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We construct a generative network for Monte-Carlo sampling in lattice field theories and beyond, for
which the learning of layerwise propagation is done and optimised independently on each layer. The
architecture uses physics-informed renormalisation group flows that provide access to the layerwise
propagation step from one layer to the next in terms of a simple first order partial differential
equation for the respective renormalisation group kernel through a given layer. Thus, it transforms
the generative task into that of solving once the set of independent and linear differential equations
for the kernels of the transformation. As these equations are analytically known, the kernels can be
refined iteratively. This allows us to structurally tackle out-of-domain problems generally encountered
in generative models and opens the path to further optimisation. We illustrate the practical feasibility
of the architecture within simulations in scalar field theories.

I. INTRODUCTION

Generative networks for Monte-Carlo simulations on
high-dimensional data spaces with a given distribution
face two out-of-domain (OOD) problems that hamper
progress in this area.

The most obvious one is related to the high dimension-
ality of the data space that typically renders the learned
distributions inaccurate. Roughly speaking this originates
in the fact that interpolation problems in high dimensions
are equally ill-conditioned as extrapolation problems in
low dimensions. Consequently the computational costs of
the final sampling steps with the true distribution scale
badly with the dimension, which is a manifestation of the
curse of dimensionality.

The second problem is a standard extrapolation prob-
lem and may be explained as follows: assume that the
network has been trained up to a given sample size related
to a limited information content: the size of a sample is in
one-to-one correspondence to the access to a specific set of
moments or cumulants of the distribution with the orders
n < Nmax, where Nmax increases with the sample size but
scales very badly. For instance, for a scalar lattice field
theory in two space-time dimensions, the dimensionality
of the data space is given by V = Nτ × Ns, where Nτ

is the number of lattice points in the (Euclidean) time
direction and Ns is the number of lattice points in the
spatial direction. In large scale lattice simulations, the
lattice volume V easily reaches 106 to 108, depending on
the space-time dimension.

Further sampling/training gives access to higher order
moments/cumulants with n > Nmax. However, the infor-
mation carried by the higher order moments, or rather
their irreducible parts, is not contained in the lower ones.
This information is provided by the final accept-reject
step with the true distribution which hence is increasingly
expensive: it scales as simply sampling with the true
distribution in the first place. These two OOD problems
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lead to the bad scaling properties in the limit of large
dimensions observed in many generative networks.

We hasten to add that the above problems are absent
for distributions which have a finite number of indepen-
dent moments after a reformulation within appropriate
degrees of freedom but have a seemingly infinite number
of independent moments in the given degrees of freedoms.
If a generative network can unravel such a typically highly
non-linear transformation within a rather finite data or
training set, the generative task is practically solved.

In turn, the general situation asks for the construction
of networks or sampling algorithms for which the problems
above are solved constructively rather than hoping for
the above underlying simplicity. Such a framework has
to use the structural information that is encoded in the
normalised statistical true distribution p(φ),

p(φ) =
1

N e−Ŝ(φ) → e−S(φ) , (1)

with the normalisation N and the exponential measure
factor Ŝ(φ). In the second step in (1) we have absorbed
the normalisation in a shift of the action, S = Ŝ + logN .
Then, S is nothing but the negative log likelihood and
contains all the structural information of the distribution.
In physics applications Ŝ(φ) is also called the action
or effective Hamiltonian and φ is a field. For general
applications, φ is a map from the set of data points D to
the set of data values T and both sets may be discrete or
continuous.

In the present work we suggest such a generative archi-
tecture based on physics-informed renormalisation group
flows [1] (PIRGs) which aims at solving constructively
the two OOD problems discussed above. PIRGs offer
a comprehensive and general framework for invertible
transformations of high-dimensional distributions with
the RG-time t, analogously to the layerwise propagation
and transformation in invertible networks. Importantly,
all these steps follow tractable analytic differential equa-
tions which is key for the resolution of the OOD problems.

We proceed with a rough explanation of the construc-
tion principle with the example of a lattice field theory
in mind. For this purpose we consider a deep network
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Figure 1. Illustration of the construction principle of PIKs for
degrees of freedom ϕ that are propagated through the layers
Li using independent kernels ϕ̇i.

of layers Li with variables ϕi on the layer or rather the
respective lattice. This is depicted in Figure 1.

The PIRG approach allows the construction of maps
ϕi → ϕi+1 on the basis of the pair {Si(ϕi), ϕi} of the
negative log likelihood Si and the field ϕi on a given layer
Li. The input layer L0 has a chosen pair {S0(ϕ0), ϕ0}.
Natural choices for the input pair are the full action
or negative log likelihood of the true distribution with
ϕ0 = φ and S0 = S or a Gaußian distribution with
S0 = Sfree, where the subscript indicates a quadratic
action. The kernels of these transformations are physics-
informed kernels (PIKs). The respective transformation
of the field ϕi on the layer Li to the field ϕi+1 on the layer
Li+1 is given by a renormalisation group equation for the
pair {Si(ϕi), ϕi}, which is a diffusion equation for Si: for
the negative log likelihood Si this is the Wegner equation
[2], for other generating functions similar analytic RG
equations exist, e.g. the generalised RG equation [3] for
the rate function.

The key point of the PIRG approach is its use of the
diffusive RG equation as a differential equation for the
pair {Si(ϕi), ϕi} instead of a diffusive equation for Si. For
the present generative architecture this freedom is used
as follows: Rather than following the diffusive dynamics
and evolving the action Si, all Si’s are fixed analytically.
Then, the underlying renormalisation group equation is
a simple linear differential equation for the kernel. This
gives us an analytic access to the map between different
layers in a deep network. Importantly, this linear differ-
ential equation does not contain information from the
previous layers, thus completely decoupling the layerwise
propagation steps from each other. With this physics-
informed decoupling structure and determination of the
layerwise map by an RG equation, the sampling network
is to our knowledge qualitatively different from any other
networks. The possible trivial parallelisation as well as
the nature of the analytically known diffusion equation on
the layers structurally resolve both of the OOD problems
mentioned in the beginning. Furthermore, the underlying
RG structure also allows for a systematic and optimisable

upgrade of this procedure by also allowing for a learning
of the set of actions {Si} and hence the construction of
optimised PIKs, also accommodating improved or perfect
actions in the RG procedure [4].

In the present work we briefly review PIRGs in the
light of the present application to generative architectures
in Section II. The general PIK architecture is put for-
ward in Section III, where it is argued that PIKs allow
for the construction of ‘truly’ generative networks. Here
‘truly’ refers to the fact that the probability of the final
accept-reject step stays close to unity. The conceptual
developments are showcased within a zero-dimensional
lattice field theory as well as within first steps in higher
dimensions in Section IV. We conclude in Section V with
a summary and an outlook of some of the natural appli-
cations of PIKs. Some technical details are deferred to
the Appendices, where also some of the machine-learning
driven optimisation aspects are discussed.

II. PHYSICS-INFORMED RENORMALISATION
GROUP FLOWS IN A NUTSHELL

Renormalisation group flows describe the scale-
dependence and general reparametrisations of a given
statistical distribution. While developed in quantum and
statistical field theories, the concept is far more general.
Both aspects are governed by the infinitesimal change
of the distribution with the renormalisation time t. Ac-
cordingly, instead of the field φ in (1), we consider fields
ϕt that are related to φ with a general non-linear trans-
formation. Importantly, we do not have to resolve this
transformation, but only its infinitesimal change from
ϕt → ϕt±ϵ(ϕt). This transformation comes with a change
of the distribution pt(ϕ) and the respective differential
equation is either derived for the measure pt(ϕ) or its
Laplace or Fourier transform

Z(J) =

∫
Dϕ pt(ϕ) e

∑̂
n

ϕn̂Jn̂

, Dϕ =
∏
n̂∈D

∫
Tt

dϕ , (2a)

where

pt(ϕ) = e−St(ϕ) . (2b)

In (2) we have introduced the negative log likelihood
St(ϕ), and the fields ϕ take values in Tt. In general, n̂ ∈ D
labels data points in the discrete or continuous data space.
We have restricted ourselves to the case of discrete data
points in (2), such as also present in our lattice field theory
examples. There, data points are sites on a rectangular
lattice with n̂ = (n1, n2, ..., nd) and ni ∈ [0, 1, ..., Ni,max].
The field ϕn̂ takes real values on each of these lattice sites.
In the present work we use a (hyper-) cubic lattice with
Ni,max = Nmax for all i = 1, ..., d. Then, the field is a
map

ϕ : D → R
D , D = [0, 1, ..., Nmax]

d , (3)
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with ϕ ∈ C, and C is the space of maps (3) with a given
norm, commonly the L2-norm. Typical large lattice sizes
range between Nmax ∝ 103 in d=1,2,3 and Nmax ∝ 102

for d = 4. The most general scale and reparametrisation
RG transformation is accommodated by the flow of the
measure

d pt(ϕ)

dt
=

∂

∂ϕ

[
Ψt(ϕ) pt(ϕ)

]
, pt(ϕ) = e−St(ϕ) , (4)

and was put forward in [2]. Recently, the Wegner flow
has received attention within applications in generative
models and its relation to optimal transport [5–9]. The
flow in (4) is a total derivative and hence leaves the
total distribution Z(0) = 1 invariant. In the absence
of boundary terms and for dTt/dt = 0 this invariance is
given by

dZ(0)

dt
≡ 0 . (5)

The case dTt/dt ̸= 0 has been considered in [1] in the rate
function formulation of PIRGs and is readily mapped to
the case dTt/dt = 0.

An important subgroup of transformations are the
choices Ψt(ϕ) ∝ ∂St(ϕ)/∂ϕ with the RG-time depen-
dent classical action St. Then, (4) takes the form of a
Fokker-Planck equation in high-dimensions, and is re-
lated to the Langevin evolution of the field (Stochastic
Quantisation) and the Polchinski equation [10] for the
Wilsonian effective action. Equation (4) with or with-
out the source term carries redundancies which may slow
down and complicate its numerical solution. For this and
further structural, stability, and numerical convenience
reasons one typically considers the rate function or effec-
tive action Γ(ϕ) obtained from a Legendre transform of
lnZ(J). The respective generalised RG equation reads
[3],(

d

dt
+ ϕ̇t

∂

∂ϕ

)
Γt =

1

2
Tr

[
1

∂2Γt
∂ϕ2 +Rt

(
d

dt
+ 2

∂ϕ̇t

∂ϕ

)
Rt

]
,

(6)

with the ϕ-independent scaling-kernel Rt and the field
transformation ϕ̇t(ϕ). For ϕ̇t = 0 it reduces to the Wet-
terich equation [11], see also [12, 13]. If we set the change
of the scaling kernel to zero, dRt/dt = 0, the two equa-
tions (4) and (6) are related by the choice Ψ ∝ ϕ̇t. For
more details see [1, 14, 15]. Note also that in the func-
tional RG literature the total RG-time derivative d/dt is
commonly written as ∂t.

The key idea underlying physics-informed RG flows [1]
is to exploit the full generality of the Wegner flow (4)
for the distribution, the generalised flow (6) for the rate
function, or related ones for other generating functions:
Instead of solving the flows for a given pt(ϕ), Γt(ϕ) or
other generating function Ft, we keep the coordinates ϕ
general and solve the equations for pairs(

Ft(ϕ) , ϕ̇t(ϕ)
)
, with Ft ∈ {St,Γt, ...} . (7)

Here, ϕ̇t(ϕ) is the local change at a given RG-time t, and
in the examples considered Ft is either the negative log
likelihood or the rate function. For the present purpose
we take the RG-time in a normalised time interval,

t ∈ I with I = [0, 1] . (8)

Here, t = 0 is the initial time and t = 1 is the final time.
In particular, (7) with (4) and (6) also accommodates
solving (4) and (6) for ϕ̇t for a given negative log likelihood
or action St or rate function Γt.

An illuminating example for a flowing pair(
pt(ϕ) , ϕ̇t(ϕ)

)
is the pair that leads to normalising

flows in lattice field theories [16–19]. More specifically, we
consider an inverse normalising flow with the Gaußian ac-
tion S0 = Sfree at t = 0 and the full action S1 = S at t = 1.
This constitutes a map from a free Gaußian theory with
the normalised distribution pfree(ϕ) = exp{−Sfree(ϕ)} to
the theory with full distribution p(φ) in (1). In terms of
cumulants, normalising flows map theories with infinitely
many independent cumulants to a theory with only one
independent cumulant, the second order one. Evidently,
in this case the map accommodates an infinite amount
of information. This is directly visible for the rate
function Γt, where normalising flows constitute a flow
from the rate function of the full theory with infinitely
many non-trivial cumulants to a Gaußian, quadratic rate
function with only one cumulant; all higher orders are
absorbed in the map ϕ̇ via (6).

The PIRG setup with its analytic flows allows us to
include the additional - infinite - amount of informa-
tion within the sampling procedure beyond the training.
The key novel feature of the architecture is a structural
property of the physics-informed RG flows: If the target
action Ft ∈ {St,Γt, ...} is fully specified and known, the
associated map t → Ft is completely independent of the
previous ones and only depends on the target action at
time t,

ϕ̇t(ϕ) = ϕ̇t(ϕ;Ft) . (9)

Put differently, the kernel ϕ̇t of the map is physics-
informed. This perspective has also been used in [8],
where (9) is solved within an architecture with a global
(for all t) loss function. In the present work we use that
(9) leaves us with independent tasks of learning or solving
ϕ̇t for the whole time line from t=0 to t=1. These sepa-
rate tasks represent standard RG-steps and hence carry
the respective physics information. They can be trivially
parallelised and also allow for an independent iterative
optimisation. Importantly, the setup structurally avoids
the curse of dimensionality due to the analytic access.

We close this brief review with the remark, that in the
present work we introduce and illustrate this novel simu-
lation architecture using flows of pt(ϕ) with the Wegner
equation (4). The also highly relevant discussion of the
qualitative reduction of redundancies achieved by using
the rate function or related generating functions as well
as the further key question of full optimisation within
these models is deferred to future works.
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III. SAMPLING ARCHITECTURE WITH
PHYSICS-INFORMED KERNELS

In the present Section we use the PIRG setup to con-
struct general flows with physics-informed kernels (PIKs)
ϕ̇t, (9), in the space of distributions. The general architec-
ture of PIKs is put forward in Section III A at the example
of the PIRG pair (St, ϕ̇t) and the Wegner flow (4). Possi-
ble parametrisations of PIRG pairs and solution strategies
are discussed in Sections III B 1 and III B 2. Finally, we
outline optimisation procedures in Section III C.

A. General architecture

With PIKs we aim at building a generative architec-
ture that avoids the two OOD problems discussed in the
introduction, which would enable the efficient sampling
with sample sizes orders of magnitude beyond the sample
size generated and used in the training. The architecture
uses the PIRG pairs to enforce a path for the negative
log likelihood or action St, leaving us with the task of
computing or learning the respective map ϕ̇t from its
analytically known differential equation.

In the following, we start from a simple base distribu-
tion p(φ) at t = 0 and flow into a more complex target
distribution at t = 1. Since the architecture is based
on the flows (4) and (6), it is invertible as the flows are
invertible. For the chosen flow direction, the partition
sum at t = 0 reads

Z0 =

∫
Dφ p(φ) , ϕ0 = φ , (10)

and the flow of the field φ is given by

dϕt

dt
= ϕ̇t(ϕt) , ϕt=0 = φ . (11)

In (11), the physics-informed kernel vector field

ϕ̇t : I × C → C , (12)

characterises the transformation at each time t ∈ I with
the normalised RG-time interval I = [0 , 1]. As noted
before, the partition sum is invariant under the transfor-
mation (4) and hence Zt is t-independent, see (5). We
derive with (4) that

Z =

∫
Dϕ pt(ϕ) ,

dZ

dt
=

∫
Dϕ

d pt(ϕ)

dt
= 0 . (13)

In (13), the total derivative nature of (4) has been used
as well as the assumption of the absence of boundary
terms. The total change of field and action or negative
log likelihood is covered by

dSt(ϕ)

dt
+ ϕ̇t(ϕ)

∂

∂ϕ
St(ϕ) =

∂

∂ϕ
ϕ̇t(ϕ) , (14)

Figure 2. Training of most generative models from a distribu-
tion characterised by Ft=0 to one characterised by Ft=1. The
path Ft is not fully determined and accessible. Optimisable
parameters θt at different times are entangled, which is indi-
cates by the red entanglement line between the parameters
θt1 and θt2 .

which is the Wegner equation for the action, readily de-
duced from (4). Note that the right-hand side is nothing
but the total derivative of St(ϕt). Here, ∂/∂ϕ denotes
the partial derivative w.r.t. each component in ϕ.

A key observation behind PIKs is the following: The
PIRG setup (7) and (9) allows us to read (14) indepen-
dently for each t as a simple linear first order differential
equation for ϕ̇t(ϕ) with a fully determined and accessi-
ble trajectory St. The kernel ϕ̇t then accommodates the
change of the coordinate system in the data space that is
induced by this trajectory. This structure also underlies
other formulations of PIKs with St → Ft, i.e. based on the
PIRG pair with the rate function, (Γt, ϕ̇t). Then, (14) for
ϕ̇t is substituted by (6) and interpreted as a simple first
order differential equation for ϕ̇t(ϕ; Γt), see the discussion
around (9).

Accordingly, to our knowledge, the PIK architecture
differs qualitatively from standard generative networks
that aim to improve Monte Carlo simulations. This is
due to the existence of accessible analytic maps for the
layerwise propagation of the PIRG pair

(Fti , ϕ̇ti) → (Fti+1 , ϕ̇ti+1) , (15)

with its independent solutions ϕ̇i(ϕ;Fti) with (6) and (14)
or respective equations for general functions Ft.

In the following, we contrast the learning structure
of standard generative approaches, depicted in Figure 2
with that of PIKs, depicted in Figure 3. Here the black
line symbolises the path St(ϕ) connecting the base and
targeted action. The green line illustrates the direction
in which the kernel ϕ̇t with parameters θt is learned or
computed.

For most generative models as in Figure 2 the path St(ϕ)
is not known in a truly closed, analytically accessible form
but is left open or is regressed from data using score-, flow-
or Kullback–Leibler divergence oriented objectives [17–
26]. The parameters θt of the kernel at different times t
then usually depend on each other, and a change at one
time affects the kernel at other times.

For PIKs in Figure 3 the path St(ϕ) is given in a fully
determined and accessible form. Then, the PIK setup
allows one to read the Wegner or continuity equation
(14) as a simple linear first order differential equation for
the kernel ϕ̇t. This effectively splits up the global (and
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Figure 3. Training of PIKs from a distribution characterised
by Ft=0 to one characterised by Ft=1. The path Ft is fully
determined and accessible. Optimisable parameters θt at
different times are not entangled, which is indicated by the
broken dashed red lines.

possibly underdetermined) task from Figure 2 of finding
a generative map between two distributions into a set of
small fully determined and independent tasks that allow
for an error correction and systematic improvement. As
illustrated in Figure 3, this also leads to kernel parameters
θt at different times that are independent of each other.

Below, we highlight three key properties of the PIK
architecture that follow from this structure and discuss
them in the subsequent sections.

(i) Independent kernels: PIKs convert the global task
of finding a precise invertible map from the base dis-
tribution p0(t) to the final distribution p1(t) within
a deep network into independent tasks of finding
infinitesimal maps that solve for ϕ̇t(ϕ;Ft) at each
time step. For the pair (St, ϕ̇t) this amounts to
solving (14) for ϕ̇t.

(ii) OOD resolution: Equations (6) and (14) and respec-
tive equations for Ft provide us with an error control
of this map. They are also at the root of systematic
improvements in the sampling process beyond the
initial training time. In particular, curing the OOD
problem with the PIRG pair (St, ϕ̇t) boils down
to locally improving the solution ϕ̇t(ϕ) to a known
linear differential equation, whose coefficients are
determined by Ft(ϕ).

(iii) Optimisation: The properties (i) and (ii) are rele-
vant for the setup and solution of PIKs for a given
pair (Ft, ϕ̇t). The independent and analytically
given structure of (14) offers further optimisation
freedom for the pair, given external constraints. In
particular, this includes a new kind of parameter
conditional flow, systematic ways to improve inac-
curate solutions of (14), and the choice of the used
generating function Ft. This is discussed in more
detail in Section III C.

This closes the derivation and discussion of the general
PIK architecture based on PIRG pairs (Ft, ϕ̇t). In the
following we concentrate on the example pair (St, ϕ̇t) and
discuss strategies to parametrise and optimise St(ϕ) and
ϕ̇t(ϕ). The respective findings also apply to general pairs.

B. Sampling with the PIRG pair

Property (i) Independent kernels leaves us with the
task of devising solution strategies for single sampling
steps at times t with a pair

(
Ft(ϕ), ϕ̇t(ϕ)

)
. The general

case involves combinations of given Ft and/or ϕ̇t and this
generality is specifically important for the property (iii)
Optimisation of the PIK architecture. Here, we concen-
trate on solution strategies of (14) with fixed St.

1. Parametrisation of St(ϕ)

In this case, we must choose a suitable parametrisation
of St(ϕ) and following (1), we choose

St(ϕ) = Ŝt(ϕ) + logNt . (16a)

Here, Ŝt(ϕ) contains all field-dependent parts and logNt

comprises a field-independent contribution that ensures
the normalisation. We parametrise

Ŝt(ϕ) =
∑
i

ci,t Oi(ϕ) , (16b)

with scale-dependent coefficients ci,t and a set of ana-
lytically known basis functions Oi,t(ϕ). The basis func-
tions can be chosen t-independently but in specific cases
t-dependent ones may be advantageous for covering non-
linear transformations within a smaller set of operators,
see e.g. [27–29]. At the initial and final scale, {ci , Oi} are
chosen such that (16a) with (16b) matches the known base
and target negative log likelihoods S0, S1. In between, the
only constraint for the trajectory is its differentiability,
and that (16) allows for an analytical computation of
∂St(ϕ)/∂ϕ. However, secondary constraints can be used
for the optimisation of the sampling process. Further-
more, this also opens the opportunity to learn optimal
base distributions within the PIK architecture.

The final important ingredient in the PIK architecture
is the normalisation of the flowing distribution pt, also
present in the normalisation flow architecture. For PIKs
the flow of the normalisation Nt is directly related to that
of St: with (5) and (16) the change of the normalisation
Nt can be computed from that of Ŝt,

d logNt

dt
= −

∫
Dϕ pt(ϕ)

dŜt(ϕ)

dt
. (17)

The explicit resolution of (17) requires the computation
of an expectation value for each t from a non-trivial
distribution pt(ϕ). This would inflict large computational
costs and in Section IIIC we show how this task can
be converted into one of solving differences of Wegner
equations, see the discussion around (20).

We close the discussion of the parametrisation of St(ϕ)
with iterating the remark, that the analytic parametri-
sation of St is but one of many possibilities. We have
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introduced it here and will use it later in the explicit
examples in Section IV for its concise and read-to-use
structure.

2. Parametrisation of ϕ̇t(ϕ)

The above parametrisation of St fixes all St-dependent
terms in the Wegner equation (14), and leaves us with the
task of solving it for the physics-informed kernel ϕ̇t(ϕ).
To solve (14) in practice, most known approaches require
a parametrisation of the kernel ϕ̇t(ϕ) in some set of basis
functions Kj,t(ϕ),

ϕ̇t(ϕ) =
∑
j

kj,t Kj,t(ϕ) , (18)

with a chosen complete basis {Kj,t(ϕ)} and expansion
coefficients kj,t. With (14), this reduces the complicated
optimisation problem of finding a transformation between
two distributions into the problem of solving an indepen-
dent set of linear systems of the form

At kt = bt . (19)

Here, the matrix At and vector bt are directly determined
by the chosen basis Kj,t(ϕ) and the parametrised St(ϕ).
Note, that because (19) is linear, finding the expansion
coefficients kj,t directly avoids problems related to local
minima.

C. Learning and optimisation

The optimisation of the PIK architecture amounts to
optimising the global solution for ϕ̇t, that is that of (19)
for all t. In this process we aim for both the most rapid
convergence of the given expansion and the stability of the
solution for ϕ̇t. This is in one-to-one correspondence with,
firstly, a local and global optimisation of the basis Kj,t(ϕ)
and, secondly, an optimisation of the determination of the
respective coefficients kj,t. This local optimisation of the
basis and the coefficients is addressed in Section IIIC 1.
Moreover, the global optimisation of the pair (Ft, ϕ̇t) is
addressed in Section III C 2.

1. Local optimisation

In the PIK architecture, the problem of finding maps be-
tween two distributions is reduced to solving (14) or rather
(19) for each layer. This entails that the local optimisation
task in PIKs does not require machine learning. Practi-
cally speaking, the solution of (14) and (19) thrives on any
successful method to solve high-dimensional linear PDEs;
this includes traditional as well as machine learning-based
methods. Accordingly, PIKs may immensely benefit from

the extensive optimisation framework to improve tra-
ditional methods as well as neural network-based ap-
proaches to solve high-dimensional PDEs such as apt
physics-informed neural networks or operators [30–32].
Moreover, recent approaches to learn optimal basis func-
tions for PDE solvers may significantly improve the solu-
tions computed with PIKs [33].

In practice, both traditional and machine learning-
based solution strategies have to deal with the fact that
(14) depends on the change of the normalisation which
is not known analytically: d logNt/dt in (17) is only de-
termined by an expectation value. However, we can use
the fact that d logNt/dt is a field-independent constant
to evade its explicit computation. To that end, we con-
sider differences of Wegner equations (14) evaluated at
the targeted field configuration ϕ and at some reference
configuration χ. Since d logNt/dt is field-independent, it
drops out in the difference. Thereby we circumvent the ex-
plicit computation or equivalently learning of d logNt/dt
as done in related approaches [6, 8]. This leaves us with an
efficient condition that holds for any allowed pair (St, ϕ̇t),

0 =
dŜt(ϕ)

dt
− dŜt(χ)

dt

−
[

∂

∂ϕ
− ∂Ŝt(ϕ)

∂ϕ

]
ϕ̇t(ϕ)

+

[
∂

∂ϕ
− ∂Ŝt(ϕ)

∂ϕ

]
ϕ̇t(ϕ)

∣∣∣
ϕ=χ

. (20)

Crucially, this condition only requires terms that are
analytically known or efficiently computable.

2. Global optimisation

As mentioned before, besides optimising the solution
process of (14), the PIK architecture also allows to op-
timise the pair (Ft, ϕ̇t) with respect to some secondary
criterion. Here, we aim to highlight a list of said criteria
and comment on how they may be implemented.

Firstly, in many applications one is not merely inter-
ested in sampling from one specific distribution, but rather
a family of distributions that depend on some external
parameters [34–39]. To that end, parameter-conditional
generative models were devised. The majority of these
models work by enlarging the generative model and learn-
ing the additional parameter dependence. The parameter
conditional simulations are then conducted by multiple
forward passes through the enlarged network. However,
for PIKs we have a direct control over the distributions
seen during one forward pass, making the additional sim-
ulations and enlarged network superfluous. This will be
discussed in more detail in Section IVA3. Note that
in principle this procedure could also be adapted for
stochastic normalising flows and non-equilibrium trans-
port sampler [8, 40].
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Secondly, while the parameter-conditional mode of
PIKs is an interesting choice, it requires a precise solution
of each intermediate kernel ϕ̇t during the flow. However,
if one is only interested in the final distribution, one can
optimise the pair (Ft, ϕ̇t) in different ways. For instance,
one may absorb the inaccuracies of the intermediate ker-
nels ϕ̇t into the path Ft, requiring only a precise solution
for the final kernel. Because we have analytical access to
(20), we can do so in a controlled and possibly iterative
manner.

This goes hand in hand with optimising the base dis-
tribution pt=0. The latter offers a lot of potential for
optimisation, as its only requirement is that one should be
able to sample from it efficiently [41]. Moreover, sampling
from the best base distribution for a given transforma-
tion is known from trivialising flows [16, 42–44]. The
independent kernel property and (14) may allow one to
determine closed forms for these base distributions for a
given transformation, that were not within reach before.

Thirdly, while most comments above were made with
the action (or negative log likelihood) in mind, we readily
add that PIKs can also offer extensions to other gener-
ating functions Ft such as the rate function that store
the information of the distribution in a more condensed
manner. This is part of future work.

Lastly, the above comments only related to optimis-
ing the pair (Ft, ϕ̇t) for generative tasks. However, PIKs
can, in principle, also be used to infer analytical forms
of the action or Hamiltonian from a given data set. This
allows to interpret the physics underlying the data set
and connects PIKs to symbolic regression tasks. Practi-
cally, it is analogous to approaches based on contrastive
divergence [45], where one considers whether a Langevin
process with the drift of the action/Hamiltonian in ques-
tion moves away from the empirical distribution given by
the data. Similar to approaches based on Stein’s iden-
tity [20, 46], with PIKs one can replace the Langevin
process with the flow induced by the kernel ϕ̇t. Then,
optimising the kernel such that it corresponds to a trivial
transformation allows to infer and optimise the analytical
form of the action belonging to the data set.

This closes the derivation of the PIK architecture and
its general solution procedure. In the following sections
we illustrate a concrete implementation and its strengths
at the example of scalar lattice field theories.

IV. PIKS AT WORK

We proceed with selected applications of the PIK archi-
tecture to tailor-made examples: scalar field theories on
the lattice. These examples allow us to illustrate many of
the advantageous properties of PIKs in a well-controlled
setting. This Section is meant to practically illustrate the
considerations made in Sections I and III. In Section I,
we considered two OOD problems for generative models.

The first OOD problem relates to the size of the sys-

tem: Transformations computed for a high-dimensional
problem are typically inaccurate as they must interpolate
in a high-dimensional space. The second OOD problem
relates to the size of the training data: Transformations
computed on a limited data set cannot generally be ex-
pected to have obtained knowledge on cumulants that are
not sufficiently represented in the training data.

In Section IVA, we show how PIKs systematically re-
solve the second OOD problem: Since PIKs transform
the generative task into the task of solving a sequence of
independent, linear PDEs and solutions to linear PDEs
can be systematically improved, PIKs inherit the same
property. Accordingly, one can provide PIKs with infor-
mation that goes beyond the initial training data in a
controlled manner.

To that end, we begin by showing how one can con-
struct PIKs that benefit from their (i) independent kernels
at the example of a zero-dimensional ϕ4-theory. Then,
we explicitly comment on PIKs (ii) OOD resolution by
correcting the PIK sampling process in a controlled way
after its initial setup. Moreover, we illustrate how one
can (iii) optimise the PIRG pair (St, ϕ̇t) at the example
of a parameter-conditional flow.

In Section IVB we illustrate the applicability of PIKs
to higher-dimensional probability measures. We discuss,
how the respective first OOD problem, the curse of di-
mensionality, reduces to that of solving high-dimensional
analytically known linear PDEs whose form and sparse-
ness can be optimised to the task at hand. The resolution
of this OOD task is left to a forthcoming publication.

A. Zero-dimensional ϕ4-theory

As a first benchmark, we consider a one dimensional
probability distribution p(φ) = exp{−S(φ)} with φ ∈ R
in (1). In this simple case, (14) reduces to an ordinary
differential equation. This example can be understood
as a zero-dimensional scalar field theory and we restrict
ourselves to a ϕ4-theory with the action

Ŝ(φ) =
1

2
m2φ2 +

λ

4!
φ4 , φ ∈ R , (21)

with the two parameters m2 (mass squared) and λ (cou-
pling). This system can also be solved by direct integra-
tion which allows for a good comparison.

For the resolution of the sampling problem with PIKs
we define a PIRG pair with an action St, that is a linear
interpolation between the base action S0 and the target
action St, similar to [40]:

Ŝt(ϕ) =
1

2
m2(t)ϕ2 +

λ(t)

4
ϕ4 , ϕ ∈ R , (22a)

with

m2(t) =m2
0 + t

(
m2

1 −m2
0

)
λ(t) =λ0 + t (λ1 − λ0) . (22b)



8

Here (m2
0 , λ0) are the parameters of the base distributions

and (m2
1 , λ1) are those of the target distribution. Note

that this parametrisation is a free choice and naturally
lends itself to parameter-conditional models as will be
discussed in Section IVA3. This is a specific kind of
optimisation and other examples can be found in Sec-
tion III C.

For this toy model, we use a flow from a unimodal
Gaussian theory with

m2
0 = 1 , λ0 = 0 , (23)

to a theory with a multimodal behaviour and λ ̸= 0,

m2
1 = −2 , λ1 =

1

2
. (24)

Note that capturing multimodal target distributions poses
a difficulty for many traditional generative models because
of the phenomenon of mode-collapse or mode-seeking [47–
49]. PIKs circumvent this problem by enforcing a particu-
lar path St, which fixes the way the unimodal distribution
is morphed into the multimodal one. Moreover, the inde-
pendent kernels ϕ̇t allow for an error correction at each
time step.

1. Independent kernels ϕ̇t

During the flow, the field ϕt is propagated in time
according to (11). This ODE in time is solved numerically
by a standard fourth order Runge-Kutta scheme with a
step size of ∆t = 1/25, leaving us with Nt = 51 kernels ϕ̇t

to be determined. Because we have fixed the path St(ϕ)
via (22a) and (22b), each kernel has its own independent
Wegner equation (14) it must solve.

In analogy to the parametrisation in (18), we express
each kernel ϕ̇t(ϕ) in a chosen basis following a similar
approach as in [37],

K1,t(ϕ) = ϕ , Kj,t(ϕ) = sin (ωj,t ϕ) j ≥ 2 . (25)

We choose this basis because Ŝt(ϕ) is symmetric under the
transformation ϕ → −ϕ. To ensure that the distribution
generated by the PIKs carries the same symmetry, we
want ϕ̇t to transform equivariantly under this sign flip [50].

In analogy to other generative models, we use stochastic
gradient descent with the Adam optimiser to compute
the coefficients kj,t and frequencies ωj,t. Furthermore,
we use the mean squared error induced by (20) as a loss
function. Here, the fact that the change in normalisation
d logNt/dt does not have to be computed is used explicitly.
We choose χ = 0 as a reference configuration for (20),
which leads to a vanishing time and field derivative of the
action in (20).

The loss is bounded from above by 10−4 after satura-
tion. Accordingly, the effective sample size also effectively
remains at unity. More details of the training are provided
in Appendix A.

−2 −1 0 1 2
φ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

φ̇
t=

1
(φ

)

Truth

PIK

Figure 4. Comparison of the true (orange) and the learned
(black) kernel ϕ̇t=1(ϕ) for the zero-dimensional ϕ4-theory.

In order to show the successful training of the kernel,
we compare the learned kernel ϕ̇t(ϕ) at t = 1 to the one
obtained by directly integrating (14) in Figure 4 and we
find a very good overlap.

Figure 5 shows a comparison of the targeted (orange)
and modelled (black) distribution at the final time t = 1.
We find that the well-trained PIK transformation indeed
connects the initial Gaussian distribution to the targeted
multimodal one. The target distribution was computed
using 106 samples from a standard hybrid Monte Carlo
algorithm (HMC). The modelled distribution was gener-
ated by pushing 106 samples from the initial Gaussian
distribution through the PIK flow. We find an excellent
agreement between both distributions.

We close the discussion of the independent kernels ϕ̇t

with a hands-on assessment of the speedup in runtime
gained by choosing PIKs over HMC. Evidently, the per-
formance of both HMC and PIKs depends crucially on
the specific implementation [51], and we refrain from
optimising neither HMC nor PIKs for speed. Such a com-
prehensive analysis goes beyond the scope of the present
work, and hence the present comparison only offers a
rough estimate for the speedup. Specifically, for HMC
we use the standard leapfrog integrator with the same
discretisation in time as for PIKs and integrate trajecto-
ries up to a final time T = 1. The number of effectively
independent samples generated by HMC is computed
using the Γ-method [52]. With this setup, one gener-
ates the same number of independent samples with PIKs
around 20 times faster compared to HMC. While only
being a rough estimate, we consider such a speedup very
promising.
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Figure 5. Comparison of the targeted (orange, HMC) and
modelled (black, PIK) zero-dimensional ϕ4 distribution.

2. OOD resolution

Having showcased that PIKs have the capacity to learn
each kernel ϕ̇t independently without the requirement
of computing the change in the normalisation, we now
turn to the property (ii) OOD resolution. Instead of the
explicit volume scaling, here we illustrate the systematic
and controlled improvability of the PIK sampling process
after its initial setup and training. This is naturally
enabled by the fact that we have analytical access to
the Wegner equation (14) (or (20), respectively) that has
to be satisfied by each kernel individually. It is further
boosted by the fact that the Wegner equation is linear in
ϕ̇t, making the improvements more directly accessible.

As discussed in Section I, already the necessarily limited
training data often leads to OOD problems for generative
models. Here, one can use additional Monte Carlo steps
to cure these problems [40, 53]. However, since this can
become costly and does not improve the inherent quality
of the model, one may look for more optimal solutions.
With PIKs, we can directly use the information of the
distribution via St(ϕ) at each time step to systematically
improve the sampling beyond training time.

In order to mimic this OOD problem, we purposefully
undertrain the last layer of the PIK flow, such that the
kernel only saw ∼ 50 k samples during the optimisation.
This undertrained or approximate kernel is referred to
as ϕ̇

(0)
t . Note that also for other continuous generative

models, the last layer must exactly solve (20) in order
to be truly generative. The undertrained kernel together
with the true solution is depicted in Figure 6 in black and
orange, respectively. Here, a clear deviation between the
two is visible.

In order to systematically improve the sampling, we
must enrich the solution of the kernel ϕ̇(0)

t such that it
better satisfies (20). There are manifold ways to achieve

−2 −1 0 1 2
φ

−1.5
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−0.5

0.0

0.5

1.0

1.5
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1
(φ

)

Truth

PIK: Undertrained

PIK: Corrected

Figure 6. Comparison of the true (orange), the undertrained
(black), and the corrected (green) kernel ϕ̇t(ϕ) at t = 1 for the
zero-dimensional ϕ4-theory.

this in a controlled way [33, 54–58]. Here, we use the
linear structure of (20). For notational convenience, we
denote the second and third line of (20) as

Lχ ϕ̇t(ϕ) :=

[
∂

∂ϕ
− ∂Ŝt(ϕ)

∂ϕ

]
ϕ̇t(ϕ) (26)

−
[
∂Ŝt(ϕ)

∂ϕ
− ∂

∂ϕ

]
ϕ̇t(ϕ)

∣∣∣
ϕ=χ

,

defining the linear operator Lχ with the reference config-
uration χ. The residual of the approximate kernel ϕ̇(0)

t is
then readily computed as

r(0)χ (ϕ) =
dŜt(ϕ)

dt
− dŜt(χ)

dt
− Lχ ϕ̇

(0)
t (ϕ) . (27)

Naturally, a correction ∆ϕ̇
(0)
t (ϕ) that satisfies

Lχ ∆ϕ̇
(0)
t (ϕ) = r(0)χ (ϕ) , (28)

will lead to a kernel

ϕ̇
(1)
t (ϕ) = ϕ̇

(0)
t (ϕ) + ∆ϕ̇

(0)
t (ϕ) , (29)

that solves (20) accurately. As is already hinted at by
the superscript notation, this procedure can in principle
be iterated because of the linear structure of the Wegner
equation, allowing for controlled corrections [58].

In order not to spoil the well-fitted regions of the un-
dertrained kernel and because they more readily transfer
to higher-dimensional problems, we solve (28) with a
collocation approach using compactly supported radial
basis functions, more concretely Wendland functions [59–
61]. To ensure the Z2 symmetry of the transformation,
the basis functions were anti-symmetrised. The centres
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Figure 7. Difference in the kind of parameter conditionality for
PIKs differs and traditional generative models NN(ϕ |λ,m2).
While PIKs move along the path determined by the parameters,
traditional models need to sample each set of configurations
individually.

of the radial basis functions were chosen from regions
where the undertrained kernel deviated most from the
true one. Here, we used eleven radial basis functions.
Because the latter are compactly supported, the resultant
linear system similar to (18) is sparse and readily solved.
Further details of the correction procedure are provided
in Appendix B.

In Figure 6, we show the corrected kernel ϕ̇(1)
t (ϕ) in

green together with the undertrained and true kernel in
black and orange, respectively. We find that the correction
indeed leads to a kernel that is very close to the true one
and corrects the undertrained one in the regions where it
deviates the most.

While the correction mechanisms can be readily im-
proved, this example illustrates the general systematic
workflow of PIKs from (a) an (imprecise) global solution
to (b) a determination of OOD regions during sampling
or using information of the residual to (c) a controlled
(and local) correction of the kernel. This is natural for
PDE approaches [58] but the proposed method is to our
knowledge novel in the context of generative models.

3. Optimisation with parameter-conditional PIKs

The above sections showcased the setup, training, and
systematic improvement of PIKs. In this section, we
comment on the property (iii) Optimisation of PIKs.
As outlined in Section IIIC, there are manifold ways to
optimise the pair (St, ϕ̇t) in order to improve the sampling
process, given auxiliary constraints. Here, we illustrate
one such optimisation at the example of a parameter-
conditional flow.

With PIKs we have direct control over the concrete
distribution at each time step. Here, we use this freedom

0.0 0.2 0.4 0.6 0.8 1.0
t

0.8

1.0

1.2

1.4

1.6

〈|
M

(t
)
|〉

PIK

HMC

Figure 8. Magnetisation of the zero-dimensional ϕ4-theory
computed with PIKs in a continuous manner (black) and HMC
with individual simulations (orange).

to enforce the same functional form of the action at each
time step. The only thing that changes for the distribu-
tion in the flow are the parameters (m2, λ) at each time
step. This allows us to make PIKs parameter conditional
without inflating the network.

Unless one salvages a specific structure of the ac-
tion [34], parameter-conditional networks NN(ϕ |λ,m2)
commonly work by enlarging the network in a construc-
tive way such that it can learn the additional parameter-
dependence [37, 38]. For PIKs, the flow itself can be made
parameter-conditional as described above such that any
additional structure and learning becomes superfluous.
This is also illustrated in Figure 7. Moreover, this directly
allows us to compute observables in a continuous way
without sampling the configurations for each parameter
individually.

We exemplify the PIK approach in Figure 8 for the
observable

⟨|M(t)|⟩ =
∫

Dϕ pt(ϕ) |ϕ| , (30)

which corresponds to the expected magnetisation for the
zero-dimensional ϕ4-theory. Here we draw a batch of
samples from the Gaussian theory at t = 0 and push it
through the PIK flow. The observable (black) can then
be computed at each intermediate time step and is pur-
posefully depicted with a continuous line. For comparison,
we also show the same observable computed with individ-
ual HMC simulations, where each point corresponds to a
separate simulation.

B. Higher-dimensional ϕ4-theories

In the previous Section IVA, we have used the zero-
dimensional ϕ4-theory to illustrate and benchmark PIKs



11

in an analytically accessible example. In particular, we
have showcased how PIKs can evade the OOD problem
pertaining to the limited information in the training data.
The remaining OOD problem, the curse of dimensional-
ity, is only present in higher-dimensional systems and its
proposed resolution is discussed here. In Section IVB1
we discuss the general application of PIKs to higher-
dimensional systems. In Section IVB2 we detail how
PIKs can be used to systematically tackle the curse of
dimensionality. A full numerical study goes beyond the
scope of the present work and is the subject of a forth-
coming publication.

As an exemplary system, we consider a d-dimensional
lattice ϕ4-theory with V sites and the action

Ŝt(ϕ) =
∑
n̂∈D

[
1

2

(
m2(t) + 2d

)
ϕ2
n̂

−
d∑

µ=1

ϕn̂ ϕn̂+µ̂ +
λ(t)

4
ϕ4
n̂

]
. (31)

Here, the coupling λ(t) and squared mass m2(t) are linear
in t and are given by (22b). Moreover, µ̂ is the unit vector
in the direction µ with µ = 1, ..., d. Specifically interest-
ing corners in these higher dimensional theories are the
regimes that host second order phase transitions. There,
standard algorithms face critical slowing down as the field
values on well-separated lattice sites become strongly cor-
related which makes traditional sampling algorithms such
as HMC inefficient [62]. Moreover, also known generative
models struggle to learn adequate transformations in this
regime [63, 64]. Below we discuss how PIKs can help to
tackle these problems for generative models.

1. PIK setup for high-dimensional theories

High-dimensional systems introduce additional redun-
dancies, most importantly symmetries, that leave the
action invariant. For generative models, these redundan-
cies can be treated with equivariant flows in order to
improve the sampling quality [37, 50, 65, 66]. In the fol-
lowing, we show that also PIKs are able to easily and
efficiently eliminate these redundancies. In doing so, we
further show how solving for the kernel can be reduced to
solving for a single function Ωt instead of a vector field
ϕ̇t directly, see also [8, 50, 67]. This is accompanied by
a discussion of boundary conditions, which implement
the normalisation of the distribution and define a unique
solution of the kernel.

As mentioned above, PIKs as well as standard gen-
erative approaches optimise a high-dimensional vector
field, which entails optimising V functions. This pro-
cess can be simplified by writing the kernel as a gradient
field [8, 50, 67] and in the context of PIKs the kernel in the
Wegner equation (14) admits a Helmholtz decomposition.
Thus, we can express the kernel in terms of a function

Ωt(ϕ) and a vector field Ht(ϕ)

ϕ̇t(ϕ) = − ∂

∂ϕ
Ωt(ϕ) +Ht(ϕ) , (32)

0 =
∂

∂ϕ
[ pt(ϕ)Ht(ϕ) ] .

For the Wegner equation, this directly manifests as

dSt(ϕ)

dt
= −

[
∂

∂ϕ
− ∂St(ϕ)

∂ϕ

]
∂

∂ϕ
Ωt(ϕ) (33)

+

[
∂

∂ϕ
− ∂St(ϕ)

∂ϕ

]
Ht(ϕ)︸ ︷︷ ︸

=0

.

Accordingly, the additional vector field Ht(ϕ) does not
contribute to the change in the action. Rather, it describes
permutations and rotations in the field space that are irrel-
evant for the change in the measure. Typically, one would
like to discard those to improve the sampling quality [50]
and it is a nice feature of PIKs that it does so naturally.
With this, rather than optimising and parametrising V
functions, one must merely solve the adapted Wegner
equation[

∂2

∂ϕ2
− ∂St(ϕ)

∂ϕ

∂

∂ϕ

]
Ωt(ϕ) = −dSt(ϕ)

dt
, (34)

for one function Ωt(ϕ). Here, ∂2/∂ϕ2 denotes the canoni-
cal Laplace operator. Note that (34) is a linear PDE of
elliptic type. Accordingly, it benefits from the insights
gained in Section IV A.

To determine the suitable boundary conditions, we
integrate the Wegner equation (14) over a hypercube V
with radius R in all directions. Using the divergence
theorem, this straightforwardly leads to

−
∫
V
Dϕ pt(ϕ)

dŜt(ϕ)

dt
− d logNt

dt
= (35)∫

∂V
Dϕs pt(ϕs) ϕ̇t(ϕs) .

Here, the right-hand side denotes a surface integral over
the boundary ∂V of the hypercube and Dϕs refers to the
respective measure. Letting R → ∞, one may use the
definition of logNt and (17) to see that the left-hand side
vanishes. This leads to the boundary condition

lim
R→∞

∫
∂V

Dϕs pt(ϕs) ϕ̇t(ϕs) = 0 , (36)

for the kernel and ensures the normalisation of the distri-
bution during the flow.

In summary, (34) together with (32) and (36) encodes a
complete, redundancy-reduced version of the propagation
step for the generative task with the path St.
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2. Tackling the curse of dimensionality

In standard black-box approaches to the generative task,
reducing the complexity of finding an accurate vector field
is typically limited to salvaging known symmetries of the
theory [37, 50, 68]. In PIKs however, the curse of dimen-
sionality can be tackled by using the analytic structure at
hand to reduce the complexity of the system: the adapted
Wegner equation (34) provides us with insights about a
good basis, leading to a more rapid convergence to the
solution. For example, in the non-interacting case (λ = 0)
the Eigenfunctions of the operator on the left-hand side
of (34) are properly chosen tensor products of Hermite
polynomials. Since Hermite polynomials can be used to
form a complete basis, they are well-suited to expand Ωt.
Compared to black-box approaches, this is assumed to
reduce the number of required optimisable parameters.

For the present example (31), fully optimised PIKs may
allow to limit the number of required basis elements to
only grow with the spacetime dimension d rather than
the volume V . To that end, we note that the right-hand
side of (34) only includes terms ϕ2

n̂, ϕ
4
n̂ that do not couple

different lattice sites, see (31). Moreover, because of
the local structure of St, the differential operator in (34)
maps tensor product of nearest neighbours back to tensor
products of nearest neighbours. However, tensor products
that include more distant lattice sites generate new terms
that need to be cancelled again as they do not appear
on the right-hand side. Note that different to CNNs,
this parameter reduction does not only follow from the
translational invariance of the system but rather from the
local structure of the action and the Wegner equation,
which is a stronger statement.

We may also utilise the property of the PIK, that the
kernel transformation implicitly also includes a standard
rescaling RG step. This property becomes even explicit if
changing the generating function Ft = St to the Wilson
action or the effective action. This is analogous to the
inverse RG as used in [41, 69–72] and will be discussed
in a forthcoming work.

Finally we can optimise the adapted Wegner equa-
tion (34) by varying the path St. This changes the St-
dependent coefficients of (34), see Section IIIC 2. Op-
timised choices for the coefficients simplify the task of
solving (34).

In summary, the solution of fully optimised PIKs may
scale with the spacetime dimension as discussed above.
This would reduce a problem with a naïve scaling with
the volume to one that only scales with the spacetime
dimension. Already without using this additional struc-
ture, promising results have been obtained in the related
approach [8] within an application to a two-dimensional
ϕ4-theory. Here, the PIK setup allows us to additionally
exploit the structure provided by the Wegner equation.
The remaining challenge of ensuring the accuracy of the
solution to the Wegner equation for PIKs is then reduced
to an OOD problem of the second type whose solution
was already illustrated in Section IV A2.

V. SUMMARY AND OUTLOOK

In this work, we introduced physics-informed kernels
(PIKs) as a new architecture for generative models. The
PIK-architecture aims at solving OOD problems in gener-
ative models as well as implementing a systematic error
control. At its heart, PIKs reduce the task of finding
transformations between two distributions into a decou-
pled chain of layerwise transformations that are given
by the analytic continuity equations. For the distribu-
tion itself the continuity equation is the Wegner equation
(4), for the rate function the continuity equation is the
generalised flow equation (6), and similar ones for other
generating functions. Viewed as PDEs for the kernels
these equations boil down to independent linear differ-
ential equations whose solution can be systematically
corrected. As a paradigmatic example, we have consid-
ered PIKs for the distribution with completely determined
action paths St(ϕ) that lead to simple Wegner equations.

In general, PIKs thrive in situations where one has
some access to the action, Hamiltonian, or negative log
likelihood of the system at hand. In comparison to diffu-
sion models, flow matching, and related architectures [17–
19, 21–26, 72], PIKs offer direct ways to implement this
knowledge into the training and sampling without requir-
ing Monte Carlo steps or simulations. In short, PIKs
aim to use this property to systematically tackle OOD
problems in generative architectures.

In the present work we have shown how one can set
up PIKs with (i) independent Kernels. Moreover, we
illustrated that one can implement an error correction to
systematically approach a (ii) OOD resolution. Lastly, we
illustrated that one can use the gained freedom of PIKs
to (iii) optimise the PIRG pair (St, ϕ̇t) at the example of
a new form of parameter-conditional generative models.

Thus, this work paves the way for many interesting ap-
plications and improvements of PIKs highlighted through-
out the text.

The most prominent direction is the application of PIKs
to currently studied theories in physics and related fields.
This avenue includes the application to higher-dimensional
theories as detailed in Section IVB. It further includes
incorporating gauge and fermionic degrees of freedom into
the flow. Since the respectively adapted Wegner equation
is known, PIKs can be straightforwardly applied to these
systems. In these applications to currently relevant theo-
ries, PIKs explicitly target OOD problems encountered for
generative models and are therefore an interesting target
to show the practical advantages of generative sampling.

Supporting these developments opens up further av-
enues for future research by the manifold opportunities
for both local and global optimisation as detailed in Sec-
tion IIIC. PIKs dissect the generative task into solving
sets of linear differential equations. Systematically im-
proving (parts of) this solution process is an important
technical task ideally suit for machine learning applica-
tions. This includes salvaging PINNs, neural operators,
optimised basis expansions, or improved learned paths
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for the action to solve the respective equations more ef-
ficiently. Targeting the global optimisation, opens up
the possibility to learn optimal base distributions, benefit
from improved generating functions Ft, or infer the action
for a given data set, see Section III C 2.

In combination, PIKs form a generative model that
splits the generative task into well-controlled sub-
problems given by analytically known and independent dif-
ferential equations determined by the underlying physics.
This structure allows for systematic corrections, optimi-
sations of individual parts of the algorithm, and thereby
targets OOD problems in generative models.
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Appendix A: Training details

In Section IV A 1, we have discussed how one can com-
pute the independent kernel using standard machine learn-
ing techniques. In this Appendix we expand on the details
of the present implementation. As described in the in-
troduction, at each time-step t an independent kernel is
computed using the samples ϕt, which then provides the
new ϕt+∆t. Samples for the training of the kernels are
drawn from the base distribution defined by S0 and suc-
cessively evolved along the RG-time t, by pushing them
through previously computed kernels. Accordingly, for
the training only samples from the base distributions are
required.

The independent kernels are parametrised by (18) and
basis functions are given by (25), using a linear term
and sine-functions with learnable frequencies ωj,t. The
respective coefficients and frequencies are computed using
the Adam optimiser, optimising with respect to the mean
squared error induced by (20).

To compute the RG-time evolution, we chose a time step
∆t = 1/25 within the fourth order Runge-Kutta scheme,
which requires the determination Nt = 51 kernels. For
each kernel, we chose Nf = 25 learnable frequencies. The

first two time-steps kernels were trained with a learning
rate of 10−2 for 600 epochs using a batch size of 512
samples that were drawn from the respective initial dis-
tributions. For the subsequent kernels, we transferred
the weights of the previous kernel and trained them with
a learning rate of 10−3 for maximally 600 epochs and
used early stopping w.r.t the loss function to reduce the
training time. For all kernels, this training procedure
achieved a mean squared error loss that was bounded
from above by 10−4 after training, achieving an effective
sample size very close to unity.

After writing, we took note that this approach of learn-
ing the kernels iteratively is similar in spirit to an ap-
proach put forward in [26], where the map is regressed
from data of an unknown distribution. Note however, that
PIKs differ qualitatively from this approach as they use
a completely known path Ft for the generating function,
transfer the generative task to solving linear differential
equations, and allow for systematic corrections beyond
the initial training data.

Appendix B: Correction by collocation methods

In Section IVA2, we discussed how one can system-
atically correct a kernel that captures some but not all
of the relevant features of the true kernel. While there
are many possible mechanisms to improve the solution
of a PDE [33, 54–58], here we illustrate one such method
based on a collocation approach with radial basis func-
tions [60, 61], which is a simple and straightforward choice.

As discussed in Section IV A 2, for an imperfect kernel
ϕ̇
(0)
t (ϕ), one can easily compute the residual r(0)χ (ϕ) w.r.t

(20) and the reference configuration χ. To correct the
kernel, we would like to solve the linear PDE

Lχ ∆ϕ̇
(0)
t (ϕ) = r(0)χ (ϕ) , (B1)

for the correction term ∆ϕ̇
(0)
t (ϕ) [58]. The linear operator

Lχ was defined in (26). Similar to (18), we parametrise
∆ϕ̇

(0)
t (ϕ) as

∆ϕ̇
(0)
t (ϕ) =

M∑
i=1

wi Wi(ϕ, ϕi) . (B2)

Here, {ϕi}Mi=1 denote the fixed centres of the radial basis
functions. We choose them to be in regions with a large
mismatch between the true and the approximate kernel.
Moreover, Wi(ϕ, ϕi) relates to Wendland functions centred
at ϕi, which is a compactly supported and positive definite
radial basis function [59]. This allows for the a sparse
linear system and local corrections to the approximate
kernel. For the computations of this paper, we chose four
times differentiable Wendland functions

W (r) = (1− r)l+2
+

[
(l2 + 4l + 3)r2 + (3l + 6)r + 3

]
,

(B3)
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with r ∈ R and l = ⌊d/2⌋ + 3. Here, (1 − r)+ =
max(1 − r, 0) ensures the compact support. To ensure
that ∆ϕ̇

(0)
t (ϕ) is also odd, we anti-symmetrised the basis

functions accordingly

Wi(ϕ, ϕi) = W

( |ϕ− ϕi|
σ

)
−W

( |ϕ+ ϕi|
σ

)
. (B4)

The shape parameter σ is tuned to ensure a good overlap
of the basis functions. For the computations of this paper,
we chose σ ≈ 0.41. As discussed in the main text, we
chose M = 11 centres ϕi that are distributed in the region
where the approximate kernel deviates most from the true
kernel. To determine the coefficients wi, we gathered
N = 501 linearly spaced collocation points in the same
region and solved the resultant overdetermined linear
system as in (19) using a QR decomposition.

Finally, we note the present implementation is straight-
forward but not a unique choice and other methods may
offer a significantly better performance. The optimisation
of these auxiliary methods is, however, left for future
work.

Appendix C: PIKs as finite time corrections to the
Langevin algorithm

In Section III, we have seen how PIKs are constructed
and how they can be used as generative models. By
noting that generative models at their core facilitate a
very fast thermalisation time for sampling algorithms, we
discuss how PIKs conceptually take the role of finite time
corrections to the Langevin algorithm which thermalises
only in the infinite time limit. For related discussions, see
also [8]. This connects the deterministic and continuous
PIK model with the stochastic differential equation of
the Langevin algorithm and is indeed analogous to the

connection between continuous normalising flows and
diffusion models [23].

For the Langevin algorithm, one considers the stochastic
process

dϕt

dt
= ft(ϕ) + gt ηt , (C1)

where one uses the drift ft(ϕ), the uncorrelated Gaussian
noise ηt with the pre-factor gt =

√
2. This transformation

induces the change in action at each time step according
to

dSt(ϕ)

dt
=

∂

∂ϕ
ft(ϕ)− ft(ϕ) ·

∂

∂ϕ
St(ϕ)

+
∂2

∂ϕ2
St(ϕ)−

[
∂

∂ϕ
St(ϕ)

]2
. (C2)

As is known, in the infinite time limit, t → ∞, one ar-
rives at the stationary distribution ∝ e−S(ϕ) by choosing
ft(ϕ) = − ∂

∂ϕS(ϕ). However, to arrive at the same distri-
bution at some fixed and finite time, one can introduce a
finite time correction to this approach via

ft(ϕ) = − ∂

∂ϕ
St(ϕ) + ϕ̇t(ϕ) , (C3)

where ∂St(ϕ)/∂ϕ is the drift term for the time-dependent
action. Using this Ansatz in (C2), one directly retrieves
the Wegner equation as used in the main body of the text

dSt(ϕ)

dt
=

∂

∂ϕ
ϕ̇t(ϕ)− ϕ̇t(ϕ)

∂

∂ϕ
St(ϕ) . (C4)

From this point of view, one can see the PIKs as a con-
structive approach to accelerate the thermalisation time
of the Langevin algorithm by introducing a finite time
correction to the drift term.
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