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Abstract

This study applies response theory to investigate electron charge dynamics, with a par-
ticular focus on charge separation. We analytically assess the strengths and limitations
of linear and quadratic response theories in describing charge density and current, il-
lustrated by a model that simulates charge transfer systems. While linear response ac-
curately captures optical properties, the quadratic response contains the minimal ingre-
dients required to describe charge dynamics and separation. Notably, it closely matches
exact time propagation results in some regime that we identify. We propose and test sev-
eral approximations to the quadratic response and explore the influence of higher-order
terms and the effect of on-site and nearest-neighbour interactions U and V.
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1 Introduction

Accurate modeling of electron charge dynamics is crucial for addressing a wide range of funda-
mental questions in physics and chemistry. Understanding the mechanisms of charge transfer
and the separation of electrons and holes is a key challenge. These processes play a pivotal role
in numerous technological applications, including photovoltaics, photocatalysis, and chemical
reactions. For example, the efficient generation and transfer of charge carriers directly impacts
the design and performance of solar cells, while charge separation dynamics are fundamental
to catalyzing chemical transformations in many photo-activated processes.

To model these phenomena, various computational approaches have been developed, each
with its own set of advantages and limitations. Among the most widely used techniques
are Time-Dependent Density Functional Theory (TDDFT) [1,2] and Non-Equilibrium Green’s
Functions (NEGF) [3].

Real-time implementation of TDDFT to describe excited charge dynamics [4-6] is favored
for its balance of computational efficiency and accuracy. However, it still struggles with in-
corporating many-body effects, since the exact exchange-correlation (xc) functional is un-
known [7], and it is still computationally challenging to access long time scales. Current
approximations to the xc functional cannot accurately describe the charge transfer, although a
partial description of charge transfer is possible in generalized Kohn-Sham, for example using
hybrid functionals [6,8]. There has been a recent progress, with a reformulation of TDDFT
that uses response quantities for real time propagation [9].

Ab-initio calculations using NEGF are possible under the Generalised Kadanoff-Baym An-
zatz [10]. This robust approximation offers a rigorous treatment of electron-electron and
electron-phonon interactions at non-equilibrium conditions. Although it can scale linearly
with propagation time [11], it remains computationally demanding and it is limited to short
time scales, small systems, or parameterized model Hamiltonians [12-24].

A central challenge in modeling charge dynamics is the development of theoretical frame-
works that remain accurate across time scales, perturbation strengths, and interaction regimes.
This work explores a general response theory approach, including both linear [25] and quadratic
[26] formulations, to compute time-dependent observables. Linear response is widely used
for calculating speetral properties such as absorption and electron energy loss [27], while
quadratic response captures nonlinear phenomena like second-harmonic generation [26, 28].
Quadratic response also enables the study of nonlinear effects such as the electro-optic ef-
fect [29] and the shift current responsible for the bulk photovoltaic effect [30]. However they
are rarely used to describe charge dynamics.

In practice, first- and second-order response functions are often computed within the
independent-particle approximation, sometimes accounting for local field effects [31-34], and
extended to include excitonic effects using the Bethe-Salpeter equation [13, 35, 36].

However, while response theory allows systematic inclusion of many-body effects and in
principle enables access to very long simulation times, it remains perturbative and is valid near
equilibrium. The goal of this work is to identify the regimes where linear and second-order
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responses yield reliable results, both on the basis of general arguments and considering our
particular case of charge separation in a small model.

This article will explore the following key questions on charge dynamics and response be-
havior: How does charge dynamics differ in linear and quadratic response? Can charge dynamics
and charge separation be accurately described within these two frameworks? What is the range of
validity for linear and quadratic response in relation to perturbation amplitude, time- and length-
scales? And finally, how does the Coulomb interaction influence these findings?

The structure of the article is as follows. Section 2.1 introduces the exact time propa-
gation from the ground state. Linear and quadratic response formalisms for time-dependent
observables such as charge density and current are presented in Sec. 2.2, with higher-order
contributions discussed in Sec. 2.3. A minimal site-based model, mimicking an optoelectronic
device, is introduced in Sec. 3. The results are analyzed in Sec. 4, beginning with the validity of
linear and quadratic regimes for charge density (Sec. 4.1) and current (Sec. 4.2). Section 4.3
provides an analysis of perturbation amplitude and the crossover from linear to higher-order
regimes across observables, followed by Section 4.4 with practical approximations to second-
order response. Section 4.5 demonstrates the effect of an onsite interaction U on the accuracy
of the response approach. Conclusions are presented in Sec. 5.

2 Theoretical framework

2.1 Time propagation

We consider a system subject to a time-dependent perturbation added to a static Hamiltonian
H +V,,..(t), where the scalar potential V,,(t) = f dra(r, t)V,,(r, t) couples to the electron
density operator 7i(r, t). Other types of external perturbations, such as vector electric or mag-
netic fields, would simply lead to modifications of the perturbation matrix elements (V;;, see
Eq. 4). A many-body state |¥(t)) evolves in time as:

t

[W(t)) = T exp (—i[ﬁHJ dt’Vext(t')]) [¥o), )

—0Q

where |¥,) = |¥(t = 0)) and the evolution operator is the time-ordered exponential with
T as the time-ordering operator [3]. We implement this expression by discretizing time
into small time intervals, dt. At each time step s, the operator H + V,,(sdt) is diagonal-
ized, such that H + V,,(sdt) = UDU™!, where D(s) is the diagonal matrix of eigenvalues
and U(s) is the matrix of eigenvectors. The exponential operator can then be expressed as
e 1dtH Ve (sd0)) = 7e=idtDy—1  Albeit restricted to small systems, this approach has the ben-
efit of being easy to implement and the propagation remains unitary. With decreasing dt, the
result converges to the exact solution.

The time evolution of observables, specifically, the electron density O = #i(r) and current
density O = j(r), is analyzed in this work. Expanding the time-dependent wave function in the
eigenstates of the unperturbed Hamiltonian, H, |¥(t)) = > e Eite, (£)|¥,), a time-dependent
observable O(t) can be expressed as

0(t) = (¥(DIOIW()) = > e (6)ey ()0 = D pyi(t)Oy, @)
J 1J
where A;; = E; — E; denotes the energy difference between eigenstates, and 0;; = (¥;|0|¥,)
is the matrix element of the observable, which governs the spatial structure of the charge
dynamics. The many-body density matrix p;;(t) = e‘A”tc;‘(t)c ;(t) encodes the quantum co-
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herence of the time-dependent state |¥(t)) [26,37]. The time-dependent coefficients c;(t)
evolve according to

0= Son(1[ tuterad)] e
1J

J —0Q

where evolution operator in interaction picture is the time ordered exponential. When the
initial state is the ground state, c;(0) = ¢;(0)6 ;o and the sum over J disappears. The matrix
elements of V,,(t),

VIJ(t) = eiAUt J drvext(r) t)TlU(I‘) (4)

are non zero only when the state I and state J have a non-vanishing spatial overlap between
each other and with the perturbation V,,.,(r, t).

2.2 Response theory

Response theory is obtained by expanding the time-ordered exponential in Eq. 3 in powers of
the perturbation V,,,(t). This expansion breaks unitarity, leading to a violation of wavefunc-
tion normalization; truncating at n-th order introduces errors of order n+1 in the perturbation
strength. Applying this expansion to the time-dependent density matrix yields

P ()= Z:Z 0 pg)(t). The general form of the response theory involves time-ordered nested
commutators of the perturbation with the unperturbed Hamiltonian,

t th—1
P (1) = et (—i)" J dty... J At Voee (61), Wore(t2)eens [Vore (62, 6911115 (5)

—0Q —0Q

Starting from the ground state, the zeroth order density matrix is pﬁg) = 01900

Traditionally, the system’s response to external perturbations is expressed in terms of re-
sponse functions [25,38]. Up to second order, the change in the expectation value of an
observable 0, defined as 5 (O(t)) = (O(t)) —(0(0)), induced from the ground state by a scalar
external potential V,,(r, t), can be written in terms of the corresponding linear and nonlinear
response functions.

5(0(x, 1)) = J dridt; x50 1, £ = 61)Veee (11, 1) ©6)
+ f dridt;dryd fz%éz)(l‘, 1,1, t—tq, t — o) Voye (11, 1) Vey (g, t2) + ...

Throughout this article we will focus on space dependent observables, such as charge and
1
é )
and the second xéz) order response functions are the response of an observable O to an external

potential V,,.(r, t).

One key strength of response theory is its ability to efficiently incorporate interactions, in-
cluding excitons via the Bethe-Salpeter equation [27] and electron—phonon or plasmon cou-
plings through, for example, cumulant expansions [39,40].

Moreover, unlike exact time propagation, which requires re-solving the full dynamics for
each perturbation, response functions can be computed once to be reused later for different

current densities, since we are interested in charge dynamics and separation. The first y
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131 perturbations. This facilitates efficient evaluation of system responses to arbitrary perturba-
132 tions, time profiles, and field strengths, of course within the limits of validity of perturbation
133 theory.

134 In practice, response functions are often approximated to reduce computational complex-
135 ity. Common approaches include the random phase approximation (RPA), time-dependent
136 Hartree-Fock (TDHF) and approximations to time-dependent Green’s function functional the-
137 ory (TDGFFT), such as time-dependent GW (TDGW) [41], and approximations to time-dependent
138 density functional theory (TDDFT) [1,27]. These methods introduce varying degrees of ap-
130 proximation to the exchange and correlation effects. In this work, the focus is on the exact
140 expressions for the response functions, derived directly from the time-dependent many-body
141 wavefunction, to provide a benchmark for assessing the accuracy of response theories, and we
142 will mostly look at the non-interacting problem.

143 2.2.1 Linear response and its limitations

144 The analysis begins with the dynamics obtained from linear response, which follows from Eq. 5
145 with n = 1. Throughout, only systems with real-valued wavefunctions ¥; are considered. In
s that case, the linear response function for any time- and space- dependent observable O(r, t),
147 )(él)

148

, can be expressed as

15 r =) = =20(t — 1) D 0oy (Dnyp(r)A [ Ago(t = £1)] )
1

140 where O(t) is a Heaviside step function, O;;(r) = (¥;|0(r)|¥;), A"[-] = sin[-] for a real
150 observable, for which 0* = O, and A/[-] = i cos[-] for an imaginary observable operator, for
151 which O* = —0. Assuming that the external perturbation can be factorized into spatial and
152 temporal components V,,..(r, t) = u(r)e(t), the first order response reads

t

50W(r, 1) = —ZZOOI(I‘)VIOJ Aty AT Ao (t — t1)]e(ty), €©)
T

—0Q0

153 where V;; = f dryu(r;)n;;(r;) is the spatial overlap of the states with the perturbation.

154 Comparison of Eq. 8 with the exact time propagation in Eq. 2 reveals that first-order re-
155 sponse lacks terms involving excited-state couplings, O;;(r) for I,J # 0. Since it depends only
156 on the overlap between the ground state, an excited state and the perturbation, the linear
157 response is not able to have a non-vanishing value beyond the spatial extension of the ground
158 state (see Fig. 1(a) for illustration), unless the observable operator is non-local.

159 This means that, when the ground state is mostly localised in the region where the pertur-
160 bation is applied, a charge transfer is only possible between the states overlapping with the
161 ground state (see Fig. 1(a) for illustration). The response at distances far from the localisation
162 of the ground state cannot be observed. The current operator involves the gradient, which
163 i not purely local operator, and results in a slightly more delocalized expectation value than
164 the charge density. Therefore, it favours a slightly better linear response result in the region
165 Where the ground state has very low amplitude. This will be further illustrated in Section 4.
166 The time-dependent contribution to the response changes depending on the observable.
167 For a real observable, such as the induced charge density én(r, t), and a local, instantaneous
168 perturbation of the form V,,.(r, t) = u(r)6(t), the time-dependent part of Eq. 8 becomes

Q(f)J dt1A"[Apo(t —t1)]6(t1) = 0(t)sin[Afpt ]. 9
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160 The response is governed by oscillations at frequencies corresponding to energy differences

170 Ajpg.
171 In the case of an oscillating perturbation in time, V,,..(r, t) = u(r)0(t)sin(wt), the corre-
172 sponding contribution to the linear induced charge density becomes

173

Apgsin[wt] — wsin[Ajgt]

(10)
A?o —w?

t
O(f)J dt1A"[Ap(t —t1)]0(t1) sin(wty) = O(t)
—0Q
174 At resonance, where Ay = w, the charge propagation oscillates as
175 (sin[wt]— wtcos[wt])/2w.
176 Charge separation can be intuitively understood as the condition where the induced density
177 increases on one side of the system and decreases on the other. For positive induced density
178 one can define the electron propagation and for negative, the hole propagation.
179 For both perturbations, charge separation can only occur on time scales shorter than t < /A,
1o (if w > Ay, for oscillating perturbation, otherwise shorter than t < 7/w), and can never be
181 longer than the inverse of the gap, past this time, the charge density is changing sign. For
182 both considered perturbations, the induced charge would always oscillate around zero in ev-
183 ery point in space, indicating that there is no possibility to see a net charge separation in linear
184 response (see section 4.1 for an illustration).
185 Considering now an imaginary operator, such as the current-density for which j*(r) = —j(r).
186 In the case of an instantaneous perturbation, the current density can be obtained by replacing
187 sin[Ajgt] by icos[Ajpt]in Eq. 9. For a real valued wavefunction j,(r) = 0, meaning that the
188 time average of linear response current is zero, no DC component is present.
189 In the case of an oscillating perturbation, e(t) = 6(t) sin(wt), the resulting time-dependent
100 part of the current density is given by

191

27 o(cos[Ajgt] —cos[wt])

2__ A2
w AIO

t
6(t) f dt AT At — )10t sin(wt;) = B(0)i (1)
—0Q

192 At the resonance A;y = w the time dependency is governed by tsin(wt). A crucial con-
103 dition for observing net charge transport is the presence of a nonzero DC component in the
104 current, i.e., a finite time-averaged value (j(r, t)), # 0. Such a contribution is absent in the
105 non-resonant linear response regime, where the current oscillates symmetrically around zero.
106 However, averaging the time-dependent part over a period of oscillations, T = 27/w, at the
107 resonance results in 271/w? and, depending on the corresponding matrix elements in Eq. 8,
108 might be non-vanishing resulting in a finite DC component.

199 For both considered perturbations and observables, the ground state doesn’t contribute to
200 the summation in Eq. 8, as Ay, = 0 and joo(r) = 0. Any linear combination of perturbations
201 leads to a corresponding linear superposition of the individual linear responses.

202 2.2.2 Quadratic response: analysis and limitations

203 Charge separation and propagation beyond the region of localization of the ground state re-
204 quires the quadratic response y?, defined as:

205

2D, e, )= =200t —1)0(c—t2)0(t; — 1) ) | (12)
J

[OOI(r)nIJ (r)nyo(r)AYT [Aggt + Aypty + Agyt]

—0py(Dng; (r1)n o (1)A™ [Afgty + Ayyt + Agy 5] ],

6
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Figure 1: Schematic illustration of spatial overlaps between the excited states ¥;, the exter-
nal perturbation V,,., and the ground state ¥, that contribute in response theory up to the
first order (a) (see Egs. 8,20), second order (b) (see Egs. 13,21) and third order (c), (d) (see
Eq. 22) for only one element O;; of the sum in Eq. 2. (c) for a localized perturbation in third
order (d) for a delocalized perturbation in third order. Black shade is the region, where the
observable matrix element O;; can be non-zero .

where A"[-] = sin[-] for a real observable and A’[-] = icos[-] for an imaginary observable
operator. A second order contribution to an observable O in response to a generic perturbation
is

50A(r,t) = 2 (Op(r)— Oy (X)W By (1)
J#0
—2 Z OIJ(r)‘N/OI‘N/JOBUn/](t)
[>J,J#0
+2 Z OOI(r)VIJVJOBIE/J(t); (13)
[£0,J40

where the terms have been regrouped by their importance for charge dynamics. The first

term is the dominant one. It comes from expanding the time-dependent wavefunctions (or
coefficients) up to the first order of Eq. 2, only keeping the diagonal contributions, and it is
determined by the excited state expectation values of the observable. These quantities can
be obtained from linear response TDDFT [42,43]. The second term, arising from transitions
between excited states, originates from the second-order expansion of the time-dependent
wavefunctions in Eq. 2. The third term, in the case when Oy;(r) ~ 0 outside the ground
state localization, contributes little to the second-order response, this is the linear-response-
like term. Unlike the linear response, the first two terms in the second-order contribution
involve the full set of matrix elements O;;(r), qualitatively they contain all the information
of the exact time-propagation expression in Eq. 2. Relying on the excited states overlaps, the
second order is able to propagate charge beyond the extension of the ground state, see the
black shade on Fig. 1(b). However, the overlap between an excited state, the ground state and
the perturbation, V,;, has to be non-zero.

Evaluating Eq. 13 requires computing the overlap integrals V;;, which can be performed
in advance. Importantly, only the elements involving the ground state of the V;; matrix enter
the first two terms of Eqs. 13. Considering the symmetry of the spatial part of the second term
in Eq. 13 with respect to the exchange of I and J, the sum is reduced to only terms with I > J.
The temporal dependence is governed by the factors B and B.

In the case of the second order induced charge density dn(r, t) for the instantaneous per-
turbation in time, V,,.,(r, t) = u(r)o(t), the time-dependent parts B;’Jl(t) and B;/J”(t) become:

B(t) = 60(¢) [, dty [, dtycos[Aggt + Agyty + Agyty]8(61)8(ty) = O(t) cos[Age()[14)
B;/}l(t) = Q(t) fot dtl J-Otl dtz COS[AIOtl + AJIt + AOJtZ] 5(t1)6(t2) = 9(t)2 COos [AJI(t)],
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which results in BE)’}(t) = 6(t). This gives a constant offset to the charge dynamics necessary
to the charge separation.

Considering further an oscillating time dependent part of the external potential,
V.t (1, t) = u(r)0(t)sin(wt), the second order time integrals become:

¢ t
B;}(t) = Q(t)f dtlf dtzCOS[A10t+AJIt1+AOJt2]sln(0)t1)sln(a)t2)=
0 0

o(t) (2@2 cos[Ajgt] + w(Ay; —w)cos[(Ajg+ w)t]— w(Aj; + w)cos[(Ayy— w)t]

2(A2, — w?) (A}, —w?)
_ﬂ . (AJ()AIO+2w2)(cos[2wt]_COS[Alot])
A (coslAnt] =1+ L 40 ). (15)
Iy (1—cos[2wt])  2w?+ w(Asy— w)cos[(Ajg+ w)t]— w(A o+ w)cos[ (Ao — w)t]
B ()= 0(0)] o 207 — oy |.ae)
o(t)

B;‘?(t) (20)2 COS[AIJt] + (AJOAIO + 0)2) - (AJOAIO - O)Z)COS[ZO)t]

2(A2, — w?)(AZ, — w?)
—w(Ajp+ w)cos[(Ajg— w)t] —w(Ajp + w)cos[(Ajg— w)t]
+w(Ajg— w)cos[(Ayg + w)t]+ w(Ajg— w)cos[ (A + co)t]). a7z

In B;’}(t) the resonance is reached when either w or 2« match the transition energies. The

B}/J”(t) term is resonant only when the transition energies match w. The time dependence
of the second-order response features oscillations at frequencies determined by the transition
energies Aj;, the perturbation frequency w and 2w, as well as their sums and differences.
Beyond the oscillatory behavior, a key contribution arises from the constant offset in B(/)’}(t),
which ensures that the induced density vanishes at t = 0. This term shifts the dynamics to en-
able charge separation (see Sec. 4). At resonance conditions A /o + w = 0, the second order

response diverges faster than the first order (due to the 1/(A3) — w?)? in Bg}(t)), indicating
a breakdown of the response theory. Additional resonances occur when Ay + 2w = 0, but
these are less significant far from the ground-state region, since it only enters the third term
of Eq. 13.

In the second order current-density response, for real valued wavefunctions j;;(r) = 0, the
first term in Eq. 13 disappears. For an instantaneous delta-function perturbation, the current
density follows from Eq. 14 by replacing cos[A;;/ot] with isin[Aj;/ot]. In the case of an
oscillating perturbation, the corresponding expression for the current density time integrals
that enter Eq. 13 read:

B/](t) G(t) (Za)zsln[Alot]+O)(AJI—CO)SIH[(AJO+Cl))t]—a)(AJI +C())Sln[(AJO—(D)t:| .
g 2(A%,— w?) (A, —w?)
Doy . AjoApe+2w?)sin[Apgt]— 2w (Ao + 24 0) sin[ 2wt
_ﬂSIH[AIOt]_( JO—=10 ) [ 102] 2( 10 JO) [ ]), (18)

2(A%,— w2)(AZ) — w?)
+w(Ap— w)sin[(Ajg+ w)t]— w(Ajp + w)sin[(Ajg — w)t]—
—(A g0 — @)sin[(Ago + )]+ (Ao + w)sin[(Agg — w)t]).

8
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For an oscillating perturbation a non-vanishing DC component in the current emerges at res-
onance due to the terms like limy, 4, %—fﬁ)t] = t. In the case of a perturbation by a
vector potential, this effect corresponds to the generation of a shift current, also known as the
bulk photovoltaic effect (BPVE), as discussed in Refs. [44,45]. This mechanism enables net
current flow in the absence of external bias and plays a central role in nonlinear optical and
transport phenomena.

In the linear and quadratic response, for an oscillating perturbation, a convergence pa-
rameter can be identified from Eqgs. 10 and 11 in linear and Egs. 15-19 in quadratic response,
I/(Ajy £ w), where I is the perturbation amplitude. The response theory breaks down if I is
large or if the resonance is reached Ay = £w.

2.3 Higher orders: what can they add?

To understand the contributions of higher orders, it is useful to look at the density matrix
expansion defined in Eq. 5 and the corresponding overlaps between the states. The focus here
will be on propagating the charge far from the ground state and from the perturbation.

The main contributions to the density matrix in first order are coming from one of the
elements of the commutator:

p}})(t) o< VorBry ()8 (20)

In linear response, only off-diagonal elements of the density matrix contribute, while diagonal
terms such as p(()%) vanish. As a result, net charge transport requires the inclusion of higher-
order processes. In the second-order response, all matrix elements can contribute, since rel-
evant terms in the commutator of Eq. 5 are not restricted by §,;, enabling asymmetry and

transport in the induced dynamics. One of the elements of the second order of Eq. 5 is

pg)(t) o< VorVyoByy (1) (21)

The condition for a nonzero second-order contribution is a finite overlap between the excited
states I and J that enters the observable O;; in Eq. 2, the ground state, and the applied pertur-
bation. Similarly, the third-order (and higher-order) response generate the full set of density
matrix elements, e.g.

3 RV
P%J)(t) o< Z VorVik VkoBryk (t). (22)
X

In this expression, contrary to the second order, not all the excited states (e.g. J) must overlap
with the ground state. Instead there is an extra overlap between states K and J and the
perturbation and K must overlap with the ground state.

Consider two scenarios: first, when the perturbation is localized in the region of the ground
state, which is illustrated in Fig. 1(c). In this case, the third-order response behaves similarly
to the second-order response in terms of charge propagation. Shaded in black area is the
overlap between the states I and J that contributes to an observable of interests, O;;(r) (see
Eq. 2). This area is the same in second, third and higher orders, meaning that the third (and
higher) order response cannot propagate charge significantly further than the second order
for a localized perturbation due to the persistent presence of the V,; terms across all orders.

In the second scenario, involving a fully delocalized perturbation (Fig. 1(d)), charge trans-
port can extend beyond the range achievable in the second order. Here, when state J overlaps
with K, which in turn overlaps with the ground state, there is a potential for charge to propa-
gate further (black shaded area) that is not accessible by second order (see Appendix A).
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For the fourth and higher orders, the situation remains similar. For a perturbation localized
within the ground state, the requirement remains that all states must overlap with the ground
state. The only quantitative change will be added from more elements like Vi ;. In the case of
a completely delocalized perturbation, higher-order responses allow for further charge prop-
agation through sequential overlaps between the states, i.e. there will be additional elements
added into the chain, e.g. ¥, - ¥; - ¥; - U - ¥,. However, of course, for a weak perturbation,
these contributions will be smaller than in the second order.

3 The model
100
Eigenstate
Bmm State 0
101 State 1
Bm State 2
oy 2 I State 3
3 = State 4
(6 Bl State 5
o ¢ 15 10
h* fo Lt S
YA Z 10744
g g N
abs ¢ c 10-5

N 1
8v &‘v 8v0 )
.f' \1’3_7— e 10767 vl vo <0 cl
Sites

Figure 2: Left: Site model used in this work. The model is divided into three regions:
absorber in the middle, electron transport layer (blue) and hole transport layer (red). N +1
electrons occupy lower energy (valence) sites vi connected with the hopping t, = 1. The
N + 1 higher energy (conduction) sites ci, connected by a hopping t;, = 1 are separated
by a single site energy e? - e(v) = 10t in the absorber. The external field arrives in the

absorber region. Right: matrix element (\Iloléjéilllll) between the ground and excited states
for t, = 0.1t} projected onto the sites for a system with two valence and two conduction
sites. State 5 doesn’t have an overlap with the ground State O.

To illustrate this discussion and to get further insight, we will use a model that simulates
systems with interfaces where an external perturbation excites a charge in one region or ma-
terial, after which the excited charge propagates into another region or material. This model
aims to demonstrate charge separation into electrons and holes, a process prevalent in op-
toelectronics and particularly in photovoltaic systems. The choice of the model has to be a
minimal yet comprehensive testbed for response theory in charge transfer. It should provide
discrete eigenstates (we are working with finite systems), controllable energy offsets and ex-
plicit control over the matrix-element overlaps that couple the ground state to excited states
(cf. V; in Secs. 2.2-2.3). This setting contains the ingredients needed to diagnose when linear
vs. quadratic response suffices for charge dynamics and separation, while keeping the analysis
transparent. Our focus here is not on reproducing device-level numbers, but on establishing
qualitative mechanisms and regimes of validity. We emphasize that infinite and semi-infinite
systems as well as 2D and 3D dimensional interfaces are outside our present scope. We ex-
pect the semi-infinite leads to adjust spectral densities and long-time tails, that would change
numbers and parameters of validity and would increase the period of oscillations to infinity.
Increasing the dimensionality will allow a more realistic study of the charge dynamics, where
the charge can move in the interface plane. However, the qualitative overlap-based conclusions
we draw about the order of response needed for transport will hold. We leave the extensions

10
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322 with realistic electrodes and environments to future work.

323 Our Hubbard-like model consists of N + 1 lower energy sites and N + 1 higher energy sites
322 and a number of electrons N, = N + 1. The illustration of the model and the extension of the
325 ground state can be found in Fig. 2.

N N N—1 N—1
N l"T I\
H—ZE vi v1+z €.CciCei Z th(cwcv1+1+cw+1 v1) Z th(cclcc1+1+ca+1 c1)+ta(cvocc0+ccocv0)
i=0 i=0 i=0 i=0
(23)
326 Were Cy; (6211.) annihilates (creates) a fermion on site i = 0,...,N of side a € {v,c}. The on-

327 Site energies are eil; ty, is the nearest-neighbor hopping amplitude; t, is a local hybridization
328 between v and c¢ at i = 0. The first lower energy site vO and the first higher energy site c0 will
320 represent the region, where the external perturbation acts. This region is called absorber. The
330 rest of the low energy sites represent the hole transport layer and the rest of the high energy
331 sites - the electron transport layer. In the following we choose the hopping between the vO
332 and cO sites, t, < tp, such that, the N, = N + 1 electrons in the many-body ground state will
333 mostly occupy N + 1 lower sites, vi, and have a little occupation of higher energy sites, ci (see
334 the blue column in the right panel of Fig. 2 for a system with 4 sites). Therefore will can call
335 the lower energy sites - valence sites and higher energy sites - conduction sites. No spin is
336 included, except in the last section 4.5.

337 For most of the discussion below we consider 2 valence and 2 conduction sites (unless it
338 is stated otherwise). The characteristic energy difference in our system between conduction
330 and valence sites is e? — e(v) = 10ty. The energy difference between the absorber region and
340 electron/hole transport layer is ei e 68 o= 1t;,. Except for the validity limits of response
3a1  theory, the overall conclusions do not depend on the particular parameters.

342 The external perturbation acts only in the absorber region and is defined as

343 ext(t) =10;.00 Jvo(ccoc 0+¢)oCc0)e(t). We have chosen such perturbation in order to study the
344 dynamics far from it. We have verified that a delocalized perturbation that acts on the whole
ss5  model doesn’t change the main conclusions about the validity of the second order response
a6 theory. In both first- and second-order responses, the dominant terms involve Vy;, it contains
347 the overlaps between excited states and the ground state (see Eq.8 and first two terms of
sas  Eq.13). Figure 2 (right panel) shows (\IIO|61.T61-|\I/I) for t, = 0.1ty, revealing nearly an order-
30 of-magnitude larger overlap at absorption sites (v0, c0) than in the transport layers (v1, c1).
ss0 Extending the perturbation to other sites thus has negligible impact on Vy; (see Appendix A).
351 The strength of the perturbation I and the perturbation frequency w are the parameters that
352 differentiate between different response regimes.

353 Consider a natural electric field scale in the Hubbard model as a field that does work
ss4 comparable to a hopping t; ~ 1 eV over a distance a: E, ~ a = 10'° V/m, where a = 1
355 and e - an electric charge. A solar intensity on a clear day can be assumed to be I, ~ 1000
ss6 ' W/m? [46], converting it into an electric field intensity makes E; ~ 10® V/m, which in the
557 Hubbard model translates to I ~ 10™*t,. This is a very weak field, compared to a typical
358 pump-probe experiment, where a pump probe I ~ (0.1 —1)t;, [47,48]. In fact, as can be seen
350 in the next section, at I ~ 10*¢;, one can already observe some second order effect on charge
360 dynamics.

s» 4 Results and discussion
362 Here, the focus is on the excited charge dynamics within the presented model via examining the

363 induced density and current. For the site model, this simplifies to the dynamics of a change on a
364 site occupation number, 6n;;(t), and the current between two sites 6 j;;,1 (t) with respect to the
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ground state. Our objective is to achieve charge separation, where electrons are transported
to the electron transport layer, i.e. positive én;;(t), and holes to the hole transport layer, i.e.
negative 6n;;(t). This should also result in a net DC current, i.e. (j;;+1(t)); # 0.

In the following the difference between the exact time propagation defined in Section 2.1
and the linear and quadratic response theory will be examined.

4.1 Charge dynamics: linear and quadratic regime

le-7 le-4

—_ - S S — e, W s @ le-5
N e~ time prop e . x' 1.50 e~ time prop e, x! e, xV &y
5 — ldaw)?

125 - lde-(@)P?

1 1.00

3
0.50

(o]
(o]
ldi(c)?

2
0.25]

-1
0.00 \ 1
= -0.25 o L
0 1 2 3 4 5 6 7 0 2 4 6 8 10 5 2 6 8 10 12
t t w

Figure 3: Left and Middle: Density of electron transport layers induced by an oscillating per-
turbation (for hole transport layer, the density is identical with a minus sign) for a system of
two valence and two conduction sites. Orange lines indicate the linear response contribution.
Blue lines - combined linear and quadratic contributions and black lines - exact dynamics.
Left: e(t) = 107*t, - O(t)sin(wt) Middle: e(t) = 1072t;, - O(t)sin(wt). Right: delta-kick
perturbation e(t) = 6(t). Fourier transform of the dipole moment on the absorbtion site cO
(red) and on the electron transport layer c1 (blue).

Introducing the hopping t, # 0 between the valence and conduction sites, e.g. between
site v0O and cO, the ground state will have contributions from the conduction sites ci. Con-
sequently, the matrix element entering the linear response, n01 = (\IJO| ¢;[\¥;) # 0, will be
non-zero (right panel of Fig. 2). This results in a non-vanishing linear response contribution,
as 111ustrated by the orange curves in Flg 3 (left and middle panels) Hefeﬁnekfhreﬂgheﬂ{

hﬂ&fh&dﬁf@%h@l&fﬁm&pﬁf%%@f The dens1ty of the hole transport layer is 1dent1ca1 to

the electron transport layer with a minus sign

In this subsection the perturbation frequency is «w = 10t;, which is not resonant. For small
enough perturbation I < 10~*¢;, (Fig. 3 left), the charge dynamics is predominantly governed
by the linear response regime. The linear response (orange lines) closely matches the exact
dynamics (black line) over extended simulation periods. Only small differences between the
linear response and exact dynamics are observed.

For perturbations strong enough to separate electrons and holes, I > 10*t;, (see Fig. 3
middle panel), the linear response induced charge (orange lines) oscillates around zero, as
indicated by the time dependency part of Eq. 10. The separation of charge occurs, when the
induced density is positive on the electron transport layer (solid lines) and negative on the hole
transport layer (dashed lines). The linear response alone always oscillates between positive
and negative values and fails to separate charges for any perturbation strength. Including the
second order response (blue lines) function x(z) recovers completely the charge dynamics.

For a non-resonant perturbation frequency, no deviation from exact dynamics is observed
for any simulation time, which can be explained by the oscillating nature of the response. In
fact, according to Eq. 15, the time dependency is governed by periodic trigonometric func-
tions. Thus, in the finite system, if the response dynamics is accurate for the largest period of
oscillations t > Aii — (or for the smallest A;; + w excluding resonance), it remains accurate
for any simulation time. As system size increases, the longest oscillation periods grow, mak-
ing it increasingly challenging for second-order response to reproduce exact dynamics at long
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times.

Remarkably, we have additionally verified that even up to 20 sites, no deviation is seen
between the linear (left of Fig. 3) or quadratic and linear (middle of Fig. 3) response and exact
time propagation at the most distant sites from the absorber for the considered perturbations.
This is again explained by the fact that, for the particular localised spatial perturbation the
higher orders do not add new possibilities to transport charge (see analyses in Section 2.3).

The right panel of Fig. 3 shows the Fourier transform of the dipole within the absorber
(orange) and in the electron transport layer (blue) for a delta-kick perturbation, applied lo-
cally in the absorber. This perturbation allows us to see the full spectrum of excitations. The
lowest energy peak corresponds to the energy difference between excited states, which cor-
responds to the second order contribution. It illustrates how second-order effects dominate
away from the absorber region. While linear response accurately captures coherent dynamics
at the perturbation site, relevant for optical absorption, second-order contributions become
dominant farther out at electron/hole transport layers, enabling charge transport (see middle
panel of Fig. 3). This aligns with Fig. 1, which shows that second-order matrix elements allow
for charge propagation away from the perturbation.

4.2 Current vs. charge dynamics

0.04t <0

§0.02

Jii-1

L4 Q

f

0.00 -0.2

004 <l — W gy
X{l)

i
4 ) : i
cl ¥ 0.005
. «+++ time prop k P "
'S o.on il VMY 0.000
0.00 -0.005
c2

ViV
VAT REERYA
0 5 10 15 20 25

t

Figure 4: Model with 3 valence and 3 conduction sites with an oscillating external pertur-
bation 0.01t;, sin(wt) for non-resonant w. Exact time propagation (black) and the response
theory (blue) and only from the linear response (orange). Left: Occupation of 3 conduction
sites (top to bottom: c0, c1 and c2). Right: The current between the two sites (v0-c0, cO-c1
and c1-c2).

Jiji-1

0.04r €2

<
& 0.02

Jiji-1
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30
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t

We will now compare the current density evaluated in linear Eq. 11 and quadratic Egs. 18-
19 response to an exact time-dependent current density evaluated with Eq. 2. The same
current can be obtained from the continuity equation, % = —V - j(r, t), which is valid
order-by-order.

Fig. 4 shows the density (left panels) and current (right panels) for three conduction sites.
The perturbation is oscillating with a non-resonant frequency, the amplitude is such that a
slight deviation between the second order response and time propagation can be seen. The
advantage of the response theory is that it is possible to separate oscillating linear response
(orange lines in Fig. 4) from a less oscillating (with a large period of oscillation) second order.
This can be useful during the analysis and for a potential comparison to experimentally mea-
sured current. In the absorber region c0, where the linear response contribution is similar in
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Figure 5: Same model as Fig. 4. Current at resonance frequency at the last site of electron
level c1 — c2 evaluated in response theory (blue) and in exact time propagation (black).
Left: beginning of the dynamics, where the time propagation and second order response
agree. Right: later part of the dynamics, where the response starts to diverge. Red lines are
the average current over the full time interval (DC component) from second order response
(solid) and from time dynamics (dashed). Note that the scale is different between the two
panels.

magnitude to the second-order term, the current, primarily capturing charge oscillations, can
be well approximated by the linear response. This is not true for the density itself, so clearly,
the validity range of the linear response current extends further than that of the linear response
charge density. The current, which is proportional to the time derivative of the charge density,
is more sensitive to the oscillations of the density rather then to its overalls shifts. Moreover,
the current operator is more delocalized than the density operator, which also results in an
extended validity of the linear response current. Fig. 4 also demonstrates the conclusions of
section 2.3: for a localised perturbation, in the linear response one can only propagate charge
in the vicinity of the perturbation and close to the ground state. In the second order, where
the overlaps between the excited states are present, charge can be propagated much further.

Figure 5 shows the current at resonance in response theory and in exact propagation. The
left panel shows the beginning of the simulation (up to 60t;), as in the case of charge dynamics,
the two approaches, exact and response, agree (except some oscillations in the beginning that
are due to the resonance). Even at the end of the simulation the difference between the
response theory current and the exact one is not dramatic (right panel of Fig. 5). However,
the charge dynamics obtained from response theory deviates from the exact propagation and
diverges rapidly (see blue lines in the upper left panel of Fig. 6), leading to an unphysical total
occupation. While the timescale of divergence differs in smaller systems, we have verified that
the conclusion holds for the system considered here. The good behavior of the current can
be seen by computing the average current (red lines of Fig. 5), also being a DC component of
current density or shift current (for this model) can only be obtained at resonance, as can be
seen from Egs. 18 and 19. Up to ~ 1000t two DC components (from second order and from
time propagation) agree, after that the second order DC component starts to diverge from the
exact one, and it will continue to diverge due to the presence of a linear in time term in the
expression Eq. 18.

4.3 Second order: limits and analyses

Here the limits of quadratic response theory in terms of perturbation frequency and ampli-
tude will be examined. Here and in the next sections only charge density dynamics will
be discussed. First, in Fig. 6 (top left panel), keeping the perturbation amplitude fixed at
I = 0.1t;, we vary the frequency from the near resonant (blue lines) to a non-resonant (orange
line). Out-of-resonance the response aligns with the exact dynamics (green line). Approach-
ing the resonance, the denominator in the second order equations Egs. 15-17 approaches
zero, making the response theory non-convergent (blue and orange dashed lines). In the
exact time propagation (solid lines) in the resonance (A;; = w) the response can be fitted to
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Figure 6: On the top panels we are following occupation of the electron transport layer. The
hopping between the conduction and valence sites is t, = 0, which makes the linear response
to vanish. The perturbation is e(t) = Isin(wt). Top left: Quadratic response and exact
time propagation for different perturbation frequencies w. Top right: Black solid line result
obtained using y?, colored lines correspond to exact time propagation I=2 - n®”(t). Bottom
left: Root mean squared error map of the induced density in the electron transport layer
obtained up to quadratic response as a function of perturbation frequency w and amplitude
I (in the units of t;). Bottom right: Average energy received by the system over a fixed
simulation time as a function of perturbation strength obtained from exact time propagation
for resonant (orange) and non-resonant (blue) frequencies. Black dashed lines are quadratic
fits. Blue and orange dashed vertical lines correspond to the validity range of the quadratic fit.
The inset (obtained with exact time propagation) shows the exact charge density at electron
layer for a non-resonant perturbation at three different intensities.

cos[(Apy £ werf)t]/(Ary + wep) with an effective frequency w,¢r < w. The role of higher
orders is to introduce such more fluctuating terms.

Turning to the variations of perturbation amplitude, a fixed off-resonant frequency is con-
sidered. As shown in Fig. 6 (top right panel), the quadratic response remains accurate up
to I = 0.3t;. Beyond this threshold, higher-order effects become visible: the amplitude of
charge oscillations decreases, and additional high-frequency components appear. The bot-
tom left panel of Fig. 6 shows the root mean squared error (RMSE) as a function of external
perturbation amplitude and frequency. Using a threshold RMSE of 0.01, the second-order
response is valid for I < 0.01t; near resonance (orange line) and up to I ~ 0.3ty in the off-
resonant regime (blue line). From the overall trends in the upper panels and in the bottom
left panel of Fig. 6, a convergence parameter for the validity of the response theory becomes
evident: I/A;; £ w < 1 that was already discussed at the end of section 2.2.2. Approaching
the resonance, the valid perturbation amplitude is decreasing proportionally. This condition
delineates the regime where the perturbative expansion converges and second-order theory is
quantitatively reliable.
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Next, we investigate the amount of energy transferred to the system for a fixed period of
time as a function of the perturbation amplitude, defined as:

(Epere)T = %f de(T(t)|[H (L)) — Eo. (24)
T

The bottom right panel of Fig. 6 illustrates this quantity, computed in exact time propagation,
for a resonant (orange) and non-resonant (blue) frequency. Characteristic energy behaviour
for a linear regime is when the energy delivered to the system by an external field is propor-
tional to the square of its amplitude, Epery O< I 2 [28]. The figure shows that this holds up to
I ~ 0.6t;, for a non-resonant and up to I ~ 0.1ty for a resonant frequency. Above this val-
ues higher-order effects emerge. These thresholds exceed the intensities where deviations in
second-order charge density from exact dynamics become visually apparent (see Fig. 6, bottom
left; orange for resonant, blue for non-resonant cases). This indicates that the energy trans-
ferred into the system is still within the linear regime, when the deviations in the second order
response appear. The inset of Fig. 6 (bottom right) shows the charge density at electron layer
for a non-resonant perturbation for three intensities, before the energy saturation (dashed),
at the maximum of energy (solid) and after the maximum (dashed-dotted). The saturation
in energy is reached, when the induced charge density reaches its maximum. Beyond the
saturation, the induced charge density decreases, resulting in the decrease of average energy.

4.4 Second order: approximations
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Figure 7: Left: matrix element (\Illlélﬁi‘éil\ll ;) computed on the last electron site of the sys-
tem of 4 valence and 4 conduction sites (far from the perturbation) as a function of energy
difference E; — E;. In red only the contributions between the ground and excited states are
selected. Right: An approximation to the second order, consisting in keeping only the diag-
onal elements of the density matrix or, equivalently, only the first line of Eq. 13.

Calculating the second-order response function is computationally demanding, so approx-
imations are necessary. Its structure is analyzed here and feasible approximations are recom-
mended. Firstly, spatial and temporal integrals should be handled in advance, either analyti-
cally for temporal perturbations (as in this work) or numerically for spatial perturbations when
modeling real materials. It will help to avoid the calculation of the entire response function,
limiting it to the elements that couple to the external perturbation.

A primary bottleneck in calculating second order response is the summation over excited
states (Eq. 13). Note that here the matrix elements with the ground state (red points in Fig. 7
left) are small compared to the matrix elements between different excited states. The matrix
elements with the ground state are present in the linear response Eq. 8 and in the last term of
the second order Eq. 13 via Oy;(r). These linear-response-like terms are then neglected without
any effect on the results. This approximation reduces drastically the amount of computation,
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now one only needs to compute the wings of the spatial integral with the perturbation V.
The matrix elements entering the second term of Eq. 13, (\Illléjéi |¥;) tend to vanish for ener-
getically distant states, supporting the introduction of a cutoff (here is at E; — E; ~ 11t see
Fig. 7 left). Left panel of Fig. 7 also confirms the importance of the first term in Eq. 13, since
the biggest contribution comes from the diagonal matrix elements.

An important approximation is obtained by only keeping the first line in Eq. 13, which
means expanding the time-dependent wave functions on both sides of Eq. 2 only up to the
first order. Only diagonal elements of the density matrix of Eq. 2 are introduced, which should
capture the non-coherent processes and result in charge transport and separation. The quality
of this approximation can be seen in Fig. 7 (right). Indeed, it qualitatively captures the second
order response, this has been verified for a large range of perturbation intensities and frequen-
cies. The CPU time for this approximation scales as the linear response one with system size
(see Appendix B). Moreover, as discussed earlier, all the ingredients can be obtained within
the linear response TDDFT.

4.5 Interaction

Finally, it is interesting to explore whether the Coulomb interaction changes the validity of
linear and quadratic response. The interaction primarily modifies the eigenenergies, lifting
some degeneracies, but can also modify the eigenfunctions. Onsite interaction can result in
the suppression of the charge dynamics, as it was demonstrated in Ref. [49,50] for the Hubbard
model. It can also create new spatial pathways for charge dynamics in molecules, which was
shown in Ref. [51] by ab-initio simulations.

Here, the effect of onsite interaction +U ), fi; Ai;; for an instantaneous delta-kick pertur-
bation is examined. The spin is introduced, doubling the number of electrons to N, = 2(N +1).
The response and the exact time propagation are computed from the many-body states. In the
current model, Fig. 8 (upper panel), which shows the electron layer occupation, one can ob-
serve a general reduction by an order of magnitude of the charge density flow by increasing the
interaction, as in Ref. [49]. In general, the interaction can change the eigenvalues, which may
bring the system in or out of resonance with an oscillating perturbation of a given frequency.
This would drastically change the charge separation.

One of the effects of the interaction is altering the ground state, strong interaction pre-
vents the double occupancy of sites (blue, U = 5, vs purple, U = 50, bars, lower right panel of
Fig. 8), which modifies the validity range of response theory. Based on the overlap interpreta-
tion (Fig. 1), a more extended ground state results in a more accurate linear response. Indeed,
in the strong-interaction regime (right panel), where the ground state is delocalized over all
sites, linear response dominates. In contrast, for weak interactions, the ground state remains
localized on valence sites, enhancing the second-order response in the transport layer. How-
ever, as the linear response stays oscillating around zero, the charge separation is suppressed
with the onsite interaction U.

To assess the role of Coulomb repulsion beyond the on-site term, we include a nearest-
neighbour interaction +V >, fi;A; with fi; = A;) + fi4, at fixed U = 5. In the extended Hub-
bard model this term mimics the shortest-range component of long-range interactions [52] and
has been argued to be essential for excitonic effects [50, 53]. The lower-left panel of Fig. 8
shows how varying V affects the charge dynamics at U = 5: for moderate V < U the dynamics
is enhanced relative to the V = 0 case (compare green line of lower left panel to blue line of up-
per left panel of Fig. 8), whereas for larger V it is suppressed, in agreement with Ref. [50]. Our
additional observation is that the second-order response decreases as V increases (compare
dotted, only linear response, and solid lines in the lower-left panel of Fig. 8). The underlying
mechanism differs from the purely on-site case: already in the ground state the local occu-
pation pattern shifts weight toward the higher-energy sites c1 (red bars, lower-right panel of
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Fig. 8), favouring bound electron-hole configurations and thus blocking spatial charge sepa-
ration. This is coherent with the conclusion of Ref. [50] about the increased excitonic effects
for increased V. A full analysis of interaction-driven excitonic effects on charge dynamics and
separation is beyond the scope of this work.
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Figure 8: Effect of the interaction on charge dynamics. The perturbationise(t) = 0.1t,-6(t).
Upper left: onsite moderate interaction U = 5. Upper right: onsite strong interaction U = 50.
Lower left: onsite interaction U = 5 and varying nearest-neighbour interaction V. Lower
right: site occupations n; = (fi;; + ;) of the ground state for varying onsite U and nearest-
neighbour V interactions

5 Conclusions

Time propagation of a wave function for a system under perturbation allows one to access
the time evolution of all observables. In this article we have focused on the charge dynam-
ics, charge separation, current and energy transfer under various weak perturbations, perti-
nent to optoelectronic and photovoltaic applications. We have explored and benchmarked a
response theory framework to compute these quantities. Using a numerically solvable site
model, we demonstrated that linear response accurately describes coherent charge oscilla-
tions under weak perturbations but fails to capture any net charge separation. In contrast,
quadratic response theory includes off-diagonal density matrix contributions that enable asym-
metric charge propagation and net transport, providing excellent agreement with exact time
propagation over a broad range of conditions.

We identified a clear criterion for the validity of second-order response: the amplitude-to-
resonance ratio I /(A;+w) < 1. This sets the boundary where perturbative approaches remain
reliable, with broader validity in non-resonant regimes. We introduced practical approxima-
tion to the second order response, that only requires quantities that can be obtained within
the linear response TDDFT, which drastically reduces computational demands with minimal
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loss of accuracy. Second-order response also correctly captures DC components in the current
(shift currents), absent in linear response, and remains robust even as density dynamics begin
to diverge. Notably, we find that strong on-site and nearest-neighbour interactions extend the
range of linear response applicability by delocalizing the ground state.

These results highlight the predictive power of the response theory up to the second order.
They also show that with respect to long-time propagation the response theory may be more
efficient with respect to full time propagation. While its formal scaling is worse - due to the
double sum over states - response functions need only be computed once and allow access to
all time scales and perturbations. In practice, symmetries, cutoffs, and proposed controlled
approximations significantly reduce computational cost. We expect the response theory to
hold for weak perturbations when exploring realistic systems with interfaces and interactions
such as electron-hole or electron—-phonon coupling.

This work highlights the possibility of response theory for accurately simulating spatially
resolved charge dynamics in systems influenced by varying external perturbations, making it
a valuable tool for studying fundamental questions and for contributing to the technological
advancement in photovoltaic and optoelectronic applications.
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A Changing perturbation extension

Figure 9 (left panel) shows the effect of a delocalized external perturbation

vV(t)= I5ﬁ+1(6;réi + 63461-“ + 61.T+1él~)e(t) on the dynamics of an occupation at electron layer
c1 under strong driving (I = 0.3t;,), where second order start to break down. For a local-
ized perturbation (orange), only the absorber region is perturbed, as throughout this work.
In contrast, a fully delocalized perturbation (green) acts on all sites. The difference arises
from additional matrix elements V;; in the third-order response (see Eq. 22) and is a purely
third-order effect, becoming relevant at longer propagation time. Right panel of Fig. 9 shows
that the response theory (blue line) cannot capture the differences between the delocalized
perturbation and localized one obtained in exact time propagation (black line). This means
that the delocalized perturbation can shift the regime, where the second order is valid into
weaker perturbations.
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Figure 9: The effect of a localised (on absorber) and delocalised perturbation on charge
dynamics of the occupation of the last site on the electron transport layer. The perturbation
amplitude is 0.3t,, where the third order starts to become important. Left: computed in exact
time propagation (TP) under extended perturbation (green) and localized on the absorber
(orange). Right: differences between TP under extended and localized perturbations (black)
and the same difference in the response theory (blue).

s0 B Scaling with system size

611 Figure 10 shows CPU time scaling with system size. For exact time propagation (blue), each
612 time step involves a full diagonalization, scaling as O(N?®) with Hilbert space size N. Linear
613 response (orange) requires matrix-vector products and a single sum over states, also scaling
614 as O(N?). Quadratic response (green) involves a double sum, leading to O(N*) scaling. The
615 approximate second-order scheme from Sec. 4.4 reduces this to O(N 3) (red). The the full
616 second-order computation time can be reduced in practice by considering cutoffs in the sum-
617 mations and using symmetries. Moreover, the response functions are naturally parallelizable.
618 Instead, time propagation cost is rather a lower limit, since it requires a certain number of
610 time steps and a time-step size convergence study. Importantly, unlike time propagation, once
620 computed, response functions give access to all time scales and allow changes in external
621 perturbations without redoing the full calculation.
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Figure 10: CPU time to compute one step of exact dynamics (blue), full scaling of first
( x(l)) (orange), second ( X(Z)) (green) order response and an approximation to second order

response ( X(z) approx) (red) as a function of number of sites. Each calculation is performed
on 1 CPU core.
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