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Abstract

Relaxation processes in topological phases such as quantum spin liquids are controlled by
the dynamics and interaction of fractionalized excitations. In layered materials hosting
two-dimensional topological phases, elementary quasiparticles can diffuse freely within the
layer, whereas only pairs (or more) can hop between layers - a fundamental consequence
of topological order. Using exact solutions of emergent nonlinear diffusion equations and
particle-based stochastic simulations, we explore how pump-probe experiments can pro-
vide unique signatures of the presence of 2d topological excitations in a 3d material.
Here we show that the characteristic time scale of such experiments is inversely propor-
tional to the initial excitation density, set by the pump intensity. A uniform excitation
density created on the surface of a sample spreads subdiffusively into the bulk with a
mean depth z̄ scaling as ∼ t1/3 when annihilation processes are absent. The propagation
becomes logarithmic, z̄ ∼ log t, when pair-annihilation is allowed. Furthermore, pair-
diffusion between layers leads to a new decay law for the total density, n(t) ∼ (log2 t)/t
- slower than in a purely 2d system. We discuss possible experimental implications for
pump-probe experiments in finite-size system.
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1 Introduction19

Topological phases of matter—such as fractional quantum Hall states and quantum spin20

liquids—host emergent quasiparticles that carry fractional quantum numbers and obey21

non-trivial exchange statistics. Their spatially non-local character makes them highly ap-22

pealing for quantum information processing, yet this same feature renders them exception-23

ally difficult to detect experimentally. Conventional probes, such as neutron spectroscopy,24

couple to spatially local operators and therefore typically excite a broad continuum of25

states [1–6]. As a result, direct signatures of topological order are often inaccessible in26

measurements based on such local observables. Identifying experimental strategies that27

provide unambiguous evidence of topological order and fractionalization thus remains a28

central challenge in modern condensed matter physics.29

A promising direction is to move beyond linear response and exploit genuinely out-of-30

equilibrium experiments—such as pump–probe protocols—that track, with high temporal31

and spatial resolution, the equilibration dynamics following a sudden excitation of the sys-32

tem [7,8]. Recent works have shown that coherent nonlinear spectroscopy, using sequences33

of ultrafast laser pulses, can resolve continua associated with fractionalized excitations in34

quantum spin chains [9–11]. Even more remarkably, such nonlinear probes may reveal sig-35

natures of non-trivial (anyonic) statistics in two-dimensional spin liquids [12–14]. Rapid36

progress in ultrafast light-matter experiments have enabled pump-probe studies of various37

solid state systems with some recent results uncovering anomalous relaxation dynamics of38

topological defects in diverse material systems [15–17].39

In this work, we propose and explore a class of quench experiments–specifically suited40

for multilayered three-dimensional (3d) systems–that directly probe a robust consequence41

of topological order: the emergent dimensionality of quasiparticles [18]. See Fig. 1 for a42

sketch. In a 3d crystal described by weakly coupled 2d topological phases, the elementary43

excitations are confined to move within the two-dimensional planes while only a topo-44

logically trivial composite (a pair or more) can move in the third direction (through the45

bulk). As a direct consequence, they undergo anomalous diffusion into the bulk of a crystal46

which may be detected in a pump-probe experiment. These behaviors are in stark con-47

trast to both ordinary diffusion and relaxation of topologically trivial quasiparticles such48

as magnons or phonons, making them observable hallmarks of topological order and emer-49

gent gauge theories. The emergent dimensionality of excitations can also strongly affect50

the inter-layer transport coefficients of charge and heat, as pointed out by Refs. [18, 19].51

Our protocol is relevant to a broad class of layered spin-liquid candidates [20–24]. An52

instructive example is realized by stacks of weakly coupled Kitaev spin liquids [25]. Such53

models are directly relevant to van der Waal magnets such as α−RuCl3 where experimental54

results have suggested the existence of a spin liquid phase with emergent Z2 gauge field55

and Majorana fermions [23,26–30]. While a single layer of the Kitaev model is integrable,56
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perturbations arising, e.g., from Heisenberg or Γ terms break integrability and induce an57

effective dynamics of its topological vison excitations [31–33]. For a multilayered system58

to host the spin liquid phase, one needs that the layers are weakly coupled. At the same59

time, the perturbations within the layer are assumed to be sufficiently weak to not destroy60

the topological order. In a previous publication, some of us have explored the emergent61

kinematically constrained motion of the visons in simplified models of layered Kitaev spin62

liquids [34].63

Also pertinent to our discussion are the recently discovered fracton models, where mo-64

bility constraints of excitations play a central role. These are exotic 3d topological phases65

with subsystem symmetries or dipole conservation laws that hosts excitations which are66

either completely immobile when isolated, or can move only along a subdimensional man-67

ifold as bound pairs [35–38]. While experimental realizations of fractons remain elusive,68

theoretical studies have uncovered anomalous hydrodynamics and slow equilibration in69

these models, directly arising from the mobility constraints [39–44]. From this perspec-70

tive, a stack of weakly coupled 2d topological layers provides a realistic platform that71

captures several essential features of fracton-like constrained dynamics, thereby broaden-72

ing the scope of our proposal.73

The out of equilibrium dynamics of topological defects and domain walls also play74

a central role in the kinetics of symmetry breaking phase transitions in classical physics75

[45, 46]. For example, the growth of ordered domains can be well understood in terms of76

the gradual elimination of topological defects characteristic of the broken-symmetry phase77

(e.g. lattice dislocations in the crystallization of a solid), resulting in universal power-laws78

when quenched though a phase transition, e.g. described by the famous Kibble-Zurek79

mechanism [47–49]. Remarkably, in several cases, such topological defects also exhibit80

kinematically constrained motion [50–52].81

Given the challenge of identifying topological phases—especially quantum spin liq-82

uids—in real materials, detecting the emergent dimensionality of excitations would provide83

a strong experimental signature across a wide class of systems. The paper is organized as84

follows. In Sec.2, we introduce an effective particle-based model of diffusive topological85

excitations in a layered lattice model along with a coarse-grained noisy diffusion equation86

in the continuum limit. In Sec.3, we first present the central result of our analysis demon-87

strating the characteristic scaling predictions for quench experiments, and subsequently88

discuss in detail exact solutions for the noiseless diffusion equation in the infinite layer89

limit. In Sec.3.4, we examine the corrections to our results arising from noise, and present90

our predictions for a finite sized sample in Sec.3.5. Finally, we discuss some important91

experimental considerations for our protocol. (See App.D for a more detailed discussion92

on experimental feasibility.)93

2 Model94

We consider a model of topological phases in a layered three-dimensional crystal. Our95

main example is a stack of 2d Z2 spin liquids. Very similar situations can arise for stacks96

of fractional quantum Hall systems [53, 54]. However, we will avoid extra complications97

arising from charge conservation and long-ranged Coulomb interaction in our discussion.98

The excitations of our system are topological quasiparticles, e.g., anyons, visons, or99

spinons, which we assume to be gapped and mobile within each plane. We consider100

a situation where the quasiparticles scatter from some other degrees of freedom such as101

phonons or impurities. The precise form of the scattering mechanism is irrelevant. For our102

purpose, we only need that this leads to an effective diffusive motion of single quasiparticles103
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Figure 1: A layered material, e.g., α-RuCl3, hosting a 2d topological phase is
uniformly excited from the top by a laser pulse of intensity IP . Single excita-
tions are topological (red spheres), e.g. visons in a Kitaev spin liquid, and can
diffuse freely within the 2d layers, whereas inter-layer motion requires a pair of
excitations due to the constraints imposed by topological order and the emer-
gent gauge structures. Excitations are eliminated only via pair-annihilation into
vacuum (with a rate λ), emitting low-energy trivial excitations such as phonons
(blue wavy lines). This leads to a subdiffusive and logarithmic spreading of the
excitations into the bulk for λ = 0 and λ ̸= 0 respectively. All characteristic time
scales, measured via a probe laser for example (not shown), scales inversely with
the pump intensity, τ ∝ 1/IP .

on length scales large compared to their (inelastic or elastic) mean free path ℓ. Importantly,104

topological order implies that within each layer the quasiparticles can only be destroyed105

or created in pairs.106

In the limit where the distance between quasiparticles is larger than their mean free107

path ℓ, we can treat them effectively as classical diffusive particles. We model them as a108

set of random-walkers (with a hard-core constraint) labeled by Ar ,l where r the coordinate109

in the 2d plane and l the layer index. Intra-layer motion is described by Brownian type110

diffusion with a diffusion rate Γ∥ for nearest neighbor hops. As a consequence of topological111

order, inter-layer hopping can only occur via close-by pairs. Thus, we consider only three112

processes: in-plane diffusion, pair-hopping, and pair annihilation, occuring on a cubic113

lattice schematically represented below.114

Ar ,l

Γ∥−→ Ar+δ,l in-plane diffusion

Ar ,l +Ar+δ,l

Γ∥Γ⊥−→ Ar ,l±1 +Ar+δ,l±1 pair hopping

Ar ,l +Ar+δ,l

Γ∥Γλ−→ 0 pair annihilation (1)

where δ are nearest-neighbor vectors within a plane and Γ⊥ and Γλ are the rates for pair115

hopping and annihiliation, respectively. More precisely, pair hopping and pair annihilation116

are implemented in the following way: when two particles hop onto the same side, the117

pair is annihilated with probability Γλ, and with a probability Γ⊥ it moves either one118

layer up or down, while in all other cases particles go back to their previous configuration119

(to implement a hard-core constraint). We do not consider pair creation processes as we120

assume that the effective temperature of the system is small compared to the quasiparticle121

gap. For our simulations we have use two different initial states, one where the particles are122

4



SciPost Physics Submission

randomly placed on the top layer and one where pairs of excitations occupying neighboring123

sites are placed randomly. The latter initial conditions takes into account that the quasi124

particle can only be created in pairs. With the exception of the behavior at very short125

times, we find that both initial conditions give identical results, see App. C. For all figures126

in the main text we use randomly placed particles as initial condition.127

The simple model discussed above focuses on the effective diffusion of topological128

excitations. For visons in a Kitaev model coupled to a thermal bath, Yang and Chern [55]129

studied, using a kinetic Monte Carlo simulation, the effect of long-range forces mediated130

by Majorana fermions on vison-vison annihilation. For broad parameter regimes, they131

obtain (for single layers) results consistent with the simple diffusion model discussed above132

but they also identified regimes where, e.g., long-ranged attractive forces accelerate vison133

annihilation.134

Note that, our model considers only one type of topological quasiparticles, but it can135

easily be generalized to multiple species. A subtle question concerns the dynamics of non-136

abelian excitations with extra internal degrees of freedom (e.g., Ising anyons in a chiral137

Kitaev liquid). In this case, the (diffusive) real-space dynamics leads to braiding, and138

thus a complex quantum dynamics of the internal degrees of freedom. At the same time,139

annihilation and pair-hopping is governed by fusion outcomes. For example, consider Ising140

anyons in a system with a large gap to fermionic excitations. Their fusion rule can be141

written as A× A → 1 + ψ where 1 refers to the vacuum and ψ to a fermionic excitation.142

Only if the fusion outcome is the trivial 1, the pair can either annihilate to the vacuum or143

tunnel to the next layer. In contrast, a fermionic pair will remain in the plane and the two144

anyons will further separate due to diffusion. We argue that as long as the system is in the145

diffusive limit and one is only interested in the real-space dynamics, the only effect of the146

complex braiding/fusion dynamics is a renormalization of the effective pair-hopping and147

pair-annihilation rates Γ⊥ and λ respectively [56]. The corresponding quantum-information148

dynamics within the internal Hilbert space is also an intriguing problem but beyond the149

scope of this study.150

We analyze the problem numerically using the stochastic particle model of Eq. (1). For151

an analytical investigation, a coarse grained continuum description of the particle density152

in the low-density limit is given by the following non-linear diffusion equation for z ≥ 0153

∂tρ =D∥(∂2
x + ∂2

y)ρ+D⊥∂
2
zρ

2 − λρ2 (2)
+ ηλ(r , t) +∇ξ(r , t)

with a zero-current boundary condition at z = 0, (∂zρ
2 + ξz)|z=0 = 0. Comparing to154

the hopping model, the diffusion constants take the value D∥ = Γ∥
a2

∆t with lattice con-155

stant a = 1, time-step length ∆t = 1 and Γ∥ = 1
4 in our implementation. Similarly,156

one obtains D⊥ = 2Γ⊥ a2

∆t and λ = 2Γλ 1
∆t , where the factors of 2 arises since the par-157

ticle number changes by 2 (in a layer) during an inter-layer hopping, or an annihila-158

tion event. The noise arising from the motion of particles is approximately given by159

⟨ξi(r , t)ξj(r ′, t′)⟩ = δijDiδ(t− t′)δ(r − r ′) with Dx = Dy = 2D∥ρ(r , t), Dz = 4D⊥ρ
2(r , t)160

where we fixed the pre-factor of Dz by linearizing the diffusion equations. The noise ηλ due161

to pair annihilation is also δ-correlated with the pre-factor −2λρ2 [57, 58]. The negative162

sign shows that the noise is not real-valued but has a complex part.163

Besides the continuum model shown in Eq. (2), we also use a discretized version of this164

equation using the same lattice as our particle-based simulations, see App. A. This allows165

for a more precise comparison of the models.166
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Γ⊥ = 0.5, Γλ = 0

(a)

Γ⊥ = 0.4, Γλ = 0.05

(b)

Γ⊥ = 0.3, Γλ = 0.15

(c) (d)

Figure 2: Density evolution in the top and bottom layers of a sample with w = 10
layers, where initially all excitations reside in the top layer (using particle-based
simulation, Eq. (1)). The noisy simulation results is plotted in solid lines while
dashed lines in the first panel are obtained by solving the noiseless diffusion equa-
tions numerically on a discrete lattice. The collapse of plots for different initial
density ρ0 upon rescaling the time and density confirms the scaling predicted by
Eq. (3). (a) Γ⊥ = 0.5, Γλ = 0 (b) Γ⊥ = 0.4, Γλ = 0.05, (c) Γ⊥ = 0.3, Γλ = 0.15.
All plots are averaged over 6 simulations using a 500 × 500 × 10 grid. Initial
particle densities ρ0 are 0.4 and 0.2, corresponding to 100.000 and 50.000 parti-
cles, respectively. Panel (d) shows, for two parameter sets with ρ0 = 0.2, that
the difference between particle densities in top and bottom layers decays approx-
imately with e−α log2 t. Fit parameters: α = 0.062, β = 3.5 for the blue points;
α = 0.07, β = 2.7 for green points.

3 Results167

3.1 Quench protocol probing topological excitations168

Our goal is to propose a quench protocol that captures the kinematic constraints and decay169

processes induced by the robust 2d topological order in a 3d crystal. For this purpose, we170

inject a finite density ρ0 = ρ(t = 0) on the surface of a layered sample, e.g, by using an171

intense laser pulse - or a THz pulse exciting resonantly pairs of anyons, see App. D for172

a discussion on surface sensitive pumps and the role of non-topological excitations. For173

simplicity, we assume that the initial density is confined to the top layer at z = 0, but174

all qualitative results will be the same when a few top layers are excited. Relaxation to175

equilibrium at a temperature T0 ≪ ∆ takes place through the three different channels176

given by Eq. (1).177

How do we experimentally probe the above described dynamics driven by pair-diffusion178
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and pair-annihilation? Here, one has to show experimentally that both processes are179

quadratic in the density of excitations. As the excitation density ρ0 is directly determined180

by the intensity of the excitation pulse, the initial density can be easily controlled.181

We can use a simple scaling argument to obtain how ρ0 enters the non-linear diffusion182

equation. If we use the following rescaling183

(x, y, z) → (xb−1, yb−1, z), t → tb−2, ρ → ρb2

(ξx, ξy, ξz) → (ξxb
3, ξyb

3, ξzb
4), η → ηb4. (3)

we find that in Eq. (2) all b-dependencies drop from the equation and the noise correlators184

(changing only the short-distance cutoffs). Setting b2 = ρ−1
0 and assuming that the initial185

excitations are uniform in the xy plane, this version of scaling suggests that186

ρ(z, t)
ρ0

= ρ̃(z, tρ0), (4)

where the scaling function ρ̃ is independent of ρ0. Note that this is in general not an187

exact statement due to extra corrections arising from the cutoff-dependence of observables188

giving rise to extra logarithmic corrections, see Sec. 3.4. In our numerics, see Fig. 2, we189

do, however, find that our stochastic particle-based simulations (unexpectedly) obey the190

simple scaling relation with high precision. In the regimes explored by us we have not191

been able to identify corrections to the scaling prediction Eq. (4).192

To explore this physics experimentally, one has to compare the time evolution of ob-193

servables for different values of ρ0 (controlled by the intensity of the exciting pulse and,194

possibly, the initial temperature).195

Consider, for example, the density of excitations on the top- and bottom layer after196

an exciting laser or THz pulse, see Fig. 2. All time scales, e.g., the time scale on which197

density in the bottom layer rises or that in the top layer drops, are according to Eq. (4)198

inversely proportional to ρ0 and therefore to the intensity of the exciting pulse, IP .199

τ ∝ 1
ρ0

∝ 1
IP

(5)

This peculiar intensity dependence of all time scales is the smoking-gun signature of the200

fact that our excitations are topological. This scaling property can thus be used to prove201

experimentally that the physics of a given observable is dominated by pair annihilation202

and pair diffusion of topological excitations, providing a relatively direct experimental203

proof of the topological nature of excitations.204

In the following, we investigate in detail the dynamics of the cloud of excitation and205

the validity of the mean-field picture used in the argument above.206

3.2 Pair diffusion207

We first consider the situation where the total energy of the topological excitations is208

conserved, assuming that, e.g., the coupling to phonons can be neglected. We furthermore209

assume that the bandwidthW of the excitations is small compared to their gap∆, W ≪ ∆.210

Thus the energy of n excitations is approximately n∆. By energy conservation the number211

of particles is therefore approximately conserved and there is no pair annihilation, λ = 0.212

We assume as discussed in Sec. 3.1 the density is approximately uniform within a layer,213

ρ(r , t) = ρ̄(z, t). Thus, the diffusion equation (2) in the absence of noise and for λ = 0214

becomes215

∂tρ̄ = D⊥∂
2
z ρ̄

2. (6)
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(a)

∼ t1/3

(b)

Figure 3: (a) Layer density of excitations along the z direction plotted in rescaled
coordinates. The blue curves show snapshots at various times. A scaling collapse
happens for long time scales, consistent with the the analytical prediction of the
noiseless diffusion model (red-dashed curve). (b) The average depth z̄ traversed
by the excitations into the bulk as a function of time (in log-log scale). The
expected scaling of z̄ ∼ t1/3 is shown by the dashed line. Simulation parameters:
L = 300, ρ0 = 0.1, Γ⊥ = 0.4, Γ∥ = 1. Fit (in (a)):ρ0 = 0.1, D⊥ = 0.8

We consider a semi-infinite system, w = ∞. Non-linear diffusion equations of similar kind216

have been widely studied [59]. A standard solution strategy is based on a scaling ansatz217

of the form [60]218

ρ̄(z, t) = F (z/tα)
tα

. (7)

Plugging this ansatz into the non-linear diffusion and solving for α gives α = 1/3 and219

F (u) = u2
0 − u2

12D⊥
θ(u2

0 − u2), u0 = (18D⊥ρ0)1/3 (8)

where u0 is obtained from the initial density ρ0 (number of particles per area in the first220

layer).221

Thus the excitations penetrate into the bulk of the sytem sub-diffusively. The front of222

the excitations is located at223

Z(t) = u0t
1/3 (9)

while the center of mass z̄ =
∫∞

0 dz z ρ̄
ρ0

of the excitation cloud is located at 3
8u0t

1/3.224

Fig. 3 shows that in the long-time limit the density profile of our particle-based simulations225

takes the universal parabolic form described by Eq. (8) which does not contain any fitting226

parameters. As we will discuss below, the accuracy of the fit to the noiseless mean-field227

model arises because noise is an irrelevant perturbation in this case.228

The excitation density in the top-layer also decays with a sub-diffusive power law229

ρ(z = 0) ∼
(
ρ2

0
D⊥t

)1/3

. (10)

230
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3.3 Interplay of pair-diffusion and pair-annihilation231

Next, we consider the case when dissipative processes are present and the particles are232

allowed to annihilate each other in a process where the excess energy is transferred, e.g.,233

to phonon excitations. Within our microscopic model, such processes occur with a rate234

Γλ = λ/2 when two excitations are nearest-neighbors within a layer. The (coarse-grained)235

non-linear equation in the absence of noise is thus given by236

∂tρ̄ = D⊥∂
2
z ρ̄

2 − λρ̄2. (11)

An asymptotic solution of Eq. (11) can be obtained as a closed form (see Ref. [61–63]237

and references therein for related literature.)238

ρ̄(z, t) = 1
λ(t+ t0)

1 − e
z−z0

2

√
λ/D⊥

2
√
D⊥a−5(t+ t0)

 θ (Z(t) − z) , (12)

Z(t) =z0 +

√
D⊥
λ

log[4D⊥a
−5(t+ t0)]

where z0 and t0 depend on the shape (height and width) of the initial density profile. The
factor a−5, where a is the lattice spacing, has been introduced purely for dimensionality
reasons but has no consequence to the solution since a change of a can be absorbed into z0.
Although the above solution does not obey the boundary condition ∂zρ

2 = 0 at z = 0, we
have confirmed via numerically solving Eq. (11) that it nevertheless accurately describes
the solution at long times. Perhaps counter-intuitively, Eq. (12) shows that even a weak
pair-annihilation suppresses the propagation of the density cloud. Instead of z̄ ∼ t1/3 we
now obtain the mean depth

z̄ ∼ log t.

At the same time, the surface density drops asymptotically as ρ(0) ∼ 1/t, much faster239

than 1/t1/3 obtained for λ = 0. Thus, the total number of particles n decays as log t/t at240

long times, within the mean field (noiseless) approximation. The extra log t factor arises241

as pair annihilation is suppressed due to the (logarithmic) expansion of the cloud in z242

direction resulting in reduced particle densities.243

For small λ, we expect a crossover from a regime dominated by pair diffusion at244

short time scales to the annihilation-dominated regime discussed above. We estimate the245

crossover time scale using the scaling solution Eq. (8) and the condition that the two terms246

on the right-hand side of Eq. (11) are of comparable size. Thus, for the width of the cloud247

(up to logs in the crossover scale), we obtain248

Z(t) ≈

 (D⊥ρ0t)1/3 for t ≪
√

D⊥
λ3/2ρ0√

D⊥
λ log t for t ≫

√
D⊥

λ3/2ρ0

(13)

This crossover is not captured by the analytical solution which is only valid in the long-time249

limit.250

In Fig. 4, we show that this analytical prediction is consistent with our numerical251

results.252

3.4 Corrections from noise253

We will now examine how various sources of noise affect the results of the noiseless diffusion254

equation discussed above.255
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Figure 4: The average depth z̄ traversed by the excitations into the bulk when
pair-annihilation processes are present, λ ̸= 0. We find the exact simulation re-
sults to be consistent with the predictions of Eq. (13). At early times, the simula-
tion data is roughly consistent with the sub-diffusive t1/3 power-law (green dashed
line), which crosses over to a logarithmic scaling at longer times (red dashed line,
t0 = 20). Inset: Data is plotted in log-linear scale to show z̄ ∼ log t scaling at
long times. Simulation parameters: L = 500, ρ0 = 0.2, Γ∥ = 1, Γ⊥ = 0.3, Γλ = 0.1.

We first consider the case without annihilation, λ = 0. To estimate the effect of noise,256

we perform a scaling analysis of Eq. (2) based on its asymptotic solution in the absence257

of noise. First, we rescale the variables using the following transformations258

(x, y, z) → (xb−1, yb−1, zb−2/3), t → tb−2

ρ → ρb2/3, (ξx, ξy, ξz) → (ξxb
8/3, ξyb

8/3, ξzb
3). (14)

Here, the scaling of space, time and ρ follows from Eq. (7). The scaling exponents for the259

noise are chosen to make the noise correlator b independent, using that ⟨ξξ⟩ scales with260

b−1−1−2/3−2−2/3 = b−16/3 for the in-plane noise and b−6 for the out-of-plane component.261

Expressing all the terms in Eq. (2) (for λ = 0) in the rescaled coordinates and fields,262

and multiplying with b8/3, we find that the pre-factors of both ∇xξx + ∇yξy and ∇zξz are263

suppressed by 1/b. This shows that noise is irrelevant at long times for λ = 0. This is also264

confirmed by our exact particle-based simulations, the results of which are well-described265

by the analytical solution of the noiseless model, see Fig. 3.266

For λ ̸= 0, we instead use the scaling analysis discussed in Eq. (3). While we used it267

in Sec. 3.1 to obtain the exact dependence of the solutions on ρ0, here we use the exact268

scale invariance of Eq. (2) to argue that noise is a marginal perturbation, implying that269

it cannot simply be neglected. Indeed, in our simulations with Γλ ̸= 0, we find deviations270

from the mean-field predictions in the long-time limit.271

In the absence of pair diffusion, D⊥ = 0, the problem of pair-annihilation has been272

widely studied [57]. In this 2d case, the marginal nonlinear coupling λ turns out to273

be marginally irrelevant, effectively decaying with 1/ log t [57, 58]. As within mean-field274

n(t) ∼ 1/(λt), the particle density therefore decays with n2d(t) ∼ log t/(D∥t). The log-275

arithmic enhancement arises from a logarithmic increase of the probability of a diffusive276
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(a) (b)

Figure 5: (a). Total density n (particles per area) as a function of time (shown in
log-linear scale), for Γ⊥ = 0.3, Γλ = 0.1, starting from an initial density ρ0 = 0.2.
The red curve is obtained by numerically solving the noiseless diffusion equation
(mean-field) on a grid of size 100. (b). The ratio between the solution nmf(t)
obtained from the noiseless model and exact simulation nsim(t) are plotted, which
shows an approximately nsim/nmf ∼ log t behavior for t ≳ 102. Inset: Plot of
t n(t), showing that nsim ∼ (log t)2/t while nmf ∼ (log t)/t. Simulation parameters
are identical to that of Fig. 4.

particle to come back to its origin, which leads to logarithmic suppression of probability277

to diffuse to the location of a different particle. For d < 2, one instead obtains from the278

same mechanism power-law corrections.279

Previously, we found that within the mean-field theory, the cloud expands very slowly280

with Z(t) ∼
√
D⊥/λ log t. Combining this slow logarithmic expansion in the z direction281

with the 2d result, it suggests that – up to multiplicative factors of order log(log t) – the282

total density will decay as283

n(t) =
∫
drρ(r , t) ∼ (log t)2

t
. (15)

This result is consistent with our numerical simulations, as shown in Fig. 5. Deviation from284

mean-field are best visualized, see Fig. 5b, by plotting the ratio of the total particle number285

obtained from exact simulations and mean-field (noiseless) equations or by plotting the286

product n(t)t (inset). Note, however, that for the shown parameters and time scales, the287

noise-induced logarithmic corrections are only on the level of 20 %.288

3.5 Finite slab geometry and experimental signatures289

Above, we discussed the time-evolution in a half-infinite system. For an experimental290

implementation, considering a finite slab has substantial advantages.291

We consider the following setting: After an excitation on the top surface (e.g., by a292

laser or THz pulse), one tracks the density of excitations on both the top and bottom293

surface of a slab of width w as function of time and, importantly, the intensity of the294

exciting pulse. As discussed in Sec. 3.1, the density dependence of all time scales, Eq. (5),295

is the smoking gun signature of topological excitations.296

For a slab of width w, two different regimes arise. For w ≪
√
D⊥/λ, the physics is297

dominated by pair diffusion, see Eq. (8), while annihilation governs the opposite regime.298
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According to our previous analysis, the excitation reach the lower layer after time299

tb ∼


w3

18D⊥ρ0
, w ≪

√
D⊥/λ

ew
√

λ/D⊥ , w ≫
√
D⊥/λ

. (16)

Note that the scaling relation tb ∝ 1/ρ0 is hidden in the pre-factor of the exponential300

in the large w regime, which depends on the details of the initial density profile. For301

t → ∞ the density becomes uniform in the z direction and thus the density of top and302

bottom layer approach each other. To compute analytically how the density at top and303

bottom layer approach each other, we Taylor expand around the uniform solution of the304

differential equation, see Appendix B. Calculating the leading correction, we obtain305

ntop − nbottom
ntop

∼ e−α(log t)2
. (17)

For w ≫
√
D⊥/λ the exponent α ≈ λw2+2π2D⊥

16πw3D∥
becomes small. Thus, the densities at top306

and bottom surfaces approach each other very slowly in this regime, as confirmed by our307

numerical results, see Fig. 2.308

4 Discussions and Conclusion309

Spin liquids and other phases of matter with intrinsic topological order are – aside from310

the notable exception of quantum Hall phases – notoriously difficult to detect. The core311

challenge is that topological order, by its very nature, cannot be identified by a local312

order parameter. As a result, one must instead rely on indirect signatures such as ther-313

modynamic responses, heat transport, or the observation of a continuum of excitations314

in spectroscopic measurements. In particular, the often unavoidable presence of disorder315

makes the unambiguous identification of spin-liquid phases especially challenging.316

Here, we explore an alternative route to detecting topological order in layered two-317

dimensional materials. In these systems, topology enforces that excitations carrying gauge318

charge are confined to move within individual layers. In the Z2 model considered here,319

inter-layer motion is possible only for pairs of such excitations. We argue that suitably320

designed pump–probe experiments can directly probe the effective dimensionality of the321

excitations, thereby offering a potentially robust signature of the underlying topological322

order.323

Here, the most important signature is that for uniform excitations of the system, all324

relevant time scales are inversely proportional to the density of excitations. Our analysis325

has also shown that pair annihilation is very effective in slowing down the propagation of326

topological excitations along the direction perpendicular to the layers. In a semi-infinite327

system this leads to a slow logarithmic expansion in the z direction. In a finite slab, in328

contrast, the density of top and bottom layer approach each other very slowly, following329

a stretched exponential in logarithmic time, e−α(log t)2 .330

A key prerequisite of our detection protocol is the availability of a probe sensitive to331

the density ρ of the topological excitations. The optimal choice of probe will depend on the332

microscopics of the system, but in general, one expects that many observables—such as the333

dielectric function [64–66], Raman intensities [5, 67], and others—depend approximately334

linearly on ρ.335

Similar pump-probe schemes can also be used to explore other phases of matter where336

single excitations can move only in a d′ dimensional subspace of a d-dimensional system,337

d′ < d. This includes fracton-like phases [35] in quantum liquids and – in purely classical338
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systems – the dynamics of dislocations in crystals or charge density waves [15, 16]. An339

interesting question is to investigate the quantum dynamics and entanglement growth of340

non-Abelian anyons with internal degrees of freedom. Incorporating their braiding and341

quantum mechanical interactions into our framework is left for future work.342

In our model and similar systems, the effective dimensionality of single-particle excita-343

tions is protected by topology. Interestingly, this changes in the presence of a finite density344

of screw dislocation as pointed out in Ref. [18, 68]. By encircling a screw dislocation a345

single topological excitation can move from one layer to the next. Thus, screw disloca-346

tions effectively act as a set of spiral staircases connecting the different layers, allowing for347

single-particle diffusion in the z direction.348

In conclusion, we propose using pump–probe experiments to investigate the effective349

dimensionality of topological excitations, applicable to a variety of systems. Although350

we have focused on a scheme in which the entire top layer is illuminated uniformly, the351

analysis can be readily extended to cases where only a finite spot on the surface is excited.352

In such configurations, one can simultaneously track the propagation of excitations both353

within the plane and perpendicular to it.354

Acknowledgements355

We thank Ajesh Kumar, Sebastian Diehl and Urban Seifert for useful discussions.356

Funding information This work was supported by the Deutsche Forschungsgemeinschaft357

(DFG) through CRC1238 (Project No. 277146847, projects C02 and C04).358

Data availability The numerical data presented in this work is available at zenodo.org [69]359

A Mean-field solution on a lattice360

To solve the mean-field noiseless model, we implement descretize Eq. (11) on a 1d lattice361

along the z direction with length w. For each layer, we then obtain362

∂tρl =D⊥
(
ρ2

l+1 − 2ρ2
l + ρ2

l−1

)
− λρ2

l , l = 0, 1, ...w − 1 (A.1)

∂tρ0 =D⊥
(
ρ2

1 − ρ2
0

)
− λρ2

0

∂tρw =D⊥
(
ρ2

w−1 − ρ2
w

)
− λρ2

w,

where ρl is the density on layer l. The last two lines above implement the boundary363

conditions at z = 0 and z = w. We solve this system of equations using Runge-Kutta364

method with the initial condition ρl(t = 0) = ρ0δl,0.365

B Perturbation analysis for finite slab366

In a finite slab of a layered sample with thickness w, the rate with which densities of the367

top and bottom layers approach each other, after an initial excitation on the top layer, can368

be estimated using a perturbation analysis around the uniform solution to the diffusion369

equation Eq. (11).370
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In the limit t → ∞, we expect the density to be independent of z, denoted by ρ0(t).371

For example, within the noiseless model Eq.(11), ρ0(t) = (λt)−1. We consider a small372

perturbation of the form ρ̄(z, t) ≈ ρ̃0(t) + δρ(z, t) where δρ/ρ̃0 ≪ 1, and obtain at first373

order in δρ374

∂tδρ = 2ρ̄0(t)
(
D⊥∂

2
zδρ− λδρ

)
(B.1)

Using the Fourier series expansion

δρ(z, t) =
∞∑

n=1
δρkn(t) cos(knz),

where the wave-vectors kn = πn/w with n ∈ Z, we can obtain the solution for the375

components δρn. Note that only the cosine terms appear in the expansion so that our376

boundary conditions of no currents at z = 0 and z = w are imposed. Therefore, we obtain377

δρn(t) = δρn(0) exp
[
−2
[
D⊥n

2π2

w2 + λ

] ∫ t

0
ρ̄0(τ)

]
, (B.2)

where δρn(0) are constants determined by the shape of the profile at time scales where378

both the top and bottom layer densities start to decay, see Fig. 2b.379

We thus obtain the difference between the top and bottom densities

∆(t) = (ρ̄(0, t) − ρ̄(w, t)) /ρ̄(0, t)

at leading order in δρ380

∆ ≈
∞∑

n=1

(δρn − (−1)nδρn)
ρ0(t) (B.3)

=
∞∑

n=1,3,5,...

2δρn(0)
ρ0(t) exp

[
−2
[
D⊥n

2π2

w2 + λ

] ∫ t

0
ρ0(τ)

]

Since larger n modes are exponentially suppressed and δρ(z, 0) is assumed to be a smooth381

function, we can obtain the leading behavior by truncating the sum to n = 1,382

∆(t) ∝ e
−2
(

D⊥π2

w2 +λ

)∫ t

0 ρ0(t)

ρ0(t) , (B.4)

For the noiseless (mean-field) case, ρ0(t) = (λt)−1 and we obtain383

∆mf ∼ λt−α, α = 1 + 2D⊥π
2

λw2 (B.5)

For the noisy case, one can approximately obtain the leading behavior by replacing384

ρ0(t) with the steady state solution for a 2d diffusion-annihilation model. This is given by385

the well-known [57] formula ρ0(t) = log(D∥t/a2)
8πwD∥t in the long-time limit (note the extra factor386

of 1/w compared to [57] arising as ρ is a 3d rather than the 2d density). This solution is387

independent of λ as annihilation processes are controlled by the in-plane diffusion as the388

particles become more and more dilute at long times. Thus we obtain the leading behavior389

for the density difference390

∆(t) ∼ t

log te
−α(log t)2

. (B.6)
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(a) (b)

(c) (d)

Figure 6: (a) Density evolution of the top and bottom layer for an initial state
with randomly placed nearest-neighbor pairs (blue) and randomly placed particles
(red), with the same initial density ρ0 = 0.1. While the paired initial condition
leads to a slightly faster decay of the top layer density at early times (see (b)),
they converge rather quickly onto each other. In (c), we confirm the scaling
law Eq. (5) for random-pairs initial conditions. The simulations are performed
on a lattice grid of size 1000 × 1000 × 10, and model parameters Γλ = 0.3 and
Γλ = 0.15. Initial density of 0.1 and 0.05 correspond to 50, 000 and 100, 000
particles respectively.

From our derivation, we obtain α = λw2+2π2D⊥
16πw3D∥

but this formula does not take into account391

possible renormalizations of λ and D⊥ in Eq. (B.2) arising from non-linear interactions of392

δρ1 with other Fourier modes with n ̸= 0. For the finite-width system only the n = 0 mode393

obtains logarithmic corrections and correspondingly these renormalizations remain finite.394

Thus, in principle, α in Eq. (B.6) should be viewed as a fitting parameter. Numerically,395

we find that α becomes small in the pair-annihilation dominated regime, λw2 ≫ D⊥, as396

predicted by the mean-field result, Eq. (B.5). Note, however, that most of our numerics397

is not in the asymptotic regime dominated by logarithmic corrections as can be seen from398

Fig. 5 where logarithmic corrections remain smaller than 1.399

C Effect of initial correlations400

In Fig. 6 we explore the effects of pair correlations in the initial state. We compare two401

initial conditions: 1. randomly placed particles in the first layer and 2. randomly placed402

nearest-neighbor pairs of particles. In both cases, we do not allow configurations where403

two particles occupy the same site. The second initial condition takes into account that404

our topological excitations can be locally created only in pairs. At very short times, see405

15



SciPost Physics Submission

Fig. 6b, the pair annihilation rate is slightly enhanced compared to the second initial406

condition. For longer times, however, the pair correlations of the initial state have no407

visible effects.408

D Role of non-topological excitations and experimental considera-409

tions410

The analysis presented in the main part of the paper assumes that the only relevant411

excitations in the system are topological. In a real material , however, the presence of412

non-topological excitations such as phonons and photons is unavoidable. In this appendix413

we give a brief, qualitative discussion on how they affect our results and discuss under what414

conditions it is possible to create excitations strictly close to the surface of a material.415

When using a THz or laser pulse, its penetration depth into the sample is usually416

determined by the absorption rate. Therefore, one has to choose a frequency range where417

absorption (either directly by pairs of topological excitations, or by other degrees of free-418

dom) is sufficiently large. Alternatively, one may add extra coating layers made from a419

material with strong absorption or with a large dielectric constant [70]. In the latter case,420

illumination from the high-ϵ side at shallow incidence can generate total internal reflection421

and an evanescent field near the interface.422

The frequency of the exciting pulse will determine whether it will create primarily the423

topological excitations (for frequencies close to twice the gap ∆), or other electronic or424

phonon excitations which then decay into the low-energy topological excitations (and extra425

low-energy phonons) only in later stages. In the former scenario, the analysis presented in426

our paper directly applies (possibly with small modifications from longer-ranged hopping427

processes discussed below). In the later case, where non-topological excitations dominate428

initially, the our analysis only applies on time-scales long compared to the time-scale429

required to convert high-energy excitations down to low-energy topological excitations430

and, possibly, low-energy phonons. If these processes are slow enough, they may mask the431

physics discussed by us.432

Another interesting effect, not taken into account in our analysis is the following:433

a pair of topological excitations may annihilate in one layer, creating a phonon which434

is reabsorbed in a different layer, where it creates another pair of topological excitations.435

This results in a phonon-mediated long-ranged pair-hopping process. While such processes436

will have a very small prefactor (quadratic in the effective phonon coupling), they can still437

dominate long-distance transport as we have shown that the usual diffusive process are438

highly ineffective in the presence of pair annihilation. Importantly, phonon-mediated pair439

hopping will obey the same scaling relations used in Eq. (3) of the main text. Therefore440

the central prediction that all relevant time-scales are inversely proportional to the density441

of excitations remains valid.442
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