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Abstract1

We introduce a new renormalisation scheme to construct the Landau quasiparticles of2

Fermi fluids. The scheme relies on an energy cutoff Λ which removes the quasi-resonant3

couplings, enabling the dressing of the particles into quasiparticles via a unitary transfor-4

mation. The dynamics of the quasiparticles is then restricted to low-energy transitions5

and is fully determined by an effective Hamiltonian which unifies the Landau interaction6

function f and the collision amplitude in a single amplitude A regularized by Λ. Our7

effective theory captures all the low-energy physics of Fermi fluids that support Landau8

quasiparticles, from the equation of state to the transport properties, both in the normal9

and in the superfluid phase. We apply it to an atomic Fermi gas with contact interaction10

to compute the speed of zero sound in function of the scattering length a. We also recover11

the Gork’ov-Melik Barkhudarov correction to the superfluid gap and critical temperature12

as a direct consequence of the dressing of particles into Landau quasiparticles.13
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Introduction65

Originally formulated as a phenomenological theory, Fermi liquid theory is based on a quadratic66

action [1], in which fermionic quasiparticles are described by a semiclassical density field δn67

fluctuating about the Fermi sea and interacting through a static interaction function f . The68

physical origin of quasiparticles is not elucidated; their existence is merely justified by the69

heuristic assumption that the noninteracting states can be adiabatically followed when inter-70

actions are switched on [2]. When Landau’s semi-classical action becomes insufficient—for71

instance to describe the transport phenomena or the superfluid transition—additional phe-72

nomenological parameters are introduced [3], such as a collision or pairing amplitude. Micro-73

scopic approaches were later proposed [4–6] to interpret the parameters of Landau’s theory74

in terms of two-particle correlation functions, which relies in particular on the introduction of75

a quasiparticle residue.76
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In a more modern perspective, Landau’s theory has been reinterpreted as a low-energy77

effective theory emerging from a renormalization process [7–12]. This moves beyond the78

phenomenological nature of the theory and provides it with a fundamental justification. In79

the renormalization picture, the quasiparticle energies and interactions arise from the pro-80

gressive integration of the high-energy degrees of freedom. Although the renormalization81

group generates in principle a complete effective action for the quasiparticle field, in practice82

one follows Landau’s original formulation by concentrating on specific “interaction channels”,83

i.e., restrictions of the quasiparticle scattering processes to specific geometries [13, 14]. The84

forward-scattering channel collects the collisions in which the scattering angle tends to zero;85

the pairing or Bardeen–Cooper–Schrieffer (BCS) channel describes head-on collisions, where86

the angle of incidence approaches π. Restricting the attention to such channels is insufficient87

in three-dimensional (3D) Fermi liquids, where resonant collisions between quasiparticles of88

the Fermi surface are not limited to small momentum transfers nor to small center-of-mass89

momenta. In 3D, the collision probability depends on two independent angles, in contrast to90

the static interaction function f , which depends only on the angle between the quasiparticle91

momenta p and p′. In this respect, the 3D case is fundamentally different from its 2D coun-92

terpart, where resonant collisions depend on a single angle and thus fall into either one of93

the two channels [15, 16]. Although effective-theory approaches are a natural starting point94

to derive the quasiparticle transport equation, and thus access the density and polarization95

response functions, they are often restricted to the collisionless regime, neglecting the ergodic96

processes contained in the collision integral. An effective theory that fully captures the Boltz-97

mann equation of the Fermi liquid would then be particularly valuable, for instance to assess98

the corrections to transport properties beyond the Born–Markov approximation [17].99

In fact, a convincing low-energy effective theory should be able to describe, within a unified100

formalism, all low-energy phenomena, from the low-temperature thermodynamics to the hy-101

drodynamic equations, in both the normal and superfluid phases (provided that superfluidity102

itself remains a low-energy phenomenon). In this work, we construct an effective Hamiltonian103

that captures the full dynamics of Landau quasiparticles, and thereby the whole low-energy104

physics of fermionic fluids in which these quasiparticles are well defined. Our formalism re-105

lies on a unitary transformation that connects the quasiparticle states to the noninteracting106

Fock states; such unitary transformations are common in atomic physics [18–20] when one107

applies a perturbation to multiplets of quasidegenerate energy levels. Our construction of the108

quasiparticle states thus excludes from the dressing any quasidegenerate state in a narrow109

energy band of width Λ. The unitary operator exp(Ŝ) of this dressing block-diagonalizes the110

Hamiltonian, thereby decoupling levels whose energy separation exceeds Λ. This is not the111

same as introducing a momentum cutoff [7–12], and the renormalization group generated by112

infinitesimal variations of Λ is different. To ensure that the physical quantities predicted by113

the effective theory are independent of Λ, the cutoff must be small compared to the Fermi114

energy εF yet remain large compared to the typical evolution frequencies of the fluid, such as115

the quasiparticle damping rate Γ in the normal phase, or the gap ∆ in the superfluid phase.116

In Heisenberg picture, the transformation generated by Ŝ relates particle operators to their117

quasiparticle counterparts; this allows us in particular to construct the quasiparticle annihila-118

tion operator γ̂ [6].119

The adiabaticity condition usually invoked to justify the existence of the quasiparticles120

translates, in our formalism, into a condition of weak mixing between (significantly coupled)121

energy levels. Two quasiparticle states must be resonant at the scale Λ if and only if the cor-122

responding particle states are resonant as well. In a generic many-body system, this condition123

would restrict the theory to the lowest orders of perturbation theory. In a Fermi liquid, it re-124

mains valid all the way to the strongly interacting regime, and the dressed states, free from125

low-energy couplings, can be followed adiabatically. The conservation of a spectrum that126
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vanishes linearly at the Fermi level thus appears as a necessary condition to the existence of127

Landau quasiparticles.128

Our unitary transformation constructs the low-energy effective theory by a direct renor-129

malisation of the underlying microscopic theory, without introducing emergent degrees of free-130

dom. The renormalisation group emerging from the infinitesimal generator Ŝ(Λ)− Ŝ(Λ−dΛ)131

[21, 22] acts on the full Hamiltonian. It is not restricted to a gradient expansion, nor to an132

expansion in powers of the quasiparticle field γ̂. Only after the renormalization procedure do133

we expand the Hamiltonian in powers of the fluctuations δ(γ̂†γ̂) of the density field about its134

expectation value in the quasiparticle Fermi sea (defined as the image of the non-interacting135

Fermi sea through the unitary transform). The effective Hamiltonian obtained in this way136

is not limited to specific interaction channels: its diagonal part in the Fock basis coincides137

with Landau’s semi-classical Hamiltonian, but its off-diagonal part contains the generic colli-138

sion amplitude. It allows us to derive the Boltzmann equation—including the collision inte-139

gral—without leaving the effective picture, i.e., without returning to particle Green’s functions140

and without using the quasiparticle residue. The Born–Markov approximation can be used to141

truncate the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy in the quasiparticle142

picture, even though the problem is strongly correlated in the particle picture.143

Our construction of an effective Hamiltonian for Fermi fluids is motivated by experimental144

considerations, particularly in the context of ultracold atomic gases. The Fermi gas with con-145

tact interactions, long considered as an academic model [23–25], can nowadays be prepared146

and manipulated with great flexibility using laser trapping techniques [26–30]. At low tem-147

perature, its microscopic physics is fully characterized by the scattering length a of the contact148

interactions, which therefore fixes all the parameters of our low-energy effective theory. While149

it supports Landau quasiparticles only in the weakly-interacting regime (a → 0), the contact150

gas gives access to several observables whose dependence on a is highly nontrivial. The Landau151

quasiparticles are then a powerful, and likely inevitable, heuristic tool to derive quantitatively152

predictions of mesurable quantities such as the velocity and damping of zero sound [31], the153

transport coefficients [24,32], or the collective modes of the superfluid [33,34].154

This article is divided into three sections.155

In Section 1, we construct the low-energy effective theory of Landau quasiparticles. We156

introduce the unitary transformation that allows us to define the quasiparticle Fock states, the157

operators acting on these states, and in particular their effective Hamiltonian. We illustrate158

our formalism by applying it perturbatively to the Fermi gas with contact interactions. We159

compute to second order in kFa the effective parameters of the theory: the quasiparticle energy,160

the interaction functions, and the collision amplitude. Finally, we return to a more general161

framework and derive the quasiparticle Boltzmann equation from the effective Hamiltonian.162

In Section 2, we study the density and spin responses of the contact Fermi gas. In particular,163

we analyze the collisionless regime and compute the expansion of the zero-sound velocity c0164

in powers of the interaction strength kFa. A major result is the presence of a log-perturbative165

correction in the deviation c0−vF between this velocity and the Fermi velocity vF, which results166

into a prefactor exp(6) for the density mode and exp(−2) for the spin mode. We further167

investigate the role of collisions on zero sound and show that they lead to a collisional damping168

proportional to 1/τ, where τ is the mean collision time. This damping is universal in the sense169

that its dependence on kFa enters only through τ. Finally, we present a numerical method that170

solves the transport equation exactly throughout the crossover from the hydrodynamic to the171

collisionless regime.172

In Section 3, we show that the effective theory describes the superfluid instability and173

the paired ground state. We express the zero-temperature order parameter ∆ and the critical174

temperature Tc in terms of a parameter α↑↓ appearing in the effective Hamiltonian, which175

corresponds to the residual value of the collision amplitude A↑↓ regularized of its logarithmic176
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divergence in Λ [7, 10, 35, 36]. We then apply this result to the contact gas: by computing177

the pairing parameter α↑↓ to order (kFa)2, we obtain a log-perturbative correction to the BCS178

gap and critical temperature, a correction that coincides with the result of Gor’kov and Melik-179

Barkhudarov [37].180

1 The low-energy effective Hamiltonian of Fermi liquids181

We consider a 3D fluid made of N spin-1/2 fermionic particles evolving in a volume V under182

the Hamiltonian183

Ĥ = Ĥ0 + V̂ (1)

This section will discuss the construction of the Landau quasiparticles on general grounds,184

so we make minimal assumptions on the form of Ĥ. We write the generic noninteracting185

Hamiltonian and the generic two-body interaction between opposite spin fermions as186

Ĥ0 =
∑

α∈Dσ
ωασ â†

ασ âασ (2)

187

V̂ =
∑

αβγδ∈D
V (α,β |γ,δ)â†

α↑â
†
β↓âγ↓âδ↑ (3)

where âα↑ annihilates a fermion of spin σ in mode α. We use ħh = kB = 1 throughout this188

article. This implies that momenta p and wavenumber k are not differentiated, in particular189

pF = kF for the Fermi momentum/wavenumber.190

1.1 Landau quasiparticles in quasi-degenerate perturbation theory191

The quasiparticles states are often viewed [2,38] as the states in which the eigenstates of Ĥ0192

evolve after an adiabatic ramp of the interactions of the form V̂ (t) = λ(t)V̂ , with λ(0) = 0193

and λ(tf) = 1. It is then argued that the ramping time tf [2] should be long enough to ensure194

an adiabatic evolution, but short enough to prevent the quasiparticle decay. This picture is195

problematic since the existence of a finite time tf fulfilling the adiabatic theorem [39] is ques-196

tionable in a gapless, strongly-interacting fluid. Instead, we develop here a rigorous method197

to construct the quasiparticles states from the eigenstates of Ĥ0, and to continuously follow198

them from the non-interacting to the strongly-interacting regime.199

Given an eigenstate |n〉0 of Ĥ0, we decompose the rest of the eigenstates of Ĥ0 into quaside-200

generate and energetically well-separated states. An eigenstate |m〉0 is quasidegenerate with |n〉0201

if its energy E0
m is within a narrow energy band Λ, |E0

n − E0
m| ≪ Λ, and it is well-separated if202

|E0
n − E0

m| ≫ Λ. One can then construct the quasiparticle states by a unitary transformation203

|n〉= eŜ|n〉0, where we impose that the hermitian operator Ŝ has no matrix elements between204

quasidegenerate states. This construction is similar to the van Vleck transformation in quasi-205

degenerate perturbation theory [18–20,40].206

Rather than an adiabaticity condition, the possibility of such a construction is tied to a non-207

crossing condition: the only level crossings1 that occur as interactions are increased should be208

between states |n〉 and |m〉 that are already quasidegenerate in the non-interacting state, i.e.209

|En − Em| ≪ Λ ⇐⇒ |E0
n − E0

m| ≪ Λ (4)

This is a reformulation of the usual assumption that the (low-energy) quasiparticles have a210

gapless spectrum similar to the spectrum of the particles in the ideal Fermi gas.211

1Our acceptation of level crossings is restricted to states |n〉0 and |m〉0 that are significantly coupled by V̂ . In
the thermodynamic limit, this excludes in particular states with different densities of excitation.
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E|f⟩0

E|f ′⟩0
0⟨i|Ŝ|f ′⟩0 = 0

⟨i|Ĥ|f ′⟩ ≠ 0

0⟨i|Ŝ|f⟩0 ̸= 0
⟨i|Ĥ|f⟩ = 0

Λ

Λ

Figure 1: Construction of the quasiparticle states within quasi-degenerate
perturbation theory. An unpertubed Fock state |i〉0 is dressed via the operator Ŝ by
its interactions with the off-resonant states | f 〉0, whose unperturbed energy verifies
|E| f 〉0 − E|i〉0 |> Λ (here E|ψ〉0 = 0〈ψ|Ĥ0|ψ〉0). The dressed state |i〉 can then be
followed adiabatically as the interaction strength V increases. However, due to its
incomplete dressing, it is not an eigenstate of Ĥ, and it remains coupled to the
nearly degenerate states | f ′〉 of energies |E| f ′〉 − E|i〉|< Λ, (here E|ψ〉 = 〈ψ|Ĥ|ψ〉).
This construction applies in particular to the particle Fermi sea |FS〉0, which evolves
into a quasiparticle Fermi sea |FS〉 (red curve). In general the quasiparticle Fermi
sea is not the ground state of Ĥ, and therefore not the ground state of our effective
Hamiltonian.

Clearly, the quasiparticle states |n〉 are not the exact eigenstates of Ĥ since there remain212

quasi on-shell couplings between them, 〈n|Ĥ|m〉 ≠ 0 if |En − Em| ≪ Λ. These coupling ensure213

that the quasiparticle states, which are described by the same quantum numbers as the nonin-214

teracting states (i.e. the set of fermionic occupation numbers {nασ}ασ), decay to the ergodic215

eigenstates. In this picture the eigenstates appear as ergodic mixtures of all quasiparticle states216

at energy E, in accordance with the Eigenstate Thermalization Hypothesis [41].217

The cutoff Λ used to construct the quasiparticle description should be tuned so that all218

physical quantities are independent of it. This constrains it to a plateau between a low- and a219

high-energy bound. As an upper bound we want Λ to single-out the low-energy region, and220

incorporate in it the off-resonant couplings from the high-energy part of the spectrum. This is221

achieved by222

Λ≪ εF (5)

As a lower-bound, we want the couplings between quasiparticle states to vary smoothly over223

the frequencies at which the system evolves. In the case of an isolated system prepared in224

some excited quasiparticle state, the evolution frequencies are set by the intrinsic decay rate225
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Γtyp of the quasiparticles. In the case of a system driven at frequencyωext by an external force,226

all the transitions due to the external force should remain in the same Λ shell:227

Γtyp, ωext≪ Λ (6)

This inequality, combined with Eq. (5), constrains the states and the frequencies that one can228

excite without breaking the quasiparticle description.229

1.1.1 Partition of the Hilbert space and unitary transformation230

To classify the quasidegenerate and well-separated states, we introduce the projector231

P̂Λ(E) =
∑

|n〉0

ΠΛ(E − Ĥ0)|n〉0〈n|0 (7)

where the summation runs over the eigenstates |n〉0 of Ĥ0. As long as the filtering function232

ΠΛ(E) verifies that ΠΛ(E≪ Λ) = 1 and ΠΛ(E≫ Λ) = 0, its precise shape does not matter. We233

shall thus use234

ΠΛ(E) =

¨

1 if |E| ≤ Λ
0 else

(8)

To defined the properties of the quasiparticles, we will focus on the energy shell centered235

around the energy E0
0 of the particle Fermi sea |FS〉0 (the ground state of Ĥ0 at fixed chemical236

potential µ). However, we want our description to apply to states, such as thermal or super-237

fluid states, that have a macroscopic excitation or condensation energy, obtained through the238

excitation of a macroscopic number of low-energy quasiparticles. We therefore slice the whole239

spectrum into Λ shells centered around En = E0
0+2nΛ with n ∈ Z. The projector onto the n-th240

energy window is241

P̂n = P̂Λ(En) (9)

with P̂0 projecting onto the shell of the Fermi sea.242

We then construct an antihermitian operator Ŝ243

Ŝ† = −Ŝ (10)

which generates the quasiparticle states by a unitary transform applied to the eigenstates |n〉0244

of Ĥ0:245

|n〉= eŜ|n〉0 (11)

This is the unitary, or canonical, van Vleck transformation [19] known in atomic and molecular246

physics [18, 20, 40]. The operator Ŝ couples only well-separated states, i.e. all its diagonal247

blocks vanish248

P̂nŜ P̂n = 0, for all n (12)

To construct the off-diagonal blocks P̂mŜ P̂n, m ̸= n, we impose that the couplings between249

transformed states vanish, 〈m|Ĥ|n〉 = 0, if |n〉 and |m〉 belong to different energy shells, that250

is, if |E0
n − E0

m| ≫ Λ. In other words, we impose that the effective Hamiltonian251

Ĥeff = e−Ŝ ĤeŜ (13)

is block-diagonal:252

P̂mĤeff P̂n = 0, n ̸= m (14)

At this stage, we view the effective Hamiltonian as the operator which, acting on the un-253

perturbed basis, provides the matrix elements of Ĥ in the transformed basis:254

〈n|Ĥ|m〉= 0〈n|Ĥeff|m〉0 (15)
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Using Baker-Campbell-Hausdorff formula, Ĥeff is expressed in terms of iterated commutators255

between Ĥ and Ŝ:256

Ĥeff = Ĥ + [Ĥ, Ŝ] +
1
2

�

[Ĥ, Ŝ], Ŝ
�

+ . . . (16)

1.1.2 Perturbative calculation of Ŝ and Ĥeff257

When V̂ is controlled by a small parameter, one can construct Ŝ and Ĥeff order-by-order in V̂ :258

Ŝ = Ŝ1 + Ŝ2 + . . . where Ŝ1 = O(V ), Ŝ2 = O(V 2), . . . (17)

Expanding condition (14) to first order in V , we obtain for example259

P̂m

�

V̂ + [Ĥ0, Ŝ1]
�

P̂n = 0 (18)

This relation provides the elements of Ŝ1 in the unperturbed basis:260

0〈 f |Ŝ1|i〉0 =







0〈 f |V̂ |i〉0
E0

i −E0
f

if |E0
i − E0

f | ≫ Λ

0 if |E0
i − E0

f | ≪ Λ
(19)

One can also express the restriction of Ŝ1 to a given energy shell P̂n in terms of the unperturbed261

resolvent Ĝ0(E) = 1/(E − Ĥ0) evaluated at the corresponding energy En of the shell:262

Ŝ1 P̂n ≃ Q̂n

�

Ĝ0(En)V̂
�

P̂n (20)

where Q̂n = 1− P̂n projects orthogonally to the shell. Note however that Ŝ, unlike Ĝ0, does not263

depend on energy and allows to (block) diagonalize the whole spectrum, not just the vicinity264

of a particular energy level.265

Injecting expansion (17) of Ŝ, we obtain2 a perturbative expression of the effective Hamil-266

tonian:267

P̂nĤeff P̂n = P̂n

�

Ĥ0 + V̂ +
1
2
[V̂ , Ŝ1] +O(V 3)

�

P̂n (21)

1.1.3 Quasiparticle operators268

The quasiparticle states are deduced from the particle Fock states |{nασ}〉0 through Eq. (11)269

|{nασ}〉= eŜ|{nασ}〉0 (22)

Switching to Heisenberg picture, Ŝ can be used to construct the operators acting on this new270

basis. Consider an operator Ô whose action is known in the unperturbed basis |{nασ}〉0. The271

operator Ôγ having the same action in quasiparticle basis |{nασ}〉 is then272

Ôγ = eŜÔe−Ŝ (23)

Annihilation operator The most straightforward example is the quasiparticle annihilation273

operator γ̂ which we construct from the particle annihilation operator â through274

γ̂ασ = eŜ âασe−Ŝ = âασ + [Ŝ1, âασ] + [Ŝ2, âασ] +
1
2

�

Ŝ1, [Ŝ1, âασ]
�

+O(V̂ 3) (24)

Since γ̂ follows from â through a unitary transformation, it automatically obeys fermionic275

anticommutation relations276

{γ̂ασ, γ̂†
α′σ′
}= δαα′δσσ′ , {γ̂ασ, γ̂α′σ′}= 0 (25)

2We have used that P̂n[Ĥ0, Ŝ1+ Ŝ2]P̂n = 0 since Ŝ is block off-diagonal and Pn commutes with Ĥ0, together with
Eq. (18) to simplify to double commutator P̂n

�

[Ĥ0, Ŝ1], Ŝ1

�

P̂n = −P̂n

�

V̂ , Ŝ1

�

P̂n.
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Hamiltonian Another example is the operator Ĥγ which acts on the quasiparticle states as277

Ĥ acts on the particle states:278

Ĥγ = eŜ Ĥe−Ŝ =
∑

ασ

ωασγ
†
ασγασ +

∑

αβγδ∈D
V (α,β |γδ)γ̂†

α↑γ̂
†
β↓γ̂γ↓γ̂δ↑ (26)

The quasiparticle states, like any other state, do not evolve under the Hamiltonian Ĥγ but279

under the true Hamiltonian Ĥ. Inverting Eq. (26) to express Ĥ in terms of Ĥγ allows us to280

reinterpret the effective Hamiltonian which appeared in Eq. (16):281

Ĥ = e−Ŝ Ĥγe
Ŝ = Ĥeff,γ (27)

In other words, Ĥ is written in terms of the γ̂ operators exactly like Ĥeff is written in terms of282

the â operators.283

Number operator A third example is the quasiparticle number operator284

N̂γ = eŜ N̂e−Ŝ =
∑

ασ

γ̂†
ασγ̂ασ with N̂ =

∑

ασ

â†
ασ âασ (28)

This case is special since N̂ commutes separately with Ĥ0 and V̂ . One can then show (order-285

by-order in V̂ ) that it commutes with Ŝ. We recover in this way the Luttinger theorem286

N̂γ = N̂ (29)

Projectors Finally, in the quasiparticle picture, the projector onto an energy-shell becomes287

P̂Λ,γ(E) = eŜ P̂Λ(E)e
−Ŝ =

∑

{nασ}

ΠΛ(E − Ĥ0,γ)|{nασ}〉〈{nασ}| (30)

and correspondingly P̂n,γ = P̂Λ,γ(En). The operators P̂γ thus project the quasiparticle states288

|{nασ}〉 according to their unperturbed energy
∑

ασωασnασ, rather than their full energy289

〈{nασ}|Ĥ|{nασ}〉. In a generic many-fermion system, this would render this van Vleck transfor-290

mation useless. In a Fermi liquid, this limitation is lifted by the non-crossing condition Eq. (4),291

which we may rewrite has292

�

�〈n|Ĥ|n〉 − 〈m|Ĥ|m〉
�

�≪ Λ ⇐⇒
�

�

0〈n|Ĥ0|n〉0 − 0〈m|Ĥ0|m〉0
�

�≪ Λ (31)

1.1.4 Energy, residue and interaction functions of the quasiparticles293

In Ref. [32], we related the energy of the quasiparticles to the average value of Ĥ in quasi-294

particle states with one or two excitations above the Fermi sea. Let us here generalize this295

definition to any quasiparticle reference state |ψ〉. To this aim, we introduce states with either296

one quasiparticle or one quasihole (depending on whether n|ψ〉ασ = 〈ψ|γ̂†
ασγ̂ασ|ψ〉 = 0 or 1)297

added to |ψ〉 in mode ασ298

|ασ,ψ〉 ≡

¨

|ψ〉 if n|ψ〉ασ = 1

γ̂†
ασ|ψ〉 else

|ασ,ψ〉 ≡

¨

|ψ〉 if n|ψ〉ασ = 0

γ̂ασ|ψ〉 else
(32)

The energy ε|ψ〉ασ of the quasiparticle ασ is then a functional of |ψ〉 (more precisely of its occu-299

pations numbers in modes α′σ′ ̸= ασ):300

ε|ψ〉ασ ≡ 〈ασ,ψ|Ĥ|ασ,ψ〉 − 〈ασ,ψ|Ĥ|ασ,ψ〉 (33)
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To define the interaction functions f in an arbitrary state |ψ〉, one should iterate the nota-301

tion Eq. (32) to allow for the creation or annihilation of two (or more) quasiparticles3
302

|ασ,α1σ1, . . . ,αnσn,β1σ1, . . . ,βmσm,ψ〉=

¨

|α1σ1, . . . ,αnσn,β1σ1, . . . ,βmσm,ψ〉 if n|ψ〉ασ = 1

γ̂†
ασ|α1σ1, . . . ,αnσn,β1σ1, . . . ,βmσm,ψ〉 else

(34)
We can now define the interaction functions as functionals of |ψ〉:303

V f |ψ〉
σσ′
(α,β) = E|ασ,βσ′ψ〉 + E|ασ,βσ′ψ〉 − E|ασ,βσ′ψ〉 − E|ασ,βσ′ψ〉 (35)

where E|ψ〉 = 〈ψ|Ĥ|ψ〉 and the volume factor V makes sure that fσσ′ has a finite thermo-304

dynamic limit. Our definition is a quantum version of the semi-classical definition of f as a305

second derivative f |ψ〉
σσ′
(α,β) = ∂ 2E|ψ〉/∂ nασ∂ nβσ′306

In the same spirit, one can define the residue of the quasiparticle as the variation of the307

number â†
ασ âασ of particle in mode ασ when the quasiparticle ασ is added to the fluid:308

Z |ψ〉ασ ≡ 〈ασ,ψ|â†
ασ âασ|ασ,ψ〉 − 〈ασ,ψ|â†

ασ âασ|ασ,ψ〉 (36)

Although conceptually important to identify the origin of the quasiparticles, the residue breaks309

the low-energy effective description, as it involves measuring a microscopic quantity â†
ασ âασ,310

unlike e.g. εασ which involves only the energy. All the low-energy properties should then be311

formulated without it.312

Using the unitary transformation of the operators Eq. (23), there a dual interpretation of313

the residue as the variation of the number of quasiparticle in ασ upon adding the correspond-314

ing particle:315

Z |ψ〉ασ = 0〈ασ,ψ|γ̂†
ασγ̂ασ|ασ,ψ〉0 − 0〈ασ,ψ|γ̂†

ασγ̂ασ|ασ,ψ〉0 (37)

In the case of an homogeneous system (where α stands for the wavevector p), we will316

relate the residue, as defined in Eq. (36), to the discontinuity of the momentum distribution at317

the Fermi level (see Sec. 1.2.5). We already note that the leading term in 1− Z |ψ〉ασ is of second318

order in V , in contrast to the leading term in ε|ψ〉ασ −ωασ which is of order V . This is because319

â†
ασ âασ (unlike Ĥ) commutes with the projectors P̂n.320

1.1.5 Collision amplitudes321

Contrarily to a widespread believe, the effective description of the Fermi fluid is not exhaustive322

if we restrict ourselves to the eigenenergy εασ and interaction functions fσσ′ defined above.323

In fact these two quantities characterize only the diagonal elements of Ĥ, while for many324

equilibrium and dynamical properties, a knowledge of the off-diagonal elements is required:325

Ai→ f ≡ 〈 f |Ĥ|i〉 (38)

Even though it is restricted to quasi on-shell couplings (Ai→ f ̸= 0 only if |Ei−E f | ≪ Λ), Ĥ can326

generate high-order collisions between quasiparticules. From Eq. (16), one can easily count327

that there are up to n + 1 ↔ n + 1 quasiparticle collisions if V̂ describes 2 ↔ 2 particles328

collisions and Ĥeff is truncated to order V̂ n. However, we shall see that 2↔ 2 quasiparticle329

collisions remain the more likely if excited quasiparticles are confined to a low-energy shell330

about the Fermi level.331

Just like the interaction functions fσσ′ , the 2↔ 2 transitions amplitudes depend on the332

reference state |ψ〉 in which we compute them. Let |i〉= |ασ,βσ′,γσ′,δσ,ψ〉 be a reference333

3Together with this piling rule, the states obey a fermionic permutation rule: |α′σ′,ασ〉= −|ασ,α′σ′〉.
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state in which we made sure that quasiparticles are absent in ασ,βσ′ and present in γσ′,δσ.334

Then let335

| f 〉= γ̂†
ασγ̂

†
βσ′
γ̂γσ′ γ̂δσ|i〉 (ασ,βσ′) ̸= (δσ,γσ′), (γσ′,δσ) (39)

be the final state not proportional to |i〉. We then define the collision amplitude Aσσ′ between336

σ and σ′ quasiparticles through337

Ai→ f ≡
A|i〉
σσ′
(αβ |γδ)
V (40)

From the fermionic commutation relation and the hermiticity of the Hamiltonian, these am-338

plitudes verify the relations339

A|i〉
σσ′
(δγ|βα) = A|i〉

σσ′
(αβ |γδ) (41)

A|i〉↑↑(βα|γδ) = A|i〉↑↑(αβ |δγ) = −A
|i〉
↑↑(αβ |γδ) (42)

In a spin-symmetric fluid, they verify in addition340

A|i〉
σσ′
(βα|δγ) =A|i〉

σσ′
(αβ |γδ) (43)

Note that our van Vleck transformation a priori restricts A|i〉
σσ′
(αβ |γδ) to transitions between341

quasi-degenerate states |E f − Ei| ≪ Λ. Comparing Ei = 〈i|Ĥ|i〉 and E f = 〈 f |Ĥ| f 〉, this can be342

turned in the thermodynamic limit4 into a resonance condition on the energies (in |i〉) of the343

colliding quasiparticles:344
�

�

�ε|i〉ασ + ε
|i〉
βσ′
− ε|i〉

γσ′
− ε|i〉

δσ

�

�

�≪ Λ (44)

1.1.6 Low-energy effective Hamiltonian in the vicinity of the quasiparticle Fermi sea345

So far, we have described the matrix elements of Ĥ between arbitrary quasiparticle states,346

noticing that even if we restrict to few-quasiparticle transitions the matrix elements retain a347

dependance on the reference state |ψ〉. This can be seen as a consequence of Eq. (27), where348

the expression of Ĥ (at strong coupling) contains an infinite number of γ̂.349

One can however derive a tractable truncation of Ĥ, containing few operators γ̂, and valid350

for quasiparticle states |{nασ}〉 and |{mασ}〉 that deviate from each other only at low energy351

(nασ ̸= mασ only when |ωασ − εF| < Λ). One truncation plays a special role, this is the one352

based on the quasiparticle Fermi sea:353

|FS〉 = eŜ|FS〉0 (45)

EFS ≡ 〈FS|Ĥ|FS〉 (46)

Note that |FS〉 is in general not the ground state of Ĥ, such that EFS is larger than the ground354

state energy E0. In the following, we drop the |FS〉 superscript when using the Fermi sea as355

the reference state: εασ ≡ ε|FS〉
ασ , fσσ′ ≡ f |FS〉

σσ′
and Aσσ′ ≡A|FS〉

σσ′
.356

As the main result of this section we write this truncation of the Hamiltonian in the vicinity357

of the quasiparticle Fermi sea, including the collision amplitudes between resonant states. The358

truncation is written in terms of the fluctuations of the quasiparticle-hole operator,359

δ(γ̂†
ασγ̂βσ) ≡ γ̂†

ασγ̂βσ − n0
ασδαβ (47)

δn̂ασ ≡ δ(γ̂†
ασγ̂ασ) (48)

4One can show that E f − Ei = ε|i〉ασ + ε
|i〉
βσ′ − ε

|i〉
γσ′ − ε

|i〉
δσ′ +O

�

1
V

�
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where n0
ασ = 〈FS|γ̂†

ασγ̂ασ|FS〉 is the Fermi sea occupation of mode ασ. The fluctuation of the360

quasiparticle number δn̂ can be viewed as the quantum version of the classical field δn (the361

semi-classical “number of quasiparticles”) in which Fermi liquid theory is often formulated.362

Restricting to terms quadratic in δ(γ̂†γ̂), we can write363

Ĥ = EFS+
∑

ασ

εασδn̂ασ+
1

2V
∑

αβγδ∈D
σσ′=↑↓

δ
γ+δ
α+βBσσ′(αβ |γδ)δ(γ

†
ασγδσ)δ(γ

†
βσ′
γγσ′)+O(δ(γ̂†γ̂)3)

(49)

The function B↑↓ is straighforwardly related to f↑↓ and A↑↓ by364

B↑↓(α,β |β ,α) = f↑↓(α,β) (50)

B↑↓(α,β |γ,δ) = A↑↓(α,β |γ,δ), α ̸= δ (51)

Conversely, the indistinguishability of the colliding σσ quasiparticles leaves us some freedom365

in the choice of Bσσ. Without affecting the matrix element of Ĥ, we can constrain Bσσ by the366

following conditions5:367

Bσσ(α,β |α,β) = 0 (52)

Bσσ(β ,α|δ,γ) = Bσσ(α,β |γ,δ) (53)

While these choices may seem arbitrary at this stage, we will show in the next subsection that368

these constraints arise naturally in perturbative calculations of the truncated Hamiltonian. To369

reproduce fσσ and Aσσ, the function Bσσ must now satisfy370

Bσσ(α,β |β ,α) = fσσ(α,β) (54)

Bσσ(α,β |γ,δ)−Bσσ(β ,α|γ,δ) = Aσσ(α,β |γ,δ), α ̸= γ,δ (55)

Eq. (49) is exact for the matrix elements between |FS〉 and states connected to |FS〉 by up to371

4 operators γ̂. It is valid up to corrections in O(ε0) for states |ψ〉, whose excited quasiparticles372

are contained in a low-energy shell373

〈ψ|δn̂ασ|ψ〉= 0 if |εασ −µ|> ε0 (56)

with374

ε0 < Λ≪ εF (57)

The omission of terms cubic or higher in δ(γ̂†γ̂) in Eq. (49) then leads to errors in the energy375

and transition amplitudes controlled by ε0/εF.376

We recover the usual semi-classical Hamiltonian of Fermi liquid theory377

E = E +
∑

ασ

εασδnασ +
1

2V
∑

αβ∈D
σσ′=↑↓

fσσ′(α,β)δnασδnβσ′ +O(δn)3 (58)

as the restriction of Eq. (49) to terms α= δ, i.e. to terms diagonal in the basis of quasiparticle378

Fock states. The off-diagonal elements α ̸= δ in Eq. (49) are however crucial to accurately379

describe quasiparticle collisions. Thus, unless we are interested only in the collisionless dy-380

namics of the Fermi liquid, our effective theory should specify not only fσσ′(α,β), but also381

Bσσ′(α,β |γ,δ) for α ̸= δ.382

5The first constraint ensures that the particle-hole operators δ(γ†
α↑γδ↑) and δ(γ†

β↑γγ↑) commute in Eq. (49), and
the second constraint ensures the symmetry with respect to the double exchange α↔ β , γ↔ δ.
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In fluids where the index α describes a continuous sets of modes, one may think, looking at383

Eqs. (50) and (54), that the Landau functions fσσ′ are continuously connected to the amplitude384

Bσσ′(α,β |β − dα,α+ dα) as dα→ 0. However, the energy cutoff Λ separates two limits:385

lim
dα→0

|εα−εα+dα|≫Λ

Bσσ′(α,β |β − dα,α+ dα) ≡ Bforward
σσ′ (α,β) (59)

lim
dα→0

|εα−εα+dα|≪Λ

Bσσ′(α,β |β − dα,α+ dα) = fσσ′(α,β) (60)

The amplitude Bforward
σσ′

obtained for energy transfer εα−εα+dα large compared to Λ but small386

compared to εF is called the forward-scattering amplitude. It is related to fσσ′ by a Bethe-387

Salpeter equation [4], which was understood, within the functional renormalization group388

approach [10–12], as a fixed point of the renormalization group equation. In our formalism,389

an equivalent equation could be obtained by computing the change of B under the action of390

the infinitesimal generator Ŝ(Λ− dΛ)− Ŝ(Λ) of the continuous unitary transform [21,22].391

The forward-scattering approximation, common in the literature on 3He, consists in replac-392

ing the full amplitude B(α,β |γ,δ) by Bforward
σσ′

(α,β). This uncontrolled approximation com-393

pensates the lack of knowledge on the collision amplitude. In 3He where the Landau function394

f has a large isotropic component (F+l=0 ≥ 10), the Bethe-Salpeter equation is particularly395

useful to obtain a correct order of magnitude of the scattering amplitudes.396

Finally, in fluids where the modes are indexed by a 3D wavevector p, we may rewrite397

Eq. (49) in real space by performing a Wigner transform of the quasiparticle distribution398

δn̂pσ(r)≡
∑

q

e−iq·rδ(γ̂†
p+ q

2σ
γ̂p− q

2σ
) (61)

In terms of δn̂(r), we have399

Ĥ = EFS+
∑

pσ

∫

d3r
V εpσδn̂pσ(r)+

1
2

∑

pp′∈D
σσ′=↑↓

∫

d3r1d3r2

V2
Bσσ′(p,p′|r1−r2)δn̂pσ(r1)δn̂p′σ′(r2)

+O(δn̂)3 (62)

The Wigner transform of the amplitude B is400

Bσσ′(p,p′|r1 − r2) =
1
V
∑

q

eiq·(r1−r2)Bσσ′
�

p−
q
2

,p′ +
q
2

�

�

�p′ −
q
2

,p+
q
2

�

(63)

It plays the role of a finite-range interaction potential between pσ and p′σ′ quasiparticles. A401

gradient expansion [13] would replace this finite-range interaction by a short-range one.402

1.2 Application to an homogeneous Fermi gas with contact interactions403

We now evaluate the truncated Hamiltonian Eq. (49) in a 3D homogeneous Fermi gas with404

contact interactions. In this system, contrarily to most Fermi liquids, one can compute the405

effective parameters εσ and Bσσ′ in function of a unique microscopic parameter: the s-wave406

scattering length a. Here, we perform a perturbative calculation of εσ and Bσσ′ to second-407

order in kFa.408
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1.2.1 The lattice model for contact interactions409

The kinetic and interaction Hamiltonian which describe our Fermi gas are:410

Ĥ0 =
∑

p∈D,σ

ωpâ†
pσ âpσ (64)

V̂ =
g0

L3

∑

p1,p2,p3,p4∈D
δ

p3+p4
p1+p2

â†
p1↑

â†
p2↓

âp3↓âp4↑ (65)

whereωp = p2/2m. We assume that the gas is held in a cubic volumeV = L3 (with L→ +∞ in411

the thermodynamic limit). To regularize the UV divergences inherent to the contact potential,412

we have discretized real space [42] into a cubic lattice of step l, thereby restricting the set of413

momenta p to D = (2πZ/L)3 ∩ [−π/l,π/l[3. Solving the two-body problem, we express g0414

in terms of a through the Lippman-Schwinger equation415

1
g0
=

1
g
−
∫

[−π/l,π/l[3

d3p
(2π)3

m
p2

(66)

where g = 4πa/m.416

1.2.2 Expansion of the quasiparticle annihilation operator417

The ground state of Ĥ0 at fixed density ρ is the particle Fermi sea418

|FS〉0 =
∏

p∈D
σ=↑,↓

Θ(pF − p)â†
pσ|0〉0 (67)

where pF = (3π2ρ)1/3 is the Fermi momentum and |0〉0 the particle vacuum. The occupation419

numbers of |FS〉 are then420

n0
p = Θ(pF − p), n̄0

p = 1− n0
p = Θ(p− pF) (68)

Eq. (18) and Eq. (24) applied to the contact interaction potential V̂ provides the expression421

of Ŝ and γ̂. To first order in g, we have:422

Ŝ1 =
g0

L3

∑

pαpβpγpδ∈D
â†

pα↑
â†

pβ↓
âpγ↓âpδ↑δ

pγ+pδ
pα+pβ

PΛ
�

1
ωpγ +ωpδ −ωpα −ωpβ

�

(69)

423

γ̂p↑ = âp↑ +
g0

V

∑

pβpγpδ∈D
δ

pγ+pδ
p+pβ

PΛ
�

1
ωpγ +ωpδ −ωp −ωpβ

�

â†
pβ↓

âpγ↓âpδ↑ +O(g)2 (70)

In these expressions, the function424

PΛ
�

1
E

�

=
1−ΠΛ(E)

E
(71)

originates in the projectors P̂Λ and prevents the denominators from vanishing. Eq. (70) is a425

rigorous formulation of the standard first-order picture of the spin ↑ quasiparticle as a cloud426

of spin ↓ particle surrounding a spin ↑ particle. It is reminiscent of the Chevy Ansatz for427

polarons [43].428
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1.2.3 Expression of the Hamiltonian in terms of γ̂429

To avoid carrying along a quasi-resonance condition, we define an Hamiltonian Ĥ ′ where the430

energy constraint has been released431

Ĥ ′ = Ĥ0,γ + V̂γ +
1
2
[V̂γ, S1,γ] +O(g)3 (72)

Ĥ =
+∞
∑

n=−∞
P̂n,γĤ

′ P̂n,γ +O(g3) (73)

Injecting in Eq. (72) the expressions of Ĥ0,γ, V̂γ and Ŝ1,γ, we obtain432

Ĥ ′ =
∑

pσ

ωpγ
†
pσγpσ +

g0

L3

∑

pαpβpγpδ∈D
δ

pγ+pδ
pα+pβ

γ̂†
pα↑
γ̂†

pβ↓
γ̂pγ↓âpδ↑

+
1
2

� g0

L3

�2 ∑

pαpβpγpδ∈D
papbpcpd∈D

δ
pγ+pδ
pα+pβ

δ
pc+pd
pa+pb

PΛ
�

1
ωpa
+ωpb

−ωpc
−ωpd

�

×
h

γ̂†
pα↑
γ̂†

pβ↓
γ̂pγ↓γ̂pδ↑, γ̂

†
pd↑
γ̂†

pc↓
γ̂pb↓γ̂pa↑

i

+O(g)3 (74)

This Hamiltonian truncated to second order in V̂ is thus sextic in γ̂, with up to 3↔ 3 transi-433

tions as discussed above.434

We proceed to linearizing Ĥ ′ in the vicinity of the quasiparticle Fermi sea |FS〉, using the435

expansion Eq. (48) of the particle-hole operators about their average value in |FS〉. We note436

that there is no ambiguity in the pairing of the γ̂ operators, since the window function PΛ437

guarantees that a ̸= d, b ̸= c and thus438

(γ̂†
pα↑
γ̂†

pβ↓
γ̂pγ↓γ̂pδ↑)(γ̂

†
pd↑
γ̂†

pc↓
γ̂pb↓γ̂pa↑) = (γ̂

†
pα↑
γ̂pa↑)(γ̂

†
pβ↓
γ̂pb↓)(γ̂pγ↓γ̂

†
pc↓
)(γ̂pδ↑γ̂

†
pd↑
) (75)

The expansion of the unconstrained Hamiltonian Ĥ ′ in powers of δ(γ̂†γ̂) has the form of439

Eq. (49):440

Ĥ ′ = EFS+
∑

pσ

εpδn̂pσ +
1

2L3

∑

pαpβpγpδ∈D
σσ′=↑↓

δ
pγ+pδ
pα+pβ

B′σσ′(pαpβ |pγpδ)δ(γ̂†
pασ
γ̂pδσ)δ(γ̂

†
pβσ′

γ̂pγσ′)

+O(δ(γ̂†γ̂)3) (76)

and the expansion of the true Hamiltonian Ĥ follows from Eq. (76) simply by replacing the441

unconstrained amplitudes B′ by the constrained ones442

Bσσ′(pαpβ |pγpδ) = B′σσ′(pαpβ |pγpδ)ΠΛ(εpα + εpβ − εpγ − εpδ) (77)

The term of order δ(γ̂†γ̂)0 in Eq. (76) is the energy of the quasiparticle Fermi sea443

EFS =
∑

p∈D,σ

ωpn0
p +

g
L3

∑

p,p′∈D
n0

pn0
p′

+
� g

L3

�2 ∑

pαpβpγpδ∈D
δ

pγ+pδ
pα+pβ

n0
pα

n0
pβ
(n̄0

pγ
n̄0

pδ
− 1)PΛ

�

1
ωpα +ωpβ −ωpγ −ωpδ

�

+O(g3) (78)

Note that we have used the standard perturbative renormalization procedure [25, 32] to re-444

place g0 by g, such that Eq. (78) is free from UV divergence when l → 0. The explicit of445
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calculation of EFS(kFa) from Eq. (78) leads to the Lee-Huang-Yang equation of state to second446

order in kFa [25].447

Then, the eigenenergy of the quasiparticles in Eq. (76) is448

εp =ωp +
g0

L3

∑

p′∈D
n0

p′

+
� g0

L3

�2 ∑

p2p3p4∈D
δ

p3+p4
p+p2

h

n0
p2

n̄0
p3

n̄0
p4
+ n̄0

p2
n0

p3
n0

pp4

i

PΛ
�

1
ωp +ωp2

−ωp3
−ωp4

�

+O(g)3

(79)

Since the quasiparticle dynamics is restricted to the vicinity of the Fermi level, this eigenenergy449

can be expanded in powers of p− pF.450

εp −µ=
pF

m∗
(p− pF) +O(p− pF)

2 (80)

An explicit expression of the effective mass m∗ in powers of kFa was computed by Galitskii [44].451

Finally, the (unconstrained) collision amplitudes B′ are452

B′σσ(pαpβ |pγpδ) =
g2

2L3

∑

p1p2∈D

�

n0
p1

n̄0
p2
− n̄0

p1
n0

p2

�

×

�

PΛ
�

1
ωpα +ωp2

−ωpγ −ωp1

�

δ
p2+pα
p1+pγ

+PΛ
�

1
ωpβ +ωp2

−ωpδ −ωp1

�

δ
p2+pβ
p1+pδ

�

+O(g)3

(81)
453

B′↑↓(pαpβ |pγpδ)−B′σσ(pαpβ |pγpδ) = g +
g2

2L3

∑

p1p2∈D

�

n̄0
p1

n̄0
p2
− n0

p1
n0

p2
− 1

�

δ
p1+p2
pα+pβ

×

�

PΛ
�

1
ωpα +ωpβ −ωp1

−ωp2

�

+PΛ
�

1
ωpγ +ωpδ −ωp1

−ωp2

��

+O(g)3 (82)

Remark that we have symmetrizedBσσ towards the full exchangeBσσ(β ,α|δ,γ) = Bσσ(α,β |γ,δ),454

and that the function PΛ imposes Bσσ(pp′|pp′) = 0, in accordance with the constraints (52)–455

(53). The Landau interaction function fσσ′ are simply the value of Bσσ′ for p = pα = pδ and456

p′ = pβ = pγ:457

fσσ(p,p′) =
g2

L3

∑

p1p2∈D

�

n0
p1

n̄0
p2
− n̄0

p1
n0

p2

�

δ
p′+p1
p+p2

PΛ
�

1
ωp +ωp2

−ωp′ −ωp1

�

+ O(g)3 (83)

458

f↑↓(p,p′)− fσσ(p,p′) = g +
g2

L3

∑

p1p2∈D

�

n̄0
p1

n̄0
p2
− n0

p1
n0

p2
− 1

�

δ
p1+p2
pα+pβ

×PΛ
�

1
ωpα +ωpβ −ωp1

−ωp2

�

+O(g)3 (84)

1.2.4 Explicit expressions of the collision amplitudes with the Λ dependence459

To illustrate the role of the cutoff Λ in connecting the collision amplitudes Aσσ′ to the interac-460

tion functions fσσ′ , we return to the explicit expressions obtained in Ref. [32]. We parametrize461
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the Λ dependence through462

εΛ =
Λ

4EF
(85)

and we are interested in the limit εΛ → 0. Restricting to wavevectors of the Fermi surface463

(p1 = p2 = p3 = p4 = pF), the amplitude B depends only on the angles θi j = (Öpi ,p j):464

B′↑↓(p1,p2|p3,p4)

g
= 1+

2kFa
π
[IΛ(θ12) + JΛ(θ13)] +O(a2) (86)

B′↑↑(p1,p2|p3,p4)

g
=

2kFa
π

JΛ(θ13) +O(a3) (87)

The functions IΛ and JΛ that characterize the crossed Λ,θ dependence of B are depicted on465

Figs. 2–3, and explicit expressions are given in Appendix A.
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1− ln(4/(π − θ))

I Λ
(θ
)

θ

Figure 2: Angular dependence of the function IΛ appearing in A↑↓ and f↑↓. For
εΛ = 0 (black curve), the function displays a logarithmic divergence
∼ ln(π−θ )+1− ln4 when θ → π (black dashed curve). For εΛ ̸= 0 (red curve) the
divergence is regularized, and the function saturates at ln(εΛ/2) + 2+O(εΛ) in
θ = π (red dashed curve).

466

When εΛ → 0, these functions converge pointwise in the open interval (0,π) to the func-467

tions I and J usually found in this context [25,32]468

I(θ )≡ limεΛ→0 IΛ(θ ) = 1−
s
2

ln
1+ s
1− s

, s = sin
θ

2
, c = cos

θ

2
(88)

J(θ )≡ limεΛ→0JΛ(θ ) =
1
2

�

1+
c2

2s
ln

1+ s
1− s

�

(89)

While J is a smooth function in [0,π], we note a logarithmic divergence in I when θ → π (see469

Fig. 2).470
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Figure 3: Angular dependence of the function JΛ appearing in both A↑↓, f↑↓ and
Aσσ, fσσ. As εΛ→ 0, the function converges pointwise to J(θ ) (black curve) on
(0,π]. It is however cancelled in an interval of width ≃ 2εΛ about θ = 0 (red
curve).

The convergence of IΛ and JΛ to I and J is however not uniform: εΛ regularises the diver-471

gence of I in θ = π, and cancels J in a neighborhood of size ≈ εΛ about θ = 0. Taking the472

limit θ → 0,π before εΛ→ 0, we have:473

limθ→π IΛ(θ ) = ln
εΛ
2
+ 2+O(εΛ) (90)

limεΛ→0limθ→0JΛ(θ ) = 0 (91)

We recover with these two points of non-uniform convergence the forward (θ = 0) and BCS474

(θ = π) collision channels. The singular behavior of JΛ(θ → 0) is reminiscent of the behavior475

of the 4-point vertex found in Ref. [11] (see Fig. 4 therein).476

From the expression of Bσσ′ , one obtains the Landau function f (Eqs. (50)–(54)) by taking477

p= p1 = p4 and p′ = p2 = p3 (that is, θ12 = θ13 = (Ôp,p′)≡ θ):478

f↑↓(p,p′)

g
= 1+

2kFa
π
[IΛ(θ ) + JΛ(θ )] +O(a2) (92)

fσσ(p,p′)
g

=
2kFa
π

JΛ(θ ) +O(a2) (93)

Similarly, one obtains the collision amplitudes (Eqs. (55)–(51)) as A↑↓ = B↑↓ and Aσσ(p1,p2|479

p3,p4) = Bσσ(p1,p2|p3,p4)−Bσσ(p1,p2|p4,p3):480

A′↑↓(p1,p2|p3,p4)

g
= 1+

2kFa
π
[IΛ(θ12) + JΛ(θ13)] +O(a2) (94)

A′↑↑(p1,p2|p3,p4)

g
=

2kFa
π

�

JΛ(θ13)− JΛ(θ14)
�

+O(a3) (95)
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With theΛ-dependence we may now reinterpret the mismatch between f↑↑ and the forward-481

scattering limit of A↑↑. Both quantities follow from the limit q= p1−p4→ 0 (that is θ14→ 0)482

in Eq. (95). However this limit does commute with the limit Λ → 0: the Landau function483

f is obtained in the limit of energy transfer εp1σ
− εp4σ

≈ vFq small compared to Λ (that is484

θ14≪ εΛ), while the forward-scattering amplitude is for vFq≫ Λ (that is θ14≫ εΛ):485

Aforward
↑↑ (p,p′)≡ lim

q→0
vFq≫Λ

A↑↑
�

p+
q
2

,p′ −
q
2

�

�

�p′ +
q
2

,p−
q
2

�

= g
2kFa
π
[J(θ )− 1] +O(a3) (96)

486

f↑↑(p,p′)≡ lim
q→0

vFq≪Λ

A↑↑
�

p+
q
2

,p′ −
q
2

�

�

�p′ +
q
2

,p−
q
2

�

= g
2kFa
π

J(θ ) +O(a3) (97)

The Bethe-Salpeter relating Aforward
↑↑ to f↑↑ is then derived by renormalizing the effective ac-487

tion from Λ1≫ vFq to Λ2≪ vFq, which involves the differential unitary operator exp
�

Ŝ(Λ2)
�

488

exp
�

−Ŝ(Λ1)
�

. Finally, we note that Aforward
↑↓ coincides with f↑↓ to second-order in kFa; a mis-489

match between the two quantities will however appear at higher orders.490

1.2.5 Residue and momentum distribution491

We compute here the residue Zpσ of the quasiparticles in powers of kFa. With |ψ〉 = |FS〉 our492

definition Eq. (36) can be reinterpreted6 as the discontinuity of the momentum distribution at493

pF:494

Zpσ = 〈pσ, FS|â†
pσ âpσ|pσ, FS〉 − 〈pσ, FS|â†

pσ âpσ|pσ, FS〉 (98)

= 〈FS|â†
p+σ

âp+σ − â†
p−σ

âp−σ|FS〉 (99)

where p± = pF± 0+. The (particle) momentum distribution in an arbitrary quasiparticle state495

|{npσ}〉 is given to second order in g by496

n
|{np′σ′}〉
pσ ≡ 〈{np′σ′}|â†

pσ âpσ|{np′σ′}〉= 0〈{np′σ′}|â†
pσ âpσ+

1
2

�

[â†
pσ âpσ, Ŝ1], Ŝ1

�

|{np′σ′}〉0+O(g3)

= npσ +
� g

V

�2 ∑

p2p3p4∈D
δ

p3+p4
p+p2

n̄p,σ n̄p2,−σnp3,−σnp4,σ − np,σnp2,−σ n̄p3,−σ n̄p4,σ

(ωp +ωp2
−ωp3

−ωp4
)2

×QΛ(ωp +ωp2
−ωp3

−ωp4
) +O(g3) (100)

with QΛ(x) = 1−ΠΛ(x). Applying (98), we obtain497

Zpσ = 1−
� g

V

�2 ∑

p2p3p4∈D
δ

p3+p4
p+p2

n̄0
p2,−σn0

p3,−σn0
p4,σ + n0

p2,−σ n̄0
p3,−σ n̄0

p4,σ

(ωp +ωp2
−ωp3

−ωp4
)2

×QΛ(ωp +ωp2
−ωp3

−ωp4
) +O(g3) (101)

In p = pF, the residue has a well-defined Λ→ 0 limit, which recovers the result of Belyakov498

[45]:499

〈FS|n̂pσ|FS〉 = n0
pσ

�

1−
2a2

π2

�

ln 2+
1
3

�

�

+ n0
pσ

2a2

π2

�

ln2−
1
3

�

+O(g3) (102)

ZpF
= 1−

4a2

π2
ln2+O(g3) (103)
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Figure 4: (Main pannel) Difference between the particle momentum distribution
n|FS〉

p = 〈FS|â†
pσ âpσ|FS〉 (see Eq. (100)) and the zero-temperature Fermi-Dirac

distribution n0
p as a function of p/pF. The difference is scaled to (kFa/π)2 so as to

be independent of a in the weak-coupling limit. The discontinuity across the Fermi
surface, i.e. between the asymptotic values in pF − 0− and pF + 0+ (black dashed
lines), is given by 1− ZpF

. At large momenta, the distribution follows a 1/p4

behavior, from which the contact C = 4a2/9π2 can be extracted (orange dashed
curve). (Inset) The bare distribution n|FS〉

p in function of p/pF, evaluated in
second-order perturbation theory at kFa = −1. The distribution displays the
familiar shape of a depleted Fermi sea, with np < 1 down to p = 0.

500

Contrarily to Z , the momentum distribution n|FS〉
p of the particles in the quasiparticle Fermi501

sea is well defined for all values of p/pF. We depict it on Fig. 4 using the expressions given502

in [46], which correct the original calculation of Belyakov [45]. We first remark that the503

depletion of the particle Fermi sea is not limited to the vicinity of pF but extends all the way504

to p = 0. Then, at large momenta, the distribution decays as 1/p4:505

npσ =
C
p4

(104)

This provides a way to identify the first perturbative contribution to Tan’s contact [47]:506

C =
4

9π2
(kFa)2 (105)

Finally, besides the discontinuity in pF, we note two corner points in p/pF =
p

2 and 3.507

6We use the continuity of the residue at the Fermi level Zp+σ = Zp−σ, and the relations
〈p+σ, FS|â†

p+σ
âp+σ|p+σ, FS〉= 〈FS|â†

p−σ
âp−σ|FS〉, 〈p−σ, FS|â†

p−σ
âp−σ|p−σ, FS〉= 〈FS|â†

p+σ
âp+σ|FS〉
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1.3 Derivation of the Fermi liquid kinetic equations508

Knowing the energy and transition amplitudes of the quasiparticle fluid, we can now attempt509

to describe its dynamics by a kinetic equation. We recall that Fermi systems at intermediate510

temperatures T ≈ TF and strong interactions do not obey a kinetic equation, as there is no511

separation of timescales to break the BBGKY hierarchy. By introducing the long-lived states512

|ψ〉 = eŜ|ψ〉0, the quasiparticle description manages to overcome this limitation in the low513

temperature limit T ≪ TF, irrespectively of the interaction strength (as long as the quasiparti-514

cle picture holds).515

This section uses the effective Hamiltonian Eq. (49) to rigorously derive the kinetic equa-516

tion, and discuss its domain of validity. In Sec. 1.3.1, we consider the case of an homogeneous517

system with an out-of-equilibrium quasiparticle distribution. We show that if the cloud of ex-518

cited quasiparticles is contained in a low-energy shell ε0≪ εF, one can treat the evolution of519

the quasiparticle distribution in the Born-Markov approximation. This results in a nonlinear520

kinetic equation, from which we extract the thermal lifetime of the quasiparticles.521

In Sec. 1.3.2 and 1.3.3, we study transport phenomena, where the quasiparticle gas is522

excited by a perturbation periodic in space and time, at frequency ω and wavenumber q. We523

assume that the corresponding energy scales are comparable and small compared to Λ:524

vFq ≈ ω≪ Λ (106)

In presence of the dynamical parameters q andω, there exists several ways to take the low525

temperature limit. In Sec. 1.3.2, we derive the collisional transport equation in the limit526

T
TF
→ 0 at fixed vFqτ, ωτ (107)

where the mean collision time τ scales, as we shall see, as 1/T2. In this regime, all the lower527

bounds on Λ in Eq. (6) are of order T2:528

vFq, ω, Γtyp ≈ T2 (108)

Varying the parameterωτ (after the limit T → 0 is taken), this regime describes the crossover529

from hydrodynamic ωτ≪ 1 to collisionless transport ωτ≫ 1.530

In Sec. 1.3.3 instead, we take the limit:531

T
TF
→ 0 at fixed vFq, ω≪ εF (109)

In this regime, the excitation energy vFq sets the high energy tail of the quasiparticle distri-532

bution and the lower bound on Λ. The collision integral vanishes as (vFq/εF)2, such that533

transport is collisionless to leading order in q.534

1.3.1 Kinetic equation in a spatially homogeneous state535

Equation of motion of the quasiparticle distribution We assume that the initial state ϱ̂ of536

the system describes an uncorrelated distribution of quasiparticles537

ϱ̂(0) =
∏

ασ

ϱ̂ασ (110)

The reduced density matrix ϱ̂ασ is a function of γ̂ασ and γ̂†
ασ only which defines the occupation538

of mode ασ539

δnασ = Tr(ϱ̂ασδn̂ασ) (111)
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We assume that the excited quasiparticles are contained in a low-energy shell of width p0540

δnpσ = 0 for |p− pF|> p0 (112)

Note that this is more restrictive than just assuming a “low density of excitation”
∑

ασ δnασ≪ N .541

In fact, exciting even a low energy density in highly energetic modes would result in a break-542

down of the quasiparticle picture.543

We describe the evolution of δnασ in Heisenberg picture using the expansion Eq. (49) of544

the Hamiltonian, which we rewrite in the form545

Ĥ = E0 + Ĥ2 + Ĥd
4 + Ĥx

4 +O
�

δ(γ̂†γ̂)3
�

(113)

where546

Ĥ2 =
∑

p∈D,σ

εpδn̂pσ (114)

and we have splitted the terms quadratic in δ(γ̂†γ̂) into diagonal and off-diagonal parts547

Ĥd
4 =

1
2L3

∑

pp′∈D

σ,σ′=↑,↓

fσσ′(p,p′)δn̂pσδn̂p′σ′ (115)

Ĥx
4 =

1
2L3

∑

(pα,pβ )̸=(pδ,pγ)
σ,σ′=↑,↓

δ
pγ+pδ
pα+pβ

Bσσ′(pαpβ |pγpδ)γ†
pασ
γ†

pβσ′
γpγσ′γpδσ (116)

The equation of motion of δnασ is triggered only by Ĥx
4548

i∂tδnpσ =
1

2L3

∑

p2,p3,p4
σ′=↑↓

�

sσσ′Aσσ′
�

p,p2|p3,p4

�

δ
p3+p4
p+p2
〈γ̂†

p,σγ̂
†
p2σ
′ γ̂p3σ

′ γ̂p4σ
〉−c.c.

�

+O(δ(γ̂†γ̂))3

(117)
where 〈Ô〉 ≡ Tr(ϱ̂Ô) and s↑↓ = 1 and s↑↑ = 1/2 is a counting factor. Notice that the bare Bσσ′549

amplitudes have been replaced by the symmetrized ones Aσσ′ .550

Born-Markov approximation Eq. (117) is not a closed system, due to the presence of terms551

quartic in γ̂. To perform a Born-Markov approximation on the dynamics of those quartic terms,552

similar to the classical “molecular chaos hypothesis”, we introduce the quartic cumulants553

Qσσ
′

αβγδ ≡ (γ̂†
ασγ̂

†
βσ′
γ̂γσ′ γ̂δσ)c (118)

�

â† b̂† ĉ d̂
�

c ≡ â† b̂† ĉ d̂ − â†d̂〈b̂† ĉ〉 − b̂† ĉ〈â†d̂〉+ â† ĉ〈b̂†d̂〉+ b̂†d̂〈â† ĉ〉

+ 〈â†d̂〉〈b̂† ĉ〉 − 〈â† ĉ〉〈b̂†d̂〉 (119)

and we note that the contracted terms γ̂†
p,σγ̂

†
p2σ
′ γ̂p3σ

′ γ̂p4σ
− Q̂σσ

′

pp2p3p4
drop out from Eq. (117).554

The quartic cumulant is described by the equation of motion555

i∂tQ̂
σσ′

αβγδ =
�

ε̂δσ + ε̂γσ′ − ε̂βσ′ − ε̂ασ
�

Q̂σσ
′

αβγδ + Ŝσσ
′

αβγδ(t) (120)

where556

Ŝσσ
′

αβγδ ≡ [Q̂
σσ′

αβγδ, Ĥx
4] =

1
2L3

∑

abcd

Bσaσb
(dc|ba)δc+d

a+b[(γ̂
†
ασγ̂

†
βσ′
γ̂γσ′ γ̂δσ)c , (γ̂

†
dσa
γ̂†

cσb
γ̂bσb

γ̂aσa
)c]

(121)
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is the source term of the equation of motion. The “local energy” energy of the quasiparticle557

appears as an operator in our formalism:558

ε̂pσ = εpσ +
1
L3

∑

p′σ′
fσσ′(p,p′)δn̂p′σ′ (122)

The deviationδε̂pσ = ε̂pσ−εpσ from the Fermi sea eigenenergy originates from Ĥd
4 : [γ̂pσ, Ĥd

4] = δε̂pσγ̂pσ;559

in the low-energy state ϱ̂, it is negligible 〈δε̂ασ +δε̂βσ′ −δε̂γσ′ −δε̂δσ〉= O(p0/pF)2.560

In the Born approximation, we assume that the correlations among quasiparticle modes561

remain small at all times. We then replace 〈Ŝ〉 by its Wick contraction562

〈Ŝσσ
′

αβγδ〉=
Aσσ′(αβ |γδ)

L3

�

nασnβσ′ n̄γσ′ n̄δσ − n̄ασ n̄βσ′nγσ′nδσ
�

+O(p0/pF)
2 (123)

where npσ(t) ≡ 〈γ̂†
pσγ̂pσ(t)〉, and we use the short-hand notations n̄ = 1 − n. The contrac-563

tions have imposed imposed (σa,σb) = (σ,σ′) or (σa,σb) = (σ′,σ) and removed all the564

summations over momentum in Eq. (121). The correction of order O(p0/pF)2 to this Born565

approximation is discuss in Appendix.566

With the Born approximation, the source term Ŝ becomes independent of Q̂, such that we567

can formally integrate Eq. (120)568

Q̂σσ
′

αβγδ(t) = −i

∫ 0

−∆t
dt ′e−i(εδ+εγ−εβ−εα)t ′ Ŝσσ

′

αβγδ(t + t ′) (124)

Modelling the slow time-dependence of Ŝ as Ŝσσ
′

αβγδ
(t+ t ′) = Ŝσσ

′

αβγδ
(t)eηt , we obtain the Marko-569

vian approximation of Q̂:570

Q̂σσ
′

αβγδ(t) = −
Ŝσσ

′

αβγδ
(t)

εδ + εγ − εβ − εα + iη
(125)

Anticipating on Eq. (128) which gives the time scale at which nασ(t) and Ŝ(t) vary, one can571

estimate η= O(p0/pF)2.572

Nonlinear kinetic equation Replacing the expression of Q̂ in the kinetic equation (117) and573

using the Plemelj formula 1/(x + i0+) = P − iπδ(x), we obtain574

∂tδnpσ = Ipσ[δn]≡
2π
L6

∑

p2,p3,p4∈D
δ

p3+p4
p+p2

δ(εp + εp2
− εp3
− εp4

)

�

W↑↓(p,p2|p3,p4)
�

np↑np2↓n̄p3↓n̄p4↑ − n̄p↑n̄p2↓np3↓np4↑
�

+
1
2

W↑↑(p,p2|p3,p4)
�

np↑np2↑n̄p3↑n̄p4↑ − n̄p↑n̄p2↑np3↑np4↑
�

�

+O(p0/pF)
3 (126)

where575

Wσσ′(p1,p2|p3,p4) =
�

Aσσ′(p1,p2|p3,p4)
�2

(127)

are the collision probabilities. Note that W inherits symmetry properties from Eqs. (43)–(42).576

The collision integral Ipσ is a functional of the quasiparticle distribution δn. If p is inside577

the low-energy shell (|p − pF| < p0), then, by the conservation of energy and the absence578
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of highly-excited quasiparticles, so are all the collision momenta7 p2, p3 and p4. In other579

words, the low-energy space is stable under collisions. The double summation over p2 and p3580

(assuming that p4 is fixed by momentum conservation) is then restricted to a small interval581

[pF − p0, pF + p0] about the Fermi momentum, which allows us to estimate582

Ipσ = O
�

p0

pF

�2

(128)

Subleading terms O(p0/pF)3 in the collision integral then arise either from the Markov approx-583

imation η→ 0+ in Eq. (125) or from the omission of the local energy ε̂pσ = εpσ +O(p0/pF).584

Thermal lifetime In its general form, the kinetic equation Eq. (126) is a nonlinear differen-585

tial equation where we cannot single-out the lifetime of quasiparticles in mode pσ.586

To linearize the kinetic equation, we assume that the initial state is a thermal equilibrium587

state, which we approximate8 by the matrix density588

ϱ̂eq =
1
Z e−(Ĥ2−µN̂)/T (129)

Here µ is the chemical potential, Z = Tr(e−(Ĥ2−µN̂)/T ) is a low-temperature approximation of589

the partition function, and N̂ is the number of quasiparticles (see Eq. (29)). The state ϱ̂eq590

populates the quasiparticle modes according to the Fermi-Dirac distribution591

neq
p (T ) = Tr(ϱ̂eqn̂pσ) =

1

1+ e(εp−µ)/T
(130)

It then fullfills the low-energy condition Eq. (112) with pF≫ p0≫ T/vF.592

We excite the quasiparticle in mode pσ, leaving the rest of the gas in the thermal state,593

which amounts to preparing the initial distribution594

〈n̂p′σ′〉=

¨

neq
p (T ) +δneq

pσ, p′σ′ = pσ

neq
p′ (T ), p′σ′ ̸= pσ

(131)

As long as it remains much below pF, the excited quasiparticle does not need to be inside the595

thermal window.596

The kinetic Eq. (126) then describes the thermal relaxation of δneq
pσ:597

∂tδneq
pσ = −Γpσδneq

pσ (132)

The thermal damping rate is given by Fermi’s golden rule598

Γpσ =
2π
L6

∑

p2p3p4∈D
W (p,p2|p3,p4)δ

p3+p4
p+p2

δ(εp + εp2
− εp3

− εp4
)
�

neq
p2

neq
p3

neq
p4
+ neq

p2
neq

p3
neq

p4

�

(133)

with the spin-averaged collision probability599

W (p1,p2|p3,p4) =W↑↓(p1,p2|p3,p4) +
1
2

Wσσ(p1,p2|p3,p4) (134)

7Energy conservation guarantees that one of the outgoing wavevector is at low energy, say |p4− pF|< p0. Then
if the remaining wavevectors p2 and p3 are at high energy, they are necessarily on the same side of the Fermi level,
n0

p2
= n0

p3
. The collision in the state ϱ̂ is then suppressed by the factor np2σ

′ n̄p3σ
′ = n0

p2
n̄0

p3
in the square bracket of

Eq. (126).
8At low temperatures, neq

p differs from the zero-temperature Fermi-Dirac distribution n0
p by a O(T ). In omitting

Ĥ4 (and higher order terms) from ϱ̂eq we commit a small error, of order O(T 2) on neq
p .
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Integrating over energies and angles, as detailed in [32] (see the End Matter), we recover the600

standard result for Γpσ:601

Γpσ =
�

m∗

2π

�3
®

W

cos θ2

¸

θ ,φ

�

π2T2 + (εp −µ)2)
�

(135)

We have reparametrized the probability W in terms of the two angles θ = (×p1,p2) andφ = ( Ûp1 − p2,p3 − p4)602

that locate the four momenta p1, p2, p3, p4 of norm pF: W (p1,p2|p3,p4) =W (θ ,φ). We have603

then introduced the average over solid angles604

〈 f 〉θ ,φ =
1

4π

∫ π

0

∫ 2π

0

f (θ ,φ) sinθdθdφ (136)

Since |εp − µ| and T are both below vFp0, Eq. (135) illustrates the O(p0/pF)2 scaling of the605

collision integral.606

1.3.2 Linearized transport equation at nonzero temperature607

Linear response approximation We now imagine that the system is driven out-of-equilibrium608

by an external field Uσ coupled to quasiparticle density operators γ̂†γ̂609

Ĥext =
∑

p∈D,σ

Uσ(q, t)n̂−q
pσ (137)

where we use Anderson’s notations for the quasiparticle-quasihole excitation operator610

n̂q
pσ(t) = γ̂

†
p+q/2,σγ̂p−q/2,σ (138)

One can also see Ĥext as driving the density of quasiparticles in real space:611

Ĥext =

∫

d3r
∑

σ

Uσ(r, t)ψ̂†
γ,σ(r)ψ̂γ,σ(r) (139)

where9 ψ̂γ,σ(r) = L−3/2
∑

p∈D eip·rγ̂pσ is the field operator associated to the quasiparticles,612

and Uσ(r) = Uσ(q)eiq·r. Placing ourselves in the linear response regime, we assume a weak613

driving compared to the temperature614

|Uσ| ≪ T (140)

and we decompose the state of the system at time t as615

ϱ̂(t) = ϱ̂eq +δϱ̂(t) (141)

with δϱ̂ = O(Uσ/T ). In the linear response regime, the fluctuations about the thermal state616

are small n̂pσ−neq
p = O(U), and we approximate the contribution of the drive to the Heisenberg617

equation of motion by618

[n̂q
pσ, Ĥext] = Uσ(q)

�

n̂p+ q
2 ,σ − n̂p− q

2 ,σ

�

= Uσ(q)
�

neq
p+ q

2
− neq

p− q
2

�

+O(U2) (142)

9Note that taking the continuous limit l → 0, we have converted the discreet sum l3
∑

r over the sites r of the
lattice model into the

∫

d3r integral.
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Quantum Boltzmann equation We obtain the streaming term10 of the Boltzmann equation619

as the contribution of Ĥ2 + Ĥd
4 :620

[n̂q
pσ, Ĥ2 + Ĥd

4] =
�

ε̂p−q/2,σ − ε̂p+q/2,σ

�

n̂q
pσ (143)

The contribution of Ĥ x
4 is no longer antihermitian621

[n̂q
pσ, Ĥx

4] =
1

2L3

∑

p4,p2 ̸=p3
σ′=↑↓

sσσ′

�

Aσσ′
�

p−
q
2

,p2|p3,p4

�

δ
p3+p4

p− q
2+p2

γ̂†
p+ q

2 ,σ
γ̂†

p2σ
′ γ̂p3σ

′ γ̂p4σ

−Aσσ′
�

p+
q
2

,p2|p3,p4

�

δ
p3+p4

p+ q
2+p2

γ̂†
p4σ
γ̂†

p3σ
′ γ̂p2σ

′ γ̂p− q
2σ

�

(144)

where s↑↓ = 1 and s↑↑ = 1/2. We treat this contribution using the cumulant expansion622

(Eq. (119)) to obtain:623

[n̂q
pσ, Ĥx

4] = (n
eq
p+ q

2
− neq

p− q
2
)

1
L3

∑

p′,σ′
Aσσ′

�

p−
q
2

,p′ +
q
2
|p′ −

q
2

,p+
q
2

�

n̂q
p′,σ′ + i Îpσ (145)

where Îpσ is the cumulant part of Eq. (144). Restricting to leading order in U , we have replaced624

the average values in the partially contracted terms by thermal averages:625

〈γ̂†
pσγ̂p′σ′〉= δpp′δσσ′n

eq
p +O(U/T ) (146)

To recognize the Vlasov force in those terms, we use Eq. (60) and the condition vFq≪ Λ:626

Aσσ′
�

p−
q
2

,p′ +
q
2
|p′ −

q
2

,p+
q
2

�

= fσσ′(p,p′) +O(vFq/Λ) (147)

Note that the partial contractions also replace the local energies in Eq. (143) by their thermal627

value 〈ε̂pσ〉= 〈ε̂pσ〉eq +O(U).628

Collision integral Following the steps discussed in Sec. 1.3.1, we compute the collision in-629

tegral Îpσ in the Born-Markov approximation. Restricting to leading order in vFq/T ,we obtain630

the transport equation631

(i∂t + vFqu) n̂q
pσ − vFqu

∂ neq

∂ ε

�

�

�

ε=εp

 

Uσ(q) +
1
L3

∑

p′σ′
fσσ′(p,p′)n̂q

p′σ′

!

= i Î lin
pσ(n̂

q) (148)

where u = cos(dp,q), neq(ε) = 1/(1+ e(ε−µ)/T ), and the collision integral linearized about the632

thermal state takes the form633

Î lin
p↑ [n̂

q] =
2π
L6

∑

β ,γ,δ∈D
δ
γ+δ
p+βδ(εp + εβ − εγ − εδ)

×
�

�

neq
β

n̄eq
γ n̄eq

δ
+ n̄eq

β
neq
γ neq

δ

�

�

W↑↓(p,β |γ,δ) +
1
2

Wσσ(p,β |γ,δ)
�

n̂q
p↑

+
�

neq
p n̄eq

γ n̄eq
δ
+ n̄eq

p neq
γ neq

δ

�

�

W↑↓(p,β |γ,δ)n̂q
β ,↓ +

1
2

Wσσ(p,β |γ,δ)n̂q
β↑

�

−
�

neq
δ

n̄eq
p n̄eq

β
+ n̄eq

δ
neq

p neq
β

�

�

W↑↓(p,β |γ,δ)n̂q
γ,↓ +

1
2

Wσσ(p,β |γ,δ)n̂q
γ↑

�

−
�

neq
γ n̄eq

p n̄eq
β
+ n̄eq

γ neq
p neq

β

�

�

W↑↓(p,β |γ,δ) +
1
2

Wσσ(p,β |γ,δ)
�

n̂q
δ↑

�

(149)

10We have used the property fσσ(p+q/2,p−q/2) = 0, valid for vFq≪ Λ, which guarantees that n̂q
pσ commutes

with δε̂p±q/2,σ
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We may interpret the linearized transport equation in real space by performing an inverse634

Wigner transform635

nσ(p,q)≡ 〈n̂−q
pσ〉=

1
p

L3

∫

d3re−iq·rδnσ(p, r) (150)

The Wigner transform of 〈 Î lin
pσ〉 is then interpreted as a collision integral linearized for small636

spatial fluctuations:637

Ipσ[n
eq +δn(r)] = 〈 Î lin

pσ(r)〉+O(δn)2 (151)

where Ipσ[n] is defined by Eq. (126). The transport equation may now be written in real space638

∂t nσ +
∂ εpσ

∂ p
·
∂ nσ
∂ r
−
∂ neq

pσ

∂ p
·

 

1
L3

∑

p′σ′
fσσ′(p,p′)

∂ nσ′
∂ r

+ Uσ(r)

!

= Ipσ[n
eq +δn(r)] (152)

We stress that this transport equation in real space is linearized. Obtaining a nonlinear equa-639

tion in real space appears far from obvious in our formalism; in particular it is not clear, when640

looking at Eq. (62), if the Vlasov force (the first term between bracket in Eq. (152)) still de-641

pends only on fσσ′(p,p′) or also on Aσσ′(p,p2|p3,p4) at vF|p− p4| ≫ Λ.642

1.3.3 Transport equation at T = 0643

We now let T → 0 at fixed q and ω. We describe the state of the system in presence of Ĥext by644

ϱ̂(t) = |FS〉〈FS|+δϱ̂(t) (153)

The linear response regime (i.e. the absence of second harmonic generation) ensures that only645

the momenta that differs from pF by q are excited. The fluctuations of the quasiparticle distri-646

bution thus remain zero for |p − pF| ≫ q, and the wavenumber q acts as the small parameter647

p0 of the low-energy expansion. The linearized transport equation is then648

�

i∂t + εp+q/2 − εp−q/2

�

n̂q
pσ − (n

0
p+ q

2
− n0

p− q
2
)

 

Uσ(q) +
1
L3

∑

p′σ′
fσσ′(p,p′)n̂q

p′σ′

!

= i Î lin
pσ(n̂

q, T = 0) (154)

The zero-temperature collision integral Î lin
pσ(n̂

q, T = 0) is obtained by replacing neq
pσ → n0

p in649

the nonzero temperature expression (149); it is of order O(q/pF)2 to leading order, with non-650

Markovian corrections of order O(q/pF)3 (see Eqs. (125) and (128)). To leading order in q/pF651

the transport equation (154) then reduces to its collisionless left-hand side.652

2 Transport dynamics in Fermi liquids653

2.1 The transport equation as a linear integral equation654

In this section, we study the linear integral kernel contained in the collision integral Eq. (149)655

at nonzero temperature.656

2.1.1 Collision kernel657

We express the collision collision integral in terms of the collision kernel658

Nσσ′(p,p′) = −Γ (p)L3δσσ′δpp′ − Eσσ′(p,p′) + Sσσ′(p,p′) (155)

I lin
σ (p, n) =

1
L3

∑

p′σ′
Nσ′σ(p′,p)nσ′(p′) (156)
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Note the transposed order of p′σ′ and pσ in Eq. (156). The diagonal part of N is given by the659

quasiparticles damping rate Eq. (133) and the off-diagonal part involves the four subkernels:660

Eσσ(p,p′) =
2π
L3

∑

p3,p4∈D

Wσσ(p′,p|p3,p4)
2

δ
p3+p4
p+p′ δ(εp + εp′ − εp3

− εp4
)Np′

p3p4
(157)

E↑↓(p,p′) =
2π
L3

∑

p3,p4∈D
W↑↓(p

′,p|p3,p4)δ
p3+p4
p+p′ δ(εp + εp′ − εp3

− εp4
)Np′

p3p4
(158)

Sσσ(p,p′) =
2π
L3

∑

p2,p4∈D

�

Wσσ(p
′,p2|p4,p) +W↑↓(p

′,p2|p4,p)
�

δ
p2+p′

p+p4
δ(εp + εp4

− εp′ − εp2
)Np4

p′p2

S↑↓(p,p′) =
2π
L3

∑

p2,p4∈D
W↑↓(p

′,p2|p,p4)δ
p′+p2
p+p4

δ(εp + εp4
− εp′ − εp2

)Np4
p′p2

(159)

where Np3
p1p2

= neq
p1

neq
p2

neq
p3
+ neq

p1
neq

p2
neq

p3
. The collisions kernels Eσσ′ describe the coupling be-661

tween quasiparticles in mode pσ and p′σ′ through collisions where p and p′ are on the same662

side of the collision (either incoming or outgoing). Conversely, Sσσ′ describes the couplings663

where p and p′ are on opposite sides.664

2.1.2 Conservation laws665

Collisions obey a few conservation laws which play a prominent role in transport phenomena:666

the numbers of spin ↑ and ↓ particles, the momentum and the energy are the same before667

and after any collision. In mathematical terms, this means that the collision kernel N has 6668

zero eigenfunctions (counting the 3 components of the momentum). Since the kernel is not669

symmetric, it has distinct left and right eigenfunctions.670

To recognize the conservation laws on our collision kernel, let us contract it with some671

arbitrary functions nσ(p) to the left and νσ(p) to the right:672

∑

pp′∈D,σσ′=↑↓

nσ(p)Nσσ′(p,p′)νσ′(p
′) =

2π
L6

∑

p1p2p3p4∈D,σ=↑↓

δ
p3+p4
p1+p2

δ(εp1
+ εp2
− εp3
− εp4

)Np2
p3p4

×
�

1
2

W↑↑(p1,p2|p3,p4)
�

νσ(p1) + νσ(p2)− νσ(p3)− νσ(p4)
�

+W↑↓(p1,p2|p3,p4)(νσ(p1) + ν−σ(p2)− ν−σ(p3)− νσ(p4))

�

nσ(p1) (160)

The 6 functions νσ which cancel this expression for all nσ, i.e. the right zero-energy eigen-673

functions, are νσ(p) = δσ,↑, δσ,↓, px , py , pz and εp. The corresponding conserved physical674

quantities are the density fluctuations δρσ, the macroscopic velocity v and the energy density675

δe:676

δρσ =
1
L3

∑

p∈D
nσ(p) (161)

mv =
1
N

∑

p∈D
pnσ(p) (162)

δe =
1
L3

∑

p∈D
εpnσ(p) (163)

Unsurprisingly, opposite spin collisions (with probability W↑↓) are responsible for the absence677

of conservation of the velocity imbalance v↑ − v↓ and energy imbalance e↑ − e↓.678
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2.1.3 Total density and polarization679

In our unpolarized Fermi liquid, fluctuations of the density n+ = n↑ + n↓ and polarisation680

n− = n↑− n↓ are decoupled, by the transport equation in general, and by the collision integral681

in particular. The corresponding collision kernel are:682

N±(p,p′) = −Γ (p)L3δσσ′δpp′ − E±(p,p′) + 2S±(p,p′), I±(p) = I lin
↑ (p)± I lin

↓ (p) (164)

with683

E±(p,p′) =
1
L3

∑

p3p4

WE±(p,p′|p3,p4) δ
p3+p4
p+p′ δ(εp + εp′ − εp3

− εp4
)Np′

p3p4
(165)

S±(p,p′) =
1
L3

∑

p2p4

WS±(p,p2|p′,p4) δ
p′+p4
p+p2

δ(εp + εp2
− εp′ − εp4

)Np2
p′p4

(166)

We have defined the (anti)-symmetrized probabilities WE± and WS± :684

WE±(p1,p2|p3,p4) =
1
2

W↑↑(p1,p2|p3,p4)±
1
2

�

W↑↓(p1,p2|p3,p4) +W↑↓(p1,p2|p4,p3)
�

(167)

WS±(p1,p2|p3,p4) =
1
2

W↑↑(p1,p2|p3,p4)±
1
2

�

W↑↓(p1,p2|p3,p4)±W↑↓(p1,p2|p4,p3)
�

(168)

Remark that WE+ = WS+. We have used the symmetry properties (inherited from Eqs. (41)–685

(43)):686

W (p4,p3|p2,p1) =W (p2,p1|p4,p3) =W (p1,p2|p3,p4) (169)

Among the conserved quantities Eqs. (161)–(163), N+ inherits δρ↑+δρ↓, v and δe, while687

N− inherits only δρ↑ −δρ↓.688

2.1.4 Quasiparticle distribution in the thermal window689

To focus on the thermal energy window, to which the fluctuations of n(p) are limited, we690

reparametrized the quasiparticle distributions as691

n±(p) = −
U±(q)

T
g(y) ν±(y,θ ), with g(y) =

1

4ch2(y/2)
(170)

We have parametrized the 3D momentum p with y = (εpσ−µ)/T , θ = (dp,q) and an azimuthal692

angle φ, of which ν is independent due to the rotational invariance about q. In the spirit of693

linear response theory, we have scale the distribution ν to the intensity U± = U↑ ± U↓ of the694

drive. By taking out the thermal broadening function ∂ neq/∂ ε = −1/(T g(y)), the change of695

variable Eq. (170) smoothens the dependence of ν± on y . It also transposes11 the collision696

kernels697

N (p′,p) g(y
′)

g(y)
=N (p,p′) (171)

and similarly for E± and S±. In term of ν, the collision integral becomes (compare with698

Eq. (156))699

I lin
± (p, n) =

n̄eq
p neq

p

L3

∑

p′
N±(p,p′)ν±(p

′) (172)

11This can be seen by writing g(y ′)
g(y) =

n̄eq
p′

neq
p′

n̄eq
p neq

p
and using n̄eq

p neq
p Np′

p3p4
= n̄eq

p′ n
eq
p′N

p
p3p4

for 4 wavectors p, p′, p3 and p4

constrained by energy-momentum conservation.
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(a) x

y

z

p1

p3

p2

p4

p1 + p2

p1 − p3

p1 − p4

ϕ12→34
θ12

(b) x

y

z

p1

p3

p2

p4

p1 + p2

p1 − p3

p1 − p4

θ13
ϕ13→24

Figure 5: (a) The angular parametrization where p1 + p2 is chosen as the polar axis
of the spherical frame. This parametrization is used for WE in Eq. (173). (b) The
angular parametrization where p1 − p3 is chosen as the polar axis of the spherical
frame. This parametrization is used for WS in Eq. (174) . The last parametrization
where p1 − p4 is chosen as the polar axis is not shown here.

2.1.5 Angular parametrization of 4 momentum-conserving wavevectors of the Fermi700

surface701

To leading order in temperature, collisions of wavenumbers within the thermal window de-702

pend solely on the angles between these wavevectors. Four wavevectors of the Fermi surface703

constrained by momentum conservation p1 + p2 = p3 + p4 are advantageously expressed in704

the orthogonal frame made of (p1+p2, p1−p3, p1−p4). Depending on which vector is chosen705

as the z axis frame, this leaves three different ways of parametrizing the angles, depicted on706

Fig. 5. Since p and p′ play the role of p1 and p2 in E, we use the parametrization of Fig. 5a707

for this kernel:708

wE±(θ12,φ12→34)≡WE±(p1,p2|p3,p4) with











θ12 ≡ (×p1,p2)
φ12→34 ≡ (p1 −×p2,p3 − p4)
cosθ3 = cosθ4 = cos θ12

2 ,θi = ( Ûp1 + p2,pi)
(173)

where the third line is the angular version of the momentum conservation constraint. For S in709

which p and p′ play the role of p1 and p3 we use the parametrization of Fig. 5b:710

wS±(θ13,φ13→24)≡WS±(p1,p2|p3,p4) with











θ13 ≡ (×p1,p3)
φ13→24 ≡ (p1 +×p3,p2 + p4)
cosθ2 = − cosθ4 = sin θ13

2 ,θi = ( Ûp1 − p3,pi)
(174)

711

Since the collision amplitudes Aσσ′ are more readily expressed, as in Eqs. (94)–(95) in712

terms of the angles θi j between pi and p j , we use geometrical relations to express the angles713

of a given parametrization. For example for the parametrization of Fig. 5a:714

sin2θ13

2
= sin2θ12

2
sin2φ12→34

2
(175)

sin2θ14

2
= sin2θ12

2
cos2φ12→34

2
(176)

The angular integration in different parametrizations are related by the change of variable715

∫

sinθ13dθ13dφ13→24

2sin θ13
2

W̃ (θ13,φ13→24) =

∫

sinθ12dθ12dφ12→34

2cos θ12
2

W (θ12,φ12→34) (177)

for any function W̃ (θ13,φ13→24) =W (θ12,φ12→34).716
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2.1.6 Low temperature factorization of the kernel717

Among the fluids described by a Boltzmann equation, Fermi liquid have a remarkable property:718

their collision kernel N (p,p′) can be factorized into a radial (or energy) dependance and an719

angular dependence on720

α= (Ôp,p′), cosα= cosθ cosθ ′ + sinθ sinθ ′ cosφ (178)

This a consequence of the restriction of both the collision probabilities and energy-conservation721

constraint to the Fermi surface, such that the only remaining energy dependence in the kernel722

stems from the thermal populations neq.723

We illustrate this decoupling in the calculation of S±:724

S±(p,p′) =
(m∗)2T

4πpF| sin
α
2 |

∫ +∞

−∞
N y2

y ′,y+y2−y ′dy2

∫

dΩ2

2π
WS±(p,p2|p′,p−p′+p2)δ

�

cosθ2 + sin
α

2

�

+O(T2) (179)

with N y3
y1 y2
= n(y1)n(y2)n̄(y3) + n̄(y1)n̄(y2)n(y3) and n(y) = 1/(1 + ey). From the original725

expression (166), we have eliminated p4 using momentum conservation, and switched the726

radial integration from p2 to y2 using the relation, valid for a function h(p2) peaked about pF:727

∫

d3p2

(2π)3
h(p2) =

m∗pFT
(2π)2

∫ +∞

−∞
dy2

∫

dΩ2

2π
h(y2,θ2,φ2) +O(T ) (180)

where the solid angle dΩ2 = sinθ2dθ2dφ2 locates p2 on the spherical frame of axis p− p′, as728

depicted by Fig. 5b (with p= p1, p′ = p3). To leading order in T , the resonance condition is729

εp + εp2
− εp′ − εp+p2−p′ =

2p2
F sin(α/2)

m∗

�

sin
α

2
+ cosθ2

�

+O(T ) (181)

and allows us to integrate over θ2 in Eq. (179). Recognizing the angles of Eq. (174), we replace730

WS±(p,p2|p′,p − p′ + p2) by wS±(α,φ2), and there remains to integrate separately over the731

energy coordinate y2 and the angle φ2. The same calculation for E leads to an expression732

similar to Eq. (179) with p3 playing to role of p2.733

We thus obtain the factorized kernels734

E±(y, y ′,α) =
(m∗)2T
2πpF

S(y,−y ′)ΩE±(α) +O(T2) (182)

S±(y, y ′,α) =
(m∗)2T
2πpF

S(y, y ′)ΩS±(α) +O(T2) (183)

Here, S is an energy kernel independent of the collision probabilities and thus universal to all735

Fermi liquids:736

S(y, y ′) =
y − y ′

2
1

sinh y−y ′
2

cosh y
2

cosh y ′
2

(184)

The angular kernel Ω(α) follows from an azimuthal integration over φ in the appropriate737

spherical frame738

ΩE±(α) =

∫ 2π

0

dφ
2π

wE±(α,φ)
2|cosα2 |

(185)

ΩS±(α) =

∫ 2π

0

dφ
2π

wS±(α,φ)
2|sinα2 |

(186)
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Changing the summation over p′ into integrals over y ′ and θ ′, we express the collision739

integral in Eq. (172) as740

I±(y,θ ) =
i
τ

g(y)

�

Γ (y)ν±(y,θ )

+

∫

dy ′
dΩ′

2π

�

S(y,−y ′)
ΩE±(α)
ΩΓ
− 2S(y, y ′)

ΩS±(α)
ΩΓ

�

ν±(y
′,θ ′)

�

(187)

We have extracted a typical collision time τwhich gives the order of magnitude of the collision741

integral:742

1
τ
=
(m∗)3T2

(2π)3

­

WE+(θ ,φ)
2cosθ/2

·

θ ,φ
(188)

where 〈. . .〉θφ is the average over solid angles, see Eq. (136). The damping rate Eq. (135) also743

scales with 1/τ:744

Γ (p) =
1
τ
Γ (y), Γ (y)≡ π2 + y2 (189)

Note that this can also be deduced from the number conservation law Γ (p) = (1/L3)
∑

p′ S+(p,p′) = (1/τ)
∫ +∞
−∞ S(y, y ′)dy ′

∫ π

0 sinαdαΩS+(α)/ΩΓ .745

2.1.7 Transport equation in the thermal window746

We conclude this subsection by giving a dimensionless form of the transport equation (148)747

in the thermal window. Assuming a periodic driving Uσ(q, t) = Uσ(q)e−iωt and taking the748

average of (148) in ϱ̂ = ϱ̂eq(T ) +δϱ̂(t), we get:749

(ω− vFqu)nσ(p) + vFqu
∂ neq

∂ ε

�

�

�

ε=εp

 

Uσ(q) +
1
L3

∑

p′σ′
fσσ′(p,p′)nσ′(p

′)

!

= iI lin
σ (p, n) (190)

where the quasiparticle distribution n(p,q, t) = n(p,q)eiωt is defined by Eq. (150) and I lin
σ (p, n) = 〈 Î lin

pσ(n̂
−q)〉.750

Inserting the change of variable Eq. (170) we obtain:751

�

ω

ω0
− cosθ

�

ν±(y,θ ) + cosθ

�

1−
1
2

∫

dy ′
dΩ′

2π
F±(α)g(y ′)ν±(y

′,θ ′)

�

=

−
i
ω0τ

�

Γ (y)ν±(y,θ ) +

∫

dy ′
dΩ′

2π

�

S(y,−y ′)
ΩE±(α)
ΩΓ
− 2S(y, y ′)

ΩS±(α)
ΩΓ

�

ν±(y
′,θ ′)

�

(191)

where752

ω0 = vFq (192)

is the typical excitation frequency, and753

F±(α) =
m∗pF

π2

f↑↑(α)± f↑↓(α)

2
(193)

are the dimensionless symmetric and anti-symmetric Landau functions. The fσσ′ are expressed754

here as in Eqs. (92)–(93) in terms of the angle α between the two wavevectors p and p′ of755

norm pF.756
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2.2 Zero sound in the collisionless regime757

Since the regime of hydrodynamic transport is covered by Ref. [32], we concentrate here on the758

collisionless regime ω0τ→ +∞, where the collision integral can be treated as a perturbation759

of the transport equation. We will perform an expansion of the quasiparticle distribution ν±760

in powers of 1/ω0τ:761

ν± = ν
cl
± +

δν±
ω0τ

+O(ω0τ)
−2. (194)

2.2.1 Dispersion equation in the perfect collisionless regime (ω0τ= +∞)762

Let us first compute the leading term νcl
± in the perfect collisionless regime limit 1/ω0τ = 0.763

The low-temperature transport equation (191) in this regime is764

(c − cosθ ) ν±(y,θ ) = − cosθ

�

1−
1
2

∫

dy ′
dΩ′

2π
F±(α)g(y ′) ν±(y

′,θ ′)

�

(195)

where c = ω/ω0. Since there is no explicit dependence on the energy variable y on the765

right-hand side, the collisionless distribution is energy-independent, νcl
± = ν

cl
±(θ ). To solve the766

remaining 1D integral equation, we project ν± and the interactions functions F±(α) onto the767

basis of Legendre polynomials768

ν±(θ ) =
+∞
∑

l=0

ν±l Pl(cosθ ) (196)

F±(α) =
+∞
∑

l=0

F±l Pl(cosα) (197)

To lighten the notations, the subscript “cl” is implicit here and until Sec. 2.2.4. The integral769

equation folds onto a matrix equation whose l-th component is given by770

ν±l (c)−
∑

l ′
A±l l ′(c)ν

±
l ′ (c) + Bl0(c) = 0 (198)

where we have introduced the matrices771

Bl l ′(c) =

∫ 1

−1

du
2

Pl(u)
u

c − u
Pl ′(u) (199)

A±l l ′(c) = F±l ′ Bl l ′(c) (200)

This infinite-dimension linear system is solved by formally inverting the matrix 1− A:772

ν⃗±(c) = −
1

1− A±(c)
B⃗0(c) (201)

where the source vector B⃗0 = (Bl0)l∈N is the consequence of the external drive (recall that ν is773

scaled to the drive intensity U). A phononic collective modes occur when some component of774

the quasiparticle distribution ν diverges in response to the drive, i.e. when the matrix 1−A±(c)775

has a zero-energy eigenvector. The dispersion equation on the reduced velocity c0 = ωq/vFq776

of the collective modes is then777

det
�

1− A±(c0)
�

= 0, (202)

This dispersion equation can have several solutions, both real and complex. However, when778

F0 is much larger than the other Fl ’s, as in the case of weakly-interacting Fermi gases and779
3He, there is a dominant real solution, traditionally called zero sound. Physically, this solution780

describes a longitudinal collisionless phononic branch.781
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2.2.2 Log-perturbative expansion of the zero-sound velocity782

We are now calcutating the zero-sound reduced frequency c0 in powers of a in a weakly-783

interacting Fermi gas. In equation (198) for l > 0, the summation over l ′ is dominated by the784

term l ′ = 0 (which contains the dominant coefficient F0) so that:785

ν±l = −Bl0(c) + F±0 Bl0(c) ν
±
0 +O(a), for l ≥ 1 (203)

Anticipating on the followings, we have estimated Bl l ′ = O(1/a). Reinjecting in (198) for786

l = 0, we eventually obtain χ̄± ≡ ν±0 , which represents either the dimensionless density χ̄ρ or787

polarization χ̄p response, depending on the ± index:788

χ±(c) = −
B00(c) +

∑

l ′>0 F±l ′ B0,l ′(c)Bl ′,0

1− F±0 B0,0(c)−
∑

l ′ F
±
0 F±l ′ B0,l ′(c)Bl ′,0(c)

(204)

The dispersion relation 1/χ(c0) = 0 now reduces to:789

1− F±0 B0,0(c0)−
∑

l ′
F±0 F±l ′ B0,l ′(c0)Bl ′,0(c0) = 0 (205)

Since we expect that c0 − 1 tends to zero exponentially as |a| → 0, we introduce the variable790

γ= ln [(c0 − 1)/2]. Contrarily to c0, γ can be expanded in power of a:791

γ± =
γ±0
a
+ γ±1 +O(a) (206)

The log-perturbative corrections to γ convert into a prefactor correction in c0 − 1, reminis-792

cent of the Gork’ov Melik-Barkhudarov prefactor in the calculation of the superfluid critical793

temperature [37]. When c0 tends to 1 exponentially, the functions Bl l ′ have the following794

expansion795

B00(c0) = −1−
1
2
γ± +O(a) and Bl0(c0) = B0l(c0) =

γ±

2
+O(1) (207)

By substituting the expansions of γ, of the Landau parameters F±l and of the functions Bl l ′796

into (205), and by restricting to terms of order O(a), we obtain the following expressions of797

γ±0 and γ±1 :798

γ±0 = ∓π and γ±1 = −2+
π2

2a2

�

∑

l>0

F±l +δF±0

�

= ±4 (208)

where we have expanded F±0 as:799

F±0 = ±
2a
π
+δF±0 , δF±0 = O(ā2) (209)

We eventually recognize in γ± the sum of the F±l that is the forward value (α= 0) of F±.800

γ± = −
2

F±(α= 0)
− 2+O(a) (210)

This shows that the Landau function F(α) in the integral equation (195) can be replaced (to801

leading and subleading order in a) by its value in α= 0, that is for quasiparticles with colinear802

momenta p ∥ p′. This is a consequence of the longitudinal nature of zero sound at weak-803

coupling: the quasiparticle distribution ν±(θ ) ∝ cosθ/(c0 − cosθ ) is peaked about θ = 0,804

such that the quasiparticle momenta p are all nearly colinear to q.805
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In short, the zero sound velocity (in units of vF) for the density mode is given by806

c+0 = 1+ 2e4 e−π/a, a > 0 (211)

and the velocity for the zero polarization mode is:807

c−0 = 1+ 2e−4 eπ/a, a < 0 (212)

Second order corrections thus shift the density zero sound peak to higher velocities in the808

density-density response, increasing c+0 − 1 by a factor exp(6) ≃ 403. We then expect the809

resonance to be more easily observable than predicted by first-order approximations. Since it810

exists only for a > 0, the density zero sound is observable in a Fermi gas only on the metastable811

branch. Experimental exploration of this metastable branch are restricted to |a| ≲ 0.1, where812

zero sound is visible only at very low temperatures.813

Conversely, the polarisation sound mode, which is observable on the ground branch at814

a < 0, is shifted closer to the continuum edge, with c−0 −1 reduced by a factor exp(−2)≃ 0.14.815

This reduces the temperature range in which this zero sound mode is observable.816

We have benchmarked these analytical results using a numerical solution of Eq. (198).817

More details for the numerical evaluation are given in Appendix B.818

2.2.3 Response function in the collisionless regime819

Our discussion of zero sound so far has focused on reduced frequencies c ≈ c0 ≈ 1. We now dis-820

cuss numerically the rest of the spectrum in the density-density response Im[χρ] = Im[ν0
+] and821

polarisation-polarisation response. Figs. 6 and 7 show the reduced spectral density Im[χρ,p(c+i0+)].822

In the attractive case a < 0 (red curves), second-order corrections tend to decrease the devia-823

tions of Im[χρ] and Im[χp] from the Lindhard response of an ideal gas (black curve). Since a824

stable Fermi liquid regime exists in ultracold Fermi gases only for a < 0, this behavior should825

be the easiest to observe in cold atom experiments. Conversely, in the repulsive case a > 0826

(blue curves), the deviations are increased to second-order. This can be understood by com-827

paring the first- and second-order approximation of the Landau parameters. For the leading828

coefficient, F±0 , we have:829

F+(2)0

F+(1)0

≃ 1+ 1.143 a (213)

F−(2)0

F−(1)0

≃ 1+ 0.130 a (214)

Thus, for negative (resp. positive) a, the second-order F±0 is smaller (resp. larger) than its830

first-order counterpart both. As a result, the effective interaction between quasiparticles is831

reduced (resp. increase), tending to restore (resp. remove) the behavior of an ideal gas. Even832

though this is true both in the density and polarisation channel, the effect is ≈ 10 times larger833

in the density channel.834

In the density response (Fig. 6), a zero sound resonance appears, in the repulsive case, as835

a Dirac peak at c0 > 1; there remains also a secondary peak near the edge of the quasiparticle-836

quasihole continuum for c ≲ 1 (see inset). This secondary peak visibly shrinks as second-order837

corrections push the zero sound resonance away from the continuum. In the attractive case,838

interactions tend to smoothen the sharp behavior at the continuum edge, and the density839

response becomes a broad, featureless spectral function.840

Conversely, in the polarisation response (Fig. 7), the resonance appears in the attractive841

case, and the broad structure in the repulsive case, which indicates a repulsive/attractive,842
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Figure 6: The reduced spectral density Im[χρ(c + i0+)] = Im[ν+0 (c + i0+)] as a
function of c =ω/ω0, for different values of a = kFa, blue curves for a > 0 and red
curves for a < 0. The dashed lines correspond to the first order calculation [48].
The black line is the non-interacting case. The solid curves include second-order
effects; they are obtained by numerically solving (198) truncated to lmax = 100.

density/polarisation duality. This time, the resonance is brought closer to the continuum edge843

by second-order corrections, and the secondary peak near the continuum edge grows. In844

presence of a small spectral broadening (either due to collisional damping, Landau damping845

or experimental resolution) the two peaks would become indistinguishable.846

2.2.4 Collisional damping of zero sound847

We now aim to include the collisional correction δν± (see Eq. (194)) in the distribution ν±.848

In the regime where c is exponentially close to 1 (γ = ln([c − 1]/2) → −∞), the leading-849

order solution νcl
± can be written more simply by discarding the Legendre decomposition and850

returning to the angular variable θ :851

νcl
±(θ ) =

cosθ
c − cosθ

·
ρcl
±

2B00(c)
(215)

This solution was obtained by replacing F±(α) with F±(0) in Eq. (195), as shown in Section852

2.2.2. To simplify the notation, we denote by δρcl± the l = 0 component of ν±cl, that is:853

ρcl
± = ν

0,cl
± =

∫ π

0

sinθdθ νcl
±(θ ) (216)

We define ρ± in the same way. We then substitute the expansion of ν± given in Eq. (194) into854

(191), keeping terms up to order 1/ω0τ. Thus, in the collision integral, ν± is replaced by its855

leading-order expression νcl
±. Since νcl

± does not depend on energy, we perform an averaging856

to eliminate the dependence of the collision integral on y and y ′:857

∫ +∞

−∞
dy ′ S(y,±y ′) = Γ (y),

∫ +∞

−∞
dy g(y)Γ̄ (y) =

4π2

3
(217)
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Figure 7: The reduced spectral density for the polarisation
Im[χp(c + i0+)] = Im[ν−0 (c + i0+)] for the same parameters as Fig. 6.

We then obtain the following equation for ν±:858

ν±(θ ) = −
cosθ

c − cosθ

�

1−
F±(0)

2
ρ±

�

−
4π2

3
i
ω0τ

1
c − cosθ

�

νcl
±(θ ) +

∫

dΩ′

2π
N±(α) νcl

±(θ
′)

�

(218)
where the angular collision kernel N±(α) and its expansion in Legendre polynomials are given859

in Appendix C.860

We then integrate over θ so as to obtain ρ± on the left-hand side. In the collision integral,861

ρcl
± can be replaced by the total density ρ±, neglecting terms of order 1/(ω0τ)2. We thus862

obtain the following solution:863

ρ±(c) =
−2B00(c)

1− F±(0)B00(c) +
i

ω0τ
2π2

3
C±(c)
B00(c)

(219)

where the collisional contribution C± is given by:864

C±(c) =

∫ π

0

dθ
sinθ cosθ
(c − cosθ )2

+

∫

dΩ′

2π
dθ

sinθ cosθ ′

(c − cosθ )(c − cosθ ′)
N±(α) (220)

Since these integrals are dominated by the vicinity of θ = 0 and θ ′ = 0, the collision kernel865

N±(α) can be replaced by its value at α = 0. This can again be interpreted as a consequence866

of the quasi-longitudinal nature of zero sound in the weak-interaction regime. We thus arrive867

at868

C±(c)≃ −B′00(c)
�

1+ 2(c − 1)γ2(c) N±(0)
�

(221)

with γ(c) = ln c−1
2 . A more general calculation of the function C± is given in Appendix C.869

To obtain the collisional correction to the zero-sound velocity, we now solve the equation870

1
ρ±(z±0 )

= 0, with z±0 = c±0 +δc±0 . (222)
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Expanding the denominator of ρ± in powers of O(1/ω0τ), we finally extract the collisional871

correction to zero sound, which is purely imaginary:872

δc±0 =
2π2

3
i
ω0τ

C±(c±0 )

B′00(c
±
0 )
= −

2π2

3
i
ω0τ

+O(c0 − 1). (223)

This result describes the broadening of the zero-sound resonance in the response functions873

χρ(c) and χp(c), or equivalently, its exponential damping in the time domain. It is worth874

noting that Im(c0) depends on the collision probability W only through the mean collision875

time τ, which makes the product ω0τ, Im(c0) universal in weakly interacting Fermi liquids.876

In this sense, the damping of zero sound differs from that of hydrodynamic sound (first877

sound), which is sensitive—via the shear viscosity η—to the angular dependence of W , and878

therefore varies with kFa in a way that differs significantly from τ.879

2.3 Numerical solution in the collisionless to hydrodynamic crossover880

Between the weakly collisional regime studied in Section 2.2 and the hydrodynamic regime881

treated in Ref. [32], there exists a smooth transition as a function of ω0τ [31, 49]. In the882

following, we develop a numerical method that allows us to solve the transport equation (191)883

in this intermediate regime.884

2.3.1 Numerical method885

In order to solve the transport equation (191), we project ν± onto basis of orthogonal polyno-886

mials:887

ν±(y,θ ) =
∑

n,l∈N
νl

n±Pl(cosθ )Qn(y) (224)

where the Pl are the Legendre polynomials. The orthogonal polynomials Qn for the energy888

dependence [50] are defined by Q0 = 1, Q1 = y and889

∫ ∞

−∞

dy

4cosh2 y
2

Qn(y)Qm(y) = δn,m||Qn||2 (225)

yQn =Qn+1 + ξnQn−1 with ξn =
||Qn||2

||Qn−1||2
(226)

The decomposition over the Qn allows for an exact treatment of the energy dependance, be-890

yond the relaxation time approximations, which limit the quasiparticle distribution to its n= 0891

component. The decomposed transport equation reads892

�

ω

ω0
+

i
ω0τ

Ml
±

�

ν⃗l
± −

l
2l − 1

F
±
l−1ν⃗

l−1
± −

l + 1
2l + 3

F
±
l+1ν⃗

l+1
± = −δl,1u⃗0 (227)

where we have introduced a set of vectors and matrices893

ν⃗l
± =





νl
0±
νl

1±
...



 , u⃗0 =





1
0
...



 , U0 =





1 0 0 · · ·
0 0 0 · · ·
...



 (228)

894

F
±
l =

�

1+
F±l

2l + 1
U0

�

=











1+
F±l

2l+1 0 0 · · ·
0 1 0 · · ·
...

. . .
0 · · · · · · 1











(229)
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The collision time τ has been defined (188). The infinite matrix
�

Ml
±

�

nn′ follows from the895

decomposition of the collision kernel N (p,p′) (see Eq. (164)) over the orthogonal basis; its896

expression in terms of W is given in Ref. [32].897

We now present a numerical scheme to solve the transport equation (227) based on a898

backward recurrence on l. Assuming that at rank l + 1, the component ν⃗l+1 has been linearly899

expressed in terms of ν⃗l , we can propagate the linear relation backward in l:900

ν⃗l =Hl ν⃗l−1 (230)

where we omited the ± index for convenience. Numerically, we introduce a truncation param-901

eter nmax and represent the infinite matrix Hl by a complex nmax × nmax matrix. Substituting902

this relation into equation (227) for l > 1, we derive the following backward recurrence rela-903

tion on Hl .904

Hl =
l

2l − 1

��

ω

ω0
+

i
ω0τ

Ml
�

−
l + 1

2l + 3
F l+1Hl+1

�−1

F l−1 (231)

To initialize the recurrence, we introduce a cutoff lmax and we assume Hlmax+1 = 0. At the end905

of the backward recurrence, we solve the remaining 2nmax× 2nmax coupled system on ν⃗0 and906

ν⃗1
907

(�

ω
ω0
+ i
ω0τ

M0
+

�

ν⃗0
+ =

1
3 F
+
1 ν⃗

1
+

�

ω
ω0
+ i
ω0τ

M1
+

�

ν⃗1
+ − F

+
0 ν⃗

0
+ −

2
5 F
+
2H2

+ν⃗
1
+ = −u⃗0

(232)

Here, H2
+ is computed recursively, starting from l = lmax. We choose the values of lmax and nmax908

based on a convergence analysis. Selecting cutoffs that are too low may lead to non-physical909

oscillations in the response functions. We note that lmax and nmax depend on the regime of910

ω0τ under study. In the collisionless regime, we can restrict ourselves to small values of nmax.911

This confirms the observation made in the previous section: the energy dependence of ρ±912

is contained in the collision term, which is subdominant. Conversely, in the hydrodynamic913

regime, small values of lmax suffice. The conserved quantities are at l = 0 or 1 and the non-914

conserved quantities at l ≥ 2 decay as (ω0τ)l [50].915

2.3.2 Anisotropic driving potential for the polarisation916

The polarisation response to the isotropic drive introduced in Eq. (137) vanishes as ω0τ in917

the hydrodynamic regime. This is because such a drive couples to a dissipative component918

(ν1
0−). To make the diffusive mode of polarisation observable, one should rather couple the919

drive directly to the conserved quantity n↑ − n↓, in the l = 0 channel. To do so, we assume920

that the driving potential can be varied independently with q and p:921

Ĥext =
∑

p∈D
U−(p,q)

�

γ̂†
p+q/2,↑γ̂p−q/2,↑ − γ̂

†
p+q/2,↓γ̂p−q/2,↓

�

(233)

The dependence of the driving potential on p is irrelevant, so that we can write:922

U−(p,q) = U−(q)u(θ ) (234)

This change of Ĥext modifies the source term in the polarisation transport equation:923

�

ω

ω0
− cosθ

�

ν−(y,θ ) + cosθ

�

u(θ )−
1
2

∫

dy ′
dΩ′

2π
F−(α)g(y ′)ν−(y

′,θ ′)

�

= −iI(y,θ )

(235)
To couple the drive directly to the polarisation fluctuations, the product u(θ ) cosθ should924

have a non-vanishing l = 0 component, which can be achieved with u(θ ) = cosθ for example.925
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For simplicity, we omit here the components l ≥ 1 whose contribution is negligible in the926

hydrodynamic limit, i.e. we assume u(θ ) cosθ = 1. The set of equations to be solved at the927

end of the backward recurrence is then:928

(�

ω
ω0
+ i
ω0τ

M0
−

�

ν⃗0
− =

1
3 F
−
1 ν⃗

1
− − u⃗0

�

ω
ω0
+ i
ω0τ

M1
−

�

ν⃗1
− − F

−
0 ν⃗

0
− −

2
5 F
−
2H2
−ν⃗

1
− = 0

(236)

2.3.3 Response functions in the collisionless-to-hydrodynamic crossover929

Figure 8: The crossover between the hydrodynamic (red curves) and collisionless
(blue curves) regimes in the reduced spectral density, Im[χ̄ρ] = Im[ν0

0+], at
interaction strength kFa = −0.5. The collision parameter ω0τσ is given in [32].
Dashed lines indicate the first-order analytical solution, while solid lines correspond
to the second-order correction. Here and in Figs. 9 and 10, the summation over n is
truncated from nmax = 50 in the hydrodynamic regime to nmax = 5 in the
collisionless regime. Similarly, the truncation in l is set to lmax = 5 in the
hydrodynamic regime and to lmax =ω0τ0 outside of it.

We illustrate the collisionless-to-hydrodynamic crossover for the density (Figs. 8 and 9930

for the attractive and repulsive case respectively) and for the polarization response functions931

(Figs. 10, for the attractive case). We compare the first-order prediction (dashed curves) to932

the second-order prediction derived in this work (solid curves).933

In the density response function, we observe a shift of the first sound peak toward higher934

velocities when comparing the first-order and second-order calculations. Recall that the first935

sound velocity (in units of vF) is given by936

c1 =

√

√(1+ F+0 )(1+ F+1 /3)

3
. (237)

Since the second-order terms in F+0 and F+1 are positive (irrespectively of the sign of kFa), they937

increase the value of c1 compared to the first-order result.938
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Figure 9: The crossover between the hydrodynamic (red curves) and collisionless
(blue curves) regimes in the reduced spectral density, Im[χ̄ρ] = Im[ν0

0+], at
interaction strength kFa = 0.5. Dashed lines indicate the first-order analytical
solution, while solid lines correspond to the second-order correction. The
summation over n is truncated from nmax = 50 in the hydrodynamic regime to
nmax = 5 in the collisionless regime. Similarly, the truncation in l is set to lmax = 5
in the hydrodynamic regime and to lmax =ω0τσ outside of it.

In the collisionless regime, a zero-sound mode is present in the repulsive case (Fig. 9),939

possibly with a secondary peak near the edge the continuum. The resolution of those two940

peaks allows us to further divide the collisionless regime into two sub-regimes according to941

the value of ω0τ. For 1/(c0 − 1)≫ ω0τ≫ 1 (ω0τ ≈ 100 in Fig. 9) the zero-sound mode is942

not separated from the quasiparticle-hole continuum, which gives rise to a single peak with an943

important left skewness. A deeper collisionless regime, or true zero sound regime, is reached944

for ω0τ ≫ 1/(c0 − 1) (ω0τ ≈ 4500 in Fig. 9). In this regime, zero sound separates from945

the continuum, which however retains a significant spectral weight. This deep regime is more946

easily reached when second order terms are included (compare the blue solid and blue dashed947

curves in Fig. 9); this is because c0 − 1 is much larger in the second- than in the first-order948

approximation. In between the hydrodynamic and collisionless regimes, the density response949

function retains a shallow maximum whose location smoothly evolves from c1 to c0. This peak950

is however too broad to be identified as a collective mode: its width ∆c is comparable to 1 in951

units of vF.952

We now turn to the polarisation response (Fig 10). In the collisionless regime (blue curves),953

we observe a skewed peaked at the continuum edge, but no zero sound resonance yet for954

ω0τ= 4500 (blue curve). Again, this can be understood by comparing ω0τ to 1/(c0−1): the955

log-perturbative corrections from the second-order approximation reduce the deep collision-956

less regime to ω0τ ≳ 105 for kFa = −0.5. In the hydrodynamic regime (red curves), there957

appears a diffusive mode centered in ω = 0, as predicted by the Navier-Stokes equations of958

the Fermi liquid [32]. Note that the large spectral weight of this peak is a consequence of959

our choice of an anisotropic drive Eq. (233). In between the collisionless and hydrodynamic960
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Figure 10: The crossover between the hydrodynamic (red curves) and collisionless
(blue curves) regimes in the reduced spectral density for the polarisation,
Im[χ̄p] = Im[ν0

0−], at interaction strength kFa = −0.5.

limits, the polarisation response displays a very flat profile between two local minima in c = 0961

and c ≈ 1.962

3 Superfluid pairing of Landau quasiparticles963

In this section, we use the Landau quasiparticles, and their effective Hamiltonian Eq. (49),964

to describe (in principle exactly) the superfluid phase from the superfluid instability down to965

T = 0. Our description is valid provided superfluidity remains a weak phenomenon in the966

sense that967

∆, Tc ≪ εF (238)

where ∆ is the superfluid order parameter and Tc is the critical temperature. Weak fermionic968

superfluids should then be viewed as condensates of quasiparticle pairs [34], schematically de-969

picted by Fig. 11; this is a substantial improvement from the pairs of bare particles interacting970

via the bare interaction (as described by BCS theory), or even from the frequent picture of bare971

particles interacting via a screened interaction. The head-on collisions p,−p→ p′,−p′ among972

quasiparticles, described by the amplitude A, favor the pairing instability and the appearance973

of a nonzero pairing field. We shall see that the pairing collision amplitude A(p,−p|p′,−p′)974

must exhibit a logarithmic divergence as Λ/εF → 0 to ensure the existence of a superfluid975

phase.976

In our approach, the compatibility of the quasiparticle picture with the existence of a su-977

perfluid ground state is tied to the cutoff Λ. Exciting a few pairs at the Fermi level (from e.g.978

the Fermi sea or the superfluid ground state) will change the energy of the interacting system979

by ≈∆. The corresponding transition in the noninteracting fluid is conversely quasi-resonant.980

Thus the weak crossing condition on the spectrum of the Fermi liquid (Eq. (4)) is compatible981
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Figure 11: Cooper pairs (dashed ellipse) in a Fermi superfluid are pairs of ↑ and ↓
Landau quasiparticles (red and blue clouds). To first order, the spin-↑ quasiparticle
can be seen as a cloud of spin-↓ particles (blue dots) surrounding the original spin-↑
particle (red dot).

with the existence of a pair binding energy as long as982

∆, Tc ≪ Λ (239)

3.1 Pairing equation983

We formulate an evolution equation that captures the onset of quasiparticle pairing in the984

normal phase [17], as the system approaches the critical temperature T → T+c . This equation is985

to the quasiparticle pairing field γ̂σγ̂σ′ what the transport equation is to the density field γ̂†
σγ̂σ.986

Although pairing is in principle not restricted to the singlet spin wavefunction (as in e.g. the987

A-phase of 3He), we have in mind here the case of ultracold fermions, where the interactions988

among opposite spin quasiparticles A↑↓ dominateand favor the formation of ↑↓ pairs. We thus989

restrict to spin-singlet pairs; the corresponding quantum pairing field in momentum space is990

d̂q
p = γ̂−p−q/2,↓γ̂p−q/2,↑ (240)

This operator effectively annihilates a pair of p ↑,−p ↓ quasiparticles with a center-of-mass991

momentum q. By definition, its expectation value vanishes in an equilibrium state of the992

normal phase 〈d̂q
p〉eq = 0 for T > Tc . However, fluctuations of d̂ are possible for example993

under the influence of an external potential. The pair susceptibility, or pair response function,994

then quantifies the magnitude of these fluctuations with respect to the drive intensity. We are995

looking for a divergence of the pair susceptibility, that would signal that the normal phase996

becomes unstable, and the system undergoes a phase transition.997

To compute the pair susceptibility, we introduce an external perturbation Ĥext that couples998

directly to the pair field:999

Ĥext = φ(−q, t)
∑

p

�

d̂−q
p

�†
+ h.c. (241)

where the external pairing source oscillates at frequencyω, φ(q, t) = φ(q)e−iωt , causing d̂q
p to1000

oscillate at frequencyω−2µ. We expand the state of the system about a thermal quasiparticle1001
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state ϱ̂ = ϱ̂eq(T )+δϱ̂ (see Eq. (129) for the definition of ϱ̂eq(T )). Within linear response, the1002

deviation from equilibrium is controlled by the drive intensity δϱ̂ = O(φ/εF). We then evolve1003

d̂q
p according to the Heisenberg equation of motion1004

i∂t d̂
q
p = [d̂

q
p , Ĥ + Ĥext] (242)

The derivation proceeds analogously to the derivation of the transport equation in Sec. 1.3.1005

The streaming term arises from the diagonal part of the Hamiltonian:1006

[d̂q
p , Ĥ2 + Ĥd

4 + Ĥext] =
�

ε̂p−q/2,↑ + ε̂−p−q/2,↓
�

d̂q
p + (1− neq

p+q/2 − neq
p−q/2)φ(q) +O(φ)2 (243)

with ε̂p,σ = εp to leading order in T/TF. In the quartic terms stemming from Ĥx
4, we inject the1007

cumulant expansion Eq. (119) :1008

[d̂q
p , Ĥx

4] = (1− neq
p+q/2 − neq

p−q/2)
1
L3

∑

p′
A↑↓

�

p−
q
2

,−p−
q
2
| − p′ −

q
2

,p′ −
q
2

�

d̂q
p′ + Ĵp (244)

We have regrouped the quartic cumulants (â b̂ĉ d̂)c in a collision integral Ĵp which is negligible1009

for the calculation of Tc . Note that the interaction between same-spin quasiparticles Aσσ1010

contributes to Ĵp but not to the partially contracted terms in Eq. (244). This is specific to the1011

normal phase where the anomalous averages 〈γ̂↓γ̂↑〉eq vanish. The pair transport equation of1012

a Fermi liquid is then:1013

�

ω− εp−q/2 − εp+q/2 + 2µ
�

d̂q
p = (n

eq
p+q/2 − neq

p−q/2)

×

(

1
L3

∑

p′
A↑↓

�

p−
q
2

,−p−
q
2
| − p′ −

q
2

,p′ −
q
2

�

d̂q
p′ +φ(q)

)

(245)

3.2 Uniform pair susceptibility1014

The Thouless criterion defines Tc as the temperature at which the pair susceptibility acquires1015

a singularity for static and uniform perturbations, that is for ω= 0 and q = 0. Restricting our1016

pairing equation Eq. (245) first to q = 0, we obtain:1017

�

ω− 2(εp −µ)
�

d(p) = (1− 2neq
p )

(

1
L3

∑

p′
A↑↓(p,−p|p′,−p′) d(p′) +φ

)

(246)

When superfluidity occurs in a high partial wave, d has a non trivial dependence on the angle1018

between p and a reference direction; we focus here on s-wave pairing, for which the pairing1019

function is isotropic d(p) = d(p). The angular part of the integral equations is then a mere1020

angular average of the pairing amplitude1021

A↑↓(p, p′,Λ)≡
1
2

∫ π

0

dα sinα A↑↓(p,−p|p′,−p′) (247)

where α= (Ôp,p′). For the radial dependence, we introduce the following change of variable:1022

d(p) =
1− 2neq

p

β
�

ω− 2(εp −µ)
�D(y) =

tanh(y/2)
βω− 2y

D(y), y = β
�

εp −µ
�

(248)

with β = 1/T . This reparametrization may seem analogous to the change of variable δn→ ν1023

(see Eq. (170)) performed on the density field to focus on the low-energy region. It extracts1024
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a prefactor that depends rapidly on energy from the unknown function d, and we may expect1025

D to be a smooth function of y . However, the prefactor tanh(y/2)/(βω− 2y) here does not1026

vanish at large y . In consequence, what restricts us to low energies is rather the finite energy1027

width of the amplitude A. As in Eq. (77), we must then separate the unconstrained amplitude1028

A′ from the low-energy projector ΠΛ:1029

A↑↓(p,−p|p′,−p′) =A′↑↓(p,−p|p′,−p′) ΠΛ(2(εp′ − εp)) (249)

In presence of ΠΛ, we can now restrict the energy integrals to the low-energy region:1030

1
L3

∑

p′
ΠΛ(2(εp′ − εp))→

m∗T pF

(2π)3

∫ ∞

−∞
ΠΛ

�

2T (y − y ′)
�

dy ′
∫ π

0

∫ 2π

0

sinαdαdφ (250)

where φ is an azimuthal angle locating p′ in a spherical frame of axis p. Up to corrections in1031

O(T/TF), we can approximate the pairing amplitude A↑↓ by its value for p = p′ = pF. The1032

integral equation focused on the low-energy region becomes1033

D(y) =
m∗pF

2π2
A↑↓(Λ)

∫

βΛ
2 +y

− βΛ2 +y

dy ′

βω− 2y ′
D(y ′) tanh

y ′

2
+φ +O

�

T
TF

�

(251)

where A↑↓(Λ) =A↑↓(pF, pF,Λ). The only remaining energy dependence on the right-hand side1034

is the integration interval [−βΛ2 + y, βΛ2 + y] whose centre is shifted from 0 by y . To leading1035

order in 1/βΛ, we can then approximate the pair field D by a constant1036

D(y) = D0 +O
�

y
βΛ

�

(252)

The integral equation is now trivial, and yields the pair susceptibility1037

χpair(ω)≡
D0(ω)
φ

=
1/A↑↓(Λ)

1/A↑↓(Λ) + m∗pF
2π2 NΛ(ω)

(253)

with NΛ(ω) defined as:1038

NΛ(ω) =
∫ βΛ/2

−βΛ/2

dy ′

2y ′ − βω
tanh

y ′

2
(254)

The critical temperature can finally be determined by applying Thouless’ criterion to the pair1039

susceptibility:1040

χ−1
pair(ω= 0, T = Tc) = 0 ⇐⇒

1

A↑↓(Λ)
+

m∗pF

2π2
NΛ(0, Tc) = 0 (255)

In the limit where βΛ≫ 1, the integral NΛ(0) diverges logarithmically1041

NΛ(0, T ) = ln
�

Λ

πT

�

+ γ+O
�

T
Λ

�

(256)

where γ ≈ 0.577 is the Euler-Mascheroni constant. This divergence is compensated by a1042

divergence of the s-wave pairing amplitude, which we write generically as1043

1

A↑↓(Λ)
= −

m∗pF

2π2

�

ln
Λ

εF
+α↑↓

�

+O
�

Λ

εF

�

(257)
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This expression of 1/A↑↓(Λ) in the s-wave channel was postulated by Popov [51] and demon-1044

strated (in 2D and for all Fourier component m of A↑↓(θ )) by Chitov and Sénéchal [10] us-1045

ing the renormalisation group flow. We introduced here an effective parameter α↑↓ of the1046

low-energy theory, which we interpreted as the background value of 1/A↑↓, over which the1047

logarithmic divergence develops. This parameter sets the critical temperature to1048

Tc

TF
=

eγ

π
e−α↑↓ (258)

This relation is valid generically in Fermi liquids subject to a weak superfluid instability. It1049

is non-perturbative and exact if the effective parameter α↑↓ is known exactly rather than ex-1050

panded in powers of the interaction strength; α↑↓ must however remain large and positive to1051

maintain the validity of the quasiparticle picture, through the inequality Tc ≪ TF.1052

Remark that the pairing amplitude must be attractive, A↑↓ < 0, to trigger the superfluid1053

transition. It must also display a logarithmic divergence with Λ, which does not seem guaran-1054

teed, for example if the bare potential vanishes for head-on collisions: V (p,−p|p′,−p′) = 0. In1055

this case, there is no divergence in the pair susceptibility (on the contrary, it is logarithmically1056

suppressed with Λ), i.e. there is no superfluid phase.1057

Extending our low-energy effective theory further into the superfluid phase, we now cal-1058

culate the order parameter at T = 0, through the gap equation:1059

∆(p) = −
∑

p′
A↑↓(p,−p|p′,−p′)

∆(p′)

2
Æ

(εp′ −µ)2 +∆2(p′)
(259)

Computing the integral restricted to the low-energy region, and assuming the logarithmically1060

divergent expression (257) of A↑↓ we obtain1061

∆

εF
= e−α↑↓ (260)

The ratio ∆/Tc = π/eγ ≃ 1.764 found by BCS theory is thus universal to all superfluids made1062

of Landau quasiparticles [52]; it is well verified in superfluid 3He [53], even though the fluid1063

is strongly interacting (F+0 > 10). Deviations from the BCS ratio (as e.g. in a unitary Fermi1064

gas [54,55]) may then be interpreted as evidences of a non-Fermi liquid behavior.1065

3.3 Application to the contact Fermi gas: the Gor’kov-Melik-Barkhudarov cor-1066

rection to Tc1067

We return to the Fermi gas with contact interactions. BCS theory describes pairing of particles1068

under the effect of the bare interactions, which provides a first approximation of the critical1069

temperature:1070

TBCS
c

TF
=

8eγ−2

π
eπ/2kFa (261)

This perturbative expression is valid to leading order in kFa for ln(Tc/TF). Therefore,1071

it makes an uncontrolled error on Tc/TF. To go beyond BCS approximation, Gor’kov and1072

Melik-Barkhudarov [37] performed a second-order diagrammatic calculation, in which they1073

introduce in particular a dressed Green’s function and an effective interaction.1074

The GMB correction is often understood [56–58] as the result of the screening of the pairing1075

interactions among particles. Our low-energy effective theory provides a simple and more1076

general interpretation of the corrections to the BCS gap and critical temperature as the result1077

of the renormalisation of the particles into Landau quasiparticles. In this picture, the GMB1078
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correction follows from a second order calculation of the effective parameters of the theory, in1079

particular of A↑↓.1080

Averaging expression (94) of A↑↓ over θ13 = α and for θ12 = π yields1081

A↑↓(Λ) = g + g2 m∗pF

2π2

�

ln
Λ

EF
+

7
3
(1− 2 ln 2)

�

+O(g3) (262)

We may now identify the parameter α↑↓ in the expansion of 1/A↑↓(Λ):1082

α↑↓ = −
π

2kFa
−

7
3
(ln2− 1) +O(kFa) (263)

This pairing parameter is large and positive to leading order in kFa < 0, which guarantees the1083

existence of a (weak) superfluid phase. It is however reduced by the second-order correction1084

which weakens superfluidity, and reduces the critical temperature:1085

TGMB
c =

eγ

π

�

2
e

�7/3

eπ/2kFa TF =
TBCS

c

(4e)1/3
(264)

with (4e)1/3 ≈ 2.2. Corrections beyond GMB stemming from the third-order calculation of α↑↓1086

are small, i.e of order O(kFa), in both Tc/TF and ln(Tc/TF).1087

Whereas the corrections to second order in kFa coming from the renormalisation of parti-1088

cles into quasiparticles involve only the A↑↓ collision amplitude, and can therefore be under-1089

stood as a “screening” effect, we note that this picture is not general and would fail to capture1090

corrections to e.g. the effective mass to higher order in kFa or in more complex fermionic1091

fluids.1092

Conclusion1093

Using a new renormalisation scheme, we have formulated an intuitive and controlled con-1094

struction of the Landau quasiparticles and the effective Hamiltonian governing their dynam-1095

ics. Instead of the usual momentum cutoff, we introduce an energy cutoff Λ that separates1096

resonant from off-resonant couplings. In this framework, we interpret the quasiparticle an-1097

nihilation operator γ̂ as the bare operator â dressed only by the off-resonant couplings. This1098

dressing is implemented through a unitary transformation, which becomes a Continuous Uni-1099

tary Transformation (CUT) in the limit of infinitesimal variations of Λ.1100

To truncate the infinite series generated when expressing the Hamiltonian in terms of γ̂1101

and γ̂†, we introduced the fluctuations of the density field δ(γ̂†
αγ̂β) around its Fermi-sea ex-1102

pectation value. Truncated to terms quadratic in these fluctuations, our effective Hamiltonian1103

contains the functional of Fermi liquid theory via the diagonal terms (α = β). Crucially, the1104

same truncation also retains the full collision amplitude Aσσ′(p1,p2|p3,p4) encoded in the1105

off-diagonal terms α ̸= β . This provides a single Hamiltonian describing both the interac-1106

tions and the collisions of Landau quasiparticles, unifying ingredients that are usually treated1107

separately. The interaction function f , the forward scattering amplitude and the BCS pairing1108

amplitude appear as different limits of a general amplitude A regularized by Λ.1109

Armed with this effective Hamiltonian, we proposed a demonstration of the quasiparticle1110

Boltzmann equation exploiting the validity of the Born-Markov approximation in the quasi-1111

particle picture. We solved this Boltzmann equation exactly from the collisionless to the hy-1112

drodynamic regime by decomposing the quasiparticle distribution on a basis of orthogonal1113

functions. Applying the effective picture to an atomic Fermi gas with contact interactions, we1114
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showed how the use of Landau quasiparticles systematically improves the weak-coupling ap-1115

proximations, in particular the RPA approximation on the speed of zero sound c0, and the BCS1116

approximation on the superfluid gap and critical temperature. In particular the celebrated1117

Gork’ov-Melik Barkhudarov log-perturbative correction to Tc and ∆ emerges here as a direct1118

manifestation of the quasiparticle dressing.1119

Extensions of this work could address the hydrodynamic regime where a normal quasi-1120

particle fluid and a quasiparticle condensate coexist. The Boltzmann and pairing equations1121

derived here in the normal phase are a natural starting point for a microscopic derivation of1122

the two-fluid hydrodynamics of Fermi systems [34, 59]. More generally, the concept of Lan-1123

dau quasiparticles is not restricted to unbalanced spin-1/2 Fermi systems, and applies more1124

generally to quasiparticles whose low-energy spectrum ressemble that of the free particle, as1125

e.g. the Bose [60] and Fermi polarons [61]. Our renormalization scheme could serve to de-1126

rive an effective Hamiltonian for such quasiparticles, including static interactions and collision1127

amplitudes.1128

Acknowledgements1129

Fruitful discussions with Nicolas Dupuis are gratefully acknowledged.1130

Funding information H.K. acknowledges support from the French Agence Nationale de la1131

Recherche (ANR), under grant ANR-23-ERCS-0005 (project DYFERCO).1132

A Λ dependence of the collision amplitudes1133

In this appendix, we detail the calculation of the functions IΛ and JΛ introduced in Sec. 1.2.41134

(see also Figs. 2 and 3) to characterize the angular dependence of Bσσ′ . Comparing Eqs. (81)–1135

(82) and Eqs. (86)–(87), we identify the dimensionless coefficients of the O(kFa)2 terms in1136

Bσσ′:1137

IΛ(p,p′) =
(2π)2εF

(pF L)3
∑

p1p2∈D

�

n0
p1
+ n0

p2

�

δ
p1+p2
p+p′ PΛ

�

1
ωp1
+ωp2

− 2εF

�

(265)

JΛ(p,p′) = −
(2π)2εF

(pF L)3
∑

p1p2∈D

�

n0
p1
− n0

p2

�

δ
p2+p
p1+p′PΛ

�

1
ωp1
−ωp2

�

(266)

With p = p′ = pF, the functions depend on p and p′ only through the angle α = (Ôp,p′). We1138

eliminate p2 through momentum conservation and locate p1 in a spherical frame with p+p′ or1139

p−p′ as the z-axis respectively in IΛ and JΛ. Exploiting the invariance on the azimuthal angle,1140

parameterizing the polar angle by u = cosθ1, and introducing the dimensionless momentum1141

x = p1/pF, we write1142

IΛ(θ ) = −2

∫ 1

0

x2dx

∫ 1

−1

duPε
�

1
2(2cxu− x2 − 2c2 + 1)

�

(267)

JΛ(θ ) = −2

∫ 1

0

x2dx

∫ 1

−1

duPε
�

1
4(xsu− s2)

�

(268)
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Figure 12: The resonance angle uJ (x ,ε= 0) (red curve) and the forbidden band
x 7→ [uJ (x ,−ε), uJ (x ,ε)] (red area) inside the integration domain [0, 1]× [−1,1]
(grey area) for JΛ at α= 0.4π and ε= 0.1.

where Pε(1/ f ) = Θ(| f | − ε)/ f is the ε–regularized principal part. We parametrize the small1143

parameter associated to Λ using1144

ε=
Λ

4εF
, ε′ = 2ε (269)

where ε coincides with the εΛ used in the main text. We have also parametrized the α-1145

dependence through1146

c = cos
α

2
=
||p+ p′||

2pF
(270)

s = sin
α

2
=
||p− p′||

2pF
(271)

The ε-principal part excludes a region of the integration domain [0,1] × [−1, 1], and this1147

forbidden band varies with α and ε. To identify the excluded region in the integration interval1148

[−1, 1] over u, we introduce the resonance angles1149

uI(x ,ε′) =
x2 + 2c2 − 1+ ε′

2cx
(272)

uJ (x ,ε) =
s2 + ε

sx
(273)

The ε-resonance conditions then read uI(x ,−ε′)≤ u≤ uI(x ,ε′) and uJ (x ,−ε)≤ u≤ uJ (x ,ε),1150

which allows to rewrite I and J as:1151

IΛ(θ ) = −
∫ 1

0

xdx
2c

∫ 1

−1

du
u− uI(x , 0)

�

1−Θ
�

uI(x ,ε′)− u
�

Θ
�

u− uI(x ,−ε′)
��

(274)

JΛ(θ ) = −
∫ 1

0

xdx
2s

∫ 1

−1

du
u− uJ (x , 0)

(1−Θ [uJ (x ,ε)− u]Θ [u− uJ (x ,−ε)]) (275)

Fig. 12 shows an example of the forbidden band in the calculation of JΛ at α = 0.4π and1152

ε= 0.1.1153
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c = cos α2
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Figure 13: As α varies from 0 to π, IΛ assumes 8 different expressions
(Eqs. (280)–(287)). The corner points αn that separate these expressions are given
by cos αn

2 = in(ε′), where in(ε′) is given on the lower axis.

Expression of IΛ Depending on the comparison of uI(x ,±ε′) with ±1, the excluded band1154

may be ;, the interval [uI(x ,−ε′), uI(x ,ε′)], [uI(x ,−ε′), 1], [−1, uI(x ,ε′), 1] or [−1, 1]. Upon1155

integration over u, this generates 3 different integrands of x:1156

f (x) =−
x
2c

∫ 1

−1

du
u− uI(x , 0)

=
x
2c

ln

�

�

�

�

(c + s+ x)(c − s+ x)
(c + s− x)(c − s− x)

�

�

�

�

(276)

f+ε′(x)=−
x
2c

∫ 1

uI (x ,ε′)

du
u− uI(x , 0)

=
x
2c

ln

�

�

�

�

ε′

(c + s− x)(c − s− x)

�

�

�

�

(277)

f−ε′(x)=−
x
2c

∫ uI (x ,−ε′)

−1

du
u− uI(x , 0)

=
x
2c

ln

�

�

�

�

(c + s+ x)(c − s+ x)
ε′

�

�

�

�

(278)

Note that f also describes the integral for u ∈ [−1, uI(x ,−ε′)]∪ [uI(x ,ε′), 1]. The remaining1157

integral over x is divided in up to 4 intervals, where either one of the functions f , f+ε′ or f−ε′1158

is used. The bounds delimiting these intervals (see Fig. 12) are1159

x±(ε
′) = c ±

p

s2 − ε′ (279)

Again, depending on α, the boundaries x±(±ε′)maybe inside or outside the integration inter-1160

val [0, 1] over x . This generates 8 different slicing configurations of [0,1], listed in function1161

of α on Fig. 13. The corresponding expression of IΛ is given in Eqs. (280)–(287). We stitch1162

together these expressions over the domain of variation [0,π] of α to produce the red curve1163
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in Fig. 2 of the main text.1164

I III
Λ =

∫ x−(−ε′)

0

dx f (x) +

∫ 1

x−(−ε′)
dx f−ε′(x) (280)

I II
Λ =

∫ x−(−ε′)

0

dx f (x) +

∫ x−(ε′)

x−(−ε′)
dx f−ε′(x) +

∫ x+(ε′)

x−(ε′)
dx f (x) +

∫ 1

x+(ε′)
dx f−ε′(x) (281)

I I
Λ =

∫ x−(−ε′)

0

dx f (x) +

∫ x−(ε′)

x−(−ε′)
dx f−ε′(x) +

∫ 1

x−(ε′)
dx f (x) (282)

IA
Λ =

∫ x−(ε′)

|x−(−ε′)|
dx f−ε′(x) +

∫ 1

x−(ε′)
dx f (x) (283)

IB
Λ =

∫ |x−(−ε′)|

x−(ε′)
dx f+ε′(x) +

∫ 1

|x−(−ε′)|
dx f (x) (284)

I I′
Λ =

∫ |x−(ε′)|

0

dx f (x) +

∫ |x−(−ε′)|

|x−(ε′)|
dx f+ε′(x) +

∫ 1

|x−(−ε′)|
dx f (x) (285)

I II′
Λ =

∫ |x−(ε′)|

0

dx f (x) +

∫ |x−(−ε′)|

|x−(ε′)|
dx f+ε′(x) +

∫ x+(ε′)

|x−(−ε′)|
dx f (x) +

∫ 1

x+(ε′)
dx f−ε′(x)(286)

I III′
Λ =

∫ |x−(ε′)|

0

dx f (x) +

∫ x+(−ε′)

|x−(ε′)|
dx f+ε′(x) (287)

Expression of JΛ Similarly, for JΛ, the excluded band in u is either ;, [uJ (x ,−ε), uJ (x ,ε)],1165

[uJ (x ,−ε), 1] or [−1, 1], and the corresponding integrands are1166

g(x) =−
x
2s

∫ 1

−1

du
u− uJ (x , 0)

=
x
2s

ln
�

�

�

x + s
x − s

�

�

� (288)

g−ε(x)=−
x
2s

∫ uJ (x ,−ε)

−1

du
u− uJ (x , 0)

=
x
2s

ln
�

�

�

x + s
2ε

�

�

� (289)

The interval [0,1] of integration over x is divided by the boundaries1167

x±(ε) = ±
�

s+
ε

s

�

(290)

into 5 possible configurations listed in Fig. 14. The corresponding expressions of JΛ are1168

J I
Λ = 0 (291)

J II
Λ =

∫ 1

x−(−ε)
dx g−ε(x) (292)

J III
Λ =

∫ x+(ε)

x−(−ε)
dx g−ε(x) +

∫ 1

x+(ε)
dx g(x) (293)

J IV
Λ =

∫ x+(−ε)

0

dx g(x) +

∫ x+(ε)

x+(−ε)
dx g−ε(x) +

∫ 1

x+(ε)
dx g(x) (294)

JV
Λ =

∫ x+(−ε)

0

dx g(x) +

∫ 1

x+(−ε)
dx g−ε(x) (295)

(296)
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Figure 14: As α varies from 0 to π, JΛ assumes 5 different expressions
(Eqs. (291)–(295)). The corner points αn that separate these expressions are given
by sin αn

2 = jn(ε), where jn(ε) is given on the lower axis.

Combined as prescribed by Fig. 13, these expressions produce the red curve in Fig. 3 of the1169

main text. Note that the ε= 0 expressions of I and J (Eqs. (88)–(89)) are given by1170

I(α) =

∫ 1

0

dx f (x) (297)

J(α) =

∫ 1

0

dx g(x) (298)

B Numerical evaluation of the zero sound velocity1171

We present in this appendix the numerical method used to solve (198), and benchmark the1172

analytic solution (208) of the prefactor exp(γ±1 ) in c±01173

Recall that the transport equation for ν± in the collisionless limit projects as:1174

νl
±(c)−

∑

l ′
A±l l ′(c)ν

l ′
±(c) + Bl0(c) = 0 (299)

As mentioned in the main text, to compute c0, we look for the zeros of the following determi-1175

nant:1176

Det
�

1−A±(c±0 )
�

= 0 (300)

To do so, we truncate the matrix A± at some lmax, and we check the convergence with respect1177

to this parameter. Typically, lmax ≈ 50 is sufficient. To overcome the numerical limitation to1178

|kFa|> 0.1, we perform a second-order polynomial extrapolation γ±+2−π/a = A+Ba+Ca2.1179

We find that γ±1 = ±4 within the numerical accuracy of our extrapolation. The coefficient1180

B obtain from the extrapolation of γ±1 is larger than one, which restrict the observability of γ±11181

to |a|< 0.1.1182

We present in Figs. 15 and 16 these numerical interpolations.1183

C Collision effects in the collisionless regime1184

In this appendix we present the calculation of the function C± introduced (220):1185

C±(c) =

∫ π

0

dθ
sinθ cosθ
(c − cosθ )2

+

∫ 2π

0

dφ′

2π

∫ π

0

dθdθ ′
sinθ sinθ ′ cosθ ′

(c − cosθ )(c − cosθ ′)
N±(α) (301)
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Figure 15: The reduced speed of the collisionless polarisation sound γ− + 2−π/a
with γ− = log ((c−0 − 1)/2). The blue curve is obtained by numerically solving (300)
in the range kFa = −0.16,−0.125. A quadratic polynomial fit (orange curve)
provides the value extrapolated to kFa = 0: γ−1 + 2= −1.9999± 0.0128.

Figure 16: The reduced speed of the collisionless density sound γ+ + 2+π/a with
γ+ = log ((c+0 − 1)/2). The blue curve is obtained by numerically solving (300) in
the range kFa = 0.16, 0.085. A quadratic polynomial fit (orange curve) provides the
value extrapolated to kFa = 0: γ+1 + 2= 6.0079± 0.0072.
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with the angular collision kernel and its projection on Legendre polynomials given by:1186

N±(α) =
ΩE±(α)− 2ΩS±(α)

ΩΓ
=
∑

l

N l
±(α)Pl(cosα) (302)

We use the addition theorem:1187

∫ 2π

0

dφ′

2π
Pl(cos(α)) = Pl(cosθ )Pl(cosθ ′) (303)

This allows us to factorize the integrals over u= cosθ and u′ = cosθ ′ in C±:1188

C±(c) =

∫ 1

−1

du
u

(c − u)2
+
∑

l

N l
±

∫ 1

−1

du
Pl(u)
c − u

∫ 1

−1

du′
u′Pl(u′)
c − u′

(304)

The different integrals are given by:1189

∫ 1

−1

du
u

(c − u)2
= −B′00(c) (305)

∫ 1

−1

du
Pl(u)
c − u

= 2Rl(c) (306)

∫ 1

−1

du′
u′Pl(u′)
c − u′

= 2cRl(c)− 2δl,0 (307)

where we have introduced the Legendre functions of the second kind [62]. The contribution1190

of collisions is therefore finally contained in the following formula:1191

C±(c) = −B′00(c) + 4
∑

l

N l
±Rl(c)(cRl(c)−δl,0) (308)

In fact, this last formula is quite general, as the characteristics of the interactions are contained1192

in the collision parameter N l
±. We can now focus on the asymptotic behavior when c tends1193

exponentially to 1. Note that:1194

R0(c)(cR0(c)− 1)
B′00(c)

∼
γ→−∞

−γ2eγ (309)

Similarly, for l > 0:1195

R2
l (c)

B′00(c)
∼

γ→−∞
−γ2eγ (310)

In all cases, we can rewrite the function C± in the limit where c tends exponentially to 1 as:1196

C±(c)≃ −B′00(c)
�

1+ 4γ2(c)eγ N±(0)
�

(311)

where we have recognized that
∑

l N l
± =N±(0).1197
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