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Knots and links play a crucial role in understanding topology and discreteness in nature. In
magnetic systems, twisted, knotted and braided vortex tubes manifest as Skyrmions, Hopfions, or
screw dislocations. These complex textures are characterized by topologically non-trivial quantities,
such as a Skyrmion number, a generalized Hopf index H, a Burgers vector (quantified by an integer
ν), and linking numbers. In this work, we introduce a discrete geometric definition of H for periodic
magnetic textures, which can be separated into contributions from the self-linking and inter-linking
of flux tubes of the emergent magnetic field of non-coplanar textures. We show that fractional
Hopfions or textures with non-integer values of H naturally arise and can be interpreted as states
of “mixed topology” that are continuously transformable to one of the multiple possible topological
sectors. Our findings demonstrate a solid physical foundation for the generalized Hopf index to take
integer, non-integer, or specific fractional values, depending on the underlying topology of the flux
tubes of the emergent magnetic field of the system.

I. INTRODUCTION

Knots, links, and braids are important across a wide
range of scientific disciplines and are realisable in di-
verse physical platforms [1] such as water [2, 3], quantum
gases [4], electromagnetic waves [5], DNA [6], superfluids
[7], liquid crystals [8–11], laser light [12, 13], high en-
ergy physics [14], frustrated magnets [15, 16] and chiral
magnets [17–22]. These phenomena are significant across
length scales, from the smallest lengths in the early cos-
mology of the universe [23] to magnetic braids in the solar
corona that store vast amounts of energy, making them
several times hotter than the surface of the sun [24].

In magnetic materials, a multitude of topologically
non-trivial textures has been realized [25], such as
Skyrmions in 2D systems that can be readily manipu-
lated with external fields and have potential in device ap-
plications [26–29]. In 3D systems, the addition of a third
spatial dimension enriches the applications of topology
by enabling knots, links and braids, to form textures [30–
32] such as Hopfions [15, 33] or the recently predicted [21]
and observed [22] screw dislocations. Also, 3D textures
exhibit complex dynamics under applied drives [34–38],
making them interesting for applications. Notably, the
family of topological defects has been expanded to in-
clude textures where non-integer Hopf indices have been
calculated [32, 39, 40].

Magnetic textures have typically been characterized
based on the homotopy groups of spheres or mapping
of the magnetization m from a base space to the target
space S2, where Sn denotes the surface of the unit sphere
in n + 1 dimensions. In the special case where m de-
cays to a constant m0 at infinity, allowing a “one-point
compactification”, e.g. R2 → S2 or R3 → S3 for tex-
tures in 2D and 3D physical space respectively, the stan-
dard homotopy groups resulting in integer values of the
Skyrmion number Nsk and Hopf index H are π2(S

2) = Z
and π3(S

2) = Z. Topological stability is then derived
from the fact that knotted textures in a continuous field

cannot be unwound without introducing singularities, vi-
olating the continuity of the field or modifying the base
space.
In two-dimensional magnetic systems, it is common

to describe certain textures using fractional topologi-
cal charges—for example, assigning a Skyrmion number
Nsk = ±1/2 to merons [11, 41–43]. While this assignment
is not strictly justified by homotopy theory—and alter-
native classifications of merons using pairs of integers do
exist [44]—it remains an immensely practical and physi-
cally meaningful convention. The 1/2 charge reflects the
partial coverage of the magnetization sphere S2 and pro-
vides an intuitive quantification of a meron’s contribution
to dynamical quantities such as the gyrovector and emer-
gent electrodynamics. In particular, it allows merons to
be treated analogously to Skyrmions (i.e., textures with
Nsk = ±1) in collective coordinate models, where the ef-
fective force and motion scale proportionally with Nsk.
Thus, the fractional charge plays a central role in both
understanding and modeling meron dynamics.
Despite the growing interest in complex 3D textures,

an intuitive and broadly applicable framework for de-
scribing non-integer values of H, analogous to the use of
fractional topological charges in 2D systems, has yet to
be established.
In this work, we introduce such a framework for an-

alytically determining generalized Hopf index values in
3D topological textures particularly in cases where one-
point compactification is not possible—such as mag-
netic textures embedded in non-uniform physical back-
grounds, including conical spiral [20, 45–47], vortex, or
screw dislocation [21] configurations. To address this,
we define a generalized non-integer Hopf index H, based
on the structure and linking of flux tubes associated
with the emergent magnetic field. The resulting linking
numbers [48–52] serve as topological invariants that ex-
tend the classification of such textures beyond traditional
integer-valued topological indices. We demonstrate that
arbitrary non-integer values of the generalized Hopf in-
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FIG. 1. The generalized Hopf index, H, can take arbi-
trary values when the z-component of the background mag-
netization mb

z (lower panel) maps to an S1 line within
the target space S2 of the magnetization vector m (upper
panel). Here, the background magnetization is defined by
lim|r⊥|→∞ m(r),with r⊥ = (x, y) and its z-component deter-

mines the latitude of the line effectively partitioning the S2

sphere into two topologically distinct subspaces.

dex naturally arise for magnetic structures whose far field
or background magnetization is non-compactifiable, and
maps to an S1 line on the S2 magnetization sphere (see
Fig. 1), despite a discrete representation of the general-
ized Hopf index by a finite number of flux tubes.

Here we focus on magnetization textures which are pe-
riodic along a certain axis labelled as z. In this case, the
base space changes from S3 to S2 × S1 [22, 40, 53–58]
and as far field or background magnetization we consider
lim|r⊥|→∞ m(r),with r⊥ = (x, y). The corresponding z-

component of this far field mb
z then divides the S2 target

space into two subspaces [59, 60] (indicated by the black
line in Fig. 1). Linking numbers must be introduced for
the top and bottom target subspaces individually (self-
linking), as well as additional inter-linking numbers in-
volving both subspaces. Here the linking numbers and
the generalized Hopf index are calculated per period [61].
Furthermore, H is maintained as a measure of the gener-
alized Hopf index relative to the unlinked state that has
the same configuration at the boundary of the volume
[61, 62].

Upon continuously tuning the background magnetisa-
tion mb

z up or down, the generalized Hopf index is con-
tinuously modified without changing the linking num-
bers. Once the background magnetization collapses to a
single point on S2, the generalized Hopf index becomes
integer-valued and equivalent to the conventional Hopf
index defined by π3(S

2) = Z. We illustrate this find-
ing with a plethora of examples of smooth topological
magnetic structures. This work provides a unique frame-
work to characterize, explain and classify the wealth of
3D topological textures in magnetism.

FIG. 2. Here, we illustrate examples of two linked field
lines. The green surfaces indicate periodic boundary con-
ditions along the vertical axis. In panel (a), the field lines
form closed, linked loops. Panel (b) shows a loop threaded by
a vertical line. Panels (c) and (d) display vertically braided
lines. The linking number of the field lines is +1 in scenarios
(a-c), and −1 in (d) according to Eq. (2).

A. Hopf index in terms of flux tubes

The generalized Hopf index, or the helicity integral H,
characterizes the topological properties of the field lines
in a vector field F, such as their linking number [61, 63–
66]. Field lines of F are oriented curves that are tangent
at every point to the direction of F. The generalized Hopf
index can be written in a discrete geometric form for flux
tubes [67], i.e. bundles of field lines as [52, 64, 68, 69],

H =

NΦ∑
i=1

LiiΦ
2
i +

NΦ∑
i=1
j ̸=i

LijΦiΦj . (1)

Here, the vector field F has been decomposed into NΦ

flux tubes. Φi is the (positive definite) flux of the flux
tube labelled by the index i, i.e. Φi = |

∫
ai
da ·F|, where

the integration is over a cross-sectional area ai of the flux
tube. The linking numbers Lii and Lij are respectively
the oriented self-linking of the flux tube i and the oriented
inter-linking of flux tubes i and j. Lij (for i ̸= j) is
computed using the Gauss linkage formula,

Lij =
1

4π

∮
Ci

∮
Cj

ri − rj
|(ri − rj)|3

· (dri × drj), (2)

using the contour Ci (Cj) following an arbitrarily chosen
field line belonging to flux tube i (j) [70]. Lii is calculated
analogously using the contours of two non-coinciding field
lines within the same tube i. The sign of the linking num-
bers Lii and Lij are determined by the direction of the
pairs of contours as depicted in Fig. 2 [71], with further
examples shown in Sec. I of the Supplementary Material.
Equation (1) decomposes H into two contributions

that, while geometrically distinct, are topologically
equivalent. It also indicates that when the fluxes are non-
integer, H can assume non-integer values. Moreover, H
is conserved under flux-preserving continuous deforma-
tions of F.
A significant advantage of Eq. (1) is its intuitiveness

and ease of analytical calculation in comparison with the
mathematically equivalent well-known Whitehead inte-
gral formula [64, 72] H =

∫
d3rF ·A with F = ∇ ×A.
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The latter can only be analytically computed for a lim-
ited set of specific ansatzes [73, 74], and its numerical
computation requires careful implementation [75].

B. Hopf index in magnetism

In magnetism, the vector field F for which the Hopf
index H is typically calculated is the emergent magnetic
field defined by [76, 77]

F k =
1

8π
ϵijkm · (∂im× ∂jm), (3)

where ϵijk is the Levi-Civita symbol, i, j, k ∈ {x, y, z} and
the normalized vector field m represents the magnetic
texture.

To calculate the generalized Hopf index for the emer-
gent magnetic field, Eq. (1) can generally be applied
after the division of field lines of F into flux tubes.
Each flux tube contributes a flux Φi = |Nsk,i|, where
Nsk,i =

∫
ai
da · F is the Skyrmion number calculated for

the cross-sectional area ai of the flux tube i of the emer-
gent magnetic field [78] Importantly, a flux tube can be
arbitrarily decomposed into its constituent parts without
affecting the validity of Eq. (1), as we exemplify explicitly
for a Skyrmion and a Hopfion in Sec. II of the Supple-
mentary Material.

In magnetism, it is common to consider the preimages
of magnetization m, which are lines of constant m, to
obtain information about the Hopf index. The preimages
of m coincide at a local level with the field lines of F
only if ∇ ·F = 0 [79], i.e. in the absence of Bloch points.
In contrast to preimages, however, only the field lines
of F possess a distinct direction, which is indispensable
for unambiguously determining the sign of the linking
number and hence the proper calculation of the Hopf
index H, as emphasized by the sketches shown in Fig. 2.

II. ANALYTICAL RESULTS

As a central result, we demonstrate that the gener-
alized Hopf index is a continuously tunable function of
the total magnetization of the background. Notably, the
value of H can be adjusted through the application of
external magnetic fields.

For periodic magnetic structures along z with back-
ground magnetization characterized by mb

z or those with
a uniform background |mb

z | = 1, we can express the gen-
eralized Hopf index H and the skyrmion number Nsk

respectively as

H =


∈ Z if |mb

z | = 1,

∈ Z/4 if mb
z = 0,

∈ R otherwise

(4)

which can be proven with the help of Eq. (1), and

Nsk =


∈ Z if |mb

z | = 1,

∈ Z/2 if mb
z = 0,

∈ R otherwise.

(5)

For magnetic textures embedded in a ferromagnet
(|mb

z| = 1), the far field maps to a single point on the
S2 sphere. In this case, the physical space can be com-
pactified enforcing integer-valued Nsk and H, with the
latter coinciding with the Hopf index.
When the far field is not ferromagnetic and the back-

ground maps to an S1 line on the S2 sphere (see Fig. 1),
such as for helimagnets [20, 21, 45–47], H is not guar-
anteed to be an integer [80]. Instead, H is a real num-
ber and depends on the total magnetization of the back-
ground mb

z . In this case, the noncollinear background
splits the magnetization S2 target space into two topo-
logically distinct subspaces. These subspaces map from
specific regions in physical space (where flux tubes re-
side), enabling an unambiguous assignment of each flux
tube to either of the two subspaces. This necessitates
the introduction of the concept of self-linking numbers
for flux tubes belonging either to the top or bottom sub-
spaces, and the inter-linking number for two flux tubes
belonging to different subspaces.
A special case arises for magnetic textures with a far

field described by mb
z = 0, where the S2 sphere is split

into half. In this case, the Skyrmion number of individual
flux tubes is restricted to assume integer or half-integer
values, i.e. Nsk,i ∈ Z/2 and Nsk ∈ Z/2. Since for periodic
structures, it is always possible to find a decomposition
of field lines into flux tubes where all linking numbers are
integers, it follows from Eq. (1) that H generally takes
fractional values H ∈ Z/4.
To demonstrate the versatility of Eqs. (1) and (4), we

now discuss specific examples.
Magnetic textures for which the flux tubes are not

linked have a Hopf index of zero. Examples of this are
magnetic structures translationally invariant along the z-
direction, such as vertical Skyrmion tubes (see Fig. 3(a))
or meron tubes (see Fig. 4(a)).
In Sec. IIA, II B and Sec. II C we discuss textures con-

sisting of either a single flux tube, or multiple flux tubes
spatially separated by the isosurface defined bymz = mb

z ,
categorized according to Eq. (4). We summarize the
calculations of key topological properties, including the
Hopf index of the corresponding magnetic textures in Ta-
bles I and II [81].

A. 3D textures in ferromagnetic background
|mb

z | = 1

Figure 3 shows topological field configurations with a
ferromagnetic background. Here the vector field can be
decomposed into flux tubes which each have Φ = 1.
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FIG. 3. Illustrative examples applying Eq. (1) to spin textures with a ferromagnetic background (mb
z = 1): All

panels show spin textures composed of Φ = 1 flux tubes enclosed by the transparent blue isosurface where mz = 1. For each
flux tube two field lines of F are highlighted, which correspond to the preimages of m = (0, 0,−1) and m = (0,−0.87, 0.50),
respectively accompanied by thin arrows showing the direction of the field line. The green planes represent the periodic
boundary conditions along the vertical axis. The middle row shows cross-sections of the 3D structures depicted in a)–e) with
the thick arrows indicating the spin direction. Yellow stars indicate the point of intersection of the field lines and the central
horizontal plane. The colour code corresponds to the S2 sphere shown in Fig. 1. (a) A vertical Skyrmion string without
self-linking, (b,c) vertical Skyrmion strings with self-linking ±1, (d) a Hopfion, (e) a Hopfion with self-linking 2, (f) a Hopfion
encircling a vertical Skyrmion tube, (g,h) interlinked Hopfions, (i,j) braided Skyrmion tubes.

We further show two field lines for each flux tube,
whose linking we determine according to the convention
in Fig. 2. We then compute the corresponding Hopf in-
dices based on Eq. (1). When there is only a single flux
tube, as in Fig. 3 (a-e), then the equation for the Hopf
index reduces to H = L11Φ

2
1 = L11. For the exam-

ples shown in Fig. 3 (f-j), the interlinking between pairs
of tubes also needs to be considered. Note that each
Skyrmion tube that is inserted inside a Hopfion changes
the Hopf index by Lii + 2 where Lii is the self-linking
of the Skyrmion. The calculation of the Hopf indices is
summarized in Table I.

The examples shown indicate that the classification in
terms of linking numbers provides a more thorough de-
scription of magnetic textures than classifying them by
H and Nsk only. For example, the two different spin
textures are shown in Fig. 3(b) and (f) have the same
topological indices but different linking numbers.

B. 3D textures with |mb
z | = 0:

When the far field of the texture is an S1 line, the S2

sphere is naturally split into two subspaces. The cor-
responding magnetic textures can be geometrically de-

composed into their fractional components, that are flux
tubes of F. For |mb

z | = 0, a distribution of space into flux
tubes can be made such that all flux tubes carry a flux
of Φ = 1/2. Examples of such textures are illustrated in
Fig. 4.
To construct an S1 background, we describe the mag-

netization using the angular parameterization

m = (cosϕ sin θ, sinϕ sin θ, cos θ). (6)

In the far field, the spins can either rotate along the z-axis
(as a helical spiral ϕ = qz with ferromagnetic ordering
within each xy-plane, see Fig. 4(b,c)) or assume an in-
plane vorticity, (ϕ = νχ, where ν is an integer and χ =
arctan(y/x), while being invariant along the z-direction,
see Fig. 4(a)), or a combination of both a spiral and a
vortex state, which is a screw dislocation [21] (ϕ = νχ+
qz, where here ν is the integer quantising the Burgers
vector, see Fig. 4(d-g)). In the following sections, we
describe these textures in detail and apply Eq. (1) to
them.
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TABLE I. Hopf index calculation for the spin textures shown
in Fig. 3. The value of all fluxes is Φi = 1.

(a) Meron

A meron is a texture characterized by a vortex-like far
field (ϕ = χ), and a single vertical flux tube at its core, as
illustrated in Fig. 4(a). The magnetization maps to half
of the S2 sphere, resulting in a flux value of Φ = 1/2.
The flux tube shown is aligned along the z-axis, with
all field lines of F running parallel to the z-axis, hence
Nsk = −1/2. Since the flux tube of the magnetic texture
has no self-linking, the generalized Hopf index is zero, as
discussed above.

(b) Skyrmion in spiral background

Fig. 4(b) shows a Skyrmion with Nsk = −1 embed-
ded in a spiral background [45]. The Skyrmion string
is aligned parallel to the z-axis, which is the direction
of the wavevector of the spiral. Each xy-plane contains
a vortex and an antivortex with opposite core magneti-
zation mz; hence, each individual xy-plane constitutes
a bimeron configuration [82, 83]. Analysing the link-
age of the field lines of F, the vortex tube has a self-
linking number L11 = 0, while the antivortex tube has
L22 = 2. The inter-linking between these two tubes is
L12 = 1. Thus, we obtain a generalized Hopf index of
H = L11Φ

2
1 + L22Φ

2
2 + 2L12Φ1Φ2 = 1.

(c) Heliknoton

A Heliknoton [20] can be interpreted as a Hopfion em-
bedded within a spiral background, see Fig. 4(c). It
consists of two flux tubes mapping to the upper and
lower half of the S2 sphere respectively, each with a
flux value of Φ1 = Φ2 = 1/2 and linking numbers
L11 = L22 = L12 = 1. The Skyrmion number in any
cross-sectional plane is given by Nsk = 0 and the gener-
alized Hopf index evaluates to H = 1.

(d-e) Vortex and antivortex tubes with self-linking

Figure 4(d) and (e) show special types of screw disloca-
tions composed of a single flux tube with self-linking and
a Burgers integer of |ν| = 1[84]. In (d) and (e) the cross-
section is a vortex (ν = 1) and an anti-vortex (ν = −1),
respectively.
For such single flux tube screw dislocations with Burg-

ers integer ν the flux is Φ = |ν/2| and the self-linking
is L11 = −1/ν. The Skyrmion charge is given by
Nsk = pν/2, where p denotes the core polarity (the sign
of mz at the core) and the generalized Hopf index is,
H = L11Φ

2
1 = −ν/4.

(f) Twiston

Figure 4(f) shows a special type of screw dislocation
with ν = 1 which we denote as “Twiston” in the follow-
ing [85]. It is composed of two flux tubes: at the centre
of the structure is a vertical meron tube with parameters
Φ1 = 1/2, L11 = 0, and polarity p. Surrounding this is a
meron-torus with Φ2 = 1/2, L22 = 1, and opposite polar-
ity −p. There is inter-linking between these tubes, with
a linking number L12 = 1. The Skyrmion number for
each cross-section is Nsk = p/2 and the generalized Hopf
index H for this configuration is H = 3/4. A Twiston
with p = −1 is illustrated in Fig. 4(f).

(g) Screw dislocation with ν = 2

The screw dislocation illustrated in Fig. 4(g) consists
of two flux tubes that do not have any self-linking, i.e.,
L11 = L22 = 0. Each flux tube has a flux Φ1 = Φ2 = 1/2,
and their inter-linking is L12 = 1. The Skyrmion charge
in the xy-plane for this configuration is Nsk = 0. The
generalized Hopf index is H = 1/2.

(h) Screw dislocation with ν = 3

Figure 4(h) shows a screw dislocation with ν = 3,
which consists of three meron flux tubes each with flux
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FIG. 4. Illustrative examples applying Eq. (1) to spin textures with a spiral background (mb
z = 0): All panels show

spin textures composed of Φ = 1/2 flux tubes enclosed by the transparent white isosurface where mz = 0. For each flux tube,
two field lines of F are highlighted, which correspond to the preimages of m = (0, 0,±1) and m = (0,−0.87,±0.50), respectively
accompanied by thin arrows showing the direction of the field line. The green planes represent the periodic boundary conditions
along the vertical axis. The second panel shows cross-sections of the 3D structures through the middle plane, with yellow stars
indicating the point of intersection of the field lines and this plane, and thick arrows indicating the direction of m. The colour
code corresponds to the S2 sphere shown in Fig. 1. We depict (a) a meron (b) Skyrmion and (c) Heliknoton, in a spiral
background. (d-e) meron with self-linking (f) Twiston (a vertical meron tube surrounded by a self-linked meron torus) (g) two
braided meron tubes (h) three braided meron tubes.

Φ1 = Φ2 = Φ3 = 1/2. None of the flux tubes have self-
linking, i.e., L11 = L22 = L33 = 0, however their inter-
linking numbers are L23 = −1/2 and L12 = L13 = 1/2.
The Skyrmion charge in the xy-plane for this configura-
tion, contributed by the three merons, is Nsk = 1/2. The
generalized Hopf index is H = 1/4.

C. 3D textures with 0 < |mb
z | < 1

For magnetic textures where the background magneti-
zation is neither along the z direction nor in the xy-plane,
the results obtained in Sec. II B can be generalized.
For a background magnetization with 0 < |mb

z | < 1 the
S1 line on the S2 sphere shifts in latitude (see Fig. 1).
This enables the partitioning of physical space into flux
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TABLE II. Calculation of the generalized Hopf index for the textures shown in Fig. 4 with general background magnetization
mb

z .

(b)(a) (c) (d)

(f)(e) (h)(g)

FIG. 5. generalized Hopf index H and Skyrmion number Nsk for the magnetic textures depicted in Fig. 4, described by the
analytical expressions in Table II (lines). In (b-g) the black circles are the numerically calculated values of Nsk and H for the
model of Eq. (7), for the range of |h| < 1.2, where the texture was numerically stable.
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tubes, such that all flux tubes corresponding to the upper
and lower subspaces on the S2 sphere possess flux values
of (1 −mb

z)/2 and (1 +mb
z)/2 respectively. The linking

numbers, however, remain invariant under variations of
mb

z , similar to examples from fluid dynamics [49]. In
general, Nsk [43] and H become a function of mb

z and are
continuously tuneable as shown in Table. II.

Changing the magnetization background continuously
transforms the magnetic structures considered in Fig. 4.
Importantly for 0 < |mb

z | < 1, the magnetic textures are
in a mixed topology state and can transform smoothly to
states with integer Hopf indices, which can be different
for tuning the background magnetization up (mb

z = 1) or
down (mb

z = −1).
For example, the Skyrmion in a spiral background

transforms for mb
z = 1 into a Skyrmion in a ferromag-

netic background with H = 0. Conversely, for mb
z = −1

it becomes an anti-Skyrmion with a self-linking.
The Heliknoton is special in the sense that its topolog-

ical indices Nsk and H do not depend on mb
z . Aligning

the background continuously along z, the structure trans-
forms to a Hopfion in a ferromagnetic background, i.e. a
single closed flux tube as in Fig. 3(d). The (anti-)vortex
with self-linking (Fig. 4(d,e) transforms for mb

z = −1 to a
ferromagnetic state and formb

z = 1 to an (anti-)Skyrmion
with self-linking. The Twiston transforms for mb

z = −1
to a Hopfion with H = 1 and for mb

z = 1 to a Skyrmion
with H = 0 as shown in Fig. 3(a). Thus, this texture
with (Nsk, H) = (−1/2, 3/4) at mb

z = 0 can be converted
into either a Skyrmion tube or a Hopfion by changing
the background (e.g. by an external magnetic field) to a
ferromagnetic state. A video showing the transformation
between Hopfion and Skyrmion, with the Twiston as the
intermediate configuration, is provided as Supplementary
Material and described in Sec. III of the Supplementary
Material. The screw dislocation with ν = 2 transforms
formb

z = ±1 to a Skyrmion with (Nsk, H) = (∓1, 0). The
screw dislocation with ν = 3 transforms for mb

z = 1 to a
Skyrmion with (Nsk, H) = (−1, 0), and for mb

z = −1 to a
pair of braided Skyrmion tubes with (Nsk, H) = (2,−1).

III. NUMERICAL RESULTS

We employ a specific chiral magnet model to stabilize
the examples of topological defects embedded within a
non-uniform state, that were considered in the previous
section. We emphasize, however, that the methods pre-
sented for the calculation of H using Eq. (1) are model-
independent.

We consider the energy functional [86]

E =

∫
d3r [A∂im·∂im+Dm·∇×m−µ0Ms H·m], (7)

where A is the ferromagnetic exchange stiffness, D is the
Dzyaloshinskii-Moriya interaction (DMI) strength, Ms is
the saturation magnetization and H represents the ex-
ternal magnetic field.

To simplify the analysis, we introduce a dimension-
less magnetic field h = |H|/Hc2 measured in units of
Hc2 = D2/(2Aµ0Ms). For an applied magnetic field
along the z-direction, the ground state of Eq. (7) is ei-
ther a ferromagnetic (for |h| ≥ 1) or a (conical) spiral
(for |h| < 1) state. The spiral state is characterized by a
wavevector along z with magnitude q = 4πA/D and

θ = arccos(h), ϕ = qz, (8)

in the parametrization of the magnetization given in
Eq. (6).
In addition, for |h| < 1 screw dislocations with Burg-

ers vector ν are also energetically metastable solutions of
Eq. (7) [21], with the far field given by

θ = arccos(h), ϕ = νχ+ qz. (9)

In both cases, conical spiral and screw dislocation,
the background magnetization is determined by mb

z =
cos θ = h.
We conduct micromagnetic simulations based on the

model in Eq. (7) and relax the textures shown in Fig. 4 for
a range of rescaled magnetic field values −1.2 < h < 1.2.
Simulations were performed using MuMax3 [87] with
the following parameters: exchange stiffness A = 4 ×
10−13 Jm−1, bulk DMI constant D = 2.8 × 10−4 Jm−2,
and saturation magnetization Ms = 1.63 × 105 Am−1.
The grid size was set to (Nx, Ny, Nz) = (360, 360, 36),
with a cell size of 0.5 nm, and a cylindrical geometry with
a diameter of 180 nm. Periodic boundary conditions were
applied along the z-axis, while open boundary conditions
were used along the x- and y- axis. Using these param-
eters, we obtain LD = 4πA/D = 18nm as the period of
the spiral along the z-direction, and µ0Hc2 = 0.6T as
the critical field for transition to the ferromagnetic state.
Note that depending on the model considered, the tex-

tures deform from the ideal textures shown in Fig. 4 upon
relaxation, without changing their topological character-
istics, see Sec. III of the Supplementary Material.
The numerically calculated values of Nsk and H are

presented in Fig. 5 (shown as circles) alongside the ana-
lytical results (lines) from Table II, showing good agree-
ment (details about the calculation of H are presented in
Sec. III of the Supplementary Material). The numerical
results are shown for the range of magnetic field values
(varied in steps of 0.025T) where we found the texture to
be numerically (meta)stable in this specific model with
the numerical implementation chosen. Notably, the an-
alytical expressions in Table II allow us to predict the
resulting textures for |mb

z | = 1, even when these textures
are not energetically stable within the model considered.
The model Eq. (7) is invariant under the following si-

multaneous transformation of magnetization and mag-
netic field: m → −m, H → −H. This means that all
magnetization configurations exist with two different po-
larities, which actually have opposite Skyrmion numbers
while having the same Hopf index, i.e. Nsk → −Nsk and
H → H under this transformation.
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IV. CONCLUSION

To conclude, the generalized Hopf index for a continu-
ous field in 3D can be calculated using a discrete formula-
tion (Eq. (1)) providing an alternative to the commonly
employed Whitehead integral formula. This discrete ap-
proach provides an intuitive interpretation of the gen-
eralized Hopf index as a measure of the linkage of flux
tubes of the emergent magnetic field. We introduced and
implemented this formulation (Eq. (1)) for magnetic tex-
tures, demonstrating its utility in quantifying the linkage
of flux tubes of the emergent magnetic field of the tex-
ture.

Compared to the Whitehead integral formula, this dis-
crete formulation provides a more accessible and intuitive
understanding of the generalized Hopf index. Further-
more, while the Whitehead integral can only be com-
puted analytically for a limited set of specific ansatzes
[73], the discrete formulation (Eq. (1)) provides precise,
model-independent analytical results once the flux tubes
and their linking numbers are identified.

We have shown that non-integer values of the general-
ized Hopf index defined by Eq. (1) naturally occur for
magnetic textures with a non-uniform background. We
interpret these textures as “mixed topology” states that
can smoothly transform into different topological sectors
by continuously tuning the background magnetization.
While the Skyrmion number and generalized Hopf index

vary continuously with the total background magnetiza-
tion, the linking numbers remain conserved as topological
invariants, highlighting their significance as topological
characteristics of the texture.
Our results establish a strong physical foundation for

the existence of textures with arbitrary non-integer gen-
eralized Hopf indices and “mixed topology states”, ap-
plicable not only in magnetism, but also more gener-
ally to solitons in continuous media [14] such as liquid
crystals [88], superfluids [7], classical field theories [14],
and electromagnetic fields [5], setting the stage for the
discovery and investigation of new classes of topological
textures across a wide range of materials.
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Supplementary Materials

I. LINKING NUMBERS AND THE HOPF
INDEX

A. Linking numbers

The convention for linking numbers followed in this
paper is given by the formula in Eq. (2), and sketched in
Fig. 2 of the main text. Reversing the direction on any
contour reverses the sign of the linking number, as shown
in Fig. S1.

B. Whitehead formula in terms of linking numbers

We demonstrate in a two-step approach that the
Whitehead formula for the Hopf index is equivalent to the
expression in Eq. (1). In the first step following Ref. [64],
we only consider flux tubes without self-linking, and in
the second step, we generalize this result to tubes with
self-linking following Ref. [68].

Step 1: To begin, we consider cases in which the vec-
tor field F can be decomposed in the volume V into flux
tubes without self-linking, i.e. where Eq. (1) reduces to
the second term

∑
i

∑
j ̸=i LijΦiΦj . Here, Φi is the flux

flowing within tube i as defined in the main text.
We first show that the Whitehead integral formula,

H =
∫
V
F · AdV is equivalent to

∑
i φiΦi, where φi is

FIG. S1. The values of the linking numbers L12 for two ori-
ented curves, calculated using the formula given in Eq. (2).
L12 = 1 for the first two rows and L12 = −1 for the last two
rows.

the flux of F piercing the disc surface Si formed by a
contour Ci along a streamline of tube i (see Fig. S2). To
show this, the volume integral in the Whitehead formula
can be decomposed into the individual contributions of
the flux tubes

H =

∫
V

F ·A dV (10a)

=
∑
i

∫
Vi

F ·A dV (10b)

=
∑
i

∮
Ci

dr

∫
ai

da (F ·A), (10c)

where the last equal sign makes use of the fact that a
volume integral of a flux tube can generally be formed
along and perpendicular to any chosen contour Ci ∈ Vi

for thin tubes where ai ≪ Si. Here, ai is the cross-
sectional area of the tube. We introduce the unit vector
f̂ = F/|F|, to rewrite H in the factorized form:

H =
∑
i

∮
Ci

dr

∫
ai

da (F · f̂)(A · f̂) (11a)

=
∑
i

∮
Ci

∫
ai

(F · da)(A · dr), (11b)

where dr = f̂ dr and da = f̂da. For such thin flux tubes
with bounding surfaces of genus 1, the oriented area ele-
ment da and the line element dr, are parallel to F inside
the tube. Also, the flux F ·da is independent of the path
variable r, as required by flux conservation and the con-
dition ∇ · F = 0. Therefore we can first integrate over
Ci, or equivalently, decouple the integrals over Ci and ai
as,

H =
∑
i

(∫
ai

F · da
)(∮

Ci

A · dr
)
. (12)

The first factor is the flux Φi as defined in the main text.
Using Stokes theorem, the second factor can be expressed
as the flux φi piercing the loop Ci, see Fig. S2,∮

Ci

A · dr =

∫
Si

F · da = φi. (13)

Now, we introduce the linking number Lij which equals
the signed number of times the tube j intersects the area
Si. Therefore, φi can be expressed in terms of the linking
numbers Lij between Ci and Cj in the following way:

φi =
∑
j ̸=i

LijΦj . (14)

This then completes the proof

H =

∫
V

F ·AdV =
∑
i

φiΦi =
∑
i

∑
j ̸=i

LijΦiΦj , (15)

for cases in which the vector field F can be decomposed
in the volume V into flux tubes without self-linking.
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(a) (b)

(c) (d)

FIG. S2. Two flux tubes of the vector field F, labeled i and
j, with their respective bounding surfaces colored magenta
and blue. The red arrows indicate the direction of F within
the tubes. (a) A cut through the bounding surfaces of i and
j reveals the contours Ci and Cj which are streamlines of
F passing through the tubes, along with their corresponding
cross-sectional areas ai and aj . (b) The yellow-shaded area
Si, enclosed by Ci, and the cyan-meshed area Sj , enclosed by
Cj , are oriented according to the right-hand rule, as indicated
by the blue and magenta arrows. The inter-linking number
Lij is 1 for panels (a) and (b), 2 for (c), and 3 for (d). The
total flux φi through Si is determined by the number of times
the flux line j pierces Si, multiplied by its flux Φj , i.e. φi =
LijΦj .

While we considered thin flux tubes, the result ob-
tained is universal for any system of non-overlapping flux
tubes (with bounding surfaces of genus 1) without self-
linking, regardless of their thickness. This universality
arises because H remains invariant under flux-conserving
continuous deformations of the field lines of F, implying
that such systems, being related through these deforma-
tions, are topologically equivalent. Note that substitut-
ing Φi =

∑
j ̸=i Lijφj into H =

∑
i φiΦi yields the equiv-

alent expression, H =
∑

i

∑
j ̸=i Lijφiφj .

Step 2: Let us now consider the general case that per-
mits self-linking. We demonstrate that it can be mapped
to the case considered in step 1, where self-linking is ab-
sent.

Since self-linking contributions are summed indepen-
dently for each flux tube, it suffices to consider a single
flux tube with uniform self-linking number L, meaning
that any pair of streamlines of F within the tube have
the same inter-linking number L. The tube is divided
into N thin filaments, each carrying a flux Φ/N (as illus-
trated in Sec. II for a Skyrmion and a Hopfion). In the
limit N → ∞ it is justified to assume that each of the fil-
aments has zero self-linking but a constant inter-linking
number L. Using the relation H =

∑
i

∑
j ̸=i LijΦiΦj ,

from step 1 for the N !/(N − 2)! number of pairs of fila-

ments, one obtains:

H = L
N !

(N − 2)!

(
Φ

N

)2

. (16)

In the limit N → ∞, this expression simplifies to

H = LΦ2, (17)

which corresponds to the first term in Eq. (1) for a single
flux tube with flux Φ and self-linking L.
It is important to note that subdividing a flux tube

into smaller tubes conserves the total value of H, it just
shifts weight from the first term to the second one.

II. DIVISION OF VECTOR FIELD INTO FLUX
TUBES

Per definition, the boundaries of a flux tube is a surface
S with F · n̂|S = 0, i.e. the field lines of F cannot enter
or leave this surface. The assignment of F to flux tubes
for an arbitrary spin texture is, however, not unique. We
illustrate this with specific examples of a Skyrmion with
self-linking (Sec. II A), a Hopfion (Sec. II B) in a ferro-
magnetic background and a Heliknoton (Sec. II C).

A. Flux division for one Skyrmion

For a Skyrmion with self-linking, shown in Fig. S3(a),
the Hopf index is given by H = L11Φ1 = −1, if we as-
sign all flux to a single flux tube. As an alternative, we
can choose a division into two concentric nested tubes
as shown in Fig. S3(b) or two braided tubes as shown
in Fig. S3(c). The Hopf index is then given by H =
L11Φ1 + L22Φ2 + 2L12Φ1Φ2 = −1/4− 1/4− 1/2 = −1.

B. Hopf index for N number of sub-tubes
constituting one Hopfion

A Hopfion can, for example, be considered as a single
flux tube with total flux Φ and linking number L, or it
can be decomposed into N equivalent linked flux tubes
each with flux Φ/N and self- and inter-linking numbers
all being L, see Fig. S4. In the first case, the Hopf index
is H = LΦ2, and in the second case

H = NL

(
Φ

N

)2

+ 2

(
N

2

)
L

(
Φ

N

)2

= LΦ2, (18)

where the first term is the contribution to the Hopf index
due to the N tubes self-linking each with linking number
L, and the second term is the interlinking contribution.
The binomial factor

(
N
2

)
enters due to the number of

possibilities to choose 2 out of N flux tubes.
Note that in the limit N → ∞ the self-linking con-

tribution scales as ∼ 1/N whereas the inter-linking con-
tribution has a part that scales independently of N in
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(a) (b) (c)

FIG. S3. Skyrmion tube in a ferromagnetic background
(mb

z = 1) with self-linking, depicted for three different flux
tube decompositions: (a) single flux tube, (b) two concen-
tric flux tubes shown as blue and red surfaces, each with flux
Φ = 1/2, and (c) two braided flux tubes shown as yellow and
cyan surfaces, each with flux Φ = 1/2. The blue and red
thin tubes depict a selection of the field lines of F, with ar-
rows showing the direction of F. Independent of the flux tube
decomposition, all three configurations yield a Hopf index of
H = −1.

(a) (b)

FIG. S4. Sketches of flux decompositions of the vector field
F for a Hopfion (a) as a single flux tube, (b) into several linked
flux tubes. The arrow indicates the direction of F.

agreement with our assumption made in Sec. I B, that
any texture can be decomposed into a large number of
flux tubes that only have interlinking contributions.

C. Topological decomposition for a Heliknoton

Magnetic textures can be decomposed into their con-
stituent topological textures. As an example, consider
the Heliknoton (Fig. 4(c)) that can be decomposed into
the sum of a screw dislocation with ν = −1 (Fig. 4(e))
and a screw dislocation with ν = 1 (Fig. 4(f)). The Hopf
index sums to 1 at any value of mb

z , demonstrating the
additivity of the H when two simply connected volumes
are merged while deforming F near the surface, to pre-
serve the continuity of F. An illustration of this concept
is shown in Fig. S5 where the F constituting the Heli-
knoton is shown to be split into two components.

FIG. S5. The emergent magnetic field F comprising the He-
liknoton can be cut along the dashed lines to be decomposed
into the sum of two constituents: the Twiston and an antivor-
tex meron with a self-linking. There are periodic boundary
conditions along the z direction in all cases. The blue and red
tubes represent flux tubes of F with mz > 0 and mz < 0 in
their interior respectively. The light blue(red) line represents
one field line of F.

III. ADDITIONAL NUMERICS

A. Numerically relaxed magnetic textures

We show details of numerically relaxed textures, the
Skyrmion in a spiral background (Fig. S8) and the
Twiston (Fig. S9). The vector field F is plotted for cross-
sections in the yz-, xz- and xy-planes in panels (i) to (l)
of Figs. S8 and S9. Along the x and y directions, F → 0
as x → ∞ or y → ∞ for all textures considered.

B. Choice of gauge potential

The Hopf index, calculated using the Whitehead equa-
tion H =

∫
V
d3rF ·A for a finite integration volume V ,

is gauge invariant when F · n̂ vanishes at the surfaces of
V (where n̂ is the surface normal) [75]. However, if F
does not satisfy these boundary conditions—for exam-
ple, when the field lines of F run along the z-axis and
intersect the top and bottom surfaces of V with peri-
odic boundary conditions along z, then the base space
becomes a S2 × S1 and H is a topological invariant only
when it is measured relative to a reference state [61, 62].
As a natural reference state, we consider a translation-

ally invariant Skyrmion tube which must have the trivial
Hopf index of 0 (see Fig. 3(a)) using the chosen gauge.
In addition, when F is periodic, A must satisfy the same
periodic boundary conditions.
In the S2×S1 setting, the Whitehead integral generally

acquires additional terms to preserve its gauge invariance
[89]. The purpose of gauge fixing in an S2 ×S1 topology
is to to ensure that these extra contributions vanish. This
requirement imposes restrictions on the admissible forms
of the gauge potential A [58]. Admissable gauge choices
include the winding gauge [62], which satisfies ∂xAx +
∂yAy = 0, and gauges with Ax = 0 or Ay = 0, such as
the one used in Eq. (19) below.

A gauge that yields a trivial Hopf index for a trans-
lationally invariant Skyrmion tube along the z-direction
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is

Ax(x, y, z) = −
∫ y

−Ly/2

dy′Fz(x, y
′, z),

Ay(x, y, z) = 0,

Az(x, y, z) =

∫ y

−Ly/2

dy′Fx(x, y
′, z).

(19)

This gauge is used for our numerical calculations of
the generalized Hopf index H, consistent with Ref. [75].
Lx(Ly) are dimensions of the integration volume along
the x(y)-direction. Lx and Ly must be large enough so
that F ≈ 0 at x = ±Lx/2 and y = ±Ly/2, yet suffi-
ciently smaller than the full simulated geometry, to ex-
clude contributions from chiral surface twists at the lat-
eral edges of the geometry. For the results presented in
Fig. 5, sufficiently accurate results for H are obtained by
using an integration volume with Lx = Ly = 5LD where
LD is the size of the integration volume along the z di-
rection, and the full simulation geometry is a disc with
diameter 10LD and height LD, ensuring that the chiral
surface effects lie outside the integration region. For the
heliknoton (Fig. 5(c)), the size of the integration vol-
ume as well as the simulation geometry was chosen to
be Lx = Ly = Lz = 5LD. Furthermore, F is calculated
using the average solid angle between neighboring lattice
sites as in Ref. [75].

C. Accounting for arbitrary background values
mb

z = h

A video illustrating the continuous transformation
from Hopfion to Twiston to Skyrmion is provided in the
Supplementary Material. Stills from this video are shown
in Fig. S6.

While the Twiston-to-Skyrmion transition can be sta-
bilized within the chiral magnet model described in
Ref. [21], the Twiston-to-Hopfion transition is not en-
ergetically stable throughout the full range of h < 0,
as indicated by the absence of black circles in Fig. 5(f).
Therefore, we adopt a different approach that reproduces
the desired transitions starting from a reference configu-
ration at mb

z = h = 0.
To generate configurations corresponding to arbitrary

background values mb
z = h ̸= 0, we begin with the

Twiston texture, which is stable at zero applied mag-
netic field. We choose the texture with core polarity
p = −1, as illustrated in Fig. 4(f) and Fig. S9(c). We
then remap the polar angle θ = arccos (mz), while pre-
serving the azimuthal angle ϕ = atan2(my,mx). This
transformation adjusts the latitude of the far-field mag-
netization to match the value defined by h on the unit
sphere. Specifically, we use:

θ′ =

{
m1 · θ + c1, for − 1 ≤ h < 0,

m2 · θ + c2, for 0 ≤ h ≤ 1.
(20)

where

m1 =
arccos(h)

π/2
, c1 = 0,

m2 =
π − arccos(h)

π/2
, c2 = 2

(
−π

2
+ arccos(h)

)
.

The remapped polar angle is clipped such that θ′ ∈ [0, π].
This ensures the transformed magnetization field m =
(cosϕ sin θ′, sinϕ sin θ′, cos θ′) is properly normalized and
gives the correct far-field, as lim|r⊥|→∞ mz = mb

z for
r⊥ = (x, y). This procedure enables us to construct
spin textures with a tunable background magnetization
mb

z = h.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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FIG. S6. Selected snapshots from the continuous transition
from a Hopfion to a Skyrmion, achieved by varying the back-
ground magnetization mb

z from −1 to 1. Panels (a) to (i)
correspond to configurations at mb

z = −1, −0.75, −0.33, 0,
0.29, 0.58, 0.75, and 1, respectively. In each snapshot, isolines
of the magnetization are shown at mz = ±0.5 for eight differ-
ent azimuthal angles ϕ. The associated values of Nsk and H
are presented in Fig. 5(f) of the main text.

IV. COMPARISON OF THE HOPF INDEX
CALCULATION OF PHYSICAL BOUNDARIES
WITH THE NESTED BOX FRAMEWORK FOR

TEXTURES IN A S2 × S1 BASE SPACE

A differently defined Hopf index, denoted as Hnested

in the following, was introduced in Ref. [22] for textures
with a S2 × S1 base space. This method, known as the
“nested box approach,” involves continuously embedding
a periodic magnetic texture along the z-direction into
a larger box, with fixed boundary conditions m(r) →
m0 imposed on the lateral surfaces; see Fig. S7. This
construction yields an integer-valued skyrmion number
Nnested

sk ∈ Z and an integer-valued Hnested ∈ Z, in agree-
ment with Eqs. (4) and (5). Unfortunately, the nested
box method attributes a substantial portion of the com-
puted values Nnested

sk and Hnested to Nouter
sk and Houter,

originating from the region outside the physical sample.
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nested box
approach,

nested box
approach,

physical boundary 
conditions y

y

y

z

z

z

FIG. S7. Comparison of a Hopf index calculation using physical boundary conditions yielding H and using the nested box
approach giving Hnested—where the sample is embedded in a larger computational volume with fixed boundary conditions
m = ẑ or m = −ẑ on the lateral surfaces—exemplified on a Twiston, which is also shown in Fig. 4(f). Notably, the nested
box approach yields integer values as outer embedding also contributes to Hnested = H +Houter. Importantly, the embedding
cannot be uniquely defined, as depicted in the figure, which has implications for the value of Houter and thus Hnested. Arrows
indicate the direction of the magnetization m, using the same color scheme as in Fig. 1.

Furthermore, the result of Nnested
sk and Hnested are not

unique and depend on the direction chosen for the ferro-
magnetic embedding, see Fig. S7 and Table S1 for more
examples.

In contrast, our approach does not employ a nested
box. Instead, we restrict the integration volume to the

TABLE S1. Skyrmion number and Hopf index calculated
using i) physical boundary conditions, ii) nested box approach
from Ref. [32] with m0 = ẑ and iii) nested box approach with
m0 = −ẑ, for the Hopfion in a ferromagnetic background with
mb

z = −1, a Twiston (see Fig. 4(f)), and a Skyrmion tube in
a ferromagnetic background with mb

z = +1. Interestingly, in
the nested box approach, the Twiston is assigned the same
topological indices as a“Hopfion” or “Skyrmion tube” solely
depending on the imposed boundary condition m0.

physical sample, allowing m(r) to remain non-uniform
at the side boundaries (defined naturally where F ≈ 0).
This is essential for capturing the continuous topological
evolution of arbitrary S2×S1 base-space textures, which
generally yield non-integer values of the Skyrmion num-
ber and generalized Hopf index, i.e. Nsk ∈ R and H ∈ R.
Another discrepancy appears when we consider the op-
eration m → −m under which the Whitehead integral
as well as Eq. (1) is invariant, i.e. H → H. This symme-
try reflects the topological nature of H as a measure of
field line linking, insensitive to the overall orientation of
the magnetization—a property also shared by the link-
ing numbers. However, in the nested-box approach, this
flip-invariance no longer holds when the background mag-
netization is noncollinear: if one first inverts m → −m in
the physical sample and then computes the Hopf index
using the same reference orientation m0 for the nested
box, the resulting Hnested differs.
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FIG. S8. Numerically relaxed magnetization configuration of the Skyrmion string aligned along the z-axis in a helical spiral
background with spiral wavevector also along the z direction. (a) displays a box of height LD, centred on the Skyrmion
string at (x, y) = (0, 0). The HSL colourmap shown in (d) is used to represent the magnetization direction m in panels
(a) to (c). In (a) and (b) the xy-plane features a vortex (black) and an antivortex tube (white), with cores polarized along
−z and +z respectively. (b) and (c) show cuts through the centre of the box, for Skyrmions with (Nsk, H) = (−1,−1) and
(Nsk, H) = (1,−1), respectively, that are related by the transformation m → −m, z → z + 0.5. (e) shows selected preimages
of magnetization for mz = ±0.5, overlaid on the isosurfaces of mz = ±0.5. (f) depicts the field lines of the emergent magnetic
field F, overlaid on the isosurfaces of mz = ±0.5. The arrows depict the direction of F. (g) and (h) separately display the data
from (f) for mz = +0.5 and mz = −0.5, respectively. (i) and (j) present plots of Fx and Fy, respectively, with each half-plane
(with either x > 0, x < 0, y > 0 or y < 0) pierced by a total flux Φ = 1/2, per period along z. The dashed line in (i) and
(j) encloses a region with Φ = 1/2. (k) and (l) show Fz in the planes z = 0 and z = 0.5, respectively. (m) magnetization in
the (x, y) plane at z = 0, colored according to the HSL colormap shown in (d). (n) magnetization is plotted for the regions
with 0.3 < |mz| < 0.8, at z = 0, highlighting the boundaries of the vortex region and antivortex regions, which are indicated
by black dashed lines. All lengths are measured in units of the spiral period.
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FIG. S9. Numerically relaxed magnetization configuration of the Twiston with ν = +1 described by the asymptotic behavior
ϕ = νχ + qz for the far field. (a) displays a box of height LD. The HSL colourmap shown in (d) is used to represent
the magnetization direction m in panels (a) to (c). (b) and (c) show cuts through the centre of the box, for textures with
(Nsk, H) = (p/2, 3/4) where p = +1 and p = −1 respectively, that are related simply by a transformation m → −m. The
texture illustrated in Fig. 4(f) corresponds to panel(c). Panel (e) shows selected preimages of magnetization for mz = ±0.5,
overlaid on the isosurfaces of mz = ±0.5. (f) depicts the field lines of the emergent magnetic field F, overlaid on the isosurfaces
of mz = ±0.5. (g) and (h) separately display the data from (f) for mz = +0.5 and mz = −0.5, respectively. (i) and (j) present
plots of Fx and Fy, respectively, with each half-plane (with either x > 0, x < 0, y > 0 or y < 0) pierced by a total flux Φ = 1/2,
per period along z. The dashed line in (i) and (j) encloses a region with Φ = 1/2. (k) and (l) show Fz in the planes z = 0.25
and z = −0.25, respectively. All lengths are measured in units of the spiral period.


