

A low-energy effective Hamiltonian for Landau quasiparticles

Pierre-Louis Taillat^{1*}, Hadrien Kurkjian^{1†}

1 Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 75005, Paris, France

* pierre-louis.taillat@sorbonne-universite.fr, † hadrien.kurkjian@cnrs.fr

November 21, 2025

1 Abstract

2 We introduce a new renormalisation scheme to construct the Landau quasiparticles of
3 Fermi fluids. The scheme relies on an energy cutoff Λ which removes the quasi-resonant
4 couplings, enabling the dressing of the particles into quasiparticles via a unitary transfor-
5 mation. The dynamics of the quasiparticles is then restricted to low-energy transitions
6 and is fully determined by an effective Hamiltonian which unifies the Landau interaction
7 function f and the collision amplitude in a single amplitude \mathcal{A} regularized by Λ . Our
8 effective theory captures all the low-energy physics of Fermi fluids that support Landau
9 quasiparticles, from the equation of state to the transport properties, both in the normal
10 and in the superfluid phase. We apply it to an atomic Fermi gas with contact interaction
11 to compute the speed of zero sound in function of the scattering length a . We also recover
12 the Gork'ov-Melik Barkhudarov correction to the superfluid gap and critical temperature
13 as a direct consequence of the dressing of particles into Landau quasiparticles.

14

15 Contents

16 1 The low-energy effective Hamiltonian of Fermi liquids	5
17 1.1 Landau quasiparticles in quasi-degenerate perturbation theory	5
18 1.1.1 Partition of the Hilbert space and unitary transformation	7
19 1.1.2 Perturbative calculation of \hat{S} and \hat{H}_{eff}	8
20 1.1.3 Quasiparticle operators	8
21 1.1.4 Energy, residue and interaction functions of the quasiparticles	9
22 1.1.5 Collision amplitudes	10
23 1.1.6 Low-energy effective Hamiltonian in the vicinity of the quasiparticle	
24 Fermi sea	11
25 1.2 Application to an homogeneous Fermi gas with contact interactions	13
26 1.2.1 The lattice model for contact interactions	14
27 1.2.2 Expansion of the quasiparticle annihilation operator	14
28 1.2.3 Expression of the Hamiltonian in terms of $\hat{\gamma}$	15
29 1.2.4 Explicit expressions of the collision amplitudes with the Λ dependence	16
30 1.2.5 Residue and momentum distribution	19
31 1.3 Derivation of the Fermi liquid kinetic equations	21
32 1.3.1 Kinetic equation in a spatially homogeneous state	21
33 1.3.2 Linearized transport equation at nonzero temperature	25
34 1.3.3 Transport equation at $T = 0$	27

35	2 Transport dynamics in Fermi liquids	27
36	2.1 The transport equation as a linear integral equation	27
37	2.1.1 Collision kernel	27
38	2.1.2 Conservation laws	28
39	2.1.3 Total density and polarization	29
40	2.1.4 Quasiparticle distribution in the thermal window	29
41	2.1.5 Angular parametrization of 4 momentum-conserving wavevectors of the Fermi surface	30
42	2.1.6 Low temperature factorization of the kernel	31
43	2.1.7 Transport equation in the thermal window	32
44	2.2 Zero sound in the collisionless regime	33
45	2.2.1 Dispersion equation in the perfect collisionless regime ($\omega_0\tau = +\infty$)	33
46	2.2.2 Log-perturbative expansion of the zero-sound velocity	34
47	2.2.3 Response function in the collisionless regime	35
48	2.2.4 Collisional damping of zero sound	36
49	2.3 Numerical solution in the collisionless to hydrodynamic crossover	38
50	2.3.1 Numerical method	38
51	2.3.2 Anisotropic driving potential for the polarisation	39
52	2.3.3 Response functions in the collisionless-to-hydrodynamic crossover	40
53	3 Superfluid pairing of Landau quasiparticles	42
54	3.1 Pairing equation	43
55	3.2 Uniform pair susceptibility	44
56	3.3 Application to the contact Fermi gas: the Gor'kov-Melik-Barkhudarov correction to T_c	46
57	A Λ dependence of the collision amplitudes	48
58	B Numerical evaluation of the zero sound velocity	52
59	C Collision effects in the collisionless regime	52
60	References	55
61	<hr/>	
62		
63		
64		

65 **Introduction**

66 Originally formulated as a phenomenological theory, Fermi liquid theory is based on a quadratic
67 action [1], in which fermionic quasiparticles are described by a semiclassical density field δn
68 fluctuating about the Fermi sea and interacting through a static interaction function f . The
69 physical origin of quasiparticles is not elucidated; their existence is merely justified by the
70 heuristic assumption that the noninteracting states can be adiabatically followed when inter-
71 actions are switched on [2]. When Landau's semi-classical action becomes insufficient—for
72 instance to describe the transport phenomena or the superfluid transition—additional phe-
73 nomenological parameters are introduced [3], such as a collision or pairing amplitude. Micro-
74 scopic approaches were later proposed [4–6] to interpret the parameters of Landau's theory
75 in terms of two-particle correlation functions, which relies in particular on the introduction of
76 a quasiparticle residue.

77 In a more modern perspective, Landau's theory has been reinterpreted as a low-energy
78 effective theory emerging from a renormalization process [7–12]. This moves beyond the
79 phenomenological nature of the theory and provides it with a fundamental justification. In
80 the renormalization picture, the quasiparticle energies and interactions arise from the pro-
81 gressive integration of the high-energy degrees of freedom. Although the renormalization
82 group generates in principle a complete effective action for the quasiparticle field, in practice
83 one follows Landau's original formulation by concentrating on specific "interaction channels",
84 i.e., restrictions of the quasiparticle scattering processes to specific geometries [13, 14]. The
85 forward-scattering channel collects the collisions in which the scattering angle tends to zero;
86 the pairing or Bardeen–Cooper–Schrieffer (BCS) channel describes head-on collisions, where
87 the angle of incidence approaches π . Restricting the attention to such channels is insufficient
88 in three-dimensional (3D) Fermi liquids, where resonant collisions between quasiparticles of
89 the Fermi surface are not limited to small momentum transfers nor to small center-of-mass
90 momenta. In 3D, the collision probability depends on two independent angles, in contrast to
91 the static interaction function f , which depends only on the angle between the quasiparticle
92 momenta \mathbf{p} and \mathbf{p}' . In this respect, the 3D case is fundamentally different from its 2D coun-
93 terpart, where resonant collisions depend on a single angle and thus fall into either one of
94 the two channels [15, 16]. Although effective-theory approaches are a natural starting point
95 to derive the quasiparticle transport equation, and thus access the density and polarization
96 response functions, they are often restricted to the collisionless regime, neglecting the ergodic
97 processes contained in the collision integral. An effective theory that fully captures the Boltz-
98 mann equation of the Fermi liquid would then be particularly valuable, for instance to assess
99 the corrections to transport properties beyond the Born–Markov approximation [17].

100 In fact, a convincing low-energy effective theory should be able to describe, within a unified
101 formalism, all low-energy phenomena, from the low-temperature thermodynamics to the hy-
102 drodynamic equations, in both the normal and superfluid phases (provided that superfluidity
103 itself remains a low-energy phenomenon). In this work, we construct an effective Hamiltonian
104 that captures the full dynamics of Landau quasiparticles, and thereby the whole low-energy
105 physics of fermionic fluids in which these quasiparticles are well defined. Our formalism re-
106 lies on a unitary transformation that connects the quasiparticle states to the noninteracting
107 Fock states; such unitary transformations are common in atomic physics [18–20] when one
108 applies a perturbation to multiplets of quasidegenerate energy levels. Our construction of the
109 quasiparticle states thus excludes from the dressing any quasidegenerate state in a narrow
110 energy band of width Λ . The unitary operator $\exp(\hat{S})$ of this dressing block-diagonalizes the
111 Hamiltonian, thereby decoupling levels whose energy separation exceeds Λ . This is not the
112 same as introducing a momentum cutoff [7–12], and the renormalization group generated by
113 infinitesimal variations of Λ is different. To ensure that the physical quantities predicted by
114 the effective theory are independent of Λ , the cutoff must be small compared to the Fermi
115 energy ϵ_F yet remain large compared to the typical evolution frequencies of the fluid, such as
116 the quasiparticle damping rate Γ in the normal phase, or the gap Δ in the superfluid phase.
117 In Heisenberg picture, the transformation generated by \hat{S} relates particle operators to their
118 quasiparticle counterparts; this allows us in particular to construct the quasiparticle annihila-
119 tion operator $\hat{\gamma}$ [6].

120 The adiabaticity condition usually invoked to justify the existence of the quasiparticles
121 translates, in our formalism, into a condition of weak mixing between (significantly coupled)
122 energy levels. Two quasiparticle states must be resonant at the scale Λ if and only if the cor-
123 responding particle states are resonant as well. In a generic many-body system, this condition
124 would restrict the theory to the lowest orders of perturbation theory. In a Fermi liquid, it re-
125 mains valid all the way to the strongly interacting regime, and the dressed states, free from
126 low-energy couplings, can be followed adiabatically. The conservation of a spectrum that

127 vanishes linearly at the Fermi level thus appears as a necessary condition to the existence of
 128 Landau quasiparticles.

129 Our unitary transformation constructs the low-energy effective theory by a direct renor-
 130 malisation of the underlying microscopic theory, without introducing emergent degrees of free-
 131 dom. The renormalisation group emerging from the infinitesimal generator $\hat{S}(\Lambda) - \hat{S}(\Lambda - d\Lambda)$
 132 [21, 22] acts on the full Hamiltonian. It is not restricted to a gradient expansion, nor to an
 133 expansion in powers of the quasiparticle field $\hat{\gamma}$. Only after the renormalization procedure do
 134 we expand the Hamiltonian in powers of the fluctuations $\delta(\hat{\gamma}^\dagger \hat{\gamma})$ of the density field about its
 135 expectation value in the quasiparticle Fermi sea (defined as the image of the non-interacting
 136 Fermi sea through the unitary transform). The effective Hamiltonian obtained in this way
 137 is not limited to specific interaction channels: its diagonal part in the Fock basis coincides
 138 with Landau's semi-classical Hamiltonian, but its off-diagonal part contains the generic colli-
 139 sion amplitude. It allows us to derive the Boltzmann equation—including the collision inte-
 140 gral—without leaving the effective picture, i.e., without returning to particle Green's functions
 141 and without using the quasiparticle residue. The Born–Markov approximation can be used to
 142 truncate the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy in the quasiparticle
 143 picture, even though the problem is strongly correlated in the particle picture.

144 Our construction of an effective Hamiltonian for Fermi fluids is motivated by experimental
 145 considerations, particularly in the context of ultracold atomic gases. The Fermi gas with con-
 146 tact interactions, long considered as an academic model [23–25], can nowadays be prepared
 147 and manipulated with great flexibility using laser trapping techniques [26–30]. At low tem-
 148 perature, its microscopic physics is fully characterized by the scattering length a of the contact
 149 interactions, which therefore fixes all the parameters of our low-energy effective theory. While
 150 it supports Landau quasiparticles only in the weakly-interacting regime ($a \rightarrow 0$), the contact
 151 gas gives access to several observables whose dependence on a is highly nontrivial. The Landau
 152 quasiparticles are then a powerful, and likely inevitable, heuristic tool to derive quantitatively
 153 predictions of measurable quantities such as the velocity and damping of zero sound [31], the
 154 transport coefficients [24, 32], or the collective modes of the superfluid [33, 34].

155 This article is divided into three sections.

156 In Section 1, we construct the low-energy effective theory of Landau quasiparticles. We
 157 introduce the unitary transformation that allows us to define the quasiparticle Fock states, the
 158 operators acting on these states, and in particular their effective Hamiltonian. We illustrate
 159 our formalism by applying it perturbatively to the Fermi gas with contact interactions. We
 160 compute to second order in $k_F a$ the effective parameters of the theory: the quasiparticle energy,
 161 the interaction functions, and the collision amplitude. Finally, we return to a more general
 162 framework and derive the quasiparticle Boltzmann equation from the effective Hamiltonian.

163 In Section 2, we study the density and spin responses of the contact Fermi gas. In particular,
 164 we analyze the collisionless regime and compute the expansion of the zero-sound velocity c_0
 165 in powers of the interaction strength $k_F a$. A major result is the presence of a log-perturbative
 166 correction in the deviation $c_0 - v_F$ between this velocity and the Fermi velocity v_F , which results
 167 into a prefactor $\exp(6)$ for the density mode and $\exp(-2)$ for the spin mode. We further
 168 investigate the role of collisions on zero sound and show that they lead to a collisional damping
 169 proportional to $1/\tau$, where τ is the mean collision time. This damping is universal in the sense
 170 that its dependence on $k_F a$ enters only through τ . Finally, we present a numerical method that
 171 solves the transport equation exactly throughout the crossover from the hydrodynamic to the
 172 collisionless regime.

173 In Section 3, we show that the effective theory describes the superfluid instability and
 174 the paired ground state. We express the zero-temperature order parameter Δ and the critical
 175 temperature T_c in terms of a parameter $\alpha_{\uparrow\downarrow}$ appearing in the effective Hamiltonian, which
 176 corresponds to the residual value of the collision amplitude $\mathcal{A}_{\uparrow\downarrow}$ regularized of its logarithmic

177 divergence in Λ [7, 10, 35, 36]. We then apply this result to the contact gas: by computing
 178 the pairing parameter $\alpha_{\uparrow\downarrow}$ to order $(k_F a)^2$, we obtain a log-perturbative correction to the BCS
 179 gap and critical temperature, a correction that coincides with the result of Gor'kov and Melik-
 180 Barkhudarov [37].

181 1 The low-energy effective Hamiltonian of Fermi liquids

182 We consider a 3D fluid made of N spin-1/2 fermionic particles evolving in a volume \mathcal{V} under
 183 the Hamiltonian

$$\hat{H} = \hat{H}_0 + \hat{V} \quad (1)$$

184 This section will discuss the construction of the Landau quasiparticles on general grounds,
 185 so we make minimal assumptions on the form of \hat{H} . We write the generic noninteracting
 186 Hamiltonian and the generic two-body interaction between opposite spin fermions as

$$\hat{H}_0 = \sum_{\alpha \in \mathcal{D}\sigma} \omega_{\alpha\sigma} \hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma} \quad (2)$$

$$\hat{V} = \sum_{\alpha\beta\gamma\delta \in \mathcal{D}} V(\alpha, \beta | \gamma, \delta) \hat{a}_{\alpha\uparrow}^\dagger \hat{a}_{\beta\downarrow}^\dagger \hat{a}_{\gamma\downarrow} \hat{a}_{\delta\uparrow} \quad (3)$$

188 where $\hat{a}_{\alpha\uparrow}$ annihilates a fermion of spin σ in mode α . We use $\hbar = k_B = 1$ throughout this
 189 article. This implies that momenta p and wavenumber k are not differentiated, in particular
 190 $p_F = k_F$ for the Fermi momentum/wavenumber.

191 1.1 Landau quasiparticles in quasi-degenerate perturbation theory

192 The quasiparticles states are often viewed [2, 38] as the states in which the eigenstates of \hat{H}_0
 193 evolve after an adiabatic ramp of the interactions of the form $\hat{V}(t) = \lambda(t)\hat{V}$, with $\lambda(0) = 0$
 194 and $\lambda(t_f) = 1$. It is then argued that the ramping time t_f [2] should be long enough to ensure
 195 an adiabatic evolution, but short enough to prevent the quasiparticle decay. This picture is
 196 problematic since the existence of a finite time t_f fulfilling the adiabatic theorem [39] is ques-
 197 tionable in a gapless, strongly-interacting fluid. Instead, we develop here a rigorous method
 198 to construct the quasiparticles states from the eigenstates of \hat{H}_0 , and to continuously follow
 199 them from the non-interacting to the strongly-interacting regime.

200 Given an eigenstate $|n\rangle_0$ of \hat{H}_0 , we decompose the rest of the eigenstates of \hat{H}_0 into *quaside-*
 201 *generate* and *energetically well-separated* states. An eigenstate $|m\rangle_0$ is quasidegenerate with $|n\rangle_0$
 202 if its energy E_m^0 is within a narrow energy band Λ , $|E_n^0 - E_m^0| \ll \Lambda$, and it is well-separated if
 203 $|E_n^0 - E_m^0| \gg \Lambda$. One can then construct the quasiparticle states by a unitary transformation
 204 $|n\rangle = e^{\hat{S}}|n\rangle_0$, where we impose that the hermitian operator \hat{S} has no matrix elements between
 205 quasidegenerate states. This construction is similar to the van Vleck transformation in quasi-
 206 degenerate perturbation theory [18–20, 40].

207 Rather than an adiabaticity condition, the possibility of such a construction is tied to a *non-*
 208 *crossing* condition: the only level crossings¹ that occur as interactions are increased should be
 209 between states $|n\rangle$ and $|m\rangle$ that are already quasidegenerate in the non-interacting state, *i.e.*

$$|E_n - E_m| \ll \Lambda \iff |E_n^0 - E_m^0| \ll \Lambda \quad (4)$$

210 This is a reformulation of the usual assumption that the (low-energy) quasiparticles have a
 211 gapless spectrum similar to the spectrum of the particles in the ideal Fermi gas.

¹Our acceptation of level crossings is restricted to states $|n\rangle_0$ and $|m\rangle_0$ that are significantly coupled by \hat{V} . In the thermodynamic limit, this excludes in particular states with different densities of excitation.

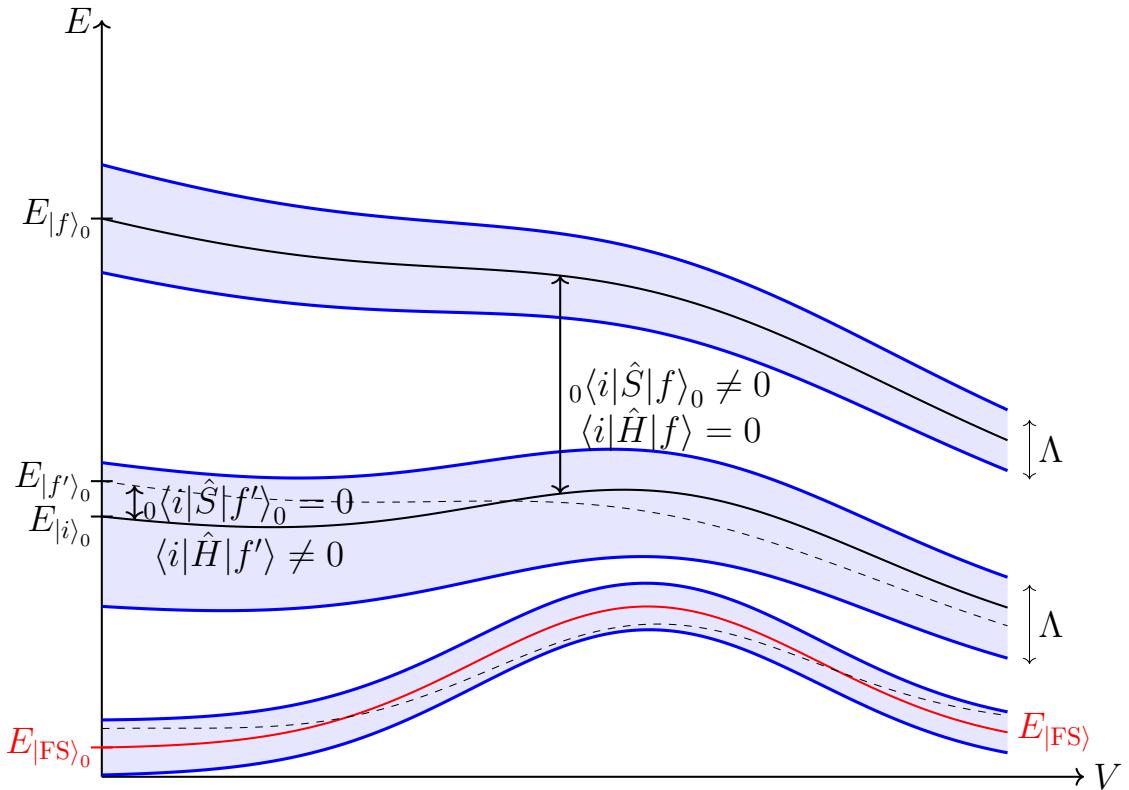


Figure 1: Construction of the quasiparticle states within quasi-degenerate perturbation theory. An unperturbed Fock state $|i\rangle_0$ is dressed via the operator \hat{S} by its interactions with the off-resonant states $|f\rangle_0$, whose unperturbed energy verifies $|E_{|f\rangle_0} - E_{|i\rangle_0}| > \Lambda$ (here $E_{|\psi\rangle_0} = \langle\psi|\hat{H}_0|\psi\rangle_0$). The dressed state $|i\rangle$ can then be followed adiabatically as the interaction strength V increases. However, due to its incomplete dressing, it is not an eigenstate of \hat{H} , and it remains coupled to the nearly degenerate states $|f'\rangle$ of energies $|E_{|f'\rangle_0} - E_{|i\rangle_0}| < \Lambda$, (here $E_{|\psi\rangle} = \langle\psi|\hat{H}|\psi\rangle$). This construction applies in particular to the particle Fermi sea $|\text{FS}\rangle_0$, which evolves into a quasiparticle Fermi sea $|\text{FS}\rangle$ (red curve). In general the quasiparticle Fermi sea is not the ground state of \hat{H} , and therefore not the ground state of our effective Hamiltonian.

212 Clearly, the quasiparticle states $|n\rangle$ are not the exact eigenstates of \hat{H} since there remain
 213 quasi on-shell couplings between them, $\langle n|\hat{H}|m\rangle \neq 0$ if $|E_n - E_m| \ll \Lambda$. These coupling ensure
 214 that the quasiparticle states, which are described by the same quantum numbers as the nonin-
 215 teracting states (*i.e.* the set of fermionic occupation numbers $\{n_{\alpha\sigma}\}_{\alpha\sigma}$), decay to the ergodic
 216 eigenstates. In this picture the eigenstates appear as ergodic mixtures of all quasiparticle states
 217 at energy E , in accordance with the Eigenstate Thermalization Hypothesis [41].

218 The cutoff Λ used to construct the quasiparticle description should be tuned so that all
 219 physical quantities are independent of it. This constrains it to a plateau between a low- and a
 220 high-energy bound. As an upper bound we want Λ to single-out the low-energy region, and
 221 incorporate in it the off-resonant couplings from the high-energy part of the spectrum. This is
 222 achieved by

$$\Lambda \ll \epsilon_F \quad (5)$$

223 As a lower-bound, we want the couplings between quasiparticle states to vary smoothly over
 224 the frequencies at which the system evolves. In the case of an isolated system prepared in
 225 some excited quasiparticle state, the evolution frequencies are set by the intrinsic decay rate

226 Γ_{typ} of the quasiparticles. In the case of a system driven at frequency ω_{ext} by an external force,
 227 all the transitions due to the external force should remain in the same Λ shell:

$$\Gamma_{\text{typ}}, \omega_{\text{ext}} \ll \Lambda \quad (6)$$

228 This inequality, combined with Eq. (5), constrains the states and the frequencies that one can
 229 excite without breaking the quasiparticle description.

230 1.1.1 Partition of the Hilbert space and unitary transformation

231 To classify the quasidegenerate and well-separated states, we introduce the projector

$$\hat{P}_{\Lambda}(E) = \sum_{|n\rangle_0} \Pi_{\Lambda}(E - \hat{H}_0) |n\rangle_0 \langle n|_0 \quad (7)$$

232 where the summation runs over the eigenstates $|n\rangle_0$ of \hat{H}_0 . As long as the filtering function
 233 $\Pi_{\Lambda}(E)$ verifies that $\Pi_{\Lambda}(E \ll \Lambda) = 1$ and $\Pi_{\Lambda}(E \gg \Lambda) = 0$, its precise shape does not matter. We
 234 shall thus use

$$\Pi_{\Lambda}(E) = \begin{cases} 1 & \text{if } |E| \leq \Lambda \\ 0 & \text{else} \end{cases} \quad (8)$$

235 To define the properties of the quasiparticles, we will focus on the energy shell centered
 236 around the energy E_0^0 of the particle Fermi sea $|\text{FS}\rangle_0$ (the ground state of \hat{H}_0 at fixed chemical
 237 potential μ). However, we want our description to apply to states, such as thermal or super-
 238 fluid states, that have a macroscopic excitation or condensation energy, obtained through the
 239 excitation of a macroscopic number of low-energy quasiparticles. We therefore slice the whole
 240 spectrum into Λ shells centered around $E_n = E_0^0 + 2n\Lambda$ with $n \in \mathbb{Z}$. The projector onto the n -th
 241 energy window is

$$\hat{P}_n = \hat{P}_{\Lambda}(E_n) \quad (9)$$

242 with \hat{P}_0 projecting onto the shell of the Fermi sea.

243 We then construct an antihermitian operator \hat{S}

$$\hat{S}^{\dagger} = -\hat{S} \quad (10)$$

244 which generates the quasiparticle states by a unitary transform applied to the eigenstates $|n\rangle_0$
 245 of \hat{H}_0 :

$$|n\rangle = e^{\hat{S}} |n\rangle_0 \quad (11)$$

246 This is the unitary, or canonical, van Vleck transformation [19] known in atomic and molecular
 247 physics [18, 20, 40]. The operator \hat{S} couples only well-separated states, *i.e.* all its diagonal
 248 blocks vanish

$$\hat{P}_n \hat{S} \hat{P}_n = 0, \text{ for all } n \quad (12)$$

249 To construct the off-diagonal blocks $\hat{P}_m \hat{S} \hat{P}_n$, $m \neq n$, we impose that the couplings between
 250 transformed states vanish, $\langle m | \hat{H} | n \rangle = 0$, if $|n\rangle$ and $|m\rangle$ belong to different energy shells, that
 251 is, if $|E_n^0 - E_m^0| \gg \Lambda$. In other words, we impose that the effective Hamiltonian

$$\hat{H}_{\text{eff}} = e^{-\hat{S}} \hat{H} e^{\hat{S}} \quad (13)$$

252 is block-diagonal:

$$\hat{P}_m \hat{H}_{\text{eff}} \hat{P}_n = 0, n \neq m \quad (14)$$

253 At this stage, we view the effective Hamiltonian as the operator which, acting on the un-
 254 perturbed basis, provides the matrix elements of \hat{H} in the transformed basis:

$$\langle n | \hat{H} | m \rangle = {}_0 \langle n | \hat{H}_{\text{eff}} | m \rangle_0 \quad (15)$$

255 Using Baker-Campbell-Hausdorff formula, \hat{H}_{eff} is expressed in terms of iterated commutators
 256 between \hat{H} and \hat{S} :

$$\hat{H}_{\text{eff}} = \hat{H} + [\hat{H}, \hat{S}] + \frac{1}{2} [[\hat{H}, \hat{S}], \hat{S}] + \dots \quad (16)$$

257 **1.1.2 Perturbative calculation of \hat{S} and \hat{H}_{eff}**

258 When \hat{V} is controlled by a small parameter, one can construct \hat{S} and \hat{H}_{eff} order-by-order in \hat{V} :

$$\hat{S} = \hat{S}_1 + \hat{S}_2 + \dots \text{ where } \hat{S}_1 = O(V), \hat{S}_2 = O(V^2), \dots \quad (17)$$

259 Expanding condition (14) to first order in V , we obtain for example

$$\hat{P}_m (\hat{V} + [\hat{H}_0, \hat{S}_1]) \hat{P}_n = 0 \quad (18)$$

260 This relation provides the elements of \hat{S}_1 in the unperturbed basis:

$${}^0\langle f | \hat{S}_1 | i \rangle_0 = \begin{cases} \frac{{}^0\langle f | \hat{V} | i \rangle_0}{E_i^0 - E_f^0} & \text{if } |E_i^0 - E_f^0| \gg \Lambda \\ 0 & \text{if } |E_i^0 - E_f^0| \ll \Lambda \end{cases} \quad (19)$$

261 One can also express the restriction of \hat{S}_1 to a given energy shell \hat{P}_n in terms of the unperturbed
 262 resolvent $\hat{G}_0(E) = 1/(E - \hat{H}_0)$ evaluated at the corresponding energy E_n of the shell:

$$\hat{S}_1 \hat{P}_n \simeq \hat{Q}_n [\hat{G}_0(E_n) \hat{V}] \hat{P}_n \quad (20)$$

263 where $\hat{Q}_n = 1 - \hat{P}_n$ projects orthogonally to the shell. Note however that \hat{S} , unlike \hat{G}_0 , does not
 264 depend on energy and allows to (block) diagonalize the whole spectrum, not just the vicinity
 265 of a particular energy level.

266 Injecting expansion (17) of \hat{S} , we obtain² a perturbative expression of the effective Hamil-
 267 tonian:

$$\hat{P}_n \hat{H}_{\text{eff}} \hat{P}_n = \hat{P}_n \left(\hat{H}_0 + \hat{V} + \frac{1}{2} [\hat{V}, \hat{S}_1] + O(V^3) \right) \hat{P}_n \quad (21)$$

268 **1.1.3 Quasiparticle operators**

269 The quasiparticle states are deduced from the particle Fock states $|\{n_{\alpha\sigma}\}\rangle_0$ through Eq. (11)

$$|\{n_{\alpha\sigma}\}\rangle = e^{\hat{S}} |\{n_{\alpha\sigma}\}\rangle_0 \quad (22)$$

270 Switching to Heisenberg picture, \hat{S} can be used to construct the operators acting on this new
 271 basis. Consider an operator \hat{O} whose action is known in the unperturbed basis $|\{n_{\alpha\sigma}\}\rangle_0$. The
 272 operator \hat{O}_γ having the same action in quasiparticle basis $|\{n_{\alpha\sigma}\}\rangle$ is then

$$\hat{O}_\gamma = e^{\hat{S}} \hat{O} e^{-\hat{S}} \quad (23)$$

273 **Annihilation operator** The most straightforward example is the quasiparticle annihilation
 274 operator $\hat{\gamma}$ which we construct from the particle annihilation operator \hat{a} through

$$\hat{\gamma}_{\alpha\sigma} = e^{\hat{S}} \hat{a}_{\alpha\sigma} e^{-\hat{S}} = \hat{a}_{\alpha\sigma} + [\hat{S}_1, \hat{a}_{\alpha\sigma}] + [\hat{S}_2, \hat{a}_{\alpha\sigma}] + \frac{1}{2} [\hat{S}_1, [\hat{S}_1, \hat{a}_{\alpha\sigma}]] + O(\hat{V}^3) \quad (24)$$

275 Since $\hat{\gamma}$ follows from \hat{a} through a unitary transformation, it automatically obeys fermionic
 276 anticommutation relations

$$\{\hat{\gamma}_{\alpha\sigma}, \hat{\gamma}_{\alpha'\sigma'}^\dagger\} = \delta_{\alpha\alpha'} \delta_{\sigma\sigma'}, \quad \{\hat{\gamma}_{\alpha\sigma}, \hat{\gamma}_{\alpha'\sigma'}\} = 0 \quad (25)$$

²We have used that $\hat{P}_n [\hat{H}_0, \hat{S}_1 + \hat{S}_2] \hat{P}_n = 0$ since \hat{S} is block off-diagonal and \hat{P}_n commutes with \hat{H}_0 , together with Eq. (18) to simplify to double commutator $\hat{P}_n [[\hat{H}_0, \hat{S}_1], \hat{S}_1] \hat{P}_n = -\hat{P}_n [\hat{V}, \hat{S}_1] \hat{P}_n$.

277 **Hamiltonian** Another example is the operator \hat{H}_γ which acts on the quasiparticle states as
 278 \hat{H} acts on the particle states:

$$\hat{H}_\gamma = e^{\hat{S}} \hat{H} e^{-\hat{S}} = \sum_{\alpha\sigma} \omega_{\alpha\sigma} \gamma_{\alpha\sigma}^\dagger \gamma_{\alpha\sigma} + \sum_{\alpha\beta\gamma\delta \in \mathcal{D}} V(\alpha, \beta | \gamma\delta) \hat{\gamma}_{\alpha\uparrow}^\dagger \hat{\gamma}_{\beta\downarrow}^\dagger \hat{\gamma}_{\gamma\downarrow} \hat{\gamma}_{\delta\uparrow} \quad (26)$$

279 The quasiparticle states, like any other state, do not evolve under the Hamiltonian \hat{H}_γ but
 280 under the true Hamiltonian \hat{H} . Inverting Eq. (26) to express \hat{H} in terms of \hat{H}_γ allows us to
 281 reinterpret the effective Hamiltonian which appeared in Eq. (16):

$$\hat{H} = e^{-\hat{S}} \hat{H}_\gamma e^{\hat{S}} = \hat{H}_{\text{eff},\gamma} \quad (27)$$

282 In other words, \hat{H} is written in terms of the $\hat{\gamma}$ operators exactly like \hat{H}_{eff} is written in terms of
 283 the \hat{a} operators.

284 **Number operator** A third example is the quasiparticle number operator

$$\hat{N}_\gamma = e^{\hat{S}} \hat{N} e^{-\hat{S}} = \sum_{\alpha\sigma} \hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\alpha\sigma} \quad \text{with} \quad \hat{N} = \sum_{\alpha\sigma} \hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma} \quad (28)$$

285 This case is special since \hat{N} commutes separately with \hat{H}_0 and \hat{V} . One can then show (order-
 286 by-order in \hat{V}) that it commutes with \hat{S} . We recover in this way the Luttinger theorem

$$\hat{N}_\gamma = \hat{N} \quad (29)$$

287 **Projectors** Finally, in the quasiparticle picture, the projector onto an energy-shell becomes

$$\hat{P}_{\Lambda,\gamma}(E) = e^{\hat{S}} \hat{P}_\Lambda(E) e^{-\hat{S}} = \sum_{\{n_{\alpha\sigma}\}} \Pi_\Lambda(E - \hat{H}_{0,\gamma}) |\{n_{\alpha\sigma}\}\rangle \langle \{n_{\alpha\sigma}\}| \quad (30)$$

288 and correspondingly $\hat{P}_{n,\gamma} = \hat{P}_{\Lambda,\gamma}(E_n)$. The operators \hat{P}_γ thus project the quasiparticle states
 289 $|\{n_{\alpha\sigma}\}\rangle$ according to their *unperturbed energy* $\sum_{\alpha\sigma} \omega_{\alpha\sigma} n_{\alpha\sigma}$, rather than their full energy
 290 $\langle \{n_{\alpha\sigma}\} | \hat{H} | \{n_{\alpha\sigma}\} \rangle$. In a generic many-fermion system, this would render this van Vleck transfor-
 291 mation useless. In a Fermi liquid, this limitation is lifted by the non-crossing condition Eq. (4),
 292 which we may rewrite has

$$|\langle n | \hat{H} | n \rangle - \langle m | \hat{H} | m \rangle| \ll \Lambda \iff |\langle n | \hat{H}_0 | n \rangle_0 - \langle m | \hat{H}_0 | m \rangle_0| \ll \Lambda \quad (31)$$

293 1.1.4 Energy, residue and interaction functions of the quasiparticles

294 In Ref. [32], we related the energy of the quasiparticles to the average value of \hat{H} in quasi-
 295 particle states with one or two excitations above the Fermi sea. Let us here generalize this
 296 definition to any quasiparticle reference state $|\psi\rangle$. To this aim, we introduce states with either
 297 one quasiparticle or one quasi-hole (depending on whether $n_{\alpha\sigma}^{|\psi\rangle} = \langle \psi | \hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\alpha\sigma} | \psi \rangle = 0$ or 1)
 298 added to $|\psi\rangle$ in mode $\alpha\sigma$

$$|\alpha\sigma, \psi\rangle \equiv \begin{cases} |\psi\rangle & \text{if } n_{\alpha\sigma}^{|\psi\rangle} = 1 \\ \hat{\gamma}_{\alpha\sigma}^\dagger |\psi\rangle & \text{else} \end{cases} \quad |\overline{\alpha\sigma}, \psi\rangle \equiv \begin{cases} |\psi\rangle & \text{if } n_{\alpha\sigma}^{|\psi\rangle} = 0 \\ \hat{\gamma}_{\alpha\sigma} |\psi\rangle & \text{else} \end{cases} \quad (32)$$

299 The energy $\epsilon_{\alpha\sigma}^{|\psi\rangle}$ of the quasiparticle $\alpha\sigma$ is then a functional of $|\psi\rangle$ (more precisely of its occu-
 300 pations numbers in modes $\alpha'\sigma' \neq \alpha\sigma$):

$$\epsilon_{\alpha\sigma}^{|\psi\rangle} \equiv \langle \alpha\sigma, \psi | \hat{H} | \alpha\sigma, \psi \rangle - \langle \overline{\alpha\sigma}, \psi | \hat{H} | \overline{\alpha\sigma}, \psi \rangle \quad (33)$$

301 To define the interaction functions f in an arbitrary state $|\psi\rangle$, one should iterate the nota-
 302 tion Eq. (32) to allow for the creation or annihilation of two (or more) quasiparticles³

$$|\alpha\sigma, \alpha_1\sigma_1, \dots, \alpha_n\sigma_n, \overline{\beta_1\sigma_1}, \dots, \overline{\beta_m\sigma_m}, \psi\rangle = \begin{cases} |\alpha_1\sigma_1, \dots, \alpha_n\sigma_n, \overline{\beta_1\sigma_1}, \dots, \overline{\beta_m\sigma_m}, \psi\rangle & \text{if } n_{\alpha\sigma}^{|\psi\rangle} = 1 \\ \hat{\gamma}_{\alpha\sigma}^\dagger |\alpha_1\sigma_1, \dots, \alpha_n\sigma_n, \overline{\beta_1\sigma_1}, \dots, \overline{\beta_m\sigma_m}, \psi\rangle & \text{else} \end{cases} \quad (34)$$

303 We can now define the interaction functions as functionals of $|\psi\rangle$:

$$\mathcal{V}f_{\sigma\sigma'}^{|\psi\rangle}(\alpha, \beta) = E_{|\alpha\sigma, \beta\sigma'\psi\rangle} + E_{|\overline{\alpha\sigma}, \overline{\beta\sigma'}\psi\rangle} - E_{|\overline{\alpha\sigma}, \beta\sigma'\psi\rangle} - E_{|\alpha\sigma, \overline{\beta\sigma'}\psi\rangle} \quad (35)$$

304 where $E_{|\psi\rangle} = \langle\psi|\hat{H}|\psi\rangle$ and the volume factor \mathcal{V} makes sure that $f_{\sigma\sigma'}$ has a finite thermo-
 305 dynamic limit. Our definition is a quantum version of the semi-classical definition of f as a
 306 second derivative $f_{\sigma\sigma'}^{|\psi\rangle}(\alpha, \beta) = \partial^2 E_{|\psi\rangle} / \partial n_{\alpha\sigma} \partial n_{\beta\sigma'}$

307 In the same spirit, one can define the residue of the quasiparticle as the variation of the
 308 number $\hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma}$ of particle in mode $\alpha\sigma$ when the quasiparticle $\alpha\sigma$ is added to the fluid:

$$Z_{\alpha\sigma}^{|\psi\rangle} \equiv \langle\alpha\sigma, \psi|\hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma}|\alpha\sigma, \psi\rangle - \langle\overline{\alpha\sigma}, \psi|\hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma}|\overline{\alpha\sigma}, \psi\rangle \quad (36)$$

309 Although conceptually important to identify the origin of the quasiparticles, the residue breaks
 310 the low-energy effective description, as it involves measuring a microscopic quantity $\hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma}$,
 311 unlike e.g. $\epsilon_{\alpha\sigma}$ which involves only the energy. All the low-energy properties should then be
 312 formulated without it.

313 Using the unitary transformation of the operators Eq. (23), there a dual interpretation of
 314 the residue as the variation of the number of quasiparticle in $\alpha\sigma$ upon adding the correspond-
 315 ing particle:

$$Z_{\alpha\sigma}^{|\psi\rangle} = {}_0\langle\alpha\sigma, \psi|\hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\alpha\sigma}|\alpha\sigma, \psi\rangle_0 - {}_0\langle\overline{\alpha\sigma}, \psi|\hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\alpha\sigma}|\overline{\alpha\sigma}, \psi\rangle_0 \quad (37)$$

316 In the case of an homogeneous system (where α stands for the wavevector \mathbf{p}), we will
 317 relate the residue, as defined in Eq. (36), to the discontinuity of the momentum distribution at
 318 the Fermi level (see Sec. 1.2.5). We already note that the leading term in $1 - Z_{\alpha\sigma}^{|\psi\rangle}$ is of second
 319 order in V , in contrast to the leading term in $\epsilon_{\alpha\sigma}^{|\psi\rangle} - \omega_{\alpha\sigma}$ which is of order V . This is because
 320 $\hat{a}_{\alpha\sigma}^\dagger \hat{a}_{\alpha\sigma}$ (unlike \hat{H}) commutes with the projectors \hat{P}_n .

321 1.1.5 Collision amplitudes

322 Contrarily to a widespread believe, the effective description of the Fermi fluid is not exhaustive
 323 if we restrict ourselves to the eigenenergy $\epsilon_{\alpha\sigma}$ and interaction functions $f_{\sigma\sigma'}$ defined above.
 324 In fact these two quantities characterize only the diagonal elements of \hat{H} , while for many
 325 equilibrium and dynamical properties, a knowledge of the off-diagonal elements is required:

$$\mathcal{A}_{i\rightarrow f} \equiv \langle f|\hat{H}|i\rangle \quad (38)$$

326 Even though it is restricted to quasi on-shell couplings ($\mathcal{A}_{i\rightarrow f} \neq 0$ only if $|E_i - E_f| \ll \Lambda$), \hat{H} can
 327 generate high-order collisions between quasiparticles. From Eq. (16), one can easily count
 328 that there are up to $n + 1 \leftrightarrow n + 1$ quasiparticle collisions if \hat{V} describes $2 \leftrightarrow 2$ particles
 329 collisions and \hat{H}_{eff} is truncated to order \hat{V}^n . However, we shall see that $2 \leftrightarrow 2$ quasiparticle
 330 collisions remain the more likely if excited quasiparticles are confined to a low-energy shell
 331 about the Fermi level.

332 Just like the interaction functions $f_{\sigma\sigma'}$, the $2 \leftrightarrow 2$ transitions amplitudes depend on the
 333 reference state $|\psi\rangle$ in which we compute them. Let $|i\rangle = |\overline{\alpha\sigma}, \overline{\beta\sigma'}, \gamma\sigma', \delta\sigma, \psi\rangle$ be a reference

³Together with this piling rule, the states obey a fermionic permutation rule: $|\overline{\alpha'\sigma'}, \alpha\sigma\rangle = -|\alpha\sigma, \overline{\alpha'\sigma'}\rangle$.

334 state in which we made sure that quasiparticles are absent in $\alpha\sigma, \beta\sigma'$ and present in $\gamma\sigma', \delta\sigma$.
 335 Then let

$$|f\rangle = \hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\beta\sigma'}^\dagger \hat{\gamma}_{\gamma\sigma'} \hat{\gamma}_{\delta\sigma} |i\rangle \quad (\alpha\sigma, \beta\sigma') \neq (\delta\sigma, \gamma\sigma'), (\gamma\sigma', \delta\sigma) \quad (39)$$

336 be the final state not proportional to $|i\rangle$. We then define the collision amplitude $\mathcal{A}_{\sigma\sigma'}$ between
 337 σ and σ' quasiparticles through

$$\mathcal{A}_{i \rightarrow f} \equiv \frac{\mathcal{A}_{\sigma\sigma'}^{|i\rangle}(\alpha\beta|\gamma\delta)}{\mathcal{V}} \quad (40)$$

338 From the fermionic commutation relation and the hermiticity of the Hamiltonian, these am-
 339 plitudes verify the relations

$$\mathcal{A}_{\sigma\sigma'}^{|i\rangle}(\delta\gamma|\beta\alpha) = \mathcal{A}_{\sigma\sigma'}^{|i\rangle}(\alpha\beta|\gamma\delta) \quad (41)$$

$$\mathcal{A}_{\uparrow\uparrow}^{|i\rangle}(\beta\alpha|\gamma\delta) = \mathcal{A}_{\uparrow\uparrow}^{|i\rangle}(\alpha\beta|\delta\gamma) = -\mathcal{A}_{\uparrow\uparrow}^{|i\rangle}(\alpha\beta|\gamma\delta) \quad (42)$$

340 In a spin-symmetric fluid, they verify in addition

$$\mathcal{A}_{\sigma\sigma'}^{|i\rangle}(\beta\alpha|\delta\gamma) = \mathcal{A}_{\sigma\sigma'}^{|i\rangle}(\alpha\beta|\gamma\delta) \quad (43)$$

341 Note that our van Vleck transformation a priori restricts $\mathcal{A}_{\sigma\sigma'}^{|i\rangle}(\alpha\beta|\gamma\delta)$ to transitions between
 342 quasi-degenerate states $|E_f - E_i| \ll \Lambda$. Comparing $E_i = \langle i | \hat{H} | i \rangle$ and $E_f = \langle f | \hat{H} | f \rangle$, this can be
 343 turned in the thermodynamic limit⁴ into a resonance condition on the energies (in $|i\rangle$) of the
 344 colliding quasiparticles:

$$\left| \epsilon_{\alpha\sigma}^{|i\rangle} + \epsilon_{\beta\sigma'}^{|i\rangle} - \epsilon_{\gamma\sigma'}^{|i\rangle} - \epsilon_{\delta\sigma}^{|i\rangle} \right| \ll \Lambda \quad (44)$$

345 1.1.6 Low-energy effective Hamiltonian in the vicinity of the quasiparticle Fermi sea

346 So far, we have described the matrix elements of \hat{H} between arbitrary quasiparticle states,
 347 noticing that even if we restrict to few-quasiparticle transitions the matrix elements retain a
 348 dependance on the reference state $|\psi\rangle$. This can be seen as a consequence of Eq. (27), where
 349 the expression of \hat{H} (at strong coupling) contains an infinite number of $\hat{\gamma}$.

350 One can however derive a tractable truncation of \hat{H} , containing few operators $\hat{\gamma}$, and valid
 351 for quasiparticle states $|\{n_{\alpha\sigma}\}\rangle$ and $|\{m_{\alpha\sigma}\}\rangle$ that deviate from each other only at low energy
 352 ($n_{\alpha\sigma} \neq m_{\alpha\sigma}$ only when $|\omega_{\alpha\sigma} - \epsilon_F| < \Lambda$). One truncation plays a special role, this is the one
 353 based on the quasiparticle Fermi sea:

$$|FS\rangle = e^{\hat{S}} |FS\rangle_0 \quad (45)$$

$$E_{FS} \equiv \langle FS | \hat{H} | FS \rangle \quad (46)$$

354 Note that $|FS\rangle$ is in general not the ground state of \hat{H} , such that E_{FS} is larger than the ground
 355 state energy E_0 . In the following, we drop the $|FS\rangle$ superscript when using the Fermi sea as
 356 the reference state: $\epsilon_{\alpha\sigma} \equiv \epsilon_{\alpha\sigma}^{|FS\rangle}$, $f_{\sigma\sigma'} \equiv f_{\sigma\sigma'}^{|FS\rangle}$ and $\mathcal{A}_{\sigma\sigma'} \equiv \mathcal{A}_{\sigma\sigma'}^{|FS\rangle}$.

357 As the main result of this section we write this truncation of the Hamiltonian in the vicinity
 358 of the quasiparticle Fermi sea, including the collision amplitudes between resonant states. The
 359 truncation is written in terms of the fluctuations of the quasiparticle-hole operator,

$$\delta(\hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\beta\sigma}) \equiv \hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\beta\sigma} - n_{\alpha\sigma}^0 \delta_{\alpha\beta} \quad (47)$$

$$\delta \hat{n}_{\alpha\sigma} \equiv \delta(\hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\alpha\sigma}) \quad (48)$$

⁴One can show that $E_f - E_i = \epsilon_{\alpha\sigma}^{|i\rangle} + \epsilon_{\beta\sigma'}^{|i\rangle} - \epsilon_{\gamma\sigma'}^{|i\rangle} - \epsilon_{\delta\sigma'}^{|i\rangle} + O\left(\frac{1}{\mathcal{V}}\right)$

360 where $n_{\alpha\sigma}^0 = \langle \text{FS} | \hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\alpha\sigma} | \text{FS} \rangle$ is the Fermi sea occupation of mode $\alpha\sigma$. The fluctuation of the
 361 quasiparticle number $\delta\hat{n}$ can be viewed as the quantum version of the classical field δn (the
 362 semi-classical “number of quasiparticles”) in which Fermi liquid theory is often formulated.
 363 Restricting to terms quadratic in $\delta(\hat{\gamma}^\dagger \hat{\gamma})$, we can write

$$\hat{H} = E_{\text{FS}} + \sum_{\alpha\sigma} \epsilon_{\alpha\sigma} \delta\hat{n}_{\alpha\sigma} + \frac{1}{2\mathcal{V}} \sum_{\substack{\alpha\beta\gamma\delta \in \mathcal{D} \\ \sigma\sigma'=\uparrow\downarrow}} \delta_{\alpha+\beta}^{\gamma+\delta} \mathcal{B}_{\sigma\sigma'}(\alpha\beta|\gamma\delta) \delta(\gamma_{\alpha\sigma}^\dagger \gamma_{\delta\sigma}) \delta(\gamma_{\beta\sigma'}^\dagger \gamma_{\gamma\sigma'}) + O(\delta(\hat{\gamma}^\dagger \hat{\gamma})^3) \quad (49)$$

364 The function $\mathcal{B}_{\uparrow\downarrow}$ is straightforwardly related to $f_{\uparrow\downarrow}$ and $\mathcal{A}_{\uparrow\downarrow}$ by

$$\mathcal{B}_{\uparrow\downarrow}(\alpha, \beta|\beta, \alpha) = f_{\uparrow\downarrow}(\alpha, \beta) \quad (50)$$

$$\mathcal{B}_{\uparrow\downarrow}(\alpha, \beta|\gamma, \delta) = \mathcal{A}_{\uparrow\downarrow}(\alpha, \beta|\gamma, \delta), \alpha \neq \delta \quad (51)$$

365 Conversely, the indistinguishability of the colliding $\sigma\sigma$ quasiparticles leaves us some freedom
 366 in the choice of $\mathcal{B}_{\sigma\sigma}$. Without affecting the matrix element of \hat{H} , we can constrain $\mathcal{B}_{\sigma\sigma}$ by the
 367 following conditions⁵:

$$\mathcal{B}_{\sigma\sigma}(\alpha, \beta|\alpha, \beta) = 0 \quad (52)$$

$$\mathcal{B}_{\sigma\sigma}(\beta, \alpha|\delta, \gamma) = \mathcal{B}_{\sigma\sigma}(\alpha, \beta|\gamma, \delta) \quad (53)$$

368 While these choices may seem arbitrary at this stage, we will show in the next subsection that
 369 these constraints arise naturally in perturbative calculations of the truncated Hamiltonian. To
 370 reproduce $f_{\sigma\sigma}$ and $\mathcal{A}_{\sigma\sigma}$, the function $\mathcal{B}_{\sigma\sigma}$ must now satisfy

$$\mathcal{B}_{\sigma\sigma}(\alpha, \beta|\beta, \alpha) = f_{\sigma\sigma}(\alpha, \beta) \quad (54)$$

$$\mathcal{B}_{\sigma\sigma}(\alpha, \beta|\gamma, \delta) - \mathcal{B}_{\sigma\sigma}(\beta, \alpha|\gamma, \delta) = \mathcal{A}_{\sigma\sigma}(\alpha, \beta|\gamma, \delta), \alpha \neq \gamma, \delta \quad (55)$$

371 Eq. (49) is exact for the matrix elements between $|\text{FS}\rangle$ and states connected to $|\text{FS}\rangle$ by up to
 372 4 operators $\hat{\gamma}$. It is valid up to corrections in $O(\epsilon_0)$ for states $|\psi\rangle$, whose excited quasiparticles
 373 are contained in a low-energy shell

$$\langle \psi | \delta\hat{n}_{\alpha\sigma} | \psi \rangle = 0 \text{ if } |\epsilon_{\alpha\sigma} - \mu| > \epsilon_0 \quad (56)$$

374 with

$$\epsilon_0 < \Lambda \ll \epsilon_F \quad (57)$$

375 The omission of terms cubic or higher in $\delta(\hat{\gamma}^\dagger \hat{\gamma})$ in Eq. (49) then leads to errors in the energy
 376 and transition amplitudes controlled by ϵ_0/ϵ_F .

377 We recover the usual semi-classical Hamiltonian of Fermi liquid theory

$$E = E + \sum_{\alpha\sigma} \epsilon_{\alpha\sigma} \delta n_{\alpha\sigma} + \frac{1}{2\mathcal{V}} \sum_{\substack{\alpha\beta \in \mathcal{D} \\ \sigma\sigma'=\uparrow\downarrow}} f_{\sigma\sigma'}(\alpha, \beta) \delta n_{\alpha\sigma} \delta n_{\beta\sigma'} + O(\delta n)^3 \quad (58)$$

378 as the restriction of Eq. (49) to terms $\alpha = \delta$, *i.e.* to terms diagonal in the basis of quasiparticle
 379 Fock states. The off-diagonal elements $\alpha \neq \delta$ in Eq. (49) are however crucial to accurately
 380 describe quasiparticle collisions. Thus, unless we are interested only in the collisionless dy-
 381 namics of the Fermi liquid, our effective theory should specify not only $f_{\sigma\sigma'}(\alpha, \beta)$, but also
 382 $\mathcal{B}_{\sigma\sigma'}(\alpha, \beta|\gamma, \delta)$ for $\alpha \neq \delta$.

⁵The first constraint ensures that the particle-hole operators $\delta(\gamma_{\alpha\uparrow}^\dagger \gamma_{\delta\uparrow})$ and $\delta(\gamma_{\beta\uparrow}^\dagger \gamma_{\gamma\uparrow})$ commute in Eq. (49), and the second constraint ensures the symmetry with respect to the double exchange $\alpha \leftrightarrow \beta, \gamma \leftrightarrow \delta$.

383 In fluids where the index α describes a continuous sets of modes, one may think, looking at
 384 Eqs. (50) and (54), that the Landau functions $f_{\sigma\sigma'}$ are continuously connected to the amplitude
 385 $\mathcal{B}_{\sigma\sigma'}(\alpha, \beta | \beta - d\alpha, \alpha + d\alpha)$ as $d\alpha \rightarrow 0$. However, the energy cutoff Λ separates two limits:

$$\lim_{\substack{d\alpha \rightarrow 0 \\ |\epsilon_\alpha - \epsilon_{\alpha+d\alpha}| \gg \Lambda}} \mathcal{B}_{\sigma\sigma'}(\alpha, \beta | \beta - d\alpha, \alpha + d\alpha) \equiv \mathcal{B}_{\sigma\sigma'}^{\text{forward}}(\alpha, \beta) \quad (59)$$

$$\lim_{\substack{d\alpha \rightarrow 0 \\ |\epsilon_\alpha - \epsilon_{\alpha+d\alpha}| \ll \Lambda}} \mathcal{B}_{\sigma\sigma'}(\alpha, \beta | \beta - d\alpha, \alpha + d\alpha) = f_{\sigma\sigma'}(\alpha, \beta) \quad (60)$$

386 The amplitude $\mathcal{B}_{\sigma\sigma'}^{\text{forward}}$ obtained for energy transfer $\epsilon_\alpha - \epsilon_{\alpha+d\alpha}$ large compared to Λ but small
 387 compared to ϵ_F is called the forward-scattering amplitude. It is related to $f_{\sigma\sigma'}$ by a Bethe-
 388 Salpeter equation [4], which was understood, within the functional renormalization group
 389 approach [10–12], as a fixed point of the renormalization group equation. In our formalism,
 390 an equivalent equation could be obtained by computing the change of \mathcal{B} under the action of
 391 the infinitesimal generator $\hat{S}(\Lambda - d\Lambda) - \hat{S}(\Lambda)$ of the continuous unitary transform [21, 22].

392 The forward-scattering approximation, common in the literature on ^3He , consists in replacing
 393 the full amplitude $\mathcal{B}(\alpha, \beta | \gamma, \delta)$ by $\mathcal{B}_{\sigma\sigma'}^{\text{forward}}(\alpha, \beta)$. This uncontrolled approximation com-
 394 pensates the lack of knowledge on the collision amplitude. In ^3He where the Landau function
 395 f has a large isotropic component ($F_{l=0}^+ \geq 10$), the Bethe-Salpeter equation is particularly
 396 useful to obtain a correct order of magnitude of the scattering amplitudes.

397 Finally, in fluids where the modes are indexed by a 3D wavevector \mathbf{p} , we may rewrite
 398 Eq. (49) in real space by performing a Wigner transform of the quasiparticle distribution

$$\delta \hat{n}_{\mathbf{p}\sigma}(\mathbf{r}) \equiv \sum_{\mathbf{q}} e^{-i\mathbf{q}\cdot\mathbf{r}} \delta(\hat{\gamma}_{\mathbf{p}+\frac{\mathbf{q}}{2}\sigma}^\dagger \hat{\gamma}_{\mathbf{p}-\frac{\mathbf{q}}{2}\sigma}) \quad (61)$$

399 In terms of $\delta \hat{n}(\mathbf{r})$, we have

$$\begin{aligned} \hat{H} = E_{\text{FS}} + \sum_{\mathbf{p}\sigma} \int \frac{d^3r}{\mathcal{V}} \epsilon_{\mathbf{p}\sigma} \delta \hat{n}_{\mathbf{p}\sigma}(\mathbf{r}) + \frac{1}{2} \sum_{\substack{\mathbf{p}\mathbf{p}' \in \mathcal{D} \\ \sigma\sigma'=\uparrow\downarrow}} \int \frac{d^3r_1 d^3r_2}{\mathcal{V}^2} \mathcal{B}_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}' | \mathbf{r}_1 - \mathbf{r}_2) \delta \hat{n}_{\mathbf{p}\sigma}(\mathbf{r}_1) \delta \hat{n}_{\mathbf{p}'\sigma'}(\mathbf{r}_2) \\ + O(\delta \hat{n})^3 \end{aligned} \quad (62)$$

400 The Wigner transform of the amplitude \mathcal{B} is

$$\mathcal{B}_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}' | \mathbf{r}_1 - \mathbf{r}_2) = \frac{1}{\mathcal{V}} \sum_{\mathbf{q}} e^{i\mathbf{q}\cdot(\mathbf{r}_1 - \mathbf{r}_2)} \mathcal{B}_{\sigma\sigma'}\left(\mathbf{p} - \frac{\mathbf{q}}{2}, \mathbf{p}' + \frac{\mathbf{q}}{2} \mid \mathbf{p}' - \frac{\mathbf{q}}{2}, \mathbf{p} + \frac{\mathbf{q}}{2}\right) \quad (63)$$

401 It plays the role of a finite-range interaction potential between $\mathbf{p}\sigma$ and $\mathbf{p}'\sigma'$ quasiparticles. A
 402 gradient expansion [13] would replace this finite-range interaction by a short-range one.

403 1.2 Application to an homogeneous Fermi gas with contact interactions

404 We now evaluate the truncated Hamiltonian Eq. (49) in a 3D homogeneous Fermi gas with
 405 contact interactions. In this system, contrarily to most Fermi liquids, one can compute the
 406 effective parameters ϵ_σ and $\mathcal{B}_{\sigma\sigma'}$ in function of a unique microscopic parameter: the s -wave
 407 scattering length a . Here, we perform a perturbative calculation of ϵ_σ and $\mathcal{B}_{\sigma\sigma'}$ to second-
 408 order in $k_F a$.

409 **1.2.1 The lattice model for contact interactions**

410 The kinetic and interaction Hamiltonian which describe our Fermi gas are:

$$\hat{H}_0 = \sum_{\mathbf{p} \in \mathcal{D}, \sigma} \omega_{\mathbf{p}} \hat{a}_{\mathbf{p}\sigma}^\dagger \hat{a}_{\mathbf{p}\sigma} \quad (64)$$

$$\hat{V} = \frac{g_0}{L^3} \sum_{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4 \in \mathcal{D}} \delta_{\mathbf{p}_1 + \mathbf{p}_2}^{\mathbf{p}_3 + \mathbf{p}_4} \hat{a}_{\mathbf{p}_1 \uparrow}^\dagger \hat{a}_{\mathbf{p}_2 \downarrow}^\dagger \hat{a}_{\mathbf{p}_3 \downarrow} \hat{a}_{\mathbf{p}_4 \uparrow} \quad (65)$$

411 where $\omega_{\mathbf{p}} = p^2/2m$. We assume that the gas is held in a cubic volume $\mathcal{V} = L^3$ (with $L \rightarrow +\infty$ in
 412 the thermodynamic limit). To regularize the UV divergences inherent to the contact potential,
 413 we have discretized real space [42] into a cubic lattice of step l , thereby restricting the set of
 414 momenta \mathbf{p} to $\mathcal{D} = (2\pi\mathbb{Z}/L)^3 \cap [-\pi/l, \pi/l]^3$. Solving the two-body problem, we express g_0
 415 in terms of a through the Lippman-Schwinger equation

$$\frac{1}{g_0} = \frac{1}{g} - \int_{[-\pi/l, \pi/l]^3} \frac{d^3 p}{(2\pi)^3} \frac{m}{p^2} \quad (66)$$

416 where $g = 4\pi a/m$.417 **1.2.2 Expansion of the quasiparticle annihilation operator**418 The ground state of \hat{H}_0 at fixed density ρ is the particle Fermi sea

$$|\text{FS}\rangle_0 = \prod_{\substack{\mathbf{p} \in \mathcal{D} \\ \sigma=\uparrow, \downarrow}} \Theta(p_F - p) \hat{a}_{\mathbf{p}\sigma}^\dagger |0\rangle_0 \quad (67)$$

419 where $p_F = (3\pi^2\rho)^{1/3}$ is the Fermi momentum and $|0\rangle_0$ the particle vacuum. The occupation
 420 numbers of $|\text{FS}\rangle$ are then

$$n_{\mathbf{p}}^0 = \Theta(p_F - p), \quad \bar{n}_{\mathbf{p}}^0 = 1 - n_{\mathbf{p}}^0 = \Theta(p - p_F) \quad (68)$$

421 Eq. (18) and Eq. (24) applied to the contact interaction potential \hat{V} provides the expression
 422 of \hat{S} and $\hat{\gamma}$. To first order in g , we have:

$$\hat{S}_1 = \frac{g_0}{L^3} \sum_{\mathbf{p}_\alpha \mathbf{p}_\beta \mathbf{p}_\gamma \mathbf{p}_\delta \in \mathcal{D}} \hat{a}_{\mathbf{p}_\alpha \uparrow}^\dagger \hat{a}_{\mathbf{p}_\beta \downarrow}^\dagger \hat{a}_{\mathbf{p}_\gamma \downarrow} \hat{a}_{\mathbf{p}_\delta \uparrow} \delta_{\mathbf{p}_\alpha + \mathbf{p}_\beta}^{\mathbf{p}_\gamma + \mathbf{p}_\delta} \mathcal{P}_\Lambda \left(\frac{1}{\omega_{\mathbf{p}_\gamma} + \omega_{\mathbf{p}_\delta} - \omega_{\mathbf{p}_\alpha} - \omega_{\mathbf{p}_\beta}} \right) \quad (69)$$

$$\hat{\gamma}_{\mathbf{p}\uparrow} = \hat{a}_{\mathbf{p}\uparrow} + \frac{g_0}{V} \sum_{\mathbf{p}_\beta \mathbf{p}_\gamma \mathbf{p}_\delta \in \mathcal{D}} \delta_{\mathbf{p}_\beta + \mathbf{p}_\gamma}^{\mathbf{p}_\delta + \mathbf{p}_\delta} \mathcal{P}_\Lambda \left(\frac{1}{\omega_{\mathbf{p}_\gamma} + \omega_{\mathbf{p}_\delta} - \omega_{\mathbf{p}_\beta} - \omega_{\mathbf{p}_\beta}} \right) \hat{a}_{\mathbf{p}_\beta \downarrow}^\dagger \hat{a}_{\mathbf{p}_\gamma \downarrow} \hat{a}_{\mathbf{p}_\delta \uparrow} + O(g)^2 \quad (70)$$

423 In these expressions, the function

$$\mathcal{P}_\Lambda \left(\frac{1}{E} \right) = \frac{1 - \Pi_\Lambda(E)}{E} \quad (71)$$

425 originates in the projectors \hat{P}_Λ and prevents the denominators from vanishing. Eq. (70) is a
 426 rigorous formulation of the standard first-order picture of the spin \uparrow quasiparticle as a cloud
 427 of spin \downarrow particle surrounding a spin \uparrow particle. It is reminiscent of the Chevy Ansatz for
 428 polarons [43].

429 **1.2.3 Expression of the Hamiltonian in terms of $\hat{\gamma}$**

430 To avoid carrying along a quasi-resonance condition, we define an Hamiltonian \hat{H}' where the
 431 energy constraint has been released

$$\hat{H}' = \hat{H}_{0,\gamma} + \hat{V}_\gamma + \frac{1}{2} [\hat{V}_\gamma, \hat{S}_{1,\gamma}] + O(g)^3 \quad (72)$$

$$\hat{H} = \sum_{n=-\infty}^{+\infty} \hat{P}_{n,\gamma} \hat{H}' \hat{P}_{n,\gamma} + O(g^3) \quad (73)$$

432 Injecting in Eq. (72) the expressions of $\hat{H}_{0,\gamma}$, \hat{V}_γ and $\hat{S}_{1,\gamma}$, we obtain

$$\begin{aligned} \hat{H}' = & \sum_{\mathbf{p}\sigma} \omega_{\mathbf{p}} \gamma_{\mathbf{p}\sigma}^\dagger \gamma_{\mathbf{p}\sigma} + \frac{g_0}{L^3} \sum_{\mathbf{p}_a \mathbf{p}_\beta \mathbf{p}_\gamma \mathbf{p}_\delta \in \mathcal{D}} \delta_{\mathbf{p}_a + \mathbf{p}_\beta}^{\mathbf{p}_\gamma + \mathbf{p}_\delta} \gamma_{\mathbf{p}_a \uparrow}^\dagger \gamma_{\mathbf{p}_\beta \downarrow}^\dagger \gamma_{\mathbf{p}_\gamma \downarrow} \hat{a}_{\mathbf{p}_\delta \uparrow} \\ & + \frac{1}{2} \left(\frac{g_0}{L^3} \right)^2 \sum_{\substack{\mathbf{p}_a \mathbf{p}_\beta \mathbf{p}_\gamma \mathbf{p}_\delta \in \mathcal{D} \\ \mathbf{p}_a \mathbf{p}_b \mathbf{p}_c \mathbf{p}_d \in \mathcal{D}}} \delta_{\mathbf{p}_a + \mathbf{p}_\beta}^{\mathbf{p}_\gamma + \mathbf{p}_\delta} \delta_{\mathbf{p}_a + \mathbf{p}_b}^{\mathbf{p}_c + \mathbf{p}_d} \mathcal{P}_\Lambda \left(\frac{1}{\omega_{\mathbf{p}_a} + \omega_{\mathbf{p}_b} - \omega_{\mathbf{p}_c} - \omega_{\mathbf{p}_d}} \right) \\ & \times \left[\gamma_{\mathbf{p}_a \uparrow}^\dagger \gamma_{\mathbf{p}_\beta \downarrow}^\dagger \gamma_{\mathbf{p}_\gamma \downarrow} \gamma_{\mathbf{p}_\delta \uparrow}, \gamma_{\mathbf{p}_d \uparrow}^\dagger \gamma_{\mathbf{p}_c \downarrow}^\dagger \gamma_{\mathbf{p}_b \downarrow} \gamma_{\mathbf{p}_a \uparrow} \right] + O(g)^3 \end{aligned} \quad (74)$$

433 This Hamiltonian truncated to second order in $\hat{\gamma}$ is thus sextic in $\hat{\gamma}$, with up to $3 \leftrightarrow 3$ transitions as discussed above.

435 We proceed to linearizing \hat{H}' in the vicinity of the quasiparticle Fermi sea $|\text{FS}\rangle$, using the
 436 expansion Eq. (48) of the particle-hole operators about their average value in $|\text{FS}\rangle$. We note
 437 that there is no ambiguity in the pairing of the $\hat{\gamma}$ operators, since the window function \mathcal{P}_Λ
 438 guarantees that $a \neq d$, $b \neq c$ and thus

$$(\hat{\gamma}_{\mathbf{p}_a \uparrow}^\dagger \hat{\gamma}_{\mathbf{p}_\beta \downarrow}^\dagger \hat{\gamma}_{\mathbf{p}_\gamma \downarrow} \hat{\gamma}_{\mathbf{p}_\delta \uparrow})(\hat{\gamma}_{\mathbf{p}_d \uparrow}^\dagger \hat{\gamma}_{\mathbf{p}_c \downarrow}^\dagger \hat{\gamma}_{\mathbf{p}_b \downarrow} \hat{\gamma}_{\mathbf{p}_a \uparrow}) = (\hat{\gamma}_{\mathbf{p}_a \uparrow}^\dagger \hat{\gamma}_{\mathbf{p}_a \uparrow})(\hat{\gamma}_{\mathbf{p}_\beta \downarrow}^\dagger \hat{\gamma}_{\mathbf{p}_b \downarrow})(\hat{\gamma}_{\mathbf{p}_\gamma \downarrow}^\dagger \hat{\gamma}_{\mathbf{p}_c \downarrow})(\hat{\gamma}_{\mathbf{p}_\delta \uparrow}^\dagger \hat{\gamma}_{\mathbf{p}_d \uparrow}) \quad (75)$$

439 The expansion of the unconstrained Hamiltonian \hat{H}' in powers of $\delta(\hat{\gamma}^\dagger \hat{\gamma})$ has the form of
 440 Eq. (49):

$$\begin{aligned} \hat{H}' = & E_{\text{FS}} + \sum_{\mathbf{p}\sigma} \epsilon_{\mathbf{p}} \delta \hat{n}_{\mathbf{p}\sigma} + \frac{1}{2L^3} \sum_{\substack{\mathbf{p}_a \mathbf{p}_\beta \mathbf{p}_\gamma \mathbf{p}_\delta \in \mathcal{D} \\ \sigma \sigma' = \uparrow \downarrow}} \delta_{\mathbf{p}_a + \mathbf{p}_\beta}^{\mathbf{p}_\gamma + \mathbf{p}_\delta} \mathcal{B}'_{\sigma\sigma'}(\mathbf{p}_a \mathbf{p}_\beta | \mathbf{p}_\gamma \mathbf{p}_\delta) \delta(\hat{\gamma}_{\mathbf{p}_a \sigma}^\dagger \hat{\gamma}_{\mathbf{p}_\delta \sigma}) \delta(\hat{\gamma}_{\mathbf{p}_\beta \sigma'}^\dagger \hat{\gamma}_{\mathbf{p}_\gamma \sigma'}) \\ & + O(\delta(\hat{\gamma}^\dagger \hat{\gamma})^3) \end{aligned} \quad (76)$$

441 and the expansion of the true Hamiltonian \hat{H} follows from Eq. (76) simply by replacing the
 442 unconstrained amplitudes \mathcal{B}' by the constrained ones

$$\mathcal{B}_{\sigma\sigma'}(\mathbf{p}_a \mathbf{p}_\beta | \mathbf{p}_\gamma \mathbf{p}_\delta) = \mathcal{B}'_{\sigma\sigma'}(\mathbf{p}_a \mathbf{p}_\beta | \mathbf{p}_\gamma \mathbf{p}_\delta) \Pi_\Lambda(\epsilon_{\mathbf{p}_a} + \epsilon_{\mathbf{p}_\beta} - \epsilon_{\mathbf{p}_\gamma} - \epsilon_{\mathbf{p}_\delta}) \quad (77)$$

443 The term of order $\delta(\hat{\gamma}^\dagger \hat{\gamma})^0$ in Eq. (76) is the energy of the quasiparticle Fermi sea

$$\begin{aligned} E_{\text{FS}} = & \sum_{\mathbf{p} \in \mathcal{D}, \sigma} \omega_{\mathbf{p}} n_{\mathbf{p}}^0 + \frac{g}{L^3} \sum_{\mathbf{p}, \mathbf{p}' \in \mathcal{D}} n_{\mathbf{p}}^0 n_{\mathbf{p}'}^0 \\ & + \left(\frac{g}{L^3} \right)^2 \sum_{\mathbf{p}_a \mathbf{p}_\beta \mathbf{p}_\gamma \mathbf{p}_\delta \in \mathcal{D}} \delta_{\mathbf{p}_a + \mathbf{p}_\beta}^{\mathbf{p}_\gamma + \mathbf{p}_\delta} n_{\mathbf{p}_a}^0 n_{\mathbf{p}_\beta}^0 (\bar{n}_{\mathbf{p}_\gamma}^0 \bar{n}_{\mathbf{p}_\delta}^0 - 1) \mathcal{P}_\Lambda \left(\frac{1}{\omega_{\mathbf{p}_a} + \omega_{\mathbf{p}_\beta} - \omega_{\mathbf{p}_\gamma} - \omega_{\mathbf{p}_\delta}} \right) + O(g^3) \end{aligned} \quad (78)$$

444 Note that we have used the standard perturbative renormalization procedure [25, 32] to re-
 445 place g_0 by g , such that Eq. (78) is free from UV divergence when $l \rightarrow 0$. The explicit of

446 calculation of $E_{\text{FS}}(k_{\text{F}}a)$ from Eq. (78) leads to the Lee-Huang-Yang equation of state to second
447 order in $k_{\text{F}}a$ [25].

448 Then, the eigenenergy of the quasiparticles in Eq. (76) is

$$\begin{aligned} \epsilon_{\mathbf{p}} = & \omega_{\mathbf{p}} + \frac{g_0}{L^3} \sum_{\mathbf{p}' \in \mathcal{D}} n_{\mathbf{p}'}^0 \\ & + \left(\frac{g_0}{L^3} \right)^2 \sum_{\mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \in \mathcal{D}} \delta_{\mathbf{p}+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \left[n_{\mathbf{p}_2}^0 \bar{n}_{\mathbf{p}_3}^0 \bar{n}_{\mathbf{p}_4}^0 + \bar{n}_{\mathbf{p}_2}^0 n_{\mathbf{p}_3}^0 n_{\mathbf{p}_4}^0 \right] \mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_3} - \omega_{\mathbf{p}_4}} \right) + O(g)^3 \end{aligned} \quad (79)$$

449 Since the quasiparticle dynamics is restricted to the vicinity of the Fermi level, this eigenenergy
450 can be expanded in powers of $p - p_{\text{F}}$.

$$\epsilon_{\mathbf{p}} - \mu = \frac{p_{\text{F}}}{m^*} (p - p_{\text{F}}) + O(p - p_{\text{F}})^2 \quad (80)$$

451 An explicit expression of the effective mass m^* in powers of $k_{\text{F}}a$ was computed by Galitskii [44].

452 Finally, the (unconstrained) collision amplitudes \mathcal{B}' are

$$\begin{aligned} \mathcal{B}'_{\sigma\sigma}(\mathbf{p}_{\alpha}\mathbf{p}_{\beta}|\mathbf{p}_{\gamma}\mathbf{p}_{\delta}) = & \frac{g^2}{2L^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \in \mathcal{D}} \left[n_{\mathbf{p}_1}^0 \bar{n}_{\mathbf{p}_2}^0 - \bar{n}_{\mathbf{p}_1}^0 n_{\mathbf{p}_2}^0 \right] \\ & \times \left[\mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}_{\alpha}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_{\gamma}} - \omega_{\mathbf{p}_1}} \right) \delta_{\mathbf{p}_1+\mathbf{p}_{\gamma}}^{\mathbf{p}_2+\mathbf{p}_{\alpha}} + \mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}_{\beta}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_{\delta}} - \omega_{\mathbf{p}_1}} \right) \delta_{\mathbf{p}_1+\mathbf{p}_{\delta}}^{\mathbf{p}_2+\mathbf{p}_{\beta}} \right] + O(g)^3 \end{aligned} \quad (81)$$

453

$$\begin{aligned} \mathcal{B}'_{\uparrow\downarrow}(\mathbf{p}_{\alpha}\mathbf{p}_{\beta}|\mathbf{p}_{\gamma}\mathbf{p}_{\delta}) - \mathcal{B}'_{\sigma\sigma}(\mathbf{p}_{\alpha}\mathbf{p}_{\beta}|\mathbf{p}_{\gamma}\mathbf{p}_{\delta}) = & g + \frac{g^2}{2L^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \in \mathcal{D}} \left[\bar{n}_{\mathbf{p}_1}^0 \bar{n}_{\mathbf{p}_2}^0 - n_{\mathbf{p}_1}^0 n_{\mathbf{p}_2}^0 - 1 \right] \delta_{\mathbf{p}_{\alpha}+\mathbf{p}_{\beta}}^{\mathbf{p}_1+\mathbf{p}_2} \\ & \times \left[\mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}_{\alpha}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_1} - \omega_{\mathbf{p}_2}} \right) + \mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}_{\gamma}} + \omega_{\mathbf{p}_{\delta}} - \omega_{\mathbf{p}_1} - \omega_{\mathbf{p}_2}} \right) \right] + O(g)^3 \end{aligned} \quad (82)$$

454 Remark that we have symmetrized $\mathcal{B}_{\sigma\sigma}$ towards the full exchange $\mathcal{B}_{\sigma\sigma}(\beta, \alpha|\delta, \gamma) = \mathcal{B}_{\sigma\sigma}(\alpha, \beta|\gamma, \delta)$,
455 and that the function \mathcal{P}_{Λ} imposes $\mathcal{B}_{\sigma\sigma}(\mathbf{p}\mathbf{p}'|\mathbf{p}\mathbf{p}') = 0$, in accordance with the constraints (52)–
456 (53). The Landau interaction function $f_{\sigma\sigma'}$ are simply the value of $\mathcal{B}_{\sigma\sigma'}$ for $\mathbf{p} = \mathbf{p}_{\alpha} = \mathbf{p}_{\delta}$ and
457 $\mathbf{p}' = \mathbf{p}_{\beta} = \mathbf{p}_{\gamma}$:

$$f_{\sigma\sigma}(\mathbf{p}, \mathbf{p}') = \frac{g^2}{L^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \in \mathcal{D}} \left[n_{\mathbf{p}_1}^0 \bar{n}_{\mathbf{p}_2}^0 - \bar{n}_{\mathbf{p}_1}^0 n_{\mathbf{p}_2}^0 \right] \delta_{\mathbf{p}+\mathbf{p}_2}^{\mathbf{p}'+\mathbf{p}_1} \mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}'} - \omega_{\mathbf{p}_1}} \right) + O(g)^3 \quad (83)$$

458

$$\begin{aligned} f_{\uparrow\downarrow}(\mathbf{p}, \mathbf{p}') - f_{\sigma\sigma}(\mathbf{p}, \mathbf{p}') = & g + \frac{g^2}{L^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \in \mathcal{D}} \left[\bar{n}_{\mathbf{p}_1}^0 \bar{n}_{\mathbf{p}_2}^0 - n_{\mathbf{p}_1}^0 n_{\mathbf{p}_2}^0 - 1 \right] \delta_{\mathbf{p}_{\alpha}+\mathbf{p}_{\beta}}^{\mathbf{p}_1+\mathbf{p}_2} \\ & \times \mathcal{P}_{\Lambda} \left(\frac{1}{\omega_{\mathbf{p}_{\alpha}} + \omega_{\mathbf{p}_{\beta}} - \omega_{\mathbf{p}_1} - \omega_{\mathbf{p}_2}} \right) + O(g)^3 \end{aligned} \quad (84)$$

459 1.2.4 Explicit expressions of the collision amplitudes with the Λ dependence

460 To illustrate the role of the cutoff Λ in connecting the collision amplitudes $\mathcal{A}_{\sigma\sigma'}$ to the interaction
461 functions $f_{\sigma\sigma'}$, we return to the explicit expressions obtained in Ref. [32]. We parametrize

462 the Λ dependence through

$$\epsilon_\Lambda = \frac{\Lambda}{4E_F} \quad (85)$$

463 and we are interested in the limit $\epsilon_\Lambda \rightarrow 0$. Restricting to wavevectors of the Fermi surface
464 ($p_1 = p_2 = p_3 = p_4 = p_F$), the amplitude \mathcal{B} depends only on the angles $\theta_{ij} = (\widehat{\mathbf{p}_i}, \widehat{\mathbf{p}_j})$:

$$\frac{\mathcal{B}'_{\uparrow\downarrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)}{g} = 1 + \frac{2k_F a}{\pi} [I_\Lambda(\theta_{12}) + J_\Lambda(\theta_{13})] + O(a^2) \quad (86)$$

$$\frac{\mathcal{B}'_{\uparrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)}{g} = \frac{2k_F a}{\pi} J_\Lambda(\theta_{13}) + O(a^3) \quad (87)$$

465 The functions I_Λ and J_Λ that characterize the crossed Λ, θ dependence of \mathcal{B} are depicted on
Figs. 2–3, and explicit expressions are given in Appendix A.

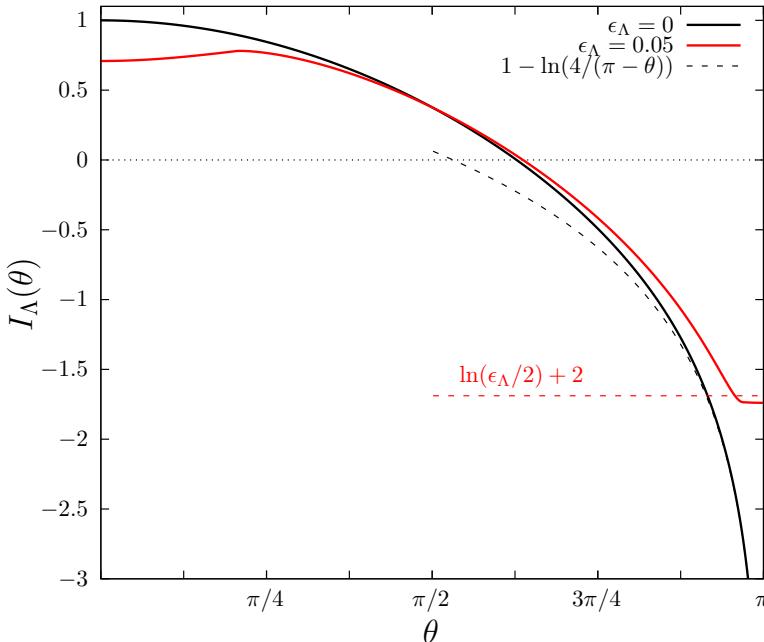


Figure 2: Angular dependence of the function I_Λ appearing in $\mathcal{A}_{\uparrow\downarrow}$ and $f_{\uparrow\downarrow}$. For $\epsilon_\Lambda = 0$ (black curve), the function displays a logarithmic divergence $\sim \ln(\pi - \theta) + 1 - \ln 4$ when $\theta \rightarrow \pi$ (black dashed curve). For $\epsilon_\Lambda \neq 0$ (red curve) the divergence is regularized, and the function saturates at $\ln(\epsilon_\Lambda/2) + 2 + O(\epsilon_\Lambda)$ in $\theta = \pi$ (red dashed curve).

466 When $\epsilon_\Lambda \rightarrow 0$, these functions converge pointwise in the open interval $(0, \pi)$ to the func-
467 tions I and J usually found in this context [25, 32]
468

$$I(\theta) \equiv \lim_{\epsilon_\Lambda \rightarrow 0} I_\Lambda(\theta) = 1 - \frac{s}{2} \ln \frac{1+s}{1-s}, \quad s = \sin \frac{\theta}{2}, \quad c = \cos \frac{\theta}{2} \quad (88)$$

$$J(\theta) \equiv \lim_{\epsilon_\Lambda \rightarrow 0} J_\Lambda(\theta) = \frac{1}{2} \left(1 + \frac{c^2}{2s} \ln \frac{1+s}{1-s} \right) \quad (89)$$

469 While J is a smooth function in $[0, \pi]$, we note a logarithmic divergence in I when $\theta \rightarrow \pi$ (see
470 Fig. 2).

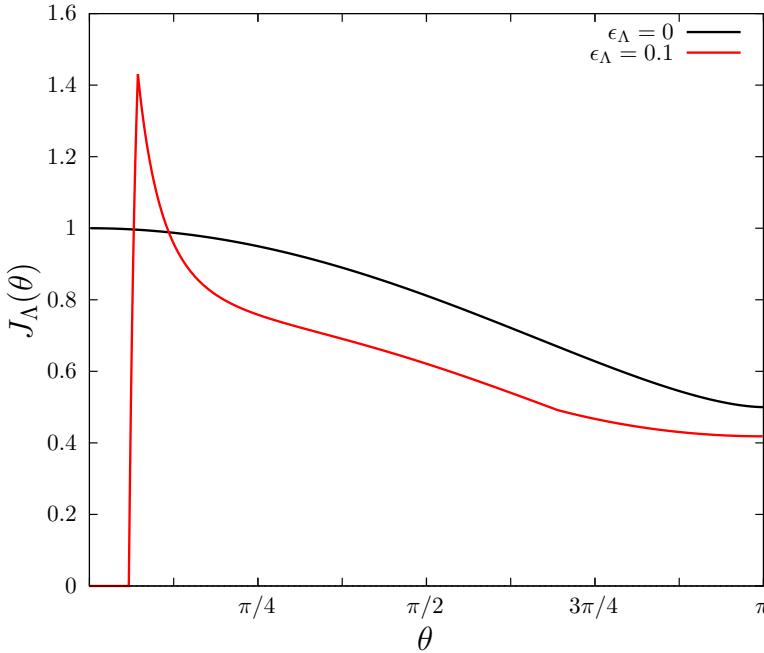


Figure 3: Angular dependence of the function J_Λ appearing in both $\mathcal{A}_{\uparrow\downarrow}$, $f_{\uparrow\downarrow}$ and $\mathcal{A}_{\sigma\sigma}$, $f_{\sigma\sigma}$. As $\epsilon_\Lambda \rightarrow 0$, the function converges pointwise to $J(\theta)$ (black curve) on $(0, \pi]$. It is however cancelled in an interval of width $\simeq 2\epsilon_\Lambda$ about $\theta = 0$ (red curve).

471 The convergence of I_Λ and J_Λ to I and J is however not uniform: ϵ_Λ regularises the diver-
 472 gence of I in $\theta = \pi$, and cancels J in a neighborhood of size $\approx \epsilon_\Lambda$ about $\theta = 0$. Taking the
 473 limit $\theta \rightarrow 0, \pi$ before $\epsilon_\Lambda \rightarrow 0$, we have:

$$\lim_{\theta \rightarrow \pi} I_\Lambda(\theta) = \ln \frac{\epsilon_\Lambda}{2} + 2 + O(\epsilon_\Lambda) \quad (90)$$

$$\lim_{\epsilon_\Lambda \rightarrow 0} \lim_{\theta \rightarrow 0} J_\Lambda(\theta) = 0 \quad (91)$$

474 We recover with these two points of non-uniform convergence the forward ($\theta = 0$) and BCS
 475 ($\theta = \pi$) collision channels. The singular behavior of $J_\Lambda(\theta \rightarrow 0)$ is reminiscent of the behavior
 476 of the 4-point vertex found in Ref. [11] (see Fig. 4 therein).

477 From the expression of $\mathcal{B}_{\sigma\sigma'}$, one obtains the Landau function f (Eqs. (50)–(54)) by taking
 478 $\mathbf{p} = \mathbf{p}_1 = \mathbf{p}_4$ and $\mathbf{p}' = \mathbf{p}_2 = \mathbf{p}_3$ (that is, $\theta_{12} = \theta_{13} = \widehat{(\mathbf{p}, \mathbf{p}')} \equiv \theta$):

$$\frac{f_{\uparrow\downarrow}(\mathbf{p}, \mathbf{p}')}{g} = 1 + \frac{2k_F a}{\pi} [I_\Lambda(\theta) + J_\Lambda(\theta)] + O(a^2) \quad (92)$$

$$\frac{f_{\sigma\sigma}(\mathbf{p}, \mathbf{p}')}{g} = \frac{2k_F a}{\pi} J_\Lambda(\theta) + O(a^2) \quad (93)$$

479 Similarly, one obtains the collision amplitudes (Eqs. (55)–(51)) as $\mathcal{A}_{\uparrow\downarrow} = \mathcal{B}_{\uparrow\downarrow}$ and $\mathcal{A}_{\sigma\sigma}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) = \mathcal{B}_{\sigma\sigma}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) - \mathcal{B}_{\sigma\sigma}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_4, \mathbf{p}_3)$:

$$\frac{\mathcal{A}'_{\uparrow\downarrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)}{g} = 1 + \frac{2k_F a}{\pi} [I_\Lambda(\theta_{12}) + J_\Lambda(\theta_{13})] + O(a^2) \quad (94)$$

$$\frac{\mathcal{A}'_{\uparrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)}{g} = \frac{2k_F a}{\pi} [J_\Lambda(\theta_{13}) - J_\Lambda(\theta_{14})] + O(a^3) \quad (95)$$

481 With the Λ -dependence we may now reinterpret the mismatch between $f_{\uparrow\uparrow}$ and the forward-
 482 scattering limit of $\mathcal{A}_{\uparrow\uparrow}$. Both quantities follow from the limit $\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_4 \rightarrow 0$ (that is $\theta_{14} \rightarrow 0$)
 483 in Eq. (95). However this limit does commute with the limit $\Lambda \rightarrow 0$: the Landau function
 484 f is obtained in the limit of energy transfer $\epsilon_{\mathbf{p}_1\sigma} - \epsilon_{\mathbf{p}_4\sigma} \approx v_F q$ small compared to Λ (that is
 485 $\theta_{14} \ll \epsilon_\Lambda$), while the forward-scattering amplitude is for $v_F q \gg \Lambda$ (that is $\theta_{14} \gg \epsilon_\Lambda$):

$$\mathcal{A}_{\uparrow\uparrow}^{\text{forward}}(\mathbf{p}, \mathbf{p}') \equiv \lim_{\substack{q \rightarrow 0 \\ v_F q \gg \Lambda}} \mathcal{A}_{\uparrow\uparrow}\left(\mathbf{p} + \frac{\mathbf{q}}{2}, \mathbf{p}' - \frac{\mathbf{q}}{2} \mid \mathbf{p}' + \frac{\mathbf{q}}{2}, \mathbf{p} - \frac{\mathbf{q}}{2}\right) = g \frac{2k_F a}{\pi} [J(\theta) - 1] + O(a^3) \quad (96)$$

486

$$f_{\uparrow\uparrow}(\mathbf{p}, \mathbf{p}') \equiv \lim_{\substack{q \rightarrow 0 \\ v_F q \ll \Lambda}} \mathcal{A}_{\uparrow\uparrow}\left(\mathbf{p} + \frac{\mathbf{q}}{2}, \mathbf{p}' - \frac{\mathbf{q}}{2} \mid \mathbf{p}' + \frac{\mathbf{q}}{2}, \mathbf{p} - \frac{\mathbf{q}}{2}\right) = g \frac{2k_F a}{\pi} J(\theta) + O(a^3) \quad (97)$$

487 The Bethe-Salpeter relating $\mathcal{A}_{\uparrow\uparrow}^{\text{forward}}$ to $f_{\uparrow\uparrow}$ is then derived by renormalizing the effective ac-
 488 tion from $\Lambda_1 \gg v_F q$ to $\Lambda_2 \ll v_F q$, which involves the differential unitary operator $\exp(\hat{S}(\Lambda_2))$
 489 $\exp(-\hat{S}(\Lambda_1))$. Finally, we note that $\mathcal{A}_{\uparrow\uparrow}^{\text{forward}}$ coincides with $f_{\uparrow\downarrow}$ to second-order in $k_F a$; a mis-
 490 match between the two quantities will however appear at higher orders.

491 1.2.5 Residue and momentum distribution

492 We compute here the residue $Z_{\mathbf{p}\sigma}$ of the quasiparticles in powers of $k_F a$. With $|\psi\rangle = |\text{FS}\rangle$ our
 493 definition Eq. (36) can be reinterpreted⁶ as the discontinuity of the momentum distribution at
 494 \mathbf{p}_F :

$$Z_{\mathbf{p}\sigma} = \langle \mathbf{p}\sigma, \text{FS} | \hat{a}_{\mathbf{p}\sigma}^\dagger \hat{a}_{\mathbf{p}\sigma} | \mathbf{p}\sigma, \text{FS} \rangle - \langle \overline{\mathbf{p}\sigma}, \text{FS} | \hat{a}_{\mathbf{p}\sigma}^\dagger \hat{a}_{\mathbf{p}\sigma} | \overline{\mathbf{p}\sigma}, \text{FS} \rangle \quad (98)$$

$$= \langle \text{FS} | \hat{a}_{\mathbf{p}_+\sigma}^\dagger \hat{a}_{\mathbf{p}_+\sigma} - \hat{a}_{\mathbf{p}_-\sigma}^\dagger \hat{a}_{\mathbf{p}_-\sigma} | \text{FS} \rangle \quad (99)$$

495 where $p_\pm = p_F \pm 0^+$. The (particle) momentum distribution in an arbitrary quasiparticle state
 496 $|\{n_{\mathbf{p}\sigma}\}\rangle$ is given to second order in g by

$$\begin{aligned} n_{\mathbf{p}\sigma}^{\{n_{\mathbf{p}'\sigma'}\}} &\equiv \langle \{n_{\mathbf{p}'\sigma'}\} | \hat{a}_{\mathbf{p}\sigma}^\dagger \hat{a}_{\mathbf{p}\sigma} | \{n_{\mathbf{p}'\sigma'}\} \rangle = {}_0\langle \{n_{\mathbf{p}'\sigma'}\} | \hat{a}_{\mathbf{p}\sigma}^\dagger \hat{a}_{\mathbf{p}\sigma} + \frac{1}{2} \left[[\hat{a}_{\mathbf{p}\sigma}^\dagger \hat{a}_{\mathbf{p}\sigma}, \hat{S}_1], \hat{S}_1 \right] | \{n_{\mathbf{p}'\sigma'}\} \rangle_0 + O(g^3) \\ &= n_{\mathbf{p}\sigma} + \left(\frac{g}{V} \right)^2 \sum_{\mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \in \mathcal{D}} \delta_{\mathbf{p}+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \frac{\bar{n}_{\mathbf{p},\sigma} \bar{n}_{\mathbf{p}_2,-\sigma} n_{\mathbf{p}_3,-\sigma} n_{\mathbf{p}_4,\sigma} - n_{\mathbf{p},\sigma} n_{\mathbf{p}_2,-\sigma} \bar{n}_{\mathbf{p}_3,-\sigma} \bar{n}_{\mathbf{p}_4,\sigma}}{(\omega_{\mathbf{p}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_3} - \omega_{\mathbf{p}_4})^2} \\ &\quad \times Q_\Lambda(\omega_{\mathbf{p}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_3} - \omega_{\mathbf{p}_4}) + O(g^3) \end{aligned} \quad (100)$$

497 with $Q_\Lambda(x) = 1 - \Pi_\Lambda(x)$. Applying (98), we obtain

$$\begin{aligned} Z_{\mathbf{p}\sigma} &= 1 - \left(\frac{g}{V} \right)^2 \sum_{\mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \in \mathcal{D}} \delta_{\mathbf{p}+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \frac{\bar{n}_{\mathbf{p}_2,-\sigma}^0 n_{\mathbf{p}_3,-\sigma}^0 n_{\mathbf{p}_4,\sigma}^0 + n_{\mathbf{p}_2,-\sigma}^0 \bar{n}_{\mathbf{p}_3,-\sigma}^0 \bar{n}_{\mathbf{p}_4,\sigma}^0}{(\omega_{\mathbf{p}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_3} - \omega_{\mathbf{p}_4})^2} \\ &\quad \times Q_\Lambda(\omega_{\mathbf{p}} + \omega_{\mathbf{p}_2} - \omega_{\mathbf{p}_3} - \omega_{\mathbf{p}_4}) + O(g^3) \end{aligned} \quad (101)$$

498 In $\mathbf{p} = \mathbf{p}_F$, the residue has a well-defined $\Lambda \rightarrow 0$ limit, which recovers the result of Belyakov
 499 [45]:

$$\langle \text{FS} | \hat{a}_{\mathbf{p}\sigma} | \text{FS} \rangle = n_{\mathbf{p}\sigma}^0 \left[1 - \frac{2\bar{a}^2}{\pi^2} \left(\ln 2 + \frac{1}{3} \right) \right] + \bar{n}_{\mathbf{p}\sigma}^0 \frac{2\bar{a}^2}{\pi^2} \left(\ln 2 - \frac{1}{3} \right) + O(g^3) \quad (102)$$

$$Z_{p_F} = 1 - \frac{4\bar{a}^2}{\pi^2} \ln 2 + O(g^3) \quad (103)$$

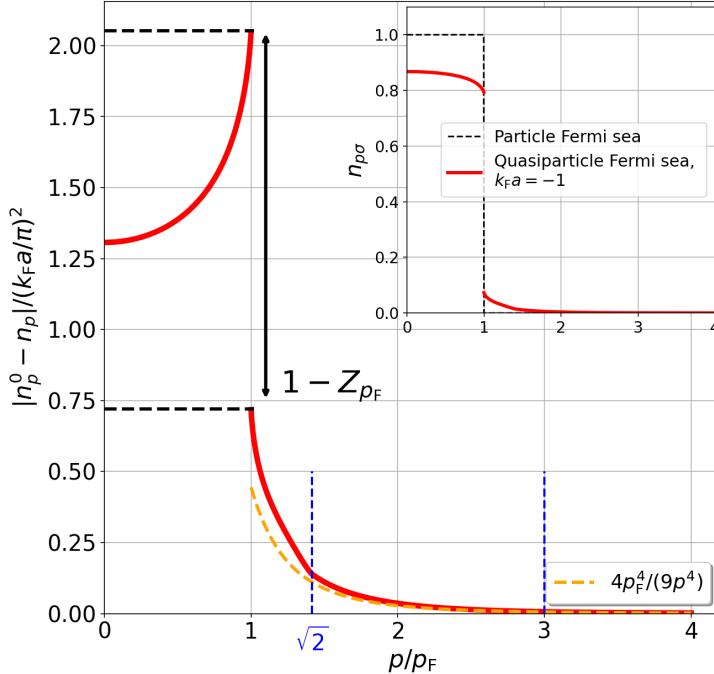


Figure 4: (Main panel) Difference between the particle momentum distribution $n_p^{|FS\rangle} = \langle FS | \hat{a}_{p\sigma}^\dagger \hat{a}_{p\sigma} | FS \rangle$ (see Eq. (100)) and the zero-temperature Fermi-Dirac distribution n_p^0 as a function of p/p_F . The difference is scaled to $(k_F a / \pi)^2$ so as to be independent of a in the weak-coupling limit. The discontinuity across the Fermi surface, *i.e.* between the asymptotic values in $p_F - 0^-$ and $p_F + 0^+$ (black dashed lines), is given by $1 - Z_{p_F}$. At large momenta, the distribution follows a $1/p^4$ behavior, from which the contact $C = 4\bar{a}^2/9\pi^2$ can be extracted (orange dashed curve). (Inset) The bare distribution $n_p^{|FS\rangle}$ in function of p/p_F , evaluated in second-order perturbation theory at $k_F a = -1$. The distribution displays the familiar shape of a depleted Fermi sea, with $n_p < 1$ down to $p = 0$.

500
 501 Contrarily to Z , the momentum distribution $n_p^{|FS\rangle}$ of the particles in the quasiparticle Fermi
 502 sea is well defined for all values of p/p_F . We depict it on Fig. 4 using the expressions given
 503 in [46], which correct the original calculation of Belyakov [45]. We first remark that the
 504 depletion of the particle Fermi sea is not limited to the vicinity of p_F but extends all the way
 505 to $p = 0$. Then, at large momenta, the distribution decays as $1/p^4$:

$$n_{p\sigma} = \frac{C}{p^4} \quad (104)$$

506 This provides a way to identify the first perturbative contribution to Tan's contact [47]:

$$C = \frac{4}{9\pi^2} (k_F a)^2 \quad (105)$$

507 Finally, besides the discontinuity in p_F , we note two corner points in $p/p_F = \sqrt{2}$ and 3.

⁶We use the continuity of the residue at the Fermi level $Z_{p_+\sigma} = Z_{p_-\sigma}$, and the relations $\langle p_+\sigma, FS | \hat{a}_{p_+\sigma}^\dagger \hat{a}_{p_+\sigma} | p_+\sigma, FS \rangle = \langle FS | \hat{a}_{p_-\sigma}^\dagger \hat{a}_{p_-\sigma} | FS \rangle$, $\langle \bar{p}_-\sigma, FS | \hat{a}_{p_-\sigma}^\dagger \hat{a}_{p_-\sigma} | \bar{p}_-\sigma, FS \rangle = \langle FS | \hat{a}_{p_+\sigma}^\dagger \hat{a}_{p_+\sigma} | FS \rangle$

508 **1.3 Derivation of the Fermi liquid kinetic equations**

509 Knowing the energy and transition amplitudes of the quasiparticle fluid, we can now attempt
 510 to describe its dynamics by a kinetic equation. We recall that Fermi systems at intermediate
 511 temperatures $T \approx T_F$ and strong interactions do not obey a kinetic equation, as there is no
 512 separation of timescales to break the BBGKY hierarchy. By introducing the long-lived states
 513 $|\psi\rangle = e^{\hat{S}}|\psi\rangle_0$, the quasiparticle description manages to overcome this limitation in the low
 514 temperature limit $T \ll T_F$, irrespectively of the interaction strength (as long as the quasiparti-
 515 cle picture holds).

516 This section uses the effective Hamiltonian Eq. (49) to rigorously derive the kinetic equa-
 517 tion, and discuss its domain of validity. In Sec. 1.3.1, we consider the case of an homogeneous
 518 system with an out-of-equilibrium quasiparticle distribution. We show that if the cloud of ex-
 519 cited quasiparticles is contained in a low-energy shell $\epsilon_0 \ll \epsilon_F$, one can treat the evolution of
 520 the quasiparticle distribution in the Born-Markov approximation. This results in a nonlinear
 521 kinetic equation, from which we extract the thermal lifetime of the quasiparticles.

522 In Sec. 1.3.2 and 1.3.3, we study transport phenomena, where the quasiparticle gas is
 523 excited by a perturbation periodic in space and time, at frequency ω and wavenumber q . We
 524 assume that the corresponding energy scales are comparable and small compared to Λ :

$$v_F q \approx \omega \ll \Lambda \quad (106)$$

525 In presence of the dynamical parameters q and ω , there exists several ways to take the low
 526 temperature limit. In Sec. 1.3.2, we derive the collisional transport equation in the limit

$$\frac{T}{T_F} \rightarrow 0 \text{ at fixed } v_F q \tau, \omega \tau \quad (107)$$

527 where the mean collision time τ scales, as we shall see, as $1/T^2$. In this regime, all the lower
 528 bounds on Λ in Eq. (6) are of order T^2 :

$$v_F q, \omega, \Gamma_{\text{typ}} \approx T^2 \quad (108)$$

529 Varying the parameter $\omega \tau$ (after the limit $T \rightarrow 0$ is taken), this regime describes the crossover
 530 from hydrodynamic $\omega \tau \ll 1$ to collisionless transport $\omega \tau \gg 1$.

531 In Sec. 1.3.3 instead, we take the limit:

$$\frac{T}{T_F} \rightarrow 0 \text{ at fixed } v_F q, \omega \ll \epsilon_F \quad (109)$$

532 In this regime, the excitation energy $v_F q$ sets the high energy tail of the quasiparticle distri-
 533 bution and the lower bound on Λ . The collision integral vanishes as $(v_F q / \epsilon_F)^2$, such that
 534 transport is collisionless to leading order in q .

535 **1.3.1 Kinetic equation in a spatially homogeneous state**

536 **Equation of motion of the quasiparticle distribution** We assume that the initial state $\hat{\rho}$ of
 537 the system describes an uncorrelated distribution of quasiparticles

$$\hat{\rho}(0) = \prod_{\alpha\sigma} \hat{\rho}_{\alpha\sigma} \quad (110)$$

538 The reduced density matrix $\hat{\rho}_{\alpha\sigma}$ is a function of $\hat{\gamma}_{\alpha\sigma}$ and $\hat{\gamma}_{\alpha\sigma}^\dagger$ only which defines the occupation
 539 of mode $\alpha\sigma$

$$\delta n_{\alpha\sigma} = \text{Tr}(\hat{\rho}_{\alpha\sigma} \delta \hat{n}_{\alpha\sigma}) \quad (111)$$

540 We assume that the excited quasiparticles are contained in a low-energy shell of width p_0

$$\delta n_{\mathbf{p}\sigma} = 0 \quad \text{for} \quad |\mathbf{p} - \mathbf{p}_F| > p_0 \quad (112)$$

541 Note that this is more restrictive than just assuming a “low density of excitation” $\sum_{\alpha\sigma} \delta n_{\alpha\sigma} \ll N$.
 542 In fact, exciting even a low energy density in highly energetic modes would result in a break-
 543 down of the quasiparticle picture.

544 We describe the evolution of $\delta n_{\alpha\sigma}$ in Heisenberg picture using the expansion Eq. (49) of
 545 the Hamiltonian, which we rewrite in the form

$$\hat{H} = E_0 + \hat{H}_2 + \hat{H}_4^d + \hat{H}_4^x + O(\delta(\hat{\gamma}^\dagger \hat{\gamma})^3) \quad (113)$$

546 where

$$\hat{H}_2 = \sum_{\mathbf{p} \in \mathcal{D}, \sigma} \epsilon_{\mathbf{p}} \delta \hat{n}_{\mathbf{p}\sigma} \quad (114)$$

547 and we have splitted the terms quadratic in $\delta(\hat{\gamma}^\dagger \hat{\gamma})$ into diagonal and off-diagonal parts

$$\hat{H}_4^d = \frac{1}{2L^3} \sum_{\mathbf{p}, \mathbf{p}' \in \mathcal{D}} f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \delta \hat{n}_{\mathbf{p}\sigma} \delta \hat{n}_{\mathbf{p}'\sigma'} \quad (115)$$

$$\sigma, \sigma' = \uparrow, \downarrow$$

$$\hat{H}_4^x = \frac{1}{2L^3} \sum_{\substack{(\mathbf{p}_\alpha, \mathbf{p}_\beta) \neq (\mathbf{p}_\delta, \mathbf{p}_\gamma) \\ \sigma, \sigma' = \uparrow, \downarrow}} \delta_{\mathbf{p}_\alpha + \mathbf{p}_\beta}^{\mathbf{p}_\gamma + \mathbf{p}_\delta} \mathcal{B}_{\sigma\sigma'}(\mathbf{p}_\alpha \mathbf{p}_\beta | \mathbf{p}_\gamma \mathbf{p}_\delta) \gamma_{\mathbf{p}_\alpha\sigma}^\dagger \gamma_{\mathbf{p}_\beta\sigma'}^\dagger \gamma_{\mathbf{p}_\gamma\sigma'} \gamma_{\mathbf{p}_\delta\sigma} \quad (116)$$

548 The equation of motion of $\delta n_{\alpha\sigma}$ is triggered only by \hat{H}_4^x

$$i\partial_t \delta n_{\mathbf{p}\sigma} = \frac{1}{2L^3} \sum_{\substack{\mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4 \\ \sigma' = \uparrow, \downarrow}} \left[s_{\sigma\sigma'} \mathcal{A}_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \delta_{\mathbf{p} + \mathbf{p}_2}^{\mathbf{p}_3 + \mathbf{p}_4} \langle \hat{\gamma}_{\mathbf{p},\sigma}^\dagger \hat{\gamma}_{\mathbf{p}_2,\sigma'}^\dagger \hat{\gamma}_{\mathbf{p}_3,\sigma'} \hat{\gamma}_{\mathbf{p}_4,\sigma} \rangle - \text{c.c.} \right] + O(\delta(\hat{\gamma}^\dagger \hat{\gamma}))^3 \quad (117)$$

549 where $\langle \hat{O} \rangle \equiv \text{Tr}(\hat{\rho} \hat{O})$ and $s_{\uparrow\downarrow} = 1$ and $s_{\uparrow\uparrow} = 1/2$ is a counting factor. Notice that the bare $\mathcal{B}_{\sigma\sigma'}$
 550 amplitudes have been replaced by the symmetrized ones $\mathcal{A}_{\sigma\sigma'}$.

551 **Born-Markov approximation** Eq. (117) is not a closed system, due to the presence of terms
 552 quartic in $\hat{\gamma}$. To perform a Born-Markov approximation on the dynamics of those quartic terms,
 553 similar to the classical “molecular chaos hypothesis”, we introduce the quartic cumulants

$$Q_{\alpha\beta\gamma\delta}^{\sigma\sigma'} \equiv (\hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\beta\sigma'}^\dagger \hat{\gamma}_{\gamma\sigma'} \hat{\gamma}_{\delta\sigma})_c \quad (118)$$

$$(\hat{a}^\dagger \hat{b}^\dagger \hat{c} \hat{d})_c \equiv \hat{a}^\dagger \hat{b}^\dagger \hat{c} \hat{d} - \hat{a}^\dagger \hat{d} (\hat{b}^\dagger \hat{c}) - \hat{b}^\dagger \hat{c} (\hat{a}^\dagger \hat{d}) + \hat{a}^\dagger \hat{c} (\hat{b}^\dagger \hat{d}) + \hat{b}^\dagger \hat{d} (\hat{a}^\dagger \hat{c})$$

$$+ \langle \hat{a}^\dagger \hat{d} \rangle \langle \hat{b}^\dagger \hat{c} \rangle - \langle \hat{a}^\dagger \hat{c} \rangle \langle \hat{b}^\dagger \hat{d} \rangle \quad (119)$$

554 and we note that the contracted terms $\hat{\gamma}_{\mathbf{p},\sigma}^\dagger \hat{\gamma}_{\mathbf{p}_2,\sigma'}^\dagger \hat{\gamma}_{\mathbf{p}_3,\sigma'} \hat{\gamma}_{\mathbf{p}_4,\sigma} - \hat{Q}_{\mathbf{p}\mathbf{p}_2\mathbf{p}_3\mathbf{p}_4}^{\sigma\sigma'}$ drop out from Eq. (117).
 555 The quartic cumulant is described by the equation of motion

$$i\partial_t \hat{Q}_{\alpha\beta\gamma\delta}^{\sigma\sigma'} = (\hat{\epsilon}_{\delta\sigma} + \hat{\epsilon}_{\gamma\sigma'} - \hat{\epsilon}_{\beta\sigma'} - \hat{\epsilon}_{\alpha\sigma}) \hat{Q}_{\alpha\beta\gamma\delta}^{\sigma\sigma'} + \hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t) \quad (120)$$

556 where

$$\hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'} \equiv [\hat{Q}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}, \hat{H}_4^x] = \frac{1}{2L^3} \sum_{abcd} \mathcal{B}_{\sigma_a\sigma_b}(dc | ba) \delta_{a+b}^{c+d} [(\hat{\gamma}_{\alpha\sigma}^\dagger \hat{\gamma}_{\beta\sigma'}^\dagger \hat{\gamma}_{\gamma\sigma'} \hat{\gamma}_{\delta\sigma})_c, (\hat{\gamma}_{d\sigma_a}^\dagger \hat{\gamma}_{c\sigma_b}^\dagger \hat{\gamma}_{b\sigma_b} \hat{\gamma}_{a\sigma_a})_c] \quad (121)$$

557 is the source term of the equation of motion. The “local energy” energy of the quasiparticle
 558 appears as an operator in our formalism:

$$\hat{\epsilon}_{\mathbf{p}\sigma} = \epsilon_{\mathbf{p}\sigma} + \frac{1}{L^3} \sum_{\mathbf{p}'\sigma'} f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \delta \hat{n}_{\mathbf{p}'\sigma'} \quad (122)$$

559 The deviation $\delta \hat{\epsilon}_{\mathbf{p}\sigma} = \hat{\epsilon}_{\mathbf{p}\sigma} - \epsilon_{\mathbf{p}\sigma}$ from the Fermi sea eigenenergy originates from \hat{H}_4^d : $[\hat{\gamma}_{\mathbf{p}\sigma}, \hat{H}_4^d] = \delta \hat{\epsilon}_{\mathbf{p}\sigma} \hat{\gamma}_{\mathbf{p}\sigma}$;
 560 in the low-energy state $\hat{\rho}$, it is negligible $\langle \delta \hat{\epsilon}_{\alpha\sigma} + \delta \hat{\epsilon}_{\beta\sigma'} - \delta \hat{\epsilon}_{\gamma\sigma'} - \delta \hat{\epsilon}_{\delta\sigma} \rangle = O(p_0/p_F)^2$.

561 In the Born approximation, we assume that the correlations among quasiparticle modes
 562 remain small at all times. We then replace $\langle \hat{S} \rangle$ by its Wick contraction

$$\langle \hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'} \rangle = \frac{\mathcal{A}_{\sigma\sigma'}(\alpha\beta|\gamma\delta)}{L^3} [n_{\alpha\sigma} n_{\beta\sigma'} \bar{n}_{\gamma\sigma'} \bar{n}_{\delta\sigma} - \bar{n}_{\alpha\sigma} \bar{n}_{\beta\sigma'} n_{\gamma\sigma'} n_{\delta\sigma}] + O(p_0/p_F)^2 \quad (123)$$

563 where $n_{\mathbf{p}\sigma}(t) \equiv \langle \hat{\gamma}_{\mathbf{p}\sigma}^\dagger \hat{\gamma}_{\mathbf{p}\sigma}(t) \rangle$, and we use the short-hand notations $\bar{n} = 1 - n$. The contrac-
 564 tions have imposed $(\sigma_a, \sigma_b) = (\sigma, \sigma')$ or $(\sigma_a, \sigma_b) = (\sigma', \sigma)$ and removed all the
 565 summations over momentum in Eq. (121). The correction of order $O(p_0/p_F)^2$ to this Born
 566 approximation is discuss in Appendix.

567 With the Born approximation, the source term \hat{S} becomes independent of \hat{Q} , such that we
 568 can formally integrate Eq. (120)

$$\hat{Q}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t) = -i \int_{-\Delta t}^0 dt' e^{-i(\epsilon_\delta + \epsilon_\gamma - \epsilon_\beta - \epsilon_\alpha)t'} \hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t + t') \quad (124)$$

569 Modelling the slow time-dependence of \hat{S} as $\hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t + t') = \hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t) e^{\eta t}$, we obtain the Marko-
 570 vian approximation of \hat{Q} :

$$\hat{Q}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t) = -\frac{\hat{S}_{\alpha\beta\gamma\delta}^{\sigma\sigma'}(t)}{\epsilon_\delta + \epsilon_\gamma - \epsilon_\beta - \epsilon_\alpha + i\eta} \quad (125)$$

571 Anticipating on Eq. (128) which gives the time scale at which $n_{\alpha\sigma}(t)$ and $\hat{S}(t)$ vary, one can
 572 estimate $\eta = O(p_0/p_F)^2$.

573 **Nonlinear kinetic equation** Replacing the expression of \hat{Q} in the kinetic equation (117) and
 574 using the Plemelj formula $1/(x + i0^+) = \mathcal{P} - i\pi\delta(x)$, we obtain

$$\begin{aligned} \partial_t \delta n_{\mathbf{p}\sigma} = I_{\mathbf{p}\sigma}[\delta n] &\equiv \frac{2\pi}{L^6} \sum_{\mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4 \in \mathcal{D}} \delta_{\mathbf{p}+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}_2} - \epsilon_{\mathbf{p}_3} - \epsilon_{\mathbf{p}_4}) \\ &\quad \left(W_{\uparrow\downarrow}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) [n_{\mathbf{p}\uparrow} n_{\mathbf{p}_2\downarrow} \bar{n}_{\mathbf{p}_3\downarrow} \bar{n}_{\mathbf{p}_4\uparrow} - \bar{n}_{\mathbf{p}\uparrow} \bar{n}_{\mathbf{p}_2\downarrow} n_{\mathbf{p}_3\downarrow} n_{\mathbf{p}_4\uparrow}] \right. \\ &\quad \left. + \frac{1}{2} W_{\uparrow\uparrow}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) [n_{\mathbf{p}\uparrow} n_{\mathbf{p}_2\uparrow} \bar{n}_{\mathbf{p}_3\uparrow} \bar{n}_{\mathbf{p}_4\uparrow} - \bar{n}_{\mathbf{p}\uparrow} \bar{n}_{\mathbf{p}_2\uparrow} n_{\mathbf{p}_3\uparrow} n_{\mathbf{p}_4\uparrow}] \right) + O(p_0/p_F)^3 \quad (126) \end{aligned}$$

575 where

$$W_{\sigma\sigma'}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) = [\mathcal{A}_{\sigma\sigma'}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)]^2 \quad (127)$$

576 are the collision probabilities. Note that W inherits symmetry properties from Eqs. (43)–(42).

577 The collision integral $I_{\mathbf{p}\sigma}$ is a functional of the quasiparticle distribution δn . If \mathbf{p} is inside
 578 the low-energy shell ($|p - p_F| < p_0$), then, by the conservation of energy and the absence

579 of highly-excited quasiparticles, so are all the collision momenta⁷ \mathbf{p}_2 , \mathbf{p}_3 and \mathbf{p}_4 . In other
 580 words, the low-energy space is stable under collisions. The double summation over \mathbf{p}_2 and \mathbf{p}_3
 581 (assuming that \mathbf{p}_4 is fixed by momentum conservation) is then restricted to a small interval
 582 $[p_F - p_0, p_F + p_0]$ about the Fermi momentum, which allows us to estimate

$$I_{\mathbf{p}\sigma} = O\left(\frac{p_0}{p_F}\right)^2 \quad (128)$$

583 Subleading terms $O(p_0/p_F)^3$ in the collision integral then arise either from the Markov approx-
 584 imation $\eta \rightarrow 0^+$ in Eq. (125) or from the omission of the local energy $\hat{\epsilon}_{\mathbf{p}\sigma} = \epsilon_{\mathbf{p}\sigma} + O(p_0/p_F)$.

585 **Thermal lifetime** In its general form, the kinetic equation Eq. (126) is a nonlinear differen-
 586 tial equation where we cannot single-out the lifetime of quasiparticles in mode $\mathbf{p}\sigma$.

587 To linearize the kinetic equation, we assume that the initial state is a thermal equilibrium
 588 state, which we approximate⁸ by the matrix density

$$\hat{\rho}_{\text{eq}} = \frac{1}{Z} e^{-(\hat{H}_2 - \mu \hat{N})/T} \quad (129)$$

589 Here μ is the chemical potential, $Z = \text{Tr}(e^{-(\hat{H}_2 - \mu \hat{N})/T})$ is a low-temperature approximation of
 590 the partition function, and \hat{N} is the number of quasiparticles (see Eq. (29)). The state $\hat{\rho}_{\text{eq}}$
 591 populates the quasiparticle modes according to the Fermi-Dirac distribution

$$n_{\mathbf{p}}^{\text{eq}}(T) = \text{Tr}(\hat{\rho}_{\text{eq}} \hat{n}_{\mathbf{p}\sigma}) = \frac{1}{1 + e^{(\epsilon_{\mathbf{p}} - \mu)/T}} \quad (130)$$

592 It then fulfills the low-energy condition Eq. (112) with $p_F \gg p_0 \gg T/v_F$.

593 We excite the quasiparticle in mode $\mathbf{p}\sigma$, leaving the rest of the gas in the thermal state,
 594 which amounts to preparing the initial distribution

$$\langle \hat{n}_{\mathbf{p}'\sigma'} \rangle = \begin{cases} n_{\mathbf{p}}^{\text{eq}}(T) + \delta n_{\mathbf{p}\sigma}^{\text{eq}}, & \mathbf{p}'\sigma' = \mathbf{p}\sigma \\ n_{\mathbf{p}'}^{\text{eq}}(T), & \mathbf{p}'\sigma' \neq \mathbf{p}\sigma \end{cases} \quad (131)$$

595 As long as it remains much below p_F , the excited quasiparticle does not need to be inside the
 596 thermal window.

597 The kinetic Eq. (126) then describes the thermal relaxation of $\delta n_{\mathbf{p}\sigma}^{\text{eq}}$:

$$\partial_t \delta n_{\mathbf{p}\sigma}^{\text{eq}} = -\Gamma_{\mathbf{p}\sigma} \delta n_{\mathbf{p}\sigma}^{\text{eq}} \quad (132)$$

598 The thermal damping rate is given by Fermi's golden rule

$$\Gamma_{\mathbf{p}\sigma} = \frac{2\pi}{L^6} \sum_{\mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \in \mathcal{D}} W(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \delta_{\mathbf{p} + \mathbf{p}_2}^{\mathbf{p}_3 + \mathbf{p}_4} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}_2} - \epsilon_{\mathbf{p}_3} - \epsilon_{\mathbf{p}_4}) \left[n_{\mathbf{p}_2}^{\text{eq}} \bar{n}_{\mathbf{p}_3}^{\text{eq}} \bar{n}_{\mathbf{p}_4}^{\text{eq}} + \bar{n}_{\mathbf{p}_2}^{\text{eq}} n_{\mathbf{p}_3}^{\text{eq}} n_{\mathbf{p}_4}^{\text{eq}} \right] \quad (133)$$

599 with the spin-averaged collision probability

$$W(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) = W_{\uparrow\downarrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) + \frac{1}{2} W_{\sigma\sigma}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \quad (134)$$

⁷Energy conservation guarantees that one of the outgoing wavevector is at low energy, say $|p_4 - p_F| < p_0$. Then if the remaining wavevectors \mathbf{p}_2 and \mathbf{p}_3 are at high energy, they are necessarily on the same side of the Fermi level, $n_{\mathbf{p}_2}^0 = n_{\mathbf{p}_3}^0$. The collision in the state $\hat{\rho}$ is then suppressed by the factor $n_{\mathbf{p}_2\sigma'} \bar{n}_{\mathbf{p}_3\sigma'} = n_{\mathbf{p}_2}^0 \bar{n}_{\mathbf{p}_3}^0$ in the square bracket of Eq. (126).

⁸At low temperatures, $n_{\mathbf{p}}^{\text{eq}}$ differs from the zero-temperature Fermi-Dirac distribution $n_{\mathbf{p}}^0$ by a $O(T)$. In omitting \hat{H}_4 (and higher order terms) from $\hat{\rho}_{\text{eq}}$ we commit a small error, of order $O(T^2)$ on $n_{\mathbf{p}}^{\text{eq}}$.

600 Integrating over energies and angles, as detailed in [32] (see the End Matter), we recover the
 601 standard result for $\Gamma_{\mathbf{p}\sigma}$:

$$\Gamma_{\mathbf{p}\sigma} = \left(\frac{m^*}{2\pi} \right)^3 \left\langle \frac{W}{\cos \frac{\theta}{2}} \right\rangle_{\theta, \phi} [\pi^2 T^2 + (\epsilon_{\mathbf{p}} - \mu)^2] \quad (135)$$

602 We have reparametrized the probability W in terms of the two angles $\theta = (\widehat{\mathbf{p}_1, \mathbf{p}_2})$ and $\phi = (\mathbf{p}_1 - \widehat{\mathbf{p}_2, \mathbf{p}_3 - \mathbf{p}_4})$
 603 that locate the four momenta $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4$ of norm p_F : $W(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) = W(\theta, \phi)$. We have
 604 then introduced the average over solid angles

$$\langle f \rangle_{\theta, \phi} = \frac{1}{4\pi} \int_0^\pi \int_0^{2\pi} f(\theta, \phi) \sin \theta d\theta d\phi \quad (136)$$

605 Since $|\epsilon_{\mathbf{p}} - \mu|$ and T are both below $v_F p_0$, Eq. (135) illustrates the $O(p_0/p_F)^2$ scaling of the
 606 collision integral.

607 1.3.2 Linearized transport equation at nonzero temperature

608 **Linear response approximation** We now imagine that the system is driven out-of-equilibrium
 609 by an external field U_σ coupled to quasiparticle density operators $\hat{\gamma}^\dagger \hat{\gamma}$

$$\hat{H}_{\text{ext}} = \sum_{\mathbf{p} \in \mathcal{D}, \sigma} U_\sigma(\mathbf{q}, t) \hat{n}_{\mathbf{p}\sigma}^{-\mathbf{q}} \quad (137)$$

610 where we use Anderson's notations for the quasiparticle-quasihole excitation operator

$$\hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}}(t) = \hat{\gamma}_{\mathbf{p}+\mathbf{q}/2, \sigma}^\dagger \hat{\gamma}_{\mathbf{p}-\mathbf{q}/2, \sigma} \quad (138)$$

611 One can also see \hat{H}_{ext} as driving the density of quasiparticles in real space:

$$\hat{H}_{\text{ext}} = \int d^3 \mathbf{r} \sum_{\sigma} U_\sigma(\mathbf{r}, t) \hat{\psi}_{\gamma, \sigma}^\dagger(\mathbf{r}) \hat{\psi}_{\gamma, \sigma}(\mathbf{r}) \quad (139)$$

612 where⁹ $\hat{\psi}_{\gamma, \sigma}(\mathbf{r}) = L^{-3/2} \sum_{\mathbf{p} \in \mathcal{D}} e^{i\mathbf{p} \cdot \mathbf{r}} \hat{\gamma}_{\mathbf{p}\sigma}$ is the field operator associated to the quasiparticles,
 613 and $U_\sigma(\mathbf{r}) = U_\sigma(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}}$. Placing ourselves in the linear response regime, we assume a weak
 614 driving compared to the temperature

$$|U_\sigma| \ll T \quad (140)$$

615 and we decompose the state of the system at time t as

$$\hat{\varrho}(t) = \hat{\varrho}_{\text{eq}} + \delta \hat{\varrho}(t) \quad (141)$$

616 with $\delta \hat{\varrho} = O(U_\sigma/T)$. In the linear response regime, the fluctuations about the thermal state
 617 are small $\hat{n}_{\mathbf{p}\sigma} - n_{\mathbf{p}}^{\text{eq}} = O(U)$, and we approximate the contribution of the drive to the Heisenberg
 618 equation of motion by

$$[\hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}}, \hat{H}_{\text{ext}}] = U_\sigma(\mathbf{q}) \left(\hat{n}_{\mathbf{p}+\frac{\mathbf{q}}{2}, \sigma} - \hat{n}_{\mathbf{p}-\frac{\mathbf{q}}{2}, \sigma} \right) = U_\sigma(\mathbf{q}) \left(n_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\text{eq}} - n_{\mathbf{p}-\frac{\mathbf{q}}{2}}^{\text{eq}} \right) + O(U^2) \quad (142)$$

⁹Note that taking the continuous limit $l \rightarrow 0$, we have converted the discrete sum $l^3 \sum_{\mathbf{r}}$ over the sites \mathbf{r} of the lattice model into the $\int d^3 r$ integral.

619 **Quantum Boltzmann equation** We obtain the streaming term¹⁰ of the Boltzmann equation
 620 as the contribution of $\hat{H}_2 + \hat{H}_4^d$:

$$[\hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}}, \hat{H}_2 + \hat{H}_4^d] = (\hat{\epsilon}_{\mathbf{p}-\mathbf{q}/2,\sigma} - \hat{\epsilon}_{\mathbf{p}+\mathbf{q}/2,\sigma}) \hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}} \quad (143)$$

621 The contribution of \hat{H}_4^x is no longer antihermitian

$$[\hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}}, \hat{H}_4^x] = \frac{1}{2L^3} \sum_{\substack{\mathbf{p}_4, \mathbf{p}_2 \neq \mathbf{p}_3 \\ \sigma' = \uparrow \downarrow}} s_{\sigma\sigma'} \left[\mathcal{A}_{\sigma\sigma'} \left(\mathbf{p} - \frac{\mathbf{q}}{2}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4 \right) \delta_{\mathbf{p}-\frac{\mathbf{q}}{2}+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \hat{\gamma}_{\mathbf{p}+\frac{\mathbf{q}}{2},\sigma}^{\dagger} \hat{\gamma}_{\mathbf{p}_2\sigma'}^{\dagger} \hat{\gamma}_{\mathbf{p}_3\sigma'} \hat{\gamma}_{\mathbf{p}_4\sigma} \right. \right. \\ \left. \left. - \mathcal{A}_{\sigma\sigma'} \left(\mathbf{p} + \frac{\mathbf{q}}{2}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4 \right) \delta_{\mathbf{p}+\frac{\mathbf{q}}{2}+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \hat{\gamma}_{\mathbf{p}_4\sigma}^{\dagger} \hat{\gamma}_{\mathbf{p}_3\sigma'}^{\dagger} \hat{\gamma}_{\mathbf{p}_2\sigma'} \hat{\gamma}_{\mathbf{p}-\frac{\mathbf{q}}{2},\sigma} \right] \quad (144)$$

622 where $s_{\uparrow\downarrow} = 1$ and $s_{\uparrow\uparrow} = 1/2$. We treat this contribution using the cumulant expansion
 623 (Eq. (119)) to obtain:

$$[\hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}}, \hat{H}_4^x] = (n_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\text{eq}} - n_{\mathbf{p}-\frac{\mathbf{q}}{2}}^{\text{eq}}) \frac{1}{L^3} \sum_{\mathbf{p}',\sigma'} \mathcal{A}_{\sigma\sigma'} \left(\mathbf{p} - \frac{\mathbf{q}}{2}, \mathbf{p}' + \frac{\mathbf{q}}{2} | \mathbf{p}' - \frac{\mathbf{q}}{2}, \mathbf{p} + \frac{\mathbf{q}}{2} \right) \hat{n}_{\mathbf{p}',\sigma'}^{\mathbf{q}} + i\hat{I}_{\mathbf{p}\sigma} \quad (145)$$

624 where $\hat{I}_{\mathbf{p}\sigma}$ is the cumulant part of Eq. (144). Restricting to leading order in U , we have replaced
 625 the average values in the partially contracted terms by thermal averages:

$$\langle \hat{\gamma}_{\mathbf{p}\sigma}^{\dagger} \hat{\gamma}_{\mathbf{p}'\sigma'} \rangle = \delta_{\mathbf{p}\mathbf{p}'} \delta_{\sigma\sigma'} n_{\mathbf{p}}^{\text{eq}} + O(U/T) \quad (146)$$

626 To recognize the Vlasov force in those terms, we use Eq. (60) and the condition $v_F q \ll \Lambda$:

$$\mathcal{A}_{\sigma\sigma'} \left(\mathbf{p} - \frac{\mathbf{q}}{2}, \mathbf{p}' + \frac{\mathbf{q}}{2} | \mathbf{p}' - \frac{\mathbf{q}}{2}, \mathbf{p} + \frac{\mathbf{q}}{2} \right) = f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') + O(v_F q / \Lambda) \quad (147)$$

627 Note that the partial contractions also replace the local energies in Eq. (143) by their thermal
 628 value $\langle \hat{\epsilon}_{\mathbf{p}\sigma} \rangle = \langle \hat{\epsilon}_{\mathbf{p}\sigma} \rangle_{\text{eq}} + O(U)$.

629 **Collision integral** Following the steps discussed in Sec. 1.3.1, we compute the collision in-
 630 tegral $\hat{I}_{\mathbf{p}\sigma}$ in the Born-Markov approximation. Restricting to leading order in $v_F q / T$, we obtain
 631 the transport equation

$$(i\partial_t + v_F qu) \hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}} - v_F qu \frac{\partial n_{\text{eq}}}{\partial \epsilon} \Big|_{\epsilon=\epsilon_{\mathbf{p}}} \left(U_{\sigma}(\mathbf{q}) + \frac{1}{L^3} \sum_{\mathbf{p}'\sigma'} f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \hat{n}_{\mathbf{p}'\sigma'}^{\mathbf{q}} \right) = i\hat{I}_{\mathbf{p}\sigma}^{\text{lin}}(\hat{n}^{\mathbf{q}}) \quad (148)$$

632 where $u = \cos(\widehat{\mathbf{p}, \mathbf{q}})$, $n_{\text{eq}}(\epsilon) = 1/(1 + e^{(\epsilon - \mu)/T})$, and the collision integral linearized about the
 633 thermal state takes the form

$$\begin{aligned} \hat{I}_{\mathbf{p}\uparrow}^{\text{lin}}[\hat{n}^{\mathbf{q}}] = & \frac{2\pi}{L^6} \sum_{\beta,\gamma,\delta \in \mathcal{D}} \delta_{\mathbf{p}+\beta}^{\gamma+\delta} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\beta} - \epsilon_{\gamma} - \epsilon_{\delta}) \\ & \times \left\{ \left[n_{\beta}^{\text{eq}} \bar{n}_{\gamma}^{\text{eq}} \bar{n}_{\delta}^{\text{eq}} + \bar{n}_{\beta}^{\text{eq}} n_{\gamma}^{\text{eq}} n_{\delta}^{\text{eq}} \right] \left(W_{\uparrow\downarrow}(\mathbf{p}, \beta | \gamma, \delta) + \frac{1}{2} W_{\sigma\sigma}(\mathbf{p}, \beta | \gamma, \delta) \right) \hat{n}_{\mathbf{p}\uparrow}^{\mathbf{q}} \right. \\ & + \left[n_{\mathbf{p}}^{\text{eq}} \bar{n}_{\gamma}^{\text{eq}} \bar{n}_{\delta}^{\text{eq}} + \bar{n}_{\mathbf{p}}^{\text{eq}} n_{\gamma}^{\text{eq}} n_{\delta}^{\text{eq}} \right] \left(W_{\uparrow\downarrow}(\mathbf{p}, \beta | \gamma, \delta) \hat{n}_{\beta,\downarrow}^{\mathbf{q}} + \frac{1}{2} W_{\sigma\sigma}(\mathbf{p}, \beta | \gamma, \delta) \hat{n}_{\beta\uparrow}^{\mathbf{q}} \right) \\ & - \left[n_{\delta}^{\text{eq}} \bar{n}_{\mathbf{p}}^{\text{eq}} \bar{n}_{\beta}^{\text{eq}} + \bar{n}_{\delta}^{\text{eq}} n_{\mathbf{p}}^{\text{eq}} n_{\beta}^{\text{eq}} \right] \left(W_{\uparrow\downarrow}(\mathbf{p}, \beta | \gamma, \delta) \hat{n}_{\gamma,\downarrow}^{\mathbf{q}} + \frac{1}{2} W_{\sigma\sigma}(\mathbf{p}, \beta | \gamma, \delta) \hat{n}_{\gamma\uparrow}^{\mathbf{q}} \right) \\ & \left. - \left[n_{\gamma}^{\text{eq}} \bar{n}_{\mathbf{p}}^{\text{eq}} \bar{n}_{\beta}^{\text{eq}} + \bar{n}_{\gamma}^{\text{eq}} n_{\mathbf{p}}^{\text{eq}} n_{\beta}^{\text{eq}} \right] \left(W_{\uparrow\downarrow}(\mathbf{p}, \beta | \gamma, \delta) + \frac{1}{2} W_{\sigma\sigma}(\mathbf{p}, \beta | \gamma, \delta) \right) \hat{n}_{\delta\uparrow}^{\mathbf{q}} \right\} \quad (149) \end{aligned}$$

¹⁰We have used the property $f_{\sigma\sigma}(\mathbf{p} + \mathbf{q}/2, \mathbf{p} - \mathbf{q}/2) = 0$, valid for $v_F q \ll \Lambda$, which guarantees that $\hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}}$ commutes with $\delta\hat{\epsilon}_{\mathbf{p}\pm\mathbf{q}/2,\sigma}$

634 We may interpret the linearized transport equation in real space by performing an inverse
 635 Wigner transform

$$n_\sigma(\mathbf{p}, \mathbf{q}) \equiv \langle \hat{n}_{\mathbf{p}\sigma}^{-\mathbf{q}} \rangle = \frac{1}{\sqrt{L^3}} \int d^3r e^{-i\mathbf{q}\cdot\mathbf{r}} \delta n_\sigma(\mathbf{p}, \mathbf{r}) \quad (150)$$

636 The Wigner transform of $\langle \hat{l}_{\mathbf{p}\sigma}^{\text{lin}} \rangle$ is then interpreted as a collision integral linearized for small
 637 spatial fluctuations:

$$I_{\mathbf{p}\sigma}[n^{\text{eq}} + \delta n(\mathbf{r})] = \langle \hat{l}_{\mathbf{p}\sigma}^{\text{lin}}(\mathbf{r}) \rangle + O(\delta n)^2 \quad (151)$$

638 where $I_{\mathbf{p}\sigma}[n]$ is defined by Eq. (126). The transport equation may now be written in real space

$$\partial_t n_\sigma + \frac{\partial \epsilon_{\mathbf{p}\sigma}}{\partial \mathbf{p}} \cdot \frac{\partial n_\sigma}{\partial \mathbf{r}} - \frac{\partial n_\sigma^{\text{eq}}}{\partial \mathbf{p}} \cdot \left(\frac{1}{L^3} \sum_{\mathbf{p}'\sigma'} f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \frac{\partial n_{\sigma'}}{\partial \mathbf{r}} + U_\sigma(\mathbf{r}) \right) = I_{\mathbf{p}\sigma}[n^{\text{eq}} + \delta n(\mathbf{r})] \quad (152)$$

639 We stress that this transport equation in real space is linearized. Obtaining a nonlinear equa-
 640 tion in real space appears far from obvious in our formalism; in particular it is not clear, when
 641 looking at Eq. (62), if the Vlasov force (the first term between bracket in Eq. (152)) still de-
 642 pends only on $f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}')$ or also on $\mathcal{A}_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)$ at $v_F |\mathbf{p} - \mathbf{p}_4| \gg \Lambda$.

643 1.3.3 Transport equation at $T = 0$

644 We now let $T \rightarrow 0$ at fixed q and ω . We describe the state of the system in presence of \hat{H}_{ext} by

$$\hat{\varrho}(t) = |\text{FS}\rangle\langle\text{FS}| + \delta\hat{\varrho}(t) \quad (153)$$

645 The linear response regime (*i.e.* the absence of second harmonic generation) ensures that only
 646 the momenta that differs from p_F by q are excited. The fluctuations of the quasiparticle distri-
 647 bution thus remain zero for $|p - p_F| \gg q$, and the wavenumber q acts as the small parameter
 648 p_0 of the low-energy expansion. The linearized transport equation is then

$$\begin{aligned} (i\partial_t + \epsilon_{\mathbf{p}+\mathbf{q}/2} - \epsilon_{\mathbf{p}-\mathbf{q}/2}) \hat{n}_{\mathbf{p}\sigma}^{\mathbf{q}} - (n_{\mathbf{p}+\frac{\mathbf{q}}{2}}^0 - n_{\mathbf{p}-\frac{\mathbf{q}}{2}}^0) \left(U_\sigma(\mathbf{q}) + \frac{1}{L^3} \sum_{\mathbf{p}'\sigma'} f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \hat{n}_{\mathbf{p}'\sigma'}^{\mathbf{q}} \right) \\ = i\hat{l}_{\mathbf{p}\sigma}^{\text{lin}}(\hat{n}^{\mathbf{q}}, T = 0) \end{aligned} \quad (154)$$

649 The zero-temperature collision integral $\hat{l}_{\mathbf{p}\sigma}^{\text{lin}}(\hat{n}^{\mathbf{q}}, T = 0)$ is obtained by replacing $n_{\mathbf{p}\sigma}^{\text{eq}} \rightarrow n_{\mathbf{p}}^0$ in
 650 the nonzero temperature expression (149); it is of order $O(q/p_F)^2$ to leading order, with non-
 651 Markovian corrections of order $O(q/p_F)^3$ (see Eqs. (125) and (128)). To leading order in q/p_F
 652 the transport equation (154) then reduces to its collisionless left-hand side.

653 2 Transport dynamics in Fermi liquids

654 2.1 The transport equation as a linear integral equation

655 In this section, we study the linear integral kernel contained in the collision integral Eq. (149)
 656 at nonzero temperature.

657 2.1.1 Collision kernel

658 We express the collision collision integral in terms of the collision kernel

$$\mathcal{N}_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') = -\Gamma(\mathbf{p})L^3\delta_{\sigma\sigma'}\delta_{\mathbf{p}\mathbf{p}'} - E_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') + S_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \quad (155)$$

$$I_\sigma^{\text{lin}}(\mathbf{p}, n) = \frac{1}{L^3} \sum_{\mathbf{p}'\sigma'} \mathcal{N}_{\sigma'\sigma}(\mathbf{p}', \mathbf{p}) n_{\sigma'}(\mathbf{p}') \quad (156)$$

659 Note the transposed order of $\mathbf{p}'\sigma'$ and $\mathbf{p}\sigma$ in Eq. (156). The diagonal part of \mathcal{N} is given by the
 660 quasiparticles damping rate Eq. (133) and the off-diagonal part involves the four subkernels:

$$E_{\sigma\sigma}(\mathbf{p}, \mathbf{p}') = \frac{2\pi}{L^3} \sum_{\mathbf{p}_3, \mathbf{p}_4 \in \mathcal{D}} \frac{W_{\sigma\sigma}(\mathbf{p}', \mathbf{p} | \mathbf{p}_3, \mathbf{p}_4)}{2} \delta_{\mathbf{p}+\mathbf{p}'}^{\mathbf{p}_3+\mathbf{p}_4} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}_3} - \epsilon_{\mathbf{p}_4}) N_{\mathbf{p}_3 \mathbf{p}_4}^{\mathbf{p}'} \quad (157)$$

$$E_{\uparrow\downarrow}(\mathbf{p}, \mathbf{p}') = \frac{2\pi}{L^3} \sum_{\mathbf{p}_3, \mathbf{p}_4 \in \mathcal{D}} W_{\uparrow\downarrow}(\mathbf{p}', \mathbf{p} | \mathbf{p}_3, \mathbf{p}_4) \delta_{\mathbf{p}+\mathbf{p}'}^{\mathbf{p}_3+\mathbf{p}_4} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}_3} - \epsilon_{\mathbf{p}_4}) N_{\mathbf{p}_3 \mathbf{p}_4}^{\mathbf{p}'} \quad (158)$$

$$S_{\sigma\sigma}(\mathbf{p}, \mathbf{p}') = \frac{2\pi}{L^3} \sum_{\mathbf{p}_2, \mathbf{p}_4 \in \mathcal{D}} [W_{\sigma\sigma}(\mathbf{p}', \mathbf{p}_2 | \mathbf{p}_4, \mathbf{p}) + W_{\uparrow\downarrow}(\mathbf{p}', \mathbf{p}_2 | \mathbf{p}_4, \mathbf{p})] \delta_{\mathbf{p}+\mathbf{p}'}^{\mathbf{p}_2+\mathbf{p}'} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}_4} - \epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}_2}) N_{\mathbf{p}' \mathbf{p}_2}^{\mathbf{p}_4} \quad (159)$$

661 where $N_{\mathbf{p}_1 \mathbf{p}_2}^{\mathbf{p}_3} = n_{\mathbf{p}_1}^{\text{eq}} n_{\mathbf{p}_2}^{\text{eq}} \bar{n}_{\mathbf{p}_3}^{\text{eq}} + \bar{n}_{\mathbf{p}_1}^{\text{eq}} \bar{n}_{\mathbf{p}_2}^{\text{eq}} n_{\mathbf{p}_3}^{\text{eq}}$. The collisions kernels $E_{\sigma\sigma'}$ describe the coupling be-
 662 tween quasiparticles in mode $\mathbf{p}\sigma$ and $\mathbf{p}'\sigma'$ through collisions where \mathbf{p} and \mathbf{p}' are on the same
 663 side of the collision (either incoming or outgoing). Conversely, $S_{\sigma\sigma'}$ describes the couplings
 664 where \mathbf{p} and \mathbf{p}' are on opposite sides.

665 2.1.2 Conservation laws

666 Collisions obey a few conservation laws which play a prominent role in transport phenomena:
 667 the numbers of spin \uparrow and \downarrow particles, the momentum and the energy are the same before
 668 and after any collision. In mathematical terms, this means that the collision kernel \mathcal{N} has 6
 669 zero eigenfunctions (counting the 3 components of the momentum). Since the kernel is not
 670 symmetric, it has distinct left and right eigenfunctions.

671 To recognize the conservation laws on our collision kernel, let us contract it with some
 672 arbitrary functions $n_{\sigma}(\mathbf{p})$ to the left and $\nu_{\sigma}(\mathbf{p})$ to the right:

$$\begin{aligned} \sum_{\mathbf{p}, \mathbf{p}' \in \mathcal{D}, \sigma, \sigma' = \uparrow, \downarrow} n_{\sigma}(\mathbf{p}) \mathcal{N}_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') \nu_{\sigma'}(\mathbf{p}') &= \frac{2\pi}{L^6} \sum_{\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \in \mathcal{D}, \sigma = \uparrow} \delta_{\mathbf{p}_1+\mathbf{p}_2}^{\mathbf{p}_3+\mathbf{p}_4} \delta(\epsilon_{\mathbf{p}_1} + \epsilon_{\mathbf{p}_2} - \epsilon_{\mathbf{p}_3} - \epsilon_{\mathbf{p}_4}) N_{\mathbf{p}_3 \mathbf{p}_4}^{\mathbf{p}_2} \\ &\times \left[\frac{1}{2} W_{\uparrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) (\nu_{\sigma}(\mathbf{p}_1) + \nu_{\sigma}(\mathbf{p}_2) - \nu_{\sigma}(\mathbf{p}_3) - \nu_{\sigma}(\mathbf{p}_4)) \right. \\ &\left. + W_{\uparrow\downarrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) (\nu_{\sigma}(\mathbf{p}_1) + \nu_{-\sigma}(\mathbf{p}_2) - \nu_{-\sigma}(\mathbf{p}_3) - \nu_{\sigma}(\mathbf{p}_4)) \right] n_{\sigma}(\mathbf{p}_1) \quad (160) \end{aligned}$$

673 The 6 functions ν_{σ} which cancel this expression for all n_{σ} , i.e. the right zero-energy eigen-
 674 functions, are $\nu_{\sigma}(\mathbf{p}) = \delta_{\sigma, \uparrow}, \delta_{\sigma, \downarrow}, p_x, p_y, p_z$ and $\epsilon_{\mathbf{p}}$. The corresponding conserved physical
 675 quantities are the density fluctuations $\delta\rho_{\sigma}$, the macroscopic velocity \mathbf{v} and the energy density
 676 δe :

$$\delta\rho_{\sigma} = \frac{1}{L^3} \sum_{\mathbf{p} \in \mathcal{D}} n_{\sigma}(\mathbf{p}) \quad (161)$$

$$m\mathbf{v} = \frac{1}{N} \sum_{\mathbf{p} \in \mathcal{D}} \mathbf{p} n_{\sigma}(\mathbf{p}) \quad (162)$$

$$\delta e = \frac{1}{L^3} \sum_{\mathbf{p} \in \mathcal{D}} \epsilon_{\mathbf{p}} n_{\sigma}(\mathbf{p}) \quad (163)$$

677 Unsurprisingly, opposite spin collisions (with probability $W_{\uparrow\downarrow}$) are responsible for the absence
 678 of conservation of the velocity imbalance $\mathbf{v}_{\uparrow} - \mathbf{v}_{\downarrow}$ and energy imbalance $e_{\uparrow} - e_{\downarrow}$.

679 **2.1.3 Total density and polarization**

680 In our unpolarized Fermi liquid, fluctuations of the density $n_+ = n_\uparrow + n_\downarrow$ and polarisation
 681 $n_- = n_\uparrow - n_\downarrow$ are decoupled, by the transport equation in general, and by the collision integral
 682 in particular. The corresponding collision kernel are:

$$\mathcal{N}_\pm(\mathbf{p}, \mathbf{p}') = -\Gamma(\mathbf{p})L^3\delta_{\sigma\sigma'}\delta_{\mathbf{p}\mathbf{p}'} - E_\pm(\mathbf{p}, \mathbf{p}') + 2S_\pm(\mathbf{p}, \mathbf{p}'), \quad I_\pm(\mathbf{p}) = I_\uparrow^{\text{lin}}(\mathbf{p}) \pm I_\downarrow^{\text{lin}}(\mathbf{p}) \quad (164)$$

683 with

$$E_\pm(\mathbf{p}, \mathbf{p}') = \frac{1}{L^3} \sum_{\mathbf{p}_3 \mathbf{p}_4} W_{E\pm}(\mathbf{p}, \mathbf{p}' | \mathbf{p}_3, \mathbf{p}_4) \delta_{\mathbf{p}+\mathbf{p}'}^{\mathbf{p}_3+\mathbf{p}_4} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}_3} - \epsilon_{\mathbf{p}_4}) N_{\mathbf{p}_3 \mathbf{p}_4}^{\mathbf{p}'}, \quad (165)$$

$$S_\pm(\mathbf{p}, \mathbf{p}') = \frac{1}{L^3} \sum_{\mathbf{p}_2 \mathbf{p}_4} W_{S\pm}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}', \mathbf{p}_4) \delta_{\mathbf{p}+\mathbf{p}_2}^{\mathbf{p}'+\mathbf{p}_4} \delta(\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}_2} - \epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}_4}) N_{\mathbf{p}' \mathbf{p}_4}^{\mathbf{p}_2} \quad (166)$$

684 We have defined the (anti)-symmetrized probabilities $W_{E\pm}$ and $W_{S\pm}$:

$$W_{E\pm}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) = \frac{1}{2} W_{\uparrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \pm \frac{1}{2} (W_{\uparrow\downarrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) + W_{\downarrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_4, \mathbf{p}_3)) \quad (167)$$

$$W_{S\pm}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) = \frac{1}{2} W_{\uparrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \pm \frac{1}{2} (W_{\uparrow\downarrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \pm W_{\downarrow\uparrow}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_4, \mathbf{p}_3)) \quad (168)$$

685 Remark that $W_{E+} = W_{S+}$. We have used the symmetry properties (inherited from Eqs. (41)–
 686 (43)):

$$W(\mathbf{p}_4, \mathbf{p}_3 | \mathbf{p}_2, \mathbf{p}_1) = W(\mathbf{p}_2, \mathbf{p}_1 | \mathbf{p}_4, \mathbf{p}_3) = W(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \quad (169)$$

687 Among the conserved quantities Eqs. (161)–(163), \mathcal{N}_+ inherits $\delta\rho_\uparrow + \delta\rho_\downarrow$, \mathbf{v} and δe , while
 688 \mathcal{N}_- inherits only $\delta\rho_\uparrow - \delta\rho_\downarrow$.

689 **2.1.4 Quasiparticle distribution in the thermal window**

690 To focus on the thermal energy window, to which the fluctuations of $n(\mathbf{p})$ are limited, we
 691 reparametrized the quasiparticle distributions as

$$n_\pm(\mathbf{p}) = -\frac{U_\pm(\mathbf{q})}{T} g(y) \nu_\pm(y, \theta), \quad \text{with} \quad g(y) = \frac{1}{4\text{ch}^2(y/2)} \quad (170)$$

692 We have parametrized the 3D momentum \mathbf{p} with $y = (\epsilon_{\mathbf{p}\sigma} - \mu)/T$, $\theta = (\widehat{\mathbf{p}}, \widehat{\mathbf{q}})$ and an azimuthal
 693 angle ϕ , of which ν is independent due to the rotational invariance about \mathbf{q} . In the spirit of
 694 linear response theory, we have scale the distribution ν to the intensity $U_\pm = U_\uparrow \pm U_\downarrow$ of the
 695 drive. By taking out the thermal broadening function $\partial n_{\text{eq}}/\partial \epsilon = -1/(Tg(y))$, the change of
 696 variable Eq. (170) smoothes the dependence of ν_\pm on y . It also transposes¹¹ the collision
 697 kernels

$$\mathcal{N}(\mathbf{p}', \mathbf{p}) \frac{g(y')}{g(y)} = \mathcal{N}(\mathbf{p}, \mathbf{p}') \quad (171)$$

698 and similarly for E_\pm and S_\pm . In term of ν , the collision integral becomes (compare with
 699 Eq. (156))

$$I_\pm^{\text{lin}}(\mathbf{p}, n) = \frac{\bar{n}_{\mathbf{p}}^{\text{eq}} n_{\mathbf{p}}^{\text{eq}}}{L^3} \sum_{\mathbf{p}'} \mathcal{N}_\pm(\mathbf{p}, \mathbf{p}') \nu_\pm(\mathbf{p}') \quad (172)$$

¹¹This can be seen by writing $\frac{g(y')}{g(y)} = \frac{\bar{n}_{\mathbf{p}'}^{\text{eq}} n_{\mathbf{p}'}^{\text{eq}}}{\bar{n}_{\mathbf{p}}^{\text{eq}} n_{\mathbf{p}}^{\text{eq}}}$ and using $\bar{n}_{\mathbf{p}}^{\text{eq}} n_{\mathbf{p}}^{\text{eq}} N_{\mathbf{p}_3 \mathbf{p}_4}^{\mathbf{p}'} = \bar{n}_{\mathbf{p}'}^{\text{eq}} n_{\mathbf{p}'}^{\text{eq}} N_{\mathbf{p}_3 \mathbf{p}_4}^{\mathbf{p}}$ for 4 wavevectors \mathbf{p} , \mathbf{p}' , \mathbf{p}_3 and \mathbf{p}_4 constrained by energy-momentum conservation.

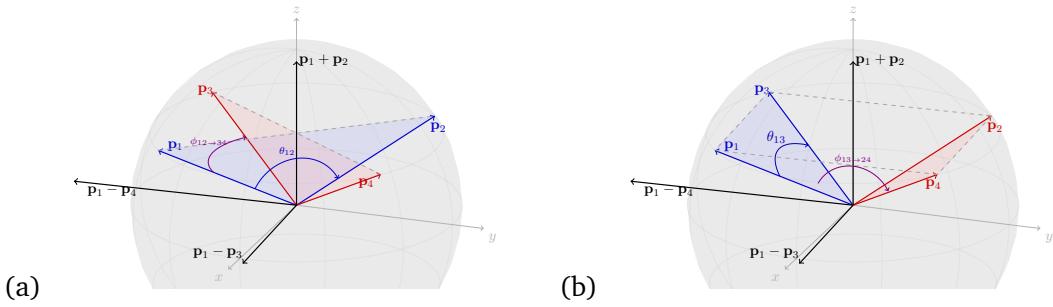


Figure 5: (a) The angular parametrization where $\mathbf{p}_1 + \mathbf{p}_2$ is chosen as the polar axis of the spherical frame. This parametrization is used for W_E in Eq. (173). (b) The angular parametrization where $\mathbf{p}_1 - \mathbf{p}_3$ is chosen as the polar axis of the spherical frame. This parametrization is used for W_S in Eq. (174). The last parametrization where $\mathbf{p}_1 - \mathbf{p}_4$ is chosen as the polar axis is not shown here.

700 2.1.5 Angular parametrization of 4 momentum-conserving wavevectors of the Fermi
701 surface

702 To leading order in temperature, collisions of wavenumbers within the thermal window de-
703 pend solely on the angles between these wavevectors. Four wavevectors of the Fermi surface
704 constrained by momentum conservation $\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_3 + \mathbf{p}_4$ are advantageously expressed in
705 the orthogonal frame made of $(\mathbf{p}_1 + \mathbf{p}_2, \mathbf{p}_1 - \mathbf{p}_3, \mathbf{p}_1 - \mathbf{p}_4)$. Depending on which vector is chosen
706 as the z axis frame, this leaves three different ways of parametrizing the angles, depicted on
707 Fig. 5. Since \mathbf{p} and \mathbf{p}' play the role of \mathbf{p}_1 and \mathbf{p}_2 in E , we use the parametrization of Fig. 5a
708 for this kernel:

$$w_{E\pm}(\theta_{12}, \phi_{12 \rightarrow 34}) \equiv W_{E\pm}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \text{ with } \begin{cases} \theta_{12} \equiv (\widehat{\mathbf{p}_1, \mathbf{p}_2}) \\ \phi_{12 \rightarrow 34} \equiv (\mathbf{p}_1 - \widehat{\mathbf{p}_2, \mathbf{p}_3} - \mathbf{p}_4) \\ \cos \theta_3 = \cos \theta_4 = \cos \frac{\theta_{12}}{2}, \theta_i = (\widehat{\mathbf{p}_1 + \mathbf{p}_2, \mathbf{p}_i}) \end{cases} \quad (173)$$

709 where the third line is the angular version of the momentum conservation constraint. For S in
710 which \mathbf{p} and \mathbf{p}' play the role of \mathbf{p}_1 and \mathbf{p}_3 we use the parametrization of Fig. 5b:

$$w_{S\pm}(\theta_{13}, \phi_{13 \rightarrow 24}) \equiv W_{S\pm}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4) \text{ with } \begin{cases} \theta_{13} \equiv (\widehat{\mathbf{p}_1, \mathbf{p}_3}) \\ \phi_{13 \rightarrow 24} \equiv (\mathbf{p}_1 + \widehat{\mathbf{p}_3, \mathbf{p}_2} + \mathbf{p}_4) \\ \cos \theta_2 = -\cos \theta_4 = \sin \frac{\theta_{13}}{2}, \theta_i = (\widehat{\mathbf{p}_1 - \mathbf{p}_3, \mathbf{p}_i}) \end{cases} \quad (174)$$

711
712 Since the collision amplitudes $A_{\sigma\sigma'}$ are more readily expressed, as in Eqs. (94)–(95) in
713 terms of the angles θ_{ij} between \mathbf{p}_i and \mathbf{p}_j , we use geometrical relations to express the angles
714 of a given parametrization. For example for the parametrization of Fig. 5a:

$$\sin^2 \frac{\theta_{13}}{2} = \sin^2 \frac{\theta_{12}}{2} \sin^2 \frac{\phi_{12 \rightarrow 34}}{2} \quad (175)$$

$$\sin^2 \frac{\theta_{14}}{2} = \sin^2 \frac{\theta_{12}}{2} \cos^2 \frac{\phi_{12 \rightarrow 34}}{2} \quad (176)$$

715 The angular integration in different parametrizations are related by the change of variable

$$\int \frac{\sin \theta_{13} d\theta_{13} d\phi_{13 \rightarrow 24}}{2 \sin \frac{\theta_{13}}{2}} \tilde{W}(\theta_{13}, \phi_{13 \rightarrow 24}) = \int \frac{\sin \theta_{12} d\theta_{12} d\phi_{12 \rightarrow 34}}{2 \cos \frac{\theta_{12}}{2}} W(\theta_{12}, \phi_{12 \rightarrow 34}) \quad (177)$$

716 for any function $\tilde{W}(\theta_{13}, \phi_{13 \rightarrow 24}) = W(\theta_{12}, \phi_{12 \rightarrow 34})$.

717 **2.1.6 Low temperature factorization of the kernel**

718 Among the fluids described by a Boltzmann equation, Fermi liquid have a remarkable property:
 719 their collision kernel $\mathcal{N}(\mathbf{p}, \mathbf{p}')$ can be factorized into a radial (or energy) dependance and an
 720 angular dependence on

$$\alpha = (\widehat{\mathbf{p}, \mathbf{p}'}), \quad \cos \alpha = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos \phi \quad (178)$$

721 This a consequence of the restriction of both the collision probabilities and energy-conservation
 722 constraint to the Fermi surface, such that the only remaining energy dependence in the kernel
 723 stems from the thermal populations n^{eq} .

724 We illustrate this decoupling in the calculation of S_{\pm} :

$$S_{\pm}(\mathbf{p}, \mathbf{p}') = \frac{(m^*)^2 T}{4\pi p_F |\sin \frac{\alpha}{2}|} \int_{-\infty}^{+\infty} N_{y_1, y_2}^{y_3} dy_2 \int \frac{d\Omega_2}{2\pi} W_{S\pm}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}', \mathbf{p} - \mathbf{p}' + \mathbf{p}_2) \delta \left(\cos \theta_2 + \sin \frac{\alpha}{2} \right) + O(T^2) \quad (179)$$

725 with $N_{y_1, y_2}^{y_3} = n(y_1)n(y_2)\bar{n}(y_3) + \bar{n}(y_1)\bar{n}(y_2)n(y_3)$ and $n(y) = 1/(1 + e^y)$. From the original
 726 expression (166), we have eliminated \mathbf{p}_4 using momentum conservation, and switched the
 727 radial integration from p_2 to y_2 using the relation, valid for a function $h(\mathbf{p}_2)$ peaked about p_F :

$$\int \frac{d^3 \mathbf{p}_2}{(2\pi)^3} h(\mathbf{p}_2) = \frac{m^* p_F T}{(2\pi)^2} \int_{-\infty}^{+\infty} dy_2 \int \frac{d\Omega_2}{2\pi} h(y_2, \theta_2, \phi_2) + O(T) \quad (180)$$

728 where the solid angle $d\Omega_2 = \sin \theta_2 d\theta_2 d\phi_2$ locates \mathbf{p}_2 on the spherical frame of axis $\mathbf{p} - \mathbf{p}'$, as
 729 depicted by Fig. 5b (with $\mathbf{p} = \mathbf{p}_1$, $\mathbf{p}' = \mathbf{p}_3$). To leading order in T , the resonance condition is

$$\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}_2} - \epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p} + \mathbf{p}_2 - \mathbf{p}'} = \frac{2p_F^2 \sin(\alpha/2)}{m^*} \left(\sin \frac{\alpha}{2} + \cos \theta_2 \right) + O(T) \quad (181)$$

730 and allows us to integrate over θ_2 in Eq. (179). Recognizing the angles of Eq. (174), we replace
 731 $W_{S\pm}(\mathbf{p}, \mathbf{p}_2 | \mathbf{p}', \mathbf{p} - \mathbf{p}' + \mathbf{p}_2)$ by $w_{S\pm}(\alpha, \phi_2)$, and there remains to integrate separately over the
 732 energy coordinate y_2 and the angle ϕ_2 . The same calculation for E leads to an expression
 733 similar to Eq. (179) with \mathbf{p}_3 playing to role of \mathbf{p}_2 .

734 We thus obtain the factorized kernels

$$E_{\pm}(y, y', \alpha) = \frac{(m^*)^2 T}{2\pi p_F} \mathcal{S}(y, -y') \Omega_{E\pm}(\alpha) + O(T^2) \quad (182)$$

$$S_{\pm}(y, y', \alpha) = \frac{(m^*)^2 T}{2\pi p_F} \mathcal{S}(y, y') \Omega_{S\pm}(\alpha) + O(T^2) \quad (183)$$

735 Here, \mathcal{S} is an energy kernel independent of the collision probabilities and thus universal to all
 736 Fermi liquids:

$$\mathcal{S}(y, y') = \frac{y - y'}{2} \frac{1}{\sinh \frac{y - y'}{2}} \frac{\cosh \frac{y}{2}}{\cosh \frac{y'}{2}} \quad (184)$$

737 The angular kernel $\Omega(\alpha)$ follows from an azimuthal integration over ϕ in the appropriate
 738 spherical frame

$$\Omega_{E\pm}(\alpha) = \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{w_{E\pm}(\alpha, \phi)}{2|\cos \frac{\alpha}{2}|} \quad (185)$$

$$\Omega_{S\pm}(\alpha) = \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{w_{S\pm}(\alpha, \phi)}{2|\sin \frac{\alpha}{2}|} \quad (186)$$

739 Changing the summation over \mathbf{p}' into integrals over y' and θ' , we express the collision
 740 integral in Eq. (172) as

$$I_{\pm}(y, \theta) = \frac{i}{\tau} g(y) \left\{ \bar{\Gamma}(y) \nu_{\pm}(y, \theta) + \int dy' \frac{d\Omega'}{2\pi} \left(S(y, -y') \frac{\Omega_{E\pm}(\alpha)}{\Omega_{\Gamma}} - 2S(y, y') \frac{\Omega_{S\pm}(\alpha)}{\Omega_{\Gamma}} \right) \nu_{\pm}(y', \theta') \right\} \quad (187)$$

741 We have extracted a typical collision time τ which gives the order of magnitude of the collision
 742 integral:

$$\frac{1}{\tau} = \frac{(m^*)^3 T^2}{(2\pi)^3} \left\langle \frac{W_{E+}(\theta, \phi)}{2 \cos \theta / 2} \right\rangle_{\theta, \phi} \quad (188)$$

743 where $\langle \dots \rangle_{\theta, \phi}$ is the average over solid angles, see Eq. (136). The damping rate Eq. (135) also
 744 scales with $1/\tau$:

$$\Gamma(\mathbf{p}) = \frac{1}{\tau} \bar{\Gamma}(y), \quad \bar{\Gamma}(y) \equiv \pi^2 + y^2 \quad (189)$$

745 Note that this can also be deduced from the number conservation law $\Gamma(\mathbf{p}) = (1/L^3) \sum_{\mathbf{p}'} S_+(\mathbf{p}, \mathbf{p}') = (1/\tau) \int_{-\infty}^{+\infty} S(y)$

746 2.1.7 Transport equation in the thermal window

747 We conclude this subsection by giving a dimensionless form of the transport equation (148)
 748 in the thermal window. Assuming a periodic driving $U_{\sigma}(\mathbf{q}, t) = U_{\sigma}(\mathbf{q}) e^{-i\omega t}$ and taking the
 749 average of (148) in $\hat{\mathcal{Q}} = \hat{\mathcal{Q}}_{\text{eq}}(T) + \delta\hat{\mathcal{Q}}(t)$, we get:

$$(\omega - v_F q u) n_{\sigma}(\mathbf{p}) + v_F q u \frac{\partial n_{\text{eq}}}{\partial \epsilon} \Big|_{\epsilon=\epsilon_{\mathbf{p}}} \left(U_{\sigma}(\mathbf{q}) + \frac{1}{L^3} \sum_{\mathbf{p}'\sigma'} f_{\sigma\sigma'}(\mathbf{p}, \mathbf{p}') n_{\sigma'}(\mathbf{p}') \right) = i I_{\sigma}^{\text{lin}}(\mathbf{p}, n) \quad (190)$$

750 where the quasiparticle distribution $n(\mathbf{p}, \mathbf{q}, t) = n(\mathbf{p}, \mathbf{q}) e^{i\omega t}$ is defined by Eq. (150) and $I_{\sigma}^{\text{lin}}(\mathbf{p}, n) = \langle \hat{I}_{\mathbf{p}\sigma}^{\text{lin}}(\hat{n}^{-\mathbf{q}}) \rangle$.
 751 Inserting the change of variable Eq. (170) we obtain:

$$\left(\frac{\omega}{\omega_0} - \cos \theta \right) \nu_{\pm}(y, \theta) + \cos \theta \left(1 - \frac{1}{2} \int dy' \frac{d\Omega'}{2\pi} F^{\pm}(\alpha) g(y') \nu_{\pm}(y', \theta') \right) = -\frac{i}{\omega_0 \tau} \left\{ \bar{\Gamma}(y) \nu_{\pm}(y, \theta) + \int dy' \frac{d\Omega'}{2\pi} \left(S(y, -y') \frac{\Omega_{E\pm}(\alpha)}{\Omega_{\Gamma}} - 2S(y, y') \frac{\Omega_{S\pm}(\alpha)}{\Omega_{\Gamma}} \right) \nu_{\pm}(y', \theta') \right\} \quad (191)$$

752 where

$$\omega_0 = v_F q \quad (192)$$

753 is the typical excitation frequency, and

$$F^{\pm}(\alpha) = \frac{m^* p_F f_{\uparrow\uparrow}(\alpha) \pm f_{\uparrow\downarrow}(\alpha)}{\pi^2} \quad (193)$$

754 are the dimensionless symmetric and anti-symmetric Landau functions. The $f_{\sigma\sigma'}$ are expressed
 755 here as in Eqs. (92)–(93) in terms of the angle α between the two wavevectors \mathbf{p} and \mathbf{p}' of
 756 norm p_F .

757 **2.2 Zero sound in the collisionless regime**

758 Since the regime of hydrodynamic transport is covered by Ref. [32], we concentrate here on the
 759 collisionless regime $\omega_0\tau \rightarrow +\infty$, where the collision integral can be treated as a perturbation
 760 of the transport equation. We will perform an expansion of the quasiparticle distribution ν_{\pm}
 761 in powers of $1/\omega_0\tau$:

$$\nu_{\pm} = \nu_{\pm}^{\text{cl}} + \frac{\delta \nu_{\pm}}{\omega_0\tau} + O(\omega_0\tau)^{-2}. \quad (194)$$

762 **2.2.1 Dispersion equation in the perfect collisionless regime ($\omega_0\tau = +\infty$)**

763 Let us first compute the leading term ν_{\pm}^{cl} in the perfect collisionless regime limit $1/\omega_0\tau = 0$.
 764 The low-temperature transport equation (191) in this regime is

$$(c - \cos \theta) \nu_{\pm}(y, \theta) = -\cos \theta \left(1 - \frac{1}{2} \int dy' \frac{d\Omega'}{2\pi} F^{\pm}(\alpha) g(y') \nu_{\pm}(y', \theta') \right) \quad (195)$$

765 where $c = \omega/\omega_0$. Since there is no explicit dependence on the energy variable y on the
 766 right-hand side, the collisionless distribution is energy-independent, $\nu_{\pm}^{\text{cl}} = \nu_{\pm}^{\text{cl}}(\theta)$. To solve the
 767 remaining 1D integral equation, we project ν_{\pm} and the interactions functions $F^{\pm}(\alpha)$ onto the
 768 basis of Legendre polynomials

$$\nu_{\pm}(\theta) = \sum_{l=0}^{+\infty} \nu_l^{\pm} P_l(\cos \theta) \quad (196)$$

$$F^{\pm}(\alpha) = \sum_{l=0}^{+\infty} F_l^{\pm} P_l(\cos \alpha) \quad (197)$$

769 To lighten the notations, the subscript “cl” is implicit here and until Sec. 2.2.4. The integral
 770 equation folds onto a matrix equation whose l -th component is given by

$$\nu_l^{\pm}(c) - \sum_{l'} A_{ll'}^{\pm}(c) \nu_{l'}^{\pm}(c) + B_{l0}(c) = 0 \quad (198)$$

771 where we have introduced the matrices

$$B_{ll'}(c) = \int_{-1}^1 \frac{du}{2} P_l(u) \frac{u}{c-u} P_{l'}(u) \quad (199)$$

$$A_{ll'}^{\pm}(c) = F_{l'}^{\pm} B_{ll'}(c) \quad (200)$$

772 This infinite-dimension linear system is solved by formally inverting the matrix $1 - A$:

$$\vec{\nu}^{\pm}(c) = -\frac{1}{1 - A^{\pm}(c)} \vec{B}_0(c) \quad (201)$$

773 where the source vector $\vec{B}_0 = (B_{l0})_{l \in \mathbb{N}}$ is the consequence of the external drive (recall that ν is
 774 scaled to the drive intensity U). A phononic collective modes occur when some component of
 775 the quasiparticle distribution ν diverges in response to the drive, *i.e.* when the matrix $1 - A^{\pm}(c)$
 776 has a zero-energy eigenvector. The dispersion equation on the reduced velocity $c_0 = \omega_q/v_F q$
 777 of the collective modes is then

$$\det(1 - A^{\pm}(c_0)) = 0, \quad (202)$$

778 This dispersion equation can have several solutions, both real and complex. However, when
 779 F_0 is much larger than the other F_l ’s, as in the case of weakly-interacting Fermi gases and
 780 ^3He , there is a dominant real solution, traditionally called zero sound. Physically, this solution
 781 describes a longitudinal collisionless phononic branch.

782 **2.2.2 Log-perturbative expansion of the zero-sound velocity**

783 We are now calculating the zero-sound reduced frequency c_0 in powers of \bar{a} in a weakly-
 784 interacting Fermi gas. In equation (198) for $l > 0$, the summation over l' is dominated by the
 785 term $l' = 0$ (which contains the dominant coefficient F_0) so that:

$$v_l^\pm = -B_{l0}(c) + F_0^\pm B_{l0}(c) v_0^\pm + O(\bar{a}), \quad \text{for } l \geq 1 \quad (203)$$

786 Anticipating on the followings, we have estimated $B_{ll'} = O(1/\bar{a})$. Reinjecting in (198) for
 787 $l = 0$, we eventually obtain $\bar{\chi}_\pm \equiv v_0^\pm$, which represents either the dimensionless density $\bar{\chi}_\rho$ or
 788 polarization $\bar{\chi}_p$ response, depending on the \pm index:

$$\bar{\chi}_\pm(c) = -\frac{B_{00}(c) + \sum_{l'>0} F_{l'}^\pm B_{0,l'}(c) B_{l',0}}{1 - F_0^\pm B_{0,0}(c) - \sum_{l'} F_0^\pm F_{l'}^\pm B_{0,l'}(c) B_{l',0}(c)} \quad (204)$$

789 The dispersion relation $1/\bar{\chi}(c_0) = 0$ now reduces to:

$$1 - F_0^\pm B_{0,0}(c_0) - \sum_{l'} F_0^\pm F_{l'}^\pm B_{0,l'}(c_0) B_{l',0}(c_0) = 0 \quad (205)$$

790 Since we expect that $c_0 - 1$ tends to zero exponentially as $|\bar{a}| \rightarrow 0$, we introduce the variable
 791 $\gamma = \ln[(c_0 - 1)/2]$. Contrarily to c_0 , γ can be expanded in power of \bar{a} :

$$\gamma^\pm = \frac{\gamma_0^\pm}{\bar{a}} + \gamma_1^\pm + O(\bar{a}) \quad (206)$$

792 The log-perturbative corrections to γ convert into a prefactor correction in $c_0 - 1$, reminiscent
 793 of the Gork'ov Melik-Barkhudarov prefactor in the calculation of the superfluid critical
 794 temperature [37]. When c_0 tends to 1 exponentially, the functions $B_{ll'}$ have the following
 795 expansion

$$B_{00}(c_0) = -1 - \frac{1}{2} \gamma^\pm + O(\bar{a}) \quad \text{and} \quad B_{l0}(c_0) = B_{0l}(c_0) = \frac{\gamma^\pm}{2} + O(1) \quad (207)$$

796 By substituting the expansions of γ , of the Landau parameters F_l^\pm and of the functions $B_{ll'}$
 797 into (205), and by restricting to terms of order $O(\bar{a})$, we obtain the following expressions of
 798 γ_0^\pm and γ_1^\pm :

$$\gamma_0^\pm = \mp \pi \quad \text{and} \quad \gamma_1^\pm = -2 + \frac{\pi^2}{2\bar{a}^2} \left(\sum_{l>0} F_l^\pm + \delta F_0^\pm \right) = \pm 4 \quad (208)$$

799 where we have expanded F_0^\pm as:

$$F_0^\pm = \pm \frac{2\bar{a}}{\pi} + \delta F_0^\pm, \quad \delta F_0^\pm = O(\bar{a}^2) \quad (209)$$

800 We eventually recognize in γ^\pm the sum of the F_l^\pm that is the forward value ($\alpha = 0$) of F^\pm .

$$\gamma^\pm = -\frac{2}{F^\pm(\alpha = 0)} - 2 + O(\bar{a}) \quad (210)$$

801 This shows that the Landau function $F(\alpha)$ in the integral equation (195) can be replaced (to
 802 leading and subleading order in \bar{a}) by its value in $\alpha = 0$, that is for quasiparticles with colinear
 803 momenta $\mathbf{p} \parallel \mathbf{p}'$. This is a consequence of the longitudinal nature of zero sound at weak-
 804 coupling: the quasiparticle distribution $v_\pm(\theta) \propto \cos \theta / (c_0 - \cos \theta)$ is peaked about $\theta = 0$,
 805 such that the quasiparticle momenta \mathbf{p} are all nearly colinear to \mathbf{q} .

806 In short, the zero sound velocity (in units of v_F) for the density mode is given by

$$c_0^+ = 1 + 2e^4 e^{-\pi/\bar{a}}, \quad \bar{a} > 0 \quad (211)$$

807 and the velocity for the zero polarization mode is:

$$c_0^- = 1 + 2e^{-4} e^{\pi/\bar{a}}, \quad \bar{a} < 0 \quad (212)$$

808 Second order corrections thus shift the density zero sound peak to higher velocities in the
 809 density-density response, increasing $c_0^+ - 1$ by a factor $\exp(6) \simeq 403$. We then expect the
 810 resonance to be more easily observable than predicted by first-order approximations. Since it
 811 exists only for $\bar{a} > 0$, the density zero sound is observable in a Fermi gas only on the metastable
 812 branch. Experimental exploration of this metastable branch are restricted to $|\bar{a}| \lesssim 0.1$, where
 813 zero sound is visible only at very low temperatures.

814 Conversely, the polarisation sound mode, which is observable on the ground branch at
 815 $\bar{a} < 0$, is shifted closer to the continuum edge, with $c_0^- - 1$ reduced by a factor $\exp(-2) \simeq 0.14$.
 816 This reduces the temperature range in which this zero sound mode is observable.

817 We have benchmarked these analytical results using a numerical solution of Eq. (198).
 818 More details for the numerical evaluation are given in Appendix B.

819 2.2.3 Response function in the collisionless regime

820 Our discussion of zero sound so far has focused on reduced frequencies $c \approx c_0 \approx 1$. We now dis-
 821 cuss numerically the rest of the spectrum in the density-density response $\text{Im}[\bar{\chi}_\rho] = \text{Im}[\nu_+^0]$ and
 822 polarisation-polarisation response. Figs. 6 and 7 show the reduced spectral density $\text{Im}[\bar{\chi}_{\rho,p}(c+i0^+)]$.
 823 In the attractive case $\bar{a} < 0$ (red curves), second-order corrections tend to decrease the devia-
 824 tions of $\text{Im}[\bar{\chi}_\rho]$ and $\text{Im}[\bar{\chi}_p]$ from the Lindhard response of an ideal gas (black curve). Since a
 825 stable Fermi liquid regime exists in ultracold Fermi gases only for $\bar{a} < 0$, this behavior should
 826 be the easiest to observe in cold atom experiments. Conversely, in the repulsive case $\bar{a} > 0$
 827 (blue curves), the deviations are increased to second-order. This can be understood by com-
 828 paring the first- and second-order approximation of the Landau parameters. For the leading
 829 coefficient, F_0^\pm , we have:

$$\frac{F_0^{+(2)}}{F_0^{+(1)}} \simeq 1 + 1.143 \bar{a} \quad (213)$$

$$\frac{F_0^{-(2)}}{F_0^{-(1)}} \simeq 1 + 0.130 \bar{a} \quad (214)$$

830 Thus, for negative (resp. positive) \bar{a} , the second-order F_0^\pm is smaller (resp. larger) than its
 831 first-order counterpart both. As a result, the effective interaction between quasiparticles is
 832 reduced (resp. increase), tending to restore (resp. remove) the behavior of an ideal gas. Even
 833 though this is true both in the density and polarisation channel, the effect is ≈ 10 times larger
 834 in the density channel.

835 In the density response (Fig. 6), a zero sound resonance appears, in the repulsive case, as
 836 a Dirac peak at $c_0 > 1$; there remains also a secondary peak near the edge of the quasiparticle-
 837 quasihole continuum for $c \lesssim 1$ (see inset). This secondary peak visibly shrinks as second-order
 838 corrections push the zero sound resonance away from the continuum. In the attractive case,
 839 interactions tend to smoothen the sharp behavior at the continuum edge, and the density
 840 response becomes a broad, featureless spectral function.

841 Conversely, in the polarisation response (Fig. 7), the resonance appears in the attractive
 842 case, and the broad structure in the repulsive case, which indicates a repulsive/attractive,

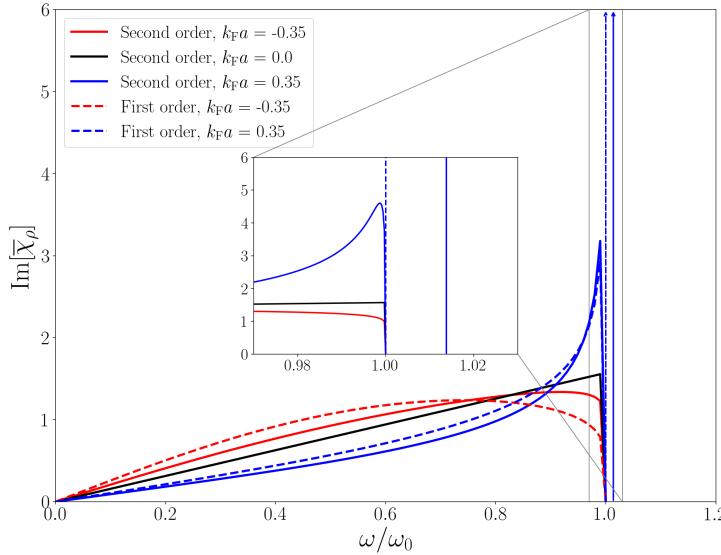


Figure 6: The reduced spectral density $\text{Im}[\bar{\chi}_\rho(c + i0^+)] = \text{Im}[\nu_0^+(c + i0^+)]$ as a function of $c = \omega/\omega_0$, for different values of $\bar{a} = k_F a$, blue curves for $\bar{a} > 0$ and red curves for $\bar{a} < 0$. The dashed lines correspond to the first order calculation [48]. The black line is the non-interacting case. The solid curves include second-order effects; they are obtained by numerically solving (198) truncated to $l_{\max} = 100$.

843 density/polarisation duality. This time, the resonance is brought closer to the continuum edge
 844 by second-order corrections, and the secondary peak near the continuum edge grows. In
 845 presence of a small spectral broadening (either due to collisional damping, Landau damping
 846 or experimental resolution) the two peaks would become indistinguishable.

847 2.2.4 Collisional damping of zero sound

848 We now aim to include the collisional correction $\delta \nu_\pm$ (see Eq. (194)) in the distribution ν_\pm .
 849 In the regime where c is exponentially close to 1 ($\gamma = \ln([c - 1]/2) \rightarrow -\infty$), the leading-
 850 order solution ν_\pm^{cl} can be written more simply by discarding the Legendre decomposition and
 851 returning to the angular variable θ :

$$\nu_\pm^{\text{cl}}(\theta) = \frac{\cos \theta}{c - \cos \theta} \cdot \frac{\rho_\pm^{\text{cl}}}{2B_{00}(c)} \quad (215)$$

852 This solution was obtained by replacing $F^\pm(\alpha)$ with $F^\pm(0)$ in Eq. (195), as shown in Section
 853 2.2.2. To simplify the notation, we denote by $\delta \rho_\pm^{\text{cl}}$ the $l = 0$ component of ν_\pm^{cl} , that is:

$$\rho_\pm^{\text{cl}} = \nu_\pm^{0,\text{cl}} = \int_0^\pi \sin \theta d\theta \nu_\pm^{\text{cl}}(\theta) \quad (216)$$

854 We define ρ_\pm in the same way. We then substitute the expansion of ν_\pm given in Eq. (194) into
 855 (191), keeping terms up to order $1/\omega_0 \tau$. Thus, in the collision integral, ν_\pm is replaced by its
 856 leading-order expression ν_\pm^{cl} . Since ν_\pm^{cl} does not depend on energy, we perform an averaging
 857 to eliminate the dependence of the collision integral on y and y' :

$$\int_{-\infty}^{+\infty} dy' \mathcal{S}(y, \pm y') = \bar{\Gamma}(y), \quad \int_{-\infty}^{+\infty} dy g(y) \bar{\Gamma}(y) = \frac{4\pi^2}{3} \quad (217)$$

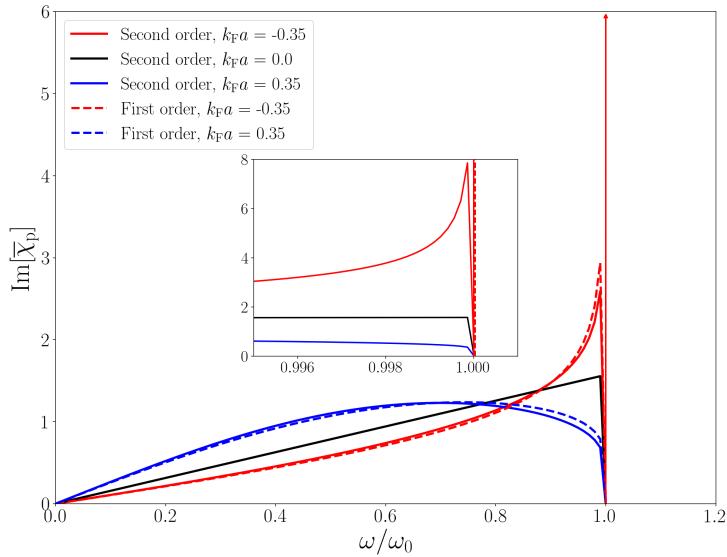


Figure 7: The reduced spectral density for the polarisation $\text{Im}[\bar{\chi}_p(c + i0^+)] = \text{Im}[\nu_0^-(c + i0^+)]$ for the same parameters as Fig. 6.

858 We then obtain the following equation for ν_{\pm} :

$$\nu_{\pm}(\theta) = -\frac{\cos \theta}{c - \cos \theta} \left(1 - \frac{F^{\pm}(0)}{2} \rho_{\pm} \right) - \frac{4\pi^2}{3} \frac{i}{\omega_0 \tau} \frac{1}{c - \cos \theta} \left(\nu_{\pm}^{\text{cl}}(\theta) + \int \frac{d\Omega'}{2\pi} \mathcal{N}_{\pm}(\alpha) \nu_{\pm}^{\text{cl}}(\theta') \right) \quad (218)$$

859 where the angular collision kernel $\mathcal{N}_{\pm}(\alpha)$ and its expansion in Legendre polynomials are given
860 in Appendix C.

861 We then integrate over θ so as to obtain ρ_{\pm} on the left-hand side. In the collision integral,
862 ρ_{\pm}^{cl} can be replaced by the total density ρ_{\pm} , neglecting terms of order $1/(\omega_0 \tau)^2$. We thus
863 obtain the following solution:

$$\rho_{\pm}(c) = \frac{-2B_{00}(c)}{1 - F^{\pm}(0)B_{00}(c) + \frac{i}{\omega_0 \tau} \frac{2\pi^2}{3} \frac{C_{\pm}(c)}{B_{00}(c)}} \quad (219)$$

864 where the collisional contribution C_{\pm} is given by:

$$C_{\pm}(c) = \int_0^{\pi} d\theta \frac{\sin \theta \cos \theta}{(c - \cos \theta)^2} + \int \frac{d\Omega'}{2\pi} d\theta \frac{\sin \theta \cos \theta'}{(c - \cos \theta)(c - \cos \theta')} \mathcal{N}_{\pm}(\alpha) \quad (220)$$

865 Since these integrals are dominated by the vicinity of $\theta = 0$ and $\theta' = 0$, the collision kernel
866 $\mathcal{N}_{\pm}(\alpha)$ can be replaced by its value at $\alpha = 0$. This can again be interpreted as a consequence
867 of the quasi-longitudinal nature of zero sound in the weak-interaction regime. We thus arrive
868 at

$$C_{\pm}(c) \simeq -B'_{00}(c) (1 + 2(c - 1)\gamma^2(c) \mathcal{N}_{\pm}(0)) \quad (221)$$

869 with $\gamma(c) = \ln \frac{c-1}{2}$. A more general calculation of the function C_{\pm} is given in Appendix C.

870 To obtain the collisional correction to the zero-sound velocity, we now solve the equation

$$\frac{1}{\rho_{\pm}(z_0^{\pm})} = 0, \quad \text{with } z_0^{\pm} = c_0^{\pm} + \delta c_0^{\pm}. \quad (222)$$

871 Expanding the denominator of ρ_{\pm} in powers of $O(1/\omega_0\tau)$, we finally extract the collisional
 872 correction to zero sound, which is purely imaginary:

$$\delta c_0^{\pm} = \frac{2\pi^2}{3} \frac{i}{\omega_0\tau} \frac{C_{\pm}(c_0^{\pm})}{B'_{00}(c_0^{\pm})} = -\frac{2\pi^2}{3} \frac{i}{\omega_0\tau} + O(c_0 - 1). \quad (223)$$

873 This result describes the broadening of the zero-sound resonance in the response functions
 874 $\chi_{\rho}(c)$ and $\chi_p(c)$, or equivalently, its exponential damping in the time domain. It is worth
 875 noting that $\text{Im}(c_0)$ depends on the collision probability W only through the mean collision
 876 time τ , which makes the product $\omega_0\tau, \text{Im}(c_0)$ universal in weakly interacting Fermi liquids.

877 In this sense, the damping of zero sound differs from that of hydrodynamic sound (first
 878 sound), which is sensitive—via the shear viscosity η —to the angular dependence of W , and
 879 therefore varies with $k_F a$ in a way that differs significantly from τ .

880 2.3 Numerical solution in the collisionless to hydrodynamic crossover

881 Between the weakly collisional regime studied in Section 2.2 and the hydrodynamic regime
 882 treated in Ref. [32], there exists a smooth transition as a function of $\omega_0\tau$ [31, 49]. In the
 883 following, we develop a numerical method that allows us to solve the transport equation (191)
 884 in this intermediate regime.

885 2.3.1 Numerical method

886 In order to solve the transport equation (191), we project v_{\pm} onto basis of orthogonal polyno-
 887 mials:

$$v_{\pm}(y, \theta) = \sum_{n,l \in \mathbb{N}} v_{n\pm}^l P_l(\cos \theta) Q_n(y) \quad (224)$$

888 where the P_l are the Legendre polynomials. The orthogonal polynomials Q_n for the energy
 889 dependence [50] are defined by $Q_0 = 1$, $Q_1 = y$ and

$$\int_{-\infty}^{\infty} \frac{dy}{4 \cosh^2 \frac{y}{2}} Q_n(y) Q_m(y) = \delta_{n,m} \|Q_n\|^2 \quad (225)$$

$$y Q_n = Q_{n+1} + \xi_n Q_{n-1} \quad \text{with} \quad \xi_n = \frac{\|Q_n\|^2}{\|Q_{n-1}\|^2} \quad (226)$$

890 The decomposition over the Q_n allows for an exact treatment of the energy dependence, be-
 891 yond the relaxation time approximations, which limit the quasiparticle distribution to its $n = 0$
 892 component. The decomposed transport equation reads

$$\left(\frac{\omega}{\omega_0} + \frac{i}{\omega_0\tau} \mathcal{M}_{\pm}^l \right) \vec{v}_{\pm}^l - \frac{l}{2l-1} \bar{F}_{l-1}^{\pm} \vec{v}_{\pm}^{l-1} - \frac{l+1}{2l+3} \bar{F}_{l+1}^{\pm} \vec{v}_{\pm}^{l+1} = -\delta_{l,1} \vec{u}_0 \quad (227)$$

893 where we have introduced a set of vectors and matrices

$$\vec{v}_{\pm}^l = \begin{pmatrix} v_{0\pm}^l \\ v_{1\pm}^l \\ \vdots \end{pmatrix}, \quad \vec{u}_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \end{pmatrix}, \quad \mathcal{U}_0 = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & 1 \end{pmatrix} \quad (228)$$

$$\bar{F}_l^{\pm} = \left(1 + \frac{F_l^{\pm}}{2l+1} \mathcal{U}_0 \right) = \begin{pmatrix} 1 + \frac{F_l^{\pm}}{2l+1} & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & 1 \end{pmatrix} \quad (229)$$

895 The collision time τ has been defined (188). The infinite matrix $(\mathcal{M}_{\pm}^l)_{nn'}$ follows from the
 896 decomposition of the collision kernel $\mathcal{N}(\mathbf{p}, \mathbf{p}')$ (see Eq. (164)) over the orthogonal basis; its
 897 expression in terms of W is given in Ref. [32].

898 We now present a numerical scheme to solve the transport equation (227) based on a
 899 backward recurrence on l . Assuming that at rank $l+1$, the component \vec{v}^{l+1} has been linearly
 900 expressed in terms of \vec{v}^l , we can propagate the linear relation backward in l :

$$\vec{v}^l = \mathcal{H}^l \vec{v}^{l-1} \quad (230)$$

901 where we omitted the \pm index for convenience. Numerically, we introduce a truncation parameter
 902 n_{\max} and represent the infinite matrix \mathcal{H}^l by a complex $n_{\max} \times n_{\max}$ matrix. Substituting
 903 this relation into equation (227) for $l > 1$, we derive the following backward recurrence relation on \mathcal{H}^l .

$$\mathcal{H}^l = \frac{l}{2l-1} \left(\left(\frac{\omega}{\omega_0} + \frac{i}{\omega_0 \tau} \mathcal{M}^l \right) - \frac{l+1}{2l+3} \bar{F}_{l+1} \mathcal{H}^{l+1} \right)^{-1} \bar{F}_{l-1} \quad (231)$$

905 To initialize the recurrence, we introduce a cutoff l_{\max} and we assume $\mathcal{H}^{l_{\max}+1} = 0$. At the end
 906 of the backward recurrence, we solve the remaining $2n_{\max} \times 2n_{\max}$ coupled system on \vec{v}^0 and
 907 \vec{v}^1

$$\begin{cases} \left(\frac{\omega}{\omega_0} + \frac{i}{\omega_0 \tau} \mathcal{M}_+^0 \right) \vec{v}_+^0 = \frac{1}{3} \bar{F}_1^+ \vec{v}_+^1 \\ \left(\frac{\omega}{\omega_0} + \frac{i}{\omega_0 \tau} \mathcal{M}_+^1 \right) \vec{v}_+^1 - \bar{F}_0^+ \vec{v}_+^0 - \frac{2}{5} \bar{F}_2^+ \mathcal{H}_+^2 \vec{v}_+^1 = -\vec{u}_0 \end{cases} \quad (232)$$

908 Here, \mathcal{H}_+^2 is computed recursively, starting from $l = l_{\max}$. We choose the values of l_{\max} and n_{\max}
 909 based on a convergence analysis. Selecting cutoffs that are too low may lead to non-physical
 910 oscillations in the response functions. We note that l_{\max} and n_{\max} depend on the regime of
 911 $\omega_0 \tau$ under study. In the collisionless regime, we can restrict ourselves to small values of n_{\max} .
 912 This confirms the observation made in the previous section: the energy dependence of ρ_{\pm}
 913 is contained in the collision term, which is subdominant. Conversely, in the hydrodynamic
 914 regime, small values of l_{\max} suffice. The conserved quantities are at $l = 0$ or 1 and the non-
 915 conserved quantities at $l \geq 2$ decay as $(\omega_0 \tau)^l$ [50].

916 2.3.2 Anisotropic driving potential for the polarisation

917 The polarisation response to the isotropic drive introduced in Eq. (137) vanishes as $\omega_0 \tau$ in
 918 the hydrodynamic regime. This is because such a drive couples to a dissipative component
 919 (v_{0-}^1). To make the diffusive mode of polarisation observable, one should rather couple the
 920 drive directly to the conserved quantity $n_{\uparrow} - n_{\downarrow}$, in the $l = 0$ channel. To do so, we assume
 921 that the driving potential can be varied independently with \mathbf{q} and \mathbf{p} :

$$\hat{H}_{\text{ext}} = \sum_{\mathbf{p} \in \mathcal{D}} U_-(\mathbf{p}, \mathbf{q}) \left(\hat{\gamma}_{\mathbf{p}+\mathbf{q}/2, \uparrow}^{\dagger} \hat{\gamma}_{\mathbf{p}-\mathbf{q}/2, \uparrow} - \hat{\gamma}_{\mathbf{p}+\mathbf{q}/2, \downarrow}^{\dagger} \hat{\gamma}_{\mathbf{p}-\mathbf{q}/2, \downarrow} \right) \quad (233)$$

922 The dependence of the driving potential on p is irrelevant, so that we can write:

$$U_-(\mathbf{p}, \mathbf{q}) = U_-(\mathbf{q}) u(\theta) \quad (234)$$

923 This change of \hat{H}_{ext} modifies the source term in the polarisation transport equation:

$$\left(\frac{\omega}{\omega_0} - \cos \theta \right) v_-(y, \theta) + \cos \theta \left[u(\theta) - \frac{1}{2} \int dy' \frac{d\Omega'}{2\pi} F^-(\alpha) g(y') v_-(y', \theta') \right] = -iI(y, \theta) \quad (235)$$

924 To couple the drive directly to the polarisation fluctuations, the product $u(\theta) \cos \theta$ should
 925 have a non-vanishing $l = 0$ component, which can be achieved with $u(\theta) = \cos \theta$ for example.

926 For simplicity, we omit here the components $l \geq 1$ whose contribution is negligible in the
 927 hydrodynamic limit, *i.e.* we assume $u(\theta)\cos\theta = 1$. The set of equations to be solved at the
 928 end of the backward recurrence is then:

$$\begin{cases} \left(\frac{\omega}{\omega_0} + \frac{i}{\omega_0\tau} \mathcal{M}_-^0 \right) \vec{v}_-^0 = \frac{1}{3} \bar{F}_1^- \vec{v}_-^1 - \vec{u}_0 \\ \left(\frac{\omega}{\omega_0} + \frac{i}{\omega_0\tau} \mathcal{M}_-^1 \right) \vec{v}_-^1 - \bar{F}_0^- \vec{v}_-^0 - \frac{2}{5} \bar{F}_2^- \mathcal{H}_-^2 \vec{v}_-^1 = 0 \end{cases} \quad (236)$$

929 **2.3.3 Response functions in the collisionless-to-hydrodynamic crossover**

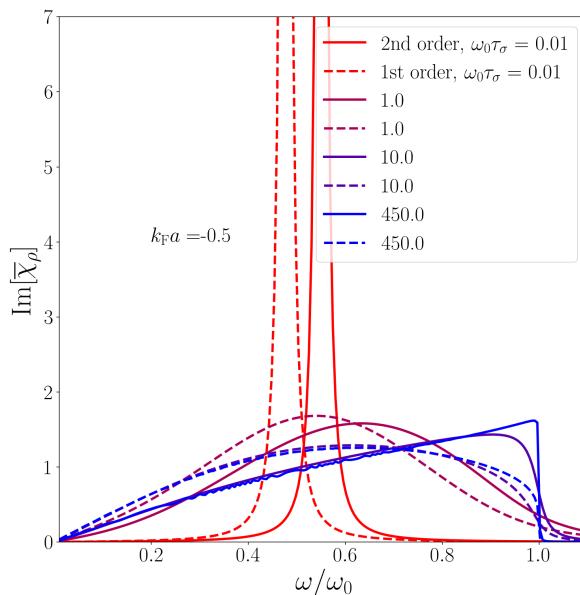


Figure 8: The crossover between the hydrodynamic (red curves) and collisionless (blue curves) regimes in the reduced spectral density, $\text{Im}[\tilde{\chi}_\rho] = \text{Im}[\nu_{0+}^0]$, at interaction strength $k_F a = -0.5$. The collision parameter $\omega_0 \tau_\sigma$ is given in [32]. Dashed lines indicate the first-order analytical solution, while solid lines correspond to the second-order correction. Here and in Figs. 9 and 10, the summation over n is truncated from $n_{\max} = 50$ in the hydrodynamic regime to $n_{\max} = 5$ in the collisionless regime. Similarly, the truncation in l is set to $l_{\max} = 5$ in the hydrodynamic regime and to $l_{\max} = \omega_0 \tau_0$ outside of it.

930 We illustrate the collisionless-to-hydrodynamic crossover for the density (Figs. 8 and 9
 931 for the attractive and repulsive case respectively) and for the polarization response functions
 932 (Figs. 10, for the attractive case). We compare the first-order prediction (dashed curves) to
 933 the second-order prediction derived in this work (solid curves).

934 In the density response function, we observe a shift of the first sound peak toward higher
 935 velocities when comparing the first-order and second-order calculations. Recall that the first
 936 sound velocity (in units of v_F) is given by

$$c_1 = \sqrt{\frac{(1 + F_0^+)(1 + F_1^+/3)}{3}}. \quad (237)$$

937 Since the second-order terms in F_0^+ and F_1^+ are positive (irrespectively of the sign of $k_F a$), they
 938 increase the value of c_1 compared to the first-order result.

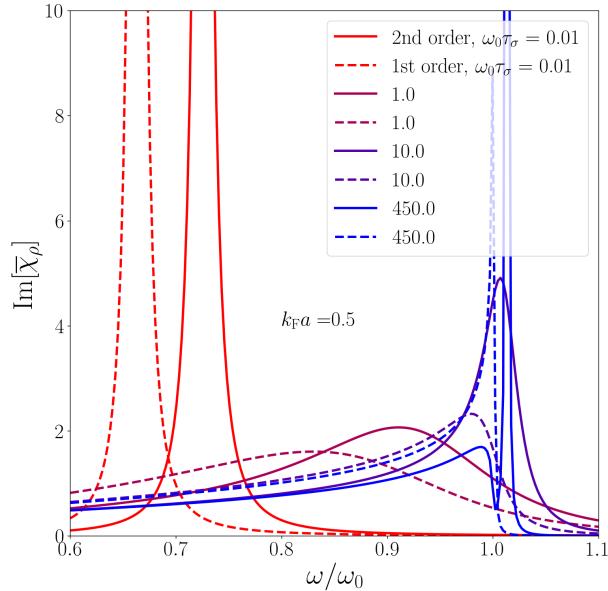


Figure 9: The crossover between the hydrodynamic (red curves) and collisionless (blue curves) regimes in the reduced spectral density, $\text{Im}[\bar{\chi}_\rho] = \text{Im}[\nu_{0+}^0]$, at interaction strength $k_Fa = 0.5$. Dashed lines indicate the first-order analytical solution, while solid lines correspond to the second-order correction. The summation over n is truncated from $n_{\max} = 50$ in the hydrodynamic regime to $n_{\max} = 5$ in the collisionless regime. Similarly, the truncation in l is set to $l_{\max} = 5$ in the hydrodynamic regime and to $l_{\max} = \omega_0\tau_\sigma$ outside of it.

939 In the collisionless regime, a zero-sound mode is present in the repulsive case (Fig. 9),
 940 possibly with a secondary peak near the edge the continuum. The resolution of those two
 941 peaks allows us to further divide the collisionless regime into two sub-regimes according to
 942 the value of $\omega_0\tau$. For $1/(c_0 - 1) \gg \omega_0\tau \gg 1$ ($\omega_0\tau \approx 100$ in Fig. 9) the zero-sound mode is
 943 not separated from the quasiparticle-hole continuum, which gives rise to a single peak with an
 944 important left skewness. A deeper collisionless regime, or true zero sound regime, is reached
 945 for $\omega_0\tau \gg 1/(c_0 - 1)$ ($\omega_0\tau \approx 4500$ in Fig. 9). In this regime, zero sound separates from
 946 the continuum, which however retains a significant spectral weight. This deep regime is more
 947 easily reached when second order terms are included (compare the blue solid and blue dashed
 948 curves in Fig. 9); this is because $c_0 - 1$ is much larger in the second- than in the first-order
 949 approximation. In between the hydrodynamic and collisionless regimes, the density response
 950 function retains a shallow maximum whose location smoothly evolves from c_1 to c_0 . This peak
 951 is however too broad to be identified as a collective mode: its width Δc is comparable to 1 in
 952 units of v_F .

953 We now turn to the polarisation response (Fig 10). In the collisionless regime (blue curves),
 954 we observe a skewed peaked at the continuum edge, but no zero sound resonance yet for
 955 $\omega_0\tau = 4500$ (blue curve). Again, this can be understood by comparing $\omega_0\tau$ to $1/(c_0 - 1)$: the
 956 log-perturbative corrections from the second-order approximation reduce the deep collision-
 957 less regime to $\omega_0\tau \gtrsim 10^5$ for $k_Fa = -0.5$. In the hydrodynamic regime (red curves), there
 958 appears a diffusive mode centered in $\omega = 0$, as predicted by the Navier-Stokes equations of
 959 the Fermi liquid [32]. Note that the large spectral weight of this peak is a consequence of
 960 our choice of an anisotropic drive Eq. (233). In between the collisionless and hydrodynamic

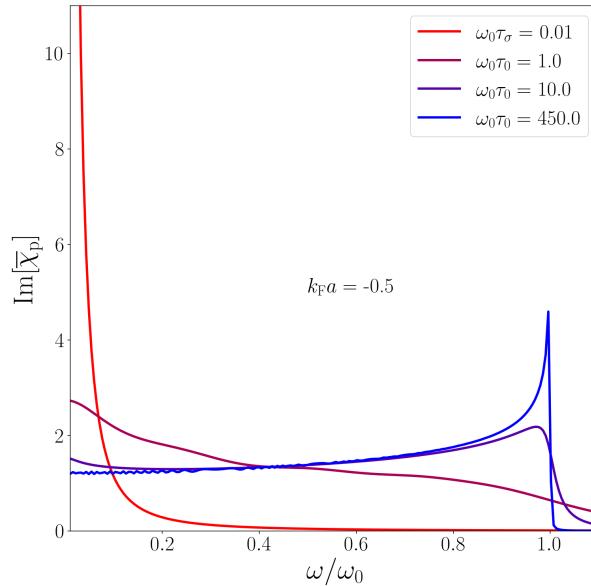


Figure 10: The crossover between the hydrodynamic (red curves) and collisionless (blue curves) regimes in the reduced spectral density for the polarisation, $\text{Im}[\bar{\chi}_p] = \text{Im}[\nu_{0-}^0]$, at interaction strength $k_F a = -0.5$.

961 limits, the polarisation response displays a very flat profile between two local minima in $c = 0$
 962 and $c \approx 1$.

963 3 Superfluid pairing of Landau quasiparticles

964 In this section, we use the Landau quasiparticles, and their effective Hamiltonian Eq. (49),
 965 to describe (in principle exactly) the superfluid phase from the superfluid instability down to
 966 $T = 0$. Our description is valid provided superfluidity remains a weak phenomenon in the
 967 sense that

$$\Delta, T_c \ll \epsilon_F \quad (238)$$

968 where Δ is the superfluid order parameter and T_c is the critical temperature. Weak fermionic
 969 superfluids should then be viewed as condensates of quasiparticle pairs [34], schematically de-
 970 picted by Fig. 11; this is a substantial improvement from the pairs of bare particles interacting
 971 via the bare interaction (as described by BCS theory), or even from the frequent picture of bare
 972 particles interacting via a screened interaction. The head-on collisions $\mathbf{p}, -\mathbf{p} \rightarrow \mathbf{p}', -\mathbf{p}'$ among
 973 quasiparticles, described by the amplitude \mathcal{A} , favor the pairing instability and the appearance
 974 of a nonzero pairing field. We shall see that the pairing collision amplitude $\mathcal{A}(\mathbf{p}, -\mathbf{p} | \mathbf{p}', -\mathbf{p}')$
 975 must exhibit a logarithmic divergence as $\Lambda/\epsilon_F \rightarrow 0$ to ensure the existence of a superfluid
 976 phase.

977 In our approach, the compatibility of the quasiparticle picture with the existence of a su-
 978 perfluid ground state is tied to the cutoff Λ . Exciting a few pairs at the Fermi level (from e.g.
 979 the Fermi sea or the superfluid ground state) will change the energy of the interacting system
 980 by $\approx \Delta$. The corresponding transition in the noninteracting fluid is conversely quasi-resonant.
 981 Thus the weak crossing condition on the spectrum of the Fermi liquid (Eq. (4)) is compatible

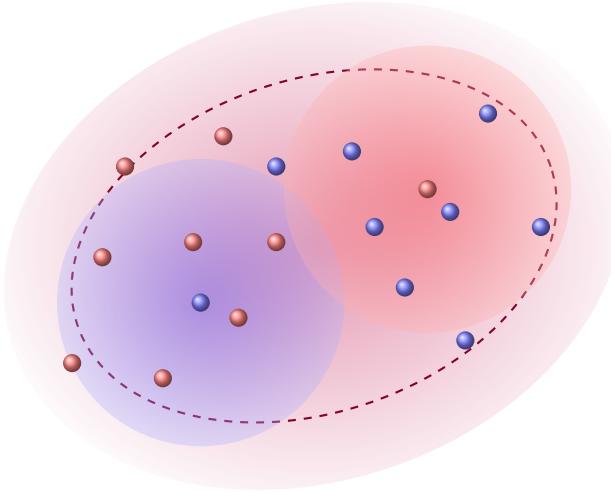


Figure 11: Cooper pairs (dashed ellipse) in a Fermi superfluid are pairs of \uparrow and \downarrow Landau quasiparticles (red and blue clouds). To first order, the spin- \uparrow quasiparticle can be seen as a cloud of spin- \downarrow particles (blue dots) surrounding the original spin- \uparrow particle (red dot).

982 with the existence of a pair binding energy as long as

$$\Delta, T_c \ll \Lambda \quad (239)$$

983 **3.1 Pairing equation**

984 We formulate an evolution equation that captures the onset of quasiparticle pairing in the
 985 normal phase [17], as the system approaches the critical temperature $T \rightarrow T_c^+$. This equation is
 986 to the quasiparticle pairing field $\hat{\gamma}_\sigma \hat{\gamma}_{\sigma'}$ what the transport equation is to the density field $\hat{\gamma}_\sigma^\dagger \hat{\gamma}_\sigma$.
 987 Although pairing is in principle not restricted to the singlet spin wavefunction (as in e.g. the
 988 A-phase of ${}^3\text{He}$), we have in mind here the case of ultracold fermions, where the interactions
 989 among opposite spin quasiparticles $\mathcal{A}_{\uparrow\downarrow}$ dominate and favor the formation of $\uparrow\downarrow$ pairs. We thus
 990 restrict to spin-singlet pairs; the corresponding quantum pairing field in momentum space is

$$\hat{d}_\mathbf{p}^\mathbf{q} = \hat{\gamma}_{-\mathbf{p}-\mathbf{q}/2,\downarrow} \hat{\gamma}_{\mathbf{p}-\mathbf{q}/2,\uparrow} \quad (240)$$

991 This operator effectively annihilates a pair of $\mathbf{p} \uparrow, -\mathbf{p} \downarrow$ quasiparticles with a center-of-mass
 992 momentum \mathbf{q} . By definition, its expectation value vanishes in an equilibrium state of the
 993 normal phase $\langle \hat{d}_\mathbf{p}^\mathbf{q} \rangle_{\text{eq}} = 0$ for $T > T_c$. However, fluctuations of \hat{d} are possible for example
 994 under the influence of an external potential. The pair susceptibility, or pair response function,
 995 then quantifies the magnitude of these fluctuations with respect to the drive intensity. We are
 996 looking for a divergence of the pair susceptibility, that would signal that the normal phase
 997 becomes unstable, and the system undergoes a phase transition.

998 To compute the pair susceptibility, we introduce an external perturbation \hat{H}_{ext} that couples
 999 directly to the pair field:

$$\hat{H}_{\text{ext}} = \phi(-\mathbf{q}, t) \sum_{\mathbf{p}} \left(\hat{d}_{\mathbf{p}}^{-\mathbf{q}} \right)^\dagger + \text{h.c.} \quad (241)$$

1000 where the external pairing source oscillates at frequency ω , $\phi(\mathbf{q}, t) = \phi(\mathbf{q}) e^{-i\omega t}$, causing $\hat{d}_\mathbf{p}^\mathbf{q}$ to
 1001 oscillate at frequency $\omega - 2\mu$. We expand the state of the system about a thermal quasiparticle

1002 state $\hat{\rho} = \hat{\rho}_{\text{eq}}(T) + \delta\hat{\rho}$ (see Eq. (129) for the definition of $\hat{\rho}_{\text{eq}}(T)$). Within linear response, the
 1003 deviation from equilibrium is controlled by the drive intensity $\delta\hat{\rho} = O(\phi/\epsilon_F)$. We then evolve
 1004 $\hat{d}_{\mathbf{p}}^{\mathbf{q}}$ according to the Heisenberg equation of motion

$$i\partial_t \hat{d}_{\mathbf{p}}^{\mathbf{q}} = [\hat{d}_{\mathbf{p}}^{\mathbf{q}}, \hat{H} + \hat{H}_{\text{ext}}] \quad (242)$$

1005 The derivation proceeds analogously to the derivation of the transport equation in Sec. 1.3.
 1006 The streaming term arises from the diagonal part of the Hamiltonian:

$$[\hat{d}_{\mathbf{p}}^{\mathbf{q}}, \hat{H}_2 + \hat{H}_4^{\text{d}} + \hat{H}_{\text{ext}}] = (\hat{\epsilon}_{\mathbf{p}-\mathbf{q}/2,\uparrow} + \hat{\epsilon}_{-\mathbf{p}-\mathbf{q}/2,\downarrow}) \hat{d}_{\mathbf{p}}^{\mathbf{q}} + (1 - n_{\mathbf{p}+\mathbf{q}/2}^{\text{eq}} - n_{\mathbf{p}-\mathbf{q}/2}^{\text{eq}}) \phi(\mathbf{q}) + O(\phi)^2 \quad (243)$$

1007 with $\hat{\epsilon}_{\mathbf{p},\sigma} = \epsilon_{\mathbf{p}}$ to leading order in T/T_F . In the quartic terms stemming from \hat{H}_4^{x} , we inject the
 1008 cumulant expansion Eq. (119) :

$$[\hat{d}_{\mathbf{p}}^{\mathbf{q}}, \hat{H}_4^{\text{x}}] = (1 - n_{\mathbf{p}+\mathbf{q}/2}^{\text{eq}} - n_{\mathbf{p}-\mathbf{q}/2}^{\text{eq}}) \frac{1}{L^3} \sum_{\mathbf{p}'} \mathcal{A}_{\uparrow\downarrow} \left(\mathbf{p} - \frac{\mathbf{q}}{2}, -\mathbf{p} - \frac{\mathbf{q}}{2} | -\mathbf{p}' - \frac{\mathbf{q}}{2}, \mathbf{p}' - \frac{\mathbf{q}}{2} \right) \hat{d}_{\mathbf{p}'}^{\mathbf{q}} + \hat{J}_{\mathbf{p}} \quad (244)$$

1009 We have regrouped the quartic cumulants $(\hat{a}\hat{b}\hat{c}\hat{d})_c$ in a collision integral $\hat{J}_{\mathbf{p}}$ which is negligible
 1010 for the calculation of T_c . Note that the interaction between same-spin quasiparticles $\mathcal{A}_{\sigma\sigma}$
 1011 contributes to $\hat{J}_{\mathbf{p}}$ but not to the partially contracted terms in Eq. (244). This is specific to the
 1012 normal phase where the anomalous averages $\langle \hat{\gamma}_\downarrow \hat{\gamma}_\uparrow \rangle_{\text{eq}}$ vanish. The pair transport equation of
 1013 a Fermi liquid is then:

$$(\omega - \epsilon_{\mathbf{p}-\mathbf{q}/2} - \epsilon_{\mathbf{p}+\mathbf{q}/2} + 2\mu) \hat{d}_{\mathbf{p}}^{\mathbf{q}} = (\bar{n}_{\mathbf{p}+\mathbf{q}/2}^{\text{eq}} - n_{\mathbf{p}-\mathbf{q}/2}^{\text{eq}}) \times \left\{ \frac{1}{L^3} \sum_{\mathbf{p}'} \mathcal{A}_{\uparrow\downarrow} \left(\mathbf{p} - \frac{\mathbf{q}}{2}, -\mathbf{p} - \frac{\mathbf{q}}{2} | -\mathbf{p}' - \frac{\mathbf{q}}{2}, \mathbf{p}' - \frac{\mathbf{q}}{2} \right) \hat{d}_{\mathbf{p}'}^{\mathbf{q}} + \phi(\mathbf{q}) \right\} \quad (245)$$

1014 3.2 Uniform pair susceptibility

1015 The Thouless criterion defines T_c as the temperature at which the pair susceptibility acquires
 1016 a singularity for static and uniform perturbations, that is for $\omega = 0$ and $q = 0$. Restricting our
 1017 pairing equation Eq. (245) first to $q = 0$, we obtain:

$$(\omega - 2(\epsilon_{\mathbf{p}} - \mu)) d(\mathbf{p}) = (1 - 2n_{\mathbf{p}}^{\text{eq}}) \left\{ \frac{1}{L^3} \sum_{\mathbf{p}'} \mathcal{A}_{\uparrow\downarrow}(\mathbf{p}, -\mathbf{p} | \mathbf{p}', -\mathbf{p}') d(\mathbf{p}') + \phi \right\} \quad (246)$$

1018 When superfluidity occurs in a high partial wave, d has a non trivial dependence on the angle
 1019 between \mathbf{p} and a reference direction; we focus here on s-wave pairing, for which the pairing
 1020 function is isotropic $d(\mathbf{p}) = d(p)$. The angular part of the integral equations is then a mere
 1021 angular average of the pairing amplitude

$$\overline{\mathcal{A}_{\uparrow\downarrow}}(p, p', \Lambda) \equiv \frac{1}{2} \int_0^\pi d\alpha \sin \alpha \mathcal{A}_{\uparrow\downarrow}(\mathbf{p}, -\mathbf{p} | \mathbf{p}', -\mathbf{p}') \quad (247)$$

1022 where $\alpha = (\widehat{\mathbf{p}, \mathbf{p}'})$. For the radial dependence, we introduce the following change of variable:

$$d(p) = \frac{1 - 2n_{\mathbf{p}}^{\text{eq}}}{\beta(\omega - 2(\epsilon_{\mathbf{p}} - \mu))} D(y) = \frac{\tanh(y/2)}{\beta\omega - 2y} D(y), \quad y = \beta(\epsilon_{\mathbf{p}} - \mu) \quad (248)$$

1023 with $\beta = 1/T$. This reparametrization may seem analogous to the change of variable $\delta n \rightarrow \nu$
 1024 (see Eq. (170)) performed on the density field to focus on the low-energy region. It extracts

1025 a prefactor that depends rapidly on energy from the unknown function d , and we may expect
 1026 D to be a smooth function of y . However, the prefactor $\tanh(y/2)/(\beta\omega - 2y)$ here does not
 1027 vanish at large y . In consequence, what restricts us to low energies is rather the finite energy
 1028 width of the amplitude \mathcal{A} . As in Eq. (77), we must then separate the unconstrained amplitude
 1029 \mathcal{A}' from the low-energy projector Π_Λ :

$$\mathcal{A}_{\uparrow\downarrow}(\mathbf{p}, -\mathbf{p}'| \mathbf{p}', -\mathbf{p}') = \mathcal{A}'_{\uparrow\downarrow}(\mathbf{p}, -\mathbf{p}'| \mathbf{p}', -\mathbf{p}') \Pi_\Lambda(2(\epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}})) \quad (249)$$

1030 In presence of Π_Λ , we can now restrict the energy integrals to the low-energy region:

$$\frac{1}{L^3} \sum_{\mathbf{p}'} \Pi_\Lambda(2(\epsilon_{\mathbf{p}'} - \epsilon_{\mathbf{p}})) \rightarrow \frac{m^* T p_F}{(2\pi)^3} \int_{-\infty}^{\infty} \Pi_\Lambda(2T(y - y')) dy' \int_0^\pi \int_0^{2\pi} \sin \alpha d\alpha d\phi \quad (250)$$

1031 where ϕ is an azimuthal angle locating \mathbf{p}' in a spherical frame of axis \mathbf{p} . Up to corrections in
 1032 $O(T/T_F)$, we can approximate the pairing amplitude $\mathcal{A}_{\uparrow\downarrow}$ by its value for $p = p' = p_F$. The
 1033 integral equation focused on the low-energy region becomes

$$D(y) = \frac{m^* p_F}{2\pi^2} \overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda) \int_{-\frac{\beta\Lambda}{2}+y}^{\frac{\beta\Lambda}{2}+y} \frac{dy'}{\beta\omega - 2y'} D(y') \tanh \frac{y'}{2} + \phi + O\left(\frac{T}{T_F}\right) \quad (251)$$

1034 where $\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda) = \overline{\mathcal{A}_{\uparrow\downarrow}}(p_F, p_F, \Lambda)$. The only remaining energy dependence on the right-hand side
 1035 is the integration interval $[-\frac{\beta\Lambda}{2} + y, \frac{\beta\Lambda}{2} + y]$ whose centre is shifted from 0 by y . To leading
 1036 order in $1/\beta\Lambda$, we can then approximate the pair field D by a constant

$$D(y) = D_0 + O\left(\frac{y}{\beta\Lambda}\right) \quad (252)$$

1037 The integral equation is now trivial, and yields the pair susceptibility

$$\chi_{\text{pair}}(\omega) \equiv \frac{D_0(\omega)}{\phi} = \frac{1/\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda)}{1/\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda) + \frac{m^* p_F}{2\pi^2} \mathcal{N}_\Lambda(\omega)} \quad (253)$$

1038 with $\mathcal{N}_\Lambda(\omega)$ defined as:

$$\mathcal{N}_\Lambda(\omega) = \int_{-\beta\Lambda/2}^{\beta\Lambda/2} \frac{dy'}{2y' - \beta\omega} \tanh \frac{y'}{2} \quad (254)$$

1039 The critical temperature can finally be determined by applying Thouless' criterion to the pair
 1040 susceptibility:

$$\chi_{\text{pair}}^{-1}(\omega = 0, T = T_c) = 0 \iff \frac{1}{\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda)} + \frac{m^* p_F}{2\pi^2} \mathcal{N}_\Lambda(0, T_c) = 0 \quad (255)$$

1041 In the limit where $\beta\Lambda \gg 1$, the integral $\mathcal{N}_\Lambda(0)$ diverges logarithmically

$$\mathcal{N}_\Lambda(0, T) = \ln\left(\frac{\Lambda}{\pi T}\right) + \gamma + O\left(\frac{T}{\Lambda}\right) \quad (256)$$

1042 where $\gamma \approx 0.577$ is the Euler-Mascheroni constant. This divergence is compensated by a
 1043 divergence of the s-wave pairing amplitude, which we write generically as

$$\frac{1}{\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda)} = -\frac{m^* p_F}{2\pi^2} \left(\ln \frac{\Lambda}{\epsilon_F} + \alpha_{\uparrow\downarrow} \right) + O\left(\frac{\Lambda}{\epsilon_F}\right) \quad (257)$$

1044 This expression of $1/\mathcal{A}_{\uparrow\downarrow}(\Lambda)$ in the s -wave channel was postulated by Popov [51] and demon-
 1045 strated (in 2D and for all Fourier component m of $\mathcal{A}_{\uparrow\downarrow}(\theta)$) by Chitov and Sénéchal [10] us-
 1046 ing the renormalisation group flow. We introduced here an effective parameter $\alpha_{\uparrow\downarrow}$ of the
 1047 low-energy theory, which we interpreted as the background value of $1/\overline{\mathcal{A}_{\uparrow\downarrow}}$, over which the
 1048 logarithmic divergence develops. This parameter sets the critical temperature to

$$\frac{T_c}{T_F} = \frac{e^\gamma}{\pi} e^{-\alpha_{\uparrow\downarrow}} \quad (258)$$

1049 This relation is valid generically in Fermi liquids subject to a weak superfluid instability. It
 1050 is non-perturbative and exact if the effective parameter $\alpha_{\uparrow\downarrow}$ is known exactly rather than ex-
 1051 panded in powers of the interaction strength; $\alpha_{\uparrow\downarrow}$ must however remain large and positive to
 1052 maintain the validity of the quasiparticle picture, through the inequality $T_c \ll T_F$.

1053 Remark that the pairing amplitude must be attractive, $\overline{\mathcal{A}_{\uparrow\downarrow}} < 0$, to trigger the superfluid
 1054 transition. It must also display a logarithmic divergence with Λ , which does not seem guaran-
 1055 teed, for example if the bare potential vanishes for head-on collisions: $V(\mathbf{p}, -\mathbf{p} | \mathbf{p}', -\mathbf{p}') = 0$. In
 1056 this case, there is no divergence in the pair susceptibility (on the contrary, it is logarithmically
 1057 suppressed with Λ), i.e. there is no superfluid phase.

1058 Extending our low-energy effective theory further into the superfluid phase, we now cal-
 1059 culate the order parameter at $T = 0$, through the gap equation:

$$\Delta(\mathbf{p}) = - \sum_{\mathbf{p}'} \mathcal{A}_{\uparrow\downarrow}(\mathbf{p}, -\mathbf{p} | \mathbf{p}', -\mathbf{p}') \frac{\Delta(\mathbf{p}')}{2\sqrt{(\epsilon_{\mathbf{p}'} - \mu)^2 + \Delta^2(\mathbf{p}')}} \quad (259)$$

1060 Computing the integral restricted to the low-energy region, and assuming the logarithmically
 1061 divergent expression (257) of $\overline{\mathcal{A}_{\uparrow\downarrow}}$ we obtain

$$\frac{\Delta}{\epsilon_F} = e^{-\alpha_{\uparrow\downarrow}} \quad (260)$$

1062 The ratio $\Delta/T_c = \pi/e^\gamma \simeq 1.764$ found by BCS theory is thus universal to all superfluids made
 1063 of Landau quasiparticles [52]; it is well verified in superfluid ^3He [53], even though the fluid
 1064 is strongly interacting ($F_0^+ > 10$). Deviations from the BCS ratio (as e.g. in a unitary Fermi
 1065 gas [54, 55]) may then be interpreted as evidences of a non-Fermi liquid behavior.

1066 3.3 Application to the contact Fermi gas: the Gor'kov-Melik-Barkhudarov cor- 1067 rection to T_c

1068 We return to the Fermi gas with contact interactions. BCS theory describes pairing of particles
 1069 under the effect of the bare interactions, which provides a first approximation of the critical
 1070 temperature:

$$\frac{T_c^{\text{BCS}}}{T_F} = \frac{8e^{\gamma-2}}{\pi} e^{\pi/2k_F a} \quad (261)$$

1071 This perturbative expression is valid to leading order in $k_F a$ for $\ln(T_c/T_F)$. Therefore,
 1072 it makes an uncontrolled error on T_c/T_F . To go beyond BCS approximation, Gor'kov and
 1073 Melik-Barkhudarov [37] performed a second-order diagrammatic calculation, in which they
 1074 introduce in particular a dressed Green's function and an effective interaction.

1075 The GMB correction is often understood [56–58] as the result of the screening of the pairing
 1076 interactions among particles. Our low-energy effective theory provides a simple and more
 1077 general interpretation of the corrections to the BCS gap and critical temperature as the result
 1078 of the renormalisation of the particles into Landau quasiparticles. In this picture, the GMB

1079 correction follows from a second order calculation of the effective parameters of the theory, in
 1080 particular of $\mathcal{A}_{\uparrow\downarrow}$.

1081 Averaging expression (94) of $\mathcal{A}_{\uparrow\downarrow}$ over $\theta_{13} = \alpha$ and for $\theta_{12} = \pi$ yields

$$\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda) = g + g^2 \frac{m^* p_F}{2\pi^2} \left[\ln \frac{\Lambda}{E_F} + \frac{7}{3}(1 - 2 \ln 2) \right] + O(g^3) \quad (262)$$

1082 We may now identify the parameter $\alpha_{\uparrow\downarrow}$ in the expansion of $1/\overline{\mathcal{A}_{\uparrow\downarrow}}(\Lambda)$:

$$\alpha_{\uparrow\downarrow} = -\frac{\pi}{2k_F a} - \frac{7}{3}(\ln 2 - 1) + O(k_F a) \quad (263)$$

1083 This pairing parameter is large and positive to leading order in $k_F a < 0$, which guarantees the
 1084 existence of a (weak) superfluid phase. It is however reduced by the second-order correction
 1085 which weakens superfluidity, and reduces the critical temperature:

$$T_c^{\text{GMB}} = \frac{e^\gamma}{\pi} \left(\frac{2}{e} \right)^{7/3} e^{\pi/2k_F a} T_F = \frac{T_c^{\text{BCS}}}{(4e)^{1/3}} \quad (264)$$

1086 with $(4e)^{1/3} \approx 2.2$. Corrections beyond GMB stemming from the third-order calculation of $\alpha_{\uparrow\downarrow}$
 1087 are small, *i.e.* of order $O(k_F a)$, in both T_c/T_F and $\ln(T_c/T_F)$.

1088 Whereas the corrections to second order in $k_F a$ coming from the renormalisation of particles into quasiparticles involve only the $\mathcal{A}_{\uparrow\downarrow}$ collision amplitude, and can therefore be understood as a “screening” effect, we note that this picture is not general and would fail to capture corrections to e.g. the effective mass to higher order in $k_F a$ or in more complex fermionic fluids.

1093 Conclusion

1094 Using a new renormalisation scheme, we have formulated an intuitive and controlled construction of the Landau quasiparticles and the effective Hamiltonian governing their dynamics. Instead of the usual momentum cutoff, we introduce an energy cutoff Λ that separates resonant from off-resonant couplings. In this framework, we interpret the quasiparticle annihilation operator $\hat{\gamma}$ as the bare operator \hat{a} dressed only by the off-resonant couplings. This dressing is implemented through a unitary transformation, which becomes a Continuous Unitary Transformation (CUT) in the limit of infinitesimal variations of Λ .

1101 To truncate the infinite series generated when expressing the Hamiltonian in terms of $\hat{\gamma}$ and $\hat{\gamma}^\dagger$, we introduced the fluctuations of the density field $\delta(\hat{\gamma}_\alpha^\dagger \hat{\gamma}_\beta)$ around its Fermi-sea expectation value. Truncated to terms quadratic in these fluctuations, our effective Hamiltonian contains the functional of Fermi liquid theory via the diagonal terms ($\alpha = \beta$). Crucially, the same truncation also retains the full collision amplitude $\mathcal{A}_{\sigma\sigma'}(\mathbf{p}_1, \mathbf{p}_2 | \mathbf{p}_3, \mathbf{p}_4)$ encoded in the off-diagonal terms $\alpha \neq \beta$. This provides a single Hamiltonian describing both the interactions and the collisions of Landau quasiparticles, unifying ingredients that are usually treated separately. The interaction function f , the forward scattering amplitude and the BCS pairing amplitude appear as different limits of a general amplitude \mathcal{A} regularized by Λ .

1110 Armed with this effective Hamiltonian, we proposed a demonstration of the quasiparticle Boltzmann equation exploiting the validity of the Born-Markov approximation in the quasiparticle picture. We solved this Boltzmann equation exactly from the collisionless to the hydrodynamic regime by decomposing the quasiparticle distribution on a basis of orthogonal functions. Applying the effective picture to an atomic Fermi gas with contact interactions, we

1115 showed how the use of Landau quasiparticles systematically improves the weak-coupling ap-
 1116 proximations, in particular the RPA approximation on the speed of zero sound c_0 , and the BCS
 1117 approximation on the superfluid gap and critical temperature. In particular the celebrated
 1118 Gork'ov-Melik Barkhudarov log-perturbative correction to T_c and Δ emerges here as a direct
 1119 manifestation of the quasiparticle dressing.

1120 Extensions of this work could address the hydrodynamic regime where a normal quasi-
 1121 particle fluid and a quasiparticle condensate coexist. The Boltzmann and pairing equations
 1122 derived here in the normal phase are a natural starting point for a microscopic derivation of
 1123 the two-fluid hydrodynamics of Fermi systems [34, 59]. More generally, the concept of Lan-
 1124 dau quasiparticles is not restricted to unbalanced spin-1/2 Fermi systems, and applies more
 1125 generally to quasiparticles whose low-energy spectrum ressemble that of the free particle, as
 1126 e.g. the Bose [60] and Fermi polarons [61]. Our renormalization scheme could serve to de-
 1127 rive an effective Hamiltonian for such quasiparticles, including static interactions and collision
 1128 amplitudes.

1129 Acknowledgements

1130 Fruitful discussions with Nicolas Dupuis are gratefully acknowledged.

1131 **Funding information** H.K. acknowledges support from the French Agence Nationale de la
 1132 Recherche (ANR), under grant ANR-23-ERCS-0005 (project DYFERCO).

1133 A Λ dependence of the collision amplitudes

1134 In this appendix, we detail the calculation of the functions I_Λ and J_Λ introduced in Sec. 1.2.4
 1135 (see also Figs. 2 and 3) to characterize the angular dependence of $\mathcal{B}_{\sigma\sigma'}$. Comparing Eqs. (81)–
 1136 (82) and Eqs. (86)–(87), we identify the dimensionless coefficients of the $O(k_F a)^2$ terms in
 1137 $\mathcal{B}_{\sigma\sigma'}$:

$$I_\Lambda(\mathbf{p}, \mathbf{p}') = \frac{(2\pi)^2 \epsilon_F}{(p_F L)^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \in \mathcal{D}} \left[n_{\mathbf{p}_1}^0 + n_{\mathbf{p}_2}^0 \right] \delta_{\mathbf{p}+\mathbf{p}'}^{\mathbf{p}_1+\mathbf{p}_2} \mathcal{P}_\Lambda \left(\frac{1}{\omega_{\mathbf{p}_1} + \omega_{\mathbf{p}_2} - 2\epsilon_F} \right) \quad (265)$$

$$J_\Lambda(\mathbf{p}, \mathbf{p}') = -\frac{(2\pi)^2 \epsilon_F}{(p_F L)^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \in \mathcal{D}} \left[n_{\mathbf{p}_1}^0 - n_{\mathbf{p}_2}^0 \right] \delta_{\mathbf{p}_1+\mathbf{p}'}^{\mathbf{p}_2+\mathbf{p}} \mathcal{P}_\Lambda \left(\frac{1}{\omega_{\mathbf{p}_1} - \omega_{\mathbf{p}_2}} \right) \quad (266)$$

1138 With $p = p' = p_F$, the functions depend on \mathbf{p} and \mathbf{p}' only through the angle $\alpha = \widehat{(\mathbf{p}, \mathbf{p}')}$. We
 1139 eliminate \mathbf{p}_2 through momentum conservation and locate \mathbf{p}_1 in a spherical frame with $\mathbf{p} + \mathbf{p}'$ or
 1140 $\mathbf{p} - \mathbf{p}'$ as the z -axis respectively in I_Λ and J_Λ . Exploiting the invariance on the azimuthal angle,
 1141 parameterizing the polar angle by $u = \cos \theta_1$, and introducing the dimensionless momentum
 1142 $x = p_1/p_F$, we write

$$I_\Lambda(\theta) = -2 \int_0^1 x^2 dx \int_{-1}^1 du \mathcal{P}_\epsilon \left(\frac{1}{2(2cxu - x^2 - 2c^2 + 1)} \right) \quad (267)$$

$$J_\Lambda(\theta) = -2 \int_0^1 x^2 dx \int_{-1}^1 du \mathcal{P}_\epsilon \left(\frac{1}{4(xsu - s^2)} \right) \quad (268)$$

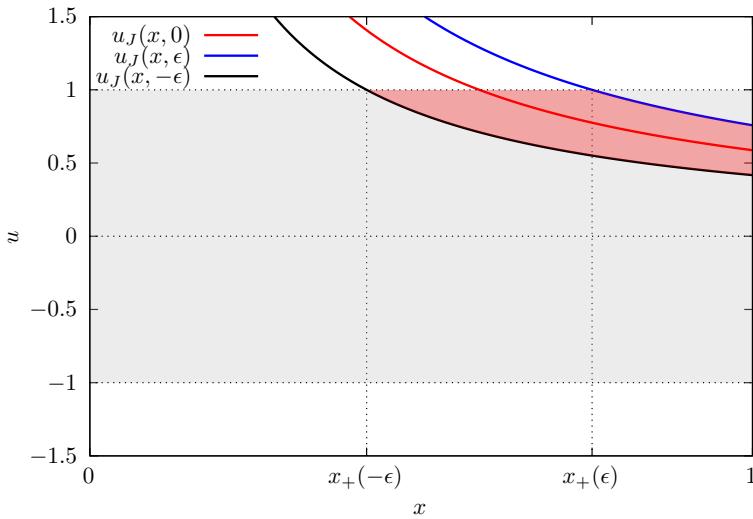


Figure 12: The resonance angle $u_J(x, \epsilon = 0)$ (red curve) and the forbidden band $x \mapsto [u_J(x, -\epsilon), u_J(x, \epsilon)]$ (red area) inside the integration domain $[0, 1] \times [-1, 1]$ (grey area) for J_Λ at $\alpha = 0.4\pi$ and $\epsilon = 0.1$.

1143 where $\mathcal{P}_\epsilon(1/f) = \Theta(|f| - \epsilon)/f$ is the ϵ -regularized principal part. We parametrize the small
 1144 parameter associated to Λ using

$$\epsilon = \frac{\Lambda}{4\epsilon_F}, \quad \epsilon' = 2\epsilon \quad (269)$$

1145 where ϵ coincides with the ϵ_Λ used in the main text. We have also parametrized the α -
 1146 dependence through

$$c = \cos \frac{\alpha}{2} = \frac{\|\mathbf{p} + \mathbf{p}'\|}{2p_F} \quad (270)$$

$$s = \sin \frac{\alpha}{2} = \frac{\|\mathbf{p} - \mathbf{p}'\|}{2p_F} \quad (271)$$

1147 The ϵ -principal part excludes a region of the integration domain $[0, 1] \times [-1, 1]$, and this
 1148 forbidden band varies with α and ϵ . To identify the excluded region in the integration interval
 1149 $[-1, 1]$ over u , we introduce the resonance angles

$$u_I(x, \epsilon') = \frac{x^2 + 2c^2 - 1 + \epsilon'}{2cx} \quad (272)$$

$$u_J(x, \epsilon) = \frac{s^2 + \epsilon}{sx} \quad (273)$$

1150 The ϵ -resonance conditions then read $u_I(x, -\epsilon') \leq u \leq u_I(x, \epsilon')$ and $u_J(x, -\epsilon) \leq u \leq u_J(x, \epsilon)$,
 1151 which allows to rewrite I and J as:

$$I_\Lambda(\theta) = - \int_0^1 \frac{x dx}{2c} \int_{-1}^1 \frac{du}{u - u_I(x, 0)} (1 - \Theta[u_I(x, \epsilon') - u] \Theta[u - u_I(x, -\epsilon')]) \quad (274)$$

$$J_\Lambda(\theta) = - \int_0^1 \frac{x dx}{2s} \int_{-1}^1 \frac{du}{u - u_J(x, 0)} (1 - \Theta[u_J(x, \epsilon) - u] \Theta[u - u_J(x, -\epsilon)]) \quad (275)$$

1152 Fig. 12 shows an example of the forbidden band in the calculation of J_Λ at $\alpha = 0.4\pi$ and
 1153 $\epsilon = 0.1$.

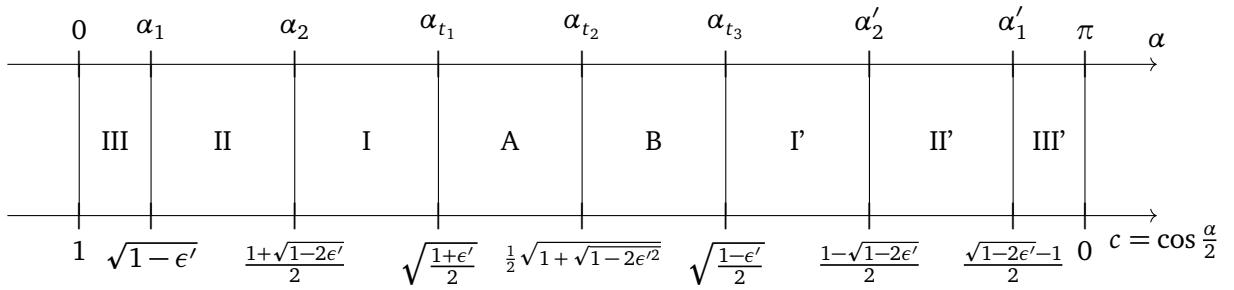


Figure 13: As α varies from 0 to π , I_Λ assumes 8 different expressions (Eqs. (280)–(287)). The corner points α_n that separate these expressions are given by $\cos \frac{\alpha_n}{2} = i_n(\epsilon')$, where $i_n(\epsilon')$ is given on the lower axis.

1154 **Expression of I_Λ** Depending on the comparison of $u_I(x, \pm\epsilon')$ with ± 1 , the excluded band
 1155 may be \emptyset , the interval $[u_I(x, -\epsilon'), u_I(x, \epsilon')]$, $[u_I(x, -\epsilon'), 1]$, $[-1, u_I(x, \epsilon'), 1]$ or $[-1, 1]$. Upon
 1156 integration over u , this generates 3 different integrands of x :

$$f(x) = -\frac{x}{2c} \int_{-1}^1 \frac{du}{u - u_I(x, 0)} = \frac{x}{2c} \ln \left| \frac{(c+s+x)(c-s+x)}{(c+s-x)(c-s-x)} \right| \quad (276)$$

$$f_{+\epsilon'}(x) = -\frac{x}{2c} \int_{u_I(x, \epsilon')}^1 \frac{du}{u - u_I(x, 0)} = \frac{x}{2c} \ln \left| \frac{\epsilon'}{(c+s-x)(c-s-x)} \right| \quad (277)$$

$$f_{-\epsilon'}(x) = -\frac{x}{2c} \int_{-1}^{u_I(x, -\epsilon')} \frac{du}{u - u_I(x, 0)} = \frac{x}{2c} \ln \left| \frac{(c+s+x)(c-s+x)}{\epsilon'} \right| \quad (278)$$

1157 Note that f also describes the integral for $u \in [-1, u_I(x, -\epsilon')] \cup [u_I(x, \epsilon'), 1]$. The remaining
 1158 integral over x is divided in up to 4 intervals, where either one of the functions f , $f_{+\epsilon'}$ or $f_{-\epsilon'}$
 1159 is used. The bounds delimiting these intervals (see Fig. 12) are

$$x_{\pm}(\epsilon') = c \pm \sqrt{s^2 - \epsilon'} \quad (279)$$

1160 Again, depending on α , the boundaries $x_{\pm}(\pm\epsilon')$ maybe inside or outside the integration inter-
 1161 val $[0, 1]$ over x . This generates 8 different slicing configurations of $[0, 1]$, listed in function
 1162 of α on Fig. 13. The corresponding expression of I_Λ is given in Eqs. (280)–(287). We stitch
 1163 together these expressions over the domain of variation $[0, \pi]$ of α to produce the red curve

1164 in Fig. 2 of the main text.

$$I_{\Lambda}^{\text{III}} = \int_0^{x_{-}(-\epsilon')} dx f(x) + \int_{x_{-}(-\epsilon')}^1 dx f_{-\epsilon'}(x) \quad (280)$$

$$I_{\Lambda}^{\text{II}} = \int_0^{x_{-}(-\epsilon')} dx f(x) + \int_{x_{-}(-\epsilon')}^{x_{-}(\epsilon')} dx f_{-\epsilon'}(x) + \int_{x_{-}(\epsilon')}^{x_{+}(\epsilon')} dx f(x) + \int_{x_{+}(\epsilon')}^1 dx f_{-\epsilon'}(x) \quad (281)$$

$$I_{\Lambda}^{\text{I}} = \int_0^{x_{-}(-\epsilon')} dx f(x) + \int_{x_{-}(-\epsilon')}^{x_{-}(\epsilon')} dx f_{-\epsilon'}(x) + \int_{x_{-}(\epsilon')}^1 dx f(x) \quad (282)$$

$$I_{\Lambda}^{\text{A}} = \int_{|x_{-}(-\epsilon')|}^{x_{-}(\epsilon')} dx f_{-\epsilon'}(x) + \int_{x_{-}(\epsilon')}^1 dx f(x) \quad (283)$$

$$I_{\Lambda}^{\text{B}} = \int_{x_{-}(\epsilon')}^{|x_{-}(-\epsilon')|} dx f_{+\epsilon'}(x) + \int_{|x_{-}(-\epsilon')|}^1 dx f(x) \quad (284)$$

$$I_{\Lambda}^{\text{I}'} = \int_0^{|x_{-}(\epsilon')|} dx f(x) + \int_{|x_{-}(\epsilon')|}^{|x_{-}(-\epsilon')|} dx f_{+\epsilon'}(x) + \int_{|x_{-}(-\epsilon')|}^1 dx f(x) \quad (285)$$

$$I_{\Lambda}^{\text{II}'} = \int_0^{|x_{-}(\epsilon')|} dx f(x) + \int_{|x_{-}(\epsilon')|}^{|x_{-}(-\epsilon')|} dx f_{+\epsilon'}(x) + \int_{|x_{-}(-\epsilon')|}^{x_{+}(\epsilon')} dx f(x) + \int_{x_{+}(\epsilon')}^1 dx f_{-\epsilon'}(x) \quad (286)$$

$$I_{\Lambda}^{\text{III}'} = \int_0^{|x_{-}(\epsilon')|} dx f(x) + \int_{|x_{-}(\epsilon')|}^{x_{+}(-\epsilon')} dx f_{+\epsilon'}(x) \quad (287)$$

1165 **Expression of J_{Λ}** Similarly, for J_{Λ} , the excluded band in u is either \emptyset , $[u_J(x, -\epsilon), u_J(x, \epsilon)]$,
1166 $[u_J(x, -\epsilon), 1]$ or $[-1, 1]$, and the corresponding integrands are

$$g(x) = -\frac{x}{2s} \int_{-1}^1 \frac{du}{u - u_J(x, 0)} = \frac{x}{2s} \ln \left| \frac{x+s}{x-s} \right| \quad (288)$$

$$g_{-\epsilon}(x) = -\frac{x}{2s} \int_{-1}^{u_J(x, -\epsilon)} \frac{du}{u - u_J(x, 0)} = \frac{x}{2s} \ln \left| \frac{x+s}{2\epsilon} \right| \quad (289)$$

1167 The interval $[0, 1]$ of integration over x is divided by the boundaries

$$x_{\pm}(\epsilon) = \pm \left(s + \frac{\epsilon}{s} \right) \quad (290)$$

1168 into 5 possible configurations listed in Fig. 14. The corresponding expressions of J_{Λ} are

$$J_{\Lambda}^{\text{I}} = 0 \quad (291)$$

$$J_{\Lambda}^{\text{II}} = \int_{x_{-}(-\epsilon)}^1 dx g_{-\epsilon}(x) \quad (292)$$

$$J_{\Lambda}^{\text{III}} = \int_{x_{-}(-\epsilon)}^{x_{+}(\epsilon)} dx g_{-\epsilon}(x) + \int_{x_{+}(\epsilon)}^1 dx g(x) \quad (293)$$

$$J_{\Lambda}^{\text{IV}} = \int_0^{x_{+}(-\epsilon)} dx g(x) + \int_{x_{+}(-\epsilon)}^{x_{+}(\epsilon)} dx g_{-\epsilon}(x) + \int_{x_{+}(\epsilon)}^1 dx g(x) \quad (294)$$

$$J_{\Lambda}^{\text{V}} = \int_0^{x_{+}(-\epsilon)} dx g(x) + \int_{x_{+}(-\epsilon)}^1 dx g_{-\epsilon}(x) \quad (295)$$

$$(296)$$

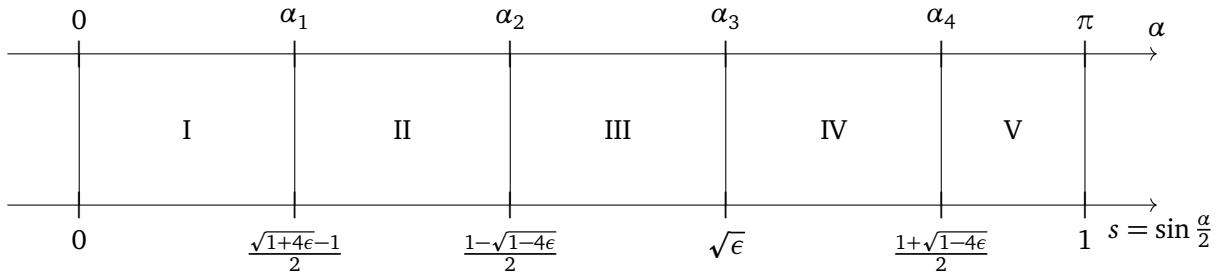


Figure 14: As α varies from 0 to π , J_A assumes 5 different expressions (Eqs. (291)–(295)). The corner points α_n that separate these expressions are given by $\sin \frac{\alpha_n}{2} = j_n(\epsilon)$, where $j_n(\epsilon)$ is given on the lower axis.

1169 Combined as prescribed by Fig. 13, these expressions produce the red curve in Fig. 3 of the
 1170 main text. Note that the $\epsilon = 0$ expressions of I and J (Eqs. (88)–(89)) are given by

$$I(\alpha) = \int_0^1 dx f(x) \quad (297)$$

$$J(\alpha) = \int_0^1 dx g(x) \quad (298)$$

1171 B Numerical evaluation of the zero sound velocity

1172 We present in this appendix the numerical method used to solve (198), and benchmark the
 1173 analytic solution (208) of the prefactor $\exp(\gamma_1^\pm)$ in c_0^\pm

1174 Recall that the transport equation for v_\pm in the collisionless limit projects as:

$$v_\pm^l(c) - \sum_{l'} A_{ll'}^\pm(c) v_\pm^{l'}(c) + B_{l0}(c) = 0 \quad (299)$$

1175 As mentioned in the main text, to compute c_0 , we look for the zeros of the following determin-
 1176 antant:

$$\text{Det}(1 - \mathcal{A}_\pm(c_0^\pm)) = 0 \quad (300)$$

1177 To do so, we truncate the matrix \mathcal{A}_\pm at some l_{\max} , and we check the convergence with respect
 1178 to this parameter. Typically, $l_{\max} \approx 50$ is sufficient. To overcome the numerical limitation to
 1179 $|k_F a| > 0.1$, we perform a second-order polynomial extrapolation $\gamma^\pm + 2 - \pi/\bar{a} = A + B\bar{a} + C\bar{a}^2$.

1180 We find that $\gamma_1^\pm = \pm 4$ within the numerical accuracy of our extrapolation. The coefficient
 1181 B obtain from the extrapolation of γ_1^\pm is larger than one, which restrict the observability of γ_1^\pm
 1182 to $|\bar{a}| < 0.1$.

1183 We present in Figs. 15 and 16 these numerical interpolations.

1184 C Collision effects in the collisionless regime

1185 In this appendix we present the calculation of the function C_\pm introduced (220):

$$C_\pm(c) = \int_0^\pi d\theta \frac{\sin \theta \cos \theta}{(c - \cos \theta)^2} + \int_0^{2\pi} \frac{d\phi'}{2\pi} \int_0^\pi d\theta d\theta' \frac{\sin \theta \sin \theta' \cos \theta'}{(c - \cos \theta)(c - \cos \theta')} \mathcal{N}_\pm(\alpha) \quad (301)$$

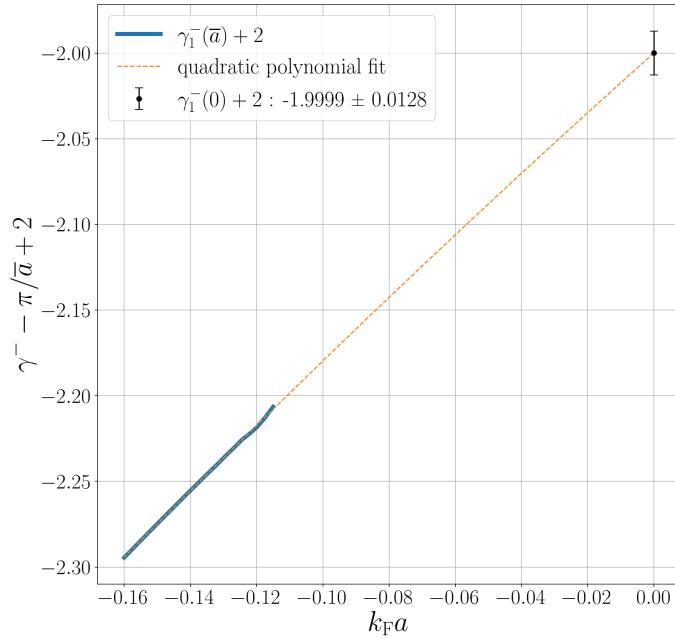


Figure 15: The reduced speed of the collisionless polarisation sound $\gamma^- + 2 - \pi/\bar{a}$ with $\gamma^- = \log((c_0^- - 1)/2)$. The blue curve is obtained by numerically solving (300) in the range $k_Fa = -0.16, -0.125$. A quadratic polynomial fit (orange curve) provides the value extrapolated to $k_Fa = 0$: $\gamma_1^- + 2 = -1.9999 \pm 0.0128$.

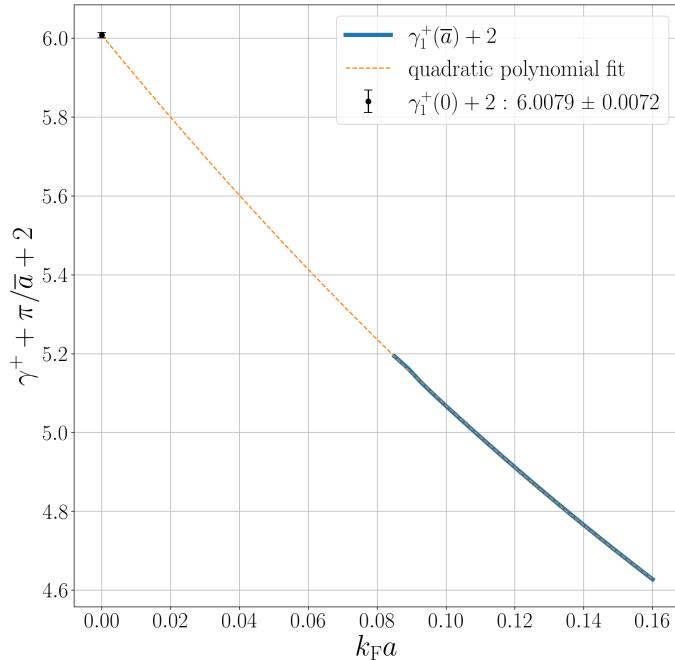


Figure 16: The reduced speed of the collisionless density sound $\gamma^+ + 2 + \pi/\bar{a}$ with $\gamma^+ = \log((c_0^+ - 1)/2)$. The blue curve is obtained by numerically solving (300) in the range $k_Fa = 0.16, 0.085$. A quadratic polynomial fit (orange curve) provides the value extrapolated to $k_Fa = 0$: $\gamma_1^+ + 2 = 6.0079 \pm 0.0072$.

¹¹⁸⁶ with the angular collision kernel and its projection on Legendre polynomials given by:

$$\mathcal{N}_\pm(\alpha) = \frac{\Omega_{E\pm}(\alpha) - 2\Omega_{S\pm}(\alpha)}{\Omega_\Gamma} = \sum_l \mathcal{N}_\pm^l(\alpha) P_l(\cos \alpha) \quad (302)$$

¹¹⁸⁷ We use the addition theorem:

$$\int_0^{2\pi} \frac{d\phi'}{2\pi} P_l(\cos(\alpha)) = P_l(\cos \theta) P_l(\cos \theta') \quad (303)$$

¹¹⁸⁸ This allows us to factorize the integrals over $u = \cos \theta$ and $u' = \cos \theta'$ in C_\pm :

$$C_\pm(c) = \int_{-1}^1 du \frac{u}{(c-u)^2} + \sum_l \mathcal{N}_\pm^l \int_{-1}^1 du \frac{P_l(u)}{c-u} \int_{-1}^1 du' \frac{u' P_l(u')}{c-u'} \quad (304)$$

¹¹⁸⁹ The different integrals are given by:

$$\int_{-1}^1 du \frac{u}{(c-u)^2} = -B'_{00}(c) \quad (305)$$

$$\int_{-1}^1 du \frac{P_l(u)}{c-u} = 2R_l(c) \quad (306)$$

$$\int_{-1}^1 du' \frac{u' P_l(u')}{c-u'} = 2cR_l(c) - 2\delta_{l,0} \quad (307)$$

¹¹⁹⁰ where we have introduced the Legendre functions of the second kind [62]. The contribution
¹¹⁹¹ of collisions is therefore finally contained in the following formula:

$$C_\pm(c) = -B'_{00}(c) + 4 \sum_l \mathcal{N}_\pm^l R_l(c) (cR_l(c) - \delta_{l,0}) \quad (308)$$

¹¹⁹² In fact, this last formula is quite general, as the characteristics of the interactions are contained
¹¹⁹³ in the collision parameter \mathcal{N}_\pm^l . We can now focus on the asymptotic behavior when c tends
¹¹⁹⁴ exponentially to 1. Note that:

$$\frac{R_0(c)(cR_0(c) - 1)}{B'_{00}(c)} \underset{\gamma \rightarrow -\infty}{\sim} -\gamma^2 e^\gamma \quad (309)$$

¹¹⁹⁵ Similarly, for $l > 0$:

$$\frac{R_l^2(c)}{B'_{00}(c)} \underset{\gamma \rightarrow -\infty}{\sim} -\gamma^2 e^\gamma \quad (310)$$

¹¹⁹⁶ In all cases, we can rewrite the function C_\pm in the limit where c tends exponentially to 1 as:

$$C_\pm(c) \simeq -B'_{00}(c) (1 + 4\gamma^2(c) e^\gamma \mathcal{N}_\pm(0)) \quad (311)$$

¹¹⁹⁷ where we have recognized that $\sum_l \mathcal{N}_\pm^l = \mathcal{N}_\pm(0)$.

1198 **References**

1199 [1] L. Landau, *The theory of the Fermi Liquid*, Zh. Eksp. Teor. Fiz. **30**, 1058 (1956), [Sov.
1200 Phys. JETP, Vol. 3, No. 6, p. 920 (1956)].

1201 [2] P Nozières and D. Pines, *The theory of quantum liquids*, W.A. Benjamin, New York (1966).

1202 [3] M. Pfitzner and P. Wölfle, *Quasiparticle scattering amplitude for normal liquid ^3He* , Journal
1203 of Low Temperature Physics **51**(5), 535 (1983), doi:[10.1007/BF00683227](https://doi.org/10.1007/BF00683227).

1204 [4] L. Landau, *On the theory of the Fermi liquid*, Zh. Eksp. Teor. Fiz. **35**, 97 (1959), [Sov.
1205 Phys. JETP, Vol. 8, No. 1, p. 70 (1959)].

1206 [5] P Nozières and J. M. Luttinger, *Derivation of the Landau Theory of Fermi Liquids. I. Formal
1207 Preliminaries*, Phys. Rev. **127**, 1423 (1962), doi:[10.1103/PhysRev.127.1423](https://doi.org/10.1103/PhysRev.127.1423).

1208 [6] J. M. Luttinger and P. Nozières, *Derivation of the Landau Theory of Fermi Liquids.
II. Equilibrium Properties and Transport Equation*, Phys. Rev. **127**, 1431 (1962),
1209 doi:[10.1103/PhysRev.127.1431](https://doi.org/10.1103/PhysRev.127.1431).

1210 [7] V. N. Popov, *Functional Integral and Collective Excitations*, Cambridge University Press,
1211 Cambridge (1987).

1212 [8] R. Shankar, *Renormalization-group approach to interacting fermions*, Rev. Mod. Phys. **66**,
1213 129 (1994), doi:[10.1103/RevModPhys.66.129](https://doi.org/10.1103/RevModPhys.66.129).

1214 [9] J. Polchinski, *Effective field theory and the Fermi surface*, In J. Harvey and J. Polchinski,
1215 eds., *Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to
1216 Particles*, p. 0235–276. World Scientific, Singapore (1993).

1217 [10] G. Y. Chitov and D. Sénéchal, *Renormalization-group study of interacting electrons*, Phys.
1218 Rev. B **52**, 13487 (1995), doi:[10.1103/PhysRevB.52.13487](https://doi.org/10.1103/PhysRevB.52.13487).

1219 [11] G. Y. Chitov and D. Sénéchal, *Fermi liquid as a renormalization-group fixed point:
1220 The role of interference in the Landau channel*, Phys. Rev. B **57**, 1444 (1998),
1221 doi:[10.1103/PhysRevB.57.1444](https://doi.org/10.1103/PhysRevB.57.1444).

1222 [12] N. Dupuis, *Fermi liquid theory: a renormalization group approach*, The European
1223 Physical Journal B - Condensed Matter and Complex Systems **3**(3), 315 (1998),
1224 doi:[10.1007/s100510050318](https://doi.org/10.1007/s100510050318).

1225 [13] L. V. Delacrétaz, Y.-H. Du, U. Mehta and D. T. Son, *Nonlinear bosonization of
1226 Fermi surfaces: The method of coadjoint orbits*, Phys. Rev. Res. **4**, 033131 (2022),
1227 doi:[10.1103/PhysRevResearch.4.033131](https://doi.org/10.1103/PhysRevResearch.4.033131).

1228 [14] H. Ma and S.-S. Lee, *Fermi liquids beyond the forward-scattering limit: The role of nonfor-
1229 ward scattering for scale invariance and instabilities*, Phys. Rev. B **109**, 045143 (2024),
1230 doi:[10.1103/PhysRevB.109.045143](https://doi.org/10.1103/PhysRevB.109.045143).

1231 [15] U. Gran, E. Nilsson and J. Hofmann, *Shear viscosity in interacting two-dimensional Fermi
1232 liquids*, arXiv:2312.09977 (2023).

1233 [16] J. Maki, U. Gran and J. Hofmann, *Odd-parity effect and scale-dependent viscosity in atomic
1234 quantum gases*, Communications Physics **8**(1), 319 (2025), doi:[10.1038/s42005-025-02231-w](https://doi.org/10.1038/s42005-025-02231-w).

1237 [17] W.-T. Lin and J. A. Sauls, *Effects of incipient pairing on nonequilibrium quasiparticle trans-*
1238 *port in Fermi liquids*, Progress of Theoretical and Experimental Physics **2022**(3), 033I02
1239 (2022), doi:[10.1093/ptep/ptac027](https://doi.org/10.1093/ptep/ptac027).

1240 [18] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, *Processus d'interaction entre photons*
1241 *et atomes*, InterEditions et Éditions du CNRS, Paris (1988).

1242 [19] J. H. Van Vleck, *On σ -Type Doubling and Electron Spin in the Spectra of Diatomic Molecules*,
1243 Phys. Rev. **33**, 467 (1929), doi:[10.1103/PhysRev.33.467](https://doi.org/10.1103/PhysRev.33.467).

1244 [20] J. R. Schrieffer and P. A. Wolff, *Relation between the Anderson and Kondo Hamiltonians*,
1245 Phys. Rev. **149**, 491 (1966), doi:[10.1103/PhysRev.149.491](https://doi.org/10.1103/PhysRev.149.491).

1246 [21] F. Wegner, *Flow-equations for Hamiltonians*, Annalen der Physik **506**(2), 77 (1994),
1247 doi:<https://doi.org/10.1002/andp.19945060203>.

1248 [22] C. P. Heidbrink and G. S. Uhrig, *Landau's quasiparticle mapping: Fermi liquid approach and luttinger liquid behavior*, Phys. Rev. Lett. **88**, 146401 (2002),
1249 doi:[10.1103/PhysRevLett.88.146401](https://doi.org/10.1103/PhysRevLett.88.146401).

1251 [23] F. Mohling and J. C. Rainwater, *Quasiparticle scattering in Fermi fluids*, Journal of Low
1252 Temperature Physics **20**(3), 243 (1975), doi:[10.1007/BF00117796](https://doi.org/10.1007/BF00117796).

1253 [24] J. C. Rainwater and F. Mohling, *Transport properties of Fermi fluids at finite temperatures*,
1254 Journal of Low Temperature Physics **23**(5), 519 (1976), doi:[10.1007/BF00116293](https://doi.org/10.1007/BF00116293).

1255 [25] E. Lipschitz and L. Pitaevskii, *Physical Kinetics*, In *Landau and Lifshitz Course of Theoretical*
1256 *Physics*, vol. 9. Pergamon Press, New York (1981).

1257 [26] A. Sommer, M. Ku, G. Roati and M. W. Zwierlein, *Universal spin transport in a strongly*
1258 *interacting Fermi gas*, Nature **472**(7342), 201 (2011), doi:[10.1038/nature09989](https://doi.org/10.1038/nature09989).

1259 [27] E. Vogt, M. Feld, B. Fröhlich, D. Pertot, M. Koschorreck and M. Köhl, *Scale Invariance*
1260 *and Viscosity of a Two-Dimensional Fermi Gas*, Phys. Rev. Lett. **108**, 070404 (2012),
1261 doi:[10.1103/PhysRevLett.108.070404](https://doi.org/10.1103/PhysRevLett.108.070404).

1262 [28] S. Trotzky, S. Beattie, C. Luciuk, S. Smale, A. B. Bardon, T. Enss, E. Taylor, S. Zhang and
1263 J. H. Thywissen, *Observation of the Leggett-Rice Effect in a Unitary Fermi Gas*, Phys. Rev.
1264 Lett. **114**, 015301 (2015), doi:[10.1103/PhysRevLett.114.015301](https://doi.org/10.1103/PhysRevLett.114.015301).

1265 [29] X. Li, J. Huang and J. E. Thomas, *Universal density shift coefficients for the thermal con-*
1266 *ductivity and shear viscosity of a unitary Fermi gas*, Phys. Rev. Res. **6**, L042021 (2024),
1267 doi:[10.1103/PhysRevResearch.6.L042021](https://doi.org/10.1103/PhysRevResearch.6.L042021).

1268 [30] S. Huang, Y. Ji, T. Repplinger, G. G. T. Assumpção, J. Chen, G. L. Schumacher, F. J. Vivanco,
1269 H. Kurkjian and N. Navon, *Emergence of Sound in a Tunable Fermi Fluid*, Phys. Rev. X **15**,
1270 011074 (2025), doi:[10.1103/PhysRevX.15.011074](https://doi.org/10.1103/PhysRevX.15.011074).

1271 [31] E. Egilsson and C. J. Pethick, *The transition from first sound to zero sound in*
1272 *a normal Fermi liquid*, Journal of Low Temperature Physics **29**(1), 99 (1977),
1273 doi:[10.1007/BF00659091](https://doi.org/10.1007/BF00659091).

1274 [32] P. Taillat and H. Kurkjian, *Exact perturbative expansion of the transport coefficients of*
1275 *a low-temperature normal fermi gas with contact interactions*, Phys. Rev. Lett. (2025),
1276 doi:[10.1103/c6fd-x57s](https://doi.org/10.1103/c6fd-x57s).

1277 [33] D. Einzel and P. Wölfle, *Transport and relaxation properties of superfluid ^3He . I. Kinetic equation and Bogoliubov quasiparticle relaxation rate*, Journal of Low Temperature Physics **32**(1), 19 (1978), doi:[10.1007/BF00116904](https://doi.org/10.1007/BF00116904).

1278

1279

1280 [34] D. Vollhardt and P. Wolfle, *The Superfluid Phases of Helium 3*, Taylor & Francis, London (1990).

1281

1282 [35] A. Abrikosov and I. Khalatnikov, *Concerning a Model for a Non-Ideal Fermi Gas*, Sov. Phys. JETP **6**, 888 (1958 [ZhETF **33**, 1154]).

1283

1284 [36] J. R. Engelbrecht, M. Randeria and L. Zhang, *Landau f function for the dilute Fermi gas in two dimensions*, Phys. Rev. B **45**, 10135 (1992), doi:[10.1103/PhysRevB.45.10135](https://doi.org/10.1103/PhysRevB.45.10135).

1285

1286 [37] L. Gor'kov and T. Melik-Barkhudarov, *Contribution to the theory of superfluidity in an imperfect Fermi gas*, Zh. Eksp. Teor. Fiz. **40**(5), 1452 (1958), [Sov. Phys. JETP **13**, 1018 (1958)].

1287

1288

1289 [38] G. Baym and C. Pethick, *Landau Fermi-liquid theory*, Wiley-VCH (1991).

1290 [39] D. J. Griffiths and D. F. Schroeter, *Introduction to Quantum Mechanics*, Cambridge University Press (2004).

1291

1292 [40] I. Shavitt and L. T. Redmon, *Quasidegenerate perturbation theories. A canonical van Vleck formalism and its relationship to other approaches*, The Journal of Chemical Physics **73**(11), 5711 (1980), doi:[10.1063/1.440050](https://doi.org/10.1063/1.440050).

1293

1294

1295 [41] M. Rigol, V. Dunjko and M. Olshanii, *Thermalization and its mechanism for generic isolated quantum systems*, Nature **452**(7189), 854 (2008).

1296

1297 [42] Y. Castin, *Basic Theory Tools for Degenerate Fermi Gases*, In M. Inguscio, W. Ketterle and C. Salomon, eds., *Ultra-cold Fermi Gases*. Società Italiana di Fisica, Bologna (2007).

1298

1299 [43] F. Chevy, *Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations*, Phys. Rev. A **74**, 063628 (2006), doi:[10.1103/PhysRevA.74.063628](https://doi.org/10.1103/PhysRevA.74.063628).

1300

1301 [44] V. M. Galitskii, *The energy spectrum of a non-ideal Fermi gas*, Zh. Eksp. Teor. Fiz. **34**, 151 (1958), [Sov. Phys. JETP **7**, 104 (1958)].

1302

1303 [45] V. Belyakov, *The momentum distribution of particles in a dilute Fermi gas*, Zh. Eksp. Teor. Fiz. **40**, 1210 (1961), [Sov. Phys. JETP, Vol. 13, No. 4, p. 850 (1961)].

1304

1305 [46] R. Sartor and C. Mahaux, *Self-energy, momentum distribution, and effective masses of a dilute Fermi gas*, Phys. Rev. C **21**, 1546 (1980), doi:[10.1103/PhysRevC.21.1546](https://doi.org/10.1103/PhysRevC.21.1546).

1306

1307 [47] S. Tan, *Large momentum part of a strongly correlated Fermi gas*, Annals of Physics **323**(12), 2971 (2008), doi:<https://doi.org/10.1016/j.aop.2008.03.005>.

1308

1309 [48] T. Repplinger, *Density wave in a Fermi gas: phonon and plasmon, from hydrodynamic to collisionless regime*, Ph.D. thesis, Université de Toulouse (2024).

1310

1311 [49] I. Khalatnikov and A. Abrikosov, *Dispersion of Sound in a Fermi Liquid*, Sov. Phys. JETP **6**(1), 84 (1958 [ZhETF **33**, 1, 110]).

1312

1313 [50] T. Repplinger, S. Huang, Y. Ji, N. Navon and H. Kurkjian, *Dispersion of First Sound in a Weakly Interacting Ultracold Fermi Liquid*, Annalen der Physik p. e00181 (2025), doi:<https://doi.org/10.1002/andp.202500181>.

1314

1315

1316 [51] V. N. Popov, *Bose spectrum of superfluid Fermi gases*, In *Functional Integral and Collective*
1317 *Excitations*, chap. III, section 14. Cambridge University Press, Cambridge (1987).

1318 [52] V. N. Popov, *Perturbation theory for superconducting Fermi systems*, In *Functional Integral*
1319 *and Collective Excitations*, chap. III, section 10. Cambridge University Press, Cambridge
1320 (1987).

1321 [53] N. Masuhara, B. C. Watson and M. W. Meisel, *Direct Measurement of the Energy Gap*
1322 *of Superfluid ^3He –B in the Low-Temperature Limit*, Phys. Rev. Lett. **85**, 2537 (2000),
1323 doi:[10.1103/PhysRevLett.85.2537](https://doi.org/10.1103/PhysRevLett.85.2537).

1324 [54] A. Schirotzek, Y.-i. Shin, C. H. Schunck and W. Ketterle, *Determination of the Superfluid*
1325 *Gap in Atomic Fermi Gases by Quasiparticle Spectroscopy*, Phys. Rev. Lett. **101**, 140403
1326 (2008), doi:[10.1103/PhysRevLett.101.140403](https://doi.org/10.1103/PhysRevLett.101.140403).

1327 [55] M. J. H. Ku, A. T. Sommer, L. W. Cheuk and M. W. Zwierlein, *Revealing the Superfluid*
1328 *Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas*, Science
1329 **335**(6068), 563 (2012), doi:[10.1126/science.1214987](https://doi.org/10.1126/science.1214987), <http://www.sciencemag.org/content/335/6068/563.full.pdf>.

1331 [56] H. Heiselberg, C. J. Pethick, H. Smith and L. Viverit, *Influence of Induced Interactions*
1332 *on the Superfluid Transition in Dilute Fermi Gases*, Phys. Rev. Lett. **85**, 2418 (2000),
1333 doi:[10.1103/PhysRevLett.85.2418](https://doi.org/10.1103/PhysRevLett.85.2418).

1334 [57] Q. Chen, *Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover*
1335 *in atomic Fermi gases*, Scientific Reports **6**(1), 25772 (2016), doi:[10.1038/srep25772](https://doi.org/10.1038/srep25772).

1336 [58] L. Pisani, P. Pieri and G. C. Strinati, *Gap equation with pairing correlations beyond the*
1337 *mean-field approximation and its equivalence to a Hugenholtz-Pines condition for fermion*
1338 *pairs*, Phys. Rev. B **98**, 104507 (2018), doi:[10.1103/PhysRevB.98.104507](https://doi.org/10.1103/PhysRevB.98.104507).

1339 [59] I. M. Khalatnikov, *An Introduction to the Theory of Superfluidity*, Perseus Publishing,
1340 Cambridge, Massachusetts (2000).

1341 [60] A. Camacho-Guardian and G. M. Bruun, *Landau Effective Interaction between*
1342 *Quasiparticles in a Bose-Einstein Condensate*, Phys. Rev. X **8**, 031042 (2018),
1343 doi:[10.1103/PhysRevX.8.031042](https://doi.org/10.1103/PhysRevX.8.031042).

1344 [61] H. Hu, B. C. Mulkerin, J. Wang and X.-J. Liu, *Attractive fermi polarons at nonzero*
1345 *temperatures with a finite impurity concentration*, Phys. Rev. A **98**, 013626 (2018),
1346 doi:[10.1103/PhysRevA.98.013626](https://doi.org/10.1103/PhysRevA.98.013626).

1347 [62] I. S. Gradshteyn and I. M. Ryzhik, *Tables of Integrals, Series, and Products*, Academic
1348 Press, San Diego (1994).