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Abstract

We develop a general framework for time-resolved Hong–Ou–Mandel (HOM) interferom-
etry in the fractional quantum Hall effect (FQHE), revisiting approaches that considered
only noise associated with quasiparticle tunneling. We derive a universal perturbative
relation linking cross-correlations of chiral currents under arbitrary AC drives to their DC
counterparts. Motivated by a recent experiments, we consider an injection protocol for
pulses carrying charge q , as suggested by the plasmon-scattering approach, and show
that the resulting HOM signal is entirely insensitive to any non-integer q , irrespective of
the underlying edge Hamiltonian. Specializing the latter to a chiral Tomonaga–Luttinger
liquid, we analyze the width of the HOM dip for both sharp and finite-duration pulses.
We find that the dip width exhibits a nontrivial dependence on the scaling dimension δ,
in stark contrast with the simple 1/δ scaling.
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1 Introduction16

Manipulating individual quasiparticles in the quantum Hall regime has opened a pathway17

to electronic quantum optics [1–5], where single electrons propagating along ballistic chiral18

edges play the role of single photons in optical media. Unlike photon optics, however, electron19

quantum optics is shaped by Fermi statistics and by strong Coulomb interactions, giving rise to20

phenomena with no optical analogue. A central tool in this field is electronic interferometry.21

In particular, in Hong-Ou-Mandel (HOM) geometries, synchronized sources inject excitations22

that collide at a quantum point contact (QPC), producing a characteristic dip in the current23

noise that reflects exclusion statistics [4, 6]. HOM setups have also provided clear signatures24

of charge fractionalization [1, 7–10] and enabled full electronic-state tomography [11–13].25

HOM interferometry is now highly developed in the integer quantum Hall regime, where de-26

terministic single-electron sources are firmly established [2–4], which is not the case in the27

fractional quantum Hall effect (FQHE), where it has mainly revealed quantum coherence and28

Fermi statistics of electron excitations [6]. In fact, time-dependent transport methods have29

been provided by the unifying nonequilibrium perturbative (UNEP) theory [14–21] to probe30

the fractional charge, traditionally extracted from DC shot noise [22–25]. By contrast, access-31

ing fractional statistics has relied almost exclusively on DC-transport probes [26–38].32

A major bottleneck is the absence of reliable on-demand anyon sources. Driven quan-33

tum dots emit only electrons, and Lorentzian voltage pulses [3] necessarily carry integer34

charge [39], preventing the direct generation of isolated fractional quasiparticles. This limi-35

tation has so far blocked the implementation of true single-anyon HOM interferometry in the36

FQHE.37

Well before the development of electron quantum optics, whether through the seminal real-38

ization of on-demand single-electron emission using quantum dots in 2007 [2] or Lorentzian39

voltage pulses generating minimal excitations [3, 4], the possibility of shaping propagating40

plasmonic pulses with charge q and temporal width controlled by voltage pulses was antici-41

pated in 1995-98 [1,40,41]. These works established a nonequilibrium bosonization frame-42

work in which the linear equation of motion is solved through the matrix scattering formalism43

for plasmons, which has since become one cornerstone of subsequent developments in quan-44

tum Hall edge states [9,42–47].45

This line of thought culminated in a recent HOM experiment [48] employing injected frac-46

tional sharp pulses, with the aim of disentangling the anyonic braiding phase θ in the time47

domain from its role as the scaling dimension δ. This analysis implicitly assumes a Tomon-48

aga–Luttinger liquid (TLL) description, which however not firmly established experimentally,49

as already evidenced in experiments determining the fractional charge [19, 49] or fractional50

statistics [31–33]. In fact, the underlying TLL-based theoretical work [50] considered only the51

noise of the quasiparticle tunneling current, whereas experiments measure correlations of the52

chiral currents. All other theoretical treatments of HOM interferometry in the FQHE [51–54]53

share this limitation, and in several cases operate outside the domain of validity of perturbation54

theory (see Ref. [55]).55

The distinction between chiral-current and tunneling-current correlators is crucial, and56

has been clarified explicitly within the formalism for nonequilibrium transport in bosonised57

impurity models (NETBIM), which relates the two exactly [19, 56–60]. This nonperturba-58
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Figure 1: A QPC in the quantum Hall regime at an integer or fractional filling factor
ν. We focus here on edges such that each harbors only a single chiral mode. While
Vu and Vd denote the reservoir voltages, Vg denotes a gate voltage. Both the reservoir
and gate voltages can be time-dependent. Iu(t) and Id(t) denote the outgoing chiral
current operators in the upper and lower edges [cf. Eq. (5)], respectively, and I(t)
represents the backscattering-current operator in Eq. (3).

tive framework transcends the TLL paradigm and accommodates arbitrary interaction ranges59

and profiles. Complementarily, the UNEP framework [14, 17, 20] provides a perturbative but60

model-agnostic route to time-dependent transport beyond bosonization, applicable to a broad61

class of correlated systems. UNEP relations have, in particular, enabled a unified analysis of62

HOM-type experiments for injected electrons across the integer and fractional quantum Hall63

regimes [6].64

In this paper, we develop a framework for HOM interferometry in the FQHE by combining65

NEBIF and UNEP theory. Our contributions are threefold. First, we derive a universal pertur-66

bative relation between cross-correlations of outgoing chiral currents in the AC and DC regime,67

which revisits and substantially extends previous HOM analyses [51–54,61–63]. Second, mo-68

tivated by experimental evidence consistent with TLL behavior [64], we apply these relations69

to the TLL model and carefully analyze the short-pulse protocols used in Refs. [31,50], show-70

ing that their interpretation requires a more refined theoretical framework. Finally, we discuss71

the domain of validity of our perturbative expansion [55].72

Altogether, our results provide a comprehensive, drive-agnostic description of HOM inter-73

ferometry in the FQHE, clarify previous theoretical inconsistencies, and yield precise predic-74

tions for the width and behavior of the HOM dip.75

2 Model and perturbative relations76

In this paper, we consider an icompressible chiral edge state in the FQHE at a filling factor ν in77

the Laughlin series. Bosonic fields φu,d ,are associated with the upper and lower edges of the78

Hall bar, respectively. The edge dynamics are governed by a quadratic bosonized Hamiltonian79

H0 in terms of φu,d , without assuming the specific form of a (chiral) Tomonaga–Luttinger80

liquid. Quasiparticle backscattering is represented by a generic, possibly spatially extended81

operator A, driven by a complex time-dependent function p̃(t,∆t). We allow here for an ex-82

plicit dependence on a time shift ∆t, which in the HOM setup corresponds to the relative83

time delay between two sources. All time-dependent forces are incorporated-either through84

a Keldysh gauge transformation or, equivalently, by evolving time-dependent boundary condi-85

tions [1] into p̃(t,∆t).86
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Accordingly, the full time-dependent Hamiltonian takes the form87

H(t) =H0 + e−iωdc t p̃(t,∆t)A+ eiωdc t p̃∗(t,∆t)A†, (1)

Although not required in full generality, the frequency ωdc often satisfies the Josephson-type88

relation ωdc = e∗V/ħh, where V denotes the applied dc voltage drop between the upper and89

lower edges and e∗ the transferred quasiparticle charge. When considering the HOM setup,90

we adopt the form :91

p̃(t,∆t) = e−i [ϕ(t−∆t/2)−ϕ(t+∆t/2)] , (2)

where ϕ(t) describes the ac phase applied to each source, taken at the same DC voltage so92

that we take ωdc = 0. We can then show that HOM noise can be expressed through noise in93

the DC regime, with ϕ = 0 and ωdc finite.94

Two current operators will play a central role. First, the quasiparticle tunneling current at95

the QPC,96

Itun(t) = − i
e∗

ħh
�

e−iωdc t p̃(t,∆t)A− eiωdc t p̃∗(t,∆t)A†
�

, (3)

so that the HOM tunneling (backscattering) noise reads:97

SHOM
tun
(∆t) =

∫∫ ∞

−∞
d tds 〈δItun(t) δItun(t + s)〉 |ωdc=0, (4)

where δI(t) = I(t)−〈I(t)〉. The current operator is understood to be taken in the Heisenberg98

representation throughout, Note that the terminology of tunneling is used purely for conve-99

nience and does not imply a bipartite structure of the system, since H0 is not assumed to100

decompose into two separate parts. In particular, interactions between the upper and lower101

edges are allowed.102

Second, we will consider the experimentally accessible chiral edge currents,103

Iu,d(x , t) = v ∂xφu,d(x , t)/π, (5)

where v is the edge magnetoplasmon velocity. The corresponding cross-correlations are de-104

fined as105

SHOM
cr
(∆t) =

∫∫ ∞

−∞
d t ds 〈δIu(xu, t) δId(xd , t + s)〉 |ωdc=0, (6)

with δIζ(xζ, t) = Iζ(xζ, t) − 〈Iζ(xζ, t)〉 and ζ = u, d. xu,d are the upper and lower edge106

measurement points The cross-correlated dc noise is defined as107

S
cr
(ωdc) =

∫ ∞

−∞
dseiωdcs 〈δIu(xu, 0) δId(xd , s)〉 |ϕ=0, (7)

We now focus on weak tunneling amplitudes for fractional charges. Let us recall first the UNEP108

relation between the HOM tunneling noise and DC noise [14,20,65]:109

SHOM
tun
(∆t) =

∫ +∞

−∞

dω
Ω0
|p̃(ω,∆t)|2 Stun(ωdc =ω), (8)

where Ω0 = 2π/T0, with T0 is the measurement time (larger than any relevant time scale).110

Interestingly, by combining UNEP theory with NEBIF, we can show a similar universal relation111

for cross-correlations:112

SHOM
cr
(∆t) =

∫ +∞

−∞

dω
Ω0
|p̃(ω,∆t)|2 Scr(ωdc =ω), (9)
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Both relations are valid for any stationary nonequilibrium distributions, such as those induced113

by temperature gradients or in the “anyon collider” [66]. They also extend as well to the case114

|p̃(∆t, t)| is not constrained to unity, which permits amplitude modulation, for instance from115

a time-dependent gate voltage (see Fig. 1).116

The HOM noise is expressed as integral over the AC frequenciesω of contributions contain-117

ing two factors: one associated with the drive p̃(ω,∆t), and the other given by Scr(ωdc =ω),118

which retains the signature of the underlying Hamiltonian. All dependence on the time delay119

∆t enters exclusively through p̃(ω,∆t).120

Let us now comment on the case one adopts an initial equilibrium thermal distribution (on121

which we will focus when applying Eq.(9) to a TLL model), thus ρth∝ e−βH0 with electronic122

temperature123

ωth = kB T/ħh= 1/β (10)

In that case, the NETBIM, originally developed at finite frequency and DC voltages [56–59],124

provides exact relations between cross-correlations and backscattering noise. When combined125

with generalized non-equilibrium linear response theory [67], this yields an exact expression126

for the DC cross-correlations [60]:127

Scr(ωdc) = Stun(ωdc)− 2e∗ωth Gtun(ωdc) , (11)

where the dc differential conductance is defined as Gtun(ωdc) = ∂ Itun(ωdc)/∂ωdc with Itun(ωdc)128

the DC average the tunneling current operator in Eq.(3). A similar exact form holds as well129

for the for the HOM noise (reported to a separate publication), leading to an exact result due130

to the equilibrium FDT:131

SHOM
cr
(∆t = 0) = Scr(ωdc = 0) = 0 . (12)

This vanishing, which follows directly from gauge invariance and from the perturbative ex-132

pression in Eq. (9), is robust with respect to both the nature of the injected charges and the133

strength of interactions. It therefore cannot reveal anyonic braiding when the reservoirs act as134

classical sources. In setups where single electrons are injected, the disappearance of the HOM135

signal at ∆t = 0 is interpreted as antibunching: synchronized electrons cannot collide at the136

QPC [6].137

In the perturbative regime relevant here, the UNEP framework demonstrates the full gen-138

erality of the Poissonian relation-extending well beyond bipartite systems [15,16,65]:139

Stun(ωdc) = e∗ coth
�

ωdc

2ωth

�

Itun(ωdc), (13)

where Itun(ωdc) is the average tunneling current. As a result, Scr(ωdc) in Eq. (11) is fixed entirely140

by this current, making Itun the sole model-dependent ingredient entering the HOM noise in141

Eq. (9).142

3 Application to two incident pulses143

Following Refs. [40,41] and the considerations of Ref. [61], we now consider counter-phased144

plasmonic pulses and derive the explicit form of the kernel |p̃(ω,∆t)|2 entering Eq. (9), with-145

out specifying the underlying bosonized Hamiltonian. We first address the case of extremely146

sharp pulses defined by:147

ϕ(t) = 2πq θ (t), (14)
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Figure 2: Normalized cross-correlated HOM noise Rcr(∆t) and normalized tunneling
noise Rtun(∆t) from Ref. [63] as functions of ωc∆t for sharp voltage pulses, for
scaling dimensions δ = 1/3 and 2/3, andωth/ωc = 0.1. The results are independent
of the injected non-integer dimensionless charge q. Inset: zoom of Rcr(∆t) and
Rtun(∆t) in the vicinity of ωc∆t = 0. The curves are compared with the analytical
short-time form fδ(∆t) = 1− exp[−2πωthδ|∆t|] introduced in Ref. [50].

each carrying a fractional charge q and separated by a time delay ∆t. For such a drive one148

obtains, at nonzero frequency:149

p̃(ω,∆t) =
�

e2πiq − 1
� 2sin(ω∆t/2)

ω
. (15)

This leads to a universal oscillatory behavior of the HOM noise in Eqs.(8),(9) similarily to that150

in Hanbury Brown–Twiss configurations, as noted in Refs. [14, 17] for periodic pulses and in151

Ref. [68] for a single pulse. Let us now normalize Eq. (9) by its large-delay value ∆t→∞,152

where the pulses do not overlap. We define the corresponding ratio as153

Rcr(tun)(∆t) = SHOM
cr(tun)
(∆t)/SHOM

cr(tun)
(∆t →∞) (16)

For sufficiently large time delays, the sources act independently and the noise reduces to the154

sum of two Hanbury Brown–Twiss contributions [61]. Therefore, remarkably, for noninteger q155

the normalized HOM signal Rcr(∆t) is independent of q, since the prefactor |e2πiq−1|2 cancels156

in the ratio. However, the limit q→ integer is singular: in that case the HOM signal vanishes157

identically [68]. Remarkably, these results are robust with respect to the precise low-energy158

effective theory of the edges: they are controlled only by the specific sharp profile of the pulses.159

It is however mor realistic to go beyond δ-like pulses and consider a finite temporal width160

τ, focussing here on a rectangular shape, so that the phase reads:161

ϕ(t) = κ
�

t θ (t)− (t −τ)θ (t −τ)
�

, (17)

where κ = 2πq/τ. A further motivation concerns the requirement of bosonization validity162

at low energies, below an ultraviolet cutoff ωc . In fact extremely sharp pulses are high in163

energy. While Eq. (9) is general, its use within a bosonized theory requires that the integrand164

decays sufficiently fast above ωc [55], a condition that depends both on the drive shape and165

on the intrinsic DC noise. A secure way to regularize this regime is to consider pulses of finite166

duration τ, much larger than the short-time cutoff 2π/ωc . Such a single rectangular pulse167

6
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can also be viewed as the limiting case of the periodic pulses employed in Ref. [48], obtained168

for very large period compared to τ. Fourier transforming Eq. (2), at finite frequency, yields169

p̃(ω,∆t ≤ τ) =
2 e

iωτ
2

ω

�

ei κ∆t sin
�

ω
τ−∆t

2

�

− sin
�

ω
τ+∆t

2

�

�

+ 2 e
i κ∆t

2

�

sin
�

(ω+κ)∆t
2

�

ω+ κ
+ eiωτ

sin
�

(ω−κ)∆t
2

�

ω− κ

�

, (18)

with the property p̃(ω, 0) = 0. For ∆t > τ, one finds170

p̃(ω,∆t ≥ τ) = 2 e
i κτ

2

�

e
iω
2 (τ−∆t) sin
� (ω+κ)τ

2

�

ω+ κ
+ e

iω
2 (τ+∆t) sin
� (ω−κ)τ

2

�

ω− κ

�

+
2 e

iωτ
2

ω

�

�

ei κτ − 1
�

sin
�

ω
2 (∆t −τ)
�

− 2 cos
�

ω∆t
2

�

sin
�

ωτ
2

�

�

. (19)

For a meaningful interpretation in terms of single injected excitations, the regime ∆t > τ171

is the more relevant, as it avoids overlap between two incident pulses. In the narrow-pulse172

limit τ→ 0, this expression reduces to Eq. (15). In contrast to that equation, for finite τ the173

limit q→ integer yields a finite kernel, allowing a controlled comparison between integer and174

fractional q. We see clearly that the kernel depends on the width τ, whether q is fractional175

or integer, leading to a dependence of Rcr(∆t) on τ. Now we make this dependence more176

explicit within the TLL model.177

4 Case of a TLL model178

The vast majority of theoretical studies of Hall edge states rely on low-energy effective the-179

ories below the UV cutoff ωc . When tunneling of a single quasiparticle species dominates,180

it is governed by one scaling dimension δ, which plays the role of the TLL parameter, and181

is affected by nonuniversal features such as inter-edge interactions or edge reconstruction.182

For definiteness, we assume quasiparticle tunneling localized at x = 0. We also specify to183

a thermal initial state ρth ∝ e−βH0 with electronic temperature in Eq.(10). One expects a184

quantum metal–insulator transition at an energy scale that separates the weak- and strong-185

backscattering regimes [69,70], and the exact realtion in Eq.(11) is valid for all energy scales,186

thus in both regimes. Here we focus on the metallic one, where DC voltage or temperature187

scales are high enough compared to the crossover energy scale. In this case, the DC current is188

given by [71] :189

Itun(ωdc) =
2ωth
Γ 2(δ)Gtun(0) sinh(πµ) |Γ (δ+ iµ)|2 with µ= ωdc

2πωth
. (20)

Here190

Gtun(0) =
e∗ R
2π

Γ 2(δ)
Γ (2δ)

(2π)4(δ−1)
�

ωth

ωc

�2(δ−1)
, (21)

is the equilibrium conductance, with R≪ 1, so that e∗R is its value for δ = 1. Using Eq.(13)191

and (11) gives the DC cross-correlations:192

This yields [72]193

Scr(ωdc) =
e∗
π Itun(ωdc)ℑψ(δ+ iµ) (22)
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where Im[. . .] denotes the imaginary part, and ψ is the digamma function.194

For δ > 1/2 Scr(ω) decays too slowly at T = 0, Scr(ω)∝ |ω/ωc|2δ−1. Thus, in order to use195

this TLL expression, the kernel |p̃(ω,∆t|2 in Eq. (9) must decay rapidly, requiringωc∆t ≫ 2π.196

Using Eq. (9), we now analyze the HOM noise under sharp pulses. This case is directly moti-197

vated by the recent experiment in Ref. [48] where charges Ne/3 (i.e., q = N/3) were injected198

at ν= 1/3 in order to determine the anyonic braiding phase θ .199

4.1 Analysis of the HOM dip width for sharp pulses200

For N = 1 (q = 1/3), the HOM dip width was claimed to scale as 1/ωthδ, thereby providing201

a direct probe of δ. For N = 3, one inject purely electronic pulses that do not braid whose202

width is claimed to determine the HOM dip width. The contrast between the N = 1 and N = 3203

cases was then interpreted as a manifestation of anyonic braiding of the injected excitations204

with thermally created quasiparticle–quasihole pairs at the QPC, from which θ = 2π/3 was in-205

ferred. This analysis is based on Ref. [61] claiming that while integer-charge pulses yield a dip206

controlled by their width, sharp fractional-charge pulses lead to a backscattering normalized207

noise Rtun(∆t) approximated by208

fδ(∆t) = 1− exp(−2πωthδ|∆t|) (23)

We start by discussing the validity of this approximation for the tunneling HOM noise, then209

give both analytic and numerical analysis of the HOM dip width for the more relevant chiral210

cross correlations.211

4.1.1 HOM dip for tunneling noise212

The analytical expression for the normalized Rtun(∆t) was obtained in Ref. [63]213

Rtun(∆t) =
N (∆t,δ)
D(δ)

=

∫ |∆t|
0 d tBe−2πωth t (δ, 1− 2δ)
∫∞

0 d tBe−2πωth t (δ, 1− 2δ)
, (24)

where Bz(a, b)-is the incomplete beta function. As evident from Fig. 2, the normalized tunnel-214

ing noise exhibits substantial deviations from the function fδ=2/3(∆t) in Eq.(23). Interestingly,215

for δ = 2/3 the corresponding cross-correlated normalized HOM noise Rcr(∆t) follows fδ(∆t)216

much more closely, as shown in Fig. 2, which may account for the experimentally observed217

behavior of Rcr(∆t). In contrast, for the smaller scaling dimension δ = 1/3, we find more218

pronounced discrepancies between Rcr(∆t) and Rtun(∆t). In this case, however, the tunnel-219

ing contribution remains well approximated by Rtun(∆t) ≃ fδ=1/3(∆t), in agreement with220

Ref. [50], which focuses exclusively on the tunneling noise for δ = 1/3. Overall, these com-221

parisons highlight clear and systematic deviations between the two types of normalized HOM222

noise.223

Of course the numerical features of the HOM dip width for the tunneling noise can also be224

extracted from the asymptotic expression at short-time behaviour of the normalized tunneling225

noise defined in Eq. (24). We first consider the denominator. We introduce the dimension-226

less variable y = 2πωth t, then change it to the variable u = e−y and exchange the order of227

integration, so that:228

D(δ) = 1
2πωth

∫ ∞

0

d y Be−y (δ, 1− 2δ) =
1

2πωth

∫ 1

0

uδ−1(1− u)−2δ[− log u] du. (25)

Using the identity229

∂

∂ a
B(a, b) =

∫ 1

0

ua−1(1− u)b−1 logu du, (26)
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Figure 3: (Left) Normalized HOM noise Rcr(∆t) as a function of ωc∆t for sharp
pulses and for different values of ωth/ωc = {0.05, 0.08,0.10}. Inset: numerical full
width at half maximum (FWHM) of the HOM dip as a function ofωth/ωc according to
a power law behavior. (Right) Normalized HOM noise Rcr(∆t) as a function ofωc∆t
for sharp pulses and for different values of δ = {0.66,0.80, 0.90} at ωth/ωc = 0.1.
Inset: numerical full width at half maximum (FWHM) of the HOM dip as a function
of δ for different temperatures ωth/ωc = 0.08, ωth/ωc = 0.12 and comparison with
the behaviour∝ δ−1.

we arrive at230

D(δ) = 1
2πωth

B(δ, 1− 2δ)
�

ψ(1−δ)−ψ(δ)
�

=
1

2ωth

B(δ, 1− 2δ) cot(πδ). (27)

We now turn to the numerator in Eq.(24). Let us now consider ωth|∆t| ≪ 1. The in-231

complete beta function admits a regular expansion around y = 0 and, to leading order, we232

get:233

N (∆t,δ) =
1

2πωth

∫ 2πωth|∆t|

0

Be−y (δ, 1− 2δ) d y ≃ B(δ, 1− 2δ) |∆t|. (28)

Collecting these results, we obtain the short-time asymptotics of the normalized tunneling234

noise:235

Rtun(ωth|∆t| → 0) = 2ωth|∆t| tan(πδ), (29)

which is obviously different from fδ(∆t) in Eq.(23). Nevertheless, for small δ, the above236

expression reduces to237

Rtun(ωth|∆t|)≃ 2πωthδ|∆t|, (30)

in agreement with the linear short-time behaviour of the tunneling noise in Ref. [50,63], as the238

function fδ(∆t) can then be expanded, making such an approximation limited only to δ≪ 1.239

4.1.2 HOM dip width for cross-correlated noise240

Now we analyse the HOM dip obtained through Eq.(9) and Eq.(22) first through a numer-241

ical analysis then from an analytic low-temperature expansion. The full width at half max-242

imum (FWHM) of the HOM dip is shown in Fig. 3. For a fixed scaling dimension δ, the243

width decreases algebraically with temperature, following FWHM(ωth)∝ 1/ωth in the range244

ωth/ωc = 0.07–0.15, reflecting the inverse relationship between coherence time and ther-245

mal fluctuations. Consequently, even a modest rise in temperature substantially broadens the246

interference minimum. In contrast, for a fixed temperature ωth/ωc = 0.10, it exhibits a pro-247

nounced reduction with a non-trivial dependence on δ (see inset of Fig. 3). This behaviour248

9
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differs significantly from a simple∝ δ−1 scaling. Quantitatively, the variation with δ is signif-249

icantly stronger than with ωth, establishing the scaling dimension as the dominant parameter250

controlling the width of the HOM dip. Detailed analytical analysis of the HOM dip width for251

sharp pulses in Appendix A. For example it is shown that FWHM in the limit ωth|∆t| ≪ 1 is252

given by the non-trivial function of δ:253

FWHM∼
1
ωth

�

F(∞,δ)
2C(δ)

�1/(2−2δ)

, (31)

where254

F(∞,δ) =
22δ−2

π3
sin(πδ)B(δ, 1− 2δ)[ψ′(δ)−ψ′(1−δ)], C(δ) =

cos(πδ)
2π2δ(δ− 1)(2δ− 1)

,(32)

with ψ′(z) = dψ(z)/dz.255

For high-order filling factors for which one has multiple edges, but where a single charge256

tunneling dominates with the smallest scaling parameter δ, one expects δ to reflect interedge257

interactions which therefore can affect the HOM dip’s width [73].258

4.1.3 HOM dip width for rectangular pulses259

By analogy with the sharp-pulse case, we compute Rcr(∆t) for rectangular pulses of various260

durations τ, for a fractional q = 1/3 and integer q = 1 excitations as illustrated in Fig. 4. As261

expected, the HOM signal exhibits a strong dependence on τ, and the limit τ → 0 formally262

reproduces the sharp-pulse result shown in Fig. 2. This dependence holds for both fractional263

and integer excitations.264

For integer charge q = 1, the HOM dip width shows only a weak sensitivity to temperature:265

FWHM remains nearly constant for the small values of τ1 = 3.18 Fig. 5. This insensitivity266

indicates that thermal broadening plays a minor role when transport is dominated by coherent267

single-particle processes. It is worth emphasizing that increasing the temperature leads to a268

progressive reduction in the discrepancy between the FWHM for fractional (q = 1/3) and269

integer (q = 1) excitations, as illustrated in Fig. 5. This behavior aligns with the tendency270

previously identified in Ref. [48].271

For fractional charge q = 1/3, the behavior changes qualitatively. The HOM profile broad-272

ens significantly with increasing temperature, leading to a strongωth-dependence of the FWHM.273

This pronounced sensitivity reflects thermally assisted dephasing in the presence of fractional-274

ized excitations. Similarly, FWHM(δ) exhibits a steep, nonlinear growth, emphasizing the key275

role of scaling dimension δ. The dependence on τ is also markedly stronger than for q = 1: at276

large τ, the broadening becomes superlinear, indicating that long-range correlations further277

smear the HOM dip.278

Now we address the dependence of FWHM on the scaling dimension δ at three different279

values of the injected pulse duration τ. Figure 6 summarizes the results for several pulse280

durations τ , both for fractional (q = 1/3) and integer (q = 1) charge injection. For fractional281

excitations, the FWHM decreases monotonically with δ over the entire range explored. Narrow282

pulses (τ1 = 3.183) exhibit the steepest decay, whereas broad pulses (τ2 = 9.549) lead to283

a smoother, less δ-sensitive profile. This behavior reflects the dominance of high-frequency284

components in the correlation spectrum Scr(ωdc = ω) at larger δ, which enhance temporal285

decoherence and compress the interference feature in time delay ∆t. For integer excitations,286

the FWHM is nearly constant for small τ, showing only a weak residual increase with δ at287

larger pulse durations.288

Overall, the comparison between q = 1/3 and q = 1 highlights a clear dichotomy: frac-289

tional excitations lead to pronounced scaling of the HOM dip width with δ, while integer290
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Figure 4: Normalized HOM noise Rcr(∆t) as a function of the delay ωc∆t for rect-
angular pulses of finite duration τ1 = 3.18, τ2 = 9.55, for integer q = 1 (dashed)
and fractional q = 1/3 (solid), respectively, at δ = 2/3 and ωth/ωc = 0.05.

Figure 5: Normalized HOM noise Rcr(∆t) as a function of the delay ωc∆t for rect-
angular pulses of finite durations τ1 = 3.18, τ2 = 9.55 for a different values of q
and different temperatures ωth/ωc .

excitations yield a nearly flat baseline in the short-pulse regime. Increasing τ broadens the291

dip but also reduces the contrast between the two charge sectors, demonstrating how pulse292

shaping and quasiparticle charge jointly govern the temporal dip width of HOM interference.293

5 Discussion and Conclusion294

We have developed a unified theoretical framework for time-resolved Hong–Ou–Mandel (HOM)295

interferometry in fractional quantum Hall edge states, based on the formalism for nonequilib-296

rium transport in bosonized impurity models (NETBIM) combined with a controlled pertur-297

bative analysis. This approach yields model-independent relations connecting photo-assisted298

cross-correlated noise to its dc counterpart, valid for arbitrary stationary nonequilibrium states.299

Two universal features emerge, independently of quasiparticle charge, statistics, or interac-300

tion strength and range: the HOM signal necessarily vanishes at zero delay, and sharp voltage301

pulses produce a normalized HOM response that is completely insensitive to any noninteger302

injected charge q. This revisits earlier interpretations based solely on tunneling-current noise303

and demonstrates that sharp-pulse protocols cannot provide direct access to anyonic braiding304
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Figure 6: Full width at half maximum (FWHM) of the HOM dip versus scaling dimen-
sion δ for fractional q = 1/3 (solid line) and integer q = 1 (dashed line) at different
τ1 = 3.18, τ2 = 9.55 τ3 = 19.10 and ωth/ωc = 0.05.

information.305

Specializing to the chiral Tomonaga–Luttinger liquid model, we provide a detailed analysis306

of the HOM signal for both sharp and finite-duration rectangular pulses. We find substantial307

deviations from the commonly assumed 1/δ scaling of the HOM dip width, whether one con-308

siders the tunneling noise, on which previous theoretical works were restricted [50–54,63], or309

the experimentally relevant chiral-current noise. In Ref. [48], the value δ = 2/3 was extracted310

using a 1/δ scaling, which our results show to be accidental: this behavior is not generic and311

breaks down for other values of δ.312

We further demonstrate that finite pulse duration introduces an additional timescale that313

qualitatively reshapes the HOM profile, broadens the dip, and restores sensitivity to interac-314

tion effects through the scaling dimension δ. This provides a consistent interpretation of the315

differences observed between integer and fractional excitations. Based on such differences,316

Ref. [48] inferred a time-domain braiding phase satisfying θ = πδ. The origin and robustness317

of this identity are clarified in Refs. [74, 75], which also introduce complementary strategies318

for determining θ .319

Overall, our work provides a comprehensive and drive-agnostic framework for HOM in-320

terferometry in strongly correlated chiral systems. It clarifies the limitations of sharp-pulse321

injection protocols, identifies which features of the HOM dip genuinely encode interaction322

physics, and delivers reliable predictions for upcoming time-domain experiments targeting323

fractionalization and anyonic statistics in quantum Hall edge states.324

As a perspective, it will be particularly interesting to apply the cross-correlation formula325

derived here to anyon-collider geometries or nonequilibrium anyon injection schemes that326

extend beyond classical AC driving. Such configurations are expected to yield a finite signal327

at zero time delay, potentially exposing a direct signature of anyonic statistics.328
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A Asymptotic analysis of the HOM dip width for a sharp drain334

In this section of the Supplemental Material, we derive a closed analytical expression for the335

HOM noise SHOM
cr
(∆t),336

SHOM
cr
(∆t) =

∫ +∞

−∞

dω
Ω0
|p̃(ω,∆t)|2 Scr(ωdc =ω), (A.1)

where Scr(ωdc) is given by (22) andΩ0 = 2π/T0. The expression for the drive kernel |p̃(ω,∆t)|2337

is obtained from338

|p̃(ω,∆t)|2 =
1
T0

∫ T0/2

−T0/2

d t

∫ +∞

−∞
ds eiωsp(t + s/2)p∗(t − s/2), (A.2)

with p(t) is given by Eq. (2). For a voltage drive V (t) = κδ(t), one obtain339

|p̃(ω,∆t)|2 = 4π2δ(ω) +
1
T0
|eiκ − 1|2
�

2sin(ω∆t/2)
ω

�2

, κ= 2πq. (A.3)

Substituing the expression (A.3) to (A.1) and taking into account that Scr(0) = 0 we obtain340

SHOM
cr
(∆t) = 8sin2(κ/2)

∫ ∆t

0

dζ(∆t − ζ)
∫ +∞

−∞

dω
2π

cos(ωζ)Scr(ω)

= 8sin2(κ/2)

∫ ∆t

0

dζ(∆t − ζ)[S̃cr(ζ) + S̃cr(−ζ)], (A.4)

where we used the following identity341

1− cos(ω∆t)
ω2

=

∫ ∆t

0

dζ(∆t − ζ) cos(ωζ), (A.5)

and S̃cr is the Fourier transformation of Scr. In order to take this Fourier transformation we use342

the property of the digamma function343

�

�

�

�

Γ

�

δ+
iω

2πωth

�

�

�

�

�

2

ℑψ
�

δ+
iω

2πωth

�

= −πωth

d
dω

�

�

�

�

Γ

�

δ+
iω

2πωth

�

�

�

�

�

2

, (A.6)

and after integration by parts:344

S̃cr(ζ) =
e∗ωthGtun(0)
Γ 2(δ)

∫ +∞

−∞

dω
2π

e−iζω
§

cosh
�

ω

2ωth

�

− 2iζωth sinh
�

ω

2ωth

�ª

�

�

�

�

Γ

�

δ+
iω

2πωth

�

�

�

�

�

2

(A.7)
The crucial point is that the expression (A.7) contains poles solely due to the Gamma functions.345

By eclosing the contour and taking the corresponding poles we obtain346

S̃cr(ζ) =
e∗ω2

th
Gtun(0)

Γ 2(δ)
2π Γ (2δ)

22δ sinh2δ(πωth|ζ|)
[cos(πδ)− 2|ζ|ωth sin(πδ)] . (A.8)
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It is worth noting that the Fourier transformation (A.7) makes sense only for δ < 1/2, whereas347

for δ > 1/2 the expression should be interpreted as an analytic continuation.348

Let us now analyse dependence of the HOM dip width and derive an explicit asymptotic349

expression for FWHM. Throughout we introduce350

z =ωth∆t, (A.9)

where ωth is the thermal scale. According to (A.8) and (A.4) the normalized HOM signal is351

Rcr(z) =
F(z;δ)

F(∞;δ)
, Rcr(0) = 0, Rcr(∞) = 1, (A.10)

where352

F(z;δ) =

∫ z

0

ds (z − s)K(s;δ), K(s;δ) =
cos(πδ)− 2s sin(πδ)

sinh2δ(πs)
. (A.11)

The corresponding width is defined as FWHM= 2∆tFWHM due to symmetry, can be found as353

R(zFWHM(δ);δ) =
1
2

, ⇐⇒ F(zFWHM(δ);δ) =
1
2

F(∞;δ). (A.12)

From the solution of the equation above one can obviously obtain temperature scale for the354

HOM dip width ∆tFWHM ∼ zFWHM(δ)/ωth. Function zFWHM(δ) has non-trivial behaviour as a355

function of scaling dimension δ, which also can be exctracted from the equation (A.12).356

We now derive a closed analytical expression for F(∞,δ). Starting from Eq. (A.11), one357

may rewrite358

F(∞,δ) = lim
z→∞

∫ z

0

ds (z − s)K(s,δ) = −
∫ ∞

0

ds sK(s,δ). (A.13)

To evaluate this integral, we first note that359

∫ ∞

0

ds K(s,δ) =
�

�t = e−2πs
�

�=
22δ−1

π

∫ 1

0

d t tδ−1(1− t)−2δ [cos(πδ) + log t sin(πδ)/π]

=
22δ−1

π
B(δ, 1− 2δ)
¦

cos(πδ) +
sin(πδ)
π

[ψ(δ)−ψ(1−δ)]
︸ ︷︷ ︸

−π cot(πδ)

©

= 0. (A.14)

Then, making the same change of variables as above one can obtain360

F(∞,δ) = −
∫ ∞

0

ds sK(s,δ) =
22δ

4π2

∫ 1

0

d t [cos(πδ) + log t sin(πδ)/π] tδ−1(1− t)−2δ log t

=
22δ−2

π3
sin(πδ)B(δ, 1− 2δ)[ψ′(δ)−ψ′(1−δ)], (A.15)

where ψ′(z) = dψ(z)/dz.361

Then, for the F(z,δ) in the small ωth∆t → 0 limit one can have362

F(z,δ) = C(δ)

∫ z

0

ds (z − s)s−2δ = C(δ)z2−2δ, C(δ) =
cos(πδ)

2π2δ(δ− 1)(2δ− 1)
. (A.16)

Finally, the corresponding width of the HOM dip scaled as363

FWHM∼
1
ωth

�

F(∞,δ)
2C(δ)

�1/(2−2δ)

, (A.17)

where C(δ) and F(∞,δ) are given by the (A.16) and (A.15).364
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