

Revisiting time-resolved Hong-Ou-Mandel interferometry for fractional excitations

Aleksandr Latyshev^{1*}, Imen Taktak² and Ipsita Mandal³ Inès Safi¹

1 Laboratoire de Physique des Solides (UMR 5802), CNRS-Université Paris-Saclay, Bâtiment 510, 91405 Orsay, France

2 SPEC-CEA Orme des Merisiers, 91190 Gif sur Yvette

3 Department of Physics, Shiv Nadar Institution of Eminence (SNIoE), Gautam Buddha Nagar, Uttar Pradesh 201314, India

* ines.safi@universite-paris-saclay.fr

Abstract

We develop a general framework for time-resolved Hong–Ou–Mandel (HOM) interferometry in the fractional quantum Hall effect (FQHE), revisiting approaches that considered only noise associated with quasiparticle tunneling. We derive a universal perturbative relation linking cross-correlations of chiral currents under arbitrary AC drives to their DC counterparts. Motivated by a recent experiments, we consider an injection protocol for pulses carrying charge q , as suggested by the plasmon-scattering approach, and show that the resulting HOM signal is entirely insensitive to any non-integer q , irrespective of the underlying edge Hamiltonian. Specializing the latter to a chiral Tomonaga–Luttinger liquid, we analyze the width of the HOM dip for both sharp and finite-duration pulses. We find that the dip width exhibits a nontrivial dependence on the scaling dimension δ , in stark contrast with the simple $1/\delta$ scaling.

Copyright attribution to authors.

This work is a submission to SciPost Physics.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

¹

Contents

³	1	Introduction	2
⁴	2	Model and perturbative relations	3
⁵	3	Application to two incident pulses	5
⁶	4	Case of a TLL model	7
⁷	4.1	Analysis of the HOM dip width for sharp pulses	8
⁸	4.1.1	HOM dip for tunneling noise	8
⁹	4.1.2	HOM dip width for cross-correlated noise	9
¹⁰	4.1.3	HOM dip width for rectangular pulses	10
¹¹	5	Discussion and Conclusion	11
¹²	A	Asymptotic analysis of the HOM dip width for a sharp drain	13

13 **References**

15

14

15

16 **1 Introduction**

17 Manipulating individual quasiparticles in the quantum Hall regime has opened a pathway
18 to electronic quantum optics [1–5], where single electrons propagating along ballistic chiral
19 edges play the role of single photons in optical media. Unlike photon optics, however, electron
20 quantum optics is shaped by Fermi statistics and by strong Coulomb interactions, giving rise to
21 phenomena with no optical analogue. A central tool in this field is electronic interferometry.
22 In particular, in Hong-Ou-Mandel (HOM) geometries, synchronized sources inject excitations
23 that collide at a quantum point contact (QPC), producing a characteristic dip in the current
24 noise that reflects exclusion statistics [4, 6]. HOM setups have also provided clear signatures
25 of charge fractionalization [1, 7–10] and enabled full electronic-state tomography [11–13].
26 HOM interferometry is now highly developed in the integer quantum Hall regime, where de-
27 terministic single-electron sources are firmly established [2–4], which is not the case in the
28 fractional quantum Hall effect (FQHE), where it has mainly revealed quantum coherence and
29 Fermi statistics of electron excitations [6]. In fact, time-dependent transport methods have
30 been provided by the unifying nonequilibrium perturbative (UNEP) theory [14–21] to probe
31 the fractional charge, traditionally extracted from DC shot noise [22–25]. By contrast, access-
32 ing fractional statistics has relied almost exclusively on DC-transport probes [26–38].

33 A major bottleneck is the absence of reliable on-demand anyon sources. Driven quan-
34 tum dots emit only electrons, and Lorentzian voltage pulses [3] necessarily carry integer
35 charge [39], preventing the direct generation of isolated fractional quasiparticles. This limi-
36 tation has so far blocked the implementation of true single-anyon HOM interferometry in the
37 FQHE.

38 Well before the development of electron quantum optics, whether through the seminal real-
39 ization of on-demand single-electron emission using quantum dots in 2007 [2] or Lorentzian
40 voltage pulses generating minimal excitations [3, 4], the possibility of shaping propagating
41 plasmonic pulses with charge q and temporal width controlled by voltage pulses was antici-
42 pated in 1995–98 [1, 40, 41]. These works established a nonequilibrium bosonization frame-
43 work in which the linear equation of motion is solved through the matrix scattering formalism
44 for plasmons, which has since become one cornerstone of subsequent developments in quan-
45 tum Hall edge states [9, 42–47].

46 This line of thought culminated in a recent HOM experiment [48] employing injected frac-
47 tional sharp pulses, with the aim of disentangling the anyonic braiding phase θ in the time
48 domain from its role as the scaling dimension δ . This analysis implicitly assumes a Tomon-
49 aga–Luttinger liquid (TLL) description, which however not firmly established experimentally,
50 as already evidenced in experiments determining the fractional charge [19, 49] or fractional
51 statistics [31–33]. In fact, the underlying TLL-based theoretical work [50] considered only the
52 noise of the quasiparticle *tunneling* current, whereas experiments measure correlations of the
53 *chiral* currents. All other theoretical treatments of HOM interferometry in the FQHE [51–54]
54 share this limitation, and in several cases operate outside the domain of validity of perturbation
55 theory (see Ref. [55]).

56 The distinction between chiral-current and tunneling-current correlators is crucial, and
57 has been clarified explicitly within the formalism for nonequilibrium transport in bosonised
58 impurity models (NETBIM), which relates the two *exactly* [19, 56–60]. This nonperturba-

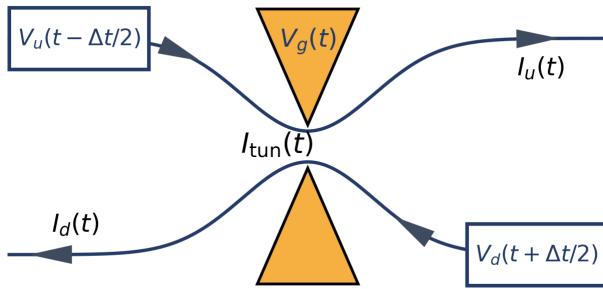


Figure 1: A QPC in the quantum Hall regime at an integer or fractional filling factor ν . We focus here on edges such that each harbors only a single chiral mode. While V_u and V_d denote the reservoir voltages, V_g denotes a gate voltage. Both the reservoir and gate voltages can be time-dependent. $I_u(t)$ and $I_d(t)$ denote the outgoing chiral current operators in the upper and lower edges [cf. Eq. (5)], respectively, and $I(t)$ represents the backscattering-current operator in Eq. (3).

59 tive framework transcends the TLL paradigm and accommodates arbitrary interaction ranges
 60 and profiles. Complementarily, the UNEP framework [14, 17, 20] provides a perturbative but
 61 model-agnostic route to time-dependent transport beyond bosonization, applicable to a broad
 62 class of correlated systems. UNEP relations have, in particular, enabled a unified analysis of
 63 HOM-type experiments for injected electrons across the integer and fractional quantum Hall
 64 regimes [6].

65 In this paper, we develop a framework for HOM interferometry in the FQHE by combining
 66 NEBIF and UNEP theory. Our contributions are threefold. First, we derive a universal pertur-
 67 bative relation between cross-correlations of outgoing chiral currents in the AC and DC regime,
 68 which revisits and substantially extends previous HOM analyses [51–54, 61–63]. Second, mo-
 69 tivated by experimental evidence consistent with TLL behavior [64], we apply these relations
 70 to the TLL model and carefully analyze the short-pulse protocols used in Refs. [31, 50], show-
 71 ing that their interpretation requires a more refined theoretical framework. Finally, we discuss
 72 the domain of validity of our perturbative expansion [55].

73 Altogether, our results provide a comprehensive, drive-agnostic description of HOM inter-
 74 ferometry in the FQHE, clarify previous theoretical inconsistencies, and yield precise predic-
 75 tions for the width and behavior of the HOM dip.

76 2 Model and perturbative relations

77 In this paper, we consider an incompressible chiral edge state in the FQHE at a filling factor ν in
 78 the Laughlin series. Bosonic fields $\phi_{u,d}$ are associated with the upper and lower edges of the
 79 Hall bar, respectively. The edge dynamics are governed by a quadratic bosonized Hamiltonian
 80 \mathcal{H}_0 in terms of $\phi_{u,d}$, without assuming the specific form of a (chiral) Tomonaga–Luttinger
 81 liquid. Quasiparticle backscattering is represented by a generic, possibly spatially extended
 82 operator A , driven by a complex time-dependent function $\tilde{p}(t, \Delta t)$. We allow here for an ex-
 83 plicit dependence on a time shift Δt , which in the HOM setup corresponds to the relative
 84 time delay between two sources. All time-dependent forces are incorporated–either through
 85 a Keldysh gauge transformation or, equivalently, by evolving time-dependent boundary condi-
 86 tions [1] into $\tilde{p}(t, \Delta t)$.

87 Accordingly, the full time-dependent Hamiltonian takes the form

$$\mathcal{H}(t) = \mathcal{H}_0 + e^{-i\omega_{dc}t} \tilde{p}(t, \Delta t) A + e^{i\omega_{dc}t} \tilde{p}^*(t, \Delta t) A^\dagger, \quad (1)$$

88 Although not required in full generality, the frequency ω_{dc} often satisfies the Josephson-type
 89 relation $\omega_{dc} = e^*V/\hbar$, where V denotes the applied dc voltage drop between the upper and
 90 lower edges and e^* the transferred quasiparticle charge. When considering the HOM setup,
 91 we adopt the form :

$$\tilde{p}(t, \Delta t) = e^{-i[\varphi(t-\Delta t/2)-\varphi(t+\Delta t/2)]}, \quad (2)$$

92 where $\varphi(t)$ describes the ac phase applied to each source, taken at the same DC voltage so
 93 that we take $\omega_{dc} = 0$. We can then show that HOM noise can be expressed through noise in
 94 the DC regime, with $\varphi = 0$ and ω_{dc} finite.

95 Two current operators will play a central role. First, the quasiparticle tunneling current at
 96 the QPC,

$$I_{\text{tun}}(t) = -i \frac{e^*}{\hbar} [e^{-i\omega_{dc}t} \tilde{p}(t, \Delta t) A - e^{i\omega_{dc}t} \tilde{p}^*(t, \Delta t) A^\dagger], \quad (3)$$

97 so that the HOM tunneling (backscattering) noise reads:

$$S_{\text{tun}}^{\text{HOM}}(\Delta t) = \iint_{-\infty}^{\infty} dt ds \langle \delta I_{\text{tun}}(t) \delta I_{\text{tun}}(t+s) \rangle |_{\omega_{dc}=0}, \quad (4)$$

98 where $\delta I(t) = I(t) - \langle I(t) \rangle$. The current operator is understood to be taken in the Heisenberg
 99 representation throughout. Note that the terminology of tunneling is used purely for convenience
 100 and does not imply a bipartite structure of the system, since \mathcal{H}_0 is not assumed to
 101 decompose into two separate parts. In particular, interactions between the upper and lower
 102 edges are allowed.

103 Second, we will consider the experimentally accessible chiral edge currents,

$$I_{u,d}(x, t) = v \partial_x \phi_{u,d}(x, t) / \pi, \quad (5)$$

104 where v is the edge magnetoplasmon velocity. The corresponding cross-correlations are de-
 105 fined as

$$S_{\text{cr}}^{\text{HOM}}(\Delta t) = \iint_{-\infty}^{\infty} dt ds \langle \delta I_u(x_u, t) \delta I_d(x_d, t+s) \rangle |_{\omega_{dc}=0}, \quad (6)$$

106 with $\delta I_\zeta(x_\zeta, t) = I_\zeta(x_\zeta, t) - \langle I_\zeta(x_\zeta, t) \rangle$ and $\zeta = u, d$. $x_{u,d}$ are the upper and lower edge
 107 measurement points. The cross-correlated dc noise is defined as

$$S_{\text{cr}}(\omega_{dc}) = \int_{-\infty}^{\infty} ds e^{i\omega_{dc}s} \langle \delta I_u(x_u, 0) \delta I_d(x_d, s) \rangle |_{\varphi=0}, \quad (7)$$

108 We now focus on weak tunneling amplitudes for fractional charges. Let us recall first the UNEP
 109 relation between the HOM tunneling noise and DC noise [14, 20, 65]:

$$S_{\text{tun}}^{\text{HOM}}(\Delta t) = \int_{-\infty}^{+\infty} \frac{d\omega}{\Omega_0} |\tilde{p}(\omega, \Delta t)|^2 S_{\text{tun}}(\omega_{dc} = \omega), \quad (8)$$

110 where $\Omega_0 = 2\pi/T_0$, with T_0 is the measurement time (larger than any relevant time scale).
 111 Interestingly, by combining UNEP theory with NEBIF, we can show a similar universal relation
 112 for cross-correlations:

$$S_{\text{cr}}^{\text{HOM}}(\Delta t) = \int_{-\infty}^{+\infty} \frac{d\omega}{\Omega_0} |\tilde{p}(\omega, \Delta t)|^2 S_{\text{cr}}(\omega_{dc} = \omega), \quad (9)$$

113 Both relations are valid for any stationary nonequilibrium distributions, such as those induced
 114 by temperature gradients or in the “anyon collider” [66]. They also extend as well to the case
 115 $|\tilde{p}(\Delta t, t)|$ is not constrained to unity, which permits amplitude modulation, for instance from
 116 a time-dependent gate voltage (see Fig. 1).

117 The HOM noise is expressed as integral over the AC frequencies ω of contributions containing
 118 two factors: one associated with the drive $\tilde{p}(\omega, \Delta t)$, and the other given by $S_{\text{cr}}(\omega_{\text{dc}} = \omega)$,
 119 which retains the signature of the underlying Hamiltonian. All dependence on the time delay
 120 Δt enters exclusively through $\tilde{p}(\omega, \Delta t)$.

121 Let us now comment on the case one adopts an initial equilibrium thermal distribution (on
 122 which we will focus when applying Eq.(9) to a TLL model), thus $\rho_{\text{th}} \propto e^{-\beta \mathcal{H}_0}$ with electronic
 123 temperature

$$\omega_{\text{th}} = k_B T / \hbar = 1/\beta \quad (10)$$

124 In that case, the NETBIM, originally developed at finite frequency and DC voltages [56–59],
 125 provides exact relations between cross-correlations and backscattering noise. When combined
 126 with generalized non-equilibrium linear response theory [67], this yields an exact expression
 127 for the DC cross-correlations [60]:

$$S_{\text{cr}}(\omega_{\text{dc}}) = S_{\text{tun}}(\omega_{\text{dc}}) - 2e^* \omega_{\text{th}} G_{\text{tun}}(\omega_{\text{dc}}), \quad (11)$$

128 where the dc differential conductance is defined as $G_{\text{tun}}(\omega_{\text{dc}}) = \partial I_{\text{tun}}(\omega_{\text{dc}}) / \partial \omega_{\text{dc}}$ with $I_{\text{tun}}(\omega_{\text{dc}})$
 129 the DC average the tunneling current operator in Eq.(3). A similar exact form holds as well
 130 for the for the HOM noise (reported to a separate publication), leading to an exact result due
 131 to the equilibrium FDT:

$$S_{\text{cr}}^{\text{HOM}}(\Delta t = 0) = S_{\text{cr}}(\omega_{\text{dc}} = 0) = 0. \quad (12)$$

132 This vanishing, which follows directly from gauge invariance and from the perturbative ex-
 133 pression in Eq. (9), is robust with respect to both the nature of the injected charges and the
 134 strength of interactions. It therefore cannot reveal anyonic braiding when the reservoirs act as
 135 classical sources. In setups where single electrons are injected, the disappearance of the HOM
 136 signal at $\Delta t = 0$ is interpreted as antibunching: synchronized electrons cannot collide at the
 137 QPC [6].

138 In the perturbative regime relevant here, the UNEP framework demonstrates the full gen-
 139 erality of the Poissonian relation-extending well beyond bipartite systems [15, 16, 65]:

$$S_{\text{tun}}(\omega_{\text{dc}}) = e^* \coth\left(\frac{\omega_{\text{dc}}}{2\omega_{\text{th}}}\right) I_{\text{tun}}(\omega_{\text{dc}}), \quad (13)$$

140 where $I_{\text{tun}}(\omega_{\text{dc}})$ is the average tunneling current. As a result, $S_{\text{cr}}(\omega_{\text{dc}})$ in Eq. (11) is fixed entirely
 141 by this current, making I_{tun} the sole model-dependent ingredient entering the HOM noise in
 142 Eq. (9).

143 3 Application to two incident pulses

144 Following Refs. [40, 41] and the considerations of Ref. [61], we now consider counter-phased
 145 plasmonic pulses and derive the explicit form of the kernel $|\tilde{p}(\omega, \Delta t)|^2$ entering Eq. (9), with-
 146 out specifying the underlying bosonized Hamiltonian. We first address the case of extremely
 147 sharp pulses defined by:

$$\varphi(t) = 2\pi q \theta(t), \quad (14)$$

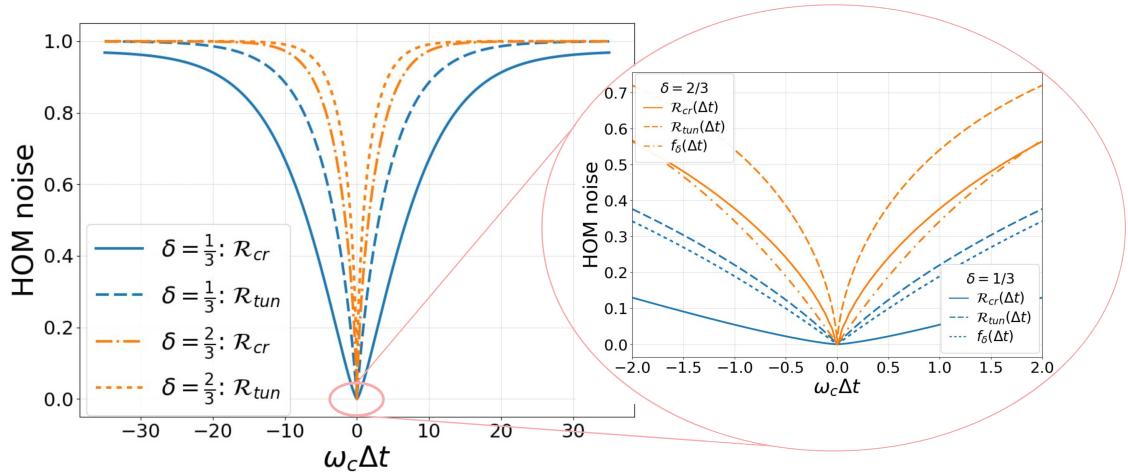


Figure 2: Normalized cross-correlated HOM noise $\mathcal{R}_{cr}(\Delta t)$ and normalized tunneling noise $\mathcal{R}_{tun}(\Delta t)$ from Ref. [63] as functions of $\omega_c\Delta t$ for sharp voltage pulses, for scaling dimensions $\delta = 1/3$ and $2/3$, and $\omega_{th}/\omega_c = 0.1$. The results are independent of the injected non-integer dimensionless charge q . Inset: zoom of $\mathcal{R}_{cr}(\Delta t)$ and $\mathcal{R}_{tun}(\Delta t)$ in the vicinity of $\omega_c\Delta t = 0$. The curves are compared with the analytical short-time form $f_\delta(\Delta t) = 1 - \exp[-2\pi\omega_{th}\delta|\Delta t|]$ introduced in Ref. [50].

148 each carrying a fractional charge q and separated by a time delay Δt . For such a drive one
 149 obtains, at nonzero frequency:

$$\tilde{p}(\omega, \Delta t) = (e^{2\pi i q} - 1) \frac{2 \sin(\omega \Delta t / 2)}{\omega}. \quad (15)$$

150 This leads to a universal oscillatory behavior of the HOM noise in Eqs.(8),(9) similarly to that
 151 in Hanbury Brown–Twiss configurations, as noted in Refs. [14, 17] for periodic pulses and in
 152 Ref. [68] for a single pulse. Let us now normalize Eq. (9) by its large-delay value $\Delta t \rightarrow \infty$,
 153 where the pulses do not overlap. We define the corresponding ratio as

$$\mathcal{R}_{cr(tun)}(\Delta t) = S_{cr(tun)}^{HOM}(\Delta t) / S_{cr(tun)}^{HOM}(\Delta t \rightarrow \infty) \quad (16)$$

154 For sufficiently large time delays, the sources act independently and the noise reduces to the
 155 sum of two Hanbury Brown–Twiss contributions [61]. Therefore, remarkably, for noninteger q
 156 the normalized HOM signal $\mathcal{R}_{cr}(\Delta t)$ is *independent* of q , since the prefactor $|e^{2\pi i q} - 1|^2$ cancels
 157 in the ratio. However, the limit $q \rightarrow$ integer is singular: in that case the HOM signal vanishes
 158 identically [68]. Remarkably, these results are robust with respect to the precise low-energy
 159 effective theory of the edges: they are controlled only by the specific sharp profile of the pulses.

160 It is however more realistic to go beyond δ -like pulses and consider a finite temporal width
 161 τ , focussing here on a rectangular shape, so that the phase reads:

$$\varphi(t) = \kappa [t \theta(t) - (t - \tau) \theta(t - \tau)], \quad (17)$$

162 where $\kappa = 2\pi q/\tau$. A further motivation concerns the requirement of bosonization validity
 163 at low energies, below an ultraviolet cutoff ω_c . In fact extremely sharp pulses are high in
 164 energy. While Eq. (9) is general, its use within a bosonized theory requires that the integrand
 165 decays sufficiently fast above ω_c [55], a condition that depends both on the drive shape and
 166 on the intrinsic DC noise. A secure way to regularize this regime is to consider pulses of finite
 167 duration τ , much larger than the short-time cutoff $2\pi/\omega_c$. Such a single rectangular pulse

168 can also be viewed as the limiting case of the periodic pulses employed in Ref. [48], obtained
 169 for very large period compared to τ . Fourier transforming Eq. (2), at finite frequency, yields

$$\tilde{p}(\omega, \Delta t \leq \tau) = \frac{2e^{\frac{i\omega\tau}{2}}}{\omega} \left[e^{i\kappa\Delta t} \sin\left(\omega \frac{\tau - \Delta t}{2}\right) - \sin\left(\omega \frac{\tau + \Delta t}{2}\right) \right] \\ + 2e^{\frac{i\kappa\Delta t}{2}} \left[\frac{\sin((\omega + \kappa)\frac{\Delta t}{2})}{\omega + \kappa} + e^{i\omega\tau} \frac{\sin((\omega - \kappa)\frac{\Delta t}{2})}{\omega - \kappa} \right], \quad (18)$$

170 with the property $\tilde{p}(\omega, 0) = 0$. For $\Delta t > \tau$, one finds

$$\tilde{p}(\omega, \Delta t \geq \tau) = 2e^{\frac{i\kappa\tau}{2}} \left[e^{\frac{i\omega}{2}(\tau - \Delta t)} \frac{\sin(\frac{(\omega + \kappa)\tau}{2})}{\omega + \kappa} + e^{\frac{i\omega}{2}(\tau + \Delta t)} \frac{\sin(\frac{(\omega - \kappa)\tau}{2})}{\omega - \kappa} \right] \\ + \frac{2e^{\frac{i\omega\tau}{2}}}{\omega} \left[(e^{i\kappa\tau} - 1) \sin\left(\frac{\omega}{2}(\Delta t - \tau)\right) - 2 \cos\left(\frac{\omega\Delta t}{2}\right) \sin\left(\frac{\omega\tau}{2}\right) \right]. \quad (19)$$

171 For a meaningful interpretation in terms of single injected excitations, the regime $\Delta t > \tau$
 172 is the more relevant, as it avoids overlap between two incident pulses. In the narrow-pulse
 173 limit $\tau \rightarrow 0$, this expression reduces to Eq. (15). In contrast to that equation, for finite τ the
 174 limit $q \rightarrow$ integer yields a finite kernel, allowing a controlled comparison between integer and
 175 fractional q . We see clearly that the kernel depends on the width τ , whether q is fractional
 176 or integer, leading to a dependence of $\mathcal{R}_{\text{cr}}(\Delta t)$ on τ . Now we make this dependence more
 177 explicit within the TLL model.

178 4 Case of a TLL model

179 The vast majority of theoretical studies of Hall edge states rely on low-energy effective the-
 180 ories below the UV cutoff ω_c . When tunneling of a single quasiparticle species dominates,
 181 it is governed by one scaling dimension δ , which plays the role of the TLL parameter, and
 182 is affected by nonuniversal features such as inter-edge interactions or edge reconstruction.
 183 For definiteness, we assume quasiparticle tunneling localized at $x = 0$. We also specify to
 184 a thermal initial state $\rho_{\text{th}} \propto e^{-\beta\mathcal{H}_0}$ with electronic temperature in Eq.(10). One expects a
 185 quantum metal-insulator transition at an energy scale that separates the weak- and strong-
 186 backscattering regimes [69, 70], and the exact realtion in Eq.(11) is valid for all energy scales,
 187 thus in both regimes. Here we focus on the metallic one, where DC voltage or temperature
 188 scales are high enough compared to the crossover energy scale. In this case, the DC current is
 189 given by [71] :

$$I_{\text{tun}}(\omega_{\text{dc}}) = \frac{2\omega_{\text{th}}}{\Gamma^2(\delta)} G_{\text{tun}}(0) \sinh(\pi\mu) |\Gamma(\delta + i\mu)|^2 \text{ with } \mu = \frac{\omega_{\text{dc}}}{2\pi\omega_{\text{th}}}. \quad (20)$$

190 Here

$$G_{\text{tun}}(0) = \frac{e^* R}{2\pi} \frac{\Gamma^2(\delta)}{\Gamma(2\delta)} (2\pi)^{4(\delta-1)} \left(\frac{\omega_{\text{th}}}{\omega_c} \right)^{2(\delta-1)}, \quad (21)$$

191 is the equilibrium conductance, with $R \ll 1$, so that $e^* R$ is its value for $\delta = 1$. Using Eq.(13)
 192 and (11) gives the DC cross-correlations:

193 This yields [72]

$$S_{\text{cr}}(\omega_{\text{dc}}) = \frac{e^*}{\pi} I_{\text{tun}}(\omega_{\text{dc}}) \Im \psi(\delta + i\mu) \quad (22)$$

194 where $\text{Im}[\dots]$ denotes the imaginary part, and ψ is the digamma function.

195 For $\delta > 1/2$ $S_{\text{cr}}(\omega)$ decays too slowly at $T = 0$, $S_{\text{cr}}(\omega) \propto |\omega/\omega_c|^{2\delta-1}$. Thus, in order to use
 196 this TLL expression, the kernel $|\tilde{p}(\omega, \Delta t)|^2$ in Eq. (9) must decay rapidly, requiring $\omega_c \Delta t \gg 2\pi$.
 197 Using Eq. (9), we now analyze the HOM noise under sharp pulses. This case is directly moti-
 198 vated by the recent experiment in Ref. [48] where charges $Ne/3$ (i.e., $q = N/3$) were injected
 199 at $\nu = 1/3$ in order to determine the anyonic braiding phase θ .

200 **4.1 Analysis of the HOM dip width for sharp pulses**

201 For $N = 1$ ($q = 1/3$), the HOM dip width was claimed to scale as $1/\omega_{\text{th}}\delta$, thereby providing
 202 a direct probe of δ . For $N = 3$, one inject purely electronic pulses that do not braid whose
 203 width is claimed to determine the HOM dip width. The contrast between the $N = 1$ and $N = 3$
 204 cases was then interpreted as a manifestation of anyonic braiding of the injected excitations
 205 with thermally created quasiparticle–quasihole pairs at the QPC, from which $\theta = 2\pi/3$ was in-
 206 fered. This analysis is based on Ref. [61] claiming that while integer-charge pulses yield a dip
 207 controlled by their width, sharp fractional-charge pulses lead to a backscattering normalized
 208 noise $\mathcal{R}_{\text{tun}}(\Delta t)$ approximated by

$$f_{\delta}(\Delta t) = 1 - \exp(-2\pi\omega_{\text{th}}\delta|\Delta t|) \quad (23)$$

209 We start by discussing the validity of this approximation for the tunneling HOM noise, then
 210 give both analytic and numerical analysis of the HOM dip width for the more relevant chiral
 211 cross correlations.

212 **4.1.1 HOM dip for tunneling noise**

213 The analytical expression for the normalized $\mathcal{R}_{\text{tun}}(\Delta t)$ was obtained in Ref. [63]

$$\mathcal{R}_{\text{tun}}(\Delta t) = \frac{\mathcal{N}(\Delta t, \delta)}{\mathcal{D}(\delta)} = \frac{\int_0^{|\Delta t|} dt B_{e^{-2\pi\omega_{\text{th}}t}}(\delta, 1-2\delta)}{\int_0^{\infty} dt B_{e^{-2\pi\omega_{\text{th}}t}}(\delta, 1-2\delta)}, \quad (24)$$

214 where $B_z(a, b)$ is the incomplete beta function. As evident from Fig. 2, the normalized tunnel-
 215 ing noise exhibits substantial deviations from the function $f_{\delta=2/3}(\Delta t)$ in Eq. (23). Interestingly,
 216 for $\delta = 2/3$ the corresponding cross-correlated normalized HOM noise $\mathcal{R}_{\text{cr}}(\Delta t)$ follows $f_{\delta}(\Delta t)$
 217 much more closely, as shown in Fig. 2, which may account for the experimentally observed
 218 behavior of $\mathcal{R}_{\text{cr}}(\Delta t)$. In contrast, for the smaller scaling dimension $\delta = 1/3$, we find more
 219 pronounced discrepancies between $\mathcal{R}_{\text{cr}}(\Delta t)$ and $\mathcal{R}_{\text{tun}}(\Delta t)$. In this case, however, the tunnel-
 220 ing contribution remains well approximated by $\mathcal{R}_{\text{tun}}(\Delta t) \simeq f_{\delta=1/3}(\Delta t)$, in agreement with
 221 Ref. [50], which focuses exclusively on the tunneling noise for $\delta = 1/3$. Overall, these com-
 222 parisons highlight clear and systematic deviations between the two types of normalized HOM
 223 noise.

224 Of course the numerical features of the HOM dip width for the tunneling noise can also be
 225 extracted from the asymptotic expression at short-time behaviour of the normalized tunneling
 226 noise defined in Eq. (24). We first consider the denominator. We introduce the dimension-
 227 less variable $y = 2\pi\omega_{\text{th}}t$, then change it to the variable $u = e^{-y}$ and exchange the order of
 228 integration, so that:

$$\mathcal{D}(\delta) = \frac{1}{2\pi\omega_{\text{th}}} \int_0^{\infty} dy B_{e^{-y}}(\delta, 1-2\delta) = \frac{1}{2\pi\omega_{\text{th}}} \int_0^1 u^{\delta-1} (1-u)^{-2\delta} [-\log u] du. \quad (25)$$

229 Using the identity

$$\frac{\partial}{\partial a} B(a, b) = \int_0^1 u^{a-1} (1-u)^{b-1} \log u du, \quad (26)$$

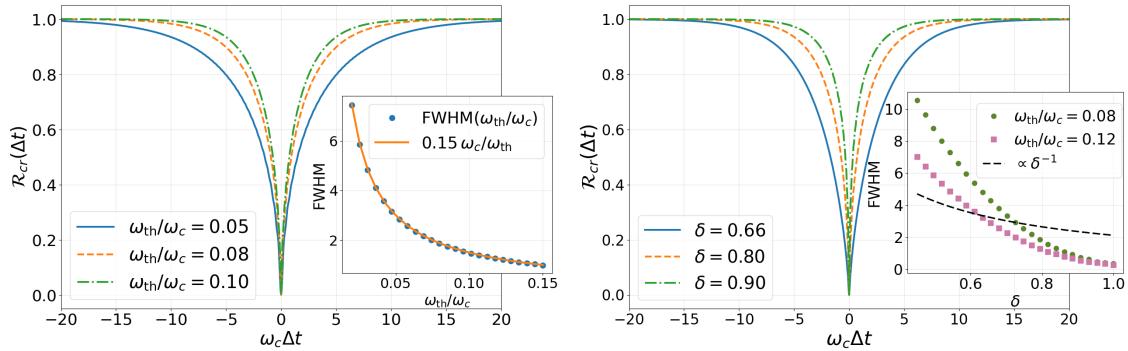


Figure 3: (Left) Normalized HOM noise $\mathcal{R}_{\text{cr}}(\Delta t)$ as a function of $\omega_c \Delta t$ for sharp pulses and for different values of $\omega_{\text{th}}/\omega_c = \{0.05, 0.08, 0.10\}$. Inset: numerical full width at half maximum (FWHM) of the HOM dip as a function of $\omega_{\text{th}}/\omega_c$ according to a power law behavior. (Right) Normalized HOM noise $\mathcal{R}_{\text{cr}}(\Delta t)$ as a function of $\omega_c \Delta t$ for sharp pulses and for different values of $\delta = \{0.66, 0.80, 0.90\}$ at $\omega_{\text{th}}/\omega_c = 0.1$. Inset: numerical full width at half maximum (FWHM) of the HOM dip as a function of δ for different temperatures $\omega_{\text{th}}/\omega_c = 0.08, \omega_{\text{th}}/\omega_c = 0.12$ and comparison with the behaviour $\propto \delta^{-1}$.

230 we arrive at

$$\mathcal{D}(\delta) = \frac{1}{2\pi\omega_{\text{th}}} B(\delta, 1-2\delta) [\psi(1-\delta) - \psi(\delta)] = \frac{1}{2\omega_{\text{th}}} B(\delta, 1-2\delta) \cot(\pi\delta). \quad (27)$$

231 We now turn to the numerator in Eq.(24). Let us now consider $\omega_{\text{th}}|\Delta t| \ll 1$. The in-
232 complete beta function admits a regular expansion around $y = 0$ and, to leading order, we
233 get:

$$\mathcal{N}(\Delta t, \delta) = \frac{1}{2\pi\omega_{\text{th}}} \int_0^{2\pi\omega_{\text{th}}|\Delta t|} B_{e^{-y}}(\delta, 1-2\delta) dy \simeq B(\delta, 1-2\delta)|\Delta t|. \quad (28)$$

234 Collecting these results, we obtain the short-time asymptotics of the normalized tunneling
235 noise:

$$\mathcal{R}_{\text{tun}}(\omega_{\text{th}}|\Delta t| \rightarrow 0) = 2\omega_{\text{th}}|\Delta t| \tan(\pi\delta), \quad (29)$$

236 which is obviously different from $f_\delta(\Delta t)$ in Eq.(23). Nevertheless, for small δ , the above
237 expression reduces to

$$\mathcal{R}_{\text{tun}}(\omega_{\text{th}}|\Delta t|) \simeq 2\pi\omega_{\text{th}}\delta|\Delta t|, \quad (30)$$

238 in agreement with the linear short-time behaviour of the tunneling noise in Ref. [50, 63], as the
239 function $f_\delta(\Delta t)$ can then be expanded, making such an approximation limited only to $\delta \ll 1$.

240 4.1.2 HOM dip width for cross-correlated noise

241 Now we analyse the HOM dip obtained through Eq.(9) and Eq.(22) first through a numeri-
242 cal analysis then from an analytic low-temperature expansion. The full width at half max-
243 imum (FWHM) of the HOM dip is shown in Fig. 3. For a fixed scaling dimension δ , the
244 width decreases algebraically with temperature, following $\text{FWHM}(\omega_{\text{th}}) \propto 1/\omega_{\text{th}}$ in the range
245 $\omega_{\text{th}}/\omega_c = 0.07-0.15$, reflecting the inverse relationship between coherence time and ther-
246 mal fluctuations. Consequently, even a modest rise in temperature substantially broadens the
247 interference minimum. In contrast, for a fixed temperature $\omega_{\text{th}}/\omega_c = 0.10$, it exhibits a pro-
248 nounced reduction with a non-trivial dependence on δ (see inset of Fig. 3). This behaviour

249 differs significantly from a simple $\propto \delta^{-1}$ scaling. Quantitatively, the variation with δ is signif-
 250 icantly stronger than with ω_{th} , establishing the scaling dimension as the dominant parameter
 251 controlling the width of the HOM dip. Detailed analytical analysis of the HOM dip width for
 252 sharp pulses in Appendix A. For example it is shown that FWHM in the limit $\omega_{th}|\Delta t| \ll 1$ is
 253 given by the non-trivial function of δ :

$$\text{FWHM} \sim \frac{1}{\omega_{th}} \left[\frac{F(\infty, \delta)}{2C(\delta)} \right]^{1/(2-2\delta)}, \quad (31)$$

254 where

$$F(\infty, \delta) = \frac{2^{2\delta-2}}{\pi^3} \sin(\pi\delta) B(\delta, 1-2\delta) [\psi'(\delta) - \psi'(1-\delta)], \quad C(\delta) = \frac{\cos(\pi\delta)}{2\pi^{2\delta}(\delta-1)(2\delta-1)}, \quad (32)$$

255 with $\psi'(z) = d\psi(z)/dz$.

256 For high-order filling factors for which one has multiple edges, but where a single charge
 257 tunneling dominates with the smallest scaling parameter δ , one expects δ to reflect interedge
 258 interactions which therefore can affect the HOM dip's width [73].

259 4.1.3 HOM dip width for rectangular pulses

260 By analogy with the sharp-pulse case, we compute $\mathcal{R}_{cr}(\Delta t)$ for rectangular pulses of various
 261 durations τ , for a fractional $q = 1/3$ and integer $q = 1$ excitations as illustrated in Fig. 4. As
 262 expected, the HOM signal exhibits a strong dependence on τ , and the limit $\tau \rightarrow 0$ formally
 263 reproduces the sharp-pulse result shown in Fig. 2. This dependence holds for both fractional
 264 and integer excitations.

265 For integer charge $q = 1$, the HOM dip width shows only a weak sensitivity to temperature:
 266 FWHM remains nearly constant for the small values of $\tau_1 = 3.18$ Fig. 5. This insensitivity
 267 indicates that thermal broadening plays a minor role when transport is dominated by coherent
 268 single-particle processes. It is worth emphasizing that increasing the temperature leads to a
 269 progressive reduction in the discrepancy between the FWHM for fractional ($q = 1/3$) and
 270 integer ($q = 1$) excitations, as illustrated in Fig. 5. This behavior aligns with the tendency
 271 previously identified in Ref. [48].

272 For fractional charge $q = 1/3$, the behavior changes qualitatively. The HOM profile broad-
 273 ens significantly with increasing temperature, leading to a strong ω_{th} -dependence of the FWHM.
 274 This pronounced sensitivity reflects thermally assisted dephasing in the presence of fractional-
 275 ized excitations. Similarly, $\text{FWHM}(\delta)$ exhibits a steep, nonlinear growth, emphasizing the key
 276 role of scaling dimension δ . The dependence on τ is also markedly stronger than for $q = 1$: at
 277 large τ , the broadening becomes superlinear, indicating that long-range correlations further
 278 smear the HOM dip.

279 Now we address the dependence of FWHM on the scaling dimension δ at three different
 280 values of the injected pulse duration τ . Figure 6 summarizes the results for several pulse
 281 durations τ , both for fractional ($q = 1/3$) and integer ($q = 1$) charge injection. For fractional
 282 excitations, the FWHM decreases monotonically with δ over the entire range explored. Narrow
 283 pulses ($\tau_1 = 3.183$) exhibit the steepest decay, whereas broad pulses ($\tau_2 = 9.549$) lead to
 284 a smoother, less δ -sensitive profile. This behavior reflects the dominance of high-frequency
 285 components in the correlation spectrum $S_{cr}(\omega_{dc} = \omega)$ at larger δ , which enhance temporal
 286 decoherence and compress the interference feature in time delay Δt . For integer excitations,
 287 the FWHM is nearly constant for small τ , showing only a weak residual increase with δ at
 288 larger pulse durations.

289 Overall, the comparison between $q = 1/3$ and $q = 1$ highlights a clear dichotomy: frac-
 290 tional excitations lead to pronounced scaling of the HOM dip width with δ , while integer

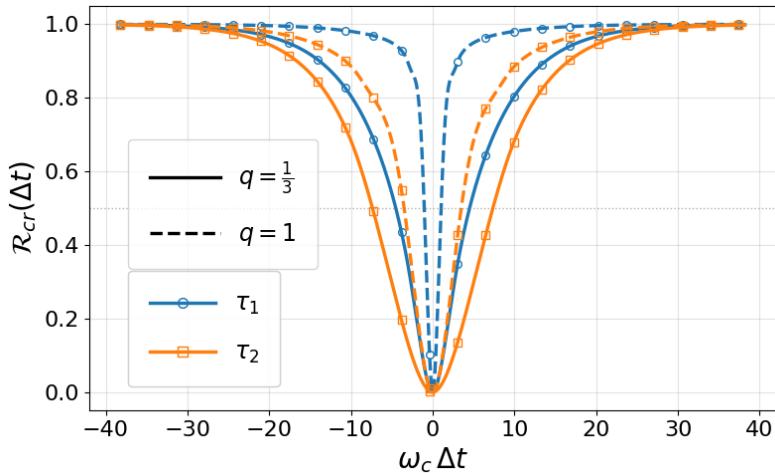


Figure 4: Normalized HOM noise $\mathcal{R}_{\text{cr}}(\Delta t)$ as a function of the delay $\omega_c \Delta t$ for rectangular pulses of finite duration $\tau_1 = 3.18$, $\tau_2 = 9.55$, for integer $q = 1$ (dashed) and fractional $q = 1/3$ (solid), respectively, at $\delta = 2/3$ and $\omega_{\text{th}}/\omega_c = 0.05$.

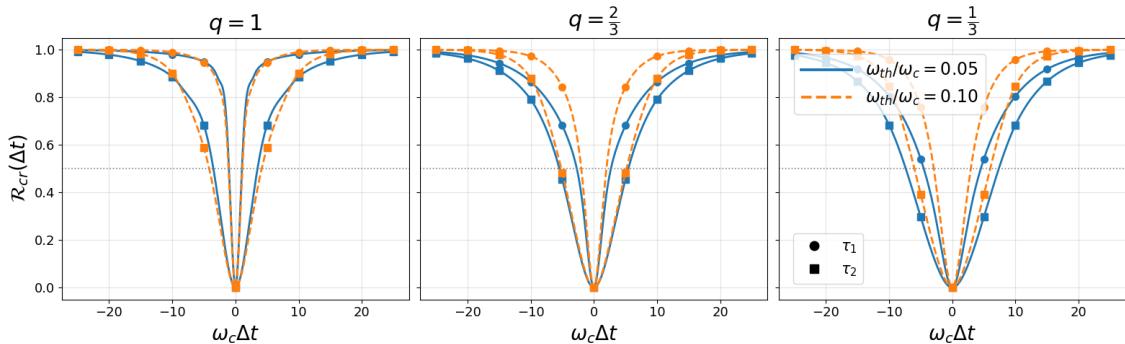


Figure 5: Normalized HOM noise $\mathcal{R}_{\text{cr}}(\Delta t)$ as a function of the delay $\omega_c \Delta t$ for rectangular pulses of finite durations $\tau_1 = 3.18$, $\tau_2 = 9.55$ for a different values of q and different temperatures $\omega_{\text{th}}/\omega_c$.

291 excitations yield a nearly flat baseline in the short-pulse regime. Increasing τ broadens the
 292 dip but also reduces the contrast between the two charge sectors, demonstrating how pulse
 293 shaping and quasiparticle charge jointly govern the temporal dip width of HOM interference.

294 5 Discussion and Conclusion

295 We have developed a unified theoretical framework for time-resolved Hong–Ou–Mandel (HOM)
 296 interferometry in fractional quantum Hall edge states, based on the formalism for nonequilibrium
 297 transport in bosonized impurity models (NETBIM) combined with a controlled pertur-
 298 bative analysis. This approach yields model-independent relations connecting photo-assisted
 299 cross-correlated noise to its dc counterpart, valid for arbitrary stationary nonequilibrium states.
 300 Two universal features emerge, independently of quasiparticle charge, statistics, or interac-
 301 tion strength and range: the HOM signal necessarily vanishes at zero delay, and sharp voltage
 302 pulses produce a normalized HOM response that is completely insensitive to any noninteger
 303 injected charge q . This revisits earlier interpretations based solely on tunneling-current noise
 304 and demonstrates that sharp-pulse protocols cannot provide direct access to anyonic braiding

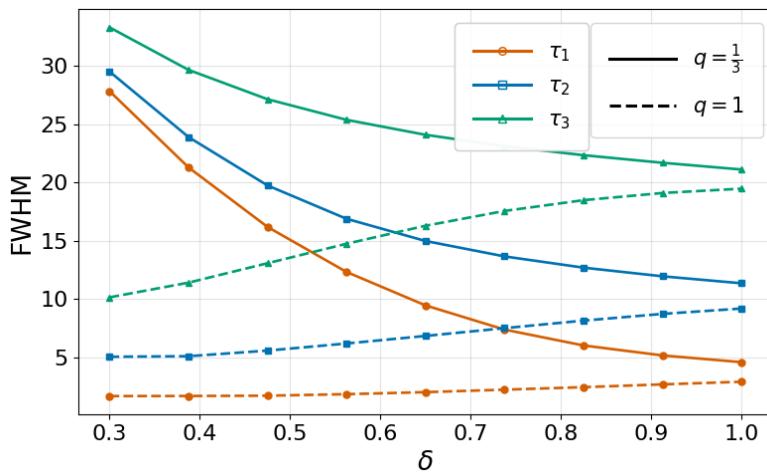


Figure 6: Full width at half maximum (FWHM) of the HOM dip versus scaling dimension δ for fractional $q = 1/3$ (solid line) and integer $q = 1$ (dashed line) at different $\tau_1 = 3.18$, $\tau_2 = 9.55$, $\tau_3 = 19.10$ and $\omega_{\text{th}}/\omega_c = 0.05$.

305 information.

306 Specializing to the chiral Tomonaga–Luttinger liquid model, we provide a detailed analysis
 307 of the HOM signal for both sharp and finite-duration rectangular pulses. We find substantial
 308 deviations from the commonly assumed $1/\delta$ scaling of the HOM dip width, whether one con-
 309 siders the tunneling noise, on which previous theoretical works were restricted [50–54, 63], or
 310 the experimentally relevant chiral-current noise. In Ref. [48], the value $\delta = 2/3$ was extracted
 311 using a $1/\delta$ scaling, which our results show to be accidental: this behavior is not generic and
 312 breaks down for other values of δ .

313 We further demonstrate that finite pulse duration introduces an additional timescale that
 314 qualitatively reshapes the HOM profile, broadens the dip, and restores sensitivity to interac-
 315 tion effects through the scaling dimension δ . This provides a consistent interpretation of the
 316 differences observed between integer and fractional excitations. Based on such differences,
 317 Ref. [48] inferred a time-domain braiding phase satisfying $\theta = \pi\delta$. The origin and robustness
 318 of this identity are clarified in Refs. [74, 75], which also introduce complementary strategies
 319 for determining θ .

320 Overall, our work provides a comprehensive and drive-agnostic framework for HOM in-
 321 terferometry in strongly correlated chiral systems. It clarifies the limitations of sharp-pulse
 322 injection protocols, identifies which features of the HOM dip genuinely encode interaction
 323 physics, and delivers reliable predictions for upcoming time-domain experiments targeting
 324 fractionalization and anyonic statistics in quantum Hall edge states.

325 As a perspective, it will be particularly interesting to apply the cross-correlation formula
 326 derived here to anyon-collider geometries or nonequilibrium anyon injection schemes that
 327 extend beyond classical AC driving. Such configurations are expected to yield a finite signal
 328 at zero time delay, potentially exposing a direct signature of anyonic statistics.

329 Acknowledgements

330 I. S. would like to acknowledge discussions and on-going collaboration with Lucas Mazella and
 331 Seddik Ouacel.

332 **Funding information** This work was supported by the ANR grant "QuSig4QuSense" (ANR-
 333 21-CE47-0012) for I. S. and A. L.

334 A Asymptotic analysis of the HOM dip width for a sharp drain

335 In this section of the Supplemental Material, we derive a closed analytical expression for the
 336 HOM noise $S_{\text{cr}}^{\text{HOM}}(\Delta t)$,

$$S_{\text{cr}}^{\text{HOM}}(\Delta t) = \int_{-\infty}^{+\infty} \frac{d\omega}{\Omega_0} |\tilde{p}(\omega, \Delta t)|^2 S_{\text{cr}}(\omega_{\text{dc}} = \omega), \quad (\text{A.1})$$

337 where $S_{\text{cr}}(\omega_{\text{dc}})$ is given by (22) and $\Omega_0 = 2\pi/T_0$. The expression for the drive kernel $|\tilde{p}(\omega, \Delta t)|^2$
 338 is obtained from

$$|\tilde{p}(\omega, \Delta t)|^2 = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} dt \int_{-\infty}^{+\infty} ds e^{i\omega s} p(t + s/2) p^*(t - s/2), \quad (\text{A.2})$$

339 with $p(t)$ is given by Eq. (2). For a voltage drive $V(t) = \kappa\delta(t)$, one obtain

$$|\tilde{p}(\omega, \Delta t)|^2 = 4\pi^2 \delta(\omega) + \frac{1}{T_0} |e^{i\kappa} - 1|^2 \left(\frac{2 \sin(\omega \Delta t/2)}{\omega} \right)^2, \quad \kappa = 2\pi q. \quad (\text{A.3})$$

340 Substituting the expression (A.3) to (A.1) and taking into account that $S_{\text{cr}}(0) = 0$ we obtain

$$\begin{aligned} S_{\text{cr}}^{\text{HOM}}(\Delta t) &= 8 \sin^2(\kappa/2) \int_0^{\Delta t} d\zeta (\Delta t - \zeta) \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \cos(\omega\zeta) S_{\text{cr}}(\omega) \\ &= 8 \sin^2(\kappa/2) \int_0^{\Delta t} d\zeta (\Delta t - \zeta) [\tilde{S}_{\text{cr}}(\zeta) + \tilde{S}_{\text{cr}}(-\zeta)], \end{aligned} \quad (\text{A.4})$$

341 where we used the following identity

$$\frac{1 - \cos(\omega \Delta t)}{\omega^2} = \int_0^{\Delta t} d\zeta (\Delta t - \zeta) \cos(\omega\zeta), \quad (\text{A.5})$$

342 and \tilde{S}_{cr} is the Fourier transformation of S_{cr} . In order to take this Fourier transformation we use
 343 the property of the digamma function

$$\left| \Gamma\left(\delta + \frac{i\omega}{2\pi\omega_{\text{th}}}\right) \right|^2 \Im \psi\left(\delta + \frac{i\omega}{2\pi\omega_{\text{th}}}\right) = -\pi\omega_{\text{th}} \frac{d}{d\omega} \left| \Gamma\left(\delta + \frac{i\omega}{2\pi\omega_{\text{th}}}\right) \right|^2, \quad (\text{A.6})$$

344 and after integration by parts:

$$\tilde{S}_{\text{cr}}(\zeta) = \frac{e^* \omega_{\text{th}}^2 G_{\text{tun}}(0)}{\Gamma^2(\delta)} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} e^{-i\zeta\omega} \left\{ \cosh\left(\frac{\omega}{2\omega_{\text{th}}}\right) - 2i\zeta\omega_{\text{th}} \sinh\left(\frac{\omega}{2\omega_{\text{th}}}\right) \right\} \left| \Gamma\left(\delta + \frac{i\omega}{2\pi\omega_{\text{th}}}\right) \right|^2 \quad (\text{A.7})$$

345 The crucial point is that the expression (A.7) contains poles solely due to the Gamma functions.
 346 By eclosing the contour and taking the corresponding poles we obtain

$$\tilde{S}_{\text{cr}}(\zeta) = \frac{e^* \omega_{\text{th}}^2 G_{\text{tun}}(0)}{\Gamma^2(\delta)} \frac{2\pi \Gamma(2\delta)}{2^{2\delta} \sinh^{2\delta}(\pi\omega_{\text{th}}|\zeta|)} [\cos(\pi\delta) - 2|\zeta|\omega_{\text{th}} \sin(\pi\delta)]. \quad (\text{A.8})$$

347 It is worth noting that the Fourier transformation (A.7) makes sense only for $\delta < 1/2$, whereas
 348 for $\delta > 1/2$ the expression should be interpreted as an analytic continuation.

349 Let us now analyse dependence of the HOM dip width and derive an explicit asymptotic
 350 expression for FWHM. Throughout we introduce

$$z = \omega_{\text{th}} \Delta t, \quad (\text{A.9})$$

351 where ω_{th} is the thermal scale. According to (A.8) and (A.4) the normalized HOM signal is

$$\mathcal{R}_{\text{cr}}(z) = \frac{F(z; \delta)}{F(\infty; \delta)}, \quad \mathcal{R}_{\text{cr}}(0) = 0, \quad \mathcal{R}_{\text{cr}}(\infty) = 1, \quad (\text{A.10})$$

352 where

$$F(z; \delta) = \int_0^z ds (z-s) K(s; \delta), \quad K(s; \delta) = \frac{\cos(\pi\delta) - 2s \sin(\pi\delta)}{\sinh^{2\delta}(\pi s)}. \quad (\text{A.11})$$

353 The corresponding width is defined as $\text{FWHM} = 2\Delta t_{\text{FWHM}}$ due to symmetry, can be found as

$$\mathcal{R}(z_{\text{FWHM}}(\delta); \delta) = \frac{1}{2}, \quad \Leftrightarrow \quad F(z_{\text{FWHM}}(\delta); \delta) = \frac{1}{2} F(\infty; \delta). \quad (\text{A.12})$$

354 From the solution of the equation above one can obviously obtain temperature scale for the
 355 HOM dip width $\Delta t_{\text{FWHM}} \sim z_{\text{FWHM}}(\delta)/\omega_{\text{th}}$. Function $z_{\text{FWHM}}(\delta)$ has non-trivial behaviour as a
 356 function of scaling dimension δ , which also can be extracted from the equation (A.12).

357 We now derive a closed analytical expression for $F(\infty, \delta)$. Starting from Eq. (A.11), one
 358 may rewrite

$$F(\infty, \delta) = \lim_{z \rightarrow \infty} \int_0^z ds (z-s) K(s, \delta) = - \int_0^\infty ds s K(s, \delta). \quad (\text{A.13})$$

359 To evaluate this integral, we first note that

$$\begin{aligned} \int_0^\infty ds K(s, \delta) &= |t = e^{-2\pi s}| = \frac{2^{2\delta-1}}{\pi} \int_0^1 dt t^{\delta-1} (1-t)^{-2\delta} [\cos(\pi\delta) + \log t \sin(\pi\delta)/\pi] \\ &= \frac{2^{2\delta-1}}{\pi} B(\delta, 1-2\delta) \left\{ \cos(\pi\delta) + \frac{\sin(\pi\delta)}{\pi} \underbrace{[\psi(\delta) - \psi(1-\delta)]}_{-\pi \cot(\pi\delta)} \right\} = 0. \end{aligned} \quad (\text{A.14})$$

360 Then, making the same change of variables as above one can obtain

$$\begin{aligned} F(\infty, \delta) &= - \int_0^\infty ds s K(s, \delta) = \frac{2^{2\delta}}{4\pi^2} \int_0^1 dt [\cos(\pi\delta) + \log t \sin(\pi\delta)/\pi] t^{\delta-1} (1-t)^{-2\delta} \log t \\ &= \frac{2^{2\delta-2}}{\pi^3} \sin(\pi\delta) B(\delta, 1-2\delta) [\psi'(\delta) - \psi'(1-\delta)], \end{aligned} \quad (\text{A.15})$$

361 where $\psi'(z) = d\psi(z)/dz$.

362 Then, for the $F(z, \delta)$ in the small $\omega_{\text{th}} \Delta t \rightarrow 0$ limit one can have

$$F(z, \delta) = C(\delta) \int_0^z ds (z-s) s^{-2\delta} = C(\delta) z^{2-2\delta}, \quad C(\delta) = \frac{\cos(\pi\delta)}{2\pi^{2\delta} (\delta-1)(2\delta-1)}. \quad (\text{A.16})$$

363 Finally, the corresponding width of the HOM dip scaled as

$$\text{FWHM} \sim \frac{1}{\omega_{\text{th}}} \left[\frac{F(\infty, \delta)}{2C(\delta)} \right]^{1/(2-2\delta)}, \quad (\text{A.17})$$

364 where $C(\delta)$ and $F(\infty, \delta)$ are given by the (A.16) and (A.15).

365 **References**

366 [1] I. Safi, *A dynamic scattering approach for a gated interacting wire*, Eur. Phys. J. B **12**(3),
367 451 (1999), doi:[10.1007/s100510051026](https://doi.org/10.1007/s100510051026).

368 [2] G. Fèvre, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C. Glattli, A. Cavanna, B. Etienne
369 and Y. Jin, *An on-demand coherent single-electron source*, Science **316**(5828), 1169
370 (2007), doi:[10.1126/science.1141243](https://doi.org/10.1126/science.1141243).

371 [3] I. Klich and L. Levitov, *Quantum noise as an entanglement meter*, Phys. Rev. Lett. **102**,
372 100502 (2009), doi:[10.1103/PhysRevLett.102.100502](https://doi.org/10.1103/PhysRevLett.102.100502).

373 [4] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau
374 and D. C. Glattli, *Minimal-excitation states for electron quantum optics using levitons*,
375 Nature **502**(7473), 659 (2013), doi:[10.1038/nature12713](https://doi.org/10.1038/nature12713).

376 [5] C. Grenier, R. Hervé, G. Fèvre and P. Degiovanni, *Electron quantum optics in quantum*
377 *hall edge channels*, Modern Physics Letters B **25**(25:12n13), 1053–1073 (2011),
378 doi:[10.1142/s0217984911026772](https://doi.org/10.1142/s0217984911026772).

379 [6] I. Taktak, M. Kapfer, J. Nath, P. Roulleau, M. Acciai, J. Splettstoesser, I. Farrer, D. A.
380 Ritchie and D. C. Glattli, *Two-particle time-domain interferometry in the fractional quantum*
381 *Hall effect regime*, Nature Communications **13**, 5863 (2022), doi:[10.1038/s41467-022-33603-3](https://doi.org/10.1038/s41467-022-33603-3).

383 [7] I. P. Levkivskyi and E. V. Sukhorukov, *Dephasing in the electronic mach-zehnder*
384 *interferometer at filling factor $\nu = 2$* , Phys. Rev. B **78**, 045322 (2008),
385 doi:[10.1103/PhysRevB.78.045322](https://doi.org/10.1103/PhysRevB.78.045322).

386 [8] V. Freulon, A. Marguerite, J. M. Berroir, B. Placais, A. Cavanna, Y. Jin and G. Fèvre, *Hong-*
387 *ou-mandel experiment for temporal investigation of single-electron fractionalization*, Nat.
388 Commun. **6**, 6854 EP (2015).

389 [9] H. Kamata, N. Kumada, M. Hashisaka, K. Muraki and T. Fujisawa, *Fractionalized wave*
390 *packets from an artificial tomonaga-luttinger liquid*, Nat. Nanotechnol. **9**, 177 (2014).

391 [10] G. Rebora, M. Acciai, D. Ferraro and M. Sassetto, *Collisional interferometry of levitons*
392 *in quantum hall edge channels at $\nu = 2$* , Phys. Rev. B **101**, 245310 (2020),
393 doi:[10.1103/PhysRevB.101.245310](https://doi.org/10.1103/PhysRevB.101.245310).

394 [11] C. Grenier, R. Hervé, E. Bocquillon, F. D. Parmentier, B. Plaçais, J. M. Berroir, G. Fèvre and
395 P. Degiovanni, *Single-electron quantum tomography in quantum hall edge channels*, New
396 J. Phys. **13**(9), 093007 (2011), doi:[10.1088/1367-2630/13/9/093007](https://doi.org/10.1088/1367-2630/13/9/093007).

397 [12] T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin and D. C. Glattli, *Quantum tomography*
398 *of an electron*, Nature **514**, 603 (2014).

399 [13] R. Bisognin, A. Marguerite, B. Roussel, M. Kumar, C. Cabart, C. Chapdelaine,
400 A. Mohammad-Djafari, J. M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, U. Gennser
401 *et al.*, *Quantum tomography of electrical currents*, Nat. Commun. **10**, 3379 (2019).

402 [14] I. Safi and E. V. Sukhorukov, *Determination of tunneling charge via current measurements*,
403 Eur. Phys. Lett. **91**(6), 67008 (2010).

404 [15] B. Roussel, P. Degiovanni and I. Safi, *Perturbative fluctuation dissipation relation for*
405 *nonequilibrium finite-frequency noise in quantum circuits*, Phys. Rev. B **93**, 045102 (2016),
406 doi:[10.1103/PhysRevB.93.045102](https://doi.org/10.1103/PhysRevB.93.045102).

407 [16] I. Safi, *Fluctuation-dissipation relations for strongly correlated out-of-equilibrium circuits*,
408 Phys. Rev. B **102**, 041113 (2020), doi:[10.1103/PhysRevB.102.041113](https://doi.org/10.1103/PhysRevB.102.041113).

409 [17] I. Safi, *Driven quantum circuits and conductors: A unifying perturbative approach*, Phys.
410 Rev. B **99**, 045101 (2019), doi:[10.1103/PhysRevB.99.045101](https://doi.org/10.1103/PhysRevB.99.045101).

411 [18] L.-H. Reydellet, P. Roche, D. C. Glattli, B. Etienne and Y. Jin, *Quantum partition*
412 *noise of photon-created electron-hole pairs*, Phys. Rev. Lett. **90**(17), 176803 (2003),
413 doi:[10.1103/PhysRevLett.90.176803](https://doi.org/10.1103/PhysRevLett.90.176803).

414 [19] R. Bisognin, H. Bartolomei, M. Kumar, I. Safi, J.-M. Berroir, E. Bocquillon, B. Plaçais,
415 A. Cavanna, U. Gennser, Y. Jin and G. Fève, *Microwave photons emitted by*
416 *fractionally charged quasiparticles*, Nature Communications **10**(1), 1708 (2019),
417 doi:[10.1038/s41467-019-09758-x](https://doi.org/10.1038/s41467-019-09758-x).

418 [20] I. Safi, *Driven strongly correlated quantum circuits and hall edge states: Unified photo-*
419 *assisted noise and revisited minimal excitations*, Phys. Rev. B **106**, 205130 (2022),
420 doi:[10.1103/PhysRevB.106.205130](https://doi.org/10.1103/PhysRevB.106.205130).

421 [21] Feldman, D. E. and Halperin, Bertrand I., *Fractional charge and fractional statistics*
422 *in the quantum hall effects*, Reports on Progress in Physics **84**(7), 076501 (2021),
423 doi:[10.1088/1361-6633/ac03aa](https://doi.org/10.1088/1361-6633/ac03aa).

424 [22] C. L. Kane and M. P A. Fisher, *Nonequilibrium noise and fractional charge in the quantum*
425 *hall effect*, Phys. Rev. Lett. **72**, 724 (1994).

426 [23] I. Safi, *Resonance in a tomonaga-luttinger liquid*, Phys. Rev. B **55**, R 12 691 (1997-II).

427 [24] L. Saminadayar, D. C. Glattli, Y. Jin and B. Etienne, *Direct observation of fractional charge*,
428 Phys. Rev. Lett. **79**, 2526 (1997).

429 [25] R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin and D. Mahalu, *Direct*
430 *observation of a fractional charge*, Nature **389**, 162 (1997).

431 [26] I. Safi, P. Devillard and T. Martin, *Partition Noise and statistics in the Fractional Quantum*
432 *Hall Effect*, Phys. Rev. Lett. **86**, 4628 (2001).

433 [27] E.-A. Kim, M. Lawler, S. Vishveshwara and E. Fradkin, *Signatures of fractional statistics in*
434 *noise experiments in quantum hall fluids*, Physical Review Letters **95**(17), 176402 (2005),
435 doi:[10.1103/PhysRevLett.95.176402](https://doi.org/10.1103/PhysRevLett.95.176402).

436 [28] G. Campagnano, O. Zilberberg, I. V. Gornyi, D. E. Feldman, A. C. Potter and Y. Gefen,
437 *Hanbury brown-twiss interference of anyons*, Phys. Rev. Lett. **109**, 106802 (2012),
438 doi:[10.1103/PhysRevLett.109.106802](https://doi.org/10.1103/PhysRevLett.109.106802).

439 [29] C. L. Kane, *Telegraph noise and fractional statistics in the quantum hall effect*, Phys. Rev.
440 Lett. **90**, 226802 (2003).

441 [30] B. Rosenow, I. P. Levkivskyi and B. I. Halperin, *Current correlations*
442 *from a mesoscopic anyon collider*, Phys. Rev. Lett. **116**, 156802 (2016),
443 doi:[10.1103/PhysRevLett.116.156802](https://doi.org/10.1103/PhysRevLett.116.156802).

444 [31] H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J.-M. Berroir, E. Bocquillon,
445 B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin and G. Fèvre, *Fractional statistics*
446 *in anyon collisions*, *Science* **368**(6487), 173 (2020), doi:[10.1126/science.aaz5601](https://doi.org/10.1126/science.aaz5601).

447 [32] P. Glidic, O. Maillet, A. Aassime, C. Piquard, A. Cavanna, U. Gennser, Y. Jin,
448 A. Anthore and F. Pierre, *Cross-correlation investigation of anyon statistics in the*
449 *$\nu = 1/3$ and $2/5$ fractional quantum hall states*, *Phys. Rev. X* **13**, 011030 (2023),
450 doi:[10.1103/PhysRevX.13.011030](https://doi.org/10.1103/PhysRevX.13.011030).

451 [33] M. Ruelle, E. Frigerio, J.-M. Berroir, B. Plaçais, J. Rech, A. Cavanna, U. Gennser, Y. Jin
452 and G. Fèvre, *Comparing fractional quantum hall Laughlin and Jain topological orders with*
453 *the anyon collider*, *Phys. Rev. X* **13**, 011031 (2023), doi:[10.1103/PhysRevX.13.011031](https://doi.org/10.1103/PhysRevX.13.011031).

454 [34] H. K. Kundu, S. Biswas, N. Ofek, M. Heiblum, A. Stern and V. Umansky, *Anyonic in-*
455 *terference and braiding phase in a mach-zehnder interferometer*, *Nature Physics* **19**, 515
456 (2023), doi:[10.1038/s41567-022-01899-z](https://doi.org/10.1038/s41567-022-01899-z).

457 [35] M. Thamm and B. Rosenow, *Effect of the soliton width on nonequilibrium exchange phases*
458 *of anyons*, *Phys. Rev. Lett.* **132**, 156501 (2024), doi:[10.1103/PhysRevLett.132.156501](https://doi.org/10.1103/PhysRevLett.132.156501).

459 [36] K. Iyer, F. Ronetti, B. Grémaud, T. Martin, J. Rech and T. Jonckheere, *Finite width*
460 *of anyons changes their braiding signature*, *Phys. Rev. Lett.* **132**, 216601 (2024),
461 doi:[10.1103/PhysRevLett.132.216601](https://doi.org/10.1103/PhysRevLett.132.216601).

462 [37] J. Nakamura, S. Liang, G. C. Gardner and M. J. Manfra, *Impact of bulk-edge coupling on*
463 *observation of anyonic braiding statistics in quantum hall interferometers*, *Nature Com-*
464 *munications* **13**(1), 344 (2022).

465 [38] J. Nakamura, S. Liang, G. C. Gardner and M. J. Manfra, *Fabry-pérot interferome-*
466 *try at the $\nu = 2/5$ fractional quantum hall state*, *Phys. Rev. X* **13**, 041012 (2023),
467 doi:[10.1103/PhysRevX.13.041012](https://doi.org/10.1103/PhysRevX.13.041012).

468 [39] D. C. Glattli and P. S. Roulleau, *Levitons for electron quantum optics*, *Physica Status Solidi*
469 (b) **254**(3), 1600650 (2017), doi:<https://doi.org/10.1002/pssb.201600650>.

470 [40] I. Safi and H. J. Schulz, *Transport in an inhomogeneous interacting one-dimensional sys-*
471 *tem*, *Phys. Rev. B* **52**, R17040 (1995), doi:[10.1103/PhysRevB.52.R17040](https://doi.org/10.1103/PhysRevB.52.R17040).

472 [41] Safi, Inès, *Propriétés d'un fil quantique connecté à des fils de mesure*, *Ann. Phys. Fr.* **22**(5),
473 463 (1997), doi:[10.1051/anphys:199705001](https://doi.org/10.1051/anphys:199705001).

474 [42] I.P. Levkivskyi and E.V. Sukhorukov, *Noise-induced phase transition in the electronic mach-*
475 *zehnder interferometer*, *Phys. Rev. Lett.* **103**, 036801 (2009).

476 [43] D. B. Gutman, Y. Gefen and A. D. Mirlin, *Bosonisation out-of-equilibrium*, *Europhys. Lett.*
477 **90**, 37003 (2010).

478 [44] B. Roussel, C. Cabart, G. Fèvre, E. Thibierge and P. Degiovanni, *Electron quantum op-*
479 *tics as quantum signal processing*, *Physica Status Solidi (B)* **254**(3), 1600621 (2017),
480 doi:[10.1002/pssb.201600621](https://doi.org/10.1002/pssb.201600621), 1600621.

481 [45] E. Perfetto, G. Stefanucci, H. Kamata and T. Fujisawa, *Time-resolved charge fractional-*
482 *ization in inhomogeneous luttinger liquids*, *Phys. Rev. B* **89**, 201413 (2014),
483 doi:[10.1103/PhysRevB.89.201413](https://doi.org/10.1103/PhysRevB.89.201413).

484 [46] H. Bartolomei, E. Frigerio, M. Ruelle *et al.*, *Time-resolved sensing of electromagnetic*
485 *fields with single-electron interferometry*, *Nature Nanotechnology* **20**, 596 (2025),
486 doi:[10.1038/s41565-025-01888-2](https://doi.org/10.1038/s41565-025-01888-2).

487 [47] H. Souquet-Basiège, B. Roussel, G. Rebora, G. Ménard, I. Safi, G. Fève and P. Degiovanni,
488 *Quantum sensing of time-dependent electromagnetic fields with single-electron excitations*,
489 *Phys. Rev. X* **15**, 031043 (2025), doi:[10.1103/1nfc-stxp](https://doi.org/10.1103/1nfc-stxp).

490 [48] M. Ruelle, E. Frigerio and *et al.*, *Time-domain braiding of anyons*, *Science* **389**(6755),
491 eadm7695 (2025), doi:[10.1126/science.adm7695](https://doi.org/10.1126/science.adm7695).

492 [49] M. Kapfer, P. Roulleau, M. Santin, I. Farrer, D. A. Ritchie and D. C. Glattli, *A*
493 *Josephson relation for fractionally charged anyons*, *Science* **363**(6429), 846 (2019),
494 doi:[10.1126/science.aau3539](https://doi.org/10.1126/science.aau3539).

495 [50] T. Jonckheere, J. Rech, B. Grémaud and T. Martin, *Anyonic statistics revealed by the*
496 *hong-ou-mandel dip for fractional excitations*, *Phys. Rev. Lett.* **130**, 186203 (2023),
497 doi:[10.1103/PhysRevLett.130.186203](https://doi.org/10.1103/PhysRevLett.130.186203).

498 [51] D. Ferraro, F. Ronetti, L. Vannucci, M. Acciai, J. Rech, T. Jonckheere, T. Martin and M. Sasset-
499 *ti, Hong-ou-mandel characterization of multiply charged levitons*, *The European Phys-*
500 *ical Journal Special Topics* **227**, 1345 (2018), doi:[10.1140/epjst/e2018-800074-1](https://doi.org/10.1140/epjst/e2018-800074-1).

501 [52] J. Rech, D. Ferraro, T. Jonckheere, L. Vannucci, M. Sasseti and T. Martin, *Minimal ex-*
502 *citations in the fractional quantum hall regime*, *Phys. Rev. Lett.* **118**, 076801 (2017),
503 doi:[10.1103/PhysRevLett.118.076801](https://doi.org/10.1103/PhysRevLett.118.076801).

504 [53] F. Ronetti, L. Vannucci, D. Ferraro, T. Jonckheere, J. Rech, T. Martin and M. Sasseti,
505 *Crystallization of levitons in the fractional quantum hall regime*, *Phys. Rev. B* **98**, 075401
506 (2018), doi:[10.1103/PhysRevB.98.075401](https://doi.org/10.1103/PhysRevB.98.075401).

507 [54] F. Ronetti, L. Vannucci, D. Ferraro, T. Jonckheere, J. Rech, T. Martin and M. Sasseti,
508 *Hong-ou-mandel heat noise in the quantum hall regime*, *Phys. Rev. B* **99**, 205406 (2019),
509 doi:[10.1103/PhysRevB.99.205406](https://doi.org/10.1103/PhysRevB.99.205406).

510 [55] I. Taktak and I. Safi, *AC driven fractional quantum Hall systems: Uncovering unexpected*
511 *features*, *arXiv e-prints* (2025), [2502.07622](https://arxiv.org/abs/2502.07622).

512 [56] C. Bena and I. Safi, *Emission and absorption noise in the fractional quantum hall effect*,
513 *Phys. Rev. B* **76**, 125317 (2007), doi:[10.1103/PhysRevB.76.125317](https://doi.org/10.1103/PhysRevB.76.125317).

514 [57] I. Safi, C. Bena and A. Crépieux, *ac conductance and nonsymmetrized noise at finite*
515 *frequency in quantum wires and carbon nanotubes*, *Phys. Rev. B* **78**, 205422 (2008),
516 doi:[10.1103/PhysRevB.78.205422](https://doi.org/10.1103/PhysRevB.78.205422).

517 [58] B. Trauzettel, I. Safi, F. Dolcini and H. Grabert, *Appearance of fractional charge*
518 *in the noise of nonchiral luttinger liquids*, *Phys. Rev. Lett.* **92**, 226405 (2004),
519 doi:[10.1103/PhysRevLett.92.226405](https://doi.org/10.1103/PhysRevLett.92.226405).

520 [59] F. Dolcini, B. Trauzettel, I. Safi and H. Grabert, *Transport properties of single channel*
521 *quantum wires with an impurity : Influence of finite length and temperature on average*
522 *current and noise*, *Phys. Rev. B* **71**, 165309 (2005).

523 [60] Gu Zhang *et al*, in preparation (2025).

524 [61] T. Jonckheere, J. Rech, B. Grémaud and T. Martin, *Anyonic statistics revealed by the*
525 *hong-ou-mandel dip for fractional excitations*, Phys. Rev. Lett. **130**, 186203 (2023),
526 doi:[10.1103/PhysRevLett.130.186203](https://doi.org/10.1103/PhysRevLett.130.186203).

527 [62] F. Ronetti, L. Vannucci, D. Ferraro, T. Jonckheere, J. Rech, T. Martin and M. Sassetti,
528 *Crystallization of levitons in the fractional quantum hall regime*, Phys. Rev. B **98**, 075401
529 (2018), doi:[10.1103/PhysRevB.98.075401](https://doi.org/10.1103/PhysRevB.98.075401).

530 [63] S. Varada, C. Spånslätt and M. Acciai, *Exchange-phase erasure in anyonic hong-ou-mandel*
531 *interferometry*, Phys. Rev. B **111**, L201407 (2025), doi:[10.1103/PhysRevB.111.L201407](https://doi.org/10.1103/PhysRevB.111.L201407).

532 [64] R. Guerrero-Suarez, A. Suresh, T. Maiti, S. Liang, J. Nakamura, G. C. Gardner,
533 C. Chamon and M. Manfra, *Universal anyon tunneling in a chiral luttinger liquid*,
534 ArXiv:2502.20551v2 (2025).

535 [65] I. Safi, *Time-dependent Transport in arbitrary extended driven tunnel junctions*, arXiv
536 e-prints (2014), [1401.5950](https://arxiv.org/abs/1401.5950).

537 [66] Inès Safi, Imen Taktak, and Aleksander Latyshev, in preparation.

538 [67] I. Safi and P. Joyez, *Time-dependent theory of nonlinear response and current fluctuations*,
539 Phys. Rev. B **84**, 205129 (2011), doi:[10.1103/PhysRevB.84.205129](https://doi.org/10.1103/PhysRevB.84.205129).

540 [68] M. S. O. L. Mazzella and I. Safi, Unpublished (2025).

541 [69] C. L. Kane and M. P. A. Fisher, *Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas*, Phys. Rev. B **46**, 15233 (1992),
542 doi:[10.1103/PhysRevB.46.15233](https://doi.org/10.1103/PhysRevB.46.15233).

544 [70] P. Fendley, A. W. W. Ludwig and H. Saleur, *Exact conductance through point contacts*
545 *in the $\nu = 1/3$ fractional quantum hall effect*, Phys. Rev. Lett. **74**, 3005 (1995),
546 doi:[10.1103/PhysRevLett.74.3005](https://doi.org/10.1103/PhysRevLett.74.3005).

547 [71] X.-G. Wen, *Edge transport properties of the fractional quantum hall states and weak-*
548 *impurity scattering of a one-dimensional charge-density wave*, Phys. Rev. B **44**, 5708
549 (1991), doi:[10.1103/PhysRevB.44.5708](https://doi.org/10.1103/PhysRevB.44.5708).

550 [72] N. Schiller, T. Alkalay, C. Hong, V. Umansky, M. Heiblum, Y. Oreg and K. Snizhko, *Scaling*
551 *tunnelling noise in the fractional quantum Hall effect tells about renormalization and*
552 *breakdown of chiral Luttinger liquid*, arXiv e-prints (2024), [2403.17097](https://arxiv.org/abs/2403.17097).

553 [73] X.-G. Wen, *Theory of the edge states in fractional quantum Hall effects*, Int. J. Mod. Phys.
554 B **06**(10), 1711 (1992), doi:[10.1142/S0217979292000840](https://doi.org/10.1142/S0217979292000840).

555 [74] A. Latyshev and I. Safi, *Unexpected non-universality of the time braiding phase of anyons*
556 *tied by the scaling dimension* (2025), [2510.20592](https://arxiv.org/abs/2510.20592).

557 [75] I. Safi, *Time domain braiding of anyons revealed through a nonequilibrium fluctuation*
558 *dissipation theorem* (2025), [2510.10525](https://arxiv.org/abs/2510.10525).