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Abstract

We develop a general framework for time-resolved Hong—-Ou-Mandel (HOM) interferom-
etry in the fractional quantum Hall effect (FQHE), revisiting approaches that considered
only noise associated with quasiparticle tunneling. We derive a universal perturbative
relation linking cross-correlations of chiral currents under arbitrary AC drives to their DC
counterparts. Motivated by a recent experiments, we consider an injection protocol for
pulses carrying charge g, as suggested by the plasmon-scattering approach, and show
that the resulting HOM signal is entirely insensitive to any non-integer g, irrespective of
the underlying edge Hamiltonian. Specializing the latter to a chiral Tomonaga-Luttinger
liquid, we analyze the width of the HOM dip for both sharp and finite-duration pulses.
We find that the dip width exhibits a nontrivial dependence on the scaling dimension 6,
in stark contrast with the simple 1/6 scaling.
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1 Introduction

Manipulating individual quasiparticles in the quantum Hall regime has opened a pathway
to electronic quantum optics [1-5], where single electrons propagating along ballistic chiral
edges play the role of single photons in optical media. Unlike photon optics, however, electron
quantum optics is shaped by Fermi statistics and by strong Coulomb interactions, giving rise to
phenomena with no optical analogue. A central tool in this field is electronic interferometry.
In particular, in Hong-Ou-Mandel (HOM) geometries, synchronized sources inject excitations
that collide at a quantum point contact (QPC), producing a characteristic dip in the current
noise that reflects exclusion statistics [4,6]. HOM setups have also provided clear signatures
of charge fractionalization [1, 7-10] and enabled full electronic-state tomography [11-13].
HOM interferometry is now highly developed in the integer quantum Hall regime, where de-
terministic single-electron sources are firmly established [2-4], which is not the case in the
fractional quantum Hall effect (FQHE), where it has mainly revealed quantum coherence and
Fermi statistics of electron excitations [6]. In fact, time-dependent transport methods have
been provided by the unifying nonequilibrium perturbative (UNEP) theory [14-21] to probe
the fractional charge, traditionally extracted from DC shot noise [22-25]. By contrast, access-
ing fractional statistics has relied almost exclusively on DC-transport probes [26-38].

A major bottleneck is the absence of reliable on-demand anyon sources. Driven quan-
tum dots emit only electrons, and Lorentzian voltage pulses [3] necessarily carry integer
charge [39], preventing the direct generation of isolated fractional quasiparticles. This limi-
tation has so far blocked the implementation of true single-anyon HOM interferometry in the
FQHE.

Well before the development of electron quantum optics, whether through the seminal real-
ization of on-demand single-electron emission using quantum dots in 2007 [2] or Lorentzian
voltage pulses generating minimal excitations [3, 4], the possibility of shaping propagating
plasmonic pulses with charge g and temporal width controlled by voltage pulses was antici-
pated in 1995-98 [1,40,41]. These works established a nonequilibrium bosonization frame-
work in which the linear equation of motion is solved through the matrix scattering formalism
for plasmons, which has since become one cornerstone of subsequent developments in quan-
tum Hall edge states [9,42-47].

This line of thought culminated in a recent HOM experiment [48] employing injected frac-
tional sharp pulses, with the aim of disentangling the anyonic braiding phase 8 in the time
domain from its role as the scaling dimension §. This analysis implicitly assumes a Tomon-
aga-Luttinger liquid (TLL) description, which however not firmly established experimentally,
as already evidenced in experiments determining the fractional charge [19,49] or fractional
statistics [31-33]. In fact, the underlying TLL-based theoretical work [50] considered only the
noise of the quasiparticle tunneling current, whereas experiments measure correlations of the
chiral currents. All other theoretical treatments of HOM interferometry in the FQHE [51-54]
share this limitation, and in several cases operate outside the domain of validity of perturbation
theory (see Ref. [55]).

The distinction between chiral-current and tunneling-current correlators is crucial, and
has been clarified explicitly within the formalism for nonequilibrium transport in bosonised
impurity models (NETBIM), which relates the two exactly [19, 56-60]. This nonperturba-
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V,(t — At/2)

1u(t)

Itun(t

Vy(t + At/2)

Figure 1: A QPC in the quantum Hall regime at an integer or fractional filling factor
v. We focus here on edges such that each harbors only a single chiral mode. While
V, and V4 denote the reservoir voltages, V, denotes a gate voltage. Both the reservoir
and gate voltages can be time-dependent. I,(t) and I;(t) denote the outgoing chiral
current operators in the upper and lower edges [cf. Eq. (5)], respectively, and I(t)
represents the backscattering-current operator in Eq. (3).

tive framework transcends the TLL paradigm and accommodates arbitrary interaction ranges
and profiles. Complementarily, the UNEP framework [14,17,20] provides a perturbative but
model-agnostic route to time-dependent transport beyond bosonization, applicable to a broad
class of correlated systems. UNEP relations have, in particular, enabled a unified analysis of
HOM-type experiments for injected electrons across the integer and fractional quantum Hall
regimes [6].

In this paper, we develop a framework for HOM interferometry in the FQHE by combining
NEBIF and UNEP theory. Our contributions are threefold. First, we derive a universal pertur-
bative relation between cross-correlations of outgoing chiral currents in the AC and DC regime,
which revisits and substantially extends previous HOM analyses [51-54,61-63]. Second, mo-
tivated by experimental evidence consistent with TLL behavior [64], we apply these relations
to the TLL model and carefully analyze the short-pulse protocols used in Refs. [31,50], show-
ing that their interpretation requires a more refined theoretical framework. Finally, we discuss
the domain of validity of our perturbative expansion [55].

Altogether, our results provide a comprehensive, drive-agnostic description of HOM inter-
ferometry in the FQHE, clarify previous theoretical inconsistencies, and yield precise predic-
tions for the width and behavior of the HOM dip.

2 Model and perturbative relations

In this paper, we consider an icompressible chiral edge state in the FQHE at a filling factor v in
the Laughlin series. Bosonic fields ¢, 4,are associated with the upper and lower edges of the
Hall bar, respectively. The edge dynamics are governed by a quadratic bosonized Hamiltonian
H, in terms of ¢, 4, without assuming the specific form of a (chiral) Tomonaga-Luttinger
liquid. Quasiparticle backscattering is represented by a generic, possibly spatially extended
operator A, driven by a complex time-dependent function p(t, At). We allow here for an ex-
plicit dependence on a time shift At, which in the HOM setup corresponds to the relative
time delay between two sources. All time-dependent forces are incorporated-either through
a Keldysh gauge transformation or, equivalently, by evolving time-dependent boundary condi-
tions [1] into p(t, At).
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Accordingly, the full time-dependent Hamiltonian takes the form

H(t) = Ho + e 10t p(t, At)A+ e!@wt p*(t, At)AT, (1)

Although not required in full generality, the frequency w,. often satisfies the Josephson-type
relation w,, = e*V /i, where V denotes the applied dc voltage drop between the upper and
lower edges and e* the transferred quasiparticle charge. When considering the HOM setup,
we adopt the form :

p(t,At) = e tlp(t=At/2)—p(t+At/2)] , )

where ¢(t) describes the ac phase applied to each source, taken at the same DC voltage so
that we take w, = 0. We can then show that HOM noise can be expressed through noise in
the DC regime, with ¢ = 0 and wy, finite.

Two current operators will play a central role. First, the quasiparticle tunneling current at
the QPC,

*

L (t)=—i %[e‘i”dcfﬁ(t, At)A—el®ut 5*(¢, At)AT], 3)

so that the HOM tunneling (backscattering) noise reads:

Sn (AL) = “ dtds (51,,,(t) 81,4, (t +5)) |y =05 4

where 61(t) =1(t)—(I(t)). The current operator is understood to be taken in the Heisenberg
representation throughout, Note that the terminology of tunneling is used purely for conve-
nience and does not imply a bipartite structure of the system, since #, is not assumed to
decompose into two separate parts. In particular, interactions between the upper and lower
edges are allowed.

Second, we will consider the experimentally accessible chiral edge currents,

Iu,d(x’t):vax¢u,d(x:t) /7-[: (5)

where v is the edge magnetoplasmon velocity. The corresponding cross-correlations are de-
fined as

SioM(At) = JJ dt ds (0I,(xy, t) 614(xq,t +5)) lwy.=0s (6)

with 61,(xz,t) = Ir(xz,t) — (I;(xz,t)) and { = u,d. X, 4 are the upper and lower edge
measurement points The cross-correlated dc noise is defined as

oo
Scr(wdc) = f d‘seiwdcs <5Iu(xu5 0) 5Id(Xd,S)> |g0=0> (7)

—0Q

We now focus on weak tunneling amplitudes for fractional charges. Let us recall first the UNEP
relation between the HOM tunneling noise and DC noise [14,20,65]:

+00 dew

San(AL) = J o 1B, AP S, (@ = ), ®
—00 0

where Qg = 21/ T,, with T, is the measurement time (larger than any relevant time scale).

Interestingly, by combining UNEP theory with NEBIE we can show a similar universal relation

for cross-correlations:

+00
d
SSOM(At) B f Q_w |p(w’ At)|2'scr((’()dlc = Cl)), (9)

_oo o
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Both relations are valid for any stationary nonequilibrium distributions, such as those induced
by temperature gradients or in the “anyon collider” [66]. They also extend as well to the case
|p(At, t)] is not constrained to unity, which permits amplitude modulation, for instance from
a time-dependent gate voltage (see Fig. 1).

The HOM noise is expressed as integral over the AC frequencies w of contributions contain-
ing two factors: one associated with the drive p(w, At), and the other given by S_(w,. = w),
which retains the signature of the underlying Hamiltonian. All dependence on the time delay
At enters exclusively through p(w, At).

Let us now comment on the case one adopts an initial equilibrium thermal distribution (on
which we will focus when applying Eq.(9) to a TLL model), thus p,;, o< e #*o with electronic
temperature

wy =kgT/H=1/p (10

In that case, the NETBIM, originally developed at finite frequency and DC voltages [56-59],
provides exact relations between cross-correlations and backscattering noise. When combined
with generalized non-equilibrium linear response theory [67], this yields an exact expression
for the DC cross-correlations [60]:

Scr(wdc) = Stun(wdc) - 26* wth Gtun(wdc) b (11)

where the dc differential conductance is defined as G,,,(wy.) = 91,,,(wq.)/ 0 wgy. with I, (ewg4.)
the DC average the tunneling current operator in Eq.(3). A similar exact form holds as well
for the for the HOM noise (reported to a separate publication), leading to an exact result due
to the equilibrium FDT:

SHM(AL =0) =S, (w, =0)=0. (12)

This vanishing, which follows directly from gauge invariance and from the perturbative ex-
pression in Eq. (9), is robust with respect to both the nature of the injected charges and the
strength of interactions. It therefore cannot reveal anyonic braiding when the reservoirs act as
classical sources. In setups where single electrons are injected, the disappearance of the HOM
signal at At = 0 is interpreted as antibunching: synchronized electrons cannot collide at the
QPC [6].

In the perturbative regime relevant here, the UNEP framework demonstrates the full gen-
erality of the Poissonian relation-extending well beyond bipartite systems [15,16,65]:

w
S0 = coth( 22 )1, (@,), (13)
2w,
where I, (w,.) is the average tunneling current. As aresult, S_(w,. ) in Eq. (11) is fixed entirely
by this current, making I, the sole model-dependent ingredient entering the HOM noise in
Eq. (9).

tun

3 Application to two incident pulses

Following Refs. [40,41] and the considerations of Ref. [61], we now consider counter-phased
plasmonic pulses and derive the explicit form of the kernel |p(w, At)|? entering Eq. (9), with-
out specifying the underlying bosonized Hamiltonian. We first address the case of extremely
sharp pulses defined by:

@(t) =2mq 6(t), (14)
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Figure 2: Normalized cross-correlated HOM noise R, (At) and normalized tunneling
noise R, (At) from Ref. [63] as functions of w At for sharp voltage pulses, for
scaling dimensions 6 = 1/3 and 2/3, and w,,/w, = 0.1. The results are independent
of the injected non-integer dimensionless charge q. Inset: zoom of R_(At) and
R (At) in the vicinity of w. At = 0. The curves are compared with the analytical
short-time form f5(At) =1—exp[—2mw, 6|At|] introduced in Ref. [50].

each carrying a fractional charge q and separated by a time delay At. For such a drive one
obtains, at nonzero frequency:

2sin(wAt/2)
—

Blw, At) = (e2™1—1) (15)
This leads to a universal oscillatory behavior of the HOM noise in Egs.(8),(9) similarily to that
in Hanbury Brown-Twiss configurations, as noted in Refs. [14, 17] for periodic pulses and in
Ref. [68] for a single pulse. Let us now normalize Eq. (9) by its large-delay value At — oo,
where the pulses do not overlap. We define the corresponding ratio as

Rcr(tun)(At) = SHOM

cr(tun)

(At)/SHOM

cr(tun)

(At — o0) (16)

For sufficiently large time delays, the sources act independently and the noise reduces to the
sum of two Hanbury Brown-Twiss contributions [61]. Therefore, remarkably, for noninteger g
the normalized HOM signal R(At) is independent of q, since the prefactor |e2™9—1|? cancels
in the ratio. However, the limit ¢ — integer is singular: in that case the HOM signal vanishes
identically [68]. Remarkably, these results are robust with respect to the precise low-energy
effective theory of the edges: they are controlled only by the specific sharp profile of the pulses.

It is however mor realistic to go beyond &-like pulses and consider a finite temporal width
7, focussing here on a rectangular shape, so that the phase reads:

() =x[tO(t)—(t—7)O(t—7)], (17)

where k = 2mq/7. A further motivation concerns the requirement of bosonization validity
at low energies, below an ultraviolet cutoff w.. In fact extremely sharp pulses are high in
energy. While Eq. (9) is general, its use within a bosonized theory requires that the integrand
decays sufficiently fast above w, [55], a condition that depends both on the drive shape and
on the intrinsic DC noise. A secure way to regularize this regime is to consider pulses of finite
duration 7, much larger than the short-time cutoff 27t/w,.. Such a single rectangular pulse

6
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can also be viewed as the limiting case of the periodic pulses employed in Ref. [48], obtained
for very large period compared to 7. Fourier transforming Eq. (2), at finite frequency, yields

Plw, At <71)= Ze:TT [eiKAt sin(a) i _ZAt) —sin(w T +2At)]

w+K w—K

w

+2e 2 :|, (18)

with the property p(w,0) = 0. For At > 7, one finds

e? (T_At)w 43 (r+AD) Sin((w_ZK)T ) :|

Blw, At > r)zze“%[
w+K w—K

iwt

2e 2
w

+ [(ei”—1)sin(%(At—T))—Zcos(”TAt)sin(“’TT)]. (19)

For a meaningful interpretation in terms of single injected excitations, the regime At > 7
is the more relevant, as it avoids overlap between two incident pulses. In the narrow-pulse
limit T — 0, this expression reduces to Eq. (15). In contrast to that equation, for finite T the
limit ¢ — integer yields a finite kernel, allowing a controlled comparison between integer and
fractional g. We see clearly that the kernel depends on the width 7, whether q is fractional
or integer, leading to a dependence of R, (At) on 7. Now we make this dependence more
explicit within the TLL model.

4 Case of a TLL model

The vast majority of theoretical studies of Hall edge states rely on low-energy effective the-
ories below the UV cutoff w,. When tunneling of a single quasiparticle species dominates,
it is governed by one scaling dimension 6, which plays the role of the TLL parameter, and
is affected by nonuniversal features such as inter-edge interactions or edge reconstruction.
For definiteness, we assume quasiparticle tunneling localized at x = 0. We also specify to
a thermal initial state p,, o< e P™o with electronic temperature in Eq.(10). One expects a
quantum metal-insulator transition at an energy scale that separates the weak- and strong-
backscattering regimes [69,70], and the exact realtion in Eq.(11) is valid for all energy scales,
thus in both regimes. Here we focus on the metallic one, where DC voltage or temperature
scales are high enough compared to the crossover energy scale. In this case, the DC current is
given by [71] :

Itun(wdc) = %Gtun(o) Sinh(nuu’) |F(5 + lnu’)|2 Wlth Au’ = 2:?2;}1' (20)
Here
eERTI%E) . ason) (@)
G, (0)= 2 (2m)*® 1)(—“‘) , 21
w(@ =5 15 @™ : 1)

is the equilibrium conductance, with R < 1, so that "R is its value for & = 1. Using Eq.(13)
and (11) gives the DC cross-correlations:
This yields [72]

Salwy) = SI (w0 )FP(S +iun) (22)
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where Im[...] denotes the imaginary part, and v is the digamma function.

For § > 1/2 S_(w) decays too slowly at T = 0, S_(w) o< |w/w,|*°7. Thus, in order to use
this TLL expression, the kernel |p(c, At|? in Eq. (9) must decay rapidly, requiring w At > 2.
Using Eq. (9), we now analyze the HOM noise under sharp pulses. This case is directly moti-
vated by the recent experiment in Ref. [48] where charges Ne/3 (i.e., ¢ = N/3) were injected
at v =1/3 in order to determine the anyonic braiding phase 6.

4.1 Analysis of the HOM dip width for sharp pulses

For N =1 (¢ = 1/3), the HOM dip width was claimed to scale as 1/w,;,8, thereby providing
a direct probe of 6. For N = 3, one inject purely electronic pulses that do not braid whose
width is claimed to determine the HOM dip width. The contrast betweenthe N =1and N =3
cases was then interpreted as a manifestation of anyonic braiding of the injected excitations
with thermally created quasiparticle-quasihole pairs at the QPC, from which 6 = 27/3 was in-
ferred. This analysis is based on Ref. [61] claiming that while integer-charge pulses yield a dip
controlled by their width, sharp fractional-charge pulses lead to a backscattering normalized
noise R,,,(At) approximated by

fs(At) =1—exp(—2nw,5|At|) (23)

We start by discussing the validity of this approximation for the tunneling HOM noise, then
give both analytic and numerical analysis of the HOM dip width for the more relevant chiral
cross correlations.

4.1.1 HOM dip for tunneling noise

The analytical expression for the normalized R, (At) was obtained in Ref. [63]

tun

Al
Nats) o Y dtB,2rone (5,1 —25)
D(5) [ dtBy2rog(5,1—28)

Ron(AL) = (24)

where B, (a, b)-is the incomplete beta function. As evident from Fig. 2, the normalized tunnel-
ing noise exhibits substantial deviations from the function f5_,/3(At) in Eq.(23). Interestingly,
for 6 = 2/3 the corresponding cross-correlated normalized HOM noise R, (At) follows f5(At)
much more closely, as shown in Fig. 2, which may account for the experimentally observed
behavior of R_(At). In contrast, for the smaller scaling dimension 6 = 1/3, we find more
pronounced discrepancies between R (At) and R, (At). In this case, however, the tunnel-
ing contribution remains well approximated by R, (At) ~ fs_;/3(At), in agreement with
Ref. [50], which focuses exclusively on the tunneling noise for 6 = 1/3. Overall, these com-
parisons highlight clear and systematic deviations between the two types of normalized HOM
noise.

Of course the numerical features of the HOM dip width for the tunneling noise can also be
extracted from the asymptotic expression at short-time behaviour of the normalized tunneling
noise defined in Eq. (24). We first consider the denominator. We introduce the dimension-
less variable y = 2mw, t, then change it to the variable u = e™ and exchange the order of
integration, so that:

oo 1
1 1
D(§) = J dyB,(6,1—28) = f w1 —u)?°[—loguldu.  (25)
2ﬂ"’"th 0 th JO
Using the identity
1
0
—B(a,b) = J u (1 —w)? ! logudu, (26)
da 0

8
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10— e ememme——— 1.0 mseam—a
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—06 o FWHM(wwm/wc) —06 * Wim/w:=0.08
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K o4 I, Ro4 e ‘
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o 4 S e,
—— win/we =0.05 — 6= T re——
0.2 /e 2 e, 0.2 6=0.66 2 o, 7T
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WAt wAt

Figure 3: (Left) Normalized HOM noise R_(At) as a function of w At for sharp
pulses and for different values of w,,/w, = {0.05,0.08,0.10}. Inset: numerical full
width at half maximum (FWHM) of the HOM dip as a function of w,,/w, according to
a power law behavior. (Right) Normalized HOM noise R (At) as a function of w At
for sharp pulses and for different values of 6 = {0.66,0.80,0.90} at w,/w. = 0.1.
Inset: numerical full width at half maximum (FWHM) of the HOM dip as a function
of 6 for different temperatures w,, /w. = 0.08, w,,/w, = 0.12 and comparison with
the behaviour oc 57,

we arrive at

D(5) = 2; B(5,1—26)[4p(1—5)—(5)] = 21

th th

B(6,1—268) cot(md). 27

We now turn to the numerator in Eq.(24). Let us now consider w,|At| < 1. The in-
complete beta function admits a regular expansion around y = 0 and, to leading order, we
get:

1
Tw,,

2wy |At]
N(At,6) = f B, (5,1—256)dy ~B(5,1—25)|At|. (28)
0
Collecting these results, we obtain the short-time asymptotics of the normalized tunneling
noise:
Run(wy|At] = 0) = 2w, |At|tan(n6), (29)

which is obviously different from f5(At) in Eq.(23). Nevertheless, for small &, the above
expression reduces to
Rtun(wth|At|) &~ Zﬂ:wthalAtL (30)

in agreement with the linear short-time behaviour of the tunneling noise in Ref. [50,63], as the
function f5(At) can then be expanded, making such an approximation limited only to 6 < 1.

4.1.2 HOM dip width for cross-correlated noise

Now we analyse the HOM dip obtained through Eq.(9) and Eq.(22) first through a numer-
ical analysis then from an analytic low-temperature expansion. The full width at half max-
imum (FWHM) of the HOM dip is shown in Fig. 3. For a fixed scaling dimension 9§, the
width decreases algebraically with temperature, following FWHM(w,;,) o< 1/w,;, in the range
w,/w. = 0.07-0.15, reflecting the inverse relationship between coherence time and ther-
mal fluctuations. Consequently, even a modest rise in temperature substantially broadens the
interference minimum. In contrast, for a fixed temperature w,/w, = 0.10, it exhibits a pro-
nounced reduction with a non-trivial dependence on & (see inset of Fig. 3). This behaviour
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differs significantly from a simple o< 6! scaling. Quantitatively, the variation with & is signif-
icantly stronger than with w,;, establishing the scaling dimension as the dominant parameter
controlling the width of the HOM dip. Detailed analytical analysis of the HOM dip width for
sharp pulses in Appendix A. For example it is shown that FWHM in the limit w,,|At] € 1 is
given by the non-trivial function of &:

1 [F(o00,5)7]"2%)
FWHMN w_m[Tm] 5 (31)
where
26—2
F(00,8) = 2 sin(n8)B(5,1— 26)[¢/(8)— /(1 —5)], C(5) = cos(r5) (32)

3 2120(6 —1)(26 — 1)
with ¢’(z) = dy(z)/dz.

For high-order filling factors for which one has multiple edges, but where a single charge
tunneling dominates with the smallest scaling parameter &, one expects 6 to reflect interedge
interactions which therefore can affect the HOM dip’s width [73].

4.1.3 HOM dip width for rectangular pulses

By analogy with the sharp-pulse case, we compute R _(At) for rectangular pulses of various
durations 7, for a fractional ¢ = 1/3 and integer ¢ = 1 excitations as illustrated in Fig. 4. As
expected, the HOM signal exhibits a strong dependence on 7, and the limit T — 0 formally
reproduces the sharp-pulse result shown in Fig. 2. This dependence holds for both fractional
and integer excitations.

For integer charge g = 1, the HOM dip width shows only a weak sensitivity to temperature:
FWHM remains nearly constant for the small values of 7; = 3.18 Fig. 5. This insensitivity
indicates that thermal broadening plays a minor role when transport is dominated by coherent
single-particle processes. It is worth emphasizing that increasing the temperature leads to a
progressive reduction in the discrepancy between the FWHM for fractional (¢ = 1/3) and
integer (¢ = 1) excitations, as illustrated in Fig. 5. This behavior aligns with the tendency
previously identified in Ref. [48].

For fractional charge g = 1/3, the behavior changes qualitatively. The HOM profile broad-
ens significantly with increasing temperature, leading to a strong w;,-dependence of the FWHM.
This pronounced sensitivity reflects thermally assisted dephasing in the presence of fractional-
ized excitations. Similarly, FWHM(6) exhibits a steep, nonlinear growth, emphasizing the key
role of scaling dimension 6. The dependence on 7 is also markedly stronger than for g = 1: at
large 7, the broadening becomes superlinear, indicating that long-range correlations further
smear the HOM dip.

Now we address the dependence of FWHM on the scaling dimension & at three different
values of the injected pulse duration 7. Figure 6 summarizes the results for several pulse
durations 7 , both for fractional (g = 1/3) and integer (g = 1) charge injection. For fractional
excitations, the FWHM decreases monotonically with 6 over the entire range explored. Narrow
pulses (t; = 3.183) exhibit the steepest decay, whereas broad pulses (7, = 9.549) lead to
a smoother, less 6-sensitive profile. This behavior reflects the dominance of high-frequency
components in the correlation spectrum S_(w, = ) at larger 6, which enhance temporal
decoherence and compress the interference feature in time delay At. For integer excitations,
the FWHM is nearly constant for small 7, showing only a weak residual increase with & at
larger pulse durations.

Overall, the comparison between g = 1/3 and q = 1 highlights a clear dichotomy: frac-
tional excitations lead to pronounced scaling of the HOM dip width with 6, while integer
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Figure 4: Normalized HOM noise R (At) as a function of the delay w At for rect-
angular pulses of finite duration 7, = 3.18, 7, = 9.55, for integer ¢ = 1 (dashed)
and fractional g = 1/3 (solid), respectively, at 6 = 2/3 and w,,/w. = 0.05.
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Figure 5: Normalized HOM noise R (At) as a function of the delay w At for rect-
angular pulses of finite durations 7; = 3.18, 7, = 9.55 for a different values of g
and different temperatures w, /..

excitations yield a nearly flat baseline in the short-pulse regime. Increasing T broadens the
dip but also reduces the contrast between the two charge sectors, demonstrating how pulse
shaping and quasiparticle charge jointly govern the temporal dip width of HOM interference.

5 Discussion and Conclusion

We have developed a unified theoretical framework for time-resolved Hong—-Ou-Mandel (HOM)
interferometry in fractional quantum Hall edge states, based on the formalism for nonequilib-
rium transport in bosonized impurity models (NETBIM) combined with a controlled pertur-
bative analysis. This approach yields model-independent relations connecting photo-assisted
cross-correlated noise to its dc counterpart, valid for arbitrary stationary nonequilibrium states.
Two universal features emerge, independently of quasiparticle charge, statistics, or interac-
tion strength and range: the HOM signal necessarily vanishes at zero delay, and sharp voltage
pulses produce a normalized HOM response that is completely insensitive to any noninteger
injected charge g. This revisits earlier interpretations based solely on tunneling-current noise
and demonstrates that sharp-pulse protocols cannot provide direct access to anyonic braiding

11



305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

SciPost Physics Submission

Figure 6: Full width at half maximum (FWHM) of the HOM dip versus scaling dimen-
sion & for fractional ¢ = 1/3 (solid line) and integer g = 1 (dashed line) at different
T, =3.18, T =9.55 73 =19.10 and w,,/w, = 0.05.

information.

Specializing to the chiral Tomonaga-Luttinger liquid model, we provide a detailed analysis
of the HOM signal for both sharp and finite-duration rectangular pulses. We find substantial
deviations from the commonly assumed 1/6 scaling of the HOM dip width, whether one con-
siders the tunneling noise, on which previous theoretical works were restricted [50-54,63], or
the experimentally relevant chiral-current noise. In Ref. [48], the value 6 = 2/3 was extracted
using a 1/6 scaling, which our results show to be accidental: this behavior is not generic and
breaks down for other values of 6.

We further demonstrate that finite pulse duration introduces an additional timescale that
qualitatively reshapes the HOM profile, broadens the dip, and restores sensitivity to interac-
tion effects through the scaling dimension &. This provides a consistent interpretation of the
differences observed between integer and fractional excitations. Based on such differences,
Ref. [48] inferred a time-domain braiding phase satisfying 8 = 6. The origin and robustness
of this identity are clarified in Refs. [74,75], which also introduce complementary strategies
for determining 6.

Overall, our work provides a comprehensive and drive-agnostic framework for HOM in-
terferometry in strongly correlated chiral systems. It clarifies the limitations of sharp-pulse
injection protocols, identifies which features of the HOM dip genuinely encode interaction
physics, and delivers reliable predictions for upcoming time-domain experiments targeting
fractionalization and anyonic statistics in quantum Hall edge states.

As a perspective, it will be particularly interesting to apply the cross-correlation formula
derived here to anyon-collider geometries or nonequilibrium anyon injection schemes that
extend beyond classical AC driving. Such configurations are expected to yield a finite signal
at zero time delay, potentially exposing a direct signature of anyonic statistics.

Acknowledgements

I. S. would like to acknowledge dicussions and on-going collaboration with Lucas Mazella and
Seddik Ouacel.

12



332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

SciPost Physics Submission

Funding information This work was supported by the ANR grant "QuSig4QuSense" (ANR-
21-CE47-0012) for I. S. and A. L.

A Asymptotic analysis of the HOM dip width for a sharp drain

In this section of the Supplemental Material, we derive a closed analytical expression for the
HOM noise SSOM(At),

+oodw
S§°M<At)=j — p(w, ADP Sy (@, = w), (A1)
oo 20

where S_(w,.) is given by (22) and Q, = 27/ T,. The expression for the drive kernel |p(w, At)[?
is obtained from

Ty/2
p(w, At)|* = dt J se'“ p(t+s/2)p*(t—s/2), (A.2)
To —To/2

with p(t) is given by Eq. (2). For a voltage drive V(t) = k6(t), one obtain

1, . 2sin(wAt/2))?
|p(w,m)|2=4n25(w)+T—|e“<—1|2(¥) , Kk =2mq. (A3)
0

Substituing the expression (A.3) to (A.1) and taking into account that S_(0) = O we obtain

At
SHOM(At) = 831n2(1</2)f dl(At— C)J — cos(w@')S (w)

=Ssin2(;</2)J dZ(At =80 +5.(-01, A4
0

where we used the following identity

1 —cos(wAt)
w2

At
:J dl(At — ) cos(wl), (A.5)
0

and S, is the Fourier transformation of S_.. In order to take this Fourier transformation we use
the property of the digamma function

. 2 . . 2
iw iw d iw
r(o+ S| o+ =— — Tl o+ , A.6
‘ ( 27Tcoth) JIIJ( 2no)th) nwthdw‘ ( 2no)th) (4.6)
and after integration by parts:
. 2
. e wtthn(O) do i ( w ) i ) ( w )} ( iw )
S “’ h -2 h r(o6+
()= "o COS 2, ) 2ie@asinh| 50 2,
(A.7)

The crucial point is that the expression (A.7) contains poles solely due to the Gamma functions.
By eclosing the contour and taking the corresponding poles we obtain

e*w?G,,(0) 21 T(26)
I2(6) 226 sinh?°(mew,||)

5.0 = [cos(td) — 2|C|w,, sin(7d)]. (A.8)
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It is worth noting that the Fourier transformation (A.7) makes sense only for & < 1/2, whereas
for 6 > 1/2 the expression should be interpreted as an analytic continuation.

Let us now analyse dependence of the HOM dip width and derive an explicit asymptotic
expression for FWHM. Throughout we introduce

z = w,At, (A.9)
where wy, is the thermal scale. According to (A.8) and (A.4) the normalized HOM signal is

F(z;6)

= Floosay

Ro(0)=0, Ry (o0)=1, (A.10)

where
cos(md) — 2ssin(md)

sinh?® (7s)

The corresponding width is defined as FWHM= 2Atpywym due to symmetry, can be found as

F(z;5)=f ds(z—s)K(s;6), K(s;6)= (A.11)
0

1 1
R(zpwnm(06);0) = > — F(zpwnm(0);6) = EF(OO; o). (A.12)

From the solution of the equation above one can obviously obtain temperature scale for the
HOM dip width Atpwim ~ Zrwam(0)/w,. Function zpwiny(6) has non-trivial behaviour as a
function of scaling dimension &, which also can be exctracted from the equation (A.12).

We now derive a closed analytical expression for F(oo, §). Starting from Eq. (A.11), one

may rewrite
oo

ds (z—s)K(s,5):—J ds sK(s,5). (A.13)
0

b4
F(00,6)= lim f
Z2—>00
0
To evaluate this integral, we first note that

0 225—1 1
J dsK(s,6)= |t =e_2“s\ = TJ dt t271(1—t)7?% [cos(n6) + log t sin(n8)/ 7]
0 0

225—1 : 5
= B(5,1—25){cos(n5)+ sin(rd)
T

[$(5)—p(1-5)]} =0. (A14)

—m cot(nd)

Vi

Then, making the same change of variables as above one can obtain

oo 5 1
F(oo,5)=—J ds sK(s,6) = j%f dt [cos(n8) +logtsin(ns)/m]t® 1 (1—t)*° logt
0 0
25-2
= sin(8)B(5,1—28)[y'(6)—¢y'(1—58)], (A.15)

where ¢’(z) = dy(z)/dz.
Then, for the F(z, 6) in the small w,At — 0 limit one can have

Z
_ _ o)
F(z,6)=C(5) | ds(z—s)s2 =C(5)z>%, C(5)= cos(m . (A6
(z,8) = C( )L s (z—s)s (6 )= 556 -nas=n 19
Finally, the corresponding width of the HOM dip scaled as

1 F(oo,5)]1/(2_25)
FWHM ~ R 5 A.17
coth|: 2C(5) ( )

where C(6) and F(oo, §) are given by the (A.16) and (A.15).
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