)x a
Fi(a):mfFfTT( )£ fy(a) (193)
I 2

754 are the dimensionless symmetric and anti-symmetric Landau functions. The f . are expressed
755 here as in Egs. (92)—(93) in terms of the angle a between the two wavevectors p and p’ of
756 TNOrM pp.
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2.2 Zero sound in the collisionless regime

Since the regime of hydrodynamic transport is covered by Ref. [32], we concentrate here on the
collisionless regime wyt — 400, where the collision integral can be treated as a perturbation
of the transport equation. We will perform an expansion of the quasiparticle distribution v,
in powers of 1/w(7:

Ovy

Vi=V$+

+0(wot) 2 (194)
Cl)oT

2.2.1 Dispersion equation in the perfect collisionless regime (wyT = +00)

Let us first compute the leading term vil in the perfect collisionless regime limit 1/wyT = 0.
The low-temperature transport equation (191) in this regime is

(c—cos0) v4(y,0) =—cosO (1 -2 f dy’iQ FE@g(y) 7.0y, 9’)) (195)

Vi

where ¢ = w/w,. Since there is no explicit dependence on the energy variable y on the
right-hand side, the collisionless distribution is energy-independent, vil = vil(Q). To solve the
remaining 1D integral equation, we project v, and the interactions functions F*(a) onto the
basis of Legendre polynomials

+00
v, (0) = vapl(cose) (196)
1=0
+00
Ffa) = ZFliPl(cosa) (197)
1=0

To lighten the notations, the subscript “cl” is implicit here and until Sec. 2.2.4. The integral
equation folds onto a matrix equation whose [-th component is given by

vf(c)—ZAfl,(c)v?f(c)+Blo(c) =0 (198)
l/
where we have introduced the matrices
! du u
By(c) = f —Pw) Py (u) (199)
1 2 c—u
A(c) = FyBy(c) (200)

This infinite-dimension linear system is solved by formally inverting the matrix 1 —A:

Vo) = _#i(C)BO(C) (201)
where the source vector B, = (Bio);en is the consequence of the external drive (recall that v is
scaled to the drive intensity U). A phononic collective modes occur when some component of
the quasiparticle distribution v diverges in response to the drive, i.e. when the matrix 1—A*(c)
has a zero-energy eigenvector. The dispersion equation on the reduced velocity ¢, = wgq/vgq
of the collective modes is then

det(1—A*(cy)) =0, (202)

This dispersion equation can have several solutions, both real and complex. However, when
F, is much larger than the other F;’s, as in the case of weakly-interacting Fermi gases and
3He, there is a dominant real solution, traditionally called zero sound. Physically, this solution
describes a longitudinal collisionless phononic branch.
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2.2.2 Log-perturbative expansion of the zero-sound velocity

We are now calcutating the zero-sound reduced frequency c, in powers of a in a weakly-
interacting Fermi gas. In equation (198) for [ > 0, the summation over [’ is dominated by the
term I’ = 0 (which contains the dominant coefficient F,) so that:

v =—Byo(c) + Fy Bip(c) v5 +0(a), forl>1 (203)

Anticipating on the followings, we have estimated B;; = O(1/a). Reinjecting in (198) for
[ = 0, we eventually obtain j. = vét, which represents either the dimensionless density j, or
polarization y, response, depending on the + index:

Boo(c) + 23150 FirBoy(c)Byg

2:(0)=— (204)
* 1—FZBoo(c)— > FEFEBy 11(€)By o(c)
The dispersion relation 1/ (cy) = 0 now reduces to:
+ + -t —
1— F§Boo(co) — Y FEFifBo(co)Bu o) =0 (205)
l/

Since we expect that ¢, — 1 tends to zero exponentially as |a| — 0, we introduce the variable
y =In[(cy—1)/2]. Contrarily to cy, y can be expanded in power of a:

+
Y —

=24 o@ (206)
a

The log-perturbative corrections to y convert into a prefactor correction in ¢y — 1, reminis-

cent of the Gork’ov Melik-Barkhudarov prefactor in the calculation of the superfluid critical

temperature [37]. When ¢, tends to 1 exponentially, the functions B;;; have the following

expansion
+

1 _
Bgo(cg) =—1— EYi +0(a) and Bjo(cy) = Boi(co) = % +0(1) (207)

By substituting the expansions of y, of the Landau parameters Fli and of the functions By;/
into (205), and by restricting to terms of order O(a), we obtain the following expressions of
v, and v

2
Yoi =Fm and Yzlt:—Z—i—nTZ ZF#%—(SFS‘: =4 (208)
2a” \1=o

where we have expanded FSE as:
Ff= L2 +6F%, SFF=0(a% (209)
0o T F 0> o = Ula
We eventually recognize in y* the sum of the F li that is the forward value (a = 0) of F*.

2 _
yE =—m—2+0(a) (210)
This shows that the Landau function F(a) in the integral equation (195) can be replaced (to
leading and subleading order in a) by its value in a = 0, that is for quasiparticles with colinear
momenta p || p’. This is a consequence of the longitudinal nature of zero sound at weak-
coupling: the quasiparticle distribution v, (6) o< cos8/(c, — cos ) is peaked about 6 = 0,
such that the quasiparticle momenta p are all nearly colinear to q.
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806 In short, the zero sound velocity (in units of vy) for the density mode is given by
cd=1+2e*e™7,  T>0 (211)
so7 and the velocity for the zero polarization mode is:
cg=1+2e*e™",  a<o0 (212)

sos Second order corrections thus shift the density zero sound peak to higher velocities in the
soo density-density response, increasing c¢j — 1 by a factor exp(6) >~ 403. We then expect the
si0 resonance to be more easily observable than predicted by first-order approximations. Since it
s11  exists only for a > 0, the density zero sound is observable in a Fermi gas only on the metastable
s12 branch. Experimental exploration of this metastable branch are restricted to |a| < 0.1, where
s13  zero sound is visible only at very low temperatures.

814 Conversely, the polarisation sound mode, which is observable on the ground branch at
s15  a < 0, is shifted closer to the continuum edge, with c; —1 reduced by a factor exp(—2) ~ 0.14.
s16 This reduces the temperature range in which this zero sound mode is observable.

817 We have benchmarked these analytical results using a numerical solution of Eq. (198).
s1s More details for the numerical evaluation are given in Appendix B.

s1o 2.2.3 Response function in the collisionless regime

s20 Our discussion of zero sound so far has focused on reduced frequencies ¢ ~ ¢y ~ 1. We now dis-

s21 cuss numerically the rest of the spectrum in the density-density response Im[y , ] = Im[ v?r] and

s22 polarisation-polarisation response. Figs. 6 and 7 show the reduced spectral density Im[fp,p(c+i0+)].
s23 In the attractive case a < 0 (red curves), second-order corrections tend to decrease the devia-

g2+ tions of Im[ ,] and Im[,] from the Lindhard response of an ideal gas (black curve). Since a

25 stable Fermi liquid regime exists in ultracold Fermi gases only for a < 0, this behavior should

s26 be the easiest to observe in cold atom experiments. Conversely, in the repulsive case a > 0

s27  (blue curves), the deviations are increased to second-order. This can be understood by com-

s2s paring the first- and second-order approximation of the Landau parameters. For the leading

820 coefficient, F(:)'E, we have:

o
O
@
PO

2

1+1.143a (213)

2

14+0.130 a (214)

830 Thus, for negative (resp. positive) a, the second-order FSE is smaller (resp. larger) than its
sa1 first-order counterpart both. As a result, the effective interaction between quasiparticles is
s32 reduced (resp. increase), tending to restore (resp. remove) the behavior of an ideal gas. Even
833 though this is true both in the density and polarisation channel, the effect is ~ 10 times larger
s34 in the density channel.

835 In the density response (Fig. 6), a zero sound resonance appears, in the repulsive case, as
836 a Dirac peak at ¢y > 1; there remains also a secondary peak near the edge of the quasiparticle-
837 quasihole continuum for ¢ $ 1 (see inset). This secondary peak visibly shrinks as second-order
s3s corrections push the zero sound resonance away from the continuum. In the attractive case,
830 interactions tend to smoothen the sharp behavior at the continuum edge, and the density
ss0 response becomes a broad, featureless spectral function.

841 Conversely, in the polarisation response (Fig. 7), the resonance appears in the attractive
sa2 case, and the broad structure in the repulsive case, which indicates a repulsive/attractive,
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Second order, kra = -0.35
Second order, kra = 0.0
Second order, kra = 0.35
First order, kpa = -0.35

First order, kpa = 0.35

ot

Imc[cy p]

2 |
R

2
0 L00 102 y .

------------ =%
I s S N
% 0 0.2 0.4 0.6 0.8 1.0 1.2
w/wy

Figure 6: The reduced spectral density Im[y ,(c +i0%)] =Im[v{(c +i0*)] as a
function of ¢ = w/w,, for different values of a = kpa, blue curves for a > 0 and red
curves for a < 0. The dashed lines correspond to the first order calculation [48].
The black line is the non-interacting case. The solid curves include second-order
effects; they are obtained by numerically solving (198) truncated to [ ,,, = 100.

density/polarisation duality. This time, the resonance is brought closer to the continuum edge
by second-order corrections, and the secondary peak near the continuum edge grows. In
presence of a small spectral broadening (either due to collisional damping, Landau damping
or experimental resolution) the two peaks would become indistinguishable.

2.2.4 Collisional damping of zero sound

We now aim to include the collisional correction 6 v, (see Eq. (194)) in the distribution ..
In the regime where c is exponentially close to 1 (y = In([¢c —1]/2) — —o0), the leading-
order solution vil can be written more simply by discarding the Legendre decomposition and
returning to the angular variable 6:

1
cos 0 Pi

. 215
c—cosB 2Bgyy(c) (215)

v{(0) =

This solution was obtained by replacing F*(a) with F£(0) in Eq. (195), as shown in Section
2.2.2. To simplify the notation, we denote by § o+ the [ = 0 component of v+, that is:

T
pd =12 =J sin8do v2(6) (216)
0

We define p. in the same way. We then substitute the expansion of v, given in Eq. (194) into
(191), keeping terms up to order 1/w,7. Thus, in the collision integral, v, is replaced by its
leading-order expression v‘i. Since vi does not depend on energy, we perform an averaging
to eliminate the dependence of the collision integral on y and y’:

e = e 412
J dy’ S(y, £y ) =T(y), J dy g(y)F(y)=T (217)

—0Q —0Q
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Second order, kpa = -0.35

Second order, kpa = 0.0

Second order, kra = 0.35
First order, kra = -0.35
=== First order, kra = 0.35
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Figure 7: The reduced spectral density for the polarisation
Im[,(c+ i0%)] = Im[ v, (c +i0™)] for the same parameters as Fig. 6.

We then obtain the following equation for v.:

cos 0 F*(0) 4n? i 1 dQ’
6) =— 1— — cl 0) + cl 9/
7+(0) c—cos@( 2 pi) 3 weTc—cosh 7+(0) 2m N(@) V(07
(218)

where the angular collision kernel N, (a) and its expansion in Legendre polynomials are given
in Appendix C.

We then integrate over 6 so as to obtain p, on the left-hand side. In the collision integral,
pil can be replaced by the total density p,, neglecting terms of order 1/(wo7)?. We thus
obtain the following solution:

—2Bgo(c)
1—F=(0)Bool) + oz 5 5o

woT 3 Bgolc)

p+(c)= (219)

where the collisional contribution C, is given by:

s
sin O cos O do’ sin @ cos 8’
C = dg ——+ | —db 220

+(€) fo (c—cos0)? J 27 (c—cosB)(c—cos 9’)Ni(a) (220)

Since these integrals are dominated by the vicinity of 6 = 0 and 6’ = 0, the collision kernel
N.(a) can be replaced by its value at @ = 0. This can again be interpreted as a consequence
of the quasi-longitudinal nature of zero sound in the weak-interaction regime. We thus arrive
at

C(6) = =By (c) (1 +2(c = 1)y?(c) No(0)) (221)

with y(c) =1n % A more general calculation of the function C, is given in Appendix C.
To obtain the collisional correction to the zero-sound velocity, we now solve the equation

1

——— =0, withzf=cF+5cE. (222)
p=(2) 0T T0%

37



871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

SciPost Physics Submission

Expanding the denominator of p. in powers of O(1/w,7), we finally extract the collisional
correction to zero sound, which is purely imaginary:

2n2 i Culey)  2m% i
bct = ;[ Lo 2 L 10— ). (223)
woT B(y(cy) 3 wpT

This result describes the broadening of the zero-sound resonance in the response functions
xp(c) and x,(c), or equivalently, its exponential damping in the time domain. It is worth
noting that Im(c,) depends on the collision probability W only through the mean collision
time 7, which makes the product wy7,Im(cy) universal in weakly interacting Fermi liquids.

In this sense, the damping of zero sound differs from that of hydrodynamic sound (first
sound), which is sensitive—via the shear viscosity n—to the angular dependence of W, and
therefore varies with kgpa in a way that differs significantly from 7.

2.3 Numerical solution in the collisionless to hydrodynamic crossover

Between the weakly collisional regime studied in Section 2.2 and the hydrodynamic regime
treated in Ref. [32], there exists a smooth transition as a function of wy7T [31,49]. In the
following, we develop a numerical method that allows us to solve the transport equation (191)
in this intermediate regime.

2.3.1 Numerical method

In order to solve the transport equation (191), we project v.. onto basis of orthogonal polyno-
mials:

vi(y,0)= > v, P(cos0)Qu(y) (224)

n,leN

where the P; are the Legendre polynomials. The orthogonal polynomials Q,, for the energy
dependence [50] are defined by Q, =1, Q; = y and

) dy ,
Qn(.y)Qm(.y) = 5n,m||Qn|| (225)

J_Oo 4cosh® 2
) QP -
an - Qn+1 + gnQn—l wit gn - ||Qn—1||2 ( )

The decomposition over the Q,, allows for an exact treatment of the energy dependance, be-
yond the relaxation time approximations, which limit the quasiparticle distribution toitsn =0
component. The decomposed transport equation reads

w i I —= [+1 =+
—+ MZ)?»Z ———F, - F,, W =—5, 227
(wo wor ) E 21—1 17EF gp43tHLE 1,1to (227)

where we have introduced a set of vectors and matrices

[

W, 1 100
. z 4
W= "=]|, do=(0|, U=[0 00 (228)
Fj:
. l+57 0 0 -
o1 Ly )=| © oo (229)
L= 2041 °)
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The collision time 7 has been defined (188). The infinite matrix (/\/li)nn, follows from the
decomposition of the collision kernel N'(p,p’) (see Eq. (164)) over the orthogonal basis; its
expression in terms of W is given in Ref. [32].

We now present a numerical scheme to solve the transport equation (227) based on a
backward recurrence on [. Assuming that at rank [ + 1, the component %' ™! has been linearly
expressed in terms of 7', we can propagate the linear relation backward in I:

P =31 (230)

where we omited the & index for convenience. Numerically, we introduce a truncation param-
eter n,,,, and represent the infinite matrix ' by a complex n,,,, X ny,, matrix. Substituting
this relation into equation (227) for [ > 1, we derive the following backward recurrence rela-

tion on H!. .
l w i [+1 — -1_
I l 1+1
= [[=4+— — F F,_ 231
H 21—1 ((wo CL)()TM ) 21 +3 l+17-[ ) -1 ( )

To initialize the recurrence, we introduce a cutoff [, and we assume Hma+! = 0. At the end
of the backward recurrence, we solve the remaining 2n,,,, X 21, coupled system on %° and

7! i
. i 0)=0 _ 15121
{(wo + a)OTM+) Vi = 3F1 Vi

w i 1\21 _Tt=20 _27-t9221 _ =
( +w0rM+)v+ Fovi—sF,Hiv, =—lo

(232)

wWo

Here, ’Hi is computed recursively, starting from [ = [,,,,. We choose the values of [,,,,, and n,,,
based on a convergence analysis. Selecting cutoffs that are too low may lead to non-physical
oscillations in the response functions. We note that ., and n,,, depend on the regime of
wqT under study. In the collisionless regime, we can restrict ourselves to small values of n,,,.
This confirms the observation made in the previous section: the energy dependence of p.
is contained in the collision term, which is subdominant. Conversely, in the hydrodynamic
regime, small values of [ ., suffice. The conserved quantities are at [l = 0 or 1 and the non-
conserved quantities at [ > 2 decay as (w,7)! [50].

2.3.2 Anisotropic driving potential for the polarisation

The polarisation response to the isotropic drive introduced in Eq. (137) vanishes as w7 in
the hydrodynamic regime. This is because such a drive couples to a dissipative component
(v(l)_). To make the diffusive mode of polarisation observable, one should rather couple the
drive directly to the conserved quantity ny —nj, in the [ = 0 channel. To do so, we assume
that the driving potential can be varied independently with q and p:

Hex = Z U-(p,q) (771')+q/2,T7A’p—q/2,T - ?1,)+q/2,l?P_Q/2,l) (233)
peD

The dependence of the driving potential on p is irrelevant, so that we can write:
U_(p,q) = U-_(q)u(b) (234
This change of H,,, modifies the source term in the polarisation transport equation:

(2 —cos 9) v_(y,0)+ cos 6 [u(@)— 1 J dy’d—wF_(a)g(y’)v_(y’, 0’)] =—iI(y, 0)
2 27

wWo
(235)
To couple the drive directly to the polarisation fluctuations, the product u(6)cos8 should
have a non-vanishing [ = 0 component, which can be achieved with u(6) = cos 0 for example.
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For simplicity, we omit here the components | > 1 whose contribution is negligible in the
hydrodynamic limit, i.e. we assume u(6)cos6 = 1. The set of equations to be solved at the
end of the backward recurrence is then:

(2 +5Mm0)3° = 1F 7! — i

w @oT kR 1 v (236)
(& + ML) 3L —F 3 — 2F, 123 =0

2.3.3 Response functions in the collisionless-to-hydrodynamic crossover

-1

—— 2nd order, wyr, = 0.01

-==- st order, wyr, = 0.01
— 1.0

-==- 1.0

— 10.0

-==-10.0

— 450.0

-==- 450.0

4 k‘pa =-0.5

Figure 8: The crossover between the hydrodynamic (red curves) and collisionless
(blue curves) regimes in the reduced spectral density, Im[7,,] = Im[ vg L], at
interaction strength kpa = —0.5. The collision parameter w7, is given in [32].
Dashed lines indicate the first-order analytical solution, while solid lines correspond
to the second-order correction. Here and in Figs. 9 and 10, the summation over n is
truncated from n,,,, = 50 in the hydrodynamic regime to n,,, =5 in the
collisionless regime. Similarly, the truncation in [ is set to [, = 5 in the
hydrodynamic regime and to [, = wyT outside of it.

We illustrate the collisionless-to-hydrodynamic crossover for the density (Figs. 8 and 9
for the attractive and repulsive case respectively) and for the polarization response functions
(Figs. 10, for the attractive case). We compare the first-order prediction (dashed curves) to
the second-order prediction derived in this work (solid curves).

In the density response function, we observe a shift of the first sound peak toward higher
velocities when comparing the first-order and second-order calculations. Recall that the first
sound velocity (in units of vg) is given by

1+FHA+FH/3
clz\J(’Lo)("Ll/). (237)

3

Since the second-order terms in F&“ and F1+ are positive (irrespectively of the sign of kra), they
increase the value of ¢; compared to the first-order result.
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10 m
—— 2nd order, wyr, = 0.01
===+ 1st order, wyr, = 0.01

— 10

Im[y p}

k’]:(l =0.5

==

—————

Figure 9: The crossover between the hydrodynamic (red curves) and collisionless
(blue curves) regimes in the reduced spectral density, Im[ 7, ] = Im[ vg L], at
interaction strength kpa = 0.5. Dashed lines indicate the first-order analytical
solution, while solid lines correspond to the second-order correction. The
summation over n is truncated from n,, = 50 in the hydrodynamic regime to
Npax = 5 in the collisionless regime. Similarly, the truncation in [ is set to [, = 5
in the hydrodynamic regime and to [,,, = w7, outside of it.

In the collisionless regime, a zero-sound mode is present in the repulsive case (Fig. 9),
possibly with a secondary peak near the edge the continuum. The resolution of those two
peaks allows us to further divide the collisionless regime into two sub-regimes according to
the value of w(T. For 1/(co—1) > wyT > 1 (w7t ~ 100 in Fig. 9) the zero-sound mode is
not separated from the quasiparticle-hole continuum, which gives rise to a single peak with an
important left skewness. A deeper collisionless regime, or true zero sound regime, is reached
for woT > 1/(co — 1) (woT ~ 4500 in Fig. 9). In this regime, zero sound separates from
the continuum, which however retains a significant spectral weight. This deep regime is more
easily reached when second order terms are included (compare the blue solid and blue dashed
curves in Fig. 9); this is because ¢y — 1 is much larger in the second- than in the first-order
approximation. In between the hydrodynamic and collisionless regimes, the density response
function retains a shallow maximum whose location smoothly evolves from c; to cy. This peak
is however too broad to be identified as a collective mode: its width Ac is comparable to 1 in
units of vg.

We now turn to the polarisation response (Fig 10). In the collisionless regime (blue curves),
we observe a skewed peaked at the continuum edge, but no zero sound resonance yet for
woT = 4500 (blue curve). Again, this can be understood by comparing w7 to 1/(c,—1): the
log-perturbative corrections from the second-order approximation reduce the deep collision-
less regime to wyT 2 10° for kpa = —0.5. In the hydrodynamic regime (red curves), there
appears a diffusive mode centered in w = 0, as predicted by the Navier-Stokes equations of
the Fermi liquid [32]. Note that the large spectral weight of this peak is a consequence of
our choice of an anisotropic drive Eq. (233). In between the collisionless and hydrodynamic
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Figure 10: The crossover between the hydrodynamic (red curves) and collisionless
(blue curves) regimes in the reduced spectral density for the polarisation,
Im[7,] = Im[ vg_], at interaction strength kga = —0.5.

limits, the polarisation response displays a very flat profile between two local minima in ¢ =0
and c ~ 1.

3 Superfluid pairing of Landau quasiparticles

In this section, we use the Landau quasiparticles, and their effective Hamiltonian Eq. (49),
to describe (in principle exactly) the superfluid phase from the superfluid instability down to
T = 0. Our description is valid provided superfluidity remains a weak phenomenon in the
sense that

A, T, X e (238)

where A is the superfluid order parameter and T, is the critical temperature. Weak fermionic
superfluids should then be viewed as condensates of quasiparticle pairs [34], schematically de-
picted by Fig. 11; this is a substantial improvement from the pairs of bare particles interacting
via the bare interaction (as described by BCS theory), or even from the frequent picture of bare
particles interacting via a screened interaction. The head-on collisions p,—p — p’,—p’ among
quasiparticles, described by the amplitude .4, favor the pairing instability and the appearance
of a nonzero pairing field. We shall see that the pairing collision amplitude A(p,—p|p’,—p’)
must exhibit a logarithmic divergence as A/er — 0O to ensure the existence of a superfluid
phase.

In our approach, the compatibility of the quasiparticle picture with the existence of a su-
perfluid ground state is tied to the cutoff A. Exciting a few pairs at the Fermi level (from e.g.
the Fermi sea or the superfluid ground state) will change the energy of the interacting system
by ~ A. The corresponding transition in the noninteracting fluid is conversely quasi-resonant.
Thus the weak crossing condition on the spectrum of the Fermi liquid (Eq. (4)) is compatible
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Figure 11: Cooper pairs (dashed ellipse) in a Fermi superfluid are pairs of T and |
Landau quasiparticles (red and blue clouds). To first order, the spin-T quasiparticle
can be seen as a cloud of spin-| particles (blue dots) surrounding the original spin-T
particle (red dot).

with the existence of a pair binding energy as long as

A, T.<A (239)

3.1 Pairing equation

We formulate an evolution equation that captures the onset of quasiparticle pairing in the
normal phase [17], as the system approaches the critical temperature T — T.". This equation is
to the quasiparticle pairing field ¥, what the transport equation is to the density field )7:"7 Yo
Although pairing is in principle not restricted to the singlet spin wavefunction (as in e.g. the
A-phase of He), we have in mind here the case of ultracold fermions, where the interactions
among opposite spin quasiparticles .A;; dominateand favor the formation of 1| pairs. We thus
restrict to spin-singlet pairs; the corresponding quantum pairing field in momentum space is

d; =T-p-a/21Tp-a/2.1 (240)

This operator effectively annihilates a pair of p T,—p | quasiparticles with a center-of-mass
momentum q. By definition, its expectation value vanishes in an equilibrium state of the
normal phase (ﬁ;})eq = 0 for T > T,. However, fluctuations of d are possible for example
under the influence of an external potential. The pair susceptibility, or pair response function,
then quantifies the magnitude of these fluctuations with respect to the drive intensity. We are
looking for a divergence of the pair susceptibility, that would signal that the normal phase
becomes unstable, and the system undergoes a phase transition.

To compute the pair susceptibility, we introduce an external perturbation H.,, that couples
directly to the pair field:

Ao = 9(~0,0>(49) +he. (241)
p

where the external pairing source oscillates at frequency w, ¢(q, t) = ¢(q)e ¢, causing ﬁg to
oscillate at frequency w—2u. We expand the state of the system about a thermal quasiparticle
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state 0 = Peq(T)+ 60 (see Eq. (129) for the definition of 9q(T)). Within linear response, the
deviation from equilibrium is controlled by the drive intensity 6 = O(¢ /er). We then evolve
dg according to the Heisenberg equation of motion

i0,d3 = [d3, H + Hey,] (242)

The derivation proceeds analogously to the derivation of the transport equation in Sec. 1.3.
The streaming term arises from the diagonal part of the Hamiltonian:

[, Hy + H§ + Hex] = (€p-q/2,1 + €pgra ) dg + (1 —ngl . —np?  )p(@) +0(¢)* (243)

p q/2

with €, , = €, to leading order in T/Tg. In the quartic terms stemming from A%, we inject the
cumulant expansion Eq. (119) :

5 1 q q q Q) 4 A
q X1 — €q _ o Ay /1 A q
[dg, H3l = (1 =npl =t )75 Ep/ Ay (p 2 PP — P 2)dl,,+Jp (244)

We have regrouped the quartic cumulants (ai)e&)c in a collision integral fp which is negligible
for the calculation of T,. Note that the interaction between same-spin quasiparticles A,
contributes to jp but not to the partially contracted terms in Eq. (244). This is specific to the
normal phase where the anomalous averages (7, 71)eq vanish. The pair transport equation of
a Fermi liquid is then:

— €q
(Cl) - GP—CI/Z P+CI/2 + 2‘“’)dq (np+q/2 p—q/z)

{LBZAN( P——l P’ g,P——)qurqﬁ(q)}

(245)

3.2 Uniform pair susceptibility

The Thouless criterion defines T, as the temperature at which the pair susceptibility acquires
a singularity for static and uniform perturbations, that is for v = 0 and q = 0. Restricting our
pairing equation Eq. (245) first to ¢ = 0, we obtain:

(—2(ep =) d(p) = (1 —2n3) { % > A, —plp’,—p) d(p) + ¢ } (246)
pv

When superfluidity occurs in a high partial wave, d has a non trivial dependence on the angle
between p and a reference direction; we focus here on s-wave pairing, for which the pairing
function is isotropic d(p) = d(p). The angular part of the integral equations is then a mere
angular average of the pairing amplitude

T

ATl(P, P/, A) = E f da sina ATl(P, _plp/: _p/) (247)
0

where a = (;T,;’ ). For the radial dependence, we introduce the following change of variable:

1—2n,
(p) = ®p(y)= G0/2)

ﬂ(w—Z(ep—u)) - Bw—2y

with B = 1/T. This reparametrization may seem analogous to the change of variable 6n — »
(see Eq. (170)) performed on the density field to focus on the low-energy region. It extracts

D(y), y=pB(ep—u) (248)
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a prefactor that depends rapidly on energy from the unknown function d, and we may expect
D to be a smooth function of y. However, the prefactor tanh(y/2)/(w — 2y) here does not
vanish at large y. In consequence, what restricts us to low energies is rather the finite energy
width of the amplitude A. As in Eq. (77), we must then separate the unconstrained amplitude
A’ from the low-energy projector IT ,:

Ay (p,—plp’,—p") = A3, (P, —pIp’, —p") TIA(2(ey —€p)) (249)

In presence of IT,, we can now restrict the energy integrals to the low-energy region:

ZHA(Z(G €p)) = (;T;FJ I, (2T (y — y)dyff sinadad¢  (250)

where ¢ is an azimuthal angle locating p’ in a spherical frame of axis p. Up to corrections in
O(T /Tg), we can approximate the pairing amplitude .A;, by its value for p = p’ = pg. The
integral equation focused on the low-energy region becomes

—+)’ / /
m*pp— y / y T
D(y) =75 Anh )f —/D(y)tanh—+¢+0(—) (251)
N ey, Bw—2y 2 Tg

where A_N(A) = A_Tl(pl:‘, DPr, A). The only remaining energy dependence on the right-hand side

is the integration interval [— ﬁ L ¥, B 2A + y] whose centre is shifted from 0 by y. To leading

order in 1/ A, we can then approx1mate the pair field D by a constant

D(y)—D0+o(ﬂA) (252)

The integral equation is now trivial, and yields the pair susceptibility

Kpair(@) = Dole) _ AW (253)
o ¢ AN+ TEN ()
with NV, (w) defined as:
Ny(w) = J e d—y/ tanhy—/ (254)
A _BA2 2y’ —Pw 2

The critical temperature can finally be determined by applying Thouless’ criterion to the pair
susceptibility:

1 m*pg
w=0,T=T,)=0 & — +
Xpalr( ) ATL(A) 272

NA(0,T.)=0 (255)

In the limit where SA > 1, the integral N, (0) diverges logarithmically

A T

where y ~ 0.577 is the Euler-Mascheroni constant. This divergence is compensated by a
divergence of the s-wave pairing amplitude, which we write generically as

B S (ln£+a“)+o(ﬁ) (257)
.A”(A) 2n €r €F
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This expression of 1/A(A) in the s-wave channel was postulated by Popov [51] and demon-
strated (in 2D and for all Fourier component m of .4;(6)) by Chitov and Sénéchal [10] us-
ing the renormalisation group flow. We introduced here an effective parameter a;; of the

low-energy theory, which we interpreted as the background value of 1/ A_Tl’ over which the
logarithmic divergence develops. This parameter sets the critical temperature to
T o€ e (258)
I =
This relation is valid generically in Fermi liquids subject to a weak superfluid instability. It
is non-perturbative and exact if the effective parameter ay is known exactly rather than ex-
panded in powers of the interaction strength; ay; must however remain large and positive to
maintain the validity of the quasiparticle picture, through the inequality T, < Tj.

Remark that the pairing amplitude must be attractive, A_Tl < 0, to trigger the superfluid
transition. It must also display a logarithmic divergence with A, which does not seem guaran-
teed, for example if the bare potential vanishes for head-on collisions: V(p,—p|p’,—p’) =0. In
this case, there is no divergence in the pair susceptibility (on the contrary, it is logarithmically
suppressed with A), i.e. there is no superfluid phase.

Extending our low-energy effective theory further into the superfluid phase, we now cal-
culate the order parameter at T = 0, through the gap equation:

A(p')
2,/(ey — P2+ A%(p))

(259)

A(p) ==, Ay (p.—plp’,—p)
p/

Computing the integral restricted to the low-energy region, and assuming the logarithmically
divergent expression (257) of A;; we obtain

A_ e (260)
€F
The ratio A/T, = n/e’ ~ 1.764 found by BCS theory is thus universal to all superfluids made
of Landau quasiparticles [52]; it is well verified in superfluid >He [53], even though the fluid
is strongly interacting (F(;r > 10). Deviations from the BCS ratio (as e.g. in a unitary Fermi
gas [54,55]) may then be interpreted as evidences of a non-Fermi liquid behavior.

3.3 Application to the contact Fermi gas: the Gor’kov-Melik-Barkhudarov cor-
rection to T,

We return to the Fermi gas with contact interactions. BCS theory describes pairing of particles
under the effect of the bare interactions, which provides a first approximation of the critical

temperature:
BCS
Tc

8T grtnn (261)
T T

This perturbative expression is valid to leading order in kpa for In(T,/Ts). Therefore,
it makes an uncontrolled error on T,./Tz. To go beyond BCS approximation, Gor'’kov and
Melik-Barkhudarov [37] performed a second-order diagrammatic calculation, in which they
introduce in particular a dressed Green’s function and an effective interaction.

The GMB correction is often understood [ 56-58] as the result of the screening of the pairing
interactions among particles. Our low-energy effective theory provides a simple and more
general interpretation of the corrections to the BCS gap and critical temperature as the result
of the renormalisation of the particles into Landau quasiparticles. In this picture, the GMB
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correction follows from a second order calculation of the effective parameters of the theory, in
particular of Ay,.
Averaging expression (94) of Ay, over 6,3 = a and for 6,5, = 7 yields

N * A
A (A) = g+ g2 LE [

7
—Z | ln—+=(1—-2In2)|+0(g? 262
g+ Z0-21n2) |+ o) (262)

We may now identify the parameter a;; in the expansion of 1/A_”(A):

T 7
ay =————-(In2—1)+ O(kga 263
N ok 3¢ )+ O(kga) (263)
This pairing parameter is large and positive to leading order in kpa < 0, which guarantees the
existence of a (weak) superfluid phase. It is however reduced by the second-order correction
which weakens superfluidity, and reduces the critical temperature:

Y9 7/3 TBCS
TGMB _ e (_) ef/2kea T _ ¢ 264
c m\e "7 (4e)1/3 (264)

with (4e)!/3 ~ 2.2. Corrections beyond GMB stemming from the third-order calculation of apy
are small, i.e of order O(kga), in both T./Ty and In(T,/T%).

Whereas the corrections to second order in kpa coming from the renormalisation of parti-
cles into quasiparticles involve only the A;; collision amplitude, and can therefore be under-
stood as a “screening” effect, we note that this picture is not general and would fail to capture
corrections to e.g. the effective mass to higher order in kpa or in more complex fermionic
fluids.

Conclusion

Using a new renormalisation scheme, we have formulated an intuitive and controlled con-
struction of the Landau quasiparticles and the effective Hamiltonian governing their dynam-
ics. Instead of the usual momentum cutoff, we introduce an energy cutoff A that separates
resonant from off-resonant couplings. In this framework, we interpret the quasiparticle an-
nihilation operator 7 as the bare operator d dressed only by the off-resonant couplings. This
dressing is implemented through a unitary transformation, which becomes a Continuous Uni-
tary Transformation (CUT) in the limit of infinitesimal variations of A.

To truncate the infinite series generated when expressing the Hamiltonian in terms of y
and 77, we introduced the fluctuations of the density field 6(?2}7/5) around its Fermi-sea ex-
pectation value. Truncated to terms quadratic in these fluctuations, our effective Hamiltonian
contains the functional of Fermi liquid theory via the diagonal terms (a = f3). Crucially, the
same truncation also retains the full collision amplitude A,/ (p;,P2|P3,P4) encoded in the
off-diagonal terms a # 3. This provides a single Hamiltonian describing both the interac-
tions and the collisions of Landau quasiparticles, unifying ingredients that are usually treated
separately. The interaction function f, the forward scattering amplitude and the BCS pairing
amplitude appear as different limits of a general amplitude A regularized by A.

Armed with this effective Hamiltonian, we proposed a demonstration of the quasiparticle
Boltzmann equation exploiting the validity of the Born-Markov approximation in the quasi-
particle picture. We solved this Boltzmann equation exactly from the collisionless to the hy-
drodynamic regime by decomposing the quasiparticle distribution on a basis of orthogonal
functions. Applying the effective picture to an atomic Fermi gas with contact interactions, we
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showed how the use of Landau quasiparticles systematically improves the weak-coupling ap-
proximations, in particular the RPA approximation on the speed of zero sound c;, and the BCS
approximation on the superfluid gap and critical temperature. In particular the celebrated
Gork’ov-Melik Barkhudarov log-perturbative correction to T, and A emerges here as a direct
manifestation of the quasiparticle dressing.

Extensions of this work could address the hydrodynamic regime where a normal quasi-
particle fluid and a quasiparticle condensate coexist. The Boltzmann and pairing equations
derived here in the normal phase are a natural starting point for a microscopic derivation of
the two-fluid hydrodynamics of Fermi systems [34,59]. More generally, the concept of Lan-
dau quasiparticles is not restricted to unbalanced spin-1/2 Fermi systems, and applies more
generally to quasiparticles whose low-energy spectrum ressemble that of the free particle, as
e.g. the Bose [60] and Fermi polarons [61]. Our renormalization scheme could serve to de-
rive an effective Hamiltonian for such quasiparticles, including static interactions and collision
amplitudes.

Acknowledgements

Fruitful discussions with Nicolas Dupuis are gratefully acknowledged.

Funding information H.K. acknowledges support from the French Agence Nationale de la
Recherche (ANR), under grant ANR-23-ERCS-0005 (project DYFERCO).

A A dependence of the collision amplitudes

In this appendix, we detail the calculation of the functions I, and J, introduced in Sec. 1.2.4
(see also Figs. 2 and 3) to characterize the angular dependence of 5,,,,. Comparing Egs. (81)-
(82) and Egs. (86)-(87), we identify the dimensionless coefficients of the O(kFa)2 terms in
Bo‘o":

(277:)261:: 0 P1+pP 1
I\(p,p) = ——— n® +nl |52 P2p, (265)
A (prL)? plge:D[ P1 ] ptp’ wp, + wp, — 26
2 2
R e A M Lt TN P I C
(pFL) P1p2ED wP] - wPZ

With p = p’ = py, the functions depend on p and p’ only through the angle a = (p/,E’ ). We
eliminate p, through momentum conservation and locate p; in a spherical frame with p+p’ or
p—p’ as the z-axis respectively in I, and J,. Exploiting the invariance on the azimuthal angle,
parameterizing the polar angle by u = cos 6;, and introducing the dimensionless momentum
X = p;/pp, We write

1 1
- 2 1 )
I\(0) = 2[ b de du77e (Zext—x? =22+ 1) (267)
- 2 1 )
Ja(8) = ZJ de du77e (oot —32) (268)
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Figure 12: The resonance angle u;(x, e = 0) (red curve) and the forbidden band
x — [u;(x,—€),u;(x,€e)] (red area) inside the integration domain [0,1] x [—1,1]
(grey area) for J, at a = 0.4m and € = 0.1.

where P.(1/f) =O(|f| —€)/f is the e-regularized principal part. We parametrize the small
parameter associated to A using
A
€= —, e =2e (269)
4ep
where e coincides with the €, used in the main text. We have also parametrized the a-
dependence through

/
c = cosg=M (270)
2pr
_a_|lp—pll
s = sin—=—F-— (271)
2 ZIJF

The e-principal part excludes a region of the integration domain [0,1] x [—1,1], and this
forbidden band varies with a and e. To identify the excluded region in the integration interval
[—1,1] over u, we introduce the resonance angles

2 2 /
+2cc—1+
ux,e) = 1= < (272)
2cx
2
s“+e€
us(x,e) = (273)
sX

The e-resonance conditions then read u;(x,—€’) < u < u;(x,€’) and u;(x,—€) < u < u,(x, €),
which allows to rewrite I and J as:

L d 1 d / /
1,(6) = _L XZCX f_lu_ul'gx’o)(l—@[ul(x,e)—u]@[u—ul(x,—e )]) @74)

J(0) = — Txde (T du (1—0[u,(x,e)—ul®u—u,(x,—€)]) (275)
A o 25 J_,u—uy(x,0) TR TR

Fig. 12 shows an example of the forbidden band in the calculation of J, at @ = 0.47 and
e =0.1.
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Figure 13: As a varies from O to 7, I, assumes 8 different expressions
(Egs. (280)-(287)). The corner points a,, that separate these expressions are given
by cos 3 = i,(€), where i,(¢) is given on the lower axis.

Expression of I, Depending on the comparison of u;(x,+e’) with £1, the excluded band
may be @, the interval [u;(x,—€"),u;(x,€")], [u;(x,—€’), 1], [—1,u;(x,€’),1] or [—1,1]. Upon
integration over u, this generates 3 different integrands of x:

1

x du x, |(c+s+x)c—s+x)
—__ _ =1 276
f(x) 2¢ J_; u—u(x,0) 2c . (c+s—x)(c—s—x) (276)
x (1 du x €’
(x)=—— - = 9
fre(x) 2¢ LI(X,E,)u—uI(x,O) 2% (c+s—x)(c—s—x) 277)
uy(x,—€")
du x, |[(c+s+x)c—s+x)
/ = —_— ———1 2
foelx) 2¢c f_l u—u;(x,0) 2c g € (278)

Note that f also describes the integral for u € [—1,u;(x,—€’)]U [u;(x, €’),1]. The remaining
integral over x is divided in up to 4 intervals, where either one of the functions f, f, . or f_.
is used. The bounds delimiting these intervals (see Fig. 12) are

xi(e)=ctVs2—e (279)

Again, depending on a, the boundaries x, (£¢’) maybe inside or outside the integration inter-
val [0,1] over x. This generates 8 different slicing configurations of [0, 1], listed in function
of a on Fig. 13. The corresponding expression of I, is given in Eqgs. (280)—(287). We stitch
together these expressions over the domain of variation [0, 7] of a to produce the red curve
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1165

1166

1167

1168

in Fig. 2 of the main text.
x_(—€") rl
M= f dxf(x)+ dxf_.(x) (280)
x_(—€’)
x_(—€") r x_(€") x,(€) 1
I/I\I = f dxf(x)+ dxf_e/(x)+J dxf(x)+f dxf_.(x) (281)
x_(—¢) x_(e") x4 (e”)
x_(—€") rx_(e’) 1
III\ = J dxf(x)+ dxf_o(x)+ f dxf(x) (282)
J x_(—€’) x_(e")
x_(e) 1
If\\ = J dxf_.(x)+ f dxf(x) (283)
|x_(—€")| x_(€)
Ix_ (=€)l 1
IE = J dxf+€/(x)+J dxf(x) (284)
x_(€") [x_(—€")
) lx_(e")l |x_(=€")] 1
I}\ = f dxf(x)+f dxf+€/(x)+J dxf(x) (285)
0 lx_(el lx_ (=€)
) lx_(e")l |x_(=€") x4 (€) 1
I/I\I = f dxf(x)+ f dx fe(x) + J dxf(x)+ J dxf_.(%€286)
x_ (e |x_ (=€)l x4 (€’)

~
—
—
—

|x_(eN xi (=€)
A= f dxf(x)+ J dx fre(x)
0 |x_ (el

Expression of J, Similarly, for J,, the excluded band in u is either @, [u;(x,

[u;(x,—€),1] or [—1,1], and the corresponding integrands are
b'e du X, |[x+s
o = [ w o _xy
2s J_; u—uy(x,0) 2s Ix—s
(x)——i s (x,me) du HESHESS
§-eV =T o . u—u;(x,0) 2s 2€

The interval [0,1] of integration over x is divided by the boundaries

xi(e)==% (s + E)

into 5 possible configurations listed in Fig. 14. The corresponding expressions of J, are

I _
Jy =

Iy J. dxg_(x)
x_(—€)

1

x,(€)

Ty = f dxg_(x)+ f
x_(—€) x4(€)
xi(—€) x4 (€)

JY = J dxg(x)+f
0 x+(_6)
xi(—€) 1

JX = f dxg(x)+J

x;(—€)
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(287)

_6)’ UJ(X, 6)]:

(288)

(289)

(290)

(291)
(292)
dxg(x) (293)
1
dxg_.(x)+ f dxg(x) (294)
x(€)
dxg_.(x) (295)
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Figure 14: As a varies from 0 to 7, J, assumes 5 different expressions
(Egs. (291)-(295)). The corner points a,, that separate these expressions are given
by sin % = j,(€), where j,(€) is given on the lower axis.

Combined as prescribed by Fig. 13, these expressions produce the red curve in Fig. 3 of the
main text. Note that the e = 0 expressions of I and J (Egs. (88)-(89)) are given by

1
I(a) = fdxf(x) (297)
0

1
J(a) = fdxg(x) (298)
0

B Numerical evaluation of the zero sound velocity

We present in this appendix the numerical method used to solve (198), and benchmark the
analytic solution (208) of the prefactor exp(ff) in coi
Recall that the transport equation for v, in the collisionless limit projects as:

VL(e)— D AL (€)Y (c) + Byolc) = 0 (299)
l/

As mentioned in the main text, to compute c,, we look for the zeros of the following determi-
nant:
Det(1—AL(c}))=0 (300)

To do so, we truncate the matrix .4, at some [,,, and we check the convergence with respect
to this parameter. Typically, [,,, ~ 50 is sufficient. To overcome the numerical limitation to
|kpa| > 0.1, we perform a second-order polynomial extrapolation y*+2—m/a = A+Ba+Ca>.
We find that ﬁ = +4 within the numerical accuracy of our extrapolation. The coefficient
B obtain from the extrapolation of }/f is larger than one, which restrict the observability of yf
to [al < 0.1.
We present in Figs. 15 and 16 these numerical interpolations.

C Collision effects in the collisionless regime

In this appendix we present the calculation of the function C. introduced (220):

T 271
sin 6 cos 9 sin O sin 6’ cos 8’
C =| d6 ——— dodo’ 301
+(¢) fo (c—cos@)2 f J (c—cos@)(c—cos@’)Ni(a) (301)
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— (@) +2 {
quadratic polynomial fit
T A7(0)+2:-1.9999 + 0.0128

—2.00
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]{Jpa

Figure 15: The reduced speed of the collisionless polarisation sound y~ + 2 —7/a
with y~ =log((c; —1)/2). The blue curve is obtained by numerically solving (300)
in the range kpa = —0.16,—0.125. A quadratic polynomial fit (orange curve)
provides the value extrapolated to kpa = 0: y] +2=-—1.9999 £ 0.0128.

6.01 = — (@) +2
quadratic polynomial fit
t % (0)+2:6.0079 + 0.0072

4.8

4.6

0.00 0.02 004 006 0.08 010 012 0.14 0.16
kpa

Figure 16: The reduced speed of the collisionless density sound y* + 2 + 7/a with
yt= log((cg —1)/2). The blue curve is obtained by numerically solving (300) in
the range kpa = 0.16,0.085. A quadratic polynomial fit (orange curve) provides the
value extrapolated to kra = 0: Y] +2 = 6.0079 £ 0.0072.
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with the angular collision kernel and its projection on Legendre polynomials given by:

No(e) = Qpi(a) ; 2064 (a) _ Z/\/’i(a)Pl(cos o) (302)
r 1
We use the addition theorem:
27 /
J P;(cos(a)) = P;(cos 0)P;(cos 0") (303)
0 21

This allows us to factorize the integrals over u = cos 6 and u’ = cos 0’ in Cy:

1 1 1
u P (u) u'P(u)
Cilc)=| d + LI du 2= | du’ —2—2 30
+(c) f_l ! (c—u)? ZZINiJ_l u c—u J_, “ c—u (304)
The different integrals are given by:
! u
f ) du m = _B(/)O(C) (305)
Vb
J du 5= = 2R;(c) (306)
. c—u
Lo up )
f du’ i—u/ = 2cR;(c)— 26,4 (307)
-1

where we have introduced the Legendre functions of the second kind [62]. The contribution
of collisions is therefore finally contained in the following formula:

C(c) =—Bgy(c) +4 > NLR()(cRi(c) — 510) (308)
l

In fact, this last formula is quite general, as the characteristics of the interactions are contained
in the collision parameter N’i We can now focus on the asymptotic behavior when ¢ tends
exponentially to 1. Note that:

Ro(c)(cRo()=1) 5
B(/)o(c) y——00 re’

(309)

Similarly, for [ > 0:
R¥(c)
L~ P (310)
B, (c) r=—0c0

In all cases, we can rewrite the function C, in the limit where ¢ tends exponentially to 1 as:

C+(c) > —B,(c) (1 + 4y3(c)e” N.(0)) (311)

where we have recognized that Zl N i = N.(0).
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