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Abstract

We reveal the emergence of a robust tetrahedral magnetic ground state in monolayer
graphene doped to the van Hove singularity (vHS). This noncoplanar, gapped spin con-
figuration—featuring four equally inclined moments—has been previously identified as
a candidate instability. Here, not only do we confirm its stability across all finite interac-
tions using fully self-consistent, real-space-resolved calculations, but we also go beyond
earlier work by charting the full surrounding phase diagram. In doing so, we unravel
a cascade of symmetry-broken magnetic states — pseudo-tetrahedral, planar, collinear,
and modulated textures — which we classify using spin structure factors and vector or-
der parameters. These results stem from unrestricted Hartree-Fock simulations on large
supercells with dense k-point sampling, enabling us to resolve interaction-driven mag-
netic and charge inhomogeneities. Our findings connect directly with recent ARPES and
doping experiments near the vHS in graphene, and establish the tetrahedral state as
the central correlated instability in this regime, offering predictive insight into emergent
magnetism in correlated Dirac materials.
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1 Introduction

The exploration of strongly correlated phases in two-dimensional electron systems has been
revitalized by the discovery of superconductivity, Mott insulating states, and anomalous Hall
effects in twisted bilayer graphene (TBG) near the “magic angle” [1-5]. In this regime, the
moiré superlattice gives rise to ultra-flat electronic bands [6-9], strongly enhancing the role
of electron-electron interactions and promoting exotic quantum states. A key unifying feature
across these systems is the proximity of the Fermi level to van Hove singularities (vHS), where
the density of states diverges and interaction effects are dramatically enhanced [9-21]. Un-
derstanding the role of vHS in driving correlated phases is thus essential not only for TBG but
also for untwisted monolayer and bilayer graphene systems [22-31].

In monolayer graphene, accessing the vHS via doping remains experimentally challenging
but feasible through alkali or rare-earth intercalation. Techniques involving K, Ca, Gd, and
Yb atoms have allowed systematic tuning of the Fermi level and direct ARPES observation of
the Dirac cone’s shift [22,27,28]. These studies reveal signatures of extended vHS structures
induced by electronic interactions and hybridization. More recently, doping-controlled super-
conducting domes have been observed in bilayer graphene [29], drawing intriguing parallels
with the superconducting phases in TBG.

From a theoretical perspective, numerous studies have proposed that the vHS regime in
graphene—regardless of stacking—hosts a rich competition between magnetism and super-
conductivity. Functional renormalization group and density matrix renormalization group ap-
proaches have consistently predicted a chiral spin-density wave, also referred to as a tetrahe-
dral magnetic order (Tetra), at quarter filling [23, 24, 30, 32, 33]. This phase competes with
d +id superconductivity [25], and may also give rise to spontaneous quantum anomalous Hall
effects [23,26]. These findings are further corroborated by variational Monte Carlo simula-
tions [31] and extended Hubbard models [26], which show robustness of the tetrahedral state
against next-nearest-neighbor interactions and suggest a universal tendency toward noncopla-
nar magnetism near the vHS.

The relevance of noncoplanar and geometrically nontrivial spin states extends beyond
graphene. Recent works in frustrated magnets report tetrahedral and cuboctahedral orders sta-
bilized by itinerant electrons or competing exchanges. In triangular metals such as Co; /3TaS,,
tetrahedral triple-Q order is linked to large spontaneous Hall conductivities [ 34], while cuboc-
tahedral states appear in kagome antiferromagnets [35-37]. Spin-1 bilinear-biquadratic mod-
els on the honeycomb lattice also host eightfold degenerate chiral spin liquids and multipo-
lar orders with non-zero scalar chirality, from the interplay of dipolar and quadrupolar mo-
ments [38,39]. These developments underscore broad interest in unconventional textures
across lattices and models, motivating their study in itinerant systems like doped graphene.

Here we study magnetic phases in monolayer graphene near the vHS using the Hubbard
model within a non-collinear Hartree-Fock framework, resolving the interplay between filling
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Figure 1: Magnetic ground-state phase diagram of graphene near quarter dop-
ing. (a) Schematic mean-field (N,,U) phase diagram based on computations at
kgT = 1077t, using a 6 x 6 supercell and 48 x 48 k-point sampling. (b) For doping
levels below the van Hove singularity (vHS), N, < 0.75, indicated by blue regions, all
magnetic phases exhibit well-defined spin orders compatible with a 2 x 2 graphene
supercell (see also Fig.6). Real-space sketches illustrate these phases: “Tetra” de-
notes the ideal tetrahedral configuration with four spins forming a perfect tetrahe-
dron (found only at N, = 0.75); canted tetrahedral states are its distorted variants
and denoted by “Tetra*”. “Y” and “Y*” refer to planar ferrimagnetic states with three
distinct spin orientations, while “Ferri.” indicates a two-moment ferrimagnetic phase.
“Stripe” represents a collinear magnetic phase with uniform spin magnitudes. (c)
Above the VvHS (red regions), more complex magnetic orders arise, strongly depen-
dent on both doping and Coulomb interaction U. These fall into two primary regimes
characterized by dominant magnetic structure factors at the high-symmetry points M;
and X in the Brillouin zone. An intermediate mixed region, where both S,; # 0 and
Sx # 0, is indicated with dashed lines. Phase boundaries are defined according to
the order parameters described in Fig. 2.

N, (average number of electron per orbital) and on-site Coulomb interaction U on large su-
percells with full reciprocal-space resolution. Building on mean-field validations at half-filling
(N, = 1) in graphene and twisted bilayer graphene (e.g., Refs. [20, 40-42]), we construct
an ultra-low-temperature density-interaction (N,, U) phase diagram, focusing on quarter dop-
ing (N, = 3/4 = 0.75 or 5/4 = 1.25) where correlation effects peak. Figure 1 shows that at
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N, = 0.75 we find a tetrahedral magnetic order (Tetra)—a noncoplanar, three-dimensional con-
figuration with exact tetrahedral symmetry !. This state is gapped and exhibits zero net mag-
netization despite long-range order. Away from quarter filling and for U < 3.75¢t, the magnetic
landscape becomes richer: for N, < 0.75 we identify phases (pseudo-tetrahedral (Tetra*), pla-
nar Y and Y*, ferrimagnetic, stripe) robust to finite-size effects, while for N, > 0.75 we observe
intricate, often incommensurate textures with emergent charge density displacements, possibly
linked to local phase separation or magneto-electric coupling. These results highlight doping-
driven complex spin orders in graphene and support the view that correlated phases—beyond
conventional spin-density waves—play a central role near the vHS.

2 Model and Method

We consider monolayer graphene described by the single-band Hubbard model on the honey-
comb lattice (see, e.g., Ref. [43]),

H=—t Z (c;’;cjg+h.c.)+UZniTnil—,uZni0, (D
<i,j>,0' i io

where t is the nearest-neighbor hopping amplitude, U the on-site Coulomb repulsion, u the
chemical potential and c;,, (cja) annihilates (creates) a spin-o electron on the p, orbital at site
i.

To investigate magnetic instabilities at finite doping, we solve this model using an unre-
stricted Hartree-Fock mean-field decoupling that preserves spin-rotational symmetry. Details
can be found in the Appendix. This approach also enables the construction of a (N,, U) phase
diagram at low temperature, capturing both commensurate magnetic phases and interaction-
induced charge inhomogeneities, including nontrivial textures beyond simple spin-density
waves. Further numerical details and convergence tests are provided in the Appendix as well.

3 Phase diagram

Figure 1(a) presents a sketch of the (N,, U) phase diagram computed at low temperature for
0.7<N, <0.8and U/t < 3.75, using a 6 x 6 graphene supercell with 48 x48 k-point sampling
(see Appendix C, D for technical details). This captures the evolution of magnetic ground states
near quarter doping, N, = 0.75, where the Fermi level crosses the vHS. Owing to particle-hole
symmetry, the same results apply to N, € [1.2,1.3].

At exact quarter doping (N, = 0.75 or 1.25), the critical interaction U, vanishes due to the
divergent density of states at the vHS. In this limit, the system always stabilizes (with enough
k-points, see Appendix C for more details) into a tetrahedral magnetic order [Fig. 1(b)], also
known under different names in previous investigations [23,24,30-33,44]. This noncoplanar
configuration spans a 2 x 2 graphene supercell and consists of eight local moments pointing
along the directions of a perfect tetrahedron (109.47° angles). It is the only gapped state in
the phase diagram and carries zero net magnetization M, = 0.

Away from the vHS, magnetism sets in above a finite U, that grows as N, deviates from
0.75, consistent with the Stoner criterion U, o< 1/D(E), with D(E) the density of states. A
paramagnetic phase thus appears at low U (gray). To characterize the surrounding phases, it
is useful to distinguish between the regions below and above N, = 0.75.

For N, < 0.75, we identify five well-defined magnetic states, confirmed by larger supercell
(24 x 24) calculations. Figure 6 in the Appendix may help to illustrate how the orders sketched

IThis holds for all U/t < 3.75 studied; behavior at larger U is beyond this work.
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in Fig. 1 tile the honeycomb lattice. As N, decreases, these phases evolve smoothly from the
tetrahedral state as: (i) a Tetra™ state that is a deformation of the tetrahedral state, i.e., this
state still has moments pointing in four different directions, but these no longer are at exactly
109.47° angles, and the lengths also become different; (ii) a region where only three differ-
ent magnetic moments appear, two of these moments are arranged symmetrically around the
third one. Such a state is reminiscent of the “Y” state that is discussed in the context of the
Heisenberg antiferromagnet (see Refs. [45,46] and references therein), and therefore we use
the same notation also here; (iii) going even further away from N, = 0.75, the Y state distorts
with three distinct magnetic moments, all of them being now nonequivalent. In analogy with
the Tetra* state, we call this the “Y*” state; (iv) this Y* is then reduced to two distinct mo-
ments parallel to each other (collinear), but with different moment magnitudes. This phase is
“ferrimagnetic” because of the overall net magnetic moment present in the system; (v) even-
tually, the moment imbalance of the ferrimagnetic state vanishes letting a “stripe” order state
to be stabilized, that is remininscent of the one reported in the Heisenberg-Kitaev model on
the honeycomb lattice [47,48]. This state could be described by a reduced 2 x 1 supercell,
compare Fig. 6(a) in the Appendix, while all other states in the region N, < 0.75 require a
2 x 2 supercell (Fig. 6(b-d)). All states except the stripe and pure tetrahedral one carry a
finite total magnetization. Note that small modulations of the charge density occur in the re-
gion N, < 0.75, but these are commensurate with the magnetic order and thus not carrying
additional information.

For N, > 0.75, the phase diagram becomes more intricate. As shown in Fig. 1(c), we
distinguish two regimes based on the spin structure factor for a 6 x 6 supercell. In the re-
gion labeled S,; # 0, magnetic orders remain quasi-2 x 2 periodic, with increasingly distorted
tetrahedral-like motifs. Beyond N, ~ 0.775, the system enters a region labeled Sy # 0, where
complex 3 x 3 periodic structures emerge, involving over ten nonequivalent spin orientations.
The boundary between these two regions is not sharply defined, and several intermediate
states display features of both (see next paragraph and Fig.2). While the 6 x 6 results give
clear trends, full characterization of the region Sy # 0 likely requires larger supercells and
additional order parameters. Our 24 x 24 simulations confirm the trend toward 2 x 2 and 3 x 3
modulations in the region with Sy; # 0 and Sy # 0, respectively, but also sometimes reveal
charge redistribution effects — a key point discussed later.

4 Order parameters

To quantitatively characterize the variety of magnetic phases found in the (N,, U) space, we
employ a set of four tailored order parameters that probe both local spin configurations and
global periodicities: A,, (magnetic alignment factor, see Eq. (D.1)), scalar product between
spins in a 2 x 2 local subcell, quantifies the average local collinearity between neighboring
magnetic moments; T,, (magnetic twist vector, see Eq. (D.2)), the cross product of four neigh-
boring spins, is a sensitive probe to noncoplanarity among groups of spins, capturing vector
chirality and geometric torsion. It is nonzero only for both the Tetra and Tetra® configurations.
Note also that while local noncoplanar arrangements could in principle yield nonzero signal,
such patterns were not observed in our simulations; the structure factors at high-symmetry
points Sy, and Sy, corresponding to 2 x 2 and 3 x 3 periodicity respectively, with the M points
of the Brillouin zone being linear combinations of b,/2 and b, /2, X-point of b,/3 and b, /3
(b; = 43'—2(‘/—5,—%), b, = %(0’ 1)), where a ~ 1.42A is the carbon-carbon distance). All these
observables are detailed in the Appendix, and their evolution with doping, shown in Fig. 2 for
U = 3t, is computed for both 6 x 6 and 24 x 24 supercells to verify robustness with respect to
the size of the supercell.
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Figure 2: Evolution of magnetic order parameters with electron density in the ground
state at fixed interaction strength U = 3t. Upper table: Symbol correspondence with
the four observables A,,,, T,,,, Sy;, and Sy described in the text. Background colors cor-
respond to those used characterizing the regions of the phase diagram Fig. 1. Empty
(filled) symbols represent data obtained on 6 x 6 (24 x 24) supercells.

For N, < 0.75, the 24 x 24 results in Fig. 2 are very close to the 6 x 6 ones, thus justifying the
previous discussion based on the 6 x 6 supercell. In particular, the different order parameters
in Fig. 2 permit us to reconstruct the different phases and the transitions between them along
the line U = 3t in Fig. 1, with the exception of the stripe phase that is outside the window
N, > 0.7 for U = 3t. For N, > 0.75, the differences between the 6 x 6 and 24 x 24 supercells
are larger, indicating that this region requires further attention.

5 Charge displacement

In the left part of the phase diagram, i.e., 0.7 < N, < 0.75, our mean-field calculations per-
formed in the 6 x 6 and the 24 x 24 supercells show a small charge displacement between
orbitals, distributed according to the periodicity of the magnetic orders. This displacement is
of the order of 6N, =5-1073.

In the right part of the phase diagram, we observed that size frustration (due to 6 x 6
supercell periodicity) may lead to perfect-looking orders which disappear for larger supercells
(24 x 24 supercell). However, in the calculations with a larger supercell, a pseudo periodicity
of the magnetic order is usually found in agreement with 2 x 2 and 3 x 3 periodicity for the
zones S,; # 0 and Sy # 0, respectively.

Other cases exhibit a relatively strong charge transfer between different zones of the su-
percell. For instance, Fig. 3 shows that we lose the global Tetra* order to local orders: in
the 24 x 24 supercell, we find Tetra* zones that are incompatible with a 2 x 2 periodicity as
neighboring zones break tetrahedric behavior. The maximum difference with the start density
is small (roughly £0.01), but essential for the magnetic orders found in each zone. The red
regions in Fig. 3 have an average charge of N, = 0.75 and when looking at the magnetic mo-
ments in this region, we find an exact tetrahedral order. Moving away from this zone we lose
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Figure 3: Charge density in a 24 x 24 supercell at U = 3t and average density
N, = 0.76. We observe non-periodic charge displacement, which creates zones of
different density. The red stripe is at N, = 0.75 and displays exact tetrahedral order.
Blue zones show perpendicular order (4 moments perpendicular to each other, in a
plane) with N, around 0.7675. Yellow zones are at N, = 0.76 and show pseudo-
tetrahedral orders.

the tetrahedral angles but keep a 4-moments state, either a Tetra* order with varying angles
or a planar Tetra order. It remains to be checked if these spatial structures are stable for even
larger supercells, but our 24 x 24 results underline the importance of the charge density for
the magnetic order. In any case, the spontaneous formation of stripes with charge density
N, = 0.75 and accompanying exact tetrahedral order illustrated in Fig. 3 is remarkably remi-
niscent of the stripes known from the square-lattice Hubbard model for the high-temperature
superconductors around filling one eighth, see, e.g., Refs. [49-55]. We note that stripes have
been observed also in the Hubbard model on the honeycomb lattice, albeit in the lightly doped
regime, and with different methods from those employed here [56], in particular without ad-
mitting for the noncollinear solution that we find here at the mean-field level.

6 Conclusion

We have mapped the magnetic phase diagram of doped monolayer graphene near the van
Hove singularity using a fully unrestricted, spin-rotationally invariant Hartree-Fock approach
to the Hubbard model. This framework allowed us to resolve a rich set of ground states as
a function of interaction strength and carrier density, capturing both collinear and complex
noncoplanar magnetic textures.

One key result is the stabilization of a fully gapped, noncoplanar tetrahedral magnetic
order exactly at quarter doping (N, = 0.75), where the density of states diverges. This state,
characterized by zero net magnetization and 2 x 2 periodicity, emerges for any finite U and
constitutes a rare realization of a nontrivial spin configuration in a simple one-orbital model.
As doping is tuned away from the vHS, a sequence of symmetry-reduced magnetic phases
arises, which we have classified using both local spin geometry and structure factor-based



SciPost Physics Submission

order parameters. These include Tetra*, Y and Y*, ferrimagnetic, and stripe states on the
underdoped side (N, < 0.75), and increasingly intricate incommensurate textures beyond
N, > 0.75, with approximate 2 x 2 or 3 x 3 periodicity.

In the latter regime, we also observe signatures of interaction-induced charge redistribu-
tion, reflected in the emergence of spatial density modulations. These suggest that the elec-
tronic correlations near the vHS may drive not only magnetic ordering but also coupling to
charge degrees of freedom—possibly a precursor to intertwined or phase-separated states.

Overall, our results demonstrate that graphene doped near the vHS harbors a remarkably
rich landscape of magnetic phases, several of which are both nontrivial and robust. It would
be interesting to test the stability of these phases beyond the mean-field approximation. The
density matrix renormalization group method suggests itself for this purpose, as it has been
widely applied to the doped square-lattice Hubbard model, see, e.g., Refs. [49,53-55] and ref-
erences therein. We are aware of only a few corresponding investigations on the honeycomb
lattice carried out so far [30,56,57], and given the inherent limitations of the accessible system
sizes, we hope that our mean-field results with relatively large supercells and k-space integra-
tion will provide useful guidance for the choice of geometries to be used in future unbiased
numerical investigations of graphene doped near N, ~ 0.75.
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A Self-consistent mean-field calculation

The interaction term is decoupled in a rotationally invariant Hartree-Fock mean-field approx-
imation as [58,59],

Hy™t = UZ[<nu>niT + (min)ngy — (nig)(my) — (S7)SF = (SIS + (ST D

where S;r = cj'Tcl- jand S = cjlciT. Most previous investigations concentrated on N, = 1 where
one may neglect the S* expectation values and simplify to a Hartree approximation (see, e.g.,
Refs. [9,20,41-43]). Inclusion of these mean fields allows us to capture arbitrary spin textures
that we find to be essential for a description of the behavior close to the vHS. We note that the
case U = 3t has recently been investigated at finite temperature [33].

The local magnetization M; = (Mjc, M}i,, Mzi) and local density N el are defined as,

i DD L sD—(sD)
* 2 g 21 (A.2)
M :M NI = () + (nyy) -

We solve these self-consistency conditions by iteration. Using the initial densities at every site
i of the L x L supercell ((n;)), (n;}), (S7), (7)), the 2A/'x2N matrix Hamiltonian (Eq. (1)
with (A.1)) is written in the basis of the A/ p, orbitals, N' = 2L2 (the factor 2 is due to the
spin), and it is diagonalized in reciprocal space to obtain eigenvectors ¥, (k) and eigenvalues

8
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Figure 4: Maximum local magnetic moment (panels (a) and (c)) and total energy
(panel (b)), as a function of the Coulomb interaction U for different values of Nj,
at N, = 0.75. Panels (a) and (b) are for a 6 x 6 supercell, while (c) results from a
24 x 24 supercell. Lines without markers indicate results using a random initial state,
while marked lines are for simulations that started from exact tetrahedral state. The
inset in panel (a) shows the shift between N; = 48 x 48 and N, = 120 x 120 at low
U.

E,(k). We then compute new densities to be used as input for the next iteration by defining
the spinor @ = [c¢; 1, ¢;, l]T such that our mean-field parameters are defined by the matrix M
as (' M®) whose elements are given by,

Mg = D % (k) (k) (B (), 1), (A.3)
k,n

where ¢, ; = (i T|¥,(k)) and v, ;1 = (i | [¥,(k)), i = 1,..., N, are the components of
¥, (k) in the p, orbitals basis with spin T and |. k are the momenta on the grid N; in the
unit cell of the reciprocal lattice corresponding to the L x L supercell (L =6 and L = 24, i.e.,
N = 72 and N = 1152 sites in a supercell, respectively). ngp is the Fermi-Dirac function,
ngp = 1/ (1 + eEnl)—)/ky T) at a non-zero temperature T. The new densities are compared
with the previous densities, and the process is repeated until their difference is less than a
certain threshold (usually going below 10~7 does not change the results). Results presented
here have been obtained for a finite but ultra-low-temperature kzT = 10~ t. For each iter-
ation the chemical potential u is calculated by a bisection search around the Fermi energy.
Equation (A.2) yields the final magnetic state of the system.
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Figure 5: Raw data for the magnetic ground-state phase diagram, with the cor-
responding transition lines used for the schematic Fig. 1(a). Ground states were
selected among 4 sets of results, each with different initial states (Random, Tetra, Y,
and Ferri), using lowest total energy per site as the selection criterion.

B Spin structure factor

To analyze the magnetic order in phases with no obvious periodicity or with pseudo-periodicity,
it is useful to calculate the spin structure factor,

N
S(q) :Zeiq.R ZMz‘ - M el (), (B.1)
R i

where r; are the A site positions in the L x L supercell. The sum on the vectors R of the L x L

supercell switches off S(q) for any q other than q = nL—lbl + "L—sz, where b; = g—Z(‘/—g -1

20 20
b, = g—Z(O, 1) are the reciprocal vectors of 1 x 1 graphene and nq,n, € Z.

C Importance of the k integration

In Figs.4(a) and 4(c), the maximum local moment for N, = 0.75 versus U is compared for
different k-grids (N;) used for the integration in the reciprocal unit cell for 6 x 6 and 24 x 24
supercells, respectively. The corresponding energies for 6 x 6 are shown in Fig. 4(b). The first
result is that for large Ny, i.e., for the most accurate calculation, the Tetra magnetic solution
is always the most stable (lowest-energy state). Moreover, we see that for many calculations
in the 6 x 6 and 24 x 24 supercells, N, = 1 x 1 is not sufficient to obtain the real ground state
(Tetra), as the maximum moment values are large compared to other results.

D Calculated phase diagram

Fig. 5 shows our calculated raw data for the magnetic ground-state phase diagram, and Fig. 6
shows the magnetic configurations in the 6 x 6 supercell found at N, < 0.75. To determine
the different domains, we used several order parameters (see also Fig. 2). The scalar product
was mainly utilized for the transition between the Ferrimagnetic and Y orders using the sharp
change in value (we can see the heavy drop around N, = 0.7175), although it was also useful

10
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(a) Stripe (b) Ferri.

Figure 6: Real-space magnetic configurations for N, < 0.75. Two-dimensional snap-
shots of the main magnetic patterns obtained in the 6 x 6 supercell. Each col-
ored disk represents a lattice site, where the color encodes the local spin orienta-
tion (angle), and the disk size is proportional to the magnitude of the local mag-
netic moment. Panels (a)-(d) correspond respectively to the stripe (U = 2.58t,
N, = 0.71), ferrimagnetic (U = 2.83t, N, = 0.72), Y/Y* (U = 3t, N, = 0.73), and
tetrahedral/tetrahedral* (U = 3t, N, = 0.75) states. Each configuration is well stabi-
lized at the chosen U and N, values, but represent their respective phases. The black
outline marks the smallest supercell compatible with each magnetic order. These
maps visualize the spin textures in real space and correspond to the spin configura-
tions shown in each panel.

to confirm the transition going from Y to pseudo-tetrahedral (Tetra*). We define this magnetic
alignment thanks to the average of the spin-spin correlations within a supercell as:

pp= ST MM, (D.1)
" = IM |15 '

where N, corresponds to sites inside a 2x2 subcell in the middle of our 6 x 6 lattice. Similarly,
the vector product was used for detecting the appearance of the Tetra* order. Indeed, as
defined below, this parameter yields zero for the previous order (Y and Y*) while it is non-zero
for Tetra®. We call the corresponding magnetic twist order parameter,

T = (Mg x My) x (M, x M3)||
" (| M| [ M || || M| || Ms]|

(D.2)

11



SciPost Physics Submission

The above order parameters made it possible to accurately determine the boundaries of the do-
mains in the left-hand part of the phase diagram (N, < 0.75), with exactly the same magnetic
order found for the 6 x 6 (Fig. 6) and 24 x 24 supercell calculations (see, e.g., Fig. 2).

As explained in the main text, the results obtained on the right-hand side (N, > 0.75) are
not identical for calculations in the 6 x 6 and 24 x 24 supercells. However, the orders found
in the smaller supercell (6 x 6) are often also found locally in the larger one (24 x 24). A
criterion common to calculations in both cells is the non-zero value of the spin structure factor
(Eq. (B.1)) for specificq: Sy; = S(q = M) and Sy = S(q = X) corresponding to 2 x 2 and 3 x 3
periodicity (or approximate periodicity), respectively (see Fig. 1(c)).
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