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Abstract

We present general four-loop template β-functions and anomalous field dimensions for
renormalisable scalar-fermion theories in three dimensions. By imposing N = 1 and
N = 2 supersymmetry, we obtain relations between the template RGE coefficients, valid
in any renormalisation scheme. Directly in d = 3, we identify a new theory with a non-
trivial IR fixed point that is under perturbative control in a large-N limit. We provide
up-to-date numerical results for all required massive tadpole master integrals up to four
loops and complement them with analytic expressions where available.
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1 Introduction

Studying quantum systems in three dimensions is of strategic interest for many aspects of
modern physics. For instance, continuous phase transitions in condensed-matter systems can
be described as critical points in the systems three-dimensional continuum limit. Prominent
examples include scalar O(N)models [1–15], and gapless Dirac electrons characterized by the
generalized Gross–Neveu universality class [16–24]. At high temperatures, four-dimensional
quantum systems reduce effectively to three dimensions once the heavy Matsubara modes are
integrated out [25–28]. The resulting three-dimensional effective field theory governs the
infrared dynamics, making its renormalisation-group flow essential for high-quality resum-
mations [29, 30]. Moreover, non-perturbative phenomena such as confinement and dynamic
symmetry breaking, which are complicated to capture in four dimensions, can be modelled
in three-dimensional theories, see for instance [31–36]. Furthermore, theories in three di-
mensions are interrelated by a web of dualities [37–41]. Such dualities include strong-weak
dualities, which make non-perturbative effects tractable.

After half a century of intensive work, three-dimensional quantum field theories (QFTs)
have remained less well-understood than their four-dimensional counterparts in regard to
their critical phenomena. A key reason is that in four dimensions, the renormalisation group
(RG) flow is known for each interaction of any renormalisable QFT in the perturbative region.
While perturbation theory certainly has its limits, it also enables a strong theoretical under-
standing whenever it is applicable. In four dimensions, the perturbative renormalisation group
equations (RGEs) of any renormalisable QFT are readily available to high orders via template
expressions [42–69].

This approach of template expressions has proven useful for two main reasons. For one,
template RGEs are model independent results, which separate the problem of computing RG
flows from the difficulty of loop calculations. When implemented in software packages such
as [70–75], high-loop RGEs become available even with minimal know-how or computational
power.

The second advantage is that templates allow for an exhaustive and systematic study of
perturbative RG flows. This allows to formulate theorems valid for the entirety of renormalis-
able QFTs. Moreover, it can help to identify QFTs where the RG flow has very rare or unique
properties, and which are otherwise difficult to identify. An example in four dimensions would
be the Litim–Sannino model [76,77], which realises a perturbatively accessible UV fixed point.
In contrast, in this work, the template method will enable us to identify a three-dimensional
theory that features a novel IR fixed point under perturbative control at large N .

The main goal of this work is to bring the advantages of template RGEs into the realm of
three-dimensional QFTs. For the time being, we target gaugeless theories and a precision up to
four-loop order. Thus, the work can be understood as an extension of the studies of [78,79],
and a three-dimensional equivalent of [65, 66, 68]. We also aim to describe known critical
phenomena in a unified framework, namely the UV fixed points in purely scalar [80–84] and
purely fermionic theories [85–89].

This work is structured as follows: We introduce our notation and methodology in Sec. 2
and collect our main results in Sec. 3. As an important cross-check, we discuss the emergence
of supersymmetry in Sec. 4. In Sec. 5, we analyse the RG flow and find hitherto unknown
fixed points. A small outlook follows in Sec. 6. The App. A holds technical details of three-
dimensional four-loop integrals, which are key ingredients for the calculations in this work.
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2 Scalar-Fermionic Theory

We consider the most general three-dimensional, renormalisable QFT of scalars and spin-1/2
fermions with marginal interactions in three-dimensional Minkowski space

L= 1
2
∂µφa∂

µφa +
i
2
ψiγ

µ∂µψi −
1
4

Y abi jφaφbψiψ j −
1
6!
ηabcde fφaφbφcφdφeφ f , (1)

where φa are real scalar fields with a = 1, .., Ns. In three dimensions, fermions are real rank-
two spinors given a suitable representation of γ-matrices where (γ0)T = −γ0, and (γ1,2)T = γ1,2,
which can be furnished via the Pauli matrices. The fermions ψi and ψi = ψ

†
i γ

0 are enumer-
ated by flavour indices i = 1, .., N f and spinor indices are kept implicit. We only include the
marginal interactions η and Y , which are totally symmetric in their indices ηabcde f = η(abcde f )

and Y abi j = Y (ab)(i j). In the following, we condense our notation of fermion chains via

Y a1 b1 i1 i2 Y a2 b2 i2 i3 . . . Y an bn in in+1 = Y a1 b1a2 b2...an bn , (2)

where the fermion indices are suppressed altogether. This formalism allows us to compute
RGEs up to four-loop order in a very general manner. We utilise dimensional regularisation to
d = 3−2ε [90,91], and the modified minimal subtraction (MS) scheme [92,93]. The technique
of infrared rearrangement with a common mass parameter [94] allows us to separate UV from
IR divergences while only computing tadpole integrals. The computation is conducted via the
MaRTIn framework [95–97], which we have extended to four loop-order. It leverages the FMFT
package [98] for efficient reductions of integrals to a basis of masters given in [99]. These
master integrals are computed numerically using the algorithm of [100] to high precision.
Where possible, analytic results are extracted using the integer relation algorithm PSLQ [101,
102]. This is sufficient to retrieve all template RGEs in analytic form. Details are relegated
to App. A, which serves as an update to [103]. As a result, the template RGEs are obtained
as contractions of the coupling tensors Y ab and ηabcde f , which at this stage are fully model
independent but may be cumbersome to interpret in terms of a specific model. For this purpose,
we implement them in our in-house software FoRGEr [75], which we plan to make openly
available in the future.

3 Template RGEs

In this section, we collect the template expressions for scalar and fermionic field anomalous
dimensions

γφ,ψ = −
d log
p

Zφ,ψ

d logµ
=
∞
∑

ℓ=1

γ
(2ℓ)
φ,ψ

(4π)2ℓ
, (3)

where φbare
a = (

p
Zφ)abφb and ψbare

i = (
p

Zψ)i jψ j as well as β-functions for quartic Yukawa
and scalar sextic couplings

βab
Y =

dY ab

d logµ
= γψY ab + Y abγT

ψ + γ
ac
φ Y bc + γbc

φ Y ac + β̂ab
Y , (4)

βabcde f
η =

dηabcde f

d logµ
= S6 γ

ag
φ
ηg bcde f + β̂abcde f

η , (5)

in terms of their respective vertex corrections

β̂X =
∞
∑

ℓ=1

β̂
(2ℓ)
X

(4π)2ℓ
(6)
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up to four loops (ℓ = 2). This ansatz incorporates the fact that odd-dimensional RGEs only
receive contributions at even loop orders, starting at two loops. For ease of notation, we
make heavy use of the symmetric permutation symbol Sn, which indicates that n inequivalent
permutations of the external indices (both scalar and fermionic) are to be added. For instance,
in (5) S6 indicates that the leg correction consists of six terms, where a is exchanged with the
other external indices:

S6 γ
ag
φ
ηg bcde f = γag

φ
ηg bcde f +γbg

φ
ηgacde f +γcg

φ
ηgabde f +γd g

φ
ηgabce f +γeg

φ
ηgabcd f +γ f g

φ
ηgabcde ,

(7)
whereas other permutations among the indices b– f in the expression on the left-hand-side are
not considered as they do not generate new terms owing to the symmetry of η.

Note that the results on βY and βη presented here also allow for the automatised extraction
of the RGEs of the operators φψ̄ψ and ψ̄ψ (via βY ) as well as φ5, φ4, φ3, φ2 and φ1 (via
βη) by utilising the dummy-field technique [47, 60, 104]. Also, these RGEs are implemented
in FoRGEr [75].

3.1 Anomalous Field Dimensions

The general shape of the two- and four-loop scalar field anomalous dimensions are

γ
ab (2)
φ

= γ(2)
φ,1 tr
�

Y acbc
�

, (8)

γ
ab (4)
φ

= γ(4)
φ,1η

acde f gηbcde f g + γ(4)
φ,2 tr
�

Y acde
�

tr
�

Y bcde
�

+ γ(4)
φ,3 tr
�

Y acde
�

tr
�

Y bdce
�

+ γ(4)
φ,4 tr
�

Y acbd
�

tr
�

Y cede
�

+ γ(4)
φ,5 tr
�

Y acbcdede
�

+ γ(4)
φ,6 tr
�

Y acbdcede
�

+ γ(4)
φ,7 tr
�

Y acbddece
�

+ γ(4)
φ,8 tr
�

Y acdebcde
�

+ γ(5)
φ,9 tr
�

Y accebdde
�

. (9)

Here we have listed all possible contractions excluding contributions from tadpole diagrams
as they do not contribute to the anomalous dimensions. In the MS scheme, we find the explicit
coefficients

γ
(2)
φ,1 =

1
12 , γ

(4)
φ,1 =

1
1440 , γ

(4)
φ,2 = −

π2

192 , γ
(4)
φ,3 = −

1
144 , γ

(4)
φ,4 = −

11
432 ,

γ
(4)
φ,5 = −

5
216 , γ

(4)
φ,6 = −

1
18 , γ

(4)
φ,7 = −

π2

96 , γ
(4)
φ,8 =

1
72 , γ

(4)
φ,9 = −

1
72 . (10)

Analogously, the fermion anomalous dimension includes the contractions

γ
(2)
ψ
= γ(2)

ψ,1 Y abab , (11)

γ
(4)
ψ
= γ(4)

ψ,1 tr
�

Y abcd
�

Y acbd + γ(4)
ψ,2 tr
�

Y abcd
�

Y abcd + γ(4)
ψ,3 tr
�

Y abac
�

Y bdcd

+ γ(4)
ψ,4 Y abcdcdab + γ(4)

ψ,5 Y abbccdda + γ(4)
ψ,6 Y abcd bdac + γ(4)

ψ,7 Y abcdabcd

+ γ(4)
ψ,8 Y abbcaddc (12)

up to four-loop order, which take the explicit values

γ
(2)
ψ,1 =

1
12 , γ

(4)
ψ,1 = −

1
36 , γ

(4)
ψ,2 = −

π2

192 , γ
(4)
ψ,3 = −

1
27 , γ

(4)
ψ,4 = −

1
216 ,

γ
(4)
ψ,5 = −

π2

96 , γ
(4)
ψ,6 =

1
36 , γ

(4)
ψ,7 =

1
72 , γ

(4)
ψ,8 = −

1
72 (13)

in the MS scheme.
It is worth noting that both anomalous dimensions in (9) and (12) are manifestly sym-

metric under exchange of their external indices. In general, anomalous dimension might also
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contain non-symmetric contributions, inherited from antisymmetric parts of the field strength
renormalisations

p
Zφ,ψ. The scalar and fermion kinetic terms

L= 1
2 Zab
φ ∂µφa∂

µφb +
i
2 Z i j
φ
ψiγ

µ∂µψ j + . . . (14)

have renormalisation constants Zab
φ

and Z i j
ψ

that are symmetric under (a↔ b) and (i↔ j),
respectively, and fixed by the renormalisation of two-point functions. However, there is an am-
biguity in defining the field strength tensors

p
Zφ,ψ such that Zφ,ψ =

p
Zφ,ψ ·

p
Zφ,ψ, which is

related to their antisymmetric part. This ambiguity has also been encountered in four dimen-
sional theories, see, e.g. [50,67,68,105,106].

The ambiguity leads to subtleties in theories with hidden flavour symmetries. Such kind
of QFTs contain several scalars or fermions that have identical quantum numbers, yet do not
transform together under a global symmetry. In this case a rotation among the fields is en-
coded in the theory, but involves a redefinition of couplings. As a result, fixed points in these
couplings do not possess conformal symmetry. Instead, β-functions require a shift propor-
tional to antisymmetric leg corrections in order to preserve conformality [105, 107, 108]. In
four dimensions, such corrections start occurring from three-loop order. We eventually expect
the same phenomena to also occur in three dimensions, though they are still absent at four
loops.

3.2 Quartic Yukawa Vertex

We now turn to the vertex corrections of the quartic Yukawa coupling. At two-loop order there
are only a few contractions

β̂
(2)ab
Y = β (2)Y,1 tr
�

Y abcd
�

Y cd + β (2)Y,2 tr
�

Y acbd
�

Y cd + β (2)Y,3 Y cdabcd + β (2)Y,4 S2Y accdd b

+ β (2)Y,5 S4Y acbdcd , (15)

which do not feature the sextic interactions η at all. We find the explicit values

β
(2)
Y,1 = 0 , β

(2)
Y,2 =

1
2 , β

(2)
Y,3 =

1
2 , β

(2)
Y,4 = 0 , β

(2)
Y,5 =

1
2 . (16)

At four-loop order, we find a more complicated shape with a total number of 132 coeffi-
cients, which we have categorised by the number of sextic interactions and fermion traces

β̂
(4)ab
Y = β̂ (4)ab

Y,η2 + β̂
(4)ab
Y,η1 + β̂

(4)ab
Y,(2,2,1) + β̂

(4)ab
Y,(4,1) + β̂

(4)ab
Y,(3,2) + β̂

(4)ab
Y,(2,3) + β̂

(4)ab
Y,Y 5 . (17)

The first two terms include contractions with the scalar sextic coupling

β̂
(4)ab
Y,η2 = β

(4)
Y,1 η

ace f ghηbde f ghY cd + β (4)Y,2 η
abe f ghηcde f ghY cd , (18)

β̂
(4)ab
Y,η1 = β

(4)
Y,3 η

abcde f Y cgde f g + β (4)Y,4 S2η
abcde f Y cdeg f g + β (4)Y,5 S2η

acde f g Y cd be f g

+ β (4)Y,6 S4η
acde f g Y bcde f g + β (4)Y,7 η

abcde f tr
�

Y eg f g
�

Y cd

+ β (4)Y,8 η
abce f g tr
�

Y de f g
�

Y cd + β (4)Y,9 S2η
acde f g tr
�

Y be f g
�

Y cd . (19)

The next terms have both external fermion lines connected to the same Yukawa, while also
featuring two closed fermion traces

β̂
(4)ab
Y,(2,2,1) = β

(4)
Y,10 tr
�

Y abe f
�

tr
�

Y cde f
�

Y cd + β (4)Y,11 tr
�

Y abe f
�

tr
�

Y ced f
�

Y cd

+ β (4)Y,12 tr
�

Y abce
�

tr
�

Y d f e f
�

Y cd + β (4)Y,13 tr
�

Y aeb f
�

tr
�

Y cde f
�

Y cd
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+ β (4)Y,14 tr
�

Y aeb f
�

tr
�

Y ced f
�

Y cd + β (4)Y,15 S2 tr
�

Y acbe
�

tr
�

Y d f e f
�

Y cd

+ β (4)Y,16 tr
�

Y ace f
�

tr
�

Y bde f
�

Y cd + β (4)Y,17 tr
�

Y aec f
�

tr
�

Y b f de
�

Y cd

+ β (4)Y,18 tr
�

Y aec f
�

tr
�

Y b f de
�

Y cd + β (4)Y,19 S2tr
�

Y ace f
�

tr
�

Y bed f
�

Y cd , (20)

or one such trace

β̂
(4)ab
Y,(4,1) = β

(4)
Y,20 tr
�

Y abe f cde f
�

Y cd + β (4)Y,21 tr
�

Y abcde f e f
�

Y cd + β (4)Y,22 tr
�

Y abcee f f d
�

Y cd

+ β (4)Y,23 tr
�

Y abced f e f
�

Y cd + β (4)Y,24 tr
�

Y aebec f d f
�

Y cd + β (4)Y,25 S2 tr
�

Y aeb f cde f
�

Y cd

+ β (4)Y,26 tr
�

Y aeb f ced f
�

Y cd + β (4)Y,27 tr
�

Y aeb f c f de
�

Y cd + β (4)Y,28 S2 tr
�

Y acbed f e f
�

Y cd

+ β (4)Y,29 S2 tr
�

Y acbee f d f
�

Y cd + β (4)Y,30 tr
�

Y acbde f e f
�

Y cd + β (4)Y,31 tr
�

Y aecd b f e f
�

Y cd

+ β (4)Y,32 tr
�

Y ace f bde f
�

Y cd + β (4)Y,33 tr
�

Y aec f bed f
�

Y cd + β (4)Y,34 tr
�

Y aeceb f d f
�

Y cd

+ β (4)Y,35 S2 tr
�

Y acdeb f e f
�

Y cd . (21)

Note that contributions∝ tr
�

Y 3
�

or higher odd numbers of Yukawas are not a priori excluded
in three dimensions. Such terms emerge in diagrams that contain traces over an odd number
of γmatrices, which, in contrast to four dimensions, do not vanish in three dimensions. Rather,
they give expressions containing fully antisymmetric Levi–Civita tensors, e.g.

tr(γµγνγρ) = −2i εµνρ . (22)

This excludes many possible contractions. After integration of the fermion loop with an odd
number of γ matrices, one of the loop momenta is spent and the remaining three need to be
contracted with the Levi–Civita tensor for it not to vanish due to the antisymmetry. Thus, only
the contractions

β̂
(4)ab
Y,(3,2) = β

(4)
Y,36 tr
�

Y abcde f
�

Y cde f + β (4)Y,37 tr
�

Y abced f
�

Y cde f + β (4)Y,38 tr
�

Y acbed f
�

Y cde f

+ β (4)Y,39 S2 tr
�

Y acbde f
�

Y cde f + β (4)Y,40 S4 tr
�

Y acd f e f
�

Y bcde

+ β (4)Y,41 S4 tr
�

Y adc f e f
�

Y bcde + β (4)Y,42 S4 tr
�

Y a f cde f
�

Y bcde

+ β (4)Y,43 S4 tr
�

Y a f dec f
�

Y bcde (23)

do not vanish. There are further contractions with a single fermion loop

β̂
(4)ab
Y,(2,3) = β

(4)
Y,44 tr
�

Y abcd
�

Y e f cde f + β (4)Y,45 tr
�

Y abcd
�

Y cee f d f + β (4)Y,46 S2 tr
�

Y abcd
�

Y ced f e f

+ β (4)Y,47 tr
�

Y acbd
�

Y e f cde f + β (4)Y,48 S2 tr
�

Y acbd
�

Y cee f d f + β (4)Y,49 S2 tr
�

Y acbd
�

Y ced f e f

+ β (4)Y,50 S4 tr
�

Y acde
�

Y bcd f e f + β (4)Y,51 S4 tr
�

Y acde
�

Y bdc f e f

+ β (4)Y,52 S4 tr
�

Y acde
�

Y b f cde f + β (4)Y,53 S4 tr
�

Y acde
�

Y b f c f de

+ β (4)Y,54 S4 tr
�

Y acde
�

Y bde f c f + β (4)Y,55 S4 tr
�

Y acde
�

Y b f e f cd

+ β (4)Y,56 S4 tr
�

Y acde
�

Y b f dec f + β (4)Y,57 S2 tr
�

Y acde
�

Y d f bce f

+ β (4)Y,58 S4 tr
�

Y acde
�

Y d f b f ce + β (4)Y,59 S4 tr
�

Y acde
�

Y deb f e f

+ β (4)Y,60 S4 tr
�

Y acde
�

Y d f bec f + β (4)Y,61 S4 tr
�

Y cde f
�

Y acbde f

+ β (4)Y,62 S4 tr
�

Y cde f
�

Y acbed f + β (4)Y,63 S4 tr
�

Y cede
�

Y a f b f cd

+ β (4)Y,64 S4 tr
�

Y cede
�

Y acb f d f + β (4)Y,65 S4 tr
�

Y cede
�

Y a f bcd f

6
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+ β (4)Y,66 S2 tr
�

Y cde f
�

Y acdeb f + β (4)Y,67 S2 tr
�

Y cde f
�

Y ace f bd

+ β (4)Y,68 S2 tr
�

Y cede
�

Y a f cd b f + β (4)Y,69 S4 tr
�

Y cede
�

Y acd f b f

+ β (4)Y,70 tr
�

Y cde f
�

Y cdabe f + β (4)Y,71 tr
�

Y cde f
�

Y ceabd f

+ β (4)Y,72 tr
�

Y cede
�

Y c f abd f , (24)

as well as a final family with no closed fermion loop at all

β̂
(4)ab
Y,Y 5 = β

(4)
Y,73 S4 Y acbdced f e f + β (4)Y,74 S4 Y acbddec f e f + β (4)Y,75 S4 Y acbdcee f d f

+ β (4)Y,76 S4 Y acbddee f c f + β (4)Y,77 S4 Y acbde f ced f + β (4)Y,78 S4 Y acbde f dec f

+ β (4)Y,79 S4 Y acbde f cde f + β (4)Y,80 S4 Y acbde f e f cd + β (4)Y,81 S4 Y acdebcd f e f

+ β (4)Y,82 S4 Y accd bed f e f + β (4)Y,83 S4 Y accd bee f d f + β (4)Y,84 S4 Y acdebdc f e f

+ β (4)Y,85 S4 Y acdebde f c f + β (4)Y,86 S4 Y acdeb f cde f + β (4)Y,87 S4 Y acdeb f f dce

+ β (4)Y,88 S4 Y acdeb f dec f + β (4)Y,89 S4 Y acdeb f c f de + β (4)Y,90 S4 Y accddeb f e f

+ β (4)Y,91 S4 Y accde f bde f + β (4)Y,92 S4 Y accde f bed f + β (4)Y,93 S4 Y acdec f bde f

+ β (4)Y,94 S4 Y acdecd b f e f + β (4)Y,95 S4 Y acdec f b f de + β (4)Y,96 S4 Y acded f bce f

+ β (4)Y,97 S4 Y acdee f bdc f + β (4)Y,98 S4 Y acded f b f ce + β (4)Y,99 S4 Y acdedeb f c f

+ β (4)Y,100 S2 Y accddee f b f + β (4)Y,101 S2 Y acdee f c f bd + β (4)Y,102 S2 Y acdec f deb f

+ β (4)Y,103 S4 Y accde f d f be + β (4)Y,104 S4 Y acdec f e f bd + β (4)Y,105 S4 Y accde f e f bd

+ β (4)Y,106 S2 Y acded f e f bc + β (4)Y,107 S4 Y cdacbed f e f + β (4)Y,108 S4 Y cdacbee f d f

+ β (4)Y,109 S4 Y cdaebcd f e f + β (4)Y,110 S4 Y cdaebce f d f + β (4)Y,111 S4 Y cdaebec f d f

+ β (4)Y,112 S4 Y cdaeb f cde f + β (4)Y,113 S4 Y cdaeb f ced f + β (4)Y,114 S4 Y cdaeb f c f de

+ β (4)Y,115 S4 Y cdaeb f e f cd + β (4)Y,116 S2 Y cdacdeb f e f + β (4)Y,117 S4 Y cdace f bde f

+ β (4)Y,118 S4 Y cdace f bed f + β (4)Y,119 S2 Y cdaec f bde f + β (4)Y,120 S2 Y cdaec f bed f

+ β (4)Y,121 S4 Y cdaee f bcd f + β (4)Y,122 S2 Y cdaee f b f cd + β (4)Y,123 S2 Y cdabced f e f

+ β (4)Y,124 S2 Y cdabcee f d f + β (4)Y,125 S2 Y cdabe f ced f + β (4)Y,126 S2 Y cdabe f cde f

+ β (4)Y,127 S2 Y cdabe f e f cd + β (4)Y,128 Y cde f abe f cd + β (4)Y,129 Y cde f abcde f

+ β (4)Y,130 Y cde f abced f + β (4)Y,131 Y cedeabc f d f + β (4)Y,132 Y cedeabd f c f . (25)

In the MS scheme, we find the explicit coefficients

β
(4)
Y,1 =

1
48 , β

(4)
Y,2 = 0 , β

(4)
Y,3 = −

1
2 , β

(4)
Y,4 = −

1
4 , β

(4)
Y,5 = −

1
4 ,

β
(4)
Y,6 = −

1
8 , β

(4)
Y,7 = 0 , β

(4)
Y,8 = 0 , β

(4)
Y,9 = 0 , β

(4)
Y,10 = 0 ,

β
(4)
Y,11 = 0 , β

(4)
Y,12 = 0 , β

(4)
Y,13 = 0 , β

(4)
Y,14 =

1
8 , β

(4)
Y,15 = −

1
12 ,

β
(4)
Y,16 = −

π2

32 , β
(4)
Y,17 =

1
8 , β

(4)
Y,18 = 0 , β

(4)
Y,19 = −

1
4 , β

(4)
Y,20 = 0 ,

β
(4)
Y,21 = 0 , β

(4)
Y,22 = 0 , β

(4)
Y,23 = −

π2

8 , β
(4)
Y,24 = −

1
2 , β

(4)
Y,25 = 0 ,

β
(4)
Y,26 = −

π2

8 , β
(4)
Y,27 = −

π2

16 , β
(4)
Y,28 = −

3
4 , β

(4)
Y,29 = −

π2

16 , β
(4)
Y,30 = −

1
4 ,

β
(4)
Y,31 = 0 , β

(4)
Y,32 = −

1
4 , β

(4)
Y,33 = −

1
2 , β

(4)
Y,34 = −

1
4 , β

(4)
Y,35 = −

3
4 ,

7
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β
(4)
Y,36 = 0 , β

(4)
Y,37 = 0 , β

(4)
Y,38 = 0 , β

(4)
Y,39 = 0 , β

(4)
Y,40 = 0 ,

β
(4)
Y,41 = 0 , β

(4)
Y,42 = 0 , β

(4)
Y,43 = 0 , β

(4)
Y,44 = 0 , β

(4)
Y,45 = 0 ,

β
(4)
Y,46 = 0 , β

(4)
Y,47 = 0 , β

(4)
Y,48 = −

π2

32 , β
(4)
Y,49 = 0 , β

(4)
Y,50 = −

1
4 ,

β
(4)
Y,51 = −

1
8 , β

(4)
Y,52 = −

3
8 , β

(4)
Y,53 = 0 , β

(4)
Y,54 = −

π2

32 , β
(4)
Y,55 = 0 ,

β
(4)
Y,56 = −

π2

32 , β
(4)
Y,57 = −

1
2 , β

(4)
Y,58 = −

1
4 , β

(4)
Y,59 = −

π2

32 , β
(4)
Y,60 = −

π2

16 ,

β
(4)
Y,61 = −

π2

32 , β
(4)
Y,62 = −

1
8 , β

(4)
Y,63 = 0 , β

(4)
Y,64 = −

1
12 , β

(4)
Y,65 = −

1
8 ,

β
(4)
Y,66 = −

π2

32 , β
(4)
Y,67 = 0 , β

(4)
Y,68 = 0 , β

(4)
Y,69 = 0 , β

(4)
Y,70 = −

π2

32 ,

β
(4)
Y,71 = 0 , β

(4)
Y,72 = −

1
6 , β

(4)
Y,73 = −

1
8 , β

(4)
Y,74 = 0 , β

(4)
Y,75 = −

π2

32 ,

β
(4)
Y,76 = −

π2

32 , β
(4)
Y,77 =

1
8 , β

(4)
Y,78 = 0 , β

(4)
Y,79 =

1
8 , β

(4)
Y,80 = −

1
24 ,

β
(4)
Y,81 = −

1
4 , β

(4)
Y,82 = 0 , β

(4)
Y,83 = 0 , β

(4)
Y,84 =

1
8 , β

(4)
Y,85 = −

1
4 ,

β
(4)
Y,86 =

1
2 −

π2

16 , β
(4)
Y,87 = −

1
8 , β

(4)
Y,88 = −

1
8 , β

(4)
Y,89 =

1
8 , β

(4)
Y,90 = 0 ,

β
(4)
Y,91 = 0 , β

(4)
Y,92 = 0 , β

(4)
Y,93 = −

π2

16 , β
(4)
Y,94 = −

1
8 , β

(4)
Y,95 = −

π2

32 ,

β
(4)
Y,96 = −

1
4 , β

(4)
Y,97 = −

3
8 , β

(4)
Y,98 = −

π2

32 , β
(4)
Y,99 = −

1
12 , β

(4)
Y,100 = 0 ,

β
(4)
Y,101 = 0 , β

(4)
Y,102 = −

π2

32 , β
(4)
Y,103 = 0 , β

(4)
Y,104 = −

π2

32 , β
(4)
Y,105 = 0 ,

β
(4)
Y,106 = 0 , β

(4)
Y,107 = 0 , β

(4)
Y,108 = −

π2

32 , β
(4)
Y,109 =

1
2 −

π2

16 , β
(4)
Y,110 = −

π2

16 ,

β
(4)
Y,111 = −

1
4 , β

(4)
Y,112 =

1
2 −

π2

16 , β
(4)
Y,113 = 1− π

2

6 , β
(4)
Y,114 =

1
2 −

π2

16 , β
(4)
Y,115 = −

1
4 ,

β
(4)
Y,116 = 0 , β

(4)
Y,117 = 0 , β

(4)
Y,118 = −

1
4 , β

(4)
Y,119 = 1− π

2

6 , β
(4)
Y,120 = −1 ,

β
(4)
Y,121 = −

π2

16 , β
(4)
Y,122 = −

π2

32 , β
(4)
Y,123 = 0 , β

(4)
Y,124 = −

π2

16 , β
(4)
Y,125 = 0 ,

β
(4)
Y,126 = 0 , β

(4)
Y,127 = −

1
12 , β

(4)
Y,128 = −

1
4 , β

(4)
Y,129 =

1
4 , β

(4)
Y,130 = 1− π

2

8 ,

β
(4)
Y,131 =

1
4 , β

(4)
Y,132 = −

π2

16 . (26)

Especially noteworthy is the vanishing of the coefficients β (4)Y,36–β (4)Y,43, which are the ones
featuring traces over an odd number of γmatrices. Their vanishing implies that the results are
insensitive to complications arising from the naïve dimensional regularisation scheme, which
clashes with the manifestly three-dimensional Levi–Civita tensor. In fact, the four-loop Yukawa
vertex corrections are the only place where such traces may have occurred in this work.

3.3 Sextic Vertex

Finally, we turn towards the scalar sextic vertex corrections. The two-loop expression

β̂ (2)abcde f
η = β (2)η,1 S10η

abcghiηde f ghi + β (2)η,2 S15 tr
�

Y abgh
�

ηcde f gh

+ β (2)η,3 S15 tr
�

Y ag bh
�

ηcde f gh + β (2)η,4 S90 tr
�

Y abcdeg f g
�

+ β (2)η,5 S45 tr
�

Y abcgde f g
�

(27)

with the explicit coefficients

β
(2)
η,1 =

1
6 , β

(2)
η,2 = 0 , β

(2)
η,3 =

1
2 , β

(2)
η,4 = −1 , β

(2)
η,5 = −2 . (28)

The four-loop corrections consist of several terms

β̂ (4)abcde f
η = β̂ (4)abcde f

η,η3 + β̂ (4)abcde f
η,η3 + β̂ (4)abcde f

η,η2Y 2 + β̂ (4)abcde f
η,ηY 2Y 2 + β̂

(4)abcde f
η,ηY 4

8
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+ β̂ (4)abcde f
η,Y 2Y 2Y 2 + β̂

(4)abcde f
η,Y 4Y 2 + β̂ (4)abcde f

η,Y 6 , (29)

which read

β̂
(4)abcde f
η,η3 = β (4)η,1 S15η

abghi jηghi jklηcde f kl + β (4)η,2 S15η
aghi jkηbhi jklηcde f kg

+ β (4)η,3 S10η
abcghiηghi jklηde f jkl + β (4)η,4 S60η

aghi jkηbcghilηde f jkl

+ β (4)η,5 S15η
abghi jηcdi jklηe f kl gh , (30)

β̂
(4)abcde f
η,η2Y 2 = β (4)

η,6 S10η
abcghkηde f i jl tr
�

Y ghi j
�

+ β (4)η,7 S10η
abcghkηde f i jl tr
�

Y gih j
�

+ β (4)η,8 S10η
abcgi jηde f hi jtr
�

Y gkhk
�

+ β (4)η,9 S15η
abghi jηcde f ghtr
�

Y ik jk
�

+ β (4)η,10 S15η
abghi jηcde f gktr
�

Y khi j
�

+ β (4)η,11 S30η
abcd ghηeghi jktr
�

Y ei jk
�

+ β (4)η,12 S60η
abcghiηdegh jktr
�

Y f i jk
�

+ β (4)η,13 S60η
abcghiηdegh jktr
�

Y f ki j
�

+ β (4)η,14 S60η
abcghiηd ghi jktr
�

Y e f jk
�

+ β (4)η,15 S60η
abcghiηd ghi jktr
�

Y e j f k
�

+ β (4)
η,16 S45η

abgi jkηcdhi jktr
�

Y e f gh
�

+ β (4)η,17 S90η
abgi jkηcdhi jktr
�

Y eg f h
�

, (31)

β̂
(4)abcde f
η,ηY 2Y 2 = β (4)η,18 S45η

abghi jtr
�

Y cd gh
�

tr
�

Y e f i j
�

+ β (4)η,19 S45η
abcghktr
�

Y cgdh
�

tr
�

Y ei f j
�

+ β (4)η,20 S90η
abcghktr
�

Y cd gh
�

tr
�

Y ei f j
�

+ β (4)η,21 S60η
abcghitr
�

Y dei j
�

tr
�

Y f gh j
�

+ β (4)η,22 S60η
abcghitr
�

Y dei j
�

tr
�

Y f j gh
�

+ β (4)η,24 S120η
abcghitr
�

Y die j
�

tr
�

Y f gh j
�

+ β (4)η,24 S120η
abcghitr
�

Y die j
�

tr
�

Y f j gh
�

+ β (4)η,25 S15η
abcd ghtr
�

Y ghi j
�

tr
�

Y e f i j
�

+ β (4)
η,26 S15η

abcd ghtr
�

Y gih j
�

tr
�

Y e f i j
�

+ β (4)η,27 S15η
abcd ghtr
�

Y gii j
�

tr
�

Y e f h j
�

+ β (4)η,28 S15η
abcd ghtr
�

Y ghi j
�

tr
�

Y ei f j
�

+ β (4)η,29 S15η
abcd ghtr
�

Y gih j
�

tr
�

Y ei f j
�

+ β (4)η,30 S30η
abcd ghtr
�

Y gii j
�

tr
�

Y eh f j
�

+ β (4)η,31 S15η
abcd ghtr
�

Y ei j g
�

tr
�

Y f i jh
�

+ β (4)η,32 S15η
abcd ghtr
�

Y ei j g
�

tr
�

Y f jih
�

+ β (4)η,33 S15η
abcd ghtr
�

Y egi j
�

tr
�

Y f hi j
�

+ β (4)η,34 S30η
abcd ghtr
�

Y ei j g
�

tr
�

Y f hi j
�

, (32)

β̂
(4)abcde f
η,ηY 4 = β (4)η,35 S45η

abghi jtr
�

Y cde f ghi j
�

+ β (4)
η,36 S45η

abghi jtr
�

Y cd ghe f i j
�

+ β (4)η,37 S90η
abghi jtr
�

Y cdeg f hi j
�

+ β (4)η,38 S180η
abghi jtr
�

Y cgdhe f i j
�

+ β (4)η,39 S45η
abghi jtr
�

Y cgdhei f j
�

+ β (4)η,40 S60η
abcghitr
�

Y de f gh ji j
�

+ β (4)η,41 S60η
abcghitr
�

Y deg j f hi j
�

+ β (4)η,42 S60η
abcghitr
�

Y de f j ghi j
�

+ β (4)η,43 S60η
abcghitr
�

Y de f j g jhi
�

+ β (4)η,44 S60η
abcghitr
�

Y deg j f jhi
�

+ β (4)η,45 S60η
abcghitr
�

Y g jdhe j f i
�

+ β (4)
η,46 S120η

abcghitr
�

Y g jd jeh f i
�

+ β (4)η,47 S60η
abcghitr
�

Y ghd jei f j
�

+ β (4)η,48 S120η
abcghitr
�

Y ghdie j f j
�

+ β (4)η,49 S15η
abcd ghtr
�

Y e f ghi ji j
�

+ β (4)η,50 S15η
abcd ghtr
�

Y e f i j ghi j
�

+ β (4)η,51 S15η
abcd ghtr
�

Y e f gih ji j
�

+ β (4)η,52 S15η
abcd ghtr
�

Y e f gii jh j
�

9
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+ β (4)η,53 S15η
abcd ghtr
�

Y egi j f hi j
�

+ β (4)η,54 S15η
abcd ghtr
�

Y eig j f ih j
�

+ β (4)η,55 S15η
abcd ghtr
�

Y eii j f j gh
�

+ β (4)
η,56 S15η

abcd ghtr
�

Y eigi f jh j
�

+ β (4)η,57 S30η
abcd ghtr
�

Y eghi f ji j
�

+ β (4)η,58 S15η
abcd ghtr
�

Y eg f hi ji j
�

+ β (4)η,59 S15η
abcd ghtr
�

Y ei f i g jh j
�

+ β (4)
η,60 S15η

abcd ghtr
�

Y ei f j gih j
�

+ β (4)
η,61 S15η

abcd ghtr
�

Y ei f j g jhi
�

+ β (4)
η,62 S30η

abcd ghtr
�

Y ei f j g jhi
�

+ β (4)
η,63 S30η

abcd ghtr
�

Y eg f ih ji j
�

+ β (4)
η,64 S30η

abcd ghtr
�

Y eg f ii jh j
�

, (33)

β̂
(4)abcde f
η,Y 2Y 2Y 2 = β

(4)
η,65 S15 tr
�

Y abgh
�

tr
�

Y cdhi
�

tr
�

Y e f gi
�

+ β (4)
η,66 S90 tr
�

Y ag bh
�

tr
�

Y cdhi
�

tr
�

Y e f gi
�

+ β (4)
η,67 S180 tr
�

Y abgh
�

tr
�

Y chdi
�

tr
�

Y eg f i
�

+ β (4)
η,68 S120 tr
�

Y ag bh
�

tr
�

Y chdi
�

tr
�

Y eg f i
�

, (34)

β̂
(4)abcde f
η,Y 4Y 2 = β (4)

η,69 S45 tr
�

Y abgh
�

tr
�

Y cd gie f hi
�

+ β (4)η,70 S45 tr
�

Y abgh
�

tr
�

Y cde f gihi
�

+ β (4)η,71 S45 tr
�

Y ag bh
�

tr
�

Y cd gie f hi
�

+ β (4)η,72 S90 tr
�

Y ag bh
�

tr
�

Y cde f gihi
�

+ β (4)η,73 S90 tr
�

Y abgh
�

tr
�

Y cdeigh f i
�

+ β (4)η,74 S180 tr
�

Y abgh
�

tr
�

Y cdeigi f h
�

+ β (4)η,75 S180 tr
�

Y abgh
�

tr
�

Y cdei f i gh
�

+ β (4)
η,76 S180 tr
�

Y abgh
�

tr
�

Y cdei f ghi
�

+ β (4)η,77 S180 tr
�

Y abgh
�

tr
�

Y cdeg f ihi
�

+ β (4)η,78 S90 tr
�

Y ag bh
�

tr
�

Y cdeigh f i
�

+ β (4)η,79 S360 tr
�

Y ag bh
�

tr
�

Y cdeghi f i
�

+ β (4)η,80 S180 tr
�

Y ag bh
�

tr
�

Y cdei f i gh
�

+ β (4)η,81 S360 tr
�

Y ag bh
�

tr
�

Y cdei f ghi
�

+ β (4)η,82 S360 tr
�

Y ag bh
�

tr
�

Y cdeg f ihi
�

+ β (4)η,83 S90 tr
�

Y abgh
�

tr
�

Y cgdieh f i
�

+ β (4)η,84 S180 tr
�

Y abgh
�

tr
�

Y cgdhei f i
�

+ β (4)η,85 S180 tr
�

Y ag bh
�

tr
�

Y cgdieh f i
�

+ β (4)
η,86 S360 tr
�

Y ag bh
�

tr
�

Y cgdhei f i
�

+ β (4)η,87 S180 tr
�

Y aghi
�

tr
�

Y bcdheg f i
�

+ β (4)η,88 S360 tr
�

Y aghi
�

tr
�

Y bcd geh f i
�

+ β (4)η,89 S90 tr
�

Y aghi
�

tr
�

Y bcd ge f hi
�

+ β (4)η,90 S180 tr
�

Y aghi
�

tr
�

Y bce f d ghi
�

+ β (4)η,91 S180 tr
�

Y aghi
�

tr
�

Y bcdhe f gi
�

+ β (4)η,92 S180 tr
�

Y aghi
�

tr
�

Y bce f dhgi
�

+ β (4)η,93 S45 tr
�

Y gihi
�

tr
�

Y abcgde f h
�

+ β (4)η,94 S90 tr
�

Y gihi
�

tr
�

Y abcdeg f h
�

+ β (4)η,95 S45 tr
�

Y gihi
�

tr
�

Y abcde f gh
�

, (35)

β̂
(4)abcde f
η,Y 6 = β (4)

η,96 S45 tr
�

Y abcde f ghhii g
�

+ β (4)η,97 S90 tr
�

Y abcd ghe f hii g
�

+ β (4)η,98 S15 tr
�

Y abghcdhie f i g
�

+ β (4)η,99 S180 tr
�

Y abcdeg f hgihi
�

+ β (4)η,100 S180 tr
�

Y abcdeg f hhigi
�

+ β (4)η,101 S180 tr
�

Y abcdeg f ghihi
�

+ β (4)η,102 S180 tr
�

Y abcdeg gi f hhi
�

+ β (4)η,103 S180 tr
�

Y abcdeghi f hgi
�

+ β (4)η,104 S180 tr
�

Y abcdeghi f ghi
�

+ β (4)η,105 S90 tr
�

Y abcdeg gihi f h
�

10
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+ β (4)
η,106 S90 tr
�

Y abcdeghigi f h
�

+ β (4)η,107 S90 tr
�

Y abcdeghihi f g
�

+ β (4)η,108 S90 tr
�

Y abcd gieg f hhi
�

+ β (4)η,109 S90 tr
�

Y abcd gieh f ghi
�

+ β (4)η,110 S90 tr
�

Y abcdhieg f ghi
�

+ β (4)η,111 S180 tr
�

Y abcgde f hhigi
�

+ β (4)η,112 S180 tr
�

Y abcgde f hgihi
�

+ β (4)η,113 S180 tr
�

Y abcgde f ghihi
�

+ β (4)η,114 S90 tr
�

Y abcgdehi f ghi
�

+ β (4)η,115 S180 tr
�

Y abcgdegi f hhi
�

+ β (4)
η,116 S180 tr
�

Y abghcdei f i gh
�

+ β (4)η,117 S180 tr
�

Y abghcdeg f ihi
�

+ β (4)η,118 S180 tr
�

Y abghcdei f ghi
�

+ β (4)η,119 S90 tr
�

Y abghcdeigh f i
�

+ β (4)η,120 S180 tr
�

Y abghcdeghi f i
�

+ β (4)η,121 S90 tr
�

Y abcgd ge f hihi
�

+ β (4)η,122 S90 tr
�

Y abcgdhe f gihi
�

+ β (4)η,123 S90 tr
�

Y abcgdhe f higi
�

+ β (4)η,124 S90 tr
�

Y abghcide f i gh
�

+ β (4)η,125 S90 tr
�

Y abghcgde f ihi
�

+ β (4)
η,126 S90 tr
�

Y abghcide f ghi
�

+ β (4)η,127 S90 tr
�

Y abghcidegh f i
�

+ β (4)η,128 S90 tr
�

Y abghcgdehi f i
�

+ β (4)η,129 S90 tr
�

Y abghcidegi f h
�

+ β (4)η,130 S360 tr
�

Y abghcgdhei f i
�

+ β (4)η,131 S360 tr
�

Y abghcgdieh f i
�

+ β (4)η,132 S360 tr
�

Y abghcid geh f i
�

+ β (4)η,133 S360 tr
�

Y abghcgdiei f h
�

+ β (4)η,134 S360 tr
�

Y abghcid gei f h
�

+ β (4)η,135 S360 tr
�

Y abghcidieg f h
�

+ β (4)
η,136 S360 tr
�

Y abcg ghdhei f i
�

+ β (4)η,137 S360 tr
�

Y abcg ghdieh f i
�

+ β (4)η,138 S360 tr
�

Y abcg ghdiei f h
�

+ β (4)η,139 S360 tr
�

Y abcghid geh f i
�

+ β (4)η,140 S360 tr
�

Y abcghidheg f i
�

+ β (4)η,141 S360 tr
�

Y abcghidhei f g
�

+ β (4)η,142 S180 tr
�

Y abcgdhgieh f i
�

+ β (4)η,143 S180 tr
�

Y abcgdhhiei f g
�

+ β (4)η,144 S360 tr
�

Y abcgdhgiei f h
�

+ β (4)η,145 S360 tr
�

Y abcgdhghei f i
�

+ β (4)
η,146 S120 tr
�

Y ag bgchdhei f i
�

+ β (4)η,147 S360 tr
�

Y ag bgchdiei f h
�

+ β (4)η,148 S360 tr
�

Y ag bgchdieh f i
�

+ β (4)η,149 S180 tr
�

Y ag bhcgdieh f i
�

+ β (4)η,150 S60 tr
�

Y ag bhcid geh f i
�

. (36)

The 150 coefficients contributing to the four-loop sextic vertex correction are found to be

β
(4)
η,1 = 0 , β

(4)
η,2 =

1
48 , β

(4)
η,3 = 0 , β

(4)
η,4 = −

1
12 , β

(4)
η,5 = −

π2

32 ,

β
(4)
η,6 = −

π2

32 , β
(4)
η,7 = 0 , β

(4)
η,8 = −

1
12 , β

(4)
η,9 = 0 , β

(4)
η,10 = 0 ,

β
(4)
η,11 = 0 , β

(4)
η,12 = −

π2

32 , β
(4)
η,13 = −

1
4 , β

(4)
η,14 = 0 , β

(4)
η,15 = 0 ,

β
(4)
η,16 = 0 , β

(4)
η,17 = −

1
12 , β

(4)
η,18 = 0 , β

(4)
η,19 = 0 , β

(4)
η,20 = 0 ,

β
(4)
η,21 = 0 , β

(4)
η,22 = 0 , β

(4)
η,23 = −

1
4 , β

(4)
η,24 = −

π2

32 , β
(4)
η,25 = 0 ,

β
(4)
η,26 = 0 , β

(4)
η,27 = 0 , β

(4)
η,28 = 0 , β

(4)
η,29 =

1
8 , β

(4)
η,30 = −

1
12 ,

β
(4)
η,31 = 0 , β

(4)
η,32 =

1
8 , β

(4)
η,33 = −

π2

32 , β
(4)
η,34 = −

1
4 , β

(4)
η,35 =

π2

16 ,

β
(4)
η,36 =

π2

16 , β
(4)
η,37 = 1 , β

(4)
η,38 =

π2

8 , β
(4)
η,39 =

π2

6 , β
(4)
η,40 = 0 ,

β
(4)
η,41 = 1− π

2

8 , β
(4)
η,42 = 0 , β

(4)
η,43 = 0 , β

(4)
η,44 =

1
2 , β

(4)
η,45 = 2− π

2

3 ,

11
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β
(4)
η,46 = 1− π

2

8 , β
(4)
η,47 = 1− π

2

8 , β
(4)
η,48 = 0 , β

(4)
η,49 = 0 , β

(4)
η,50 = 0 ,

β
(4)
η,51 = −

π2

8 , β
(4)
η,52 = 0 , β

(4)
η,53 = −

1
4 , β

(4)
η,54 = −

1
2 , β

(4)
η,55 = 0 ,

β
(4)
η,56 = −

1
4 , β

(4)
η,57 = −

3
4 , β

(4)
η,58 = −

1
4 , β

(4)
η,59 = −

1
2 , β

(4)
η,60 = −

π2

8 ,

β
(4)
η,61 = −

π2

16 , β
(4)
η,62 = 0 , β

(4)
η,63 = −

3
4 , β

(4)
η,64 = −

π2

16 , β
(4)
η,65 = 0 ,

β
(4)
η,66 = 0 , β

(4)
η,67 = 0 , β

(4)
η,68 = −

π2

32 , β
(4)
η,69 = 0 , β

(4)
η,70 = 0 ,

β
(4)
η,71 = 1 , β

(4)
η,72 =

1
4 , β

(4)
η,73 = 0 , β

(4)
η,74 = 0 , β

(4)
η,75 = 0 ,

β
(4)
η,76 = 0 , β

(4)
η,77 = 0 , β

(4)
η,78 = 0 , β

(4)
η,79 = 0 , β

(4)
η,80 = 0 ,

β
(4)
η,81 = 0 , β

(4)
η,82 =

1
2 , β

(4)
η,83 = 0 , β

(4)
η,84 = 0 , β

(4)
η,85 = 1− π

2

8 ,

β
(4)
η,86 = 0 , β

(4)
η,87 = 1 , β

(4)
η,88 =

π2

8 , β
(4)
η,89 =

π2

8 , β
(4)
η,90 =

π2

16 ,

β
(4)
η,91 =

1
2 , β

(4)
η,92 =

3
4 , β

(4)
η,93 =

1
3 , β

(4)
η,94 =

1
4 , β

(4)
η,95 = 0 ,

β
(4)
η,96 = 0 , β

(4)
η,97 =

π2

8 , β
(4)
η,98 =

π2

2 , β
(4)
η,99 =

3
4 , β

(4)
η,100 =

π2

16 ,

β
(4)
η,101 =

1
6 , β

(4)
η,102 =

1
2 , β

(4)
η,103 =

1
4 , β

(4)
η,104 =

1
4 , β

(4)
η,105 =

π2

16 ,

β
(4)
η,106 = 0 , β

(4)
η,107 =

1
12 , β

(4)
η,108 =

π2

16 , β
(4)
η,109 =

π2

8 , β
(4)
η,110 =

1
4 ,

β
(4)
η,111 =

π2

8 , β
(4)
η,112 = 0 , β

(4)
η,113 =

1
3 , β

(4)
η,114 = 1− π

2

8 , β
(4)
η,115 = 1 ,

β
(4)
η,116 =

1
2 , β

(4)
η,117 =

π2

4 , β
(4)
η,118 =

π2

4 , β
(4)
η,119 = 1 , β

(4)
η,120 = 1 ,

β
(4)
η,121 =

1
6 , β

(4)
η,122 = 0 , β

(4)
η,123 =

π2

4 , β
(4)
η,124 = 1 , β

(4)
η,125 =

π2

8 ,

β
(4)
η,126 = −2+ π2

4 , β
(4)
η,127 = 1− π

2

8 , β
(4)
η,128 =

1
2 , β

(4)
η,129 = 2 , β

(4)
η,130 =

1
2 ,

β
(4)
η,131 =

π2

8 , β
(4)
η,132 =

π2

12 , β
(4)
η,133 =

π2

8 , β
(4)
η,134 =

π2

4 , β
(4)
η,135 = 1 ,

β
(4)
η,136 =

π2

16 , β
(4)
η,137 =

π2

8 , β
(4)
η,138 =

1
2 , β

(4)
η,139 = −2+ π2

3 , β
(4)
η,140 = −1+ π2

8 ,

β
(4)
η,141 = 1 , β

(4)
η,142 = 2 , β

(4)
η,143 =

π2

8 , β
(4)
η,144 =

π2

8 , β
(4)
η,145 =

1
2 ,

β
(4)
η,146 =

π2

16 , β
(4)
η,147 =

1
4 , β

(4)
η,148 =

π2

8 , β
(4)
η,149 =

π2

6 , β
(4)
η,150 = 0 . (37)

Our results agree with the two-loop and partial four-loop terms of [79]. As for the four-
loop leg and Yukawa vertex corrections, we find large agreement but also minor discrepancies
with [78].1 Note that in [78] the number of coefficients for β̂ (4)Y is smaller; the additional
ones quoted in the present work all vanish. Both [78, 79] were cross-checked against older
publications such as [82,109–112].

Another important cross-check is the emergence of N = 1 and N = 2 supersymmetry, to
which the next section is dedicated.

In passing, we observe that the RGE coefficients are purely rational at two-loop order,
and contain ζ2 ≡ π2/6 at four loops. The number content appears to get more complicated
at higher loops—a phenomenon also found in four dimensions. There, all coefficients are
rational up to two loops, while three- and four-loop corrections introduce ζ3 and ζ4, respec-
tively [66–68], and five and six loops even feature ζ5, ζ6, ζ7 and ζ3,5 [15, 113–116]. In
contrast, the three-dimensional six-loop RGEs of [83] predict the appearance of ln 2, Cata-
lan’s constant, and the Dirichlet beta function. This is a surprising result, which merits an

1We thank I. Jack for helpful discussions and for revisiting the relevant expressions in private correspondence.
An ongoing re-examination indicates minor inconsistencies in [78], which are plausibly the reason for the remain-
ing discrepancies.
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independent verification.

4 Supersymmetry

We now impose N = 1 supersymmetry on the Lagrangian (1). It is generated via two super-
charges Qα that fulfil

{Qα,Qβ}= 2γµ
αβ

Pµ . (38)

These supercharges and the corresponding supersymmetry generators can be defined via su-
perspace coordinates θα, which are real, two-component Grassmann numbers

Qα =
∂

∂ θα
+ iγµθα∂µ , Dα =

∂

∂ θα
− iγµθα∂µ . (39)

Thus, each matter superfield
ΦA = φA+ θψA+

1
2θθ FA (40)

consists of real scalar fields φA, two-component Majorana fields ψA and real auxiliary fields
FA, again using θ = θ Tγ0. A marginal superpotential takes the general form

W (Φ) = 1
4!λ

ABC DΦAΦBΦCΦD , (41)

with λABC D = λ(ABC D) the real superquartic coupling tensor.
Integrating the superspace coordinates as well as the auxiliary fields, we arrive at a gener-

alisation of the three-dimensional Wess–Zumino model [117]

LSUSY =

∫

d2θ
�1

2 DαΦADαΦA+W (Φ)
�

= 1
2∂µφA∂

µφA+
i
2ψAγ

µ∂µψA

− 1
4λ

ABC DφAφBψCψD −
1

36λ
ABCGλDEFGφAφBφCφDφEφF . (42)

Comparing this with (1) implies

Y ABC D = λABC D , ηABC DEF = S10λ
ABCGλDEFG . (43)

Therefore, at the loop level N = 1 supersymmetry yields

γAB
Φ ≡ γ

AB
φ = γ

AB
ψ , β̂ABC D

λ ≡ β̂ABC D
Y = β̂ (ABC D)

Y ,

β̂ABC DEF
η = S20λ

ABCGβ̂DEFG
λ + 2S10λ

ABCGγGH
Φ λ

HDEF . (44)

At two-loop order, this leads to

γ
(2)
φ,1 = γ

(2)
ψ,1 , β

(2)
Y,1 = β

(2)
Y,4 = 0 , β

(2)
Y,2 = β

(2)
Y,3 = β

(2)
Y,5 = 6γ(2)

φ,1 ,

β
(2)
η,2 = 0 , 1

2β
(2)
η,1 =

1
6β
(2)
η,3 = −

1
12β

(2)
η,4 = −

1
24β

(2)
η,5 = γ

(2)
φ,1 , (45)

which fixes all RGEs up to a single coefficient. At four loops, there are 214 independent
relations all of which are compatible with the direct results of this work. We list them in a
separate file attached to the arXiv submission of the present work.

With N = 2 supersymmetry, there are four supercharges that satisfy the algebra

{Qα,i ,Qβ , j}= 2γµ
αβ
δi j Pµ . (46)

Here i, j = 1, 2 form an SO(2)≃ U(1) R-symmetry. Thus, the algebra can be implemented with
complex 2-component superspace coordinates θ . This is analogous toN = 1 supersymmetry in

13
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four spacetime dimensions. Supercoordinates, superfields and all their components are com-
plex, and we need to carefully distinguish the contractions X Y ≡ X †γ0Y and (X Y ) ≡ X Tγ0Y
between two spinors X and Y for the remainder of this section. The superfields

ΦA = ϕA+
p

2 (θχA) + (θθ )FA+ iθγµθ∂µϕA−
ip
2
(θθ )θγµ∂µχA+

1
4(θθ )(θθ )

∗∂µ∂
µϕA (47)

consist of complex scalars ϕA and FA as well as complex two-component Dirac fermions χA.
The superpotential reads

W (Φ) = 1
4!λ

ABC DΦAΦBΦCΦD , (48)

Note that the R-symmetry enforces a holomorphy of the superpotential, meaning that tensors
λABC D only couple to superfields ΦA but not their complex conjugates Φ∗A. The Lagrangian then
reads

LSUSY =

∫

d2θd2θ ∗Φ∗AΦA+

∫

d2θW (Φ) +

∫

d2θ ∗W ∗(Φ∗) = ∂µϕ
∗
A∂
µϕA+ iχAγ

µ∂µχA

−
�1

4λ
ABC DϕAϕB(χCχD) + h.c.

�

− 1
36λ

ABCG(λDEFG)∗ϕAϕBϕCϕ
∗
Dϕ
∗
Eϕ
∗
F . (49)

In order to map the (N = 2)–supersymmetric theory (49) to the language of (1), we de-
compose the complex matter fields ϕ and χ into real components φ,ψ.

We first repackage the M complex scalar fieldϕA and fermions χA into (M×2)-dimensional
matrices

φ̃αA = (ϕA, ϕ∗A)
α and ψ̃αA = (χA, χ∗A)

α (50)

with α= 1, 2. The interaction terms of (49) can then be rewritten as

Lint = −
1
4 Ỹ ABC D
αβγδ φ̃

α
A φ̃

β
B (ψ̃

γ
Cψ̃

δ
D)−

1
36 η̃

ABC DEF
αβγδεζ φ̃

α
A φ̃

β
B φ̃

γ
C φ̃

δ
Dφ̃

ε
Eφ̃

ζ
F (51)

with
Ỹ ABC D

1111 = λ
ABC D , Ỹ ABC D

2222 = (λ
ABC D)∗ , ηABC DEF

111222 = λ
ABCG(λDEFG)∗ . (52)

Next, we translate the pseudo-real fields φ̃, ψ̃ into real components φ,ψ as in (1), using the
embeddings

φαA = (ReϕA, ImϕA)
α and ψαA = (ReχA, ImχA)

α . (53)

Note that the scalar (a, b, c, . . . ) and fermionic indices (i, j, . . . ) running from 1 . . . 2M in (1)
are here split up in two indices A and α with the ranges M and 2. The bases (50) and (53) are
related via the rotation

φ̃αA = Xαβφ
β
A , ψ̃αA = Xαβψ

β
A , where X =

1
p

2

�

1 i
1 −i

�

. (54)

Finally, we obtain the mapping

Y ABC D
αβγδ = Xαα′X

β

β ′
X γ
γ′

Xδδ′ Ỹ
ABC D
α′β ′γ′δ′ , ηABC DEF

αβγδεζ = Xαα′X
β

β ′
X γ
γ′

Xδδ′X
ε
ε′X

ζ
ζ′
η̃ABC DEF
α′β ′γ′δ′ε′ζ′ , (55)

which refer the couplings Y and η in (1), again with their original indices being split up

Lint = −
1
4 Y ABC D
αβγδ φ

α
Aφ

β
B (ψ

γ
Cψ

δ
D)−

1
6!η

ABC DEF
αβγδεζ φ

α
Aφ

β
Bφ

γ
Cφ

δ
Dφ

ε
Eφ

ζ
F . (56)

While these structures appear complicated, their practical evaluation in template RGEs is
straightforward: all internal contractions between two coupling tensors include a summation
over greek indices of the form

Y A...
α ... Y A...

α ... = Ỹ A...
β ... Ỹ A...

γ... X βαX γα = Ỹ A...
β ... Ỹ A...

γ... σ
βγ
1 . (57)
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The Pauli matrix σ1 can be understood from the fact that propagators connect fields and their
complex conjugates, e.g. ϕA and ϕ∗A and vice versa. Inserting (55) everywhere in our template
expressions, all internal contractions of greek indices are carried over the metric σ1. Together
with (52), this enforces a holomorphic structure of RGEs: all λ are only contracted with λ∗ but
no other λ. Many contractions in the template RGEs vanish in N = 2 supersymmetry because
they are incompatible with this holomorphic structure. In consequence, the superpotential
parameters do not receive vertex corrections [118,119]. Overall, the relations

γΦ
AB ≡ γφAB = γψ

AB , β̂ABC D
Y = 0 , β̂η

ABC DEF = 2λABCGγΦ
HG(λHDEF )∗ (58)

must hold as long as the renormalisation scheme does not break the supersymmetry. At two-
loop order this implies

γ
(2)
φ,1 = γ

(2)
ψ,1 , β

(2)
Y,1 = β

(2)
Y,4 = 0 , β

(2)
η,1 = −

1
3β
(2)
η,3 −

1
3β
(2)
η,4 = 2γ(2)

φ,1 , β
(2)
η,2 = 0 . (59)

It is obvious that (59) is less restrictive than its N = 1 counterpart (45). At four loops, 46
conditions arise, which are all fulfilled for our results and are listed in a separate file along
with the arXiv submission of the present work.

5 Fixed Points

In this section, we investigate whether perturbatively accessible fixed points can arise directly
in d = 3 in the context of the renormalisable theories in (1). To this end, we analyse the leading
(two-loop) contribution to the quartic Yukawa and scalar sextic β-functions from Sec. 3, which
we repeat here for convenience

(4π)2βab
Y =

1
12

S2tr
�

Y accd
�

Y bd +
1

12
S2Y abcdcd

+
1
2

tr
�

Y acbd
�

Y cd +
1
2

Y cdabcd +
1
2
S4Y acbdcd , (60)

(4π)2βabcde f
η =

1
6
S10η

abcghiηde f ghi +
1
12

S6tr
�

Y ag gh
�

ηbcde f h +
1
2
S15tr
�

Y ag bh
�

ηcde f gh

−S90tr
�

Y abcdeg f g
�

− 2S45tr
�

Y abcgde f g
�

. (61)

Schematically, RGEs take the form

β(α) = −Bα2 + C α3 +O(α4) (62)

where the first term is determined by (60) or (61). A fixed point α∗ arises at β(α∗) = 0 and
exhibits a perturbative expansion α∗ = B/C +O(B2). For perturbation theory to be reliable
around the fixed point, the leading coefficient |B| should be small with respect to |C | and higher
order coefficients. For instance, the smallness of |B| could be the product of a cancellation of
terms or a large-N suppression in (60) and (61).

For purely scalar theories (Y = 0), the existence of a UV fixed point is long known [80–84],
and under perturbative control in a large-N limit. This is in contrast to renormalisable QFTs in
d = 4, where fixed points may only arise in the presence of a non-Abelian gauge sector [120–
122].

5.1 General Considerations

In the following, we will search for fixed points involving fermions. The leading-order β
functions for Y does not involve η. Thus, a fixed-point coupling Y ∗ must emerge from Y itself.
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Crucially, all terms in (60) enter with positive coefficients, prohibiting any straightforward
cancellations among them. As a result, most QFTs exhibit a manifestly positive βY , and the
emergence of a perturbative fixed point is highly non-trivial.

Nevertheless, there is a window of opportunity, which can be recognised by considering
the quantity [120,122]

(4π)2
d

d logµ
tr
�

Y abab
�

= (4π)2tr
�

Y abβab
Y

�

=
1
6

tr
�

Y accb
�

tr
�

Y add b
�

+
1
6
〈Y abcd , Y abcd〉

+
1
2
〈Y i jY kl , Y kl Y i j〉+

1
2
〈Y abcd , Y cdab〉+ 2〈Y accb, Y bdda〉 , (63)

with 〈A, B〉 =
∑

i, j Ai jBi j , i.e. the sum runs over indices not explicitly written in the brackets
〈·, ·〉. For the first term in the second line we have made the fermion indices explicit but sup-
pressed the scalar ones. For the first term in the second line we have made the fermion indices
explicit but suppressed the scalar ones. A requirement for a QFT to contain a perturbative
fixed point is that the absolute value of (63) can be made arbitrary small or even vanish. In
our case, this is signaled by a change of sign in (63) by any choice of Y .

The first two terms in (63) are manifestly positive while the situation is less clear for the last
three. If we fix the fermionic indices for the third and the scalar ones for the fourth and fifth
term, we observe that each can be written as a scalar product of the form 〈AB, BA〉 where A, B
are symmetric matrices. In case the product BA is antisymmetric, the last three terms of (63)
are negative. Matrices with these properties are part of a Clifford algebra {γA,γB}= 2δAB1.

Thus, a promising candidate for negative contributions to the two-loop β-function is the
theory

L= ∂µφ∗i ∂
µφi + iψi /∂ψi − Y (φ∗i γ

A
i jφ j)(ψkγ

A
klψl)−

1
36η(φ

∗
i φi)

3 (64)

with complex scalars φi and Dirac fermions ψi both in the spinor representation of SO(n).
Here we have the fundamental index A = 1 . . . n as well as i, j, k, l = 1, . . . dγ for the spinor

reprentation, where dγ = 2⌊N/2⌋ and ψi =ψ
†
i γ

0. The corresponding RGE

βY = −
�

2(n− 2) +
4
3
(n− 3)dγ

�

Y 3

(4π)2
+O(4-loop) , (65)

is indeed negative for n ≥ 3. Thus, we find that negative two-loop β-functions are viable,
which motivates the existence of perturbative fixed points.

For any fixed point to be strictly perturbative, it needs to be under the control of a small
expansion parameter, ε. Since we search for fixed points directly in d = 3, ε must stem from
the parameters of the theory and arise within the leading order RGEs. For instance,

βα = −εα2 + C α3 + . . . (66)

yields a fixed-point value α∗ = ε/C +O(ε2), suppressing higher loop contributions by ever-
increasing powers of ε. A natural source of perturbative control originates from large field
multiplicities. Commonly, two realizations can be distinguished. Large-N expansions have
ε ∝ N−1 and become exact in the limit N → ∞. A notable example is found in [80–82,
84]. On the other hand, Veneziano–type expansions [123] feature two large multiplicities
N1,2 →∞ with a fixed ratio such that ε = N1/N2 + const, see for instance [76, 124]. In the
following, we will discuss some examples how large-N limits can be taken for the theories at
hand.
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A straightforward idea is to have both scalar and fermions in large multiplicities Ns and
N f , respectively, where N f ∝ Ns ∝ N →∞. In this large-N expansion, the leading-order
contributions to βY are given by an alternating bubble chain of fermions and scalars

� �n (67)

and appear at every non-trivial loop order. Explicitly, they yield factors (N f NsY
2)n at (2n)-loop,

such that a ’t Hooft–rescaled coupling [125]

Ŷ 2 = N2Y 2 (68)

has a finite β-function for N →∞. However, each diagram of (67) factorises into subgraphs
without logarithmic divergences, thus not contributing to the β-functions.2 At two and four
loops, this class of diagrams corresponds to the vanishing coefficients β (2)Y,1 and β (4)Y,10 in (15) and
(20), respectively. The dominant contributions therefore stem from “next-to-leading order”
diagrams given by inserting (67) between two scalar, or two fermion legs, respectively

� �n � �n , (69)

corresponding to the non-vanishing coefficients β (2)Y,2, β (2)Y,5 and β (4)Y,16, β (4)Y,70. For β-functions
to remain finite at N → ∞, we still require the rescaling (68). This, however, produces a
factor of ε = 1/N for every dominant contribution (69), suppressing the entire β-function by
1/N , i.e. βŶ 2 ∝ ε. We stress that taking the strict N → ∞ limit and only then searching
for fixed points is inconsistent, since the large-N rescaling renders the full β -function sublead-
ing and hence trivially vanishing. The correct procedure is to search for fixed points within
βŶ 2/ε =
∑∞
ℓ=1 c2ℓŶ

2ℓ +O(ε), keeping the leading 1/N contributions explicit before sending
N to infinity [84].

Another popular large-N–expansion is to only assign one large field multiplicity, for in-
stance N f ∝ N →∞ but not Ns. In this case, the rescaling Y̌ 2 = NY 2 is sufficient. Leading-
order contributions do not merely arise through (67), but from many other graphs as well,
even at two loops. In the current example, the leading-order β-functions include contribu-
tions from both leg corrections∝ γ

(2)
φ,1 and the non-vanishing vertex correction∝ β

(2)
Y,2.

5.2 Example: Perturbative IR Fixed Point

Let us choose the explicit example of a QFT with symmetry SO(3) × U(N), where complex
fermions and scalars both transform under the spinor representation of SO(3), but fermions
are in the fundamental of U(N), while scalars are singlets. Explicitly, the Lagrangian reads

L= ∂µφ∗i ∂
µφi + iψia /∂ψia − Y (φ∗i σ

A
i jφ j)(ψakσ

A
klψal)−

1
36η(φ

∗
i φi)

3 , (70)

with a = 1, . . . , N labelling the U(N) flavour, i, j, k, l = 1,2 labelling the SO(3) spinor indices,
ψ = ψ†γ0, and A = 1,2, 3 denoting the three Pauli matrices of dimension dγ = 2. Using the
abbreviations

ε=
1
N

, αY =
NY 2

(4π)2
, and αη =

η

(4π)2
(71)

2We remark that the vanishing is renormalisation-scheme independent. Although, e.g. in cutoff-schemes, mas-
sive tadpoles exhibit a pole, they do not enter the vertex counterterm. See [84] for a discussion in the scalar φ6

theory.
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we find the RGEs

βαY
= −4εα2

Y + 4
�

6+π2 +O(ε2)
�

α3
Y −

32
3
εαηα

2
Y +

4
9
α2
ηαY +O(α4) , (72)

βαη =
17
3
α2
η + 48αYαη − 288εα2

Y −
�

288π2 +O(ε)
�

α3
Y +αηO(α

2) +O(α4) . (73)

Note that the two-loop contribution of βαY
is negative. This is due to fermions transforming

under a spinor representation of SO(n), as discussed earlier. However, the fact that the two-
loop coefficient is also suppressed∝ ε is a special feature of n= 3. This is evident from (65),
where dominant large-N contributions∝ dγ vanish at two loops and first reappear in the RGEs

at four loops. More precisely, there is a cancellation of terms∝ γ
(2)
φ,1 and∝ β

(2)
Y,2. We could

have also assigned an additional multiplicity Ns to the scalar field and observe an equivalent
cancellation between∝ γ

(2)
ψ,1 and∝ β

(2)
Y,5. The special constellation of SO(3) spinors yields an

IR fixed point under perturbative control

α∗Y =
ε

6+π2
+O(ε2) , α∗η =

12(3+π2)ε2

(6+π2)2
+O(ε3) . (74)

Since α∗η > 0, the scalar potential is bounded from below. The two eigenvalues of the

corresponding stability matrix Smn = (∂ βαm
/∂ αn)
�

�

α∗
read

ϑ1 =
4ε2

6+π2
+O(ε3) , ϑ2 =

48ε
6+π2

+O(ε2) , (75)

and reveal that the fixed point is totally IR attractive. The RG flow around the fixed point is
suppressed by∝ ε2 in one of the directions. This slow trajectory also connects the IR fixed
point with the Gaussian one (α∗Y = α

∗
η = 0). The situation is depicted in Fig. 1 for the case

ε = 10−1, where the slow trajectory is marked red. We also show the purely scalar UV fixed
point [80–82,84] in this setting, which is not under strict perturbative control as the number
of scalars is not large. The UV fixed point is not directly connected to the IR one (74), but
flows into the Gaussian along αY = 0, which is coloured violet in Fig. 1. There are hints of
even more ultraviolet fixed points, though they lie beyond the perturbative region.

For completeness, we also investigate if our model predicts fixed points in d = 4 via di-
mensional continuation from d = 3+δ. This is established by evaluating

0= 2δαY,η + βαY,η
(76)

using the four-loop RGEs (72) and evaluating fixed points as a power series in δ. As the two-
loop coefficient of βαY

is negative, an interacting UV fixed point emerges at 0< δ≪ 1, which
needs to be tracked to δ→ 1. Conversely, there is no fixed-point solution for δ < 0, excluding
fixed points in two dimensions. However, such phenomena are predicted in different three-
dimensional theories, see for instance [79] in the context of melonic CFTs. Back to the model
at hand, we find

α∗Y =
δ

2ε
+O(δ2) , (77)

highlighting that the dimensional continuation is not reliable in the limit ε→ 0 where pertur-
bative control is established in d = 3, but rather towards the upper bound ε→ 1. We find two
fixed-point solutions

α±Y =
δ

2ε
+

�

50437
5202

+
173
64
π2 ∓

94
p

577
289

+O(1− ε)
�

δ2 +O(δ3) ,
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Figure 1: RG flow for the theory (70) with ε = 10−1, showing the Gaussian fixed
point (α∗Y = α

∗
η = 0), the infrared fixed point (74), and the purely scalar ultraviolet

fixed point (α∗Y = 0) [80–82,84]. Arrows point from the UV to the IR. The UV fixed
point is connected to the Gaussian only through the trajectory αY = 0 (violet). The
RG flow along the red trajectory is slower–around the IR fixed point, it is suppressed
by factor∝ ε2 as opposed to∝ ε1.

α±η =

�

3(±
p

577− 13)
17

+O(1− ε)
�

δ+O(δ2) , (78)

where the coefficient ∝ δ2 for α±η is known but omitted for brevity. Only α+Y,η describes a
stable fixed point as the leading coefficient of α−η is negative. Computing the eigenvalues of
the stability matrix yields only one UV attractive direction

ϑ1 = −2δ+

�

100874
2601

−
376
p

577
289

+
173
16
π2 +O(1− ε)
�

δ2 +O(δ3) . (79)

A smooth limitδ→ 1 is not possible, given the UV fixed point turns marginal aroundδ ≈ 0.0175,
possibly hinting at a fixed-point merger. Although the precision is rather limited, there is no
indication that the UV fixed point survives the continuation to four dimensions.

6 Conclusion

In this work, we derived general, renormalisation-scheme-agnostic template expressions at
four loops for all β-functions and anomalous dimensions in any three-dimensional renormal-
isable theory with scalars and fermions. We explicitly computed all coefficients of the template
RGEs in the MS scheme and checked them against existing literature.

Our results are compatible with both N = 1 and N = 2 supersymmetry to emerge with
general superpotentials. In fact, we have extracted algebraic relations required to hold in any
supersymmetry-preserving renormalisation scheme. Both N = 1 and N = 2 can be extended
to four dimensions, where they correspond to N = 1

2 and N = 1, respectively. Curiously,
N = 1

2 supersymmetry is violated in the MS at four-loop order [18,68], while its counterpart
in three dimensions is not. The source of the violation are terms stemming from odd spinor
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traces, which always vanish in four dimensions. At four-loop in d = 3, such terms do not
contribute, though they might play a role at higher loops. It would be interesting to see if such
terms eventually pose a problem for N = 1 supersymmetry in three dimensions.

As a direct application of our results, we have surveyed template RGEs for perturbative
fixed points in strictly three dimensions. In doing so, we discovered a systematic way to con-
struct theories with such critical points. This revealed a rare example of a QFT with an inter-
acting IR fixed point under strict perturbative control. Our search for such theories, however,
is not exhaustive, and other critical phenomena may yet be discovered.

A natural direction for future work is to search for a non-trivial UV fixed point, which
would render the theory asymptotically safe. Such a scenario is not unmotivated: UV fixed
points are found in purely scalar [80–82, 84] and purely fermionic [85–89] theories in three
dimensions. In contrast, UV completion in four dimensions is a more complicated business:
at least a non-Abelian gauge sector is required [120], and even more restrictions apply for
non-trivial fixed points [121,122,126].

Our work has revealed that the perturbative landscape of critical points in three dimensions
is quite rich. This picture will become more complete once the catalogue of template RGEs is
extended to include gauge interactions. The gauge sector admits an exactly marginal Chern–
Simons term at level k amenable to a controlled large-k expansion. This, in turn, provides a sys-
tematic setting for perturbative tests of dualities between fermionic and scalar Chern–Simons
theories enjoying rich applications, e.g. in condensed-matter physics [38–41, 127–129]. In
contrast, the gauge coupling is classically relevant and requires e.g. large-N expansions to
be studied with perturbative methods. A prominent example is QED3 [31–35, 130], sharing
phenomena such as confinement, chiral symmetry breaking, and asymptotic freedom with
real-world QCD4.
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A Master integrals at four loops

In this Appendix, we collect the fully massive tadpole master integrals, required to compute
the template RGEs in dimensional regularisation and the MS scheme up to four loops. First,
in App. A.1, we provide an update on [103] by giving analytical results where available,
and complementing with some relations found by applying the integer relation algorithm
PSLQ [101, 102] to our high-precision numerical expansions. We show the numerical results
for all master integrals in App. A.2. Lastly, in App. A.3, we discuss alternative choices of mas-
ters, and connect with the basis used in the FORM package FMFT [98].

While we present analytic and numeric data in an odd dimension d = 3− 2ε here, let us
note that the equivalent information for an even dimension d = 2−2ε had been listed in [131].
Taken together, this suffices for expansions around any integer dimension, given the existence
of dimensional recurrences [132] that allow to analytically map d↔ d + 2.
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1 7 51 62 63 841

993 952 1016 1010 1009 1020

1011 1022 511 841.1.3 1009.1.2 1011.1.2

Figure 2: The master integrals up to four loops, labelled by their
respective sector identifiers whose binary representation corresponds
to the propagators that are present, with momenta from the set
{k1, k2, k3, k4, k1 − k4, k2 − k4, k3 − k4, k1 − k2, k1 − k3, k1 − k2 − k3} in the
four-loop case. The dotted masters carry an additional pair of labels indicating
which propagator carries a non-unity power. For possible alternative choices of the
latter class, see the basis change relations of App. A.3.

A.1 Analytic Results in d = 3− 2ε

We treat here the set of master integrals displayed in Fig. 2. All our propagators 1/(1+ p2
i )

are Euclidean with unit mass. We normalise each L-loop tadpole with the (1-loop tadpole)L ,
leading to

I1 = 1 (80)

for the 1-loop tadpole, exactly. For reference, in any other normalisation, the 1-loop tadpole
can be inferred from

∫

dd p/(1+ p2) = πd/2 Γ (1− d/2).
At two loops, the only master integral I7 can be represented by a hypergeometric func-

tion [133], see also Sec. 6.2 of [134]. For its (fast) expansion around d = 3− 2ε dimensions,
we write

I7 =
1− 2ε

2ε

¦3
2
−

9
16

∞
∑

j=1

(−ε) j g j −
cos(πε)
p

sinc(2πε)
exp
�

ε ln(16
3 ) + 2ε

∞
∑

j=1

ε2 j (4 j − 1)
ζ(2 j + 1)

2 j + 1

�©

,

g j ≡ j+2F j+1(
3
2 , 1, . . . , 1; 2, . . . , 2; 3

4) ,

in terms of generalized hypergeometric functions g j (which can be assigned transcendental

weight j, and evaluate rapidly), odd zeta values, and with sinc(x) ≡ sin(x)
x . We note that

g1 =
16
3 ln(4

3), g2 =
16
3 Li2(

1
4)−

8
3 ln2(4

3), g3 = 5F4(
3
2 , 1, 1, 1, 1;2, 2,2, 2; 3

4), etc.
Another analytically known result is the three-spoked wheel at d = 3. From Broadhurst’s

work [135, 136] we know the leading term of the fully massive 3d 3-loop tetrahedron I63 to
be a difference of two Clausen integrals

I63 = ctet +O(ε) , with ctet =
1p
2

Im
�

Li2(w
2)− Li2(w

4)
�

, (81)

where w= ei arcsin(1/3) = (
p

8+ i)/3.
For two other integrals, I51 and I952 (which in fact constitute the first two instances of a

class of necklace integrals), it can be shown that their expansion coefficients contain multiple
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zeta values (MZVs) only. The constructive proof follows from introducing two distinct masses,
and solving a differential equation in z = M/m in terms of harmonic polylogarithms, which
at z = 1 reduce to MZVs [137–139]. Recently, a recursive construction of the expansion
coefficients of the necklace integrals has been given, see App. A of [84].

Some further terms had contributed to specific physics questions and therefore been ana-
lytically identified before. See, e.g. [140], where the 4-loop integrals I841, I993 and I952 were
needed up to their constant ε0 coefficients (the ε1 terms of I51 and I7 had entered as well).

Using high-precision numerical results (for reference, we show 65 digits and a dozen ε-
orders in App. A.2) generated by an in-house implementation [141] of Laporta’s difference
equation method [100], we have attempted to identify some numbers by the integer relation
algorithm PSLQ, implemented in Mathematica [142] as FindIntegerNullVector. We have
mostly searched at transcendental weight 2 (two ε0 terms are found with weight 3, I952 and
I1016), and our (rather meager) findings are documented below. Note that some dilogarithms
with different arguments are related, such as Li2(

1
4)+2Li2(

1
3) = ζ(2)− ln2(2)− ln2(3

2). In the
interest of compact formulae, for some integrals we pull out a rational prefactor that renders
the remaining expansion in pure-weight form.

I7 =
1− 2ε

4ε

¦

1− 4 ln(3
2)ε+ 4
�

3Li2(
1
3) + 2 ln2(3

2)− ζ2

�

ε2

+
�

9
8 g3 −

1
3 ln3(16

3 ) + 2 ln(16
3 )ζ2 − 4ζ3

�

ε3

+
�

− 9
8 g4 −

1
12 ln4(16

3 ) + ln2(16
3 )ζ2 +

9
2 ζ4 − 4 ln(16

3 )ζ3

�

ε4

+
�

9
8 g5 −

1
60 ln5(16

3 ) +
1
3 ln3(16

3 )ζ2 +
9
2 ln(16

3 )ζ4 − 2 ln2(16
3 )ζ3 + 4ζ2ζ3 − 12ζ5

�

ε5

+ . . .
©

, (82)

I51 =
(1− 2ε)2

(1− 6ε)ε

¦

1− 4 ln(2)ε+ 4
�

ln2(2) + ζ2

�

ε2 + 8
�

− 1
3 ln3(2)− ln(2)ζ2 −

19
4 ζ3

�

ε3

+ 8
�

20Li4(
1
2) + ln4(2)− 4 ln2(2)ζ2 + 27 ln(2)ζ3 + 11ζ4

�

ε4

+ 8
�

40Li5(
1
2)−

2
5 ln5(2) + 8

3 ln3(2)ζ2 − 27 ln2(2)ζ3 − 27ζ2ζ3 − 22 ln(2)ζ4 −
1445

8 ζ5

�

ε5

+ . . .
©

, (83)

I62 =
(1− 2ε)2

ε2

¦�

− 2Li2(
1
3)−

1
2 ln2(3) + 1

2ζ2

�

ε2

+
�

− 45
64 g3 +

5
2 Li3(

1
3) + 14Li2(

1
3) ln(2) + 20 ln3(2)− 4Li2(

1
3) ln(3)− 30 ln2(2) ln(3)

+ 37
2 ln(2) ln2(3)− 85

24 ln3(3)− 11 ln(2)ζ2 +
19
4 ln(3)ζ2 +

79
24 ζ3

�

ε3 + . . .
©

, (84)

I63 = (ctet) +O(ε) , (85)

I841 =
15

4ε(1+ 2ε)(1− 6ε)

¦

3
4 +

10
3 ln(2

5)ε+
�

− 6Li2(
1
3) + 6Li2(

1
5) + 6Li2(

1
6)

+ 5ζ2 − 3 ln2(5) + 11 ln2(2
5) + 6 ln(2) ln(3)

�

ε2 + . . .
©

, (86)

I993 =
1+ 12ε2

4ε2

¦

1
8 + ln(2

3)ε+
�

7Li2(
1
3) + 4Li2(

1
5)− 4Li2(

1
6)

− 5ζ2 + 2 ln2(3) + 2 ln2(2
5)− 4 ln(2) ln(5)

�

ε2 + . . .
©

, (87)

I952 =
(1− 2ε)3

ε3

¦

3
16 ζ2 ε

2 + 3
8

�

2 ln(2)ζ2 − 7ζ3

�

ε3
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+ 3
4

�

40Li4(
1
2) +

5
3 ln4(2)− 8 ln2(2)ζ2 + 21 ln(2)ζ3 −

25
2 ζ4

�

ε4

+
�

− 228Li5(
1
2)− 108Li4(

1
2) ln(2)−

13
5 ln5(2) + 10 ln3(2)ζ2 −

63
4 ln2(2)ζ3

− 135
8 ζ2ζ3 −

75
2 ln(2)ζ4 +

1023
8 ζ5

�

ε5 + . . .
©

, (88)

I1016 =
1
ε3

¦�

− 3Li3(
1
3) +

17
8 ζ3 −

3
2 ln(2)ζ2 +

1
4 ln3(3)
�

ε3 + . . .
©

, (89)

I1010 = (c1010) +O(ε) , (90)

I1009 = (c1009) +O(ε) , (91)

I1020 = (c1020) +O(ε) , (92)

I1011 = (c1011) +O(ε) , (93)

I1022 = (c1022) +O(ε) , (94)

I511 = (c511) +O(ε) , (95)

I841.1.3 = −
1

2ε(1− 4ε)

¦

1
4 +
�

− 1
4 + ln(2

5)
�

ε+
�

− Li2(
1
3) + Li2(

1
5) + Li2(

1
6) +

3
2ζ2

− 1
2 ln2(5) + 5

2 ln2(2
5) + ln(2) ln(3)
�

ε2 + . . .
©

, (96)

I1009.1.2 =
1

12ε2

¦�

2c1009 − 9Li2(
1
3) + 4Li2(

1
5) + 5Li2(

1
6) + ζ2

+ 2 ln2(5)− 3 ln2(3) + 5
2 ln2(2) + 8 ln(2) ln(3

5)
�

ε2 + . . .
©

, (97)

I1011.1.2 =
1

12ε2

¦�

4c1011 − 10Li2(
1
3) + 8Li2(

1
5) + 6Li2(

1
6) +

1
2ζ2

+ 4 ln2(5)− 5 ln2(3) + 3 ln2(2) + 16 ln(2) ln(3
5)
�

ε2 + . . .
©

. (98)

Note that six constants cs, corresponding to finite (as d → 3) corner integrals of some sectors
s have not yet been identified analytically. Two of them (c1009 and c1011) appear also in the
leading terms of the corresponding dotted master integrals, suggesting they are of weight 2.

A.2 Numerical Results in d = 3− 2ε

The set of integrals shown in Fig. 2, normalised as explained in App. A.1, is given in numerical
form (we chose to display 65 digits and a dozen ε-orders here) as

I7 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.2500000000000000000000000000000000000000000000000000000000000000ε−1

− 0.9054651081081643819780131154643491365719904234624941976140143241ε0

+ 0.5934397470856236496391223902815076034600472955253082509885405908ε1

+ 0.5251256638778354408291337872361099256272931753611466089850628667ε2

− 0.2788437506096102407141445292536236358584666452774108000652262493ε3

+ 0.2926073291742066915409950970739643719627980344255053892062753660ε4

− 0.2856264372963059196619089701111391607001752566125685025299259469ε5

+ 0.2834364207812975553353317486987382069702727688705067664069713037ε6

− 0.2823183334248609754685286237473843162701307612242510864301486310ε7

+ 0.2817775576953066862982151395694356907368102792289651965395515796ε8
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− 0.2815116035637308218683520750434441111060181572146255407809751321ε9

+ 0.2813800985507556971174815239799876449109648586773520170404285604ε10

− 0.2813148194727843972356391513506495794244403642468997018218251014ε11

+ 0.2812823342607278074357898205544258655554486958992765555900329463ε12

+O(ε13) , (99)

I51 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 1.0000000000000000000000000000000000000000000000000000000000000000ε−1

− 0.7725887222397812376689284858327062723020005374410210164827200379ε0

+ 18.956370878586148969220213800225348099194010336323334065444249376ε1

+ 12.953997746450372902176320540786378402211825755901955998180798480ε2

+ 669.05034771806693731321903185766840312522392701336114447716631386ε3

+ 444.89415559325150785202860137749965630519364783858533277236208970ε4

+ 24092.007211718789749846859965462563687694866316360095103864271184ε5

+ 16009.810767667604131357225297818641499713839801025801199038295364ε6

+ 867315.36329909805318301473851575870097154552876060974556661132462ε7

+ 576353.52036053109284462459645538347494190368660483692280046556921ε8

+ 31223348.500126351376419796700006734803281448919716289994427172171ε9

+ 20748736.474458606286130564570942662661432198543994751623706835629ε10

+ 1124040529.9957259675717097477275074862039621670166784243500595915ε11

+ 746954536.67542227531774631666446702312890478025468939791172173897ε12

+O(ε13) , (100)

I62 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

− 0.5134339069363047459191745739301958898038835538905682145624149320ε0

+ 5.7095684615899292794862376279588751106060985499584093920508473919ε1

− 37.648074995706791560142239266650126622503344413012137547297409871ε2

+ 224.09748146261060335877889602790798958489614465031252380780097021ε3

− 1339.4703001627123300036272073007602941947313396981280010338399715ε4

+ 8034.3777908087848490070116519359134599537706638758754531851698513ε5

− 48203.858560109269901168864155866002112114048423199772229294827551ε6

+ 289221.32366907318778038693730181824862801656033781087842470320783ε7

− 1735326.6669460210271940650616318339597050248542806279433969102276ε8

+ 10411959.374170972905026051700333844871033927354194847097605834640ε9

− 62471756.376952049703149659518733718984948385239468448678541434518ε10

+ 374830539.29383322923380951002583268565046696331749930000979367083ε11

− 2248983237.8671245141557536382160325513510430577744937226407723089ε12

+O(ε13) , (101)

I63 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

− 0.0217375763327503428408132521394582459517260422873373496515994940ε0

+ 0.0765336321133093854067600182595029834757335052149621362922698456ε1
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+ 0.0579067747736512759094492759848848526298596795634080920929429833ε2

− 0.4434602064084302101813748581409186969642656195400891131645164005ε3

+ 0.3500576529478710482652721964962749809598095962196122929858767415ε4

+ 0.1773796466935324822091222077716446916954673245127639216491696301ε5

− 0.4059552861037855521858525807488028207138376797995537234907960572ε6

+ 0.7699218077585947722881008308989432923624213682729622461460099026ε7

− 1.1760399359044822280385045059917948165800135273220891962552311904ε8

+ 1.6603333219010436448891656413581396272998836796289177706714181052ε9

− 2.2369416988852873423783274395913879713300015049468803030231520827ε10

+ 2.9257651318163983863358564530958038058286056940021618955507476100ε11

− 3.7498542228612113820834815642900533679099159525722217434663717634ε12

+O(ε13) , (102)

I841 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 2.8125000000000000000000000000000000000000000000000000000000000000ε−1

− 0.2036341484269383147940901471001383931262652488532808473995985247ε0

+ 86.830821990825688152407740061694121553645153216845571942924644672ε1

+ 45.522230692605414940981730189798030051319531268529413323820472602ε2

+ 3284.6509518299759688331483772804228891248191247538026964866027370ε3

+ 1707.6271747695301363580569298170696889325884987221322680564534831ε4

+ 120965.23009891368364043141541466445366569800874277602462740376845ε5

+ 62865.525276433278935959062135828719273709630748781527244190128748ε6

+ 4398212.5214601951029983541151813642863087358036782575241682867454ε7

+ 2285474.8672910275047270597406190813581312000598673699090087295818ε8

+ 159031061.91370649969772152140973597247543609306992574712616768782ε9

+ 82634137.312180982765576200986973126994428225019873189834485476525ε10

+ 5736244853.4883876703118317390782206668123548049969920666901823029ε11

+ 2980541539.2935515565764734020184945128433113892475869409749588342ε12

+O(ε13) , (103)

I993 =+ 0.0312500000000000000000000000000000000000000000000000000000000000ε−2

− 0.1013662770270410954945032788660872841429976058656235494035035810ε−1

− 1.0957787366268196443963067347565253672951367482995236383840337687ε0

+ 11.988553631020143167816608026973182815225793914343747814688812858ε1

− 79.151364835440668791480916984517867501349251382810943942658357314ε2

+ 487.83612400927362669344992987484615725647953424090124006374839899ε3

− 2989.3390233560778834407224104486118851963625262762370320995333034ε4

+ 18204.857886630491581123986636721395745530266353973057516863279084ε5

− 110310.03517221441552909233975258092609023137581451468591330685173ε6

+ 666189.64569193289904643103435867746709680317986593812128779183593ε7

− 4014457.4525299073181650930165489878509054857144628008599477613653ε8

+ 24156021.599416591381598834005462533839393530838310452192584817084ε9

− 145213232.21636294012276746184248200041936436897499198738457431610ε10
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+ 872387795.47742213680868952902550485931437677358266100637018603607ε11

− 5238760370.2398729650257527576865438683244611341317955180306061709ε12

+O(ε13) , (104)

I952 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.3084251375340424568385778437461297229785531064762747070754171680ε−1

− 4.1508141380160501720998448422000725547169352752279686177416993597ε0

+ 31.549872818438118671926038980481234232483796715337834408322412566ε1

− 201.94428993188771265169628751954548164802617562239654080941214975ε2

+ 1251.1106249388529983194838151460325056013459097478378746952587105ε3

− 7679.2285698054877882123267972199537878884542064350913339936505170ε4

+ 46784.291276688988776324235796576700031905651026805724193769803935ε5

− 283544.17917659161289206354386156257793904030712558899891781280316ε6

+ 1712620.2217882952272440262847646385364810974740862982219830815821ε7

− 10321136.598061739253152188859812121503633063066634550550560999337ε8

+ 62108469.206188874366033370471042304178155102694369103139890778213ε9

− 373377395.43947565307165093581883464861416426203157797322166945631ε10

+ 2243170668.0603173448980298981419489016518432903259518811000880576ε11

− 13470649157.511402519190281333422453026122130453991960070579044314ε12

+O(ε13) , (105)

I1016 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.1291074598213152985210243915418107780934739544429115056519581510ε0

− 1.4002327916247422804946832553087161948787356659419769886224153744ε1

+ 7.5103317302403489479682855310196107940903895075113622512450558212ε2

− 30.581203881649301217638270485484486733381394563210204652763544763ε3

+ 119.34371666980758851804197684594154288500290351725983919849159742ε4

− 473.83200088109162748777101028461860653383739741623327329839716205ε5

+ 1893.0065880004566546212705978896481979625823885252498146564540508ε6

− 7569.2492900989746620567677098574739383386128210151792211363969055ε7

+ 30274.418687366965929260051380696998154657577652866727730385186415ε8

− 121095.43259100558044613878373462644261728831481957865334109526317ε9

+ 484380.28642108088705607179109316179595637152946223431261309543764ε10

− 1937521.1903508295691721694486375489159765845675501291899563752012ε11

+ 7750087.3348811980067177117038958220957816230453915036689522456936ε12

+O(ε13) , (106)

I1010 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.1077181593584969503054046183107323659963422543199052556553408135ε0

− 1.1383106814611776874204354292450638171490491591319502094309442455ε1

+ 5.9177711577329682890469542805919265891951819355675306389912313068ε2

− 23.500169366616157711812375508797421753065961900022655168659367602ε3
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+ 90.914306291025380471277814382348780721941463994588863226924531635ε4

− 360.99399944354110004700148095866561235433900357907770714236127964ε5

+ 1443.2889586188541374640895803967584976583266622244019602317040984ε6

− 5772.7004181579493311461507625186090988982823163866069740647383955ε7

+ 23091.170244635706758565295620033593422302637046443818601241130806ε8

− 92365.778717827109562779987905542916390526176447345481835431655110ε9

+ 369465.02556030718025644834913038809138936156723952163272662034344ε10

− 1477862.8970746061538057341441523035040975174056750015203737758566ε11

+ 5911455.3531390066593094940421493242899379246384144544598080274583ε12

+O(ε13) , (107)

I1009 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0775372561143257787414875957509475136030747042669114989127188118ε0

− 0.7850657447681336205546345615905118994345599157639593394166547118ε1

+ 3.8722298709211789417021618469188844495350964385827252241521873973ε2

− 14.744516915743593992420720043299817304109704748147344597330876837ε3

+ 56.329113783251517965772891707247008179829270720151071201296625679ε4

− 224.03852671930745085603347105013728614179314914336111824472881208ε5

+ 897.13525140407782743581125681903855418689494951104628022968245824ε6

− 3590.0958059856141882975346425274876950412871465874589364432437758ε7

+ 14363.101087737689457143808807018859756156986396129353061044797683ε8

− 57455.940326741319054090206598281326774322259729454478051332232608ε9

+ 229827.87320233764381767432547206151245440122393753223468345039659ε10

− 919315.70864167977095955636168590605802836527315067575419104058384ε11

+ 3677266.4184890722403779284481428358149446265904798333230232155335ε12

+O(ε13) , (108)

I1020 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0078616587307741514524519579553998692962244357731351282244807040ε0

− 0.0420630557733301531767376865993991145551483376102269432397899465ε1

+ 0.0281445875447985958193247281655960473603619387876491701541532989ε2

+ 0.2003465303315888390661886952499613753047176444211517626682057632ε3

− 0.3968729517094802727107857201381604256920771041700628254053286817ε4

+ 0.1182562596947772051669820853363639396307120368086953454399942155ε5

+ 0.2365939206518576854693178263124970235570895709756691393698854955ε6

− 0.3939917897375007515335809037619681215676788745755882021500202668ε7

+ 0.7275037173721455913672060099659930078851570624796151275020549584ε8

− 1.1372538459296036086584764985919372402976987302690776989688101408ε9

+ 1.7063379901963860713774018581756283820658877242779152371494355006ε10

− 2.4892782234861849336164350445396682952280651446815716179829953351ε11

+ 3.5699703996281064802730751408113008636750539044563570413990335030ε12
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+O(ε13) , (109)

I1011 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0049698068041011492163979479935232913687486244009787674397837111ε0

− 0.0221871599216739679311204418032839563006731953374356775687891781ε1

− 0.0104554874014880232655748601819752340362804370224375575296020832ε2

+ 0.1730719623993056502322942758452476334832374486853169923215250325ε3

− 0.1917151879815380595480336530782280933876667192953262402261544328ε4

− 0.2053931699093452903325942602701897663344101697595982728435894486ε5

+ 0.5246779153557774181816273804780701166197560800379185590905176793ε6

− 0.5545337956637010742099086897697627011871819400496161843674813329ε7

+ 0.6061811472378074412415447883684687933065703366616370491854746376ε8

− 0.4849138948221826458073564111976296403569150678740896226660036024ε9

+ 0.1765510035929661235124295875476157797303297604193881756940510938ε10

+ 0.4143836233267367414226970576417150244387629019145900728606145804ε11

− 1.4052442411781122895829493534226111430421991019412378791788684904ε12

+O(ε13) , (110)

I1022 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0009137653616418094002736626931788099695908996557191386726549905ε0

− 0.0018954360966446162828353001997718110866304367021524775390047257ε1

− 0.0111610370205852109677424037081480594931790404185888768789339302ε2

+ 0.0247097124237810080182937710123133941654128465632925095048110995ε3

+ 0.0409629053668332103291869868461450002335192144119277054313161684ε4

− 0.1047105248579111155379936351124082341509153797401766843986975108ε5

− 0.0211895768856691406309490143053716581246410403040032880889871551ε6

+ 0.1225861577274033934820248818626847974700299128363948071955439078ε7

− 0.0810541046563265505633632098547768710852600184275122534971389645ε8

+ 0.0986846249444064804510300279069038848531358154735920399312757952ε9

− 0.0755812774255241876014006273876997366040860222222252240392019801ε10

+ 0.0404086327599496956553015158739085139114155476373797680019449253ε11

+ 0.0181108246869346685800390875841064878677340480222443554113786474ε12

+O(ε13) , (111)

I511 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0007652924327752750641180337499004334480825547740395167556522498ε0

− 0.0014466499930356254239057454215807741287799876415127826228993859ε1

− 0.0096933643047541598467607892194657353106745005248510009426732767ε2

+ 0.0191185860160505124609009500375183175419573812629700802185490906ε3

+ 0.0386859239613796596681008332932349941003126485299013296093935054ε4

− 0.0831822741079942849356017478540266825037580457727156448365481056ε5
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− 0.0352226534095132742579651027313373549102143974217382043839387510ε6

+ 0.1063919856752840340832932068029899586735166124141740818936028108ε7

− 0.0519182918329414326567615077737025117141420605336303704421997953ε8

+ 0.0645974715850955373802690549089026672938473373221210540491044436ε9

− 0.0399381145624023517077105230914568694287417489845575678601720904ε10

+ 0.0115770193015759899260813518671910205481315225299908764467143430ε11

+ 0.0320755141779737283305714138110235068992289879490912429628390464ε12

+O(ε13) , (112)

I841.1.3 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

− 0.1250000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0831453659370775325917636058840055357250506099541312338959839409ε0

− 1.6932674288524445117588019822518530483034181177209921975753613853ε1

− 3.2873099987095956757969436032513632205869735813843805919151186840ε2

− 66.298328503263960090119748112261655672352259963505396717687144909ε3

− 96.630750999254542885355770263334341035175205442121094205658938580ε4

− 2388.4074978095403861182590067087856017068388258287281938603256469ε5

− 3527.9159122619659626052440964830539457349635722103171019158907893ε6

− 85801.071023612001597007103390458643386194213667744152423047192495ε7

− 127732.99889707414580430981391920038874571978301857534998816909204ε8

− 3085942.3716941658254169908206653236880253507731325991666076560171ε9

− 4609946.8913558213933828964531599275298079479584314873449846338921ε10

− 111047726.53424458907817209967551477807411801018468144152073393845ε11

− 166142837.53863023678900006636933327135430444322233045270433463931ε12

+O(ε13) , (113)

I1009.1.2 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0122708448416023818590539285032346817103352542129458892187383173ε0

− 0.0772945419272941552494559081789631104038042676481336126865453872ε1

+ 0.1310729016018951094007039791555048446906345110550299042607664414ε2

+ 0.0830032872542511616855400933461805257194802909378379914072997302ε3

− 0.4111859770696879562995085686276732339664519748331157849692640167ε4

+ 0.2917361299698484839244198340902152100296371115094273579909835713ε5

− 0.0205038890492164145365517692299900817070599213718630657116308488ε6

− 0.0307315741851277041939370700380270957342428390264537014132059621ε7

+ 0.1949950842652080071368994870681490446705959741792342456942626159ε8

− 0.3613091678052469235941959651868445479905362991134840668607979518ε9

+ 0.5699806769206655392130335637412118814029072304169966209653863902ε10

− 0.8262326961919464825959457166218723815675068128659463659934200323ε11

+ 1.1449693539833461550233201217755443550688994668592872703388835156ε12

+O(ε13) , (114)

I1011.1.2 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2
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+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0013216583759421658118506617173625472155572471312453246441417419ε0

− 0.0033507404000985557252297500849167327978275069712719316921827004ε1

− 0.0142926531059601236805432650181191646140667173169650719097336794ε2

+ 0.0413104817431111762739064636103173511549751706483265167763975196ε3

+ 0.0377135785410811595328655073702917287830658903769998836376738191ε4

− 0.1573556992565570036175903501572181529739317604477866745204907716ε5

+ 0.0414759973036337189114289633954007080383918115298857956550595447ε6

+ 0.1226262841962267645440916235676111767421788867801026236777617409ε7

− 0.1364222632033876822770604902541541035318635610199698354583333333ε8

+ 0.2031939873871243350447990605419256585523672682057470307937052264ε9

− 0.2302775006009696797498707121925476230892866400467845530823192245ε10

+ 0.2316650722837236128103411749222982108670696573669340323366752891ε11

− 0.1869974032359585443277596524323931419741320429847105134435046407ε12

+O(ε13) . (115)

A.3 Alternative Choices for Dotted Masters

Other possible choices (than our I841.1.3, I1009.1.2 and I1011.1.2 shown in Fig. 2) for the dotted
masters can be inferred from linear relations among the integrals. Some relations follow from
simple dimensional analysis (by hitting the corner integral with mass derivatives), such as

(d − 3)(5− 2d) + 5 + 10 = 0 , (116)

(d − 4) + 2 + 2 = 0 , (117)

(2d − 7) + 4 + + 2 = 0 . (118)

Other relations can be derived via IBPs, such as

(d − 4) + 2 + 2 =
3d − 8

4
−

2(d − 3)
3

+
(d − 2)2

8(d − 3)

−
(2d − 5)(2d − 7)

20(d − 3)
+

5
4(d − 3)

. (119)

Together with (118), the latter relation can be used to, e.g. exchange our master integral
choice I1009.1.2 (cf. Fig. 2) with I1009.3.2 (dot on peripheral line) or I1009.4.2 (dot on central
line). Using (117) one could exchange our master integral choice I1011.1.2 (dot on wheel rim)
with I1011.3.2 (dot on spoke), and this was in fact the choice that had been made in [103]. See
Fig. 3 for these alternatives.

Complementing the numerical values given in App. A.2, the set of integrals shown in Fig. 3,
normalised as explained in App. A.1, reads

I841.1.2.2.2 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0625000000000000000000000000000000000000000000000000000000000000ε−1

− 0.6040726829685387662958818029420027678625253049770656169479919704ε0

+ 3.1373605441116099188382190205459542027769621086311522682676003976ε1

− 15.885416717551890444418348328393253414936556051759548770547048412ε2

+ 93.509375705771447578789720067526519068828346301523273248419193672ε3
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841.1.2.2.2 1009.3.2 1009.4.2 1011.3.2

Figure 3: Alternative choices for dotted masters. Note that the integral I1009.4.2 is
part of the basis chosen in the package FMFT [98,99], replacing I1009.1.2 of the basis
displayed in Fig. 2, with (119) available for an analytic basis change if needed.

− 572.19703031228359037116640617257898326632059721487646153543470002ε4

+ 3480.3990754148449408540368192153171743667570129729798005081543164ε5

− 21062.986323836129637697215490837708009126049163472340560077645509ε6

+ 127099.61453565029192365687159979514077091358767833659046460858525ε7

− 765483.58462235532454874866636800968746991956462733860804422070006ε8

+ 4604446.2295570334941617667543539370014334240175354316208367114885ε9

− 27672859.043230567239071208262871965643678284586875509825534236953ε10

+ 166221885.33565129774414802676815154161852223454430668049440402418ε11

− 998070242.07861762945540535384139899608977615937233463511828075970ε12

+O(ε13) , (120)

I1009.3.2 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0070021517316387759710681723384149836640891376613641574589887600ε0

− 0.0348569502098203174519581609509179307107150912672971844319319560ε1

+ 0.0066782570271397328406301341440248816602066735159673784899475292ε2

+ 0.2176664006631901242938439382471244390241609311923495535494055913ε3

− 0.3436146816801707440014497167090786998580751462449871159221207082ε4

− 0.0659377567081129949421115716133928605947320455729317236431903845ε5

+ 0.5398496020239930726778100845766925862193550883471538537922137203ε6

− 0.7405524537812277214709126164272416892154711344744790725009108792ε7

+ 0.9893079792739452964641686060197536814706119684687792556501604199ε8

− 1.1108281816246770590945834642794379624655136705782229354643392417ε9

+ 1.0797935182782644554226543577665330590758569047351996620835347067ε10

− 0.7998052109587316960084105177949934814042124565789472929742073172ε11

+ 0.1451124926213349020905107593334406886159813285453769932904080455ε12

+O(ε13) , (121)

I1009.4.2 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0144495732846386993631355370611788194335554120923996271197880225ε0

− 0.0960246521820132496869442239690335419856138455691845241557340034ε1

+ 0.1943187713867845561995474156467677097139053842748334924626077260ε2

− 0.0229433824022631209419209055032504868955620199524947734501373514ε3

− 0.3169806080837646907090547580234107010275900806158698163055841856ε4
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+ 0.2428594072354530612446395857166714585948493823513205757801371155ε5

− 0.0165391210030964755320404737440152258881175536050481939706941450ε6

+ 0.0492308350000877054279582616731134676605650817809574261407026963ε7

− 0.0407325003760186678056982514031275497857980541371802222547916244ε8

+ 0.1309172439091162975945805834185044225790276005445749853299939813ε9

− 0.3276143718715897541983640342925565315783230168159076865624568021ε10

+ 0.6887088774895604633408062420692657287010516178062228109246240777ε11

− 1.2861800480195147212729027941862276320096833942216440147381497066ε12

+O(ε13) , (122)

I1011.3.2 =+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−2

+ 0.0000000000000000000000000000000000000000000000000000000000000000ε−1

+ 0.0011632450261084087963483122793990984688170650692440590757501135ε0

− 0.0027730327566372790239325228232019539837604662964671396524281775ε1

− 0.0131222505164578558833646068761524087047466965316893844238565403ε2

+ 0.0347700120550536255766658141303312315503631166718944218547629133ε3

+ 0.0395007898674554609254119419358418580063381986606539885707739970ε4

− 0.1370560736796537010967404330561048235809400437273387021274583855ε5

+ 0.0154697904649096998467904665734445839370760587294752110466098463ε6

+ 0.1247847333277001165325814120255775892839862232330078432290152719ε7

− 0.1150209588414096713120758053313742010020332106988278243164106808ε8

+ 0.1605302124395917832930675222277283145757455345188452070587676099ε9

− 0.1663608924247299043012709052312741274024635476176109817366588309ε10

+ 0.1520777429726108814134369414461750810826415540097491797876830949ε11

− 0.1012410940263608590410179666371974051082046060713183532853150240ε12

+O(ε13) . (123)
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