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Abstract

This study applies response theory to investigate electron charge dynamics, with a par-
ticular focus on charge separation. We analytically assess the strengths and limitations
of linear and quadratic response theories in describing charge density and current, il-
lustrated by a model that simulates charge transfer systems. While linear response ac-
curately captures optical properties, the quadratic response contains the minimal ingre-
dients required to describe charge dynamics and separation. Notably, it closely matches
exact time propagation results in some regime that we identify. We propose and test sev-
eral approximations to the quadratic response and explore the influence of higher-order
terms and the effect of on-site and nearest-neighbour interactions U and V.
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1 Introduction23

Accurate modeling of electron charge dynamics is crucial for addressing a wide range of funda-24

mental questions in physics and chemistry. Understanding the mechanisms of charge transfer25

and the separation of electrons and holes is a key challenge. These processes play a pivotal role26

in numerous technological applications, including photovoltaics, photocatalysis, and chemical27

reactions. For example, the efficient generation and transfer of charge carriers directly impacts28

the design and performance of solar cells, while charge separation dynamics are fundamental29

to catalyzing chemical transformations in many photo-activated processes.30

To model these phenomena, various computational approaches have been developed, each31

with its own set of advantages and limitations. Among the most widely used techniques32

are Time-Dependent Density Functional Theory (TDDFT) [1,2] and Non-Equilibrium Green’s33

Functions (NEGF) [3].34

Real-time implementation of TDDFT to describe excited charge dynamics [4–6] is favored35

for its balance of computational efficiency and accuracy. However, it still struggles with in-36

corporating many-body effects, since the exact exchange-correlation (xc) functional is un-37

known [7], and it is still computationally challenging to access long time scales. Current38

approximations to the xc functional cannot accurately describe the charge transfer, although a39

partial description of charge transfer is possible in generalized Kohn-Sham, for example using40

hybrid functionals [6, 8]. There has been a recent progress, with a reformulation of TDDFT41

that uses response quantities for real time propagation [9].42

Ab-initio calculations using NEGF are possible under the Generalised Kadanoff-Baym An-43

zatz [10]. This robust approximation offers a rigorous treatment of electron-electron and44

electron-phonon interactions at non-equilibrium conditions. Although it can scale linearly45

with propagation time [11], it remains computationally demanding and it is limited to short46

time scales, small systems, or parameterized model Hamiltonians [12–24].47

A central challenge in modeling charge dynamics is the development of theoretical frame-48

works that remain accurate across time scales, perturbation strengths, and interaction regimes.49

This work explores a general response theory approach, including both linear [25] and quadratic50

[26] formulations, to compute time-dependent observables. Linear response is widely used51

for calculating spectral properties such as absorption and electron energy loss [27], while52

quadratic response captures nonlinear phenomena like second-harmonic generation [26,28].53

Quadratic response also enables the study of nonlinear effects such as the electro-optic ef-54

fect [29] and the shift current responsible for the bulk photovoltaic effect [30]. However they55

are rarely used to describe charge dynamics.56

In practice, first- and second-order response functions are often computed within the57

independent-particle approximation, sometimes accounting for local field effects [31–34], and58

extended to include excitonic effects using the Bethe–Salpeter equation [13,35,36].59

However, while response theory allows systematic inclusion of many-body effects and in60

principle enables access to very long simulation times, it remains perturbative and is valid near61

equilibrium. The goal of this work is to identify the regimes where linear and second-order62
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responses yield reliable results, both on the basis of general arguments and considering our63

particular case of charge separation in a small model.64

This article will explore the following key questions on charge dynamics and response be-65

havior: How does charge dynamics differ in linear and quadratic response? Can charge dynamics66

and charge separation be accurately described within these two frameworks? What is the range of67

validity for linear and quadratic response in relation to perturbation amplitude, time- and length-68

scales? And finally, how does the Coulomb interaction influence these findings?69

The structure of the article is as follows. Section 2.1 introduces the exact time propa-70

gation from the ground state. Linear and quadratic response formalisms for time-dependent71

observables such as charge density and current are presented in Sec. 2.2, with higher-order72

contributions discussed in Sec. 2.3. A minimal site-based model, mimicking an optoelectronic73

device, is introduced in Sec. 3. The results are analyzed in Sec. 4, beginning with the validity of74

linear and quadratic regimes for charge density (Sec. 4.1) and current (Sec. 4.2). Section 4.375

provides an analysis of perturbation amplitude and the crossover from linear to higher-order76

regimes across observables, followed by Section 4.4 with practical approximations to second-77

order response. Section 4.5 demonstrates the effect of an onsite interaction U on the accuracy78

of the response approach. Conclusions are presented in Sec. 5.79

2 Theoretical framework80

2.1 Time propagation81

We consider a system subject to a time-dependent perturbation added to a static Hamiltonian82

Ĥ + V̂ex t(t), where the scalar potential V̂ex t(t) =
∫

drn̂(r, t)Vex t(r, t) couples to the electron83

density operator n̂(r, t). Other types of external perturbations, such as vector electric or mag-84

netic fields, would simply lead to modifications of the perturbation matrix elements (VI J , see85

Eq. 4). A many-body state |Ψ(t)〉 evolves in time as:86

|Ψ(t)〉= T exp

�

−i[Ĥ t +

∫ t

−∞
d t ′V̂ex t(t

′)]

�

|Ψ0〉, (1)

where |Ψ0〉 = |Ψ(t = 0)〉 and the evolution operator is the time-ordered exponential with87

T as the time-ordering operator [3]. We implement this expression by discretizing time88

into small time intervals, d t. At each time step s, the operator Ĥ + V̂ex t(sd t) is diagonal-89

ized, such that Ĥ + V̂ex t(sd t) = U DU−1, where D(s) is the diagonal matrix of eigenvalues90

and U(s) is the matrix of eigenvectors. The exponential operator can then be expressed as91

e−id t(Ĥ+V̂ex t (sd t)) = Ue−id tDU−1. Albeit restricted to small systems, this approach has the ben-92

efit of being easy to implement and the propagation remains unitary. With decreasing d t, the93

result converges to the exact solution.94

The time evolution of observables, specifically, the electron density Ô ≡ n̂(r) and current95

density Ô ≡ ĵ(r), is analyzed in this work. Expanding the time-dependent wave function in the96

eigenstates of the unperturbed Hamiltonian, Ĥ, |Ψ(t)〉=
∑

I e−iEI t cI(t)|ΨI〉, a time-dependent97

observable O(t) can be expressed as98

O(t) = 〈Ψ(t)|Ô|Ψ(t)〉=
∑

I J

ei∆I J t c∗I (t)cJ (t)OI J ≡
∑

I J

ρJ I(t)OI J , (2)

where ∆I J = EI − EJ denotes the energy difference between eigenstates, and OI J = 〈ΨI |Ô|ΨJ 〉99

is the matrix element of the observable, which governs the spatial structure of the charge100

dynamics. The many-body density matrix ρJ I(t) = ei∆I J t c∗I (t)cJ (t) encodes the quantum co-101
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herence of the time-dependent state |Ψ(t)〉 [26, 37]. The time-dependent coefficients cI(t)102

evolve according to103

cI(t) =
∑

J

�

exp

�

−i

∫ t

−∞
V̂ex t(t

′)d t ′
��

I J

cJ (0), (3)

where evolution operator in interaction picture is the time ordered exponential. When the104

initial state is the ground state, cJ (0) = c0(0)δJ0 and the sum over J disappears. The matrix105

elements of V̂ex t(t) ,106

VI J (t) = ei∆I J t

∫

drVex t(r, t)nI J (r) (4)

are non zero only when the state I and state J have a non-vanishing spatial overlap between107

each other and with the perturbation Vex t(r, t).108

2.2 Response theory109

Response theory is obtained by expanding the time-ordered exponential in Eq. 3 in powers of110

the perturbation V̂ex t(t). This expansion breaks unitarity, leading to a violation of wavefunc-111

tion normalization; truncating at n-th order introduces errors of order n+1 in the perturbation112

strength. Applying this expansion to the time-dependent density matrix yields113

ρI J (t) =
∑∞

n=0ρ
(n)
I J (t). The general form of the response theory involves time-ordered nested114

commutators of the perturbation with the unperturbed Hamiltonian,115

ρ
(n)
I J (t) = e−i∆I J t(−i)n

∫ t

−∞
d t1...

∫ tn−1

−∞
d tn[V̂ex t(t1), [V̂ex t(t2)..., [V̂ex t(tn), ρ̂

(0)]...]]I J . (5)

Starting from the ground state, the zeroth order density matrix is ρ(0)I J = δI0δJ0.116

Traditionally, the system’s response to external perturbations is expressed in terms of re-117

sponse functions [25, 38]. Up to second order, the change in the expectation value of an118

observable Ô, defined as δ〈Ô(t)〉= 〈Ô(t)〉−〈Ô(0)〉, induced from the ground state by a scalar119

external potential Vex t(r, t), can be written in terms of the corresponding linear and nonlinear120

response functions.121

δ〈Ô(r, t)〉=
∫

dr1d t1χ
(1)
Ô
(r, r1, t − t1)Vex t(r1, t1) (6)

+

∫

dr1d t1dr2d t2χ
(2)
Ô
(r, r1, r2, t − t1, t − t2)Vex t(r1, t1)Vex t(r2, t2) + ....

Throughout this article we will focus on space dependent observables, such as charge and122

current densities, since we are interested in charge dynamics and separation. The first χ(1)
Ô

123

and the second χ(2)
Ô

order response functions are the response of an observable Ô to an external124

potential Vex t(r, t).125

One key strength of response theory is its ability to efficiently incorporate interactions, in-126

cluding excitons via the Bethe–Salpeter equation [27] and electron–phonon or plasmon cou-127

plings through, for example, cumulant expansions [39,40].128

Moreover, unlike exact time propagation, which requires re-solving the full dynamics for129

each perturbation, response functions can be computed once to be reused later for different130
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perturbations. This facilitates efficient evaluation of system responses to arbitrary perturba-131

tions, time profiles, and field strengths, of course within the limits of validity of perturbation132

theory.133

In practice, response functions are often approximated to reduce computational complex-134

ity. Common approaches include the random phase approximation (RPA), time-dependent135

Hartree-Fock (TDHF) and approximations to time-dependent Green’s function functional the-136

ory (TDGFFT), such as time-dependent GW (TDGW) [41], and approximations to time-dependent137

density functional theory (TDDFT) [1, 27]. These methods introduce varying degrees of ap-138

proximation to the exchange and correlation effects. In this work, the focus is on the exact139

expressions for the response functions, derived directly from the time-dependent many-body140

wavefunction, to provide a benchmark for assessing the accuracy of response theories, and we141

will mostly look at the non-interacting problem.142

2.2.1 Linear response and its limitations143

The analysis begins with the dynamics obtained from linear response, which follows from Eq. 5144

with n = 1. Throughout, only systems with real-valued wavefunctions ΨI are considered. In145

that case, the linear response function for any time- and space- dependent observable Ô(r, t),146

χ
(1)
Ô

, can be expressed as147

148

χ
(1)
Ô
(r, r1; t − t1) = −2θ (t − t1)

∑

I

O0I(r)nI0(r1)A
n/ j[∆I0(t − t1)] (7)

where θ (t) is a Heaviside step function, OI J (r) = 〈ΨI |Ô(r)|ΨJ 〉, An[·] ≡ sin[·] for a real149

observable, for which Ô∗ = Ô, and Aj[·] ≡ i cos[·] for an imaginary observable operator, for150

which Ô∗ = −Ô. Assuming that the external perturbation can be factorized into spatial and151

temporal components Vex t(r, t) = u(r)e(t), the first order response reads152

δO(1)(r, t) = −2
∑

I

O0I(r)ṼI0

∫ t

−∞
d t1An/ j[∆I0(t − t1)]e(t1), (8)

where ṼI J =
∫

dr1u(r1)nI J (r1) is the spatial overlap of the states with the perturbation.153

Comparison of Eq. 8 with the exact time propagation in Eq. 2 reveals that first-order re-154

sponse lacks terms involving excited-state couplings, OI J (r) for I , J ̸= 0. Since it depends only155

on the overlap between the ground state, an excited state and the perturbation, the linear156

response is not able to have a non-vanishing value beyond the spatial extension of the ground157

state (see Fig. 1(a) for illustration), unless the observable operator is non-local.158

This means that, when the ground state is mostly localised in the region where the pertur-159

bation is applied, a charge transfer is only possible between the states overlapping with the160

ground state (see Fig. 1(a) for illustration). The response at distances far from the localisation161

of the ground state cannot be observed. The current operator involves the gradient, which162

is not purely local operator, and results in a slightly more delocalized expectation value than163

the charge density. Therefore, it favours a slightly better linear response result in the region164

where the ground state has very low amplitude. This will be further illustrated in Section 4.165

The time-dependent contribution to the response changes depending on the observable.166

For a real observable, such as the induced charge density δn(r, t), and a local, instantaneous167

perturbation of the form Vex t(r, t) = u(r)δ(t), the time-dependent part of Eq. 8 becomes168

θ (t)

∫ t

−∞
d t1An[∆I0(t − t1)]δ(t1) = θ(t) sin[∆I0 t]. (9)
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The response is governed by oscillations at frequencies corresponding to energy differences169

∆I0.170

In the case of an oscillating perturbation in time, Vex t(r, t) = u(r)θ (t) sin(ωt), the corre-171

sponding contribution to the linear induced charge density becomes172

173

θ (t)

∫ t

−∞
d t1An[∆I0(t − t1)]θ (t1) sin(ωt1) = θ (t)

∆I0 sin[ωt]−ω sin[∆I0 t]
∆2

I0 −ω2
. (10)

At resonance, where ∆I0 =ω, the charge propagation oscillates as174

(sin[ωt]−ωt cos[ωt])/2ω.175

Charge separation can be intuitively understood as the condition where the induced density176

increases on one side of the system and decreases on the other. For positive induced density177

one can define the electron propagation and for negative, the hole propagation.178

For both perturbations, charge separation can only occur on time scales shorter than t < π/∆I0179

(if ω > ∆I0 for oscillating perturbation, otherwise shorter than t < π/ω), and can never be180

longer than the inverse of the gap, past this time, the charge density is changing sign. For181

both considered perturbations, the induced charge would always oscillate around zero in ev-182

ery point in space, indicating that there is no possibility to see a net charge separation in linear183

response (see section 4.1 for an illustration).184

Considering now an imaginary operator, such as the current-density for which ĵ∗(r) = −ĵ(r).185

In the case of an instantaneous perturbation, the current density can be obtained by replacing186

sin[∆I0 t] by i cos[∆I0 t] in Eq. 9. For a real valued wavefunction j00(r) = 0, meaning that the187

time average of linear response current is zero, no DC component is present.188

In the case of an oscillating perturbation, e(t) = θ(t) sin(ωt), the resulting time-dependent189

part of the current density is given by190

191

θ (t)

∫ t

−∞
d t1Aj[∆I0(t − t1)]θ (t1) sin(ωt1) = θ(t)i

2∆I0(cos[∆I0 t]− cos[ωt])
ω2 −∆2

I0

. (11)

At the resonance ∆I0 = ω the time dependency is governed by t sin(ωt). A crucial con-192

dition for observing net charge transport is the presence of a nonzero DC component in the193

current, i.e., a finite time-averaged value 〈j(r, t)〉t ̸= 0. Such a contribution is absent in the194

non-resonant linear response regime, where the current oscillates symmetrically around zero.195

However, averaging the time-dependent part over a period of oscillations, T = 2π/ω, at the196

resonance results in 2π/ω2 and, depending on the corresponding matrix elements in Eq. 8,197

might be non-vanishing resulting in a finite DC component.198

For both considered perturbations and observables, the ground state doesn’t contribute to199

the summation in Eq. 8, as ∆00 = 0 and j00(r) = 0. Any linear combination of perturbations200

leads to a corresponding linear superposition of the individual linear responses.201

2.2.2 Quadratic response: analysis and limitations202

Charge separation and propagation beyond the region of localization of the ground state re-203

quires the quadratic response χ(2), defined as:204

205

χ
(2)
Ô
(r, r1, r2, t, t1, t2) = −2θ (t − t1)θ(t − t2)θ(t1 − t2)

∑

I J

(12)

�

O0I(r)nI J (r1)nJ0(r2)A
n/ j [∆I0 t +∆J I t1 +∆0J t2]

−OI J (r)n0I(r1)nJ0(r2)A
n/ j [∆I0 t1 +∆J I t +∆0J t2]

�

,
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Figure 1: Schematic illustration of spatial overlaps between the excited states ΨI , the exter-
nal perturbation Vex t and the ground state Ψ0 that contribute in response theory up to the
first order (a) (see Eqs. 8,20), second order (b) (see Eqs. 13,21) and third order (c), (d) (see
Eq. 22) for only one element OI J of the sum in Eq. 2. (c) for a localized perturbation in third
order (d) for a delocalized perturbation in third order. Black shade is the region, where the
observable matrix element OI J can be non-zero .

where An[·] ≡ sin[·] for a real observable and Aj[·] ≡ i cos[·] for an imaginary observable206

operator. A second order contribution to an observable Ô in response to a generic perturbation207

is208

δO(2)(r, t) = 2
∑

J ̸=0

(O00(r)−OJJ (r))Ṽ
2

0J B
′n/ j
0J (t)

−2
∑

I>J ,J ̸=0

OI J (r)Ṽ0I ṼJ0B
′′n/ j
I J (t)

+2
∑

I ̸=0,J ̸=0

O0I(r)ṼI J ṼJ0B
′n/ j
I J (t), (13)

where the terms have been regrouped by their importance for charge dynamics. The first209

term is the dominant one. It comes from expanding the time-dependent wavefunctions (or210

coefficients) up to the first order of Eq. 2, only keeping the diagonal contributions, and it is211

determined by the excited state expectation values of the observable. These quantities can212

be obtained from linear response TDDFT [42, 43]. The second term, arising from transitions213

between excited states, originates from the second-order expansion of the time-dependent214

wavefunctions in Eq. 2. The third term, in the case when O0I(r) ≈ 0 outside the ground215

state localization, contributes little to the second-order response, this is the linear-response-216

like term. Unlike the linear response, the first two terms in the second-order contribution217

involve the full set of matrix elements OI J (r), qualitatively they contain all the information218

of the exact time-propagation expression in Eq. 2. Relying on the excited states overlaps, the219

second order is able to propagate charge beyond the extension of the ground state, see the220

black shade on Fig. 1(b). However, the overlap between an excited state, the ground state and221

the perturbation, Ṽ0I , has to be non-zero.222

Evaluating Eq. 13 requires computing the overlap integrals ṼI J , which can be performed223

in advance. Importantly, only the elements involving the ground state of the ṼI J matrix enter224

the first two terms of Eqs. 13. Considering the symmetry of the spatial part of the second term225

in Eq. 13 with respect to the exchange of I and J , the sum is reduced to only terms with I > J .226

The temporal dependence is governed by the factors B
′
and B

′′
.227

In the case of the second order induced charge density δn(r, t) for the instantaneous per-228

turbation in time, Vex t(r, t) = u(r)δ(t), the time-dependent parts B
′n
IJ (t) and B

′′n
IJ (t) become:229

230

B
′n
IJ (t) = θ (t)
∫ t

0 d t1

∫ t1

0 d t2 cos [∆I0 t +∆J I t1 +∆0J t2]δ(t1)δ(t2) = θ(t) cos [∆I0(t)](14)

B
′′n
IJ (t) = θ (t)
∫ t

0 d t1

∫ t1

0 d t2 cos [∆I0 t1 +∆J I t +∆0J t2]δ(t1)δ(t2) = θ (t)2cos [∆J I(t)] ,

7
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which results in B
′n
0J (t) = θ (t). This gives a constant offset to the charge dynamics necessary231

to the charge separation.232

Considering further an oscillating time dependent part of the external potential,233

Vex t(r, t) = u(r)θ(t) sin(ωt), the second order time integrals become:234

235

B
′n
IJ (t) = θ (t)

∫ t

0

d t1

∫ t1

0

d t2 cos [∆I0 t +∆J I t1 +∆0J t2] sin(ωt1) sin(ωt2) =

=
θ (t)

2(∆2
J0 −ω2)

�2ω2 cos[∆I0 t] +ω(∆J I −ω) cos[(∆J0 +ω)t]−ω(∆J I +ω) cos[(∆J0 −ω)t]
(∆2

J I −ω2)

−
∆0J

∆I0
(cos[∆I0 t]− 1) +

(∆J0∆I0 + 2ω2)(cos[2ωt]− cos[∆I0 t])
(∆2

I0 − 4ω2)

�

, (15)

236

B
′n
0J (t) = θ (t)
�(1− cos[2ωt])

4(∆2
J0 −ω2)

+
2ω2 +ω(∆J0 −ω) cos[(∆J0 +ω)t]−ω(∆J0 +ω) cos[(∆J0 −ω)t]

2(∆2
J0 −ω2)2

�

,(16)

237

B
′′n
IJ (t) =

θ (t)
2(∆2

J0 −ω2)(∆2
I0 −ω2)

�

2ω2 cos[∆I J t] + (∆J0∆I0 +ω
2)− (∆J0∆I0 −ω2) cos[2ωt]

−ω(∆I0 +ω) cos[(∆J0 −ω)t]−ω(∆J0 +ω) cos[(∆I0 −ω)t]

+ω(∆I0 −ω) cos[(∆J0 +ω)t] +ω(∆J0 −ω) cos[(∆I0 +ω)t]
�

. (17)

In B
′n
IJ (t) the resonance is reached when either ω or 2ω match the transition energies. The238

B
′′n
IJ (t) term is resonant only when the transition energies match ω. The time dependence239

of the second-order response features oscillations at frequencies determined by the transition240

energies ∆I J , the perturbation frequency ω and 2ω, as well as their sums and differences.241

Beyond the oscillatory behavior, a key contribution arises from the constant offset in B
′n
0J (t),242

which ensures that the induced density vanishes at t = 0. This term shifts the dynamics to en-243

able charge separation (see Sec. 4). At resonance conditions∆J0/I0±ω= 0, the second order244

response diverges faster than the first order (due to the 1/(∆2
J0 −ω

2)2 in B
′n
0J (t)), indicating245

a breakdown of the response theory. Additional resonances occur when ∆I0 ± 2ω = 0, but246

these are less significant far from the ground-state region, since it only enters the third term247

of Eq. 13.248

In the second order current-density response, for real valued wavefunctions jI I(r) = 0, the249

first term in Eq. 13 disappears. For an instantaneous delta-function perturbation, the current250

density follows from Eq. 14 by replacing cos[∆J I/I0 t] with i sin[∆J I/I0 t]. In the case of an251

oscillating perturbation, the corresponding expression for the current density time integrals252

that enter Eq. 13 read:253

254

B
′ j
I J (t) =

θ (t)
2(∆2

J0 −ω2)

�2ω2 sin[∆I0 t] +ω(∆J I −ω) sin[(∆J0 +ω)t]−ω(∆J I +ω) sin[(∆J0 −ω)t]
(∆2

J I −ω2)
−

−
∆0J

∆I0
sin[∆I0 t]−

(∆J0∆I0 + 2ω2) sin[∆I0 t]− 2ω(∆I0 + 2∆J0) sin[2ωt]
(∆2

I0 − 4ω2)

�

, (18)

255

256

B
′′ j
I J (t) =

θ (t)
2(∆2

J0 −ω2)(∆2
I0 −ω2)

�

2ω∆J I sin[2ωt] + 2ω2 sin[∆J I t] + (19)

+ω(∆I0 −ω) sin[(∆J0 +ω)t]−ω(∆I0 +ω) sin[(∆J0 −ω)t]−

−ω(∆J0 −ω) sin[(∆I0 +ω)t] +ω(∆J0 +ω) sin[(∆I0 −ω)t]
�

.
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For an oscillating perturbation a non-vanishing DC component in the current emerges at res-257

onance due to the terms like lim∆J0→±ω
sin[(∆J0±ω)t]
(∆J0±ω)

= t. In the case of a perturbation by a258

vector potential, this effect corresponds to the generation of a shift current, also known as the259

bulk photovoltaic effect (BPVE), as discussed in Refs. [44, 45]. This mechanism enables net260

current flow in the absence of external bias and plays a central role in nonlinear optical and261

transport phenomena.262

In the linear and quadratic response, for an oscillating perturbation, a convergence pa-263

rameter can be identified from Eqs. 10 and 11 in linear and Eqs. 15-19 in quadratic response,264

I/(∆J0 ±ω), where I is the perturbation amplitude. The response theory breaks down if I is265

large or if the resonance is reached ∆J0 = ±ω.266

2.3 Higher orders: what can they add?267

To understand the contributions of higher orders, it is useful to look at the density matrix268

expansion defined in Eq. 5 and the corresponding overlaps between the states. The focus here269

will be on propagating the charge far from the ground state and from the perturbation.270

The main contributions to the density matrix in first order are coming from one of the271

elements of the commutator:272

ρ
(1)
I J (t)∝ Ṽ0I BI J (t)δ0J . (20)

In linear response, only off-diagonal elements of the density matrix contribute, while diagonal273

terms such as ρ(0)00 vanish. As a result, net charge transport requires the inclusion of higher-274

order processes. In the second-order response, all matrix elements can contribute, since rel-275

evant terms in the commutator of Eq. 5 are not restricted by δ0J , enabling asymmetry and276

transport in the induced dynamics. One of the elements of the second order of Eq. 5 is277

ρ
(2)
I J (t)∝ Ṽ0I ṼJ0BI J (t). (21)

The condition for a nonzero second-order contribution is a finite overlap between the excited278

states I and J that enters the observable OI J in Eq. 2, the ground state, and the applied pertur-279

bation. Similarly, the third-order (and higher-order) response generate the full set of density280

matrix elements, e.g.281

ρ
(3)
I J (t)∝
∑

K

Ṽ0I ṼJK ṼK0BI JK(t). (22)

In this expression, contrary to the second order, not all the excited states (e.g. J) must overlap282

with the ground state. Instead there is an extra overlap between states K and J and the283

perturbation and K must overlap with the ground state.284

Consider two scenarios: first, when the perturbation is localized in the region of the ground285

state, which is illustrated in Fig. 1(c). In this case, the third-order response behaves similarly286

to the second-order response in terms of charge propagation. Shaded in black area is the287

overlap between the states I and J that contributes to an observable of interests, OI J (r) (see288

Eq. 2). This area is the same in second, third and higher orders, meaning that the third (and289

higher) order response cannot propagate charge significantly further than the second order290

for a localized perturbation due to the persistent presence of the Ṽ0I terms across all orders.291

In the second scenario, involving a fully delocalized perturbation (Fig. 1(d)), charge trans-292

port can extend beyond the range achievable in the second order. Here, when state J overlaps293

with K , which in turn overlaps with the ground state, there is a potential for charge to propa-294

gate further (black shaded area) that is not accessible by second order (see Appendix A).295
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For the fourth and higher orders, the situation remains similar. For a perturbation localized296

within the ground state, the requirement remains that all states must overlap with the ground297

state. The only quantitative change will be added from more elements like ṼK L . In the case of298

a completely delocalized perturbation, higher-order responses allow for further charge prop-299

agation through sequential overlaps between the states, i.e. there will be additional elements300

added into the chain, e.g. Ψ0 - ΨI - ΨJ - ΨK - Ψ0. However, of course, for a weak perturbation,301

these contributions will be smaller than in the second order.302

3 The model303

t

𝜀v
1 abs

e-

h+

…

…

𝜀v
N

𝜀v
0

𝜀c
0

𝜀c
1 𝜀c

N

t t

t t t

Figure 2: Left: Site model used in this work. The model is divided into three regions:
absorber in the middle, electron transport layer (blue) and hole transport layer (red). N + 1
electrons occupy lower energy (valence) sites vi connected with the hopping th = 1. The
N + 1 higher energy (conduction) sites ci, connected by a hopping th = 1 are separated
by a single site energy ε0

c − ε
0
v = 10th in the absorber. The external field arrives in the

absorber region. Right: matrix element 〈Ψ0|ĉ
†
i ĉi |ΨI 〉 between the ground and excited states

for ta = 0.1th projected onto the sites for a system with two valence and two conduction
sites. State 5 doesn’t have an overlap with the ground State 0.

To illustrate this discussion and to get further insight, we will use a model that simulates304

systems with interfaces where an external perturbation excites a charge in one region or ma-305

terial, after which the excited charge propagates into another region or material. This model306

aims to demonstrate charge separation into electrons and holes, a process prevalent in op-307

toelectronics and particularly in photovoltaic systems. The choice of the model has to be a308

minimal yet comprehensive testbed for response theory in charge transfer. It should provide309

discrete eigenstates (we are working with finite systems), controllable energy offsets and ex-310

plicit control over the matrix-element overlaps that couple the ground state to excited states311

(cf. Ṽ0I in Secs. 2.2-2.3). This setting contains the ingredients needed to diagnose when linear312

vs. quadratic response suffices for charge dynamics and separation, while keeping the analysis313

transparent. Our focus here is not on reproducing device-level numbers, but on establishing314

qualitative mechanisms and regimes of validity. We emphasize that infinite and semi-infinite315

systems as well as 2D and 3D dimensional interfaces are outside our present scope. We ex-316

pect the semi-infinite leads to adjust spectral densities and long-time tails, that would change317

numbers and parameters of validity and would increase the period of oscillations to infinity.318

Increasing the dimensionality will allow a more realistic study of the charge dynamics, where319

the charge can move in the interface plane. However, the qualitative overlap-based conclusions320

we draw about the order of response needed for transport will hold. We leave the extensions321
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with realistic electrodes and environments to future work.322

Our Hubbard-like model consists of N +1 lower energy sites and N +1 higher energy sites323

and a number of electrons Ne = N + 1. The illustration of the model and the extension of the324

ground state can be found in Fig. 2.325

Ĥ =
N
∑

i=0

εi
v ĉ†

vi ĉvi+
N
∑

i=0

εi
c ĉ

†
ci ĉci−

N−1
∑

i=0

th(ĉ
†
vi ĉvi+1+ĉ†

vi+1 ĉvi)−
N−1
∑

i=0

th(ĉ
†
ci ĉci+1+ĉ†

ci+1 ĉci)+ta(ĉ
†
v0 ĉc0+ĉ†

c0 ĉv0),

(23)
were ĉαi (ĉ†

αi) annihilates (creates) a fermion on site i = 0, . . . , N of side α ∈ {v, c}. The on-326

site energies are εi
α; th is the nearest-neighbor hopping amplitude; ta is a local hybridization327

between v and c at i = 0. The first lower energy site v0 and the first higher energy site c0 will328

represent the region, where the external perturbation acts. This region is called absorber. The329

rest of the low energy sites represent the hole transport layer and the rest of the high energy330

sites - the electron transport layer. In the following we choose the hopping between the v0331

and c0 sites, ta < th, such that, the Ne = N + 1 electrons in the many-body ground state will332

mostly occupy N +1 lower sites, vi, and have a little occupation of higher energy sites, ci (see333

the blue column in the right panel of Fig. 2 for a system with 4 sites). Therefore will can call334

the lower energy sites - valence sites and higher energy sites - conduction sites. No spin is335

included, except in the last section 4.5.336

For most of the discussion below we consider 2 valence and 2 conduction sites (unless it337

is stated otherwise). The characteristic energy difference in our system between conduction338

and valence sites is ε0
c − ε

0
v = 10th. The energy difference between the absorber region and339

electron/hole transport layer is ε1
v/c − ε

0
v/c = 1th. Except for the validity limits of response340

theory, the overall conclusions do not depend on the particular parameters.341

The external perturbation acts only in the absorber region and is defined as342

V̂ i j
ex t(t) = Iδic0δ jv0(ĉ

†
c0 ĉv0+ĉ†

v0 ĉc0)e(t). We have chosen such perturbation in order to study the343

dynamics far from it. We have verified that a delocalized perturbation that acts on the whole344

model doesn’t change the main conclusions about the validity of the second order response345

theory. In both first- and second-order responses, the dominant terms involve Ṽ0I , it contains346

the overlaps between excited states and the ground state (see Eq.8 and first two terms of347

Eq.13). Figure 2 (right panel) shows 〈Ψ0|ĉ
†
i ĉi|ΨI〉 for ta = 0.1th, revealing nearly an order-348

of-magnitude larger overlap at absorption sites (v0, c0) than in the transport layers (v1, c1).349

Extending the perturbation to other sites thus has negligible impact on Ṽ0I (see Appendix A).350

The strength of the perturbation I and the perturbation frequency ω are the parameters that351

differentiate between different response regimes.352

Consider a natural electric field scale in the Hubbard model as a field that does work353

comparable to a hopping th ∼ 1 eV over a distance a: E0 ∼
th
ea = 1010 V/m, where a = 1354

and e - an electric charge. A solar intensity on a clear day can be assumed to be Is ≈ 1000355

W/m2 [46], converting it into an electric field intensity makes Es ∼ 106 V/m, which in the356

Hubbard model translates to I ∼ 10−4 th. This is a very weak field, compared to a typical357

pump-probe experiment, where a pump probe I ∼ (0.1−1)th [47,48]. In fact, as can be seen358

in the next section, at I ∼ 10−4 th one can already observe some second order effect on charge359

dynamics.360

4 Results and discussion361

Here, the focus is on the excited charge dynamics within the presented model via examining the362

induced density and current. For the site model, this simplifies to the dynamics of a change on a363

site occupation number, δnii(t), and the current between two sites δ jii+1(t)with respect to the364

11



SciPost Physics Submission

ground state. Our objective is to achieve charge separation, where electrons are transported365

to the electron transport layer, i.e. positive δnii(t), and holes to the hole transport layer, i.e.366

negative δnii(t). This should also result in a net DC current, i.e. 〈 jii+1(t)〉t ̸= 0.367

In the following the difference between the exact time propagation defined in Section 2.1368

and the linear and quadratic response theory will be examined.369

4.1 Charge dynamics: linear and quadratic regime370

Figure 3: Left and Middle: Density of electron transport layers induced by an oscillating per-
turbation (for hole transport layer, the density is identical with a minus sign) for a system of
two valence and two conduction sites. Orange lines indicate the linear response contribution.
Blue lines - combined linear and quadratic contributions and black lines - exact dynamics.
Left: e(t) = 10−4 th · θ (t) sin(ωt) Middle: e(t) = 10−2 th · θ (t) sin(ωt). Right: delta-kick
perturbation e(t) = δ(t). Fourier transform of the dipole moment on the absorbtion site c0
(red) and on the electron transport layer c1 (blue).

Introducing the hopping ta ̸= 0 between the valence and conduction sites, e.g. between371

site v0 and c0, the ground state will have contributions from the conduction sites ci. Con-372

sequently, the matrix element entering the linear response, ni
0I ≡ 〈Ψ0|ĉ

†
i ĉi|ΨI〉 ̸= 0, will be373

non-zero (right panel of Fig. 2). This results in a non-vanishing linear response contribution,374

as illustrated by the orange curves in Fig. 3 (left and middle panels). Here and throughout375

the manuscript, the solid lines indicate the charge at electron transport layer and the dashed376

line the charge at hole transport layer. The density of the hole transport layer is identical to377

the electron transport layer with a minus sign378

In this subsection the perturbation frequency isω= 10th, which is not resonant. For small379

enough perturbation I ≤ 10−4 th (Fig. 3 left), the charge dynamics is predominantly governed380

by the linear response regime. The linear response (orange lines) closely matches the exact381

dynamics (black line) over extended simulation periods. Only small differences between the382

linear response and exact dynamics are observed.383

For perturbations strong enough to separate electrons and holes, I > 10−4 th (see Fig. 3384

middle panel), the linear response induced charge (orange lines) oscillates around zero, as385

indicated by the time dependency part of Eq. 10. The separation of charge occurs, when the386

induced density is positive on the electron transport layer (solid lines) and negative on the hole387

transport layer (dashed lines). The linear response alone always oscillates between positive388

and negative values and fails to separate charges for any perturbation strength. Including the389

second order response (blue lines) function χ(2) recovers completely the charge dynamics.390

For a non-resonant perturbation frequency, no deviation from exact dynamics is observed391

for any simulation time, which can be explained by the oscillating nature of the response. In392

fact, according to Eq. 15, the time dependency is governed by periodic trigonometric func-393

tions. Thus, in the finite system, if the response dynamics is accurate for the largest period of394

oscillations t > 2π
∆J I±ω

(or for the smallest ∆J I ±ω excluding resonance), it remains accurate395

for any simulation time. As system size increases, the longest oscillation periods grow, mak-396

ing it increasingly challenging for second-order response to reproduce exact dynamics at long397
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times.398

Remarkably, we have additionally verified that even up to 20 sites, no deviation is seen399

between the linear (left of Fig. 3) or quadratic and linear (middle of Fig. 3) response and exact400

time propagation at the most distant sites from the absorber for the considered perturbations.401

This is again explained by the fact that, for the particular localised spatial perturbation the402

higher orders do not add new possibilities to transport charge (see analyses in Section 2.3).403

The right panel of Fig. 3 shows the Fourier transform of the dipole within the absorber404

(orange) and in the electron transport layer (blue) for a delta-kick perturbation, applied lo-405

cally in the absorber. This perturbation allows us to see the full spectrum of excitations. The406

lowest energy peak corresponds to the energy difference between excited states, which cor-407

responds to the second order contribution. It illustrates how second-order effects dominate408

away from the absorber region. While linear response accurately captures coherent dynamics409

at the perturbation site, relevant for optical absorption, second-order contributions become410

dominant farther out at electron/hole transport layers, enabling charge transport (see middle411

panel of Fig. 3). This aligns with Fig. 1, which shows that second-order matrix elements allow412

for charge propagation away from the perturbation.413

4.2 Current vs. charge dynamics414

Figure 4: Model with 3 valence and 3 conduction sites with an oscillating external pertur-
bation 0.01th sin(ωt) for non-resonant ω. Exact time propagation (black) and the response
theory (blue) and only from the linear response (orange). Left: Occupation of 3 conduction
sites (top to bottom: c0, c1 and c2). Right: The current between the two sites (v0-c0, c0-c1
and c1-c2).

We will now compare the current density evaluated in linear Eq. 11 and quadratic Eqs. 18-415

19 response to an exact time-dependent current density evaluated with Eq. 2. The same416

current can be obtained from the continuity equation, ∂ ρ(r,t)
∂ t = −∇ · j(r, t), which is valid417

order-by-order.418

Fig. 4 shows the density (left panels) and current (right panels) for three conduction sites.419

The perturbation is oscillating with a non-resonant frequency, the amplitude is such that a420

slight deviation between the second order response and time propagation can be seen. The421

advantage of the response theory is that it is possible to separate oscillating linear response422

(orange lines in Fig. 4) from a less oscillating (with a large period of oscillation) second order.423

This can be useful during the analysis and for a potential comparison to experimentally mea-424

sured current. In the absorber region c0, where the linear response contribution is similar in425
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Figure 5: Same model as Fig. 4. Current at resonance frequency at the last site of electron
level c1 − c2 evaluated in response theory (blue) and in exact time propagation (black).
Left: beginning of the dynamics, where the time propagation and second order response
agree. Right: later part of the dynamics, where the response starts to diverge. Red lines are
the average current over the full time interval (DC component) from second order response
(solid) and from time dynamics (dashed). Note that the scale is different between the two
panels.

magnitude to the second-order term, the current, primarily capturing charge oscillations, can426

be well approximated by the linear response. This is not true for the density itself, so clearly,427

the validity range of the linear response current extends further than that of the linear response428

charge density. The current, which is proportional to the time derivative of the charge density,429

is more sensitive to the oscillations of the density rather then to its overalls shifts. Moreover,430

the current operator is more delocalized than the density operator, which also results in an431

extended validity of the linear response current. Fig. 4 also demonstrates the conclusions of432

section 2.3: for a localised perturbation, in the linear response one can only propagate charge433

in the vicinity of the perturbation and close to the ground state. In the second order, where434

the overlaps between the excited states are present, charge can be propagated much further.435

Figure 5 shows the current at resonance in response theory and in exact propagation. The436

left panel shows the beginning of the simulation (up to 60th), as in the case of charge dynamics,437

the two approaches, exact and response, agree (except some oscillations in the beginning that438

are due to the resonance). Even at the end of the simulation the difference between the439

response theory current and the exact one is not dramatic (right panel of Fig. 5). However,440

the charge dynamics obtained from response theory deviates from the exact propagation and441

diverges rapidly (see blue lines in the upper left panel of Fig. 6), leading to an unphysical total442

occupation. While the timescale of divergence differs in smaller systems, we have verified that443

the conclusion holds for the system considered here. The good behavior of the current can444

be seen by computing the average current (red lines of Fig. 5), also being a DC component of445

current density or shift current (for this model) can only be obtained at resonance, as can be446

seen from Eqs. 18 and 19. Up to ∼ 1000th two DC components (from second order and from447

time propagation) agree, after that the second order DC component starts to diverge from the448

exact one, and it will continue to diverge due to the presence of a linear in time term in the449

expression Eq. 18.450

4.3 Second order: limits and analyses451

Here the limits of quadratic response theory in terms of perturbation frequency and ampli-452

tude will be examined. Here and in the next sections only charge density dynamics will453

be discussed. First, in Fig. 6 (top left panel), keeping the perturbation amplitude fixed at454

I = 0.1th we vary the frequency from the near resonant (blue lines) to a non-resonant (orange455

line). Out-of-resonance the response aligns with the exact dynamics (green line). Approach-456

ing the resonance, the denominator in the second order equations Eqs. 15-17 approaches457

zero, making the response theory non-convergent (blue and orange dashed lines). In the458

exact time propagation (solid lines) in the resonance (∆I J =ω) the response can be fitted to459
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Figure 6: On the top panels we are following occupation of the electron transport layer. The
hopping between the conduction and valence sites is ta = 0, which makes the linear response
to vanish. The perturbation is e(t) = I sin(ωt). Top left: Quadratic response and exact
time propagation for different perturbation frequencies ω. Top right: Black solid line result
obtained using χ(2), colored lines correspond to exact time propagation I−2 · nRT (t). Bottom
left: Root mean squared error map of the induced density in the electron transport layer
obtained up to quadratic response as a function of perturbation frequency ω and amplitude
I (in the units of th). Bottom right: Average energy received by the system over a fixed
simulation time as a function of perturbation strength obtained from exact time propagation
for resonant (orange) and non-resonant (blue) frequencies. Black dashed lines are quadratic
fits. Blue and orange dashed vertical lines correspond to the validity range of the quadratic fit.
The inset (obtained with exact time propagation) shows the exact charge density at electron
layer for a non-resonant perturbation at three different intensities.

cos[(∆I J ±ωe f f )t]/(∆I J ±ωe f f ) with an effective frequency ωe f f < ω. The role of higher460

orders is to introduce such more fluctuating terms.461

Turning to the variations of perturbation amplitude, a fixed off-resonant frequency is con-462

sidered. As shown in Fig. 6 (top right panel), the quadratic response remains accurate up463

to I = 0.3th. Beyond this threshold, higher-order effects become visible: the amplitude of464

charge oscillations decreases, and additional high-frequency components appear. The bot-465

tom left panel of Fig. 6 shows the root mean squared error (RMSE) as a function of external466

perturbation amplitude and frequency. Using a threshold RMSE of 0.01, the second-order467

response is valid for I ≲ 0.01th near resonance (orange line) and up to I ∼ 0.3th in the off-468

resonant regime (blue line). From the overall trends in the upper panels and in the bottom469

left panel of Fig. 6, a convergence parameter for the validity of the response theory becomes470

evident: I/∆I J ±ω < 1 that was already discussed at the end of section 2.2.2. Approaching471

the resonance, the valid perturbation amplitude is decreasing proportionally. This condition472

delineates the regime where the perturbative expansion converges and second-order theory is473

quantitatively reliable.474
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Next, we investigate the amount of energy transferred to the system for a fixed period of475

time as a function of the perturbation amplitude, defined as:476

〈Eper t〉T =
1
T

∫

T
d t〈Ψ(t)|Ĥ|Ψ(t)〉 − E0. (24)

The bottom right panel of Fig. 6 illustrates this quantity, computed in exact time propagation,477

for a resonant (orange) and non-resonant (blue) frequency. Characteristic energy behaviour478

for a linear regime is when the energy delivered to the system by an external field is propor-479

tional to the square of its amplitude, Epert∝ I2, [28]. The figure shows that this holds up to480

I ≈ 0.6th for a non-resonant and up to I ≈ 0.1th for a resonant frequency. Above this val-481

ues higher-order effects emerge. These thresholds exceed the intensities where deviations in482

second-order charge density from exact dynamics become visually apparent (see Fig. 6, bottom483

left; orange for resonant, blue for non-resonant cases). This indicates that the energy trans-484

ferred into the system is still within the linear regime, when the deviations in the second order485

response appear. The inset of Fig. 6 (bottom right) shows the charge density at electron layer486

for a non-resonant perturbation for three intensities, before the energy saturation (dashed),487

at the maximum of energy (solid) and after the maximum (dashed-dotted). The saturation488

in energy is reached, when the induced charge density reaches its maximum. Beyond the489

saturation, the induced charge density decreases, resulting in the decrease of average energy.490

4.4 Second order: approximations491

Figure 7: Left: matrix element 〈ΨI |ĉ
†
i ĉi |ΨJ 〉 computed on the last electron site of the sys-

tem of 4 valence and 4 conduction sites (far from the perturbation) as a function of energy
difference EJ − EI . In red only the contributions between the ground and excited states are
selected. Right: An approximation to the second order, consisting in keeping only the diag-
onal elements of the density matrix or, equivalently, only the first line of Eq. 13.

Calculating the second-order response function is computationally demanding, so approx-492

imations are necessary. Its structure is analyzed here and feasible approximations are recom-493

mended. Firstly, spatial and temporal integrals should be handled in advance, either analyti-494

cally for temporal perturbations (as in this work) or numerically for spatial perturbations when495

modeling real materials. It will help to avoid the calculation of the entire response function,496

limiting it to the elements that couple to the external perturbation.497

A primary bottleneck in calculating second order response is the summation over excited498

states (Eq. 13). Note that here the matrix elements with the ground state (red points in Fig. 7499

left) are small compared to the matrix elements between different excited states. The matrix500

elements with the ground state are present in the linear response Eq. 8 and in the last term of501

the second order Eq. 13 via O0I(r). These linear-response-like terms are then neglected without502

any effect on the results. This approximation reduces drastically the amount of computation,503
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now one only needs to compute the wings of the spatial integral with the perturbation Ṽ0J .504

The matrix elements entering the second term of Eq. 13, 〈ΨI |ĉ
†
i ĉi|ΨJ 〉 tend to vanish for ener-505

getically distant states, supporting the introduction of a cutoff (here is at EI − EJ ∼ 11t see506

Fig. 7 left). Left panel of Fig. 7 also confirms the importance of the first term in Eq. 13, since507

the biggest contribution comes from the diagonal matrix elements.508

An important approximation is obtained by only keeping the first line in Eq. 13, which509

means expanding the time-dependent wave functions on both sides of Eq. 2 only up to the510

first order. Only diagonal elements of the density matrix of Eq. 2 are introduced, which should511

capture the non-coherent processes and result in charge transport and separation. The quality512

of this approximation can be seen in Fig. 7 (right). Indeed, it qualitatively captures the second513

order response, this has been verified for a large range of perturbation intensities and frequen-514

cies. The CPU time for this approximation scales as the linear response one with system size515

(see Appendix B). Moreover, as discussed earlier, all the ingredients can be obtained within516

the linear response TDDFT.517

4.5 Interaction518

Finally, it is interesting to explore whether the Coulomb interaction changes the validity of519

linear and quadratic response. The interaction primarily modifies the eigenenergies, lifting520

some degeneracies, but can also modify the eigenfunctions. Onsite interaction can result in521

the suppression of the charge dynamics, as it was demonstrated in Ref. [49,50] for the Hubbard522

model. It can also create new spatial pathways for charge dynamics in molecules, which was523

shown in Ref. [51] by ab-initio simulations.524

Here, the effect of onsite interaction +U
∑

i n̂i↓n̂i↑ for an instantaneous delta-kick pertur-525

bation is examined. The spin is introduced, doubling the number of electrons to Ne = 2(N+1).526

The response and the exact time propagation are computed from the many-body states. In the527

current model, Fig. 8 (upper panel), which shows the electron layer occupation, one can ob-528

serve a general reduction by an order of magnitude of the charge density flow by increasing the529

interaction, as in Ref. [49]. In general, the interaction can change the eigenvalues, which may530

bring the system in or out of resonance with an oscillating perturbation of a given frequency.531

This would drastically change the charge separation.532

One of the effects of the interaction is altering the ground state, strong interaction pre-533

vents the double occupancy of sites (blue, U = 5, vs purple, U = 50, bars, lower right panel of534

Fig. 8), which modifies the validity range of response theory. Based on the overlap interpreta-535

tion (Fig. 1), a more extended ground state results in a more accurate linear response. Indeed,536

in the strong-interaction regime (right panel), where the ground state is delocalized over all537

sites, linear response dominates. In contrast, for weak interactions, the ground state remains538

localized on valence sites, enhancing the second-order response in the transport layer. How-539

ever, as the linear response stays oscillating around zero, the charge separation is suppressed540

with the onsite interaction U .541

To assess the role of Coulomb repulsion beyond the on-site term, we include a nearest-542

neighbour interaction +V
∑

i n̂i n̂i+1 with n̂i = n̂i↓ + n̂i↑, at fixed U = 5. In the extended Hub-543

bard model this term mimics the shortest-range component of long-range interactions [52] and544

has been argued to be essential for excitonic effects [50, 53]. The lower-left panel of Fig. 8545

shows how varying V affects the charge dynamics at U = 5: for moderate V < U the dynamics546

is enhanced relative to the V = 0 case (compare green line of lower left panel to blue line of up-547

per left panel of Fig. 8), whereas for larger V it is suppressed, in agreement with Ref. [50]. Our548

additional observation is that the second-order response decreases as V increases (compare549

dotted, only linear response, and solid lines in the lower-left panel of Fig. 8). The underlying550

mechanism differs from the purely on-site case: already in the ground state the local occu-551

pation pattern shifts weight toward the higher-energy sites c1 (red bars, lower-right panel of552
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Fig. 8), favouring bound electron-hole configurations and thus blocking spatial charge sepa-553

ration. This is coherent with the conclusion of Ref. [50] about the increased excitonic effects554

for increased V . A full analysis of interaction-driven excitonic effects on charge dynamics and555

separation is beyond the scope of this work.556

Figure 8: Effect of the interaction on charge dynamics. The perturbation is e(t) = 0.1th·δ(t).
Upper left: onsite moderate interaction U = 5. Upper right: onsite strong interaction U = 50.
Lower left: onsite interaction U = 5 and varying nearest-neighbour interaction V . Lower
right: site occupations ni = 〈n̂i↑ + n̂i↓〉 of the ground state for varying onsite U and nearest-
neighbour V interactions

5 Conclusions557

Time propagation of a wave function for a system under perturbation allows one to access558

the time evolution of all observables. In this article we have focused on the charge dynam-559

ics, charge separation, current and energy transfer under various weak perturbations, perti-560

nent to optoelectronic and photovoltaic applications. We have explored and benchmarked a561

response theory framework to compute these quantities. Using a numerically solvable site562

model, we demonstrated that linear response accurately describes coherent charge oscilla-563

tions under weak perturbations but fails to capture any net charge separation. In contrast,564

quadratic response theory includes off-diagonal density matrix contributions that enable asym-565

metric charge propagation and net transport, providing excellent agreement with exact time566

propagation over a broad range of conditions.567

We identified a clear criterion for the validity of second-order response: the amplitude-to-568

resonance ratio I/(∆I J±ω)< 1. This sets the boundary where perturbative approaches remain569

reliable, with broader validity in non-resonant regimes. We introduced practical approxima-570

tion to the second order response, that only requires quantities that can be obtained within571

the linear response TDDFT, which drastically reduces computational demands with minimal572

18



SciPost Physics Submission

loss of accuracy. Second-order response also correctly captures DC components in the current573

(shift currents), absent in linear response, and remains robust even as density dynamics begin574

to diverge. Notably, we find that strong on-site and nearest-neighbour interactions extend the575

range of linear response applicability by delocalizing the ground state.576

These results highlight the predictive power of the response theory up to the second order.577

They also show that with respect to long-time propagation the response theory may be more578

efficient with respect to full time propagation. While its formal scaling is worse - due to the579

double sum over states - response functions need only be computed once and allow access to580

all time scales and perturbations. In practice, symmetries, cutoffs, and proposed controlled581

approximations significantly reduce computational cost. We expect the response theory to582

hold for weak perturbations when exploring realistic systems with interfaces and interactions583

such as electron–hole or electron–phonon coupling.584

This work highlights the possibility of response theory for accurately simulating spatially585

resolved charge dynamics in systems influenced by varying external perturbations, making it586

a valuable tool for studying fundamental questions and for contributing to the technological587

advancement in photovoltaic and optoelectronic applications.588
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A Changing perturbation extension598

Figure 9 (left panel) shows the effect of a delocalized external perturbation599

V̂ i j
ex t(t) = Iδ ji+1(ĉ

†
i ĉi + ĉ†

i ĉi+1 + ĉ†
i+1 ĉi)e(t) on the dynamics of an occupation at electron layer600

c1 under strong driving (I = 0.3th), where second order start to break down. For a local-601

ized perturbation (orange), only the absorber region is perturbed, as throughout this work.602

In contrast, a fully delocalized perturbation (green) acts on all sites. The difference arises603

from additional matrix elements ṼI J in the third-order response (see Eq. 22) and is a purely604

third-order effect, becoming relevant at longer propagation time. Right panel of Fig. 9 shows605

that the response theory (blue line) cannot capture the differences between the delocalized606

perturbation and localized one obtained in exact time propagation (black line). This means607

that the delocalized perturbation can shift the regime, where the second order is valid into608

weaker perturbations.609
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Figure 9: The effect of a localised (on absorber) and delocalised perturbation on charge
dynamics of the occupation of the last site on the electron transport layer. The perturbation
amplitude is 0.3th, where the third order starts to become important. Left: computed in exact
time propagation (TP) under extended perturbation (green) and localized on the absorber
(orange). Right: differences between TP under extended and localized perturbations (black)
and the same difference in the response theory (blue).

B Scaling with system size610

Figure 10 shows CPU time scaling with system size. For exact time propagation (blue), each611

time step involves a full diagonalization, scaling as O(N3) with Hilbert space size N . Linear612

response (orange) requires matrix-vector products and a single sum over states, also scaling613

as O(N3). Quadratic response (green) involves a double sum, leading to O(N4) scaling. The614

approximate second-order scheme from Sec. 4.4 reduces this to O(N3) (red). The the full615

second-order computation time can be reduced in practice by considering cutoffs in the sum-616

mations and using symmetries. Moreover, the response functions are naturally parallelizable.617

Instead, time propagation cost is rather a lower limit, since it requires a certain number of618

time steps and a time-step size convergence study. Importantly, unlike time propagation, once619

computed, response functions give access to all time scales and allow changes in external620

perturbations without redoing the full calculation.621
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Figure 10: CPU time to compute one step of exact dynamics (blue), full scaling of first
(χ(1)) (orange), second (χ(2)) (green) order response and an approximation to second order
response (χ(2) approx) (red) as a function of number of sites. Each calculation is performed
on 1 CPU core.
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