

Electron charge dynamics and charge separation: A response theory approach

Lionel Lacombe^{1,2} Lucia Reining^{1,2} and Vitaly Gorelov^{1,2*},

1 LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris,
F-91120 Palaiseau, France

2 European Theoretical Spectroscopy Facility (ETSF)

* vitaly.gorelov@polytechnique.edu

Abstract

This study applies response theory to investigate electron charge dynamics, with a particular focus on charge separation. We analytically assess the strengths and limitations of linear and quadratic response theories in describing charge density and current, illustrated by a model that simulates charge transfer systems. While linear response accurately captures optical properties, the quadratic response contains the minimal ingredients required to describe charge dynamics and separation. Notably, it closely matches exact time propagation results in some regime that we identify. We propose and test several approximations to the quadratic response and explore the influence of higher-order terms and the effect of **on-site and nearest-neighbour interactions U and V** .

Copyright attribution to authors.

This work is a submission to SciPost Physics.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

¹

Contents

1	1	Introduction	2
2	2	Theoretical framework	3
5	2.1	Time propagation	3
6	2.2	Response theory	4
7	2.2.1	Linear response and its limitations	5
8	2.2.2	Quadratic response: analysis and limitations	6
9	2.3	Higher orders: what can they add?	9
10	3	The model	10
11	4	Results and discussion	11
12	4.1	Charge dynamics: linear and quadratic regime	12
13	4.2	Current vs. charge dynamics	13
14	4.3	Second order: limits and analyses	14
15	4.4	Second order: approximations	16
16	4.5	Interaction	17
17	5	Conclusions	18

18	A Changing perturbation extension	19
19	B Scaling with system size	20
20	References	20
21		
22		

23 1 Introduction

24 Accurate modeling of electron charge dynamics is crucial for addressing a wide range of fundamental
25 questions in physics and chemistry. Understanding the mechanisms of charge transfer
26 and the separation of electrons and holes is a key challenge. These processes play a pivotal role
27 in numerous technological applications, including photovoltaics, photocatalysis, and chemical
28 reactions. For example, the efficient generation and transfer of charge carriers directly impacts
29 the design and performance of solar cells, while charge separation dynamics are fundamental
30 to catalyzing chemical transformations in many photo-activated processes.

31 To model these phenomena, various computational approaches have been developed, each
32 with its own set of advantages and limitations. Among the most widely used techniques
33 are Time-Dependent Density Functional Theory (TDDFT) [1, 2] and Non-Equilibrium Green's
34 Functions (NEGF) [3].

35 Real-time implementation of TDDFT to describe excited charge dynamics [4–6] is favored
36 for its balance of computational efficiency and accuracy. However, it still struggles with in-
37 corporating many-body effects, since the exact exchange-correlation (xc) functional is un-
38 known [7], and it is still computationally challenging to access long time scales. Current
39 approximations to the xc functional cannot accurately describe the charge transfer, although a
40 partial description of charge transfer is possible in generalized Kohn-Sham, for example using
41 hybrid functionals [6, 8]. There has been a recent progress, with a reformulation of TDDFT
42 that uses response quantities for real time propagation [9].

43 *Ab-initio* calculations using NEGF are possible under the Generalised Kadanoff-Baym An-
44 zatz [10]. This robust approximation offers a rigorous treatment of electron-electron and
45 electron-phonon interactions at non-equilibrium conditions. Although it can scale linearly
46 with propagation time [11], it remains computationally demanding and it is limited to short
47 time scales, small systems, or parameterized model Hamiltonians [12–24].

48 A central challenge in modeling charge dynamics is the development of theoretical frame-
49 works that remain accurate across time scales, perturbation strengths, and interaction regimes.
50 This work explores a general response theory approach, including both linear [25] and quadratic
51 [26] formulations, to compute time-dependent observables. Linear response is widely used
52 for calculating **spectral** properties such as absorption and electron energy loss [27], while
53 quadratic response captures nonlinear phenomena like second-harmonic generation [26, 28].
54 Quadratic response also enables the study of nonlinear effects such as the electro-optic ef-
55 fect [29] and the shift current responsible for the bulk photovoltaic effect [30]. However they
56 are rarely used to describe charge dynamics.

57 In practice, first- and second-order response functions are often computed within the
58 independent-particle approximation, sometimes accounting for local field effects [31–34], and
59 extended to include excitonic effects using the Bethe–Salpeter equation [13, 35, 36].

60 However, while response theory allows systematic inclusion of many-body effects and in
61 principle enables access to very long simulation times, it remains perturbative and is valid near
62 equilibrium. The goal of this work is to identify the regimes where linear and second-order

63 responses yield reliable results, both on the basis of general arguments and considering our
 64 particular case of charge separation in a small model.

65 This article will explore the following key questions on charge dynamics and response be-
 66 havior: *How does charge dynamics differ in linear and quadratic response? Can charge dynamics*
67 and charge separation be accurately described within these two frameworks? What is the range of
68 validity for linear and quadratic response in relation to perturbation amplitude, time- and length-
69 scales? And finally, how does the Coulomb interaction influence these findings?

70 The structure of the article is as follows. Section 2.1 introduces the exact time propa-
 71 gation from the ground state. Linear and quadratic response formalisms for time-dependent
 72 observables such as charge density and current are presented in Sec. 2.2, with higher-order
 73 contributions discussed in Sec. 2.3. A minimal site-based model, mimicking an optoelectronic
 74 device, is introduced in Sec. 3. The results are analyzed in Sec. 4, beginning with the validity of
 75 linear and quadratic regimes for charge density (Sec. 4.1) and current (Sec. 4.2). Section 4.3
 76 provides an analysis of perturbation amplitude and the crossover from linear to higher-order
 77 regimes across observables, followed by Section 4.4 with practical approximations to second-
 78 order response. Section 4.5 demonstrates the effect of an onsite interaction U on the accuracy
 79 of the response approach. Conclusions are presented in Sec. 5.

80 2 Theoretical framework

81 2.1 Time propagation

82 We consider a system subject to a time-dependent perturbation added to a static Hamiltonian
 83 $\hat{H} + \hat{V}_{ext}(t)$, where the scalar potential $\hat{V}_{ext}(t) = \int d\mathbf{r} \hat{n}(\mathbf{r}, t) V_{ext}(\mathbf{r}, t)$ couples to the electron
 84 density operator $\hat{n}(\mathbf{r}, t)$. Other types of external perturbations, such as vector electric or mag-
 85 netic fields, would simply lead to modifications of the perturbation matrix elements (V_{IJ} , see
 86 Eq. 4). A many-body state $|\Psi(t)\rangle$ evolves in time as:

$$|\Psi(t)\rangle = \mathcal{T} \exp\left(-i[\hat{H}t + \int_{-\infty}^t dt' \hat{V}_{ext}(t')]\right) |\Psi_0\rangle, \quad (1)$$

87 where $|\Psi_0\rangle = |\Psi(t=0)\rangle$ and the evolution operator is the time-ordered exponential with
 88 \mathcal{T} as the time-ordering operator [3]. We implement this expression by discretizing time
 89 into small time intervals, dt . At each time step s , the operator $\hat{H} + \hat{V}_{ext}(sdt)$ is dia-
 90 gonalized, such that $\hat{H} + \hat{V}_{ext}(sdt) = UDU^{-1}$, where $D(s)$ is the diagonal matrix of eigenvalues
 91 and $U(s)$ is the matrix of eigenvectors. The exponential operator can then be expressed as
 92 $e^{-idt(\hat{H} + \hat{V}_{ext}(sdt))} = U e^{-idt D} U^{-1}$. Albeit restricted to small systems, this approach has the ben-
 93 efit of being easy to implement and the propagation remains unitary. With decreasing dt , the
 94 result converges to the exact solution.

95 The time evolution of observables, specifically, the electron density $\hat{O} \equiv \hat{n}(\mathbf{r})$ and current
 96 density $\hat{O} \equiv \hat{\mathbf{j}}(\mathbf{r})$, is analyzed in this work. Expanding the time-dependent wave function in the
 97 eigenstates of the unperturbed Hamiltonian, \hat{H} , $|\Psi(t)\rangle = \sum_I e^{-iE_I t} c_I(t) |\Psi_I\rangle$, a time-dependent
 98 observable $O(t)$ can be expressed as

$$O(t) = \langle \Psi(t) | \hat{O} | \Psi(t) \rangle = \sum_{IJ} e^{i\Delta_{IJ} t} c_I^*(t) c_J(t) O_{IJ} \equiv \sum_{IJ} \rho_{JI}(t) O_{IJ}, \quad (2)$$

99 where $\Delta_{IJ} = E_I - E_J$ denotes the energy difference between eigenstates, and $O_{IJ} = \langle \Psi_I | \hat{O} | \Psi_J \rangle$
 100 is the matrix element of the observable, which governs the spatial structure of the charge
 101 dynamics. The many-body density matrix $\rho_{JI}(t) = e^{i\Delta_{IJ} t} c_I^*(t) c_J(t)$ encodes the quantum co-

102 herence of the time-dependent state $|\Psi(t)\rangle$ [26, 37]. The time-dependent coefficients $c_I(t)$
 103 evolve according to

$$c_I(t) = \sum_J \left[\exp \left(-i \int_{-\infty}^t \hat{V}_{ext}(t') dt' \right) \right]_{IJ} c_J(0), \quad (3)$$

104 where evolution operator in interaction picture is the time ordered exponential. When the
 105 initial state is the ground state, $c_J(0) = c_0(0)\delta_{J0}$ and the sum over J disappears. The matrix
 106 elements of $\hat{V}_{ext}(t)$,

$$V_{IJ}(t) = e^{i\Delta_{IJ}t} \int d\mathbf{r} V_{ext}(\mathbf{r}, t) n_{IJ}(\mathbf{r}) \quad (4)$$

107 are non zero only when the state I and state J have a non-vanishing spatial overlap between
 108 each other and with the perturbation $V_{ext}(\mathbf{r}, t)$.

109 2.2 Response theory

110 Response theory is obtained by expanding the time-ordered exponential in Eq. 3 in powers of
 111 the perturbation $\hat{V}_{ext}(t)$. This expansion breaks unitarity, leading to a violation of wavefunc-
 112 tion normalization; truncating at n -th order introduces errors of order $n+1$ in the perturbation
 113 strength. Applying this expansion to the time-dependent density matrix yields
 114 $\rho_{IJ}(t) = \sum_{n=0}^{\infty} \rho_{IJ}^{(n)}(t)$. The general form of the response theory involves time-ordered nested
 115 commutators of the perturbation with the unperturbed Hamiltonian,

$$\rho_{IJ}^{(n)}(t) = e^{-i\Delta_{IJ}t} (-i)^n \int_{-\infty}^t dt_1 \dots \int_{-\infty}^{t_{n-1}} dt_n [\hat{V}_{ext}(t_1), [\hat{V}_{ext}(t_2), \dots, [\hat{V}_{ext}(t_n), \hat{\rho}^{(0)}] \dots]]_{IJ}. \quad (5)$$

116 Starting from the ground state, the zeroth order density matrix is $\rho_{IJ}^{(0)} = \delta_{I0}\delta_{J0}$.

117 Traditionally, the system's response to external perturbations is expressed in terms of re-
 118 sponse functions [25, 38]. Up to second order, the change in the expectation value of an
 119 observable \hat{O} , defined as $\delta\langle\hat{O}(t)\rangle = \langle\hat{O}(t)\rangle - \langle\hat{O}(0)\rangle$, induced from the ground state by a scalar
 120 external potential $V_{ext}(\mathbf{r}, t)$, can be written in terms of the corresponding linear and nonlinear
 121 response functions.

$$\begin{aligned} \delta\langle\hat{O}(\mathbf{r}, t)\rangle = & \int d\mathbf{r}_1 dt_1 \chi_{\hat{O}}^{(1)}(\mathbf{r}, \mathbf{r}_1, t - t_1) V_{ext}(\mathbf{r}_1, t_1) \\ & + \int d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 \chi_{\hat{O}}^{(2)}(\mathbf{r}, \mathbf{r}_1, \mathbf{r}_2, t - t_1, t - t_2) V_{ext}(\mathbf{r}_1, t_1) V_{ext}(\mathbf{r}_2, t_2) + \dots \end{aligned} \quad (6)$$

122 Throughout this article we will focus on space dependent observables, such as charge and
 123 current densities, since we are interested in charge dynamics and separation. The first $\chi_{\hat{O}}^{(1)}$
 124 and the second $\chi_{\hat{O}}^{(2)}$ order response functions are the response of an observable \hat{O} to an external
 125 potential $V_{ext}(\mathbf{r}, t)$.

126 One key strength of response theory is its ability to efficiently incorporate interactions, in-
 127 cluding excitons via the Bethe–Salpeter equation [27] and electron–phonon or plasmon cou-
 128 plings through, for example, cumulant expansions [39, 40].

129 Moreover, unlike exact time propagation, which requires re-solving the full dynamics for
 130 each perturbation, response functions can be computed once to be reused later for different

131 perturbations. This facilitates efficient evaluation of system responses to arbitrary perturba-
 132 tions, time profiles, and field strengths, of course within the limits of validity of perturbation
 133 theory.

134 In practice, response functions are often approximated to reduce computational complexity-
 135 ty. Common approaches include the random phase approximation (RPA), time-dependent
 136 Hartree-Fock (TDHF) and approximations to time-dependent Green's function functional the-
 137 ory (TDGFFT), such as time-dependent GW (TDGW) [41], and approximations to time-dependent
 138 density functional theory (TDDFT) [1, 27]. These methods introduce varying degrees of ap-
 139 proximation to the exchange and correlation effects. In this work, the focus is on the exact
 140 expressions for the response functions, derived directly from the time-dependent many-body
 141 wavefunction, to provide a benchmark for assessing the accuracy of response theories, and we
 142 will mostly look at the non-interacting problem.

143 **2.2.1 Linear response and its limitations**

144 The analysis begins with the dynamics obtained from linear response, which follows from Eq. 5
 145 with $n = 1$. Throughout, only systems with real-valued wavefunctions Ψ_I are considered. In
 146 that case, the linear response function for any time- and space- dependent observable $\hat{O}(\mathbf{r}, t)$,
 147 $\chi_{\hat{O}}^{(1)}$, can be expressed as

$$148 \quad \chi_{\hat{O}}^{(1)}(\mathbf{r}, \mathbf{r}_1; t - t_1) = -2\theta(t - t_1) \sum_I O_{0I}(\mathbf{r}) n_{I0}(\mathbf{r}_1) A^{n/j} [\Delta_{I0}(t - t_1)] \quad (7)$$

149 where $\theta(t)$ is a Heaviside step function, $O_{IJ}(\mathbf{r}) = \langle \Psi_I | \hat{O}(\mathbf{r}) | \Psi_J \rangle$, $A^n[\cdot] \equiv \sin[\cdot]$ for a real
 150 observable, for which $\hat{O}^* = \hat{O}$, and $A^j[\cdot] \equiv i \cos[\cdot]$ for an imaginary observable operator, for
 151 which $\hat{O}^* = -\hat{O}$. Assuming that the external perturbation can be factorized into spatial and
 152 temporal components $V_{ext}(\mathbf{r}, t) = u(\mathbf{r})e(t)$, the first order response reads

$$153 \quad \delta O^{(1)}(\mathbf{r}, t) = -2 \sum_I O_{0I}(\mathbf{r}) \tilde{V}_{I0} \int_{-\infty}^t dt_1 A^{n/j} [\Delta_{I0}(t - t_1)] e(t_1), \quad (8)$$

154 where $\tilde{V}_{IJ} = \int d\mathbf{r}_1 u(\mathbf{r}_1) n_{IJ}(\mathbf{r}_1)$ is the spatial overlap of the states with the perturbation.

155 Comparison of Eq. 8 with the exact time propagation in Eq. 2 reveals that first-order re-
 156 sponse lacks terms involving excited-state couplings, $O_{IJ}(\mathbf{r})$ for $I, J \neq 0$. Since it depends only
 157 on the overlap between the ground state, an excited state and the perturbation, the linear
 158 response is not able to have a non-vanishing value beyond the spatial extension of the ground
 state (see Fig. 1(a) for illustration), unless the observable operator is non-local.

159 This means that, when the ground state is mostly localised in the region where the pertur-
 160 bation is applied, a charge transfer is only possible between the states overlapping with the
 161 ground state (see Fig. 1(a) for illustration). The response at distances far from the localisation
 162 of the ground state cannot be observed. The current operator involves the gradient, which
 163 is not purely local operator, and results in a slightly more delocalized expectation value than
 164 the charge density. Therefore, it favours a slightly better linear response result in the region
 165 where the ground state has very low amplitude. This will be further illustrated in Section 4.

166 The time-dependent contribution to the response changes depending on the observable.
 167 For a real observable, such as the induced charge density $\delta n(\mathbf{r}, t)$, and a local, instantaneous
 168 perturbation of the form $V_{ext}(\mathbf{r}, t) = u(\mathbf{r})\delta(t)$, the time-dependent part of Eq. 8 becomes

$$169 \quad \theta(t) \int_{-\infty}^t dt_1 A^n [\Delta_{I0}(t - t_1)] \delta(t_1) = \theta(t) \sin[\Delta_{I0} t]. \quad (9)$$

169 The response is governed by oscillations at frequencies corresponding to energy differences
 170 Δ_{I0} .

171 In the case of an oscillating perturbation in time, $V_{ext}(\mathbf{r}, t) = u(\mathbf{r})\theta(t)\sin(\omega t)$, the corre-
 172 sponding contribution to the linear induced charge density becomes

173

$$\theta(t) \int_{-\infty}^t dt_1 A^n [\Delta_{I0}(t - t_1)] \theta(t_1) \sin(\omega t_1) = \theta(t) \frac{\Delta_{I0} \sin[\omega t] - \omega \sin[\Delta_{I0} t]}{\Delta_{I0}^2 - \omega^2}. \quad (10)$$

174 At resonance, where $\Delta_{I0} = \omega$, the charge propagation oscillates as
 175 $(\sin[\omega t] - \omega t \cos[\omega t])/2\omega$.

176 Charge separation can be intuitively understood as the condition where the induced density
 177 increases on one side of the system and decreases on the other. For positive induced density
 178 one can define the electron propagation and for negative, the hole propagation.

179 For both perturbations, charge separation can only occur on time scales shorter than $t < \pi/\Delta_{I0}$
 180 (if $\omega > \Delta_{I0}$ for oscillating perturbation, otherwise shorter than $t < \pi/\omega$), and can never be
 181 longer than the inverse of the gap, past this time, the charge density is changing sign. For
 182 both considered perturbations, the induced charge would always oscillate around zero in ev-
 183 ery point in space, indicating that there is no possibility to see a net charge separation in linear
 184 response (see section 4.1 for an illustration).

185 Considering now an imaginary operator, such as the current-density for which $\hat{\mathbf{j}}^*(\mathbf{r}) = -\hat{\mathbf{j}}(\mathbf{r})$.
 186 In the case of an instantaneous perturbation, the current density can be obtained by replacing
 187 $\sin[\Delta_{I0} t]$ by $i \cos[\Delta_{I0} t]$ in Eq. 9. For a real valued wavefunction $\mathbf{j}_{00}(\mathbf{r}) = 0$, meaning that the
 188 time average of linear response current is zero, no DC component is present.

189 In the case of an oscillating perturbation, $e(t) = \theta(t)\sin(\omega t)$, the resulting time-dependent
 190 part of the current density is given by

191

$$\theta(t) \int_{-\infty}^t dt_1 A^j [\Delta_{I0}(t - t_1)] \theta(t_1) \sin(\omega t_1) = \theta(t) i \frac{2\Delta_{I0}(\cos[\Delta_{I0} t] - \cos[\omega t])}{\omega^2 - \Delta_{I0}^2}. \quad (11)$$

192 At the resonance $\Delta_{I0} = \omega$ the time dependency is governed by $t \sin(\omega t)$. A crucial con-
 193 dition for observing net charge transport is the presence of a nonzero DC component in the
 194 current, i.e., a finite time-averaged value $\langle \mathbf{j}(\mathbf{r}, t) \rangle_t \neq 0$. Such a contribution is absent in the
 195 non-resonant linear response regime, where the current oscillates symmetrically around zero.
 196 However, averaging the time-dependent part over a period of oscillations, $T = 2\pi/\omega$, at the
 197 resonance results in $2\pi/\omega^2$ and, depending on the corresponding matrix elements in Eq. 8,
 198 might be non-vanishing resulting in a finite DC component.

199 For both considered perturbations and observables, the ground state doesn't contribute to
 200 the summation in Eq. 8, as $\Delta_{00} = 0$ and $\mathbf{j}_{00}(\mathbf{r}) = 0$. Any linear combination of perturbations
 201 leads to a corresponding linear superposition of the individual linear responses.

202 **2.2.2 Quadratic response: analysis and limitations**

203 Charge separation and propagation beyond the region of localization of the ground state re-
 204 quires the quadratic response $\chi^{(2)}$, defined as:

205

$$\begin{aligned} \chi_{\hat{O}}^{(2)}(\mathbf{r}, \mathbf{r}_1, \mathbf{r}_2, t, t_1, t_2) = & -2\theta(t - t_1)\theta(t - t_2)\theta(t_1 - t_2) \sum_{IJ} \\ & \left[O_{0I}(\mathbf{r})n_{IJ}(\mathbf{r}_1)n_{J0}(\mathbf{r}_2)A^{n/j} [\Delta_{I0}t + \Delta_{JI}t_1 + \Delta_{0J}t_2] \right. \\ & \left. - O_{IJ}(\mathbf{r})n_{0I}(\mathbf{r}_1)n_{J0}(\mathbf{r}_2)A^{n/j} [\Delta_{I0}t_1 + \Delta_{JI}t + \Delta_{0J}t_2] \right], \end{aligned} \quad (12)$$

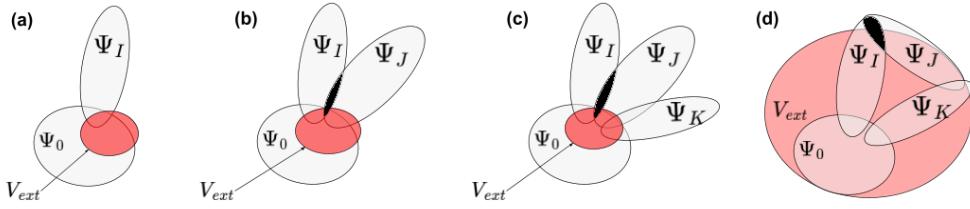


Figure 1: Schematic illustration of spatial overlaps between the excited states Ψ_I , the external perturbation V_{ext} and the ground state Ψ_0 that contribute in response theory up to the first order (a) (see Eqs. 8,20), second order (b) (see Eqs. 13,21) and third order (c), (d) (see Eq. 22) for only one element O_{IJ} of the sum in Eq. 2. (c) for a localized perturbation in third order (d) for a delocalized perturbation in third order. Black shade is the region, where the observable matrix element O_{IJ} can be non-zero .

206 where $A^n[\cdot] \equiv \sin[\cdot]$ for a real observable and $A^j[\cdot] \equiv i \cos[\cdot]$ for an imaginary observable
 207 operator. A second order contribution to an observable \hat{O} in response to a generic perturbation
 208 is

$$\begin{aligned} \delta O^{(2)}(\mathbf{r}, t) = & 2 \sum_{J \neq 0} (O_{00}(\mathbf{r}) - O_{JJ}(\mathbf{r})) \tilde{V}_{0J}^2 B_{0J}^{'n/j}(t) \\ & - 2 \sum_{I > J, J \neq 0} O_{IJ}(\mathbf{r}) \tilde{V}_{0I} \tilde{V}_{J0} B_{IJ}^{''n/j}(t) \\ & + 2 \sum_{I \neq 0, J \neq 0} O_{0I}(\mathbf{r}) \tilde{V}_{IJ} \tilde{V}_{J0} B_{IJ}^{'n/j}(t), \end{aligned} \quad (13)$$

209 where the terms have been regrouped by their importance for charge dynamics. The first
 210 term is the dominant one. It comes from expanding the time-dependent wavefunctions (or
 211 coefficients) up to the first order of Eq. 2, only keeping the diagonal contributions, and it is
 212 determined by the excited state expectation values of the observable. These quantities can
 213 be obtained from linear response TDDFT [42, 43]. The second term, arising from transitions
 214 between excited states, originates from the second-order expansion of the time-dependent
 215 wavefunctions in Eq. 2. The third term, in the case when $O_{0I}(\mathbf{r}) \approx 0$ outside the ground
 216 state localization, contributes little to the second-order response, this is the linear-response-
 217 like term. Unlike the linear response, the first two terms in the second-order contribution
 218 involve the full set of matrix elements $O_{IJ}(\mathbf{r})$, qualitatively they contain all the information
 219 of the exact time-propagation expression in Eq. 2. Relying on the excited states overlaps, the
 220 second order is able to propagate charge beyond the extension of the ground state, see the
 221 black shade on Fig. 1(b). However, the overlap between an excited state, the ground state and
 222 the perturbation, \tilde{V}_{0I} , has to be non-zero.

223 Evaluating Eq. 13 requires computing the overlap integrals \tilde{V}_{IJ} , which can be performed
 224 in advance. Importantly, only the elements involving the ground state of the \tilde{V}_{IJ} matrix enter
 225 the first two terms of Eqs. 13. Considering the symmetry of the spatial part of the second term
 226 in Eq. 13 with respect to the exchange of I and J , the sum is reduced to only terms with $I > J$.
 227 The temporal dependence is governed by the factors B' and B'' .

228 In the case of the second order induced charge density $\delta n(\mathbf{r}, t)$ for the instantaneous per-
 229 turbation in time, $V_{ext}(\mathbf{r}, t) = u(\mathbf{r})\delta(t)$, the time-dependent parts $B_{IJ}^n(t)$ and $B_{IJ}^{'n}(t)$ become:

$$\begin{aligned} B_{IJ}^{'n}(t) &= \theta(t) \int_0^t dt_1 \int_0^{t_1} dt_2 \cos[\Delta_{I0}t + \Delta_{JI}t_1 + \Delta_{0J}t_2] \delta(t_1)\delta(t_2) = \theta(t) \cos[\Delta_{I0}(t)] \\ B_{IJ}^{'n}(t) &= \theta(t) \int_0^t dt_1 \int_0^{t_1} dt_2 \cos[\Delta_{I0}t_1 + \Delta_{JI}t + \Delta_{0J}t_2] \delta(t_1)\delta(t_2) = \theta(t) 2 \cos[\Delta_{JI}(t)], \end{aligned} \quad (14)$$

231 which results in $B_{0J}'(t) = \theta(t)$. This gives a constant offset to the charge dynamics necessary
232 to the charge separation.

233 Considering further an oscillating time dependent part of the external potential,
234 $V_{ext}(\mathbf{r}, t) = u(\mathbf{r})\theta(t)\sin(\omega t)$, the second order time integrals become:

235

$$\begin{aligned} B_{IJ}'(t) &= \theta(t) \int_0^t dt_1 \int_0^{t_1} dt_2 \cos[\Delta_{I0}t + \Delta_{JI}t_1 + \Delta_{0J}t_2] \sin(\omega t_1) \sin(\omega t_2) = \\ &= \frac{\theta(t)}{2(\Delta_{J0}^2 - \omega^2)} \left(\frac{2\omega^2 \cos[\Delta_{I0}t] + \omega(\Delta_{JI} - \omega) \cos[(\Delta_{J0} + \omega)t] - \omega(\Delta_{JI} + \omega) \cos[(\Delta_{J0} - \omega)t]}{(\Delta_{JI}^2 - \omega^2)} \right. \\ &\quad \left. - \frac{\Delta_{0J}}{\Delta_{I0}} (\cos[\Delta_{I0}t] - 1) + \frac{(\Delta_{J0}\Delta_{I0} + 2\omega^2)(\cos[2\omega t] - \cos[\Delta_{I0}t])}{(\Delta_{I0}^2 - 4\omega^2)} \right), \end{aligned} \quad (15)$$

236

$$B_{0J}'(t) = \theta(t) \left[\frac{(1 - \cos[2\omega t])}{4(\Delta_{J0}^2 - \omega^2)} + \frac{2\omega^2 + \omega(\Delta_{J0} - \omega) \cos[(\Delta_{J0} + \omega)t] - \omega(\Delta_{J0} + \omega) \cos[(\Delta_{J0} - \omega)t]}{2(\Delta_{J0}^2 - \omega^2)^2} \right], \quad (16)$$

237

$$\begin{aligned} B_{IJ}''(t) &= \frac{\theta(t)}{2(\Delta_{J0}^2 - \omega^2)(\Delta_{I0}^2 - \omega^2)} \left(2\omega^2 \cos[\Delta_{IJ}t] + (\Delta_{J0}\Delta_{I0} + \omega^2) - (\Delta_{J0}\Delta_{I0} - \omega^2) \cos[2\omega t] \right. \\ &\quad - \omega(\Delta_{I0} + \omega) \cos[(\Delta_{J0} - \omega)t] - \omega(\Delta_{J0} + \omega) \cos[(\Delta_{I0} - \omega)t] \\ &\quad \left. + \omega(\Delta_{I0} - \omega) \cos[(\Delta_{J0} + \omega)t] + \omega(\Delta_{J0} - \omega) \cos[(\Delta_{I0} + \omega)t] \right). \end{aligned} \quad (17)$$

238 In $B_{IJ}'(t)$ the resonance is reached when either ω or 2ω match the transition energies. The
239 $B_{IJ}''(t)$ term is resonant only when the transition energies match ω . The time dependence
240 of the second-order response features oscillations at frequencies determined by the transition
241 energies Δ_{IJ} , the perturbation frequency ω and 2ω , as well as their sums and differences.
242 Beyond the oscillatory behavior, a key contribution arises from the constant offset in $B_{0J}'(t)$,
243 which ensures that the induced density vanishes at $t = 0$. This term shifts the dynamics to en-
244 able charge separation (see Sec. 4). At resonance conditions $\Delta_{J0/I0} \pm \omega = 0$, the second order
245 response diverges faster than the first order (due to the $1/(\Delta_{J0}^2 - \omega^2)^2$ in $B_{0J}'(t)$), indicating
246 a breakdown of the response theory. Additional resonances occur when $\Delta_{I0} \pm 2\omega = 0$, but
247 these are less significant far from the ground-state region, since it only enters the third term
248 of Eq. 13.

249 In the second order current-density response, for real valued wavefunctions $\mathbf{j}_{II}(\mathbf{r}) = 0$, the
250 first term in Eq. 13 disappears. For an instantaneous delta-function perturbation, the current
251 density follows from Eq. 14 by replacing $\cos[\Delta_{JI/I0}t]$ with $i \sin[\Delta_{JI/I0}t]$. In the case of an
252 oscillating perturbation, the corresponding expression for the current density time integrals
253 that enter Eq. 13 read:

254

$$\begin{aligned} B_{IJ}^j(t) &= \frac{\theta(t)}{2(\Delta_{J0}^2 - \omega^2)} \left(\frac{2\omega^2 \sin[\Delta_{I0}t] + \omega(\Delta_{JI} - \omega) \sin[(\Delta_{J0} + \omega)t] - \omega(\Delta_{JI} + \omega) \sin[(\Delta_{J0} - \omega)t]}{(\Delta_{JI}^2 - \omega^2)} \right. \\ &\quad \left. - \frac{\Delta_{0J}}{\Delta_{I0}} \sin[\Delta_{I0}t] - \frac{(\Delta_{J0}\Delta_{I0} + 2\omega^2) \sin[\Delta_{I0}t] - 2\omega(\Delta_{I0} + 2\Delta_{J0}) \sin[2\omega t]}{(\Delta_{I0}^2 - 4\omega^2)} \right), \end{aligned} \quad (18)$$

255

256

$$\begin{aligned} B_{IJ}''^j(t) &= \frac{\theta(t)}{2(\Delta_{J0}^2 - \omega^2)(\Delta_{I0}^2 - \omega^2)} \left(2\omega \Delta_{JI} \sin[2\omega t] + 2\omega^2 \sin[\Delta_{JI}t] + \right. \\ &\quad + \omega(\Delta_{I0} - \omega) \sin[(\Delta_{J0} + \omega)t] - \omega(\Delta_{I0} + \omega) \sin[(\Delta_{J0} - \omega)t] - \\ &\quad \left. - \omega(\Delta_{J0} - \omega) \sin[(\Delta_{I0} + \omega)t] + \omega(\Delta_{J0} + \omega) \sin[(\Delta_{I0} - \omega)t] \right). \end{aligned} \quad (19)$$

257 For an oscillating perturbation a non-vanishing DC component in the current emerges at resonance due to the terms like $\lim_{\Delta_{J0} \rightarrow \pm\omega} \frac{\sin[(\Delta_{J0} \pm \omega)t]}{(\Delta_{J0} \pm \omega)} = t$. In the case of a perturbation by a vector potential, this effect corresponds to the generation of a shift current, also known as the bulk photovoltaic effect (BPVE), as discussed in Refs. [44, 45]. This mechanism enables net current flow in the absence of external bias and plays a central role in nonlinear optical and transport phenomena.

263 In the linear and quadratic response, for an oscillating perturbation, a convergence parameter can be identified from Eqs. 10 and 11 in linear and Eqs. 15-19 in quadratic response, $I/(\Delta_{J0} \pm \omega)$, where I is the perturbation amplitude. The response theory breaks down if I is large or if the resonance is reached $\Delta_{J0} = \pm\omega$.

267 2.3 Higher orders: what can they add?

268 To understand the contributions of higher orders, it is useful to look at the density matrix expansion defined in Eq. 5 and the corresponding overlaps between the states. The focus here will be on propagating the charge far from the ground state and from the perturbation.

271 The main contributions to the density matrix in first order are coming from one of the elements of the commutator:

$$\rho_{IJ}^{(1)}(t) \propto \tilde{V}_{0I} B_{IJ}(t) \delta_{0J}. \quad (20)$$

273 In linear response, only off-diagonal elements of the density matrix contribute, while diagonal terms such as $\rho_{00}^{(0)}$ vanish. As a result, net charge transport requires the inclusion of higher-order processes. In the second-order response, all matrix elements can contribute, since relevant terms in the commutator of Eq. 5 are not restricted by δ_{0J} , enabling asymmetry and transport in the induced dynamics. One of the elements of the second order of Eq. 5 is

$$\rho_{IJ}^{(2)}(t) \propto \tilde{V}_{0I} \tilde{V}_{J0} B_{IJ}(t). \quad (21)$$

278 The condition for a nonzero second-order contribution is a finite overlap between the excited states I and J that enters the observable O_{IJ} in Eq. 2, the ground state, and the applied perturbation. Similarly, the third-order (and higher-order) response generate the full set of density matrix elements, e.g.

$$\rho_{IJ}^{(3)}(t) \propto \sum_K \tilde{V}_{0I} \tilde{V}_{JK} \tilde{V}_{K0} B_{IJK}(t). \quad (22)$$

282 In this expression, contrary to the second order, not all the excited states (e.g. J) must overlap with the ground state. Instead there is an extra overlap between states K and J and the perturbation and K must overlap with the ground state.

285 Consider two scenarios: first, when the perturbation is localized in the region of the ground state, which is illustrated in Fig. 1(c). In this case, the third-order response behaves similarly to the second-order response in terms of charge propagation. Shaded in black area is the overlap between the states I and J that contributes to an observable of interests, $O_{IJ}(\mathbf{r})$ (see Eq. 2). This area is the same in second, third and higher orders, meaning that the third (and higher) order response cannot propagate charge significantly further than the second order for a localized perturbation due to the persistent presence of the \tilde{V}_{0I} terms across all orders.

292 In the second scenario, involving a fully delocalized perturbation (Fig. 1(d)), charge transport can extend beyond the range achievable in the second order. Here, when state J overlaps with K , which in turn overlaps with the ground state, there is a potential for charge to propagate further (black shaded area) that is not accessible by second order (see Appendix A).

296 For the fourth and higher orders, the situation remains similar. For a perturbation localized
 297 within the ground state, the requirement remains that all states must overlap with the ground
 298 state. The only quantitative change will be added from more elements like \tilde{V}_{KL} . In the case of
 299 a completely delocalized perturbation, higher-order responses allow for further charge prop-
 300 agation through sequential overlaps between the states, i.e. there will be additional elements
 301 added into the chain, e.g. $\Psi_0 - \Psi_1 - \Psi_J - \Psi_K - \Psi_0$. However, of course, for a weak perturbation,
 302 these contributions will be smaller than in the second order.

303 **3 The model**

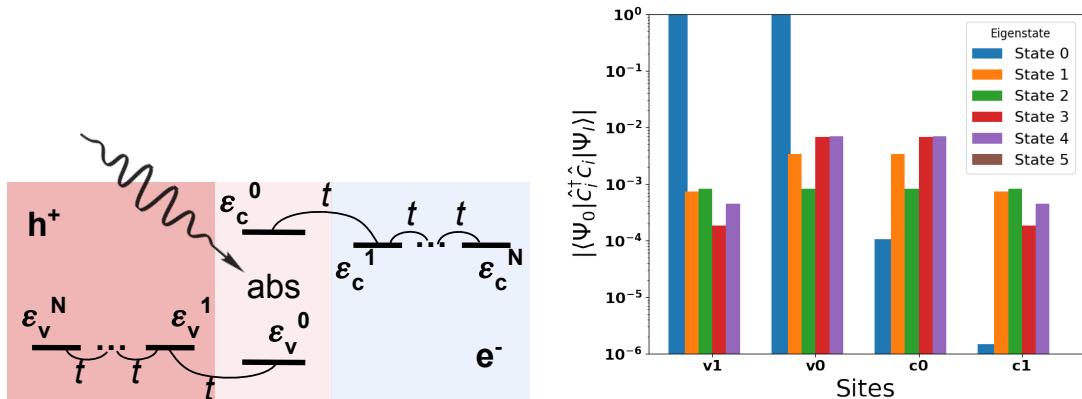


Figure 2: Left: Site model used in this work. The model is divided into three regions: absorber in the middle, electron transport layer (blue) and hole transport layer (red). $N + 1$ electrons occupy lower energy (valence) sites v_i connected with the hopping $t_h = 1$. The $N + 1$ higher energy (conduction) sites c_i , connected by a hopping $t_h = 1$ are separated by a single site energy $\epsilon_c^0 - \epsilon_v^0 = 10t_h$ in the absorber. The external field arrives in the absorber region. Right: matrix element $\langle \Psi_0 | \hat{c}_i^\dagger \hat{c}_j | \Psi_1 \rangle$ between the ground and excited states for $t_a = 0.1t_h$ projected onto the sites for a system with two valence and two conduction sites. State 5 doesn't have an overlap with the ground State 0.

304 To illustrate this discussion and to get further insight, we will use a model that simulates
 305 systems with interfaces where an external perturbation excites a charge in one region or ma-
 306 terial, after which the excited charge propagates into another region or material. This model
 307 aims to demonstrate charge separation into electrons and holes, a process prevalent in op-
 308 toelectronics and particularly in photovoltaic systems. The choice of the model has to be a
 309 minimal yet comprehensive testbed for response theory in charge transfer. It should provide
 310 discrete eigenstates (we are working with finite systems), controllable energy offsets and ex-
 311 plicit control over the matrix-element overlaps that couple the ground state to excited states
 312 (cf. \tilde{V}_{0I} in Secs. 2.2-2.3). This setting contains the ingredients needed to diagnose when linear
 313 vs. quadratic response suffices for charge dynamics and separation, while keeping the analysis
 314 transparent. Our focus here is not on reproducing device-level numbers, but on establishing
 315 qualitative mechanisms and regimes of validity. We emphasize that infinite and semi-infinite
 316 systems as well as 2D and 3D dimensional interfaces are outside our present scope. We ex-
 317 pect the semi-infinite leads to adjust spectral densities and long-time tails, that would change
 318 numbers and parameters of validity and would increase the period of oscillations to infinity.
 319 Increasing the dimensionality will allow a more realistic study of the charge dynamics, where
 320 the charge can move in the interface plane. However, the qualitative overlap-based conclusions
 321 we draw about the order of response needed for transport will hold. We leave the extensions

322 with realistic electrodes and environments to future work.

323 Our Hubbard-like model consists of $N + 1$ lower energy sites and $N + 1$ higher energy sites
 324 and a number of electrons $N_e = N + 1$. The illustration of the model and the extension of the
 325 ground state can be found in Fig. 2.

$$\hat{H} = \sum_{i=0}^N \epsilon_v^i \hat{c}_{vi}^\dagger \hat{c}_{vi} + \sum_{i=0}^N \epsilon_c^i \hat{c}_{ci}^\dagger \hat{c}_{ci} - \sum_{i=0}^{N-1} t_h (\hat{c}_{vi}^\dagger \hat{c}_{vi+1} + \hat{c}_{vi+1}^\dagger \hat{c}_{vi}) - \sum_{i=0}^{N-1} t_h (\hat{c}_{ci}^\dagger \hat{c}_{ci+1} + \hat{c}_{ci+1}^\dagger \hat{c}_{ci}) + t_a (\hat{c}_{v0}^\dagger \hat{c}_{c0} + \hat{c}_{c0}^\dagger \hat{c}_{v0}), \quad (23)$$

326 were \hat{c}_{ai} (\hat{c}_{ai}^\dagger) annihilates (creates) a fermion on site $i = 0, \dots, N$ of side $\alpha \in \{v, c\}$. The on-
 327 site energies are ϵ_α^i ; t_h is the nearest-neighbor hopping amplitude; t_a is a local hybridization
 328 between v and c at $i = 0$. The first lower energy site $v0$ and the first higher energy site $c0$ will
 329 represent the region, where the external perturbation acts. This region is called absorber. The
 330 rest of the low energy sites represent the hole transport layer and the rest of the high energy
 331 sites - the electron transport layer. In the following we choose the hopping between the $v0$
 332 and $c0$ sites, $t_a < t_h$, such that, the $N_e = N + 1$ electrons in the many-body ground state will
 333 mostly occupy $N + 1$ lower sites, vi , and have a little occupation of higher energy sites, ci (see
 334 the blue column in the right panel of Fig. 2 for a system with 4 sites). Therefore will can call
 335 the lower energy sites - valence sites and higher energy sites - conduction sites. No spin is
 336 included, except in the last section 4.5.

337 For most of the discussion below we consider 2 valence and 2 conduction sites (unless it
 338 is stated otherwise). The characteristic energy difference in our system between conduction
 339 and valence sites is $\epsilon_c^0 - \epsilon_v^0 = 10t_h$. The energy difference between the absorber region and
 340 electron/hole transport layer is $\epsilon_{v/c}^1 - \epsilon_{v/c}^0 = 1t_h$. Except for the validity limits of response
 341 theory, the overall conclusions do not depend on the particular parameters.

342 The external perturbation acts only in the absorber region and is defined as

343 $\hat{V}_{ext}^{ij}(t) = I \delta_{ic0} \delta_{jv0} (\hat{c}_{c0}^\dagger \hat{c}_{v0} + \hat{c}_{v0}^\dagger \hat{c}_{c0}) e(t)$. We have chosen such perturbation in order to study the
 344 dynamics far from it. We have verified that a delocalized perturbation that acts on the whole
 345 model doesn't change the main conclusions about the validity of the second order response
 346 theory. In both first- and second-order responses, the dominant terms involve \tilde{V}_{0I} , it contains
 347 the overlaps between excited states and the ground state (see Eq.8 and first two terms of
 348 Eq.13). Figure 2 (right panel) shows $\langle \Psi_0 | \hat{c}_i^\dagger \hat{c}_i | \Psi_I \rangle$ for $t_a = 0.1t_h$, revealing nearly an order-
 349 of-magnitude larger overlap at absorption sites ($v0, c0$) than in the transport layers ($v1, c1$).
 350 Extending the perturbation to other sites thus has negligible impact on \tilde{V}_{0I} (see Appendix A).
 351 The strength of the perturbation I and the perturbation frequency ω are the parameters that
 352 differentiate between different response regimes.

353 Consider a natural electric field scale in the Hubbard model as a field that does work
 354 comparable to a hopping $t_h \sim 1$ eV over a distance a : $E_0 \sim \frac{t_h}{ea} = 10^{10}$ V/m, where $a = 1$
 355 and e - an electric charge. A solar intensity on a clear day can be assumed to be $I_s \approx 1000$
 356 W/m² [46], converting it into an electric field intensity makes $E_s \sim 10^6$ V/m, which in the
 357 Hubbard model translates to $I \sim 10^{-4} t_h$. This is a very weak field, compared to a typical
 358 pump-probe experiment, where a pump probe $I \sim (0.1 - 1)t_h$ [47, 48]. In fact, as can be seen
 359 in the next section, at $I \sim 10^{-4} t_h$ one can already observe some second order effect on charge
 360 dynamics.

361 4 Results and discussion

362 Here, the focus is on the excited charge dynamics within the presented model via examining the
 363 induced density and current. For the site model, this simplifies to the dynamics of a change on a
 364 site occupation number, $\delta n_{ii}(t)$, and the current between two sites $\delta j_{ii+1}(t)$ with respect to the

365 ground state. Our objective is to achieve charge separation, where electrons are transported
 366 to the electron transport layer, i.e. positive $\delta n_{ii}(t)$, and holes to the hole transport layer, i.e.
 367 negative $\delta n_{ii}(t)$. This should also result in a net DC current, i.e. $\langle j_{ii+1}(t) \rangle_t \neq 0$.

368 In the following the difference between the exact time propagation defined in Section 2.1
 369 and the linear and quadratic response theory will be examined.

370 **4.1 Charge dynamics: linear and quadratic regime**

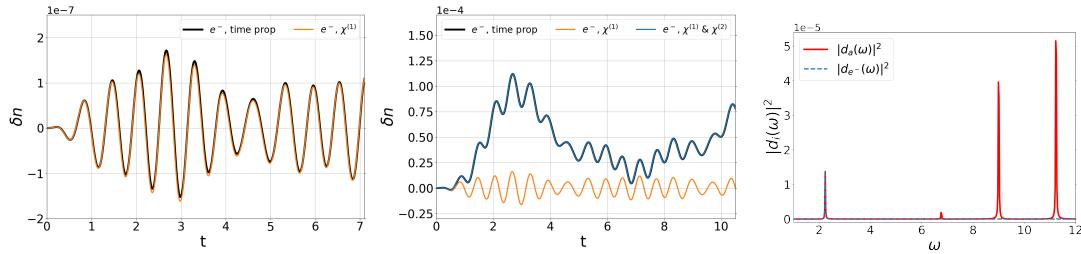


Figure 3: Left and Middle: **Density of electron transport layers induced by an oscillating perturbation (for hole transport layer, the density is identical with a minus sign)** for a system of two valence and two conduction sites. Orange lines indicate the linear response contribution. Blue lines - combined linear and quadratic contributions and black lines - exact dynamics. Left: $e(t) = 10^{-4} t_h \cdot \theta(t) \sin(\omega t)$ Middle: $e(t) = 10^{-2} t_h \cdot \theta(t) \sin(\omega t)$. Right: delta-kick perturbation $e(t) = \delta(t)$. Fourier transform of the dipole moment on the absorption site $c0$ (red) and on the electron transport layer $c1$ (blue).

371 Introducing the hopping $t_a \neq 0$ between the valence and conduction sites, e.g. between
 372 site $v0$ and $c0$, the ground state will have contributions from the conduction sites ci . Con-
 373 sequently, the matrix element entering the linear response, $n_{0i}^i \equiv \langle \Psi_0 | \hat{c}_i^\dagger \hat{c}_i | \Psi_1 \rangle \neq 0$, will be
 374 non-zero (right panel of Fig. 2). This results in a non-vanishing linear response contribution,
 375 as illustrated by the orange curves in Fig. 3 (left and middle panels). ~~Here and throughout~~
 376 ~~the manuscript, the solid lines indicate the charge at electron transport layer and the dashed~~
 377 ~~line the charge at hole transport layer. The density of the hole transport layer is identical to~~
 378 ~~the electron transport layer with a minus sign~~

379 In this subsection the perturbation frequency is $\omega = 10t_h$, which is not resonant. For small
 380 enough perturbation $I \leq 10^{-4} t_h$ (Fig. 3 left), the charge dynamics is predominantly governed
 381 by the linear response regime. The linear response (orange lines) closely matches the exact
 382 dynamics (black line) over extended simulation periods. Only small differences between the
 383 linear response and exact dynamics are observed.

384 For perturbations strong enough to separate electrons and holes, $I > 10^{-4} t_h$ (see Fig. 3
 385 middle panel), the linear response induced charge (orange lines) oscillates around zero, as
 386 indicated by the time dependency part of Eq. 10. The separation of charge occurs, when the
 387 induced density is positive on the electron transport layer (solid lines) and negative on the hole
 388 transport layer (dashed lines). The linear response alone always oscillates between positive
 389 and negative values and fails to separate charges for any perturbation strength. Including the
 390 second order response (blue lines) function $\chi^{(2)}$ recovers completely the charge dynamics.

391 For a non-resonant perturbation frequency, no deviation from exact dynamics is observed
 392 for any simulation time, which can be explained by the oscillating nature of the response. In
 393 fact, according to Eq. 15, the time dependency is governed by periodic trigonometric func-
 394 tions. Thus, in the finite system, if the response dynamics is accurate for the largest period of
 395 oscillations $t > \frac{2\pi}{\Delta_{JI} \pm \omega}$ (or for the smallest $\Delta_{JI} \pm \omega$ excluding resonance), it remains accurate
 396 for any simulation time. As system size increases, the longest oscillation periods grow, mak-
 397 ing it increasingly challenging for second-order response to reproduce exact dynamics at long

398 times.

399 Remarkably, we have additionally verified that even up to 20 sites, no deviation is seen
 400 between the linear (left of Fig. 3) or quadratic and linear (middle of Fig. 3) response and exact
 401 time propagation at the most distant sites from the absorber for the considered perturbations.
 402 This is again explained by the fact that, for the particular localised spatial perturbation the
 403 higher orders do not add new possibilities to transport charge (see analyses in Section 2.3).

404 The right panel of Fig. 3 shows the Fourier transform of the dipole within the absorber
 405 (orange) and in the electron transport layer (blue) for a delta-kick perturbation, applied lo-
 406 cally in the absorber. This perturbation allows us to see the full spectrum of excitations. **The**
 407 **lowest energy peak corresponds to the energy difference between excited states, which cor-**
 408 **responds to the second order contribution.** It illustrates how second-order effects dominate
 409 away from the absorber region. While linear response accurately captures coherent dynamics
 410 at the perturbation site, relevant for optical absorption, second-order contributions become
 411 dominant farther out at electron/hole transport layers, enabling charge transport (see middle
 412 panel of Fig. 3). This aligns with Fig. 1, which shows that second-order matrix elements allow
 413 for charge propagation away from the perturbation.

414 4.2 Current vs. charge dynamics

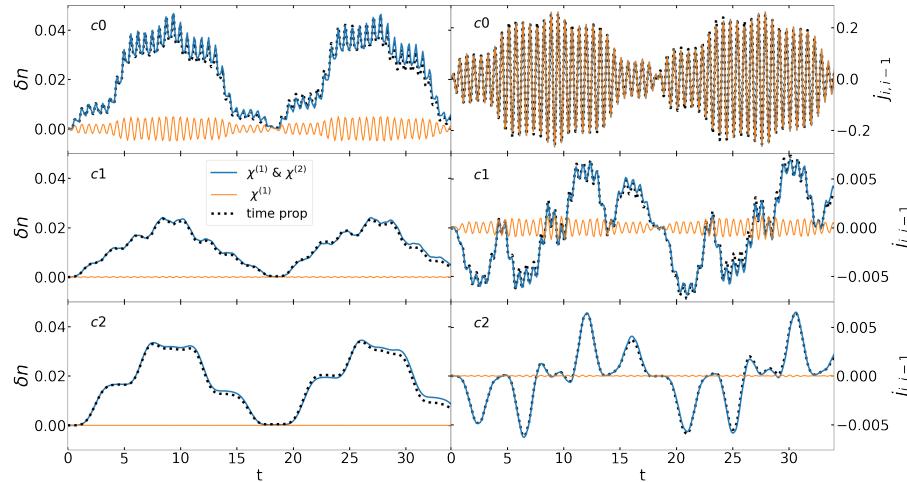


Figure 4: Model with 3 valence and 3 conduction sites with an oscillating external pertur-
 bation $0.01t_h \sin(\omega t)$ for non-resonant ω . Exact time propagation (black) and the response
 theory (blue) and only from the linear response (orange). Left: Occupation of 3 conduction
 sites (top to bottom: c0, c1 and c2). Right: The current between the two sites (v0-c0, c0-c1
 and c1-c2).

415 We will now compare the current density evaluated in linear Eq. 11 and quadratic Eqs. 18-
 416 19 response to an exact time-dependent current density evaluated with Eq. 2. The same
 417 current can be obtained from the continuity equation, $\frac{\partial \rho(\mathbf{r}, t)}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r}, t)$, which is valid
 418 order-by-order.

419 Fig. 4 shows the density (left panels) and current (right panels) for three conduction sites.
 420 The perturbation is oscillating with a non-resonant frequency, the amplitude is such that a
 421 slight deviation between the second order response and time propagation can be seen. The
 422 advantage of the response theory is that it is possible to separate oscillating linear response
 423 (orange lines in Fig. 4) from a less oscillating (with a large period of oscillation) second order.
 424 This can be useful during the analysis and for a potential comparison to experimentally mea-
 425 sured current. In the absorber region c0, where the linear response contribution is similar in

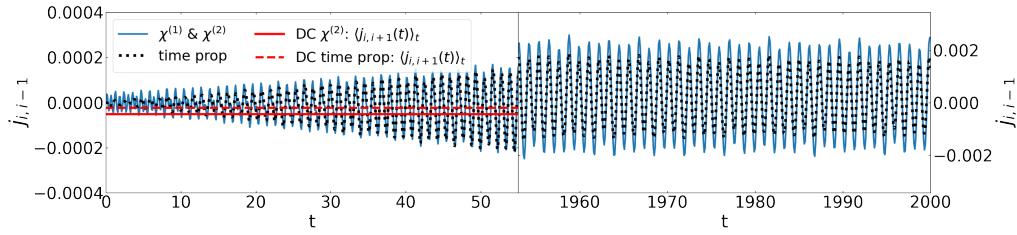


Figure 5: Same model as Fig. 4. Current at resonance frequency at the last site of electron level $c_1 - c_2$ evaluated in response theory (blue) and in exact time propagation (black). Left: beginning of the dynamics, where the time propagation and second order response agree. Right: later part of the dynamics, where the response starts to diverge. Red lines are the average current over the full time interval (DC component) from second order response (solid) and from time dynamics (dashed). Note that the scale is different between the two panels.

426 magnitude to the second-order term, the current, primarily capturing charge oscillations, can
 427 be well approximated by the linear response. This is not true for the density itself, so clearly,
 428 the validity range of the linear response current extends further than that of the linear response
 429 charge density. The current, which is proportional to the time derivative of the charge density,
 430 is more sensitive to the oscillations of the density rather than to its overall shifts. Moreover,
 431 the current operator is more delocalized than the density operator, which also results in an
 432 extended validity of the linear response current. Fig. 4 also demonstrates the conclusions of
 433 section 2.3: for a localised perturbation, in the linear response one can only propagate charge
 434 in the vicinity of the perturbation and close to the ground state. In the second order, where
 435 the overlaps between the excited states are present, charge can be propagated much further.

436 Figure 5 shows the current at resonance in response theory and in exact propagation. The
 437 left panel shows the beginning of the simulation (up to $60t_h$), as in the case of charge dynamics,
 438 the two approaches, exact and response, agree (except some oscillations in the beginning that
 439 are due to the resonance). Even at the end of the simulation the difference between the
 440 response theory current and the exact one is not dramatic (right panel of Fig. 5). However,
 441 the charge dynamics obtained from response theory deviates from the exact propagation and
 442 diverges rapidly (see blue lines in the upper left panel of Fig. 6), leading to an unphysical total
 443 occupation. While the timescale of divergence differs in smaller systems, we have verified that
 444 the conclusion holds for the system considered here. The good behavior of the current can
 445 be seen by computing the average current (red lines of Fig. 5), also being a DC component of
 446 current density or shift current (for this model) can only be obtained at resonance, as can be
 447 seen from Eqs. 18 and 19. Up to $\sim 1000t_h$ two DC components (from second order and from
 448 time propagation) agree, after that the second order DC component starts to diverge from the
 449 exact one, and it will continue to diverge due to the presence of a linear in time term in the
 450 expression Eq. 18.

451 4.3 Second order: limits and analyses

452 Here the limits of quadratic response theory in terms of perturbation frequency and ampli-
 453 tude will be examined. Here and in the next sections only charge density dynamics will
 454 be discussed. First, in Fig. 6 (top left panel), keeping the perturbation amplitude fixed at
 455 $I = 0.1t_h$ we vary the frequency from the near resonant (blue lines) to a non-resonant (orange
 456 line). Out-of-resonance the response aligns with the exact dynamics (green line). Approach-
 457 ing the resonance, the denominator in the second order equations Eqs. 15-17 approaches
 458 zero, making the response theory non-convergent (blue and orange dashed lines). In the
 459 exact time propagation (solid lines) in the resonance ($\Delta_{IJ} = \omega$) the response can be fitted to

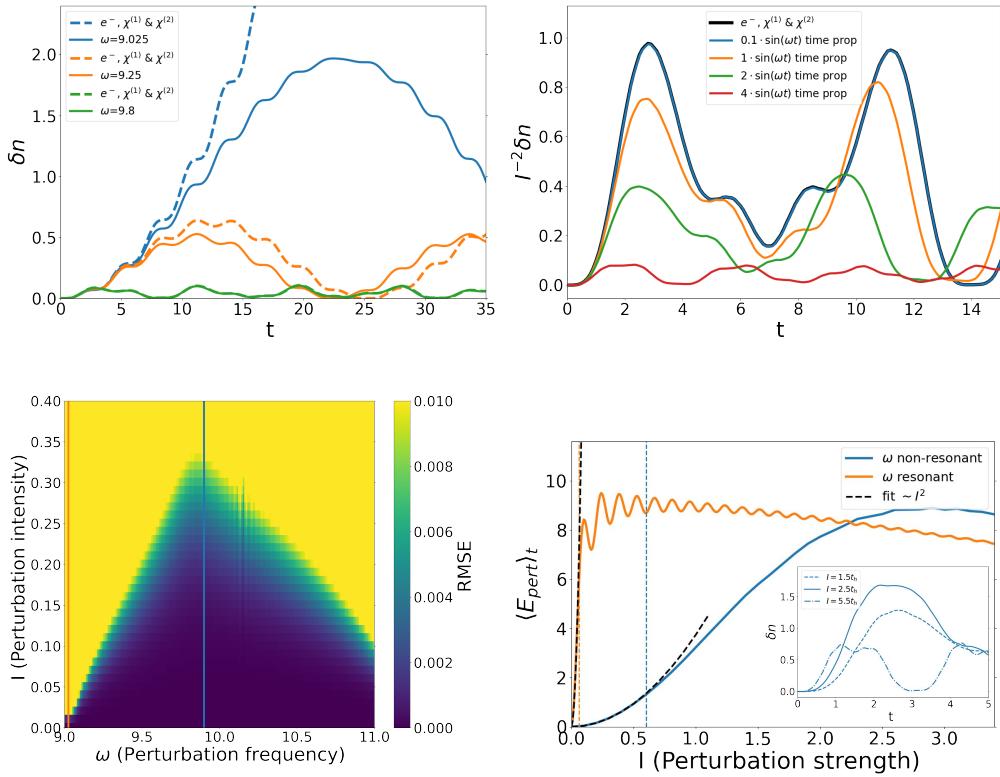


Figure 6: On the top panels we are following occupation of the electron transport layer. The hopping between the conduction and valence sites is $t_a = 0$, which makes the linear response to vanish. The perturbation is $e(t) = I \sin(\omega t)$. Top left: Quadratic response and exact time propagation for different perturbation frequencies ω . Top right: Black solid line result obtained using $\chi^{(2)}$, colored lines correspond to exact time propagation $I^{-2} \cdot n^{RT}(t)$. Bottom left: Root mean squared error map of the induced density in the electron transport layer obtained up to quadratic response as a function of perturbation frequency ω and amplitude I (in the units of t_h). Bottom right: Average energy received by the system over a fixed simulation time as a function of perturbation strength obtained from exact time propagation for resonant (orange) and non-resonant (blue) frequencies. Black dashed lines are quadratic fits. Blue and orange dashed vertical lines correspond to the validity range of the quadratic fit. The inset (obtained with exact time propagation) shows the exact charge density at electron layer for a non-resonant perturbation at three different intensities.

460 $\cos[(\Delta_{IJ} \pm \omega_{eff})t]/(\Delta_{IJ} \pm \omega_{eff})$ with an effective frequency $\omega_{eff} < \omega$. The role of higher
 461 orders is to introduce such more fluctuating terms.

462 Turning to the variations of perturbation amplitude, a fixed off-resonant frequency is con-
 463 sidered. As shown in Fig. 6 (top right panel), the quadratic response remains accurate up
 464 to $I = 0.3t_h$. Beyond this threshold, higher-order effects become visible: the amplitude of
 465 charge oscillations decreases, and additional high-frequency components appear. The bot-
 466 tom left panel of Fig. 6 shows the root mean squared error (RMSE) as a function of external
 467 perturbation amplitude and frequency. Using a threshold RMSE of 0.01, the second-order
 468 response is valid for $I \lesssim 0.01t_h$ near resonance (orange line) and up to $I \sim 0.3t_h$ in the off-
 469 resonant regime (blue line). From the overall trends in the upper panels and in the bottom
 470 left panel of Fig. 6, a convergence parameter for the validity of the response theory becomes
 471 evident: $I/\Delta_{IJ} \pm \omega < 1$ that was already discussed at the end of section 2.2.2. Approaching
 472 the resonance, the valid perturbation amplitude is decreasing proportionally. This condition
 473 delineates the regime where the perturbative expansion converges and second-order theory is
 474 quantitatively reliable.

475 Next, we investigate the amount of energy transferred to the system for a fixed period of
 476 time as a function of the perturbation amplitude, defined as:

$$\langle E_{pert} \rangle_T = \frac{1}{T} \int_T dt \langle \Psi(t) | \hat{H} | \Psi(t) \rangle - E_0. \quad (24)$$

477 The bottom right panel of Fig. 6 illustrates this quantity, computed in exact time propagation,
 478 for a resonant (orange) and non-resonant (blue) frequency. Characteristic energy behaviour
 479 for a linear regime is when the energy delivered to the system by an external field is propor-
 480 tional to the square of its amplitude, $E_{pert} \propto I^2$, [28]. The figure shows that this holds up to
 481 $I \approx 0.6t_h$ for a non-resonant and up to $I \approx 0.1t_h$ for a resonant frequency. Above this val-
 482 ues higher-order effects emerge. These thresholds exceed the intensities where deviations in
 483 second-order charge density from exact dynamics become visually apparent (see Fig. 6, bottom
 484 left; orange for resonant, blue for non-resonant cases). This indicates that the energy trans-
 485 ferred into the system is still within the linear regime, when the deviations in the second order
 486 response appear. The inset of Fig. 6 (bottom right) shows the charge density at electron layer
 487 for a non-resonant perturbation for three intensities, before the energy saturation (dashed),
 488 at the maximum of energy (solid) and after the maximum (dashed-dotted). The saturation
 489 in energy is reached, when the induced charge density reaches its maximum. Beyond the
 490 saturation, the induced charge density decreases, resulting in the decrease of average energy.

491 4.4 Second order: approximations

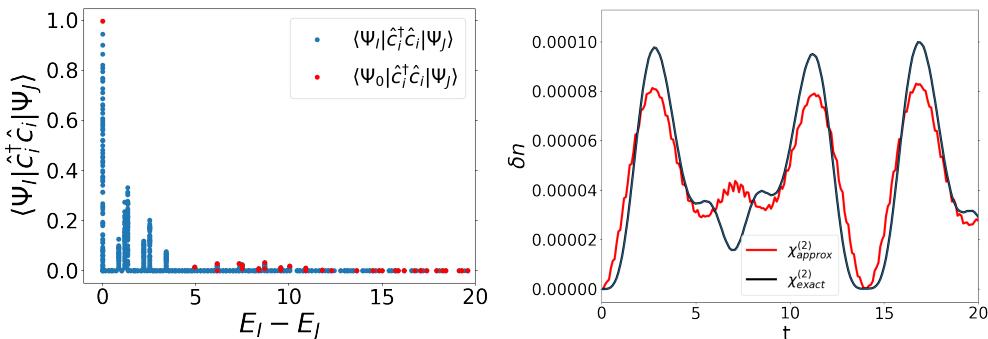


Figure 7: Left: matrix element $\langle \Psi_I | \hat{c}_i^\dagger \hat{c}_i | \Psi_J \rangle$ computed on the last electron site of the system of 4 valence and 4 conduction sites (far from the perturbation) as a function of energy difference $E_J - E_I$. In red only the contributions between the ground and excited states are selected. Right: An approximation to the second order, consisting in keeping only the diagonal elements of the density matrix or, equivalently, only the first line of Eq. 13.

492 Calculating the second-order response function is computationally demanding, so approx-
 493 imations are necessary. Its structure is analyzed here and feasible approximations are recom-
 494 mended. Firstly, spatial and temporal integrals should be handled in advance, either analyti-
 495 cally for temporal perturbations (as in this work) or numerically for spatial perturbations when
 496 modeling real materials. It will help to avoid the calculation of the entire response function,
 497 limiting it to the elements that couple to the external perturbation.

498 A primary bottleneck in calculating second order response is the summation over excited
 499 states (Eq. 13). Note that here the matrix elements with the ground state (red points in Fig. 7
 500 left) are small compared to the matrix elements between different excited states. The matrix
 501 elements with the ground state are present in the linear response Eq. 8 and in the last term of
 502 the second order Eq. 13 via $O_{0I}(\mathbf{r})$. These linear-response-like terms are then neglected without
 503 any effect on the results. This approximation reduces drastically the amount of computation,

504 now one only needs to compute the wings of the spatial integral with the perturbation \tilde{V}_{0J} .
 505 The matrix elements entering the second term of Eq. 13, $\langle \Psi_I | \hat{c}_i^\dagger \hat{c}_i | \Psi_J \rangle$ tend to vanish for ener-
 506 getically distant states, supporting the introduction of a cutoff (here is at $E_I - E_J \sim 11t$ see
 507 Fig. 7 left). Left panel of Fig. 7 also confirms the importance of the first term in Eq. 13, since
 508 the biggest contribution comes from the diagonal matrix elements.

509 An important approximation is obtained by only keeping the first line in Eq. 13, which
 510 means expanding the time-dependent wave functions on both sides of Eq. 2 only up to the
 511 first order. Only diagonal elements of the density matrix of Eq. 2 are introduced, which should
 512 capture the non-coherent processes and result in charge transport and separation. The quality
 513 of this approximation can be seen in Fig. 7 (right). Indeed, it qualitatively captures the second
 514 order response, this has been verified for a large range of perturbation intensities and frequen-
 515 cies. The CPU time for this approximation scales as the linear response one with system size
 516 (see Appendix B). Moreover, as discussed earlier, all the ingredients can be obtained within
 517 the linear response TDDFT.

518 4.5 Interaction

519 Finally, it is interesting to explore whether the Coulomb interaction changes the validity of
 520 linear and quadratic response. The interaction primarily modifies the eigenenergies, lifting
 521 some degeneracies, but can also modify the eigenfunctions. Onsite interaction can result in
 522 the suppression of the charge dynamics, as it was demonstrated in Ref. [49,50] for the Hubbard
 523 model. It can also create new spatial pathways for charge dynamics in molecules, which was
 524 shown in Ref. [51] by *ab-initio* simulations.

525 Here, the effect of onsite interaction $+U \sum_i \hat{n}_{i\downarrow} \hat{n}_{i\uparrow}$ for an instantaneous delta-kick pertur-
 526 bation is examined. The spin is introduced, doubling the number of electrons to $N_e = 2(N+1)$.
 527 The response and the exact time propagation are computed from the many-body states. In the
 528 current model, Fig. 8 (upper panel), which shows the electron layer occupation, one can ob-
 529 serve a general reduction [by an order of magnitude](#) of the charge density flow by increasing the
 530 interaction, as in Ref. [49]. In general, the interaction [can change the eigenvalues, which may](#)
 531 [bring the system in or out of resonance with an oscillating perturbation of a given frequency.](#)
 532 [This would drastically change the charge separation.](#)

533 One of the effects of the interaction is altering the ground state, strong interaction pre-
 534 vents the double occupancy of sites (blue, $U = 5$, vs purple, $U = 50$, bars, lower right panel of
 535 Fig. 8), which modifies the validity range of response theory. Based on the overlap interpreta-
 536 tion (Fig. 1), a more extended ground state results in a more accurate linear response. Indeed,
 537 in the strong-interaction regime (right panel), where the ground state is delocalized over all
 538 sites, linear response dominates. In contrast, for weak interactions, the ground state remains
 539 localized on valence sites, enhancing the second-order response in the transport layer. [How-
 540 ever, as the linear response stays oscillating around zero, the charge separation is suppressed
 541 with the onsite interaction \$U\$.](#)

542 To assess the role of Coulomb repulsion beyond the on-site term, we include a nearest-
 543 neighbour interaction $+V \sum_i \hat{n}_i \hat{n}_{i+1}$ with $\hat{n}_i = \hat{n}_{i\downarrow} + \hat{n}_{i\uparrow}$, at fixed $U = 5$. In the extended Hub-
 544 bard model this term mimics the shortest-range component of long-range interactions [52] and
 545 has been argued to be essential for excitonic effects [50, 53]. The lower-left panel of Fig. 8
 546 shows how varying V affects the charge dynamics at $U = 5$: for moderate $V < U$ the dynamics
 547 is enhanced relative to the $V = 0$ case (compare green line of lower left panel to blue line of up-
 548 per left panel of Fig. 8), whereas for larger V it is suppressed, in agreement with Ref. [50]. Our
 549 additional observation is that the second-order response decreases as V increases (compare
 550 dotted, only linear response, and solid lines in the lower-left panel of Fig. 8). The underlying
 551 mechanism differs from the purely on-site case: already in the ground state the local occu-
 552 pation pattern shifts weight toward the higher-energy sites $c1$ (red bars, lower-right panel of

553 Fig. 8), favouring bound electron-hole configurations and thus blocking spatial charge sepa-
 554 ration. This is coherent with the conclusion of Ref. [50] about the increased excitonic effects
 555 for increased V . A full analysis of interaction-driven excitonic effects on charge dynamics and
 556 separation is beyond the scope of this work.

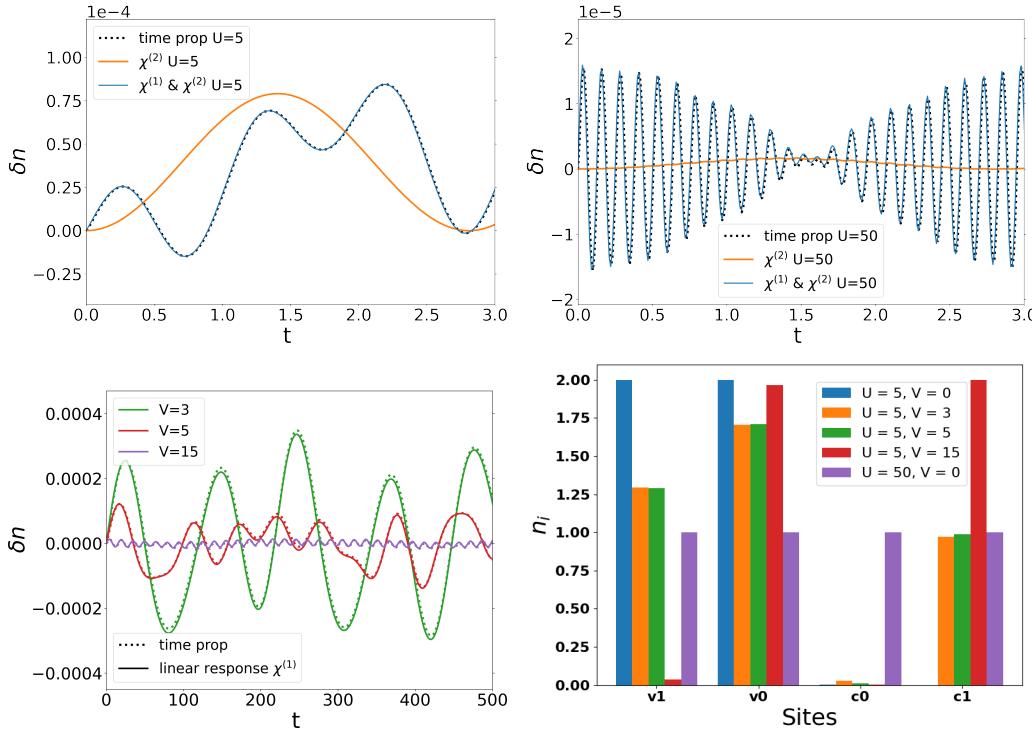


Figure 8: Effect of the interaction on charge dynamics. The perturbation is $e(t) = 0.1t_h \cdot \delta(t)$.
 Upper left: onsite moderate interaction $U = 5$. Upper right: onsite strong interaction $U = 50$.
 Lower left: onsite interaction $U = 5$ and varying nearest-neighbour interaction V . Lower
 right: site occupations $n_i = \langle \hat{n}_{i\uparrow} + \hat{n}_{i\downarrow} \rangle$ of the ground state for varying onsite U and nearest-
 neighbour V interactions

557 5 Conclusions

558 Time propagation of a wave function for a system under perturbation allows one to access
 559 the time evolution of all observables. In this article we have focused on the charge dynam-
 560 ics, charge separation, current and energy transfer under [various weak perturbations](#), perti-
 561 nent to optoelectronic and photovoltaic applications. We have explored and benchmarked a
 562 response theory framework to compute these quantities. Using a numerically solvable site
 563 model, we demonstrated that linear response accurately describes coherent charge oscilla-
 564 tions under weak perturbations but fails to capture any net charge separation. In contrast,
 565 quadratic response theory includes off-diagonal density matrix contributions that enable asym-
 566 metric charge propagation and net transport, providing excellent agreement with exact time
 567 propagation over a broad range of conditions.

568 We identified a clear criterion for the validity of second-order response: the amplitude-to-
 569 resonance ratio $I/(\Delta_{IJ} \pm \omega) < 1$. This sets the boundary where perturbative approaches remain
 570 reliable, with broader validity in non-resonant regimes. We introduced practical approxima-
 571 tion to the second order response, that only requires quantities that can be obtained within
 572 the linear response TDDFT, which drastically reduces computational demands with minimal

573 loss of accuracy. Second-order response also correctly captures DC components in the current
 574 (shift currents), absent in linear response, and remains robust even as density dynamics begin
 575 to diverge. Notably, we find that strong on-site [and nearest-neighbour](#) interactions extend the
 576 range of linear response applicability by delocalizing the ground state.

577 These results highlight the predictive power of the response theory up to the second order.
 578 They also show that with respect to long-time propagation the response theory may be more
 579 efficient with respect to full time propagation. While its formal scaling is worse - due to the
 580 double sum over states - response functions need only be computed once and allow access to
 581 all time scales and perturbations. In practice, symmetries, cutoffs, and proposed controlled
 582 approximations significantly reduce computational cost. We expect the response theory to
 583 hold for weak perturbations when exploring realistic systems with interfaces and interactions
 584 such as electron-hole or electron-phonon coupling.

585 This work highlights the possibility of response theory for accurately simulating spatially
 586 resolved charge dynamics in systems influenced by varying external perturbations, making it
 587 a valuable tool for studying fundamental questions and for contributing to the technological
 588 advancement in photovoltaic and optoelectronic applications.

589 Acknowledgements

590 We thank Matteo Gatti and Valérie Veniard for useful discussions.

591 **Author contributions** L.L., L.R., and V.G. conceived the project and explored the theoretical
 592 framework. L.L. and V.G. implemented the simulation code. V.G. carried out the simulations
 593 and data analysis. All authors discussed the results and contributed to writing the manuscript.

594 **Funding information** This work benefited from the support of EDF in the framework of
 595 the research and teaching Chair “Sustainable energies” at Ecole Polytechnique (V.G.) and
 596 from the European Union’s Horizon 2020 research and innovation programm under the Marie
 597 Skłodowska-Curie grant agreement No. 101030447 (L.L.).

598 A Changing perturbation extension

599 Figure 9 (left panel) shows the effect of a delocalized external perturbation
 600 $\hat{V}_{ext}^{ij}(t) = I\delta_{ji+1}(\hat{c}_i^\dagger \hat{c}_i + \hat{c}_i^\dagger \hat{c}_{i+1} + \hat{c}_{i+1}^\dagger \hat{c}_i)e(t)$ on the dynamics of an occupation at electron layer
 601 c_1 under strong driving ($I = 0.3t_h$), where second order start to break down. For a local-
 602 ized perturbation (orange), only the absorber region is perturbed, as throughout this work.
 603 In contrast, a fully delocalized perturbation (green) acts on all sites. The difference arises
 604 from additional matrix elements \tilde{V}_{IJ} in the third-order response (see Eq. 22) and is a purely
 605 third-order effect, becoming relevant at longer propagation time. Right panel of Fig. 9 shows
 606 that the response theory (blue line) cannot capture the differences between the delocalized
 607 perturbation and localized one obtained in exact time propagation (black line). This means
 608 that the delocalized perturbation can shift the regime, where the second order is valid into
 609 weaker perturbations.

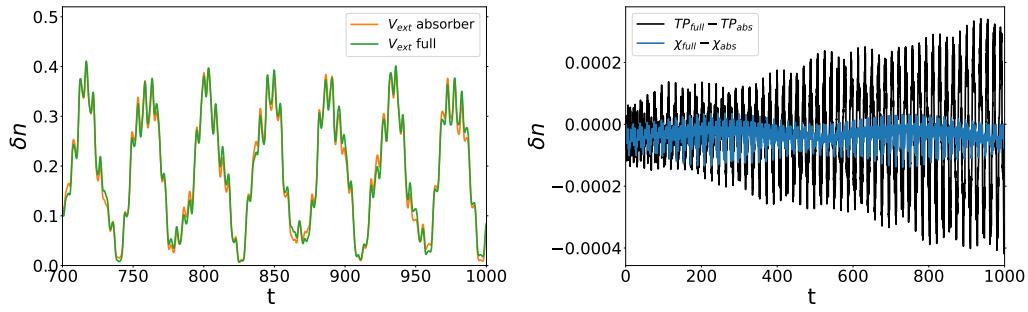


Figure 9: The effect of a localised (on absorber) and delocalised perturbation on charge dynamics of the occupation of the last site on the electron transport layer. The perturbation amplitude is $0.3t_h$, where the third order starts to become important. Left: computed in exact time propagation (TP) under extended perturbation (green) and localized on the absorber (orange). Right: differences between TP under extended and localized perturbations (black) and the same difference in the response theory (blue).

610 B Scaling with system size

611 Figure 10 shows CPU time scaling with system size. For exact time propagation (blue), each
 612 time step involves a full diagonalization, scaling as $\mathcal{O}(N^3)$ with Hilbert space size N . Linear
 613 response (orange) requires matrix-vector products and a single sum over states, also scaling
 614 as $\mathcal{O}(N^3)$. Quadratic response (green) involves a double sum, leading to $\mathcal{O}(N^4)$ scaling. The
 615 approximate second-order scheme from Sec. 4.4 reduces this to $\mathcal{O}(N^3)$ (red). The the full
 616 second-order computation time can be reduced in practice by considering cutoffs in the sum-
 617 mations and using symmetries. Moreover, the response functions are naturally parallelizable.
 618 Instead, time propagation cost is rather a lower limit, since it requires a certain number of
 619 time steps and a time-step size convergence study. Importantly, unlike time propagation, once
 620 computed, response functions give access to all time scales and allow changes in external
 621 perturbations without redoing the full calculation.

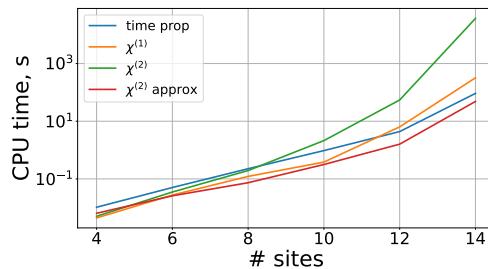


Figure 10: CPU time to compute one step of exact dynamics (blue), full scaling of first ($\chi^{(1)}$) (orange), second ($\chi^{(2)}$) (green) order response and an approximation to second order response ($\chi^{(2)}$ approx) (red) as a function of number of sites. Each calculation is performed on 1 CPU core.

622 References

623 [1] C. A. Ullrich, *Time-Dependent Density-Functional Theory: Concepts and Applications*, Ox-
 624 ford University Press, Oxford, ISBN 9780199563029 (2012).

625 [2] M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross and A. Rubio, eds.,

626 *Fundamentals of Time-Dependent Density Functional Theory*, vol. 837 of *Lecture Notes in*
627 *Physics*, Springer, Berlin, Heidelberg (2012).

628 [3] G. Stefanucci and R. Van Leeuwen, *Nonequilibrium many-body theory of quantum*
629 *systems: A modern introduction*, vol. 9780521766, ISBN 9781139023979,
630 doi:[10.1017/CBO9781139023979](https://doi.org/10.1017/CBO9781139023979) (2010).

631 [4] J. I. Fuks, P. Elliott, A. Rubio and N. T. Maitra, *Dynamics of charge-transfer processes with*
632 *time-dependent density functional theory*, *Journal of Physical Chemistry Letters* **4**(5), 735
633 (2013), doi:[10.1021/jz302099f](https://doi.org/10.1021/jz302099f).

634 [5] P. Schaffhauser and S. Kümmel, *Using time-dependent density functional theory in*
635 *real time for calculating electronic transport*, *Physical Review B* **93**(3), 35115 (2016),
636 doi:[10.1103/PhysRevB.93.035115](https://doi.org/10.1103/PhysRevB.93.035115).

637 [6] N. T. Maitra, *Charge transfer in time-dependent density functional theory*, *Journal of*
638 *Physics Condensed Matter* **29**(42), 423001 (2017), doi:[10.1088/1361-648X/aa836e](https://doi.org/10.1088/1361-648X/aa836e),
639 [1707.08054](https://doi.org/10.1088/1361-648X/aa836e).

640 [7] L. Lacombe and N. T. Maitra, *Non-adiabatic approximations in time-dependent density*
641 *functional theory: progress and prospects*, *npj Computational Materials* **9**(1) (2023),
642 doi:[10.1038/s41524-023-01061-0](https://doi.org/10.1038/s41524-023-01061-0), [2302.11366](https://doi.org/10.1038/s41524-023-01061-0).

643 [8] S. Kümmel, *Charge-transfer excitations: A challenge for time-dependent density functional*
644 *theory that has been met*, *Advanced Energy Materials* **7**(16), 1700440 (2017),
645 doi:<https://doi.org/10.1002/aenm.201700440>, <https://onlinelibrary.wiley.com/doi/10.1002/aenm.201700440>.

647 [9] D. B. Dar, A. Baranova and N. T. Maitra, *Reformulation of Time-Dependent Density Func-*
648 *tional Theory for Nonperturbative Dynamics: The Rabi Oscillation Problem Resolved*, *Phys-*
649 *ical Review Letters* **133** (2024), doi:[10.1103/PhysRevLett.133.096401](https://doi.org/10.1103/PhysRevLett.133.096401).

650 [10] P. Lipavský, V. Špička and B. Velický, *Generalized kadanoff-baym ansatz for deriving quan-*
651 *tum transport equations*, *Phys. Rev. B* **34**, 6933 (1986), doi:[10.1103/PhysRevB.34.6933](https://doi.org/10.1103/PhysRevB.34.6933).

652 [11] Y. Pavlyukh, E. Perfetto, D. Karlsson, R. van Leeuwen and G. Stefanucci, *Time-*
653 *linear scaling nonequilibrium green's function methods for real-time simulations of in-*
654 *teracting electrons and bosons. i. formalism*, *Phys. Rev. B* **105**, 125134 (2022),
655 doi:[10.1103/PhysRevB.105.125134](https://doi.org/10.1103/PhysRevB.105.125134).

656 [12] N. E. Dahlen and R. van Leeuwen, *Solving the kadanoff-baym equations for inhomoge-*
657 *neous systems: Application to atoms and molecules*, *Phys. Rev. Lett.* **98**, 153004 (2007),
658 doi:[10.1103/PhysRevLett.98.153004](https://doi.org/10.1103/PhysRevLett.98.153004).

659 [13] C. Attaccalite, M. Grüning and A. Marini, *Real-time approach to the optical properties of*
660 *solids and nanostructures: Time-dependent Bethe-Salpeter equation*, *PHYSICAL REVIEW*
661 *B* **84**, 245110 (2011), doi:[10.1103/PhysRevB.84.245110](https://doi.org/10.1103/PhysRevB.84.245110).

662 [14] S. Latini, E. Perfetto, A.-M. Uimonen, R. van Leeuwen and G. Stefanucci, *Charge dynamics*
663 *in molecular junctions: Nonequilibrium green's function approach made fast*, *Phys. Rev. B*
664 **89**, 075306 (2014), doi:[10.1103/PhysRevB.89.075306](https://doi.org/10.1103/PhysRevB.89.075306).

665 [15] P. Miguel, M. C. De Melo and A. Marini, *Unified theory of quantized electrons,*
666 *phonons, and photons out of equilibrium: A simplified ab initio approach based on*
667 *the generalized Baym-Kadanoff ansatz*, *PHYSICAL REVIEW B* **93**, 155102 (2016),
668 doi:[10.1103/PhysRevB.93.155102](https://doi.org/10.1103/PhysRevB.93.155102).

669 [16] Y. Pavlyukh, E. Perfetto and G. Stefanucci, *Photoinduced dynamics of organic*
670 *molecules using nonequilibrium Green's functions with second-Born, GW, T-matrix,*
671 *and three-particle correlations PHOTOINDUCED DYNAMICS of ORGANIC MOLECULES*
672 *... PAVLYUKH, PERFETTO, and STEFANUCCI, Physical Review B* **104**(3) (2021),
673 doi:[10.1103/PhysRevB.104.035124](https://doi.org/10.1103/PhysRevB.104.035124).

674 [17] Y. Pavlyukh, E. Perfetto, D. Karlsson, R. Van Leeuwen and G. Stefanucci, *Time-linear scaling*
675 *nonequilibrium Green's function method for real-time simulations of interacting elec-*
676 *trons and bosons. II. Dynamics of polarons and doublons,* Physical Review B **105**(12), 1
677 (2022), doi:[10.1103/PhysRevB.105.125135](https://doi.org/10.1103/PhysRevB.105.125135).

678 [18] R. Tuovinen, Y. Pavlyukh, E. Perfetto and G. Stefanucci, *Time-Linear Quantum Transport*
679 *Simulations with Correlated Nonequilibrium Green's Functions,* Physical Review Letters
680 **130**(24), 246301 (2023), doi:[10.1103/PhysRevLett.130.246301](https://doi.org/10.1103/PhysRevLett.130.246301), 2211.15635.

681 [19] E. Perfetto and G. Stefanucci, *Real-time gw-ehrenfest-fan-migdal method*
682 *for nonequilibrium 2d materials,* Nano Letters **23**(15), 7029 (2023),
683 doi:[10.1021/acs.nanolett.3c01772](https://doi.org/10.1021/acs.nanolett.3c01772), PMID: 37493350, <https://doi.org/10.1021/acs.nanolett.3c01772>.

685 [20] D. Sangalli, *Excitons and carriers in transient absorption and time-resolved arpes*
686 *spectroscopy: An ab initio approach,* Phys. Rev. Mater. **5**, 083803 (2021),
687 doi:[10.1103/PhysRevMaterials.5.083803](https://doi.org/10.1103/PhysRevMaterials.5.083803).

688 [21] Y. Pavlyukh, *Nonequilibrium dynamics of the hubbard dimer,* physica status solidi (b)
689 **261**(9), 2300510 (2024), doi:<https://doi.org/10.1002/pssb.202300510>,
690 <https://onlinelibrary-wiley-com.inc.bib.cnrs.fr/doi/pdf/10.1002/pssb.202300510>.

691 [22] G. Stefanucci and E. Perfetto, *Excitonic Bloch equations from first principles,* SciPost Phys.
692 **18**, 009 (2025), doi:[10.21468/SciPostPhys.18.1.009](https://doi.org/10.21468/SciPostPhys.18.1.009).

693 [23] *The 2025 roadmap to ultrafast dynamics: Frontiers of theoretical and computational mod-*
694 *elling* (2025), [2501.06752](https://doi.org/10.4236/ojs.20250106752).

695 [24] C. C. Reeves, G. Harsha, A. Shee, Y. Zhu, T. Blommel, C. Yang, K. B. Whaley,
696 D. Zgid and V. c. v. Vlček, *Performance of wave function and green's function meth-*
697 *ods for non-equilibrium many-body dynamics,* Phys. Rev. Res. **7**, 023002 (2025),
698 doi:[10.1103/PhysRevResearch.7.023002](https://doi.org/10.1103/PhysRevResearch.7.023002).

699 [25] R. Kubo, *Statistical-mechanical theory of irreversible processes. i. general theory and simple*
700 *applications to magnetic and conduction problems,* Journal of the Physical Society of Japan
701 **12**(6), 570 (1957), doi:[10.1143/JPSJ.12.570](https://doi.org/10.1143/JPSJ.12.570), <https://doi.org/10.1143/JPSJ.12.570>.

702 [26] R. W. Boyd, *Nonlinear Optics,* Academic Press, Cambridge, MA, 4th edn., ISBN
703 9780128110027 (2020).

704 [27] G. Onida, L. Reining and A. Rubio, *Electronic excitations: density-functional versus many-*
705 *body green's-function approaches,* Rev. Mod. Phys. **74**, 601 (2002).

706 [28] H. Hora, Y. R. Shen, *The Principles of Nonlinear Optics,* John Wiley; Sons, New York, 1984,
707 576 pages., vol. 4, doi:[10.1017/S0263034600001889](https://doi.org/10.1017/S0263034600001889) (1986).

708 [29] L. Prussel and V. Véniard, *Linear electro-optic effect in semiconductors: Ab initio de-*
709 *scription of the electronic contribution,* Physical Review B **97**(20), 205201 (2018),
710 doi:[10.1103/PhysRevB.97.205201](https://doi.org/10.1103/PhysRevB.97.205201).

711 [30] M. Cheng, Z. Z. Zhu and G. Y. Guo, *Strong bulk photovoltaic effect and second-harmonic*
712 *generation in two-dimensional selenium and tellurium*, Physical Review B **103**(24), 1
713 (2021), doi:[10.1103/PhysRevB.103.245415](https://doi.org/10.1103/PhysRevB.103.245415), 2012.01124.

714 [31] E. Luppi, H. Hübener and V. Véniard, *Communications: Ab initio second-order nonlinear*
715 *optics in solids*, Journal of Chemical Physics **132**(24) (2010), doi:[10.1063/1.3457671](https://doi.org/10.1063/1.3457671).

716 [32] E. Luppi, H. Hübener and V. Véniard, *Ab initio second-order nonlinear optics in solids:*
717 *Second-harmonic generation spectroscopy from time-dependent density-functional theory*,
718 Physical Review B - Condensed Matter and Materials Physics **82**(23), 235201 (2010),
719 doi:[10.1103/PhysRevB.82.235201](https://doi.org/10.1103/PhysRevB.82.235201).

720 [33] H. Hübener, E. Luppi and V. Véniard, *Ab initio calculation of second harmonic gen-*
721 *eration in solids*, Physica Status Solidi (B) Basic Research **247**(8), 1984 (2010),
722 doi:[10.1002/PSSB.200983954](https://doi.org/10.1002/PSSB.200983954).

723 [34] C. Attaccalite and M. Grüning, *Nonlinear optics from an ab initio approach by means*
724 *of the dynamical berry phase: Application to second- and third-harmonic generation in*
725 *semiconductors*, Phys. Rev. B **88**, 235113 (2013), doi:[10.1103/PhysRevB.88.235113](https://doi.org/10.1103/PhysRevB.88.235113).

726 [35] H. Hübener, *Second-order response Bethe-Salpeter equation*, PHYSICAL REVIEW A **83**,
727 62122 (2011), doi:[10.1103/PhysRevA.83.062122](https://doi.org/10.1103/PhysRevA.83.062122).

728 [36] A. Riefer and W. G. Schmidt, *Solving the bethe-salpeter equation for the second-*
729 *harmonic generation in zn chalcogenides*, Phys. Rev. B **96**, 235206 (2017),
730 doi:[10.1103/PhysRevB.96.235206](https://doi.org/10.1103/PhysRevB.96.235206).

731 [37] T. Baumgratz, M. Cramer and M. B. Plenio, *Quantifying coherence*, Physical Review
732 Letters **113**(14) (2014), doi:[10.1103/PhysRevLett.113.140401](https://doi.org/10.1103/PhysRevLett.113.140401), 1311.0275.

733 [38] A. L. Fetter and J. D. Walecka, *Quantum Theory of Many-Particle Systems*, McGraw-Hill,
734 New York (1971).

735 [39] P Cudazzo and L. Reining, *Correlation satellites in optical and loss spectra*, Physical Review
736 Research **2**(1) (2020), doi:[10.1103/PhysRevResearch.2.012032](https://doi.org/10.1103/PhysRevResearch.2.012032).

737 [40] P Cudazzo, *First-principles description of the exciton-phonon interaction: A cumulant ap-*
738 *proach*, Physical Review B **102**(4), 1 (2020), doi:[10.1103/PhysRevB.102.045136](https://doi.org/10.1103/PhysRevB.102.045136).

739 [41] E. Perfetto, Y. Pavlyukh and G. Stefanucci, *Real-time gw: Toward an ab initio description*
740 *of the ultrafast carrier and exciton dynamics in two-dimensional materials*, Phys. Rev. Lett.
741 **128**, 016801 (2022), doi:[10.1103/PhysRevLett.128.016801](https://doi.org/10.1103/PhysRevLett.128.016801).

742 [42] F. Furche and R. Ahlrichs, *Adiabatic time-dependent density functional methods*
743 *for excited state properties*, The Journal of Chemical Physics **117**(16), 7433
744 (2002), doi:[10.1063/1.1508368](https://doi.org/10.1063/1.1508368), https://pubs.aip.org/aip/jcp/article-pdf/117/16/7433/19317804/7433_1_online.pdf.

745 [43] E. I. Sánchez-Flores, R. Chávez-Calvillo, T. A. Keith, G. Cuevas, T. Rocha-Rinza
746 and F. Cortés-Guzmán, *Properties of atoms in electronically excited molecules within*
747 *the formalism of tddft*, Journal of Computational Chemistry **35**(10), 820 (2014),
748 doi:<https://doi.org/10.1002/jcc.23559>, <https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23559>.

749 [44] J. E. Sipe and A. I. Shkrebtii, *Second-order optical response in semiconductors*, Physical
750 Review B **61**, 5337 (2000), doi:[10.1103/PhysRevB.61.5337](https://doi.org/10.1103/PhysRevB.61.5337).

753 [45] S. M. Young and A. M. Rappe, *First-principles calculation of the bulk photo-*
754 *voltaic effect in bismuth ferrite*, *Physical Review Letters* **109**(11), 116601 (2012),
755 doi:[10.1103/PhysRevLett.109.116601](https://doi.org/10.1103/PhysRevLett.109.116601).

756 [46] ASTM International, *Standard tables for reference solar spectral irradiances: Direct normal*
757 *and hemispherical on 37° tilted surface*, <https://www.astm.org/g0173-03r20.html>, ASTM
758 G173-03(2020), West Conshohocken, PA (2020).

759 [47] Y. Zhang, R. Mondaini and R. T. Scalettar, *Photoinduced enhancement of super-*
760 *conductivity in the plaquette hubbard model*, *Phys. Rev. B* **107**, 064309 (2023),
761 doi:[10.1103/PhysRevB.107.064309](https://doi.org/10.1103/PhysRevB.107.064309).

762 [48] Y. Wang, M. Claassen, B. Moritz and T. P. Devereaux, *Producing coherent excita-*
763 *tions in pumped mott antiferromagnetic insulators*, *Phys. Rev. B* **96**, 235142 (2017),
764 doi:[10.1103/PhysRevB.96.235142](https://doi.org/10.1103/PhysRevB.96.235142).

765 [49] R. Steinigeweg, F. Jin, H. De Raedt, K. Michielsen and J. Gemmer, *Charge dif-*
766 *fusion in the one-dimensional hubbard model*, *Phys. Rev. E* **96**, 020105 (2017),
767 doi:[10.1103/PhysRevE.96.020105](https://doi.org/10.1103/PhysRevE.96.020105).

768 [50] K. A. Al-Hassanieh, F. A. Reboreda, A. E. Feiguin, I. González and E. Dagotto, *Excitons*
769 *in the one-dimensional hubbard model: A real-time study*, *Phys. Rev. Lett.* **100**, 166403
770 (2008), doi:[10.1103/PhysRevLett.100.166403](https://doi.org/10.1103/PhysRevLett.100.166403).

771 [51] V. Despré and A. I. Kuleff, *Correlation-driven charge migration as an initial*
772 *step of the dynamics in correlation bands*, *Phys. Rev. A* **106**, L021501 (2022),
773 doi:[10.1103/PhysRevA.106.L021501](https://doi.org/10.1103/PhysRevA.106.L021501).

774 [52] F. Gebhard, K. Bauerbach and O. Legeza, *Screening in hubbard models with long-range*
775 *interactions*, *Phys. Rev. B* **111**, 205146 (2025), doi:[10.1103/PhysRevB.111.205146](https://doi.org/10.1103/PhysRevB.111.205146).

776 [53] E. Jeckelmann, *Optical excitations in a one-dimensional mott insulator*, *Phys. Rev. B* **67**,
777 075106 (2003), doi:[10.1103/PhysRevB.67.075106](https://doi.org/10.1103/PhysRevB.67.075106).