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Abstract

We develop a generalization of the Schwinger boson and Holstein-Primakoff transforma-
tions that is applicable to ensembles of N spin 1/2’s with weak permutational symmetry.
These generalized mappings are constructed by introducing two independent bosonic
variables that describe fluctuations parallel and transverse to the collective Bloch vector
built out of the original spin 1/2’s. Using this representation, we develop a systematic
1/N expansion and write down explicitly leading and next-to-leading order terms. We
then illustrate how to apply these techniques using four example systems: (i) an ensem-
ble of atoms undergoing spontaneous emission, incoherent pumping and single particle
dephasing; (ii) a superradiant laser above and in the vicinity of the upper lasing transi-
tion; (iii) the all-to-all transverse field Ising model subject to incoherent pumping in the
vicinity of its ordering phase transition; and (iv) the Dicke model at finite temperature
both away and in the vicinity of its thermal phase transition. Thus, these mappings pro-
vide a common, Bloch-sphere based, geometrical description of all-to-all systems subject
to single particle dissipation or at finite temperature, including their phase transitions.
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1 Introduction

Collective spin systems arise very frequently in the field of quantum technologies, e.g. when
atoms interact with light inside an optical cavity [ 1] or when ions communicate via a common
motional mode [2,3]. They often provide minimal theoretical descriptions of non-equilibrium
phenomena such as superradiance [4,5], driven-dissipative dynamics [6-20] and novel kinds
of lasing [21-26], and are thus fundamental ingredients of many iconic models from quantum
optics [6,8,27,28]. Moreover, collective spin systems are also well suited for the preparation
of highly entangled spin squeezed states [28-37], with current efforts now focusing on using
them for the improvement of state-of-the-art sensors [38,39].

When collective spin systems are built out of ensembles of atoms, physical processes can-
not fundamentally distinguish between the atoms that partake in them. This indiscernibility
is a crucial ingredient for the creation of the quantum-enhanced correlations that underpin
metrological applications, and often takes the form of a mathematically exact permutational
symmetry among the atoms. This is advantageous because theoretical analyses based on this
symmetry are considerably simpler [5], while often still capturing the qualitative properties of
similar but less symmetric models [40-47]. Even when typical sources of decoherence such as
spontaneous emission into free space are included, a restricted amount of this permutational
symmetry is retained [48-50], although correlations are usually damaged as a result.

The main technical simplification brought about by permutational symmetry is a reduction
of the space of quantum states that the system explores during its dynamics. The typical,
exponentially large in N, Hilbert space of N spins is brought down to a subspace whose size
is polynomial in N. The exact degree of reduction will then depend on whether the symmetry
acts in a strong or a weak sense [51-53]. If there are only coherent interactions, governed
by a Hamiltonian, or the sources of dissipation are collective, e.g. by coupling the atoms to a
lossy cavity mode, the symmetry will be realized strongly. In this case, the size of the relevant
subspace will be ~ N(N?) for closed (open) system dynamics. In contrast, in the presence
of single particle sources of dissipation such as spontaneous emission, the symmetry will be
realized weakly. The evolution will then be inherently open and the subspace of explored
density matrices will be of size ~ N 3 [48,50,54]. These reductions are routinely exploited in
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numerical simulations [55], although the N3 scaling is still very limiting in practice. Further
gains can be achieved using (stochastic) Monte Carlo wavefunction techniques [56], at the
expense of requiring averages (with low statistical uncertainty) over multiple repetitions of
the stochastic evolution.

When the permutational symmetry is strong, analytical insight is often provided by us-
ing bosonic representations of the spin operators [57-59], which are based on a second-
quantization approach that has found successful application in fields like e.g. polaritonic
chemistry [60, 61]. More concretely, collective spin operators can be expressed exactly in
terms of two Schwinger bosons, in a way that makes manifest their nature as components of
an SO(3) vector. Moreover, the strongness of the symmetry provides a constraint that can be
used to mathematically eliminate one of the bosons. The resulting expressions in terms of
a single boson are known as the Holstein-Primakoff (HP) transformation [62]. Although HP
hides manifest rotational covariance, it provides a way of performing a systematic expansion
in powers of 1/N [58,59]. The leading terms in this expansion give rise to the mean field
approximation, and the leading corrections typically describe gaussian fluctuations about the
mean field state. If the expansion is done carefully, it can also be used to analyze phase transi-
tions, although in this case fluctuations acquire a non-gaussian character [14,63-65]. Either
way, the mean field quantum state can be visualized as an arrow (the Bloch vector) on the
surface of a collective Bloch sphere, of radius N /2, while fluctuations can be represented as
a small distribution about the tip of this arrow. Both the distribution and the arrow tip lie on
the surface of the sphere [Fig. 1(a)].

When the permutational symmetry is weak, i.e. in the presence of single particle deco-
herence or at finite temperature, the naive HP mapping breaks down and a Schwinger boson
representation from which to obtain a modified HP approximation has not been derived in full
generality. Applying second quantization in superoperator space leads to alternative bosonic
representations [66] that recover the N scaling, but the interpretation of the resulting bosons
using Bloch spheres is not clear, and the nature of the large N approximation in this represen-
tation has not been investigated. Following the more standard HP transformation, Ref. [67]
used phase space methods and Fokker-Planck equations to analyse specific master equations.

In this paper, we extend the results of Ref. [67] and provide a comprehensive description of
generalized boson mappings for spin 1/2 systems undergoing single particle dissipation. We
identify a rotationally covariant structure that expresses local dissipation in terms of Schwinger
bosons, and then use this representation to derive a modified HP transformation. We find that
the original HP boson from strongly symmetric systems still appears and still describes fluctu-
ations perpendicular to the mean field Bloch vector, which can now lie within the sphere and
not only on its surface. In addition, there is now a second boson that accounts for longitudinal
fluctuations parallel to the Bloch vector [Fig. 1(b)].

This technique is of wide generality, as is the geometrical picture that accompanies it. To
demonstrate this, this paper will fulfill three goals

(a) Establish an exact operator mapping between generic terms in a spin Lindblad master
equation and terms in an associated bosonic master equation.

(B) Devise a set of simple “replacement rules" to analyze the large N limit of such systems
at their steady states, along with a clearly defined procedure on how to compute further
corrections in 1/N. When possible, these “rules" should establish direct analogies to
standard bosonic constructs (e.g. baths at some finite temperature).

(I1) Show that the exact mapping can also be used to get analytical control over the critical
region of driven-dissipative and thermal phase transitions when the number of spins N
is sent to o0.
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Figure 1: (a) For systems made up of N spin 1/2 and with strong permutational
symmetry, both the collective Bloch vector (arrow in red) and fluctuations lie on the
surface of the collective Bloch sphere, of radius N /2. Fluctuations are transverse to
the collective Bloch vector and are described by the Holstein-Primakoff boson. (b)
When the permutational symmetry is only weak, the Bloch vector can lie inside the
sphere now, and there are also longitudinal fluctuations, which are described by a
different boson. The noise distribution can now be three-dimensional.

In carrying out items (o) and (f3), we will establish a simple “recipe" to study generic all-to-all
spin systems undergoing local dissipation or at finite temperature. Furthermore, item (IT) is
a generalization of techniques that have been used in the past to describe phase transitions
of all-to-all systems [14, 63, 64] including only collective sources of dissipation [65]. It also
provides an alternative, operator based, analysis of phenomena that are more routinely studied
using Keldysh path integral techniques [68-70]. To progressively fulfill the above three goals,
we organize this paper as follows

Section 2 Basic notation and review of (a), () and (I1) for strong permutational symmetry. We
introduce the spin master equation that we will study and illustrate (a), () and (IT) by
focusing on the ground state properties of an example Hamiltonian.

Section 3 Items (a) and () for weak permutational symmetry. We write down the exact op-
erator mappings and provide their large N approximation.

Section 4 Examples. We illustrate how to use the mappings away from phase transitions by
means of two examples: a collection of spins undergoing single particle dephasing, spon-
taneous emission and incoherent pumping; and a superradiant laser above the upper
lasing threshold.

Section 5 Item (IT) for weak permutational symmetry. We illustrate how to use the mappings
in the vicinity of phase transition points by means of two examples: a superradiant laser
near threshold and a driven-dissipative transverse field Ising model.

Section 6 Thermal states. We show that the generalized mapping can also be used to ana-
lyze thermal properties of collective all-to-all models. We illustrate this using the Dicke
model, and derive effective Hamiltonians in each of its two thermal phases and also in
the vicinity of its thermal phase transition.
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2 Models and motivation

The type of models that we will study are defined in systems of N qubits. The Hilbert space of
each qubit is spanned by the states |1);, |1);, (i = 1,...,N), in which local spin matrices

st = SO + 111
i1

$i, = S (N = 1111
81 = SN — 1K)

act. Importantly, the density matrix of the system p evolves under a Liouvillian with the
following structure:

3.p=—i[H,p1+ L i BpSw Pl (1)
=—i[H,p]+LH + -,
0 =—i[H,p1+ Lp ;ﬁimﬁ 8,085 2

where H and £ are a “collective” Hamiltonian and Liouvillian, respectively, meaning that they

are constructed entirely in terms of the collective spin operators J, ,, = is“;’yyz (and/or

JE=J.+iJ y). The third contribution, parameterized by the rates y 5, describes single particle
processes such as spontaneous emission, incoherent pumping, and dephasing. The collective
parts, H and £, describe instead processes such as superradiant emission of light (with jump
operator o< J ) or collective exchange interactions (with Hamiltonian o< J*J™), which may
arise via mediation of a cavity mode or a common motional mode.

Collective spin operators are invariant under the action of permutation operators Up, i.e.
U ;j y.2 Up = fx’y,z. As a consequence, when y,5 = 0 the evolution equation is independently
invariant under p — Upp and p — pUp. By definition, this means that permutations are a
strong symmetry of the system [51-53]. It is then useful to construct the spin length operator
J, defined as the positive square root of

JU+1)=J2+J2+J2. (2)

Using the eigenvalues of J as labels, we can then organize the 2V possible quantum states
of the system in terms of their behaviour under permutations. In particular, we will focus
on the so-called Dicke manifold, which comprises all quantum states that are invariant under
permutations. The dimension of the Dicke manifold for N spins is N + 1, and they are all
eigenstates of J with eigenvalue N /2. A typical basis of this manifold is given by the Dicke
states |J, M), which are also eigenstates of J, with eigenvalue M (we are keeping the label J
in the state to make connections with Sec. 3 more direct, although it has the value N /2 for the
Dicke states).

2.1 Motivation

To give a better characterization of what kind of description we are after, we will illustrate items
(a),(B) and (IT) of the introduction using the more familiar setting of Hamiltonian systems
and ground states, so for now we set £ =0 and y,5 = 0. We thus consider an all-to-all version
of the transverse field Ising model, also known as the Lipkin-Meshkov Glick model [8,71,72]

A PO

H=-J,— NJf, 3)
which is expressed entirely in terms of collective spin operators. Because of the all-to-all con-
nectivity of the model, mean field theory provides an accurate description of the ground state
when N — oo. Specifically, there are two ground state phases [see Fig. 2(a)]:
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(b) Jy AA :(C) Critical point

(a) Ferromagnetic

‘ Q/Qmax E ® T 0 E - Jy
J l1 N2 P ~=An
» ’ iA‘i‘<7_1 b ‘ o
0.5 5 L ~Np
Q Jerit = 1 E ¢ E -
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~ Tl e |
Jz J ® Ny E
® : 2 : -
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Figure 2: (a) Husimi distribution, Q o< | (6, ¢|gnd) |, of the ground state |gnd),
where |0, ¢) is a spin-coherent state [73]. In the paramagnetic phase (g < 1), the
Bloch vector is polarized along +z. In the ferromagnetic (g > 1) phase, the Bloch
vector acquires a =x component. (b) Dicke states, which are permutationally sym-
metric eigenstates of J,. The states can equally be labeled by the occupation number
of the Holstein-Primakoff boson (ATA). The green shaded area is the region of Hilbert
space where the large N approximation is accurate. (¢) Husimi distribution at the
critical point g = 1, plotted as a function of the quadratures x ~ J,/4/N/2 and
p ~ J,/4/N/2 for N = 50,1000. As N increases the ground state gets squeezed
along the J,, direction.

* Paramagnetic: When g < 1, there is only one ground state, characterized by (J,) = N/2
and (Jex’y) = 0. Thus, the collective Bloch vector (J) = ((fx,fy,fz)) points along the +z
direction.

s Ferromagnetic: When g > 1, there are two degenerate ground states, with (J,) = N/(2g),
(J.)=%(N/2)y/1—g~2 and (jy) = 0. The Bloch vector points now in the xz plane.

Operationally, these are obtained by calculating the equations of motion for the expecta-
tions (J,), factorizing operator products (J,J,) — (J,) (J,), setting the time derivatives to
0 and solving the ensuing nonlinear equations. Alternatively, in the case of ground states
the mean field solution can also be obtained by replacing operators by classical variables
J,,J v J,) = N(sin 6 cos ¢, sin 0 sin ¢, cos 0)—2 and minimizing the resulting classical Hamil-
tonian with respect to the parameters 6, ¢.

Studying fluctuations requires going beyond the simple factorizaton scheme used to obtain
the mean field results. This is achieved by representing the collective spin operators in terms
of Schwinger bosons

s 1. b
Jzi(b' ar)a(a), @

where o = (0,0, 0,)7, and (a,a") and (i), b are two pairs of bosonic variables satisfying
standard commutation relations [d,4"] =[b, b"] = 1. In the Schwinger boson representation,
the spin length J also has a simple form

J

)
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For Hamiltonian systems, this constitutes item (a) in the introduction.

Physically, the number operators b™b and @a count the number of spins in |1) and ||) re-
spectively. Because of permutational symmetry, basis states in the Dicke manifold are specified
uniquely by the occupation numbers of |1) and ||). Since there are N spins in total, quantum
states 1)) in the Dicke manifold are subject to the constraint

ata+b"h)|y) =N|y), (6)

or equivalently J |y} = (N /2) [}). To study fluctuations in the paramagnetic ground state, we
recognize that the collective spin points along +z, so that lA)Jri)AA: N and a'a ~ 1. Itis thAus
convenient to use the number-phase representation for b = e®/2(hTh)1/2 [74], where ¢!?/2
reduces the occupation of the b boson by 1 with unit amplitude. Using the constraint Eq. (6)
and defining A = de~®/2 enables us to represent the collective spin operators in terms of a
single Holstein-Primakoff boson [62]

b= A
P2
J* = (N —ATA)2 x A @)

J= = AT (N—ATA)?

This is an alternative version of item (a) in the introduction. The Holstein-Primakoff mapping
is exact, but it is more convenient when the Bloch vector is aligned along +z, because then
(ATA) < N, Var(A'A) < N2, and the square roots can be expanded in a Taylor series. This
establishes a systematic way of studying fluctuations with a controlled small parameter N~/2.
For later convenience, we also define here the quadrature operators £ = (A + A")/+/2 and
p=—i(A—A")/V2.

To leading order in 1/N, we can approximate
J* ~ VNA
J™ ~ VNAT (8)
J,=N/2—-ATA
This set of replacement rules constitutes item () in the introduction, and provides a direct

analogy to boson creation/destruction processes. Replacing these expressions in Eq. (3) leads
to the fluctuation Hamiltonian

_(N+1)
2

1— 8.2
+( g)x

ot O(N~1/2). )

N
H~

a2
P
2

Since the Hamiltonian is quadratic in boson operators, expectation values can be calculated
analytically. For instance,

(1—g)'2

(1-g)'?

() ~
(10)

=N

)~
To analyze fluctuations about the ferromagnetic ground state, one first needs to rotate the
mean field collective Bloch vector (which is now tilted in the xz plane) to the +z axis. All the
other steps then follow through identically.
As we approach the critical point through the paramagnetic phase (g — 17), Eq. (10)
predicts that fluctuations in J, ~ % diverge. In reality, this just means that the leading order
approximation in 1/N fails, but the Holstein-Primakoff mapping remains exact. To get control
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204 over the phase transition region, we need to keep the relevant nonlinearity in the next order
205 in 1/N, which is given by

J, ~ N x— £ .
2 442N
206 Note that, at the same order in 1/N, there are also terms of the form &2 D, but these are smaller
207 than *2 on account of % being the variable with diverging fluctuations (and will later be shown

208 to be parametrically smaller in 1/N). The corrected Hamiltonian near g = 1 is thus

(11)

N+1) p> (1—-g)%* x4
( I et DL

fi ~ Q- x|
2 2 2 4N

(12)
200 The dependence with N can be made manifest by canonically rescaling £ = N/ and p = N~/64,
210 and introducing a scaled coupling constant & that measures deviations from the critical point

211 according to g =1 —&/N?/3. In terms of these variables H becomes

. N+1 1 (§? p2 94
Aa-OED (q_ﬁiﬂ_),

2 N1/3\ 2 2 4 (13)
212 which is still a bosonic Hamiltonian, but now with a non-gaussianity that is especially rele-
213 vant at ¢ = 1 and an energy gap that scales like N~'/3 [75]. Using this formulation, and since
214 §,§ ~ 1, we immediately see that fluctuations in J , at the critical point scale as J v~ VNp ~N1/3
215 and so the state is squeezed along the y direction. Because of the same reason, the terms
216 neglected in Eq. (11) are of size £2p ~ N/® and parametrically smaller than 23 ~ N/2, jus-
217 tifying their omission a posteriori, and indicating that the large N expansion in the vicinity
218 of the critical point is in fact an expansion in powers of N'/3 rather than N'/2. This type of
210 analysis [12, 14,63, 64, 69] constitutes item (I1) in the introduction.

220

21 3 Operator mapping

222 We now consider all of Eq. (1), following closely the logic of Sec. 2.1, and begin by discussing
223 permutational symmetry. Unlike collective Hamiltonians and Liouvillians, local dissipation
24 is only symmetric with respect to permutations in the weak sense [51-53]. In consequence,
225 Eq. (1) does not preserve the Dicke manifold, and the associated steady state Bloch vector is no
26 longer restricted to have the maximum length N /2. Nevertheless, it is still possible to define a
227 “generalized" Dicke manifold [48,50] of density matrices, which IS preserved by Eq. (1), and
228 which can still be depicted using Bloch spheres [see Fig 1(b)].

220 The “generalized" Dicke manifold for N spins is spanned by the matrices |J, M){J, M’|,
230 which are the unique (up to normalization) permutationally symmetric density matrices that
231 are also right/left eigenstates of J with equal eigenvalue 0 < J < N/2, and right/left eigen-
232 states of J, with eigenvalues M, M’, respectively. Importantly, the |J, M){J, M’| is not an outer
233 product of Dicke states with different J, M, but in many respects it behaves like one, so it is
234 useful to picture the dynamics of the system as if it were happening in a Hilbert space spanned
235 by the states |J, M). This defines the Dicke triangle [56,76-78], depicted in Fig. 3(b). The up-
236 shot of all of this is that the 4" dimensional space of density matrices is reduced to a subspace
237 of dimension ~ N3,

238 Given Eq. (1), the first line of attack is a mean field analysis. We assume that this has been
230 done, resulting in a mean field Bloch vector J; = (J ;nf, J}‘,“f, J me), and that the axes have been

240 rotated so that J ¢ is aligned with the positive z axis. We thus have that J ;nf =J ;,nf =0 and
241 szf > 0. Moreover, the length of the Bloch vector J,; coincides with J;lf.

8



242

243

244

245

246

247

248

249

250

251

252

253

254

255

SciPost Physics Submission

Figure 3: Dicke triangle, with “states" |J, M), and their enumeration in terms of
Schwinger bosons. The column with J = N /2 corresponds to the Dicke states from
Fig. 2(b).

To study fluctuations, we will make use of the Schwinger boson representation in Eq. (4),
which we reproduce here for reference purposes

P=Let a)e (b)

(14)

<
Il
N

The main difference with respect to Sec. 2.1 is that 2J = 47a + b™b is now allowed to fluctu-
ate. Since basis elements of density matrices in Schwinger boson space are specified by four
numbers (left and right eigenvalues of d¢"d and b'h), they can accommodate the three index
object |J, M)(J, M’| [see Fig. 3].

The Hamiltonian, the collective Liouvillian, and the anticommutator terms of Eq. (1) are
constructed in terms of collective operators, so for them Eq. (14) suffices. However, terms
such as §,0 §g require a distinct bosonic description. We construct it by combining rotational
properties of the spin operators with the results from Ref. [48], which provides the (superop-
erator) matrix elements of §,0 g between generalized Dicke states. To do this, we recall that
spin operators transform as SO(3) vectors under rotations, a feature that is made manifest in
Eq. (14), given that (?) a)T transforms as a SU(2) doublet. There are, however, more ways of
constructing SO(3) vectors out of (ba)T. For local dissipation, we will need

K=1( d)io,o (Z)
- (15)
E=-1(' @)oio, (b) _ K
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The vector K (i) is constructed out of two destruction (creation) operators, so it changes the
value of J by —1 (+1). Using the three vectors J, K, L, we can express local dissipator terms
as (see Appendix A)

N
D sipsh =EJ.plg+ FR.pLy+GLopKs, (16)
i=1
where
. 14+N/2
p— LEN/2
2J(J+1)
R N/2+J+2
F=— x (17)
2(J +1)(2J +3)
6o N/2—J+1
2J(2J —1)

are functions only of the spin length J. At this level of generality, this corresponds to item (a)
in the introduction.

To build up a Holstein-Primakoff mapping, we need to get rid ofA the b boson. As in
Sec. 2.1, we cAio this by using a number-phase decomposition for b =e®/2(hTH)!/2, introduc-
ing A = de"'*/2 and replacing b'h, wherever it appears, using the relation bih =27 —ATA.
We also introduce 6J = J — J;, which measures fluctuations of J with respect to its mean
field value. As a consequence of these choices, both §J and A’A are < N. This furnishes two
independent, physically transparent, sets of variables:

* The pair 6J, ¢i$ describes fluctuations parallel to the mean field spin direction, and

satisfies a standard number/ phase relation 6J jei$ = el¢(5J —1). Note that el$ reduces
5J by 1 while keeping A'A fixed, so it reduces b'd by 2.

* The pair A,A" satisfy [A,A"] = 1 and describe fluctuations transverse to the mean field
spin direction. This is most easily seen by considering J* = ab" ~ A4/2J;. The prefac-
tor in front of A is no longer exactly +/N but is still of the same order since J,; ~ N.

From this representation we can now perform a large N approximation systematically. The
qualitative nature of the expansion will depend on whether the (mean field) normalized spin
length j = J;/(N/2) is less than or equal to 1. We treat these cases independently and call
them type I and type II, respectively, for ease of reference.

3.1 Type I: Replacement rules when j < 1

When j < 1, the mean field steady state is localized along the upper boundary of the Dicke
triangle, but away from the corners, as depicted by the shaded region in Fig. 4(a). The fluctu-
ations in 5J will generically be of size v'N, whﬂile q§ can be taken to be sharply defined, with
fluctuations 6¢ ~ 1/+/N. This means that e!® can be expanded in a Taylor series. To take
this into account, and to make manifest the various scalings with N, we introduce normalized
longitudinal bosons [ = N~Y/26J, § = V/N¢, with commutator [[,§] = i. After some algebra
(see Appendix B), we obtain the associated bosonic approximations of the spin dissipators, as
shown in Table 1.

These “replacement rules" constitute item (f3) in the introduction. At the same time,
they provide intuitive bosonic pictures. For example, in white-noise dephasing (5,0 $,) the

10
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(a) Typel (b) Type II
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Figure 4: (a) Dicke triangle, now described in terms of the Holstein-Primakoff boson
and J. The operator A moves vertically, while e!* moves parallel to upper boundary.
Shaded green region represents states around a type I steady state, i.e., polarized
along +z with mean field length J, < N/2. The large N expansion focuses on states
within the shaded region, which upon zooming in becomes a half-plane (A'A > 0,
and no restriction on §J). (b) Dicke triangle again, but shaded region now represents
states around a type II steady state, i.e., polarized along +z with mean field length
Js = N/2. The shaded region is now a squashed quarter plane, with A’A > 0 and
5J <o.

transverse boson behaves as if it were connected to a finite temperature bath with absorp-
tion/emission rates that depend on the normalized mean field spin length j. In incoherent
pumping (6, p 6_), which drives the system towards +z, the transverse boson is connected to
a 0 temperature bath, while the longitudinal boson ({) is subject to diffusion (term [§,[5,4]1])
and relaxation (term [g, {i, /}1). Inincoherent decay (6_p &), which drives the Bloch vector
towards —z and away from +z, the transverse boson is instead connected to a co tempera-
ture bath. Note also that some dissipators (including incoherent pumping/decay) have terms
that are proportional to +/N. These terms should cancel in the full Liouvillian (only) if the
expansion is done about the correct mean field steady state.

3.2 Type II: Replacement rules when j =1

When j = 1, the mean field steady state is localized near the upper corner of the Dicke triangle,
as depicted by the shaded region in Fig. 4(b). Now &J < 0 (the spin length can only be
smaller than N/2) and fluctuations will also be §J ~ 1. Consequently, the phase variable
will have fluctuations 5(]9 ~ 1 and we can no longer Taylor expand the exponential. Instead,
we have to keep the expressions for the longitudinal boson intact. Physically, this means that
the discreteness of 6J is relevant. This leads to the replacement rules shown in Table 2 (see
Appendix B).

4 Examples
In this section we illustrate the full machinery using two simple examples: (i) a collection of

atoms undergoing incoherent pumping, decay and white-noise dephasing; (ii) superradiant
lasing above the upper threshold.
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Table 1: Replacement rules, to order N°, when j < 1. The first three lines corre-
spond to typical Lindbladian terms that describe white-noise dephasing (first line),
incoherent pumping (second line) and incoherent decay (third line). The remaining
dissipators can be obtained by conjugation of the last three lines.

4.1 Pumping+decay+dephasing

We first study a single particle problem in which an ensemble of two-level atoms with excited

state lifetime y~!

and inhomogeneous lifetime 2yd_1 is incoherently pumped with rate w. The

master equation describing this evolution is

op = Z (yDL&!

L1p +wDé&L(p) +v4DISL1P), (18)

where D[O]p = 0pOT — {070, p}/2 is a standard dissipator. The y, is the consequence of a
white-noise-correlated dephasing process, while the incoherent pumping process results from
coherently driving to a rapidly decaying auxiliary level [see Fig. 5(a)]. This master equation
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Spin term Boson term
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N ai Ani g 4
i1 GLAGY Nei®pe ™ + O(N)
N ai ani Y Y
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S 6L pS 1 /Nis +0O(N"Y?)
i=1 +P z 2 P
1o i i ~
SV ol pst «/N(EA’p —el®pe 1¢A')+O(N 172y

Table 2: Replacement rules, to leading non-vanishing order in 1/N, when j = 1.
The first three lines correspond to typical Lindbladian terms that describe white-
noise dephasing (first line), incoherent pumping (second line) and incoherent decay
(third line). The remaining dissipators can be obtained by conjugation of the last
three lines.

can be solved exactly, leading to the following steady state observables

() =% (1) (foy) =0 1
N . (19)
Var(JZ) = (Y"'—W)z Var(Jx,y) =7

that we can then compare against the results obtained via the 1/N expansion. The expressions
for the expectation values should be obtained directly from mean field results. The bosonic
description will then provide the variances. We begin by calculating the mean field steady
state, which is aligned along +z if w > y and has j = (w—y)/(w+y). Since j < 1, we use
Table 1 to arrive at an effective bosonic description (as promised, the v/ N contributions cancel
among each other)

L0, 40,0)]

~
Longitudinal dynamics

8 = (y +w+74) (A + DDIAIp +ADIA1p) + D[4, [p,4]] +

v
Transverse dynamics

(20)

where it = y(w—y)~! and D = yw/(y + w). Thus, the transverse boson is effectively coupled
to a bath with decay rate y + w+ v,; and thermal occupation 71, while the longitudinal boson [
undergoes relaxation with rate (y +w) and diffusion with coefficient D. The divergence in 1 as
y — w indicates that at y = w the mean field Bloch vector has zero length, and the expansions
break down (we are then at the rightmost corner of the Dicke triangle). When y > w, the
Bloch vector points along —z so it first has to be rotated to +z.

From the boson master equation we can immediately calculate transverse variances

o Nij . a Nij N
(J2) ~ 7] (A+AT)?) = TJ(Zﬁ =7, @1)
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w > NCv w < NCv

Figure 5: (a) Schematic of a superradiant laser. Atomic excitations are transformed
into cavity photons, which then quickly escape the system with rate Cy per atom.
Population inversion is obtained by coherently driving auxiliary levels. (b) When
w > NCy the Bloch vector points along +z. When w < NCy, the mean field Bloch
vector acquires a transverse component (J;f # 0). At long times, phase diffusion
leads to a circular distribution.

with an identical result for (J }%), and in agreement with Eq. (19). For the J, variance, we use
J, =J—ATA. To leading order in 1/N, we then have that Var(J,) = Var(J) = N ({2), which can
be calculated directly from the boson description, yielding

D Nyw

. _
N =N ) " Grwe

(22)
This is again in agreement with Eq. (19).

4.2 Superradiant laser above upper threshold

In this subsection we study a model for superradiant lasing, described by the following master
equation [22,24,79]

N
86 =CyDlJ 1+ w Y Dlol 1p = Lyp, (23)

i=1
which includes incoherent pumping (with rate w), and collective emission (J~) induced by
coupling the atomic transition to a lossy cavity mode [see Fig 5(a)]. The collective decay rate
per particle, Cy, depends on the cavity cooperativity C and the lifetime of the excited state vy.
We are assuming that y < w, NCy so that we can neglect spontaneous emission terms D[ ]
in the master equation. Solving the mean field equations under these assumptions leads to
two different phases: an incoherent phase when w > N Cy, with the Bloch vector completely
polarized along +z (JZ . = J,s = N/2 50 j = 1) and no coherence (J_. = 0); and a lasing phase

when w < NCy, with nonzero coherence J_. # 0.
Fluctuations in the incoherent phase are easier to analyze because the Bloch vector is
already pointing along +z. Since j = 1, we need to use the replacement rules in Table 2,
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along with Eq. (14) for collective operators. This leads to

8. =wDIAlp + NCy DIA1p +w(8p —e 98] pe'?) (24)

Once again, the transverse boson behaves as if it were connected to a finite temperature bath,
now with decay rate w — NCy and thermal occupation i = NCy(w —NCy)™!, while the dy-
namics of the longitudinal boson drives the system towards 6J = 0 (J/ = N/2). Using the
boson description we can directly import known results for steady state two-time correlation
functions [80, 81]

N N N A N (w+NCy\ _(,_
(8,(1)8,) =Tr[ 8™ (8,65 ) | ~ 7 (W——NC}’)C (w—NCy)t 25)

and then obtain power spectral densities. As w — NCY, fluctuations (encoded in 71) diverge,
indicating that a more careful analysis (deferred to Sec. 5) is required. The decay constant
w — NCv could be identified as the “linewidth" of the emitted light in the incoherent phase,
and is in agreement with Eq. (4) of Ref. [77] in the appropriate limit (strong pumping, no
dephasing, negligible spontaneous emission and large cavity decay rate).

When w < NCy, the mean field Bloch vector no longer points along +z, and its transverse
direction can be arbitrarily chosen to lie along the +x direction due to the weak U(1) phase
symmetry of the system. To study fluctuations, the Bloch vector first needs to be rotated onto
the +z axis, and only then should the replacement rules be used. In this configuration, the §y
variable is a proxy for the azimuthal phase of the Bloch vector, will undergo diffusion, and its
two-time correlation function will encode the linewidth of the laser (see Appendix C). Because
of the diffusive behaviour phase fluctuations will grow with time, at long times the large N
expansion about the mean field steady state will break down, and the distribution will become
symmetrical about rotations along the z axis, as depicted in Fig. 5(b), although modified large
N techniques are still applicable.

All of the results presented so far can also be obtained using second-order cumulant tech-
niques, although we believe that the boson formalism provides a simple picture of the longi-
tudinal fluctuations. However, paralleling the purely Hamiltonian case, the formalism can be
extended to describe the vicinity of the phase transition in a controlled way.

5 Driven-dissipative phase transitions

In this section we address item (IT) in the introduction and show how the bosonic representa-
tion can be used to describe the properties at, and in the vicinity of, driven-dissipative phase
transitions in all-to-all models. We will consider two examples: the first one will be a con-
tinuation of the analysis of the superradiant laser in Section 4 and the second one will be a
dissipative generalization of the all-to-all transverse field Ising model, previously analyzed in
Ref. [70].

5.1 Superradiant laser near upper threshold

Here we describe the onset of the lasing transition when N — ©0. Equation (24) naively
indicates that fluctuations diverge as w — NCy = w,. As in the Hamiltonian case, this is a
breakdown of the large N approximation as implemented by Table 2. We expect instead that
higher order terms in the 1/N expansion will stabilize the system. To pursue this, we need to
extend Table 2 by including further corrections. We show the resulting replacement rules in
Table 3. For completeness, we also include the expansion of collective operators fi’z.
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Spin term Boson term
NG (s id. —dae 1 ain
2P (Ael% e IPAT — —{ATA,ﬁ})
4 2
N
N AP V2 idsta ~igat o ato—ibsiaibr Lacata ida —idy At
Dzz(p)=Zszpz -5 |Ae SJpe PAT +ATe 5] pe A+§A{AA,e pe PIA
i=1
+N|:5Jﬁ+5J{A’A,ﬁ}+AAﬁ Al+0(N72)
Aart o —idsra ig] L saant Loaia aasy
N [ApAT— 7957 pe ]_ﬁ 25JApAT + S {ATA,ApAT)
D.(p)=D,04p0L : o -
i=1 + [{A"‘A, e P57 pel?} + (A)2e!® ,sei¢(A'f)2] +O(N™?)
N . .
D_,(p)=> 6L psl Neitp e 4 [5]e'?pe 0 + ATpA—{ATA, e pe ¥} |+ O(N )
i=1
N . .
Dy.(p) =), 6%Lpot ApA— (A2 ped +o(NY)
i=1
VNAp 1
N > p+—[ _l¢p5Jel¢A+(A)2el¢pA}
Dia(p)= D608 - .
i=1 1 [6JAp A'(A)p o, ria —3/2
——— +APATA [+ O(NT/9)
VJNL 2 4
A6 b id T [onnrs o aigs
N VN T—el%e—“ﬁA' —m[w 5+ (AN A;S+2A'/5A'A]
D_(p) =D 6L p8 : ;
=1 +‘/—N[A’“ei¢ﬁe_i¢fﬂ 2e pe —i$ ATAAT + 2ei¢ﬁe_i¢A‘i‘]+O(N_3/2)
» N U V.
Jy VNA+ —6JA— —ATAA
N 2N
A N A oara
J, E+5J—ATA

Table 3: Lindbladian terms to higher order in 1/N (highlighted in green). All other
combinations can be obtained by complex conjugation. We also include expressions
for collective spin operators
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Setting w = w, + dw in Eq. (24), with the understanding that 6w < NCy, leads to the
following bosonic master equation

8 = (w +5W)DIALD +w, (67p —e 467 p ¢i?)

2we b Aoid 15 1AV Hid
L” e~? {D[Aei*1(67p)} €0 (26)

+ £ D[Ae?(ApA") -

A

pa 2 At A PPV P
+w, DIAIp + EDIA'NE p) + < (1AA'A'A, p} - AT(A'A, p)A)

We will now begin with the simplifications. First, even though at the critical point the trans-
verse boson occupation diverged and timescales associated to it became very long (w—NCy)™!,
the longitudinal boson was still forced to decay to 5J = 0 within a finite timescale (NCy) ™.
Thus we can project the system into the steady state subspace of the longitudinal boson. Math-
ematically, this is performed by computing the matrix element of the evolution superoperator
(using the trace inner product) between the right/left steady states of the longitudinal boson,
which are |6J = 0)(6J = 0| and the identity, respectively. This yields an equation for the
reduced density matrix of the transverse boson p:

001 = (we + 5w)D[A]p1 +w, DIAT]pr

We  nmnn ain . We (Fa  aiagsa o Rt ag At (27)
+~ DIAIApAN + < ([A, (A?Apr ] + [ prA' (A, 4T]),

which ought to describe the critical properties of the lasing transition.

Given that fn diverges in the linear theory and that it is stabilized by 1/N corrections, we
expect that the size of the steady state distribution in boson phase space will scale with N
and hence be very large, much larger than the size of quantum noise. This implies that we
can treat A,A', when suitably normalized, as classical variables. To take the classical limit,
we introduce @ = N /44, where £, is a number to be determined, with commutation relations
[&,67] = N"%/. Since we want the @& variables to be of size ~ 1 in the classical limit, we need
to consider an effective Planck constant equal to N~24, Thus, when N — oo commutators
become Poisson brackets [ , ] &~ iN~2/4{ , }P°. This leads to {a, a}P® = —i, where we are now
treating a, @ as classical commuting variables. To take the classical limit of Eq. (27), we express
it as much as possible in terms of commutators (and sometimes double commutators).

The resulting classical master equation for p, (the classical analogue of p) is

iow _ _ w _
8ipe = — ({o, pa?® + {ap,, a}*) — ——{a, {p, a}*"}
2 N2fa (28)
iw _ _ _
+ e (Aa?pe, )P + afa, ped?))

In the previous equation, the first line came from the linear theory, while the second line is
the nonlinearity. We can make all the terms of the same size if we choose f, = 1/4 and
keep ¢ = NY/25w/w, fixed as N — oo. Then the partial differential equation governing the
evolution of p,, the classical probability distribution, is

a(thp/cm)' = % [Gz(ap.)+ O, (ap)] + 355‘10C + ady(a®p.) + ad,(a’p.) (29)

This equation determines the cross-over behaviour in the vicinity of the phase transition point
(¢ = 0), manifestly shows that timescales are slowed down by a factor of ¥ N and demonstrates
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Figure 6: (a) Probability distribution P = p¥*/N({) = e~lal*~Clal normalized such
that P = 1 at @ = 0, as a function of |a|? for { = 1 (incoherent phase) and
N =10,100. (b) Same as (a), but for { = 0 (transition point) and N = 10,55, 300.
(c) Same as (a) , but for { = —1 (coherent phase) and N = 10,33,100,300. (d)
First order coherence function as a function of time for N = 10, 100 versus analytical
profile obtained from Eq. (31).

that the system is self-similar as N increases, provided ¢ is kept fixed. The steady state of the
equation can in fact be written down analytically,

PP =N(Qexp(—lal*~lal?), (30)

where N({) is a normalization factor with respect to the measure dada. When ¢ > 0 (inco-
herent regime), the distribution is peaked at O and becomes gaussian when ¢ > 1. Similarly,

when ¢ < —1, the distribution is also gaussian, but now peaked at |a|?> = —{/2, indicating a
nonzero value of (J*J~). In the vicinity of { = 0, the distribution is non-gaussian.
We benchmark this analytical result against numerical simulation of Eq. (26) for { =—1,0, 1

and different values of N up to N = 300. To obtain p?’ from these numerical results, we iden-
tify |a|> with ATA/ VN = (J —J,)/¥N and plot the resulting probabilities in Fig. 6 (a), (b) and
(c) against the analytical formula. We find good agreement when the distribution is peaked
around |a|? = 0, especially at larger N, and observe a trend towards convergence as N in-
creases when the peak is at finite |a|?. In general, we expect corrections to be of relative size
N~1/2 rather than N™! due to the scalings around the critical point, indicating that even at
N =300 we can expect errors of about 6%.

The classical master equation Eq. (29) defines a classical generator of time evolution M.,
which encodes more information than just the steady state distribution p3°. In particular,
correlation functions of the quantum system can be calculated, to leading order in 1/N, using
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M. For example, the two-point function

C(t)=Tr[Jte" (J pg) ] ~ N3/2f aeMsrT(dpzs)dadd (31)

can be expressed entirely in terms of the classical master equation, with a predicted scaling of
N3/2_ This is illustrated in Fig. 6(d), which verifies the N 3/2 scaling of C(7) and demonstrates
good agreement between the full numerical solution of Eq. (26) and the classical formulas.

5.2 Dissipative all-to-all transverse field Ising model

Here we consider a dissipative version of the transverse field Ising model, defined by the fol-
lowing master equation

N
g 50 . MiqA o
NJf,p}ﬂ E :D[Uﬂp = Lgp, (32)

8. = —i [—Afz _
i=1

which is a generalization of the Hamiltonian model studied in Sec. 2.1 that includes incoherent
pumping from the ||) — |T) states (this is equivalent to the model studied in Ref. [70] after a
rotation by 7 about the x axis). Assuming A > 0, the system displays two mean field phases:
a disordered phase, with J. me =N/2andJ ;“; = 0, and an ordered phase, with J ;ni,z # 0, and

a phase boundary defined by y = 24/ A(g — A). We will approach the critical boundary from
the disordered phase because the Bloch vector is already aligned along +z, and we will do so
by varying A while keeping g fixed. Since j = 1 in this phase, we use the replacement rules
from Table 2, which to leading order give rise to the following bosonic master equation:

o0.p = _é [AD? +(A—g)%2, 5]+ yDIALS +ia[60,p]+y(6Jp —e95]e?),  (33)

where the quadratures £ = (A+A")/v/2 and p = —i(A—A")/+/2 are defined as before. Once
again, the longitudinal boson evolution just drives the system to the state |6J = 0). The insta-
bility towards the ordered phase as A is reduced can then be interpreted in the boson language
as being caused by the switch from a regular to an inverted parabolic potential when A < g.
Dissipation provides some stabilization, reducing the range of A for which there is an ordered
phase, but if y is small there will still be an instability as A is further reduced. If y is large
enough, the instability disappears and the disordered phase is always stable.

We will work in a regime of vanishingly small dissipation, with y scaling with N in a yet-
to-be-determined way, and leave the analysis of finite y to Appendix D. As in Sec. 2.1, in the
vicinity of the phase transition the system will be stabilized by a quartic nonlinearity coming
from the Hamiltonian. Guided from our experience in Sec. 2.1, we expect fluctuations in X and
p to behave differently, so we express the master equation, now including the non-linearity,
in terms of the quadratures. We also project out the longitudinal boson and work with the
reduced density matrix for the transverse boson g

N Y 2, 8, cr Y e A e1ara go A
6p=—3 [Apz HAa=g) + S pr |+ DDIEpr + 2 (1B, or), X1+ 15, (£,61)1). 34)

Note that we have omitted a D[p]p term because fluctuations in p will be smaller than
fluctuations in x. It turns out that, unlike the case of the Hamiltonian model of Sec. 2.1,
fluctuations in p will not be reduced, but will instead stay of the same size without any N
dependence. Given that fluctuations in X are still enhanced, the distribution in phase space will
be large compared to the size of the quantum noise, and we can treat it as a classical probability
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Figure 7: (a) Marginal probability distribution P,, obtained by integrating Eq. (36)
over p and fixing P, = 1 at 2 = 0, for N = 10,55 and n = —1/4. (b) Same as (a)
but with N = 10,33,100 and n = —1/2. (c) Marginal probability distribution P,,
obtained by integrating Eq. (36) over z and fixing P, = 1 at p = 0, for N = 10,55
and n =—1/4. (d) Same as (c) but with N = 10,100 and n =—1/2.

distribution. Thus, if we introduce a scaled £ = £N/x, which satisfies [2, pl =iN i we
should replace commutators by Poisson brackets according to [, ] ~ iN~/*{, }’>. We then
simultaneously scale the distance to the critical point by defining 7 using A = g + nAN/»,
scale the strength of dissipation by introducing a reduced y,.q = YN/, and demand that all
the terms be of the same size in Eq. (34). This leads to f, =1/4, fA =1/2 and f,, = 1/4, and
to a classical master equation for the probability distribution p., which is a function of z and
p (i.e. the classical analogues of % and p),

Yred
4A

2
Be — —[(nz+2%3,p. —pa.p. ] + [2p. +28,(pp) +28,(zp) | (35)

d(At/NVA)

The first bracket of Eq. (35) is just Hamiltonian flow, with a classical Hamiltonian

1
H, = Z(ZPZ + 21722 +29),

while the second bracket introduces diffusion and relaxation. The steady state solution can be
written down analytically

2
Vred® \? Yred \ 2 _4
pis:Nexp[—Z(p— ;A) —2(n+4zz)z -z, (36)

is Boltzmann like, and reduces to exp(—4H,) in the limit y,.q < A (N is a normalization
factor).

To benchmark this solution, we first make contact with the original spin variables by re-
calling that, to leading order, J, = £4/N/2 = 2N%/*/+/2 and jy = p+/N/2. We then simulate
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(a) (b)
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Figure 8: (a) Scaled correlation function C(7)/N 1/2 45 a function of scaled time
AT/NY4 for N = 10,100, 7,04 = A and = —1/4. (b) Scaled response function
%(t)/NY* as a function of scaled time At/N/* for N = 10,100, y,.q = A and
n=-1/4.

Eq. (32) to obtain the steady state for N up to 100, calculate the probability distributions asso-
ciated to the J,, J , operators, and compare them against the marginal probability distributions
obtained from Eq. (36). The results are shown in Fig. 7 for y,.q/A =1 and n =—1/2,—-1/4,
demonstrating good agreement for all of them. Note that the critical e profile is obtained at
n= —}/fe af (4A2) rather than 1) = 0. This can also be derived using the equation for the mean
field critical boundary after replacing A, y in favor of 1, y,.q and letting N — oo.

As in the case for the superradiant transition, Eq. (35) defines a classical generator of time
evolution M, that encodes the response of the system to perturbations. We can use it to
calculate correlation and response functions such as

(1) = ({/x(7),J,(0)}) N2 TS
([J.( )Nj ) NV — (37)
x (1) = 2 T.’ X R {z(7),2(0)}Pb,
IN 2

where J, (1) = e%¢*(J,), [fff is the adjoint of L with respect to the trace inner product, the

overlines are averages with respect to p* in Eq. (36), 2(7) = " (2), and M;f is the adjoint
of M, with respect to the inner product on phase space (integration over z and p). After some
manipulations, we get

C(t)~ Nl/zf dz dpzeMth(zpf)
N1/4 (38)
1 (T)~ Tf dg dpzeMth(E/’ppzs).

These scalings are consistent with the scalings reported in Ref. [70]. We compare these for-
mulas against numerical solution of Eq. (32) in Fig. (8), demonstrating good agreement that
improves as N increases.

6 Thermal behaviour

In this section, we show that the generalized boson mappings can also be used to study thermal
behaviour of collective Hamiltonians. Consider the Dicke model [82], which hosts both ground
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state [59] and thermal phase transitions [27,83], and is defined by the Hamiltonian

R . R 22 A
Hp = wt'¢ —wol, + —(E+ENJ,,, (39)
D 0Yz m X

where ¢,¢" describe a bosonic mode (often photons in a cavity [16] or motional modes in an
ion crystal [84]). The thermal properties of the system are encoded in the partition function

Zp = Tr(e_/mD ), (40)

where 5 = 1/T is the inverse temperature. To be more precise, the trace is taken over the
2N dimensional Hilbert space of N independent spin 1/2, not only over the permutationally
symmetric Dicke states [85, 86]. Mathematically, this partition function is often calculated
(in the large N limit) by representing the trace as an integral and performing a saddle point
approximation [83]. However, our treatment will be closer in spirit to the purely Hamiltonian
analysis of the Tavis-Cummings model of Ref. [87].

The thermal state e P10 is weakly permutationally symmetric, so it is amenable to analysis
by means of the operator mappings of Sec. 3. Since only collective spin operators appear, we
will only need the lower entries of Table 3. The only subtlety is that the bosonic representation
only counts each different spin length sector J once, so we need to take into account explicitly
the degeneracy of each different J, given by

B N!(2J +1)
C(N/2=DIN/2+T+ 1)

This entropic factor, when balanced against energetics, will end up determining the average
spin length Nj/2. To take this into account, we define an effective Hamiltonian

R = BHp —1log(d;), (42)

7 (41)

where we have also included the dependence with f because it is a tunable parameter. The
thermal state is now e X, and the explicit inclusion of d; means that we now have to use the
bosonic representation of Hp.

As in previous examples, we first examine the mean field behaviour. Since the spin length
is expected to be j < 1, we use the type I replacement J = Nj/2 + N/ 2l to express the
degeneracy factor as

tog(d;) =—3 £ ()~ GIN1 = /() (43)
where L L
f(H=a —j)log(TJ) ra +j)log(7f). 44)

For the mean field analysis, we will only keep the leading o< N term. We then treat the rest
of operators in the Hamiltonian as classical variables, i.e. ¢ — c+/N, jx — Nsin0/2, and
J, — N cos 0 /2 (we assume beforehand that the spin will have J'}l,nf = 0). At order o< N, the
resulting free energy F is given by

F 5 wgjcosO  f(j)
wlc|*—
N 2 2

Minmizing with respect to c, 8, j leads to two type of solutions. The first type has 8 =c =0

and
j =tanh (%)
2

— —% log[2cosh(Bwy/2)]

+Ajsin6(c+¢c) (45)

(46)

Z | =
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528 In this configuration, the system has no cavity field, the spin is pointing along +z and the spin
520 length is determined by the temperature. The free energy is that of N independent two-level
s30 systems. This solution describes the disordered phase. The second type of solution has

wwg Pwy
——— =tanh
422 cos O an (2cos 9)

. Bwy )
J=tan (Zcose

Ajsin 6 (47)
w

F  woj(sinf)? 1 [ ( Pwg )]
—=—--——"———1log| 2cosh
N 4 cosf B 08| 2c08 2cosH

531 The first equation determines the rotation angle as a function of temperature and Hamiltonian
s32 parameters, while the last two provide the associated values of spin length and cavity field.
533 There are two possible solutions to these equations, related by 8 — —8 and ¢ — —c. These con-
s34 figurations correspond to the ordered superradiant phase and only exist when 7L2 =A% > wwy/4.
s35  This determines the critical temperature tanh(f,wq/2) = ww/(4A2?) below Wthh the system
s3¢ orders. This approach to the thermal Dicke transition provides a very intuitive picture of the
537 underlying physics: the primary effect of a finite temperature is to establish an equilibrium
s3s  spin length j via a competition between energy an entropy. Once j is fixed, this univocally
s30 determines whether the low energy spectrum of Hj, displays symmetry-breaking or not.

540 Applying the type I replacement rules for the collective spin operators allows us to obtain
sa1  the effective Hamiltonian that describes fluctuations of the system. In the disordered phase
ss2 the spin is already pointing along +z, so we can use the rules directly. As in previous examples
s43 terms proportional to +/N cancel, leading to

% = woA'A + weTe + (AT +A)(E +¢T) +
sas Longitudinal fluctuations decouple from the other degrees of freedom, and have size 6J ~ +/N.
sas  Transverse fluctuations couple to the cavity field, but the effective coupling constant Ao = A4/j < A
s46 is temperature dependent and becomes larger with decreasing temperature [86]. If A > ,/wwq/2
sa7  the system develops an instability when A = A+/j = J@wg/2. If A < Jwwg/2, the system
sas  cannot reach the instability for any temperature. Equation (48) can also be used to calculate
sa0 the excitation spectrum at finite temperature, and compute average values and correlation
ss0 functions using eKerr ag the approximate quantum state (summing over both mean field solu-
ss1  tions in the case of the superradiant phase).
552 In the superradiant phase we first need to rotate the spin operators and displace the cavity
ss3  boson before applying the replacement rules. The resulting effective Hamiltonian is instead
ss4  (with displaced cavity field d=¢—+/No)

/5 wo

er
] 48
3 (48)

RS =Bwd'd e AA+f”(])12 +BAd+dN[vjcosO(A+A) +2sin01],  (49)
ss5  and indicates that the spin length fluctuations now couple to the rest of degrees of freedom.
ss6 Both effective Hamiltonians for the Dicke model at finite temperature were derived before
ss7 in Ref. [88] using diagrammatic methods and a fermionic Majorana representation of spin
sss  1/2 systems. Our method provides the same results, but our variables of choice (A, D possess
sso  intrinsic geometric meaning.

560 We finalize this section by studying the phase transition region. As in all the previous
se1 examples, we begin from the disordered phase. As the temperature is decreased and A ap-
s62 proaches the critical value, one of the normal modes of the system becomes soft (its excitation
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energy goes to 0 in Eq. (48)], while the other one retains a gap ~ N°. As in Sec. 2.1, further
terms in the 1/N expansion will introduce a quartic nonlinearity that creates a gap to exci-
tations of the soft mode of size ~ N™V/3, Because of the finite T, excitations of the gapped
mode might be present or not depending on the relative sizes of T, and other scales of the sys-
tem such as w, w,y. However, the soft mode will always be highly excited, and can be treated
classically. Furthermore, the soft mode will turn out to couple nonlinearly to fluctuations in

the spin length, which can also be treated classically because ePHb ig always diagonal in the
J basis.

Because of these considerations, the effective Hamiltonian in the vicinity of the phase tran-
sition will be a combination of a quantum quadratic piece, describing the gapped mode, and a
classical nonlinear part, describing the soft and spin length modes. This effective Hamiltonian
is given by (see Appendix E and omitting constant contributions)

Bl + )2

Kg=———5——0;+&)
(Bewo)*? § ¢ B o0
Wo w 2 eyg2 4 S c@Wo o
+ = + F+=-— +\| —s* |1

where [¢,p,] =1 and {8, Ps}PP = 1 are the gapped and gapless modes, defined in Eq. (E.16)
from Appendix E and

Be
measures the relative deviation from the critical temperature in units of 1/+/N. Spin observ-
ables will include contributions from both soft and gapped modes, which may make a simple
finite size scaling analysis more challenging. Because of this, we focus on the specific heat
(C,) as the phase transition point is crossed, which will also be dominated by the soft mode.
We can obtain an analytical expression for C,

¢, _ Blop(1—j2)
N 4

where g(z) = log[ f dx exp(—x4 +zx2)] can be expressed in terms of modified Bessel func-
tions, and

+b%g" (bE), (52)

_ (Bewo)??(1— D)

V4ie —2Bcwo(1—j2)
We point out that this contribution to C, depends only on f3.w, (which also determines j.) and
(B —B.)/B., and is otherwise independent of w/w,. In particular, the same formula should
hold in the limit ¢ > cw, if we keep . wq [or equivalently A?/(cww,)] fixed, in which case the
Dicke model reduces to Eq. (3) with g = 442 /(wwy), and for which larger system sizes can be
numerically probed. We show the specific heat as a function of £ in Fig. 9 for N up to 6400,
calculated by brute-force evaluation of the partition sum. There is a good agreement with the
analytical formula for & < 1. For £ 2 1 the numerical results have not yet converged to their
N — oo limit, presumably because we are zooming in on a violent discontinuity (see inset),
but the numerical curves seem to be approaching the analytical result.

(53)

7 Conclusions and outlook

In this paper we have shown in detail how to construct a Schwinger boson mapping for systems
of N spin 1/2’s undergoing open system, permutationally symmetric, dynamics. Using this
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1.2
1.0}

0.8
=

4 2 0 2 4
\/N(B - 60)/60

Figure 9: Specific heat C, as a function of scaled temperature vN(f3 — f8.)/. for
different N = 400, 1600, 6400 in the LMG limit (w/wo — oo while keeping A2/ w
fixed) and fixed j, = 1/2 — B.wy ~ 1.099. Inset shows the same plot but as a
function of /f, illustrating that mean field is a good approximation away from f..

so6 mapping we then introduced a generalization of the Holstein-Primakoff transformation and
so7 developed a systematic expansion in powers of 1/N. We explicitly calculated the leading
sos and next-to-leading order terms in the expansion and illustrated how to use it by means of
so0 various examples. These examples included the analysis of driven-dissipative and thermal
e00 phase transitions and their finite size scaling properties.

601 We believe these methods have wide applicability and could be helpful in the analysis of the
602 various permutationally symmetric models that are routinely studied in the literature. This in-
603 cludes the various generalizations of the Dicke model that have been considered over the years,
604 but also models arising in other areas of study, such as reaction-diffusion phenomena [89] and
605 non-reciprocal interactions [90].

606 Although we developed the Schwinger boson mapping by rewriting the results from Ref. [48],
607 the rotationally covariant structure that we identified in Eq. (16) hints at the possibility of a
s0s different, simpler, group theoretic derivation. Such a derivation would also be of use when
600 seeking multilevel generalizations of the mapping in the presence of single particle dissipation
610 (in the strongly symmetric case the mapping is standard [91-93]).
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A Expressing local dissipators in terms of Schwinger bosons

In this section, we show that

N
sAéﬁsA;j =E(J)JypJp + F(NKupLlp + G LK, (A.1)
i=1
where
. 1+N/2 . N/2+J+2 ~. N/2—J+1
Ey= LIN2 gy NRHIR2 gy N2 A
2J(J+1) 2(J +1)(2J +3) 2J(2J —1)
(A.2)

K:%(f) d) iO'yO'(Z), L —%(BT df)aiay(b.:;)

is equivalent to the matrix elements calculated in Ref. [48]. These were given as [Eq. (42) in
Ref. [48]]

N J+1
——— 1 ay ™t 27 +1
> 881, MY, MY |8 = — (1 + L —) x APM

Q>

J, Mg XJ’M; |Ai’Ml

J
o 2J dl J+1
ay
JIM|]_ _ I
+2szjv x B |7 —1,M,XJ —1,M/|B (A.3)
J+1

+ 2(J-i—v—1)d]{, x DIM|T +1, Mg XJ +1,M;| D],

We will first explain the various objects that appear in this formula. First, the |J, M)}(J, M’| are
the permutationally symmetric density matrices that are right (left) eigenmatrices of J, with
eigenvalue M (M’) and left/right eigenmatrices of J with equal eigenvalue J. The specific
normalization chosen in Ref. [48] will not be relevant for our discussion. Then q, r range over
=+,—,2, with My = M + 1, M, = M and there are various numerical coefficients

;L NI
N T N/2=DUN/2+ )
; NI(2J +1))

NTN/2—DUN/2+J + 1)

AM = JU-M)J+M+1)
AM =\ JU+M)J—M+1)
AM =M

(A4)

BM =/(J-M)J—M—1)

B'M =\ /U+M)J+M—1)

BIM = \/(J + M)(J — M)

DM =—\/U+M+1)J+M +2)
pM=y/U-M+1)(J-M+2)
DIM=/(J+M+1)J—M +1)

26



SciPost Physics Submission

628 Note that Ref. [48] wrote & instead of § in Eq. (A.3), but the right hand side of the equation
620 matches the expression with spin 1/2 operators § (this can be checked by setting g =r = 2
e30 and taking traces of both sides). This does not matter for 6. =3$; =$, +i8, = (6, +i6,)/2,
631 but is important for §, = &,/2. To proceed, let us begin by calculating the coefficients in front

J,.M JM'  pJM J—1,M’ J+1,M J+1,M’ :
o2 of ALM|J, MYJ, M'|ALM, BIM | —1,MXJ, M| Al7VM DIFLM g, M J, M| DI which
633 dre
1 att o +1 N/2+1
—|1+ = =E(J)
2J df, J+1 2J(J +1)
J
ay  N/2+J+1
v _N/ =F(J—1) (A.5)
2Jdf, (27 +1)2J
J+1
a N/2—J
= / =G(J +1).

2(J +1)d),  2(J +1)(2J +1)
634 Noting that
EW)|J,MYJ, M| =EWJ) |7, M}J, M|
FU-D)|[J-1L,MYJ—1,M'|=F())|J—1,M)J —1,M'| (A.6)
GU+D|J+LMYJ+ LM | =G |J+1,M}J +1,M’

B

635 We can rewrite Eq. (A.3) as

N
DS M), M) = EG)Ap

n=1

J, Mg YJ, M. |A2M - F () B M| — 1, Mg XJ — 1, M[|BLM

+ G DM |J +1,M ) +1, M| DI
(A.7)
636 which already indicates which terms in Eq. (A.7) should be identified with which in Eq. (A.1).

637 To proceed, we express.J, M and in terms of the Schwinger boson occupation numbers n, = J—M,n, = J+M
638 and analyze Eq. (A.7) on a case-by-case basis

N
s o | DS MY, MU
n=1
N / /
Tt i (T =\ Ty ([~ 1
> 280 gy my Yingo [0 = BQ) (A “)\na:nbxna,nzl( =
n=1
+F(j)\/nanb |na—1,nb—1><n£l—1,n;—1| n/n}

+ G/ (n, + Dy +1) [ng+1,mp, + 1+ 1,0} + 1| /(] + D, + 1)

A A

o (bib—d'a\T———7(b'b—a'a
= E(J) (T) |na,anné,n;| (T)

+F(J) ab |na,nb)<nzl,n’b’ atht

+G(J)) a'bf |na, annfl, n;

(A.8)
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&P, My, M 6™

Abﬂz

Zo(n)|na,nb><n

I LIATI AT
n=1

N

Z ey X (6

(n))r:E(j) Vng(ny+1) |na—1,nb+1><nil—1,n’ +1| ,/ng(ng+1)

+F(J) y/ng(ng—1) |na—2,anng—2,n;’| (/i (nf—1)

+G(J) V(np+D)(np+2) |ng,np +2Xnl,n

1 +2] /() + () +2)

a’b

=E(J) ab' |na,nb><n { a'b

a’ b
+F(J) a2 \na,anné,n“ @3

+G() (b7 Jngmy N my| b2
(A.9)

=EWJ) y/np(ng+1) |na+1,nb—1><ng+1,n;—1| Vny(nl +1)
+F(J) y/ny(ny,—1) |na,nb 2Xna, b—2| Vv, —1)

+G() Vg +D(ng +2) |ng+2,mpXnt +2,m| 4/(n + 1D, +2)

=E(J) a'b |na,anng,nH ab’
+F(J) b2 |na,nb><ng,ng| (bM)?

aZ

+G(J) (@"? |ng,npXnl,n,
(A.10)
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s, My, M6 ™

M=

642 b

3
Il
_

Zo(n)|na,nb>(n (6" = EW) v/np(ng +1) ) |ng+1,n,—1Kn, —1,n} +1| m

—F(J) /ny(n,—1) |na,nb—2><nf1—2,n;)| Vil —1)

—GWJ) V(ng+1D(n, +2) |ng+2,n,nl,n

1 +2] /() + () +2)

a’b

=E(J) a'b |na,nb><n { a'b

a>p
—F(J) b? |na,nb><nfl,n§)| (a"?

—G(J) (aH? |na,nb><ng,n2| b2
(A.1D)

N
643 [ D6 M), M
n=1

N -

Z 5 |“a’ ”bX”a> ,

/_ /
(§(”))’—E(J) Vnp(ng+1) |n +1,n,— 1><n , b| ( na)
—F(J) v/ny(n,—1) |na,nb—2><né—1,n’ —1| n/n}

+G() V/(ng+1)(ng +2) |n +2, ann +1,n +1| \/(né+1)(n;+1)

=EWJ) a'b |ng,npXnlny| (bTh—a'a)/2

—F(J) b? |n anna, b| atb

+G(J) (a")? |na,nb><nfl,n;| ab
(A.12)
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N
6ad . Z 6T, MY, M7E
n=1

N

. o
D0 i, ) = £ Vs D) o=+ ] (P57 )
+F(j) \/m \na—2,nb><nfl—1,nz_1| ngn;

—G() V(ny+ Dy +2)  |ngnp+2Xn, + 1,0, +1] /() +1)(n, +1)

=E() a'b |na,annf1,n’b\ (b'b—ata)/2

LA

+F(J) &* |na,anna, ny| a'b'’
—GWJ) (b |ng,npXns,my| ab
(A.13)
645 These expressions agree with Eq. (A.1), taking into account that K, = IQ'X:I:iI%y, Ly=1L,+il

6a6 and S, = G,/2.

«7 B Derivation of replacement rules

6as In this appendix we derive the replacement rules provided in Table 1 and Table 2. We begin
640 from the results in Sec. A and get rid of bin favor of J. To do this, we decompose the boson
es0 b using its number-phase representation b = e!?/2(b"h)1/2, absorb e!?/2 into AT = 4Te!?/2,
es1 replace b'h =27 —AA. Then we obtain, generically

N
> 6.ps, =E()(J—ATA) p (J —ATA)
B.1
+F(NA(2) +2—A1A)? ¢9 peid (2f + 2— ATA) 2 AT (8.1)

+G() (2] —ATA)? 9 AT pAei® (2] — ATA)'?

N
2 :Ai A Al
653 ® O,p0_

1/2

N
> ol pot =B (2 —ATA) P ApAT (2 —ATA)"?

+ F())(A)%e? pe P (A"
D)% (2 —1—ATA)"? =i peié (25 —ATA)"* (2 —1—ATA
(B.2)

+G(J) (2] —ATA )2
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)1/2A

b (27 —ATA

+F(D) (2) +2-AA)" (2F +1-ATA)"? 4 pe=i? (20 + 2— ATA)'? (2] +1 - ATA)

+ GANe pei? (A)?
(B.3)
N
[ 20lpol
i=1
N
16l pot = EDAT (20 —ATA)? pAT (25 —ATA)
i=1
. - B.4
—F(J)(2) +2—ATA)" (2 + 1—ATA)"? ¢4 pei® (AT) B4
— GUNATRe % pet® (25 —ATA)/? (2 —1—4TA)"?
N
< [Dleipsl
i=1
N
> 6l psi = EWDAT (20 —ATA)"? p (J —ATA)
i=1
—F(J) (27 +2—ATA)"* (2] + 1—ATA)? e pei# (2 + 2— ATA)"/? AT
+GNAN2e™ 9 pAed (2 —ATA)?
(B.5)
N
. Z(A; P8
i=1
N
> ol psi =) (20 —ATA)*Ap (J - ATA)
i=1 ®.6)
+F()(A)ei® peid (2f +2—ATA) 2 AT '

1/2 1/2

—G(J) (2] —ATA)"? (2 —1—ATA)? 719 pAei® (2] — ATA)
These expressions are exact, as is the Holstein-Primakoff mapping for collective states, but full
rotational invariance is no longer manifest. As described in the main text, this representation
is particularly convenient when the state is polarized along +z, but the nature of the expansion

will depend on the mean field value of the Bloch vector length. To get Table 1, valid when
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ss2 j <1 (where j is the mean field length in units of N/2), we introduce scaled variables {,§ ~ 1

663 as follows
Nj
=7+\/_l
» (B.7)
é=-L
VN
es« and expand the expressions to O(N?), with the neglected terms being of size N~/2. This yields
N . .
665 ° Z.?;ﬁé
i=1
y N, p 1 1 1+j 1—j
.08, =—pP+=——AAp——p(ATA+1)+ ApPAT + ATpA
2505 =P+ 5 g A =50 (5 Jaed+ (51 )
N 1+ j A A AAT, 5 1_ j A ~ AAT, 5
=—f>+( .J) ApAt {AA", p} +( .J) At pA {AA", p}
4 2j 2 2j 2
(B.8)
N .
666 ° Z(ﬁ'z_ﬁou_
i=1
N .
PITL
im1
1., a 1—j ~n .. NA—j), ivVN U = S, Naa A
—ApAT+ 0= —={A'A, p} + ———1 =N[4, p1-—714,[4,p11 - VNip +il4,1p]
J 2j 2 2 4
N(1—-j)p (A=J) s s 22 Laan (A—7) (1—)) o A A
= T—m T[Q:P]"‘ZP +;APAT 2 ———{ATA, p} + 2 [4,0p,411+1[4,1p]
(B.9)
N .
667 ® Zé'l_ﬁé':_
i=1
N .
PIEL
i=1
§ PV Joame A NQA+j),. ivN ST T E S tatan P
= "pA+0— —{AA, pY+ ———=p + == (14 I8, A1 = —=[4,[8, P11+ VNS +ild 5]+ T
N(1+j)p A+J) n a2y Laran H) it Ay L (AH) i cn aaq  vra 747, P
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,(1+cosB)

C Superradiant laser below upper threshold

+(61)

,(cos 9 1)

To get Table 2, valid when j = 1, we instead expand the expressions assuming that
AA 8], ~1.

In this appendix we analyze the superradiant laser model of Eq. (24) in the coherent phase.
As mentioned in the main text, in this case the system will develop a nonzero J™ in the steady
state, which can be chosen to have any arbitrary phase. We thus choose J™ to be real and
positive (thus the Bloch vector points along the x direction). We thus perform a rotation of
the spin operators

(C.1)
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where 0 is the rotation angle about the +y axis [and hence 3“3, = (s“;)’ ]. In principle 6 is
determined from the solution to the mean field equations, but we show in this appendix that
it can also be determined by requiring that the terms proportional to +/N coming from Table 1
vanish. If we perform the replacement rules in the rotated coordinate system, we arrive at the

following bosonic master equation

wvN(2—jcosf)sinf
4y/j

iwvN ) A iwvN

g (1+1)(cos —1)°[4,p1— —2

op = 4

+

A e NCyj s A
+ %D[(l +cos 0)A + (cos 0 — 1)AT:|;5 + %D[(l + cos 0)A" + (cos 0 — 1)A];5

3NCyj/%sin@ oo . s
+ % [Al _A’p‘]l
N w(j + 12)§sin 0)? DIALS + w(l —]'2)§sin 0)>? DLATIp + W(Si:@)2

N w(1—37)(14cos0)? +w(1+j)(1—cos G)ZD

I ]

p]

(1—j)(cos 0 +1)*[4, 5]

[(A?—(@A",p]

iw(1 + (cos 0)? R
: fap + 0 g 41 py]
wsinf(2+jcos0)r~ o g2 iwsinO(1—jcosO)r, . a  arl .
- 4;3/2 [A—AW,P]H' 43 [q,{( +Ar),P}:|
N iwsin 6(cos 6 — j) [[Q,ﬁ],(A—AT)]

4/j
Cancellation of the terms proportional to +/N leads to

j(cos)? +j=2cos6,

NCyj? =w(2—jcosH)

(C.2)

(C.3)

which can be solved to give jcos@ = w/NCy (i.e. the z component of the Bloch vector) and
(jsin0)? = 2w(NCy —w)/(NCy)? (i.e. the transverse component of the Bloch vector and is
proportional to the emitted light intensity). These are the same results that would be obtained
by solving the mean field equations of motion. Massaging this result leads to

__iw(sin6)? _ iw(sin 6)?
8 8
wsin0(2+ (cos0)?) ., ... iw(sind?®Vj .
- . p,o1l+ —————=1[4,{p, *}]
V/2jcos B 44/2cos 6

&p ([p. (£, 011+ [1p. p}.21)

NCycos0
| NCycoso

. .
(1+ j cos YD[R]P + [(1 .\ NCYJ) s w(s;e)

2 2j 2

wj(sin®)* . w(sin0)?3yj .
227 p VY
o [qlp + Wi [4,06,p]]
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The first two lines describe relaxation (in accordance with linear response calculated by, e.g.,
Heisenberg-Langevin equations) and the last two lines describe diffusion. In particular

d(p?>) NCycos6
at 2

(1+jcosh), (C.5

which is related to the laser phase by ¢; = fy/(Nj sinf/2) ~ p/(sin6+/Nj/2). Thus, the
phase diffuses according to

r2
1d(¢? _ Cycosd (1+jcose)=ﬂ(

2 dt  2j(sinf)? 4

NC)/+W)’ C.6)

NCy—w
which agrees with known results [95] in the appropriate limit (NCy,w > y) and determines
the laser linewidth.

D Transverse field Ising model with finite dissipation

In this appendix we analyze the transverse field Ising model with finite dissipation. For com-
pleteness, we copy here the master equation defining the evolution

N A— A+ A
A — g 7 8 52 A Ad oA Al {O'O',p}
= =i[ -~y Tp | +r 2 ("7”"5‘% (0.1

In the quadratic approximation, we have Eq. (33)
8,p = —é [AD? +(A—g)%2, 5]+ yDIALS + A[67,5]+7(67p —e 950 ),  D.2)

There is an instability at A* defined by y = 24/ A*(g — A*). Since the longitudinal boson
just equilibrates to |6J = 0) we project out this degree of freedom and work with the reduced
density matrix for the transverse boson pr. If we introduce the conjugate pair [X;,ps] = i
according to

12

<

. u X +up up—

Xg=—""F7, pr = —7, (D.3)
where u =[A*/(g — A*)]4, the equation simplifies to
A iY A A A g A A A A A A g_ZA* A A A
atpT = _E [xsr {prpT}] + Z([xsa [pT) xs]] + [pf) [PT:pf]]) + (T) [xsr [PT:pf]] .
(D.4)

The first term introduces relaxation for p, with rate y but does not affect ;. The next term
introduces noise and diffusion, which only manifests in () and (ﬁj%). The last term introduces
mixed noise, whch appears in ({X;,ps}). Because of the relaxation, the variance of p; never
grows too much. However, the noise in X, keeps growing and is stabilized by nonlinearities.
We thus introduce §, = N/x%,, which will behave classically, and hence commutators become
Poisson brackets according to [, ] ~ iN~f{, }?*. The density matrix 5 becomes a classical
probability distribution p, that satisfies the classical master equation

g g—2A*
- zpc_(ZN_fx)apfaypc. (D.5)

Note that the first two terms are O(N°) and will thus equilibrate first. This determines the
—2yp?
e f

_ £ 52
9 _Yapf(pf pe)+ 4_8[’)010C + 4N2fx ay

steady state probability distribution of py, ~ /s Interpreting the right-hand side of the
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master equation as an operator in phase space, we apply a Schrieffer-Wolff transformation to
get rid of the term oc N/, and then project the operator onto the steady state manifold of
—2¢p}

the N° term (operationally this means that we write p, o< e /¢ P(y), apply the operator
and integrate over p). This leads to an effective classical master equation for y

9P(y) =

o OrPO). (D.6)
This diffusion equation will be stabilized by the nonlinearity, which we now analyze. The
nonlinearity comes from the J 3 term in the Hamiltonian. Expressing the bosonic operators in
terms of X; and p; we get that

gl g#?

N - 3 16N(u +1)x +—(x by +pfx) (D.7)

and we have kept up to terms with fcf The nonlinear terms induce the following evolution

[ W + 1)1 } gNSfX( 44 1)y%2
—l —\Uu X u
16N P 4N Y
"y (D.8)
SUNTX 3

AN apfpc+4—N.y 8ypc

4 3guty?p N2«
. gu’ a2, A . gu ' Y pg
—i [——SN (xfpf +pfxf),p] —_—

Projecting onto the steady state manifold of the N° term (and doing a Schrieffer-Wolff trans-
formation to get rid of the first term) leads to the following master equation

3gu4N2fx gu4N2fx g
o,P = ’p+ 30,P + 92P, D.9
t a7 an T T T ANy B9
We choose f, = 1/4 to arrive at
8p=-S (A*)Za 3p a P D.10
P =T y(y°P)+ ~ (D.10)
Time evolution of the slow mode is thus reduced by a factor of N~'/2. The relation between

the p¢, X;, and the original spin operators is

A u N . A* . R
J, = 5(]\133/4},_1\,1/21)!‘) — 1 Z(Nsmy_Nl/zpf)

L/
5, = neg e N1 2p =

(D.11)
(N3/4y+N1/2f)f)

E Effective Hamiltonian for the thermal phase transition of the
Dicke model

Here we derive the effective Hamiltonian that describes the thermal properties of the Dicke
model in the vicinity of its phase transitions, Eq. (50). We begin from

Hp = wt'e + wod, + 22 e+eh. (E.1)
Z m X
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The critical point is determined by A+/j = /@wy/2 and j = tanh(B,wy/2). The quadratic
approximation in the disordered phase at the critical point (including the degeneracy factor)
is

K /W 7"i)]2
o — e + wATA + Y—2(A+ AN (e + Ty + = ) , (E.2)
Be 2 Be
Omitting temporarily the [? contribution, this model is more easily solved if we represent
it in terms of quadratures £ = (A+A")/v2, p = —i(A—AN)/vV2, § = (¢ +¢7)/v2 and
q =—i(¢ —¢&")/+/2, leading to
K +
—eff G wO) (a)q +a)0p2)+ (wy + wok2 + 2/ wwok ). (E.3)

Be

We first introduce the canonical rescalings p = (wq/w) /4P, ¥ = (w/wy) /4%, and § = (w/wy) /44,
7 = (wo/w)Y*$ which makes uniform the terms quadratic in p, §

K w+w Jow 1
K __( o) | 2 (32 + %) + ——— (wok + wj)>. (E.4)
Be 2 2 2/ww,
This representation makes it clear that the mode k = (woX + wj)/ (w2 + w?)'/2 is gapped,
while the mode m = (wk — woy)/(w% + w2 s gapless
K + JOw (w2 + w?),
K (@4 o) (B2 +p2)+ —O k2, (E.5)
B 2 2 wWw,

where p; ,, are the associated canonical momenta. The gapped mode can be put in to standard
form by canonically rescaling § = (wg+w2)1/4(wow)_1/4f< and p, = (co3+w2)1/4(cooa>) V4p,,
with [¢,p,] = i. Furthermore, the quantity that fluctuates strongly at the critical point
is 7 so schematically we have that i > k,py, p,, and therefore ¥ ~ w1i/(w? + w?)!2,
y ~ —woih/(wf + w?)/?
expansion of J,

. We now add the nonlinearity, coming from the next term in the

. Nj . 1 ., Iz
x — XX — = X"+ -
2 4,/2Nj V2j (E.6)

3.

s

14

1 3/4 w>m [h 1/4 w
442N (E) (w2t w22 2 (3) (w2 + w2)1/2
The correction to the Hamiltonian from the nonlinearity is then
Ry _ /@y (j _\IT )( pehyo L @l 1 (0wl
B VNj x 2 4Nj (co0+co2)2 jvN (o)(2)+co2) '
Note that the mode 1 couples to spin length fluctuations. To account for small deviations about

the transition temperature, we recall that the effective Hamiltonian is obtained by adding the
degeneracy factor to Hp

R = BHAp—1log(d;), (E.8)
so that a change in temperature is accounted for by
8K2:= (B —B)Hp. (E.9)

The most important terms that will be added are

5K2, = —(B — B> )WNIL. (E.10)

2
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752 The first term is a c-number but it may contribute to quantities like the average energy. Putting
753 all these things together leads to

_ﬂc(a) + w) 4 ﬁc(wﬁ + w?)l/2

K== (03 +8)
ﬁC‘V wwo 5 1¢:N\72 2 B wa(Z) A
+—=——p% + [2— —BIVNI+ £ 4
5 P+ T — wolB—Be) aNj | (2 + w2 m (E.11)
B [ (wewg)*/? }Arﬁz
jVN [ (w3 + w?)

754 If we were looking at ground state physics, we would scale m and p,, such that they would
755 have the same N prefactor and then adapt the scaling of A+/j — 4/ @®q/2 accordingly. This
756 would lead to a quantum Hamiltonian with a gap oc N™'/3, At T, and large N, this nonlinear
757 Hamiltonian would be highly excited, with an excitation level that depends on N and would
758 thus change the scalings that are relevant near the ground state phase transition. For the
750 gapless mode, the correct procedure is to stabilize the thermal excitation of the system against
760 the nonlinearity oc m*/N (by demanding that IA<et§f ~ 1) and to treat the mode classically.
761 The effective Hamiltonian will thus have a quantum piece, coming from the gapped mode,
762 and a classical piece, coming from the gapless mode and spin length fluctuations. To take the
763 classical limit appropriately we define § and p, such that

1/4, .3/4,.1/2
fo| Pl e
(@} + 2N )V

(E.12)

(w(2)+ wZ)l/Z(j)l/4
Ps = Pm [33/40)3/40)(1)/2 ’
762 With these definitions, [$, p,] = iN~'/4 and we can take the classical limit by letting commu-

765 tators become Poisson brackets according to { , }PP &~ —iN~V/4[ | ]. The effective Hamiltonian
766 1S then

g __Belotwg) | Belwf+ D
eff 2 2

(ﬂcwo)s/z( w? ) 2 e N12 st . i ﬂcw() 2
+ Wi co2+w§ p; +f 01 +Z+ VN(B — B )wo \TS L

767 Where we are now treating s, p,, [ as classical variables. The last thing to do is to scale the
76s distance to the critical point with N such that

(B2 +8%
(E.13)

— N
e (B=PIVN 1
Be
760 so that the effective Hamiltonian reads
. Be(w + wy) Be(w?+ w2
K=" —— (7 +8%)
(E.15)

(ﬂch)B/z( wz ) 2 1172312 ‘f — M 2
i Prorwrd RS ARSI L e |
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For completeness, we include here the exact relation between the original transverse bosons

771 A,A" and the final expression in terms of §,$:
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— (w% e )1/4 wo(@/w) /A +AT) + w(wo/w)/*(E +¢7)
Wow V2(wk + w?)t/2

Pg

(wg +w? )‘” T (o) @) VHA—AT) + () wy)/4(E — &1
wow ivV2(w3 + w?)1/2
(E.16)

>
Il

[ B ey (/)4 A + A7) — wylwy/w) (e +&7)
| (w2 + w2)V2(N )14 V2w + w?)1/2
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