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Abstract

We develop a generalization of the Schwinger boson and Holstein-Primakoff transforma-
tions that is applicable to ensembles of N spin 1/2’s with weak permutational symmetry.
These generalized mappings are constructed by introducing two independent bosonic
variables that describe fluctuations parallel and transverse to the collective Bloch vector
built out of the original spin 1/2’s. Using this representation, we develop a systematic
1/N expansion and write down explicitly leading and next-to-leading order terms. We
then illustrate how to apply these techniques using four example systems: (i) an ensem-
ble of atoms undergoing spontaneous emission, incoherent pumping and single particle
dephasing; (ii) a superradiant laser above and in the vicinity of the upper lasing transi-
tion; (iii) the all-to-all transverse field Ising model subject to incoherent pumping in the
vicinity of its ordering phase transition; and (iv) the Dicke model at finite temperature
both away and in the vicinity of its thermal phase transition. Thus, these mappings pro-
vide a common, Bloch-sphere based, geometrical description of all-to-all systems subject
to single particle dissipation or at finite temperature, including their phase transitions.
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1 Introduction25

Collective spin systems arise very frequently in the field of quantum technologies, e.g. when26

atoms interact with light inside an optical cavity [1] or when ions communicate via a common27

motional mode [2,3]. They often provide minimal theoretical descriptions of non-equilibrium28

phenomena such as superradiance [4,5], driven-dissipative dynamics [6–20] and novel kinds29

of lasing [21–26], and are thus fundamental ingredients of many iconic models from quantum30

optics [6,8,27,28]. Moreover, collective spin systems are also well suited for the preparation31

of highly entangled spin squeezed states [28–37], with current efforts now focusing on using32

them for the improvement of state-of-the-art sensors [38,39].33

When collective spin systems are built out of ensembles of atoms, physical processes can-34

not fundamentally distinguish between the atoms that partake in them. This indiscernibility35

is a crucial ingredient for the creation of the quantum-enhanced correlations that underpin36

metrological applications, and often takes the form of a mathematically exact permutational37

symmetry among the atoms. This is advantageous because theoretical analyses based on this38

symmetry are considerably simpler [5], while often still capturing the qualitative properties of39

similar but less symmetric models [40–47]. Even when typical sources of decoherence such as40

spontaneous emission into free space are included, a restricted amount of this permutational41

symmetry is retained [48–50], although correlations are usually damaged as a result.42

The main technical simplification brought about by permutational symmetry is a reduction43

of the space of quantum states that the system explores during its dynamics. The typical,44

exponentially large in N , Hilbert space of N spins is brought down to a subspace whose size45

is polynomial in N . The exact degree of reduction will then depend on whether the symmetry46

acts in a strong or a weak sense [51–53]. If there are only coherent interactions, governed47

by a Hamiltonian, or the sources of dissipation are collective, e.g. by coupling the atoms to a48

lossy cavity mode, the symmetry will be realized strongly. In this case, the size of the relevant49

subspace will be ∼ N(N2) for closed (open) system dynamics. In contrast, in the presence50

of single particle sources of dissipation such as spontaneous emission, the symmetry will be51

realized weakly. The evolution will then be inherently open and the subspace of explored52

density matrices will be of size ∼ N3 [48,50,54]. These reductions are routinely exploited in53
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numerical simulations [55], although the N3 scaling is still very limiting in practice. Further54

gains can be achieved using (stochastic) Monte Carlo wavefunction techniques [56], at the55

expense of requiring averages (with low statistical uncertainty) over multiple repetitions of56

the stochastic evolution.57

When the permutational symmetry is strong, analytical insight is often provided by us-58

ing bosonic representations of the spin operators [57–59], which are based on a second-59

quantization approach that has found successful application in fields like e.g. polaritonic60

chemistry [60, 61]. More concretely, collective spin operators can be expressed exactly in61

terms of two Schwinger bosons, in a way that makes manifest their nature as components of62

an SO(3) vector. Moreover, the strongness of the symmetry provides a constraint that can be63

used to mathematically eliminate one of the bosons. The resulting expressions in terms of64

a single boson are known as the Holstein-Primakoff (HP) transformation [62]. Although HP65

hides manifest rotational covariance, it provides a way of performing a systematic expansion66

in powers of 1/N [58, 59]. The leading terms in this expansion give rise to the mean field67

approximation, and the leading corrections typically describe gaussian fluctuations about the68

mean field state. If the expansion is done carefully, it can also be used to analyze phase transi-69

tions, although in this case fluctuations acquire a non-gaussian character [14, 63–65]. Either70

way, the mean field quantum state can be visualized as an arrow (the Bloch vector) on the71

surface of a collective Bloch sphere, of radius N/2, while fluctuations can be represented as72

a small distribution about the tip of this arrow. Both the distribution and the arrow tip lie on73

the surface of the sphere [Fig. 1(a)].74

When the permutational symmetry is weak, i.e. in the presence of single particle deco-75

herence or at finite temperature, the naive HP mapping breaks down and a Schwinger boson76

representation from which to obtain a modified HP approximation has not been derived in full77

generality. Applying second quantization in superoperator space leads to alternative bosonic78

representations [66] that recover the N3 scaling, but the interpretation of the resulting bosons79

using Bloch spheres is not clear, and the nature of the large N approximation in this represen-80

tation has not been investigated. Following the more standard HP transformation, Ref. [67]81

used phase space methods and Fokker-Planck equations to analyse specific master equations.82

In this paper, we extend the results of Ref. [67] and provide a comprehensive description of83

generalized boson mappings for spin 1/2 systems undergoing single particle dissipation. We84

identify a rotationally covariant structure that expresses local dissipation in terms of Schwinger85

bosons, and then use this representation to derive a modified HP transformation. We find that86

the original HP boson from strongly symmetric systems still appears and still describes fluctu-87

ations perpendicular to the mean field Bloch vector, which can now lie within the sphere and88

not only on its surface. In addition, there is now a second boson that accounts for longitudinal89

fluctuations parallel to the Bloch vector [Fig. 1(b)].90

This technique is of wide generality, as is the geometrical picture that accompanies it. To91

demonstrate this, this paper will fulfill three goals92

(α) Establish an exact operator mapping between generic terms in a spin Lindblad master93

equation and terms in an associated bosonic master equation.94

(β) Devise a set of simple “replacement rules" to analyze the large N limit of such systems95

at their steady states, along with a clearly defined procedure on how to compute further96

corrections in 1/N . When possible, these “rules" should establish direct analogies to97

standard bosonic constructs (e.g. baths at some finite temperature).98

(Π) Show that the exact mapping can also be used to get analytical control over the critical99

region of driven-dissipative and thermal phase transitions when the number of spins N100

is sent to∞.101
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Figure 1: (a) For systems made up of N spin 1/2 and with strong permutational
symmetry, both the collective Bloch vector (arrow in red) and fluctuations lie on the
surface of the collective Bloch sphere, of radius N/2. Fluctuations are transverse to
the collective Bloch vector and are described by the Holstein-Primakoff boson. (b)
When the permutational symmetry is only weak, the Bloch vector can lie inside the
sphere now, and there are also longitudinal fluctuations, which are described by a
different boson. The noise distribution can now be three-dimensional.

In carrying out items (α) and (β), we will establish a simple “recipe" to study generic all-to-all102

spin systems undergoing local dissipation or at finite temperature. Furthermore, item (Π) is103

a generalization of techniques that have been used in the past to describe phase transitions104

of all-to-all systems [14, 63, 64] including only collective sources of dissipation [65]. It also105

provides an alternative, operator based, analysis of phenomena that are more routinely studied106

using Keldysh path integral techniques [68–70]. To progressively fulfill the above three goals,107

we organize this paper as follows108

Section 2 Basic notation and review of (α), (β) and (Π) for strong permutational symmetry. We109

introduce the spin master equation that we will study and illustrate (α), (β) and (Π) by110

focusing on the ground state properties of an example Hamiltonian.111

Section 3 Items (α) and (β) for weak permutational symmetry. We write down the exact op-112

erator mappings and provide their large N approximation.113

Section 4 Examples. We illustrate how to use the mappings away from phase transitions by114

means of two examples: a collection of spins undergoing single particle dephasing, spon-115

taneous emission and incoherent pumping; and a superradiant laser above the upper116

lasing threshold.117

Section 5 Item (Π) for weak permutational symmetry. We illustrate how to use the mappings118

in the vicinity of phase transition points by means of two examples: a superradiant laser119

near threshold and a driven-dissipative transverse field Ising model.120

Section 6 Thermal states. We show that the generalized mapping can also be used to ana-121

lyze thermal properties of collective all-to-all models. We illustrate this using the Dicke122

model, and derive effective Hamiltonians in each of its two thermal phases and also in123

the vicinity of its thermal phase transition.124
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2 Models and motivation125

The type of models that we will study are defined in systems of N qubits. The Hilbert space of126

each qubit is spanned by the states |↑〉i , |↓〉i , (i = 1, ..., N), in which local spin matrices127

ŝi
x =

1
2
(|↑〉〈↓|i + |↓〉〈↑|i)

ŝi
y =

1
2i
(|↑〉〈↓|i − |↓〉〈↑|i)

ŝi
z =

1
2
(|↑〉〈↑|i − |↓〉〈↓|i)

act. Importantly, the density matrix of the system ρ̂ evolves under a Liouvillian with the128

following structure:129

∂t ρ̂ = −i[Ĥ, ρ̂] +Lρ̂ +
∑

α,β ,i

γαβ

 

ŝi
αρ̂ŝi

β −
{ŝi
β

ŝi
α, ρ̂}

2

!

, (1)

where Ĥ and L are a “collective" Hamiltonian and Liouvillian, respectively, meaning that they130

are constructed entirely in terms of the collective spin operators Ĵx ,y,z =
∑

i ŝi
x ,y,z (and/or131

Ĵ± = Ĵx±iĴy). The third contribution, parameterized by the rates γαβ , describes single particle132

processes such as spontaneous emission, incoherent pumping, and dephasing. The collective133

parts, Ĥ and L, describe instead processes such as superradiant emission of light (with jump134

operator∝ Ĵ−) or collective exchange interactions (with Hamiltonian∝ Ĵ+ Ĵ−), which may135

arise via mediation of a cavity mode or a common motional mode.136

Collective spin operators are invariant under the action of permutation operators ÛP , i.e.137

Û†
P Ĵx ,y,z ÛP = Ĵx ,y,z . As a consequence, when γαβ = 0 the evolution equation is independently138

invariant under ρ̂ → ÛP ρ̂ and ρ̂ → ρ̂ÛP . By definition, this means that permutations are a139

strong symmetry of the system [51–53]. It is then useful to construct the spin length operator140

Ĵ , defined as the positive square root of141

Ĵ(Ĵ + 1) = Ĵ2
x + Ĵ2

y + Ĵ2
z . (2)

Using the eigenvalues of Ĵ as labels, we can then organize the 2N possible quantum states142

of the system in terms of their behaviour under permutations. In particular, we will focus143

on the so-called Dicke manifold, which comprises all quantum states that are invariant under144

permutations. The dimension of the Dicke manifold for N spins is N + 1, and they are all145

eigenstates of Ĵ with eigenvalue N/2. A typical basis of this manifold is given by the Dicke146

states |J , M〉, which are also eigenstates of Ĵz with eigenvalue M (we are keeping the label J147

in the state to make connections with Sec. 3 more direct, although it has the value N/2 for the148

Dicke states).149

2.1 Motivation150

To give a better characterization of what kind of description we are after, we will illustrate items151

(α), (β) and (Π) of the introduction using the more familiar setting of Hamiltonian systems152

and ground states, so for now we set L= 0 and γαβ = 0. We thus consider an all-to-all version153

of the transverse field Ising model, also known as the Lipkin-Meshkov Glick model [8,71,72]154

Ĥ = −Ĵz −
g
N

Ĵ2
x , (3)

which is expressed entirely in terms of collective spin operators. Because of the all-to-all con-155

nectivity of the model, mean field theory provides an accurate description of the ground state156

when N →∞. Specifically, there are two ground state phases [see Fig. 2(a)]:157
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Figure 2: (a) Husimi distribution, Q ∝ |〈θ ,φ|gnd〉 |2, of the ground state |gnd〉,
where |θ ,φ〉 is a spin-coherent state [73]. In the paramagnetic phase (g < 1), the
Bloch vector is polarized along +z. In the ferromagnetic (g > 1) phase, the Bloch
vector acquires a ±x component. (b) Dicke states, which are permutationally sym-
metric eigenstates of Ĵz . The states can equally be labeled by the occupation number
of the Holstein-Primakoff boson (Â†Â). The green shaded area is the region of Hilbert
space where the large N approximation is accurate. (c) Husimi distribution at the
critical point g = 1, plotted as a function of the quadratures x ≈ Jx/

p

N/2 and
p ≈ Jy/

p

N/2 for N = 50, 1000. As N increases the ground state gets squeezed
along the Jy direction.

• Paramagnetic: When g < 1, there is only one ground state, characterized by 〈Ĵz〉= N/2158

and 〈Ĵx ,y〉= 0. Thus, the collective Bloch vector 〈Ĵ〉= 〈(Ĵx , Ĵy , Ĵz)〉 points along the +z159

direction.160

• Ferromagnetic: When g > 1, there are two degenerate ground states, with 〈Ĵz〉= N/(2g),161

〈Ĵx〉= ±(N/2)
p

1− g−2 and 〈Ĵy〉= 0. The Bloch vector points now in the xz plane.162

Operationally, these are obtained by calculating the equations of motion for the expecta-163

tions 〈Ĵa〉, factorizing operator products 〈Ĵa Ĵb〉 → 〈Ĵa〉 〈Ĵb〉, setting the time derivatives to164

0 and solving the ensuing nonlinear equations. Alternatively, in the case of ground states165

the mean field solution can also be obtained by replacing operators by classical variables166

(Ĵx , Ĵy , Ĵz)→ N(sinθ cosφ, sinθ sinφ, cosθ )−2 and minimizing the resulting classical Hamil-167

tonian with respect to the parameters θ ,φ.168

Studying fluctuations requires going beyond the simple factorizaton scheme used to obtain169

the mean field results. This is achieved by representing the collective spin operators in terms170

of Schwinger bosons171

Ĵ =
1
2

�

b̂† â†
�

σ

�

b̂
â

�

, (4)

where σ = (σx ,σy ,σz)T , and (â, â†) and (b̂, b̂†) are two pairs of bosonic variables satisfying172

standard commutation relations [â, â†] = [b̂, b̂†] = 1. In the Schwinger boson representation,173

the spin length Ĵ also has a simple form174

Ĵ =
a†â+ b̂† b̂

2
. (5)
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For Hamiltonian systems, this constitutes item (α) in the introduction.175

Physically, the number operators b̂† b̂ and â†â count the number of spins in |↑〉 and |↓〉 re-176

spectively. Because of permutational symmetry, basis states in the Dicke manifold are specified177

uniquely by the occupation numbers of |↑〉 and |↓〉. Since there are N spins in total, quantum178

states |ψ〉 in the Dicke manifold are subject to the constraint179

(â†â+ b̂† b̂) |ψ〉= N |ψ〉 , (6)

or equivalently Ĵ |ψ〉= (N/2) |ψ〉. To study fluctuations in the paramagnetic ground state, we180

recognize that the collective spin points along +z, so that b̂† b̂ ∼ N and â†â ∼ 1. It is thus181

convenient to use the number-phase representation for b̂ = eiφ̂/2(b̂† b̂)1/2 [74], where eiφ̂/2
182

reduces the occupation of the b̂ boson by 1 with unit amplitude. Using the constraint Eq. (6)183

and defining Â = âe−iφ̂/2 enables us to represent the collective spin operators in terms of a184

single Holstein-Primakoff boson [62]185

Ĵz =
N
2
− Â†Â

Ĵ+ = (N − Â†Â)1/2 × Â

Ĵ− = Â†
�

N − Â†Â
�1/2

(7)

This is an alternative version of item (α) in the introduction. The Holstein-Primakoff mapping186

is exact, but it is more convenient when the Bloch vector is aligned along +z, because then187

〈Â†Â〉 � N , Var(Â†Â) � N2, and the square roots can be expanded in a Taylor series. This188

establishes a systematic way of studying fluctuations with a controlled small parameter N−1/2.189

For later convenience, we also define here the quadrature operators x̂ = (Â+ Â†)/
p

2 and190

p̂ = −i(Â− Â†)/
p

2.191

To leading order in 1/N , we can approximate192

Ĵ+ ≈
p

NÂ

Ĵ− ≈
p

NÂ†

Ĵz = N/2− Â†Â

(8)

This set of replacement rules constitutes item (β) in the introduction, and provides a direct193

analogy to boson creation/destruction processes. Replacing these expressions in Eq. (3) leads194

to the fluctuation Hamiltonian195

Ĥ ≈ −
(N + 1)

2
+

p̂2

2
+
(1− g) x̂2

2
+O(N−1/2). (9)

Since the Hamiltonian is quadratic in boson operators, expectation values can be calculated196

analytically. For instance,197

〈Ĵ2
x 〉 ≈

N
4
(1− g)−1/2

〈Ĵ2
y〉 ≈

N
4
(1− g)1/2

(10)

To analyze fluctuations about the ferromagnetic ground state, one first needs to rotate the198

mean field collective Bloch vector (which is now tilted in the xz plane) to the +z axis. All the199

other steps then follow through identically.200

As we approach the critical point through the paramagnetic phase (g → 1−), Eq. (10)201

predicts that fluctuations in Ĵx ∼ x̂ diverge. In reality, this just means that the leading order202

approximation in 1/N fails, but the Holstein-Primakoff mapping remains exact. To get control203
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over the phase transition region, we need to keep the relevant nonlinearity in the next order204

in 1/N , which is given by205

Ĵx ≈

√

√N
2

x̂ −
x̂3

4
p

2N
. (11)

Note that, at the same order in 1/N , there are also terms of the form x̂2 p̂, but these are smaller206

than x̂3 on account of x̂ being the variable with diverging fluctuations (and will later be shown207

to be parametrically smaller in 1/N). The corrected Hamiltonian near g = 1 is thus208

Ĥ ≈ −
(N + 1)

2
+

p̂2

2
+
(1− g) x̂2

2
+

x̂4

4N
. (12)

The dependence with N can be made manifest by canonically rescaling x̂ = N1/6 ŷ and p̂ = N−1/6q̂,209

and introducing a scaled coupling constant ξ that measures deviations from the critical point210

according to g = 1− ξ/N2/3. In terms of these variables Ĥ becomes211

Ĥ ≈ −
(N + 1)

2
+

1
N1/3

�

q̂2

2
+
ξ ŷ2

2
+

ŷ4

4

�

, (13)

which is still a bosonic Hamiltonian, but now with a non-gaussianity that is especially rele-212

vant at g = 1 and an energy gap that scales like N−1/3 [75]. Using this formulation, and since213

ŷ , q̂ ∼ 1, we immediately see that fluctuations in Ĵy at the critical point scale as Ĵy ∼
p

N p̂ ∼ N1/3
214

and so the state is squeezed along the y direction. Because of the same reason, the terms215

neglected in Eq. (11) are of size x̂2 p̂ ∼ N1/6 and parametrically smaller than x̂3 ∼ N1/2, jus-216

tifying their omission a posteriori, and indicating that the large N expansion in the vicinity217

of the critical point is in fact an expansion in powers of N1/3 rather than N1/2. This type of218

analysis [12,14,63,64,69] constitutes item (Π) in the introduction.219

220

3 Operator mapping221

We now consider all of Eq. (1), following closely the logic of Sec. 2.1, and begin by discussing222

permutational symmetry. Unlike collective Hamiltonians and Liouvillians, local dissipation223

is only symmetric with respect to permutations in the weak sense [51–53]. In consequence,224

Eq. (1) does not preserve the Dicke manifold, and the associated steady state Bloch vector is no225

longer restricted to have the maximum length N/2. Nevertheless, it is still possible to define a226

“generalized" Dicke manifold [48,50] of density matrices, which IS preserved by Eq. (1), and227

which can still be depicted using Bloch spheres [see Fig 1(b)].228

The “generalized" Dicke manifold for N spins is spanned by the matrices |J , M〉〈J , M ′|,229

which are the unique (up to normalization) permutationally symmetric density matrices that230

are also right/left eigenstates of Ĵ with equal eigenvalue 0 < J ≤ N/2, and right/left eigen-231

states of Ĵz with eigenvalues M , M ′, respectively. Importantly, the |J , M〉〈J , M ′| is not an outer232

product of Dicke states with different J , M , but in many respects it behaves like one, so it is233

useful to picture the dynamics of the system as if it were happening in a Hilbert space spanned234

by the states |J , M〉. This defines the Dicke triangle [56,76–78], depicted in Fig. 3(b). The up-235

shot of all of this is that the 4N dimensional space of density matrices is reduced to a subspace236

of dimension ∼ N3.237

Given Eq. (1), the first line of attack is a mean field analysis. We assume that this has been238

done, resulting in a mean field Bloch vector Jmf = (Jmf
x , Jmf

y , Jmf
z ), and that the axes have been239

rotated so that Jmf is aligned with the positive z axis. We thus have that Jmf
x = Jmf

y = 0 and240

Jmf
z > 0. Moreover, the length of the Bloch vector Jmf coincides with Jmf

z .241
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Figure 3: Dicke triangle, with “states" |J , M〉, and their enumeration in terms of
Schwinger bosons. The column with J = N/2 corresponds to the Dicke states from
Fig. 2(b).

To study fluctuations, we will make use of the Schwinger boson representation in Eq. (4),242

which we reproduce here for reference purposes243

Ĵ =
1
2

�

b̂† â†
�

σ

�

b̂
â

�

Ĵ =
â†â+ b̂† b̂

2
.

(14)

The main difference with respect to Sec. 2.1 is that 2Ĵ = â†â + b̂† b̂ is now allowed to fluctu-244

ate. Since basis elements of density matrices in Schwinger boson space are specified by four245

numbers (left and right eigenvalues of â†â and b̂† b̂), they can accommodate the three index246

object |J , M〉〈J , M ′| [see Fig. 3].247

The Hamiltonian, the collective Liouvillian, and the anticommutator terms of Eq. (1) are248

constructed in terms of collective operators, so for them Eq. (14) suffices. However, terms249

such as ŝαρ̂ ŝβ require a distinct bosonic description. We construct it by combining rotational250

properties of the spin operators with the results from Ref. [48], which provides the (superop-251

erator) matrix elements of ŝαρ̂ ŝβ between generalized Dicke states. To do this, we recall that252

spin operators transform as SO(3) vectors under rotations, a feature that is made manifest in253

Eq. (14), given that (b̂ â)T transforms as a SU(2) doublet. There are, however, more ways of254

constructing SO(3) vectors out of (b̂ â)T . For local dissipation, we will need255

K̂ =
1
2

�

b̂ â
�

iσyσ

�

b̂
â

�

L̂= −
1
2

�

b̂† â†
�

σ iσy

�

b̂†

â†

�

= K̂†.

(15)

9
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The vector K̂ (L̂) is constructed out of two destruction (creation) operators, so it changes the256

value of Ĵ by −1 (+1). Using the three vectors J ,K,L, we can express local dissipator terms257

as (see Appendix A)258

N
∑

i=1

ŝi
αρ̂ ŝi

β = Ê Ĵαρ̂Ĵβ + F̂ K̂αρ̂ L̂β + Ĝ L̂αρ̂K̂β , (16)

where259

Ê =
1+ N/2

2Ĵ(Ĵ + 1)

F̂ =
N/2+ Ĵ + 2

2(Ĵ + 1)(2Ĵ + 3)

Ĝ =
N/2− Ĵ + 1

2Ĵ(2Ĵ − 1)

(17)

are functions only of the spin length Ĵ . At this level of generality, this corresponds to item (α)260

in the introduction.261

To build up a Holstein-Primakoff mapping, we need to get rid of the b̂ boson. As in262

Sec. 2.1, we do this by using a number-phase decomposition for b̂ = eiφ̂/2(b̂† b̂)1/2, introduc-263

ing Â = âe−iφ̂/2, and replacing b̂† b̂, wherever it appears, using the relation b̂† b̂ = 2Ĵ − Â†Â.264

We also introduce δĴ = Ĵ − Jmf, which measures fluctuations of Ĵ with respect to its mean265

field value. As a consequence of these choices, both δĴ and Â†Â are� N . This furnishes two266

independent, physically transparent, sets of variables:267

• The pair δĴ , eiφ̂ describes fluctuations parallel to the mean field spin direction, and268

satisfies a standard number/phase relation δĴ eiφ̂ = eiφ̂(δĴ − 1). Note that eiφ̂ reduces269

δĴ by 1 while keeping Â†Â fixed, so it reduces b̂† b̂ by 2.270

• The pair Â, Â† satisfy [Â, Â†] = 1 and describe fluctuations transverse to the mean field271

spin direction. This is most easily seen by considering Ĵ+ = â b̂† ≈ Â
p

2Jmf. The prefac-272

tor in front of Â is no longer exactly
p

N but is still of the same order since Jmf ∼ N .273

From this representation we can now perform a large N approximation systematically. The274

qualitative nature of the expansion will depend on whether the (mean field) normalized spin275

length j = Jmf/(N/2) is less than or equal to 1. We treat these cases independently and call276

them type I and type II, respectively, for ease of reference.277

3.1 Type I: Replacement rules when j < 1278

When j < 1, the mean field steady state is localized along the upper boundary of the Dicke279

triangle, but away from the corners, as depicted by the shaded region in Fig. 4(a). The fluctu-280

ations in δĴ will generically be of size
p

N , while φ̂ can be taken to be sharply defined, with281

fluctuations δφ̂ ∼ 1/
p

N . This means that eiφ̂ can be expanded in a Taylor series. To take282

this into account, and to make manifest the various scalings with N , we introduce normalized283

longitudinal bosons l̂ = N−1/2δĴ , q̂ =
p

Nφ̂, with commutator [l̂, q̂] = i. After some algebra284

(see Appendix B), we obtain the associated bosonic approximations of the spin dissipators, as285

shown in Table 1.286

These “replacement rules" constitute item (β) in the introduction. At the same time,287

they provide intuitive bosonic pictures. For example, in white-noise dephasing (ŝzρ̂ ŝz) the288
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Figure 4: (a) Dicke triangle, now described in terms of the Holstein-Primakoff boson
and Ĵ . The operator Â moves vertically, while eiφ̂ moves parallel to upper boundary.
Shaded green region represents states around a type I steady state, i.e., polarized
along +z with mean field length Jmf < N/2. The large N expansion focuses on states
within the shaded region, which upon zooming in becomes a half-plane (Â†Â > 0,
and no restriction on δĴ). (b) Dicke triangle again, but shaded region now represents
states around a type II steady state, i.e., polarized along +z with mean field length
Jmf = N/2. The shaded region is now a squashed quarter plane, with Â†Â > 0 and
δĴ < 0.

transverse boson behaves as if it were connected to a finite temperature bath with absorp-289

tion/emission rates that depend on the normalized mean field spin length j. In incoherent290

pumping (σ̂+ρ̂ σ̂−), which drives the system towards +z, the transverse boson is connected to291

a 0 temperature bath, while the longitudinal boson (l̂) is subject to diffusion (term [q̂, [ρ̂, q̂]])292

and relaxation (term [q̂, {l̂, ρ̂}]). In incoherent decay (σ̂−ρ̂ σ̂+), which drives the Bloch vector293

towards −z and away from +z, the transverse boson is instead connected to a ∞ tempera-294

ture bath. Note also that some dissipators (including incoherent pumping/decay) have terms295

that are proportional to
p

N . These terms should cancel in the full Liouvillian (only) if the296

expansion is done about the correct mean field steady state.297

3.2 Type II: Replacement rules when j = 1298

When j = 1, the mean field steady state is localized near the upper corner of the Dicke triangle,299

as depicted by the shaded region in Fig. 4(b). Now δĴ < 0 (the spin length can only be300

smaller than N/2) and fluctuations will also be δĴ ∼ 1. Consequently, the phase variable301

will have fluctuations δφ̂ ∼ 1 and we can no longer Taylor expand the exponential. Instead,302

we have to keep the expressions for the longitudinal boson intact. Physically, this means that303

the discreteness of δĴ is relevant. This leads to the replacement rules shown in Table 2 (see304

Appendix B).305

4 Examples306

In this section we illustrate the full machinery using two simple examples: (i) a collection of307

atoms undergoing incoherent pumping, decay and white-noise dephasing; (ii) superradiant308

lasing above the upper threshold.309
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Spin term Boson term

∑N
i=1

�

ŝi
zρ̂ŝi

z −
1
2{ŝ

i
z ŝi

z , ρ̂}
�

�

j + 1
2 j

��

Âρ̂Â† −
1
2
{Â†Â, ρ̂}

�

+
�

1− j
2 j

��

Â†ρ̂Â−
1
2
{ÂÂ†, ρ̂}

�

∑N
i=1

�

σ̂i
+ρ̂σ̂

i
− −

1
2{σ̂

i
−σ̂

i
+, ρ̂}

�

1
j

�

Âρ̂Â† −
1
2
{Â†Â, ρ̂}

�

+
(1− j)

4

�

q̂,
�

ρ̂, q̂
��

+
i
2

�

q̂, {l̂, ρ̂}
�

−
i
p

N(1− j)
2

[q̂, ρ̂]

∑N
i=1

�

σ̂i
−ρ̂σ̂

i
+ −

1
2{σ̂

i
+σ̂

i
−, ρ̂}

�

1
j

�

Â†ρ̂Â−
1
2
{ÂÂ†, ρ̂}

�

+
(1+ j)

4

�

q̂,
�

ρ̂, q̂
��

+
i
2

�

q̂, {l̂, ρ̂}
�

+
i
p

N(1+ j)
2

[q̂, ρ̂]

∑N
i=1

�

σ̂i
+ρ̂σ̂

i
+ −

1
2{σ̂

i
+σ̂

i
+, ρ̂}

� 1
j

�

Âρ̂Â−
1
2
{Â2, ρ̂}

�

−
1
2

�

Â2, ρ̂
�

∑N
i=1

�

σ̂i
+ρ̂ŝi

z −
1
2{ŝ

i
zσ̂

i
+, ρ̂}

� p
N

�

2− j

4
p

j

�

�

Â, ρ̂
�

−
�

2+ j

4 j
p

j

�

�

Â, ρ̂
�

l̂ + i

�

1− j

2
p

j

�

[q̂, ρ̂] Â

∑N
i=1

�

σ̂i
−ρ̂ŝi

z −
1
2{ŝ

i
zσ̂

i
−, ρ̂}

� p
N

�

j + 2

4
p

j

�

�

Â†, ρ̂
�

−
�

2− j

4 j
p

j

�

�

Â†, ρ̂
�

l̂ − i

�

1+ j

2
p

j

�

[q̂, ρ̂] Â†

Table 1: Replacement rules, to order N0, when j < 1. The first three lines corre-
spond to typical Lindbladian terms that describe white-noise dephasing (first line),
incoherent pumping (second line) and incoherent decay (third line). The remaining
dissipators can be obtained by conjugation of the last three lines.

4.1 Pumping+decay+dephasing310

We first study a single particle problem in which an ensemble of two-level atoms with excited311

state lifetime γ−1 and inhomogeneous lifetime 2γ−1
d is incoherently pumped with rate w. The312

master equation describing this evolution is313

∂t ρ̂ =
N
∑

i=1

�

γD[σ̂i
−]ρ̂ +wDσ̂i

+(ρ̂) + γdD[ŝi
z]ρ̂

�

, (18)

where D[Ô]ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is a standard dissipator. The γd is the consequence of a314

white-noise-correlated dephasing process, while the incoherent pumping process results from315

coherently driving to a rapidly decaying auxiliary level [see Fig. 5(a)]. This master equation316
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Spin term Boson term

∑N
i=1 ŝi

zρ̂ŝi
z

N ρ̂
4
+ Âeiφ̂ρ̂ e−iφ̂Â† −

1
2
{Â†Â, ρ̂}+O(N−1)

∑N
i=1 σ̂

i
+ρ̂σ̂

i
− Âρ̂Â† − e−iφ̂δĴρ̂ eiφ̂ +O(N−1)

∑N
i=1 σ̂

i
−ρ̂σ̂

i
+ Neiφ̂ρ̂ e−iφ̂ +O(N0)

∑N
i=1 σ̂

i
+ρ̂σ̂

i
+ Âρ̂Â− (Â)2eiφ̂ρ̂e−iφ̂ +O(N−1)

∑N
i=1 σ̂

i
+ρ̂ŝi

z
1
2

p
NÂρ̂ +O(N−1/2)

∑N
i=1 σ̂

i
−ρ̂ŝi

z

p
N
�

1
2

Â†ρ̂ − eiφ̂ρ̂e−iφ̂Â†
�

+O(N−1/2)

Table 2: Replacement rules, to leading non-vanishing order in 1/N , when j = 1.
The first three lines correspond to typical Lindbladian terms that describe white-
noise dephasing (first line), incoherent pumping (second line) and incoherent decay
(third line). The remaining dissipators can be obtained by conjugation of the last
three lines.

can be solved exactly, leading to the following steady state observables317

〈Ĵz〉=
N
2

�

w−γ
w+γ

�

〈Ĵx ,y〉= 0

Var(Ĵz) =
Nγw
(γ+w)2 Var(Ĵx ,y) =

N
4

(19)

that we can then compare against the results obtained via the 1/N expansion. The expressions318

for the expectation values should be obtained directly from mean field results. The bosonic319

description will then provide the variances. We begin by calculating the mean field steady320

state, which is aligned along +z if w > γ and has j = (w− γ)/(w+ γ). Since j < 1, we use321

Table 1 to arrive at an effective bosonic description (as promised, the
p

N contributions cancel322

among each other)323

∂t ρ̂ = (γ+w+ γd)
�

(n̄+ 1)D[Â]ρ̂ + n̄D[Â†]ρ̂
�

︸ ︷︷ ︸

Transverse dynamics

+D
�

q̂, [ρ̂, q̂]
�

+
i(w+ γ)

2

�

q̂, {l̂, ρ̂}
�

︸ ︷︷ ︸

Longitudinal dynamics

,
(20)

where n̄ = γ(w− γ)−1 and D = γw/(γ+ w). Thus, the transverse boson is effectively coupled324

to a bath with decay rate γ+w+γd and thermal occupation n̄, while the longitudinal boson l̂325

undergoes relaxation with rate (γ+w) and diffusion with coefficient D. The divergence in n̄ as326

γ→ w indicates that at γ= w the mean field Bloch vector has zero length, and the expansions327

break down (we are then at the rightmost corner of the Dicke triangle). When γ > w, the328

Bloch vector points along −z so it first has to be rotated to +z.329

From the boson master equation we can immediately calculate transverse variances330

〈Ĵ2
x 〉 ≈

N j
4
〈(Â+ Â†)2〉=

N j
4
(2n̄+ 1) =

N
4

, (21)
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Figure 5: (a) Schematic of a superradiant laser. Atomic excitations are transformed
into cavity photons, which then quickly escape the system with rate Cγ per atom.
Population inversion is obtained by coherently driving auxiliary levels. (b) When
w > NCγ the Bloch vector points along +z. When w < NCγ, the mean field Bloch
vector acquires a transverse component (J+mf 6= 0). At long times, phase diffusion
leads to a circular distribution.

with an identical result for 〈Ĵ2
y〉, and in agreement with Eq. (19). For the Ĵz variance, we use331

Ĵz = Ĵ − Â†Â. To leading order in 1/N , we then have that Var(Ĵz) = Var(Ĵ) = N 〈l̂2〉, which can332

be calculated directly from the boson description, yielding333

N 〈l̂2〉= N
D

(γ+w)
=

Nγw
(γ+w)2

. (22)

This is again in agreement with Eq. (19).334

4.2 Superradiant laser above upper threshold335

In this subsection we study a model for superradiant lasing, described by the following master336

equation [22,24,79]337

∂t ρ̂ = CγD[Ĵ−] +w
N
∑

i=1

D[σi
−]ρ̂ ≡ Lsrρ̂, (23)

which includes incoherent pumping (with rate w), and collective emission (Ĵ−) induced by338

coupling the atomic transition to a lossy cavity mode [see Fig 5(a)]. The collective decay rate339

per particle, Cγ, depends on the cavity cooperativity C and the lifetime of the excited state γ.340

We are assuming that γ� w, NCγ so that we can neglect spontaneous emission terms D[σ̂i
−]341

in the master equation. Solving the mean field equations under these assumptions leads to342

two different phases: an incoherent phase when w > NCγ, with the Bloch vector completely343

polarized along +z (J z
mf = Jmf = N/2 so j = 1) and no coherence (J−mf = 0); and a lasing phase344

when w< NCγ, with nonzero coherence J−mf 6= 0.345

Fluctuations in the incoherent phase are easier to analyze because the Bloch vector is346

already pointing along +z. Since j = 1, we need to use the replacement rules in Table 2,347
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along with Eq. (14) for collective operators. This leads to348

∂t ρ̂ = wD[Â]ρ̂ + NCγD[Â†]ρ̂ +w
�

δĴρ̂ − e−iφ̂δĴρ̂eiφ̂
�

(24)

Once again, the transverse boson behaves as if it were connected to a finite temperature bath,349

now with decay rate w− NCγ and thermal occupation n̄ = NCγ(w− NCγ)−1, while the dy-350

namics of the longitudinal boson drives the system towards δJ = 0 (J = N/2). Using the351

boson description we can directly import known results for steady state two-time correlation352

functions [80,81]353

〈Ŝx(τ)Ŝx〉 ≡ Tr
�

Ŝx eLsrτ
�

Ŝx ρ̂ss

��

≈
N
4

�

w+ NCγ
w− NCγ

�

e−(w−NCγ)τ (25)

and then obtain power spectral densities. As w→ NCγ, fluctuations (encoded in n̄) diverge,354

indicating that a more careful analysis (deferred to Sec. 5) is required. The decay constant355

w− NCγ could be identified as the “linewidth" of the emitted light in the incoherent phase,356

and is in agreement with Eq. (4) of Ref. [77] in the appropriate limit (strong pumping, no357

dephasing, negligible spontaneous emission and large cavity decay rate).358

When w< NCγ, the mean field Bloch vector no longer points along +z, and its transverse359

direction can be arbitrarily chosen to lie along the +x direction due to the weak U(1) phase360

symmetry of the system. To study fluctuations, the Bloch vector first needs to be rotated onto361

the +z axis, and only then should the replacement rules be used. In this configuration, the Ŝy362

variable is a proxy for the azimuthal phase of the Bloch vector, will undergo diffusion, and its363

two-time correlation function will encode the linewidth of the laser (see Appendix C). Because364

of the diffusive behaviour phase fluctuations will grow with time, at long times the large N365

expansion about the mean field steady state will break down, and the distribution will become366

symmetrical about rotations along the z axis, as depicted in Fig. 5(b), although modified large367

N techniques are still applicable.368

All of the results presented so far can also be obtained using second-order cumulant tech-369

niques, although we believe that the boson formalism provides a simple picture of the longi-370

tudinal fluctuations. However, paralleling the purely Hamiltonian case, the formalism can be371

extended to describe the vicinity of the phase transition in a controlled way.372

5 Driven-dissipative phase transitions373

In this section we address item (Π) in the introduction and show how the bosonic representa-374

tion can be used to describe the properties at, and in the vicinity of, driven-dissipative phase375

transitions in all-to-all models. We will consider two examples: the first one will be a con-376

tinuation of the analysis of the superradiant laser in Section 4 and the second one will be a377

dissipative generalization of the all-to-all transverse field Ising model, previously analyzed in378

Ref. [70].379

5.1 Superradiant laser near upper threshold380

Here we describe the onset of the lasing transition when N → ∞. Equation (24) naively381

indicates that fluctuations diverge as w → NCγ ≡ wc . As in the Hamiltonian case, this is a382

breakdown of the large N approximation as implemented by Table 2. We expect instead that383

higher order terms in the 1/N expansion will stabilize the system. To pursue this, we need to384

extend Table 2 by including further corrections. We show the resulting replacement rules in385

Table 3. For completeness, we also include the expansion of collective operators Ĵ±,z .386
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Spin term Boson term

Dzz(ρ̂)≡
N
∑
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ŝi
zρ̂ŝi

z

N ρ̂
4
+
�

Âeiφ̂ρ̂ e−iφ̂Â† −
1
2
{Â†Â, ρ̂}

�

−
1
N

�

Âeiφ̂δĴρ̂e−iφ̂Â† + Â†e−iφ̂δĴρ̂eiφ̂Â+
1
2

Â{Â†Â, eiφ̂ρ̂e−iφ̂}Â†
�

+
1
N

�

δĴρ̂ +δĴ{Â†Â, ρ̂}+ Â†Âρ̂Â†Â
�

+O(N−2)

D+−(ρ̂)≡
N
∑

i=1

σ̂i
+ρ̂σ̂

i
−

�

Âρ̂Â† − e−iφ̂δĴρ̂ eiφ̂
�

−
1
N

�

2δĴ Âρ̂Â† +
1
2
{Â†Â, Âρ̂Â†}

�

+
1
N

�

{Â†Â, e−iφ̂δĴρ̂eiφ̂}+ (Â)2eiφ̂ρ̂e−iφ̂(Â†)2
�

+O(N−2)

D−+(ρ̂)≡
N
∑

i=1

σ̂i
−ρ̂σ̂

i
+ Neiφ̂ρ̂ e−iφ̂ +

�

δĴ eiφ̂ρ̂e−iφ̂ + Â†ρ̂Â− {Â†Â, eiφ̂ρ̂e−iφ̂}
�

+O(N−1)

D++(ρ̂)≡
N
∑

i=1

σ̂i
+ρ̂σ̂

i
+ Âρ̂Â− (Â)2eiφ̂ρ̂e−iφ̂ +O(N−1)

D+z(ρ̂)≡
N
∑

i=1

σ̂i
+ρ̂ŝi

z

p
NÂρ̂
2
+

1
p

N

�

e−iφ̂ρ̂δĴ eiφ̂Â+ (Â)2eiφ̂ρ̂Â†
�

−
1
p

N

�

δĴ Âρ̂
2
+

Â†(Â)2ρ̂
4

+ Âρ̂Â†Â
�

+O(N−3/2)

D−z(ρ̂)≡
N
∑

i=1

σ̂i
−ρ̂ŝi

z

p
N

�

Â†ρ̂

2
− eiφ̂ρ̂e−iφ̂Â†

�

−
1

2
p

N

�

δĴ Â†ρ̂ + (Â†)2Âρ̂ + 2Â†ρ̂Â†Â
�

+
1
p

N

�

Â†Âeiφ̂ρ̂e−iφ̂Â† +
1
2

eiφ̂ρ̂e−iφ̂Â†ÂÂ† +
1
2

eiφ̂ρ̂e−iφ̂Â†
�

+O(N−3/2)

Ĵ+
p

NÂ+
1
N
δĴ Â−

1
2N

Â†ÂÂ

Ĵz
N
2
+δĴ − Â†Â

Table 3: Lindbladian terms to higher order in 1/N (highlighted in green). All other
combinations can be obtained by complex conjugation. We also include expressions
for collective spin operators
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Setting w = wc + δw in Eq. (24), with the understanding that δw � NCγ, leads to the387

following bosonic master equation388

∂t ρ̂ = (wc +δw)D[Â]ρ̂ +wc

�

δĴρ̂ − e−iφ̂δĴρ̂ eiφ̂
�

+
wc

N
D[Âeiφ̂](Âρ̂Â†)−

2wc

N
e−iφ̂

¦

D[Âeiφ̂](δĴρ̂)
©

eiφ̂

+wc D[Â†]ρ̂ +
2wc

N
D[Â†](δĴρ̂) +

wc

2N

�

{ÂÂ†Â†Â, ρ̂} − Â†{Â†Â, ρ̂}Â
�

(26)

We will now begin with the simplifications. First, even though at the critical point the trans-389

verse boson occupation diverged and timescales associated to it became very long (w−NCγ)−1,390

the longitudinal boson was still forced to decay to δJ = 0 within a finite timescale (NCγ)−1.391

Thus we can project the system into the steady state subspace of the longitudinal boson. Math-392

ematically, this is performed by computing the matrix element of the evolution superoperator393

(using the trace inner product) between the right/left steady states of the longitudinal boson,394

which are |δJ = 0〉〈δJ = 0| and the identity, respectively. This yields an equation for the395

reduced density matrix of the transverse boson ρ̂T :396

∂t ρ̂T = (wc +δw)D[Â]ρ̂T +wc D[Â†]ρ̂T

+
wc

N
D[Â](Âρ̂TÂ†) +

wc

2N

��

Â, (Â†)2Âρ̂T

�

+
�

ρ̂TÂ†(Â)2, Â†
��

,
(27)

which ought to describe the critical properties of the lasing transition.397

Given that n̄ diverges in the linear theory and that it is stabilized by 1/N corrections, we398

expect that the size of the steady state distribution in boson phase space will scale with N399

and hence be very large, much larger than the size of quantum noise. This implies that we400

can treat Â, Â†, when suitably normalized, as classical variables. To take the classical limit,401

we introduce α̂= N− fAÂ, where fA is a number to be determined, with commutation relations402

[α̂, α̂†] = N−2 fA. Since we want the α̂ variables to be of size ∼ 1 in the classical limit, we need403

to consider an effective Planck constant equal to N−2 fA. Thus, when N →∞ commutators404

become Poisson brackets [ , ] ≈ iN−2 fA{ , }pb. This leads to {α, ᾱ}pb = −i, where we are now405

treatingα, ᾱ as classical commuting variables. To take the classical limit of Eq. (27), we express406

it as much as possible in terms of commutators (and sometimes double commutators).407

The resulting classical master equation for ρc (the classical analogue of ρ̂) is408

∂tρc =
iδw

2

�

{α,ρcᾱ}pb + {αρc , ᾱ}pb
�

−
wc

N2 fA
{α, {ρc , ᾱ}pb}pb

+
iwc

N1−2 fA

�

ᾱ{α2ρc , ᾱ}pb +α{α,ρcᾱ
2}pb

�

(28)

In the previous equation, the first line came from the linear theory, while the second line is409

the nonlinearity. We can make all the terms of the same size if we choose fA = 1/4 and410

keep ζ = N1/2δw/w0 fixed as N →∞. Then the partial differential equation governing the411

evolution of ρc , the classical probability distribution, is412

∂ ρc

∂ (w0 t/
p

N)
=
ζ

2
[∂ᾱ(ᾱρc) + ∂α(αρc)] + ∂

2
αᾱρc +α∂ᾱ(ᾱ

2ρc) + ᾱ∂α(α
2ρc) (29)

This equation determines the cross-over behaviour in the vicinity of the phase transition point413

(ζ= 0), manifestly shows that timescales are slowed down by a factor of
p

N and demonstrates414
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Figure 6: (a) Probability distribution P = ρss
c /N (ζ) = e−|α|

4−ζ|α|2 , normalized such
that P = 1 at α = 0, as a function of |α|2 for ζ = 1 (incoherent phase) and
N = 10,100. (b) Same as (a), but for ζ = 0 (transition point) and N = 10,55, 300.
(c) Same as (a) , but for ζ = −1 (coherent phase) and N = 10,33, 100,300. (d)
First order coherence function as a function of time for N = 10, 100 versus analytical
profile obtained from Eq. (31).

that the system is self-similar as N increases, provided ζ is kept fixed. The steady state of the415

equation can in fact be written down analytically,416

ρss
c =N (ζ)exp

�

−|α|4 − ζ|α|2
�

, (30)

where N (ζ) is a normalization factor with respect to the measure dαdᾱ. When ζ > 0 (inco-417

herent regime), the distribution is peaked at 0 and becomes gaussian when ζ� 1. Similarly,418

when ζ�−1, the distribution is also gaussian, but now peaked at |α|2 = −ζ/2, indicating a419

nonzero value of 〈Ĵ+ Ĵ−〉. In the vicinity of ζ= 0, the distribution is non-gaussian.420

We benchmark this analytical result against numerical simulation of Eq. (26) for ζ= −1, 0,1421

and different values of N up to N = 300. To obtain ρss
c from these numerical results, we iden-422

tify |α|2 with Â†Â/
p

N = (Ĵ − Ĵz)/
p

N and plot the resulting probabilities in Fig. 6 (a), (b) and423

(c) against the analytical formula. We find good agreement when the distribution is peaked424

around |α|2 = 0, especially at larger N , and observe a trend towards convergence as N in-425

creases when the peak is at finite |α|2. In general, we expect corrections to be of relative size426

N−1/2 rather than N−1 due to the scalings around the critical point, indicating that even at427

N = 300 we can expect errors of about 6%.428

The classical master equation Eq. (29) defines a classical generator of time evolution Msr,429

which encodes more information than just the steady state distribution ρss
c . In particular,430

correlation functions of the quantum system can be calculated, to leading order in 1/N , using431
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Msr. For example, the two-point function432

C(τ) = Tr
�

Ĵ+eLsrτ(Ĵ−ρ̂ss)
�

≈ N3/2

∫

αeMsrτ(ᾱρss
c )dαdᾱ (31)

can be expressed entirely in terms of the classical master equation, with a predicted scaling of433

N3/2. This is illustrated in Fig. 6(d), which verifies the N3/2 scaling of C(τ) and demonstrates434

good agreement between the full numerical solution of Eq. (26) and the classical formulas.435

5.2 Dissipative all-to-all transverse field Ising model436

Here we consider a dissipative version of the transverse field Ising model, defined by the fol-437

lowing master equation438

∂t ρ̂ = −i
h

−∆Ĵz −
g
N

Ĵ2
x , ρ̂

i

+ γ
N
∑

i=1

D[σ̂i
+]ρ̂ ≡ Ltfρ̂, (32)

which is a generalization of the Hamiltonian model studied in Sec. 2.1 that includes incoherent439

pumping from the |↓〉 → |↑〉 states (this is equivalent to the model studied in Ref. [70] after a440

rotation by π about the x axis). Assuming ∆> 0, the system displays two mean field phases:441

a disordered phase, with Jmf
z = N/2 and Jmf

x ,y = 0, and an ordered phase, with Jmf
x ,y,z 6= 0, and442

a phase boundary defined by γ = 2
p

∆(g −∆). We will approach the critical boundary from443

the disordered phase because the Bloch vector is already aligned along +z, and we will do so444

by varying ∆ while keeping g fixed. Since j = 1 in this phase, we use the replacement rules445

from Table 2, which to leading order give rise to the following bosonic master equation:446

∂t ρ̂ = −
i
2

�

∆p̂2 + (∆− g) x̂2, ρ̂
�

+ γD[Â]ρ̂ + i∆
�

δĴ , ρ̂
�

+ γ
�

δĴρ̂ − e−iφ̂δĴ eiφ̂
�

, (33)

where the quadratures x̂ = (Â+ Â†)/
p

2 and p̂ = −i(Â− Â†)/
p

2 are defined as before. Once447

again, the longitudinal boson evolution just drives the system to the state |δJ = 0〉. The insta-448

bility towards the ordered phase as∆ is reduced can then be interpreted in the boson language449

as being caused by the switch from a regular to an inverted parabolic potential when ∆ < g.450

Dissipation provides some stabilization, reducing the range of∆ for which there is an ordered451

phase, but if γ is small there will still be an instability as ∆ is further reduced. If γ is large452

enough, the instability disappears and the disordered phase is always stable.453

We will work in a regime of vanishingly small dissipation, with γ scaling with N in a yet-454

to-be-determined way, and leave the analysis of finite γ to Appendix D. As in Sec. 2.1, in the455

vicinity of the phase transition the system will be stabilized by a quartic nonlinearity coming456

from the Hamiltonian. Guided from our experience in Sec. 2.1, we expect fluctuations in x̂ and457

p̂ to behave differently, so we express the master equation, now including the non-linearity,458

in terms of the quadratures. We also project out the longitudinal boson and work with the459

reduced density matrix for the transverse boson ρ̂T460

∂t ρ̂ = −
i
2

�

∆p̂2 + (∆− g) x̂2 +
g x̂4

2N
, ρ̂T

�

+
γ

2
D[ x̂]ρ̂T +

iγ
4

�

[{p̂, ρ̂T}, x̂] + [p̂, { x̂ , ρ̂T}]
�

. (34)

Note that we have omitted a D[p̂]ρ̂T term because fluctuations in p̂ will be smaller than461

fluctuations in x̂ . It turns out that, unlike the case of the Hamiltonian model of Sec. 2.1,462

fluctuations in p̂ will not be reduced, but will instead stay of the same size without any N463

dependence. Given that fluctuations in x̂ are still enhanced, the distribution in phase space will464

be large compared to the size of the quantum noise, and we can treat it as a classical probability465
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Figure 7: (a) Marginal probability distribution Pz , obtained by integrating Eq. (36)
over p and fixing Pz = 1 at z = 0, for N = 10, 55 and η = −1/4. (b) Same as (a)
but with N = 10,33, 100 and η = −1/2. (c) Marginal probability distribution Pp,
obtained by integrating Eq. (36) over z and fixing Pp = 1 at p = 0, for N = 10, 55
and η= −1/4. (d) Same as (c) but with N = 10, 100 and η= −1/2.

distribution. Thus, if we introduce a scaled ẑ = x̂N− fx , which satisfies [ẑ, p̂] = iN− fx , we466

should replace commutators by Poisson brackets according to [ , ] ≈ iN− fx { , }pb. We then467

simultaneously scale the distance to the critical point by defining η using ∆ = g + η∆N− f∆ ,468

scale the strength of dissipation by introducing a reduced γred = γN− fγ , and demand that all469

the terms be of the same size in Eq. (34). This leads to fx = 1/4, f∆ = 1/2 and fγ = 1/4, and470

to a classical master equation for the probability distribution ρc , which is a function of z and471

p (i.e. the classical analogues of ẑ and p̂),472

∂ ρc

∂ (∆t/N1/4)
=
�

(ηz + z3)∂pρc − p∂zρc

�

+
γred

4∆

�

∂ 2
p ρc + 2∂p(pρc) + 2∂z(zρc)

�

. (35)

The first bracket of Eq. (35) is just Hamiltonian flow, with a classical Hamiltonian473

Hc =
1
4
(2p2 + 2ηz2 + z4),

while the second bracket introduces diffusion and relaxation. The steady state solution can be474

written down analytically475

ρss
c =N exp

�

− 2
�

p−
γredz
2∆

�2
− 2

�

η+
γ2

red

4∆2

�

z2 − z4
�

, (36)

is Boltzmann like, and reduces to exp(−4Hc) in the limit γred � ∆ (N is a normalization476

factor).477

To benchmark this solution, we first make contact with the original spin variables by re-478

calling that, to leading order, Ĵx = x̂
p

N/2= ẑN3/4/
p

2 and Ĵy = p̂
p

N/2. We then simulate479

20



SciPost Physics Submission

0 2 4 6 8 10
0.1

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10
0.4

0.3

0.2

0.1

0.0

0.1

Figure 8: (a) Scaled correlation function C(τ)/N1/2 as a function of scaled time
∆τ/N1/4 for N = 10,100, γred = ∆ and η = −1/4. (b) Scaled response function
χ(τ)/N1/4 as a function of scaled time ∆τ/N1/4 for N = 10,100, γred = ∆ and
η= −1/4.

Eq. (32) to obtain the steady state for N up to 100, calculate the probability distributions asso-480

ciated to the Ĵx , Ĵy operators, and compare them against the marginal probability distributions481

obtained from Eq. (36). The results are shown in Fig. 7 for γred/∆ = 1 and η = −1/2,−1/4,482

demonstrating good agreement for all of them. Note that the critical e−z4
profile is obtained at483

η= −γ2
red/(4∆

2) rather than η= 0. This can also be derived using the equation for the mean484

field critical boundary after replacing ∆,γ in favor of η,γred and letting N →∞.485

As in the case for the superradiant transition, Eq. (35) defines a classical generator of time486

evolution Mtf that encodes the response of the system to perturbations. We can use it to487

calculate correlation and response functions such as488

C(τ) =
〈{Ĵx(τ), Ĵx(0)}〉

N
≈ N1/2 z(τ)z(0)

χ(τ) =
〈[Ĵx(τ), Ĵx(0)]〉

iN
≈

N1/4

2
{z(τ), z(0)}pb,

(37)

where Ĵx(τ) = eL
‡
tfτ(Ĵx), L

‡
tf is the adjoint of Ltf with respect to the trace inner product, the489

overlines are averages with respect to ρss
c in Eq. (36), z(τ) = eM

‡
tfτ(z), and M‡

tf is the adjoint490

of Mtf with respect to the inner product on phase space (integration over z and p). After some491

manipulations, we get492

C(τ)≈ N1/2

∫

dz dp z eMtfτ(zρss
c )

χ(τ)≈
N1/4

2

∫

dz dp z eMtfτ(∂pρ
ss
c ).

(38)

These scalings are consistent with the scalings reported in Ref. [70]. We compare these for-493

mulas against numerical solution of Eq. (32) in Fig. (8), demonstrating good agreement that494

improves as N increases.495

6 Thermal behaviour496

In this section, we show that the generalized boson mappings can also be used to study thermal497

behaviour of collective Hamiltonians. Consider the Dicke model [82], which hosts both ground498
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state [59] and thermal phase transitions [27,83], and is defined by the Hamiltonian499

ĤD =ωĉ† ĉ −ω0 Ĵz +
2λ
p

N
(ĉ + ĉ†)Ĵx , (39)

where ĉ, ĉ† describe a bosonic mode (often photons in a cavity [16] or motional modes in an500

ion crystal [84]). The thermal properties of the system are encoded in the partition function501

ZD = Tr(e−β ĤD), (40)

where β = 1/T is the inverse temperature. To be more precise, the trace is taken over the502

2N dimensional Hilbert space of N independent spin 1/2, not only over the permutationally503

symmetric Dicke states [85, 86]. Mathematically, this partition function is often calculated504

(in the large N limit) by representing the trace as an integral and performing a saddle point505

approximation [83]. However, our treatment will be closer in spirit to the purely Hamiltonian506

analysis of the Tavis-Cummings model of Ref. [87].507

The thermal state e−β ĤD is weakly permutationally symmetric, so it is amenable to analysis508

by means of the operator mappings of Sec. 3. Since only collective spin operators appear, we509

will only need the lower entries of Table 3. The only subtlety is that the bosonic representation510

only counts each different spin length sector J once, so we need to take into account explicitly511

the degeneracy of each different J , given by512

dJ =
N !(2J + 1)

(N/2− J)!(N/2+ J + 1)!
. (41)

This entropic factor, when balanced against energetics, will end up determining the average513

spin length N j/2. To take this into account, we define an effective Hamiltonian514

K̂ = β ĤD − log
�

dĴ

�

, (42)

where we have also included the dependence with β because it is a tunable parameter. The515

thermal state is now e−K̂ , and the explicit inclusion of dJ means that we now have to use the516

bosonic representation of ĤD.517

As in previous examples, we first examine the mean field behaviour. Since the spin length518

is expected to be j < 1, we use the type I replacement Ĵ = N j/2 + N1/2 l̂ to express the519

degeneracy factor as520

log
�

dĴ

�

= −
N
2

f ( j)− f ′( j)N1/2 l̂ − f ′′( j)l̂2 (43)

where521

f ( j) = (1− j) log
�

1− j
2

�

+ (1+ j) log
�

1+ j
2

�

. (44)

For the mean field analysis, we will only keep the leading∝ N term. We then treat the rest522

of operators in the Hamiltonian as classical variables, i.e. ĉ → c
p

N , Ĵx → N sinθ/2, and523

Ĵz → N cosθ/2 (we assume beforehand that the spin will have Jmf
y = 0). At order∝ N , the524

resulting free energy F is given by525

F
N
=ω|c|2 −

ω0 j cosθ
2

+
f ( j)
2β
+λ j sinθ (c + c̄) (45)

Minmizing with respect to c,θ , j leads to two type of solutions. The first type has θ = c = 0526

and527

j = tanh
�

βω0

2

�

F
N
= −

1
β

log
�

2 cosh(βω0/2)
�

(46)
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In this configuration, the system has no cavity field, the spin is pointing along +z and the spin528

length is determined by the temperature. The free energy is that of N independent two-level529

systems. This solution describes the disordered phase. The second type of solution has530

ωω0

4λ2 cosθ
= tanh

�

βω0

2cosθ

�

j = tanh
�

βω0

2cosθ

�

c = −
λ j sinθ
ω

F
N
=
ω0 j

4
(sinθ )2

cosθ
−

1
β

log
�

2 cosh
�

βω0

2cosθ

��

(47)

The first equation determines the rotation angle as a function of temperature and Hamiltonian531

parameters, while the last two provide the associated values of spin length and cavity field.532

There are two possible solutions to these equations, related by θ →−θ and c→−c. These con-533

figurations correspond to the ordered superradiant phase and only exist whenλ2
eff = λ

2 j >ωω0/4.534

This determines the critical temperature tanh(βcω0/2) =ωω0/(4λ2) below which the system535

orders. This approach to the thermal Dicke transition provides a very intuitive picture of the536

underlying physics: the primary effect of a finite temperature is to establish an equilibrium537

spin length j via a competition between energy an entropy. Once j is fixed, this univocally538

determines whether the low energy spectrum of ĤD displays symmetry-breaking or not.539

Applying the type I replacement rules for the collective spin operators allows us to obtain540

the effective Hamiltonian that describes fluctuations of the system. In the disordered phase541

the spin is already pointing along +z, so we can use the rules directly. As in previous examples542

terms proportional to
p

N cancel, leading to543

K̂eff

β
=ω0Â†Â+ωĉ† ĉ +λeff(Â

† + Â)(ĉ + ĉ†) +
f ′′( j)
β

l̂2 (48)

Longitudinal fluctuations decouple from the other degrees of freedom, and have size δJ ∼
p

N .544

Transverse fluctuations couple to the cavity field, but the effective coupling constantλeff = λ
p

j ≤ λ545

is temperature dependent and becomes larger with decreasing temperature [86]. Ifλ >
p
ωω0/2546

the system develops an instability when λeff = λ
p

j =pωω0/2. If λ <
p
ωω0/2, the system547

cannot reach the instability for any temperature. Equation (48) can also be used to calculate548

the excitation spectrum at finite temperature, and compute average values and correlation549

functions using e−K̂eff as the approximate quantum state (summing over both mean field solu-550

tions in the case of the superradiant phase).551

In the superradiant phase we first need to rotate the spin operators and displace the cavity552

boson before applying the replacement rules. The resulting effective Hamiltonian is instead553

(with displaced cavity field d̂ = ĉ −
p

Nc)554

K̂sr
eff = βω d̂†d̂ +

βω0

cosθ
Â†Â+ f ′′( j) l̂2 + βλ(d̂ + d̂†)

�p

j cosθ (Â+ Â†) + 2 sinθ l̂
�

, (49)

and indicates that the spin length fluctuations now couple to the rest of degrees of freedom.555

Both effective Hamiltonians for the Dicke model at finite temperature were derived before556

in Ref. [88] using diagrammatic methods and a fermionic Majorana representation of spin557

1/2 systems. Our method provides the same results, but our variables of choice (Â, l̂) possess558

intrinsic geometric meaning.559

We finalize this section by studying the phase transition region. As in all the previous560

examples, we begin from the disordered phase. As the temperature is decreased and λeff ap-561

proaches the critical value, one of the normal modes of the system becomes soft (its excitation562
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energy goes to 0 in Eq. (48)], while the other one retains a gap ∼ N0. As in Sec. 2.1, further563

terms in the 1/N expansion will introduce a quartic nonlinearity that creates a gap to exci-564

tations of the soft mode of size ∼ N−1/3. Because of the finite Tc , excitations of the gapped565

mode might be present or not depending on the relative sizes of Tc and other scales of the sys-566

tem such as ω,ω0. However, the soft mode will always be highly excited, and can be treated567

classically. Furthermore, the soft mode will turn out to couple nonlinearly to fluctuations in568

the spin length, which can also be treated classically because e−β ĤD is always diagonal in the569

Ĵ basis.570

Because of these considerations, the effective Hamiltonian in the vicinity of the phase tran-571

sition will be a combination of a quantum quadratic piece, describing the gapped mode, and a572

classical nonlinear part, describing the soft and spin length modes. This effective Hamiltonian573

is given by (see Appendix E and omitting constant contributions)574

K̂ tr
eff =

βc(ω2
0 +ω

2)1/2

2
(p̂2

g + ĝ2)

+
(βcω0)3/2

2
p

j

�

ω2

ω2 +ω2
0

�

p2
s + f ′′( j)l2 +

s4

4
−

�

βcω0ξ+

√

√βcω0

j
s2

�

l

(50)

where [ ĝ, p̂g] = i and {ŝ, p̂s}pb = 1 are the gapped and gapless modes, defined in Eq. (E.16)575

from Appendix E and576

ξ=
p

N(β − βc)
βc

(51)

measures the relative deviation from the critical temperature in units of 1/
p

N . Spin observ-577

ables will include contributions from both soft and gapped modes, which may make a simple578

finite size scaling analysis more challenging. Because of this, we focus on the specific heat579

(Cv) as the phase transition point is crossed, which will also be dominated by the soft mode.580

We can obtain an analytical expression for Cv581

Cv

N
=
β2

cω
2
0(1− j2c )

4
+ b2 g ′′ (bξ) , (52)

where g(z) = log
�∫

d x exp
�

−x4 + zx2
��

can be expressed in terms of modified Bessel func-582

tions, and583

b =
(βcω0)3/2(1− j2c )

Æ

4 jc − 2βcω0(1− j2c )
. (53)

We point out that this contribution to Cv depends only on βcω0 (which also determines jc) and584

(β − βc)/βc , and is otherwise independent of ω/ω0. In particular, the same formula should585

hold in the limitω�ω0 if we keep βcω0 [or equivalently λ2/(ωω0)] fixed, in which case the586

Dicke model reduces to Eq. (3) with g = 4λ2/(ωω0), and for which larger system sizes can be587

numerically probed. We show the specific heat as a function of ξ in Fig. 9 for N up to 6400,588

calculated by brute-force evaluation of the partition sum. There is a good agreement with the589

analytical formula for ξ ® 1. For ξ ¦ 1 the numerical results have not yet converged to their590

N →∞ limit, presumably because we are zooming in on a violent discontinuity (see inset),591

but the numerical curves seem to be approaching the analytical result.592

7 Conclusions and outlook593

In this paper we have shown in detail how to construct a Schwinger boson mapping for systems594

of N spin 1/2’s undergoing open system, permutationally symmetric, dynamics. Using this595
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Figure 9: Specific heat Cv as a function of scaled temperature
p

N(β − βc)/βc for
different N = 400, 1600,6400 in the LMG limit (ω/ω0 →∞ while keeping λ2/ω

fixed) and fixed jc = 1/2 → βcω0 ≈ 1.099. Inset shows the same plot but as a
function of β/βc illustrating that mean field is a good approximation away from βc .

mapping we then introduced a generalization of the Holstein-Primakoff transformation and596

developed a systematic expansion in powers of 1/N . We explicitly calculated the leading597

and next-to-leading order terms in the expansion and illustrated how to use it by means of598

various examples. These examples included the analysis of driven-dissipative and thermal599

phase transitions and their finite size scaling properties.600

We believe these methods have wide applicability and could be helpful in the analysis of the601

various permutationally symmetric models that are routinely studied in the literature. This in-602

cludes the various generalizations of the Dicke model that have been considered over the years,603

but also models arising in other areas of study, such as reaction-diffusion phenomena [89] and604

non-reciprocal interactions [90].605

Although we developed the Schwinger boson mapping by rewriting the results from Ref. [48],606

the rotationally covariant structure that we identified in Eq. (16) hints at the possibility of a607

different, simpler, group theoretic derivation. Such a derivation would also be of use when608

seeking multilevel generalizations of the mapping in the presence of single particle dissipation609

(in the strongly symmetric case the mapping is standard [91–93]).610
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A Expressing local dissipators in terms of Schwinger bosons618

In this section, we show that619

N
∑

i=1

ŝi
αρ̂ ŝi

β = E(Ĵ) Ĵαρ̂Ĵβ + F(Ĵ) K̂αρ̂ L̂β + G(Ĵ) L̂αρ̂K̂β , (A.1)

where620

E(Ĵ) =
1+ N/2

2Ĵ(Ĵ + 1)
, F(Ĵ) =

N/2+ Ĵ + 2

2(Ĵ + 1)(2Ĵ + 3)
, G(Ĵ) =

N/2− Ĵ + 1

2Ĵ(2Ĵ − 1)

K̂ =
1
2

�

b̂ â
�

iσyσ

�

b̂
â

�

, L̂= −
1
2

�

b̂† â†
�

σ iσy

�

b̂†

â†

�

(A.2)

is equivalent to the matrix elements calculated in Ref. [48]. These were given as [Eq. (42) in621

Ref. [48]]622

N
∑

n=1

ŝ(n)q |J , M〉〈J , M ′|(ŝ(n)r )
† =

1
2J

�

1+
αJ+1

N

dJ
N

2J + 1
J + 1

�

× AJ ,M
q

�

�J , Mq

�


J , M ′r
�

�AJ ,M ′
r

+
αJ

N

2JdJ
N

× BJ ,M
q

�

�J − 1, Mq

�


J − 1, M ′r
�

�BJ ,M ′
r

+
αJ+1

N

2(J + 1)dJ
N

× DJ ,M
q

�

�J + 1, Mq

�


J + 1, M ′r
�

�DJ ,M ′
r ,

(A.3)

We will first explain the various objects that appear in this formula. First, the |J , M〉〈J , M ′| are623

the permutationally symmetric density matrices that are right (left) eigenmatrices of Ĵz with624

eigenvalue M (M ′) and left/right eigenmatrices of Ĵ with equal eigenvalue J . The specific625

normalization chosen in Ref. [48] will not be relevant for our discussion. Then q, r range over626

= +,−, z, with M± = M ± 1, Mz = M and there are various numerical coefficients627

αJ
N =

N !
(N/2− J)!(N/2+ J)!

dJ
N =

N !(2J + 1))
(N/2− J)!(N/2+ J + 1)!

AJ ,M
+ =

Æ

(J −M)(J +M + 1)

AJ ,M
− =

Æ

(J +M)(J −M + 1)

AJ ,M
z = M

BJ ,M
+ =

Æ

(J −M)(J −M − 1)

BJ ,M
− = −

Æ

(J +M)(J +M − 1)

BJ ,M
z =

Æ

(J +M)(J −M)

DJ ,M
+ = −

Æ

(J +M + 1)(J +M + 2)

DJ ,M
− =

Æ

(J −M + 1)(J −M + 2)

DJ ,M
z =

Æ

(J +M + 1)(J −M + 1)

(A.4)
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Note that Ref. [48] wrote σ̂ instead of ŝ in Eq. (A.3), but the right hand side of the equation628

matches the expression with spin 1/2 operators ŝ (this can be checked by setting q = r = z629

and taking traces of both sides). This does not matter for σ̂± = ŝ± = ŝx ± iŝy = (σ̂x ± iσ̂y)/2,630

but is important for ŝz = σ̂z/2. To proceed, let us begin by calculating the coefficients in front631

of AJ ,M
q

�

�J , M
�


J , M ′
�

�AJ ,M ′
r , BJ ,M

q

�

�J − 1, M
�


J , M ′
�

�AJ−1,M ′
r , DJ+1,M

q

�

�J , M
�


J , M ′
�

�DJ+1,M ′
r which632

are633

1
2J

�

1+
αJ+1

N

dJ
N

2J + 1
J + 1

�

=
N/2+ 1

2J(J + 1)
= E(J)

αJ
N

2JdJ
N

=
N/2+ J + 1
(2J + 1)2J

= F(J − 1)

αJ+1
N

2(J + 1)dJ
N

=
N/2− J

2(J + 1)(2J + 1)
= G(J + 1).

(A.5)

Noting that634

E(J)
�

�J , M
�


J , M ′
�

�= E(Ĵ)
�

�J , M
�


J , M ′
�

�

F(J − 1)
�

�J − 1, M
�


J − 1, M ′
�

�= F(Ĵ)
�

�J − 1, M
�


J − 1, M ′
�

�

G(J + 1)
�

�J + 1, M
�


J + 1, M ′
�

�= G(Ĵ)
�

�J + 1, M
�


J + 1, M ′
�

� ,

(A.6)

we can rewrite Eq. (A.3) as635

N
∑

n=1

ŝ(n)q |J , M〉〈J , M ′|(ŝ(n)r )
† = E(Ĵ)AJ ,M

q

�

�J , Mq

�


J , M ′r
�

�AJ ,M ′
r + F(Ĵ)BJ ,M

q

�

�J − 1, Mq

�


J − 1, M ′r
�

�BJ ,M ′
r

+ G(Ĵ)DJ ,M
q

�

�J + 1, Mq

�


J + 1, M ′r
�

�DJ ,M ′
r ,

(A.7)

which already indicates which terms in Eq. (A.7) should be identified with which in Eq. (A.1).636

To proceed, we express J , M and in terms of the Schwinger boson occupation numbers na = J−M , nb = J+M637

and analyze Eq. (A.7) on a case-by-case basis638

•
N
∑

n=1

ŝ(n)z |J , M〉〈J , M ′|ŝ(n)z639

N
∑

n=1

ŝ(n)z

�

�na, nb

�


n′a, n′b
�

�(ŝ(n)z )
† = E(Ĵ)

�nb − na

2

�

�

�na, nb

�


n′a, n′b
�

�

�

n′b − n′a
2

�

+ F(Ĵ)
Ç

nanb

�

�na − 1, nb − 1
�


n′a − 1, n′b − 1
�

�

q

n′an′b

+ G(Ĵ)
Ç

(na + 1)(nb + 1)
�

�na + 1, nb + 1
�


n′a + 1, n′b + 1
�

�

q

(n′a + 1)(n′b + 1)

= E(Ĵ)

�

b̂† b̂− â†â
2

�

�

�na, nb

�


n′a, n′b
�

�

�

b̂† b̂− â†â
2

�

+ F(Ĵ) â b̂
�

�na, nb

�


n′a, n′b
�

� â† b̂†

+ G(Ĵ) â† b̂†
�

�na, nb

�


n′a, n′b
�

� â b̂
(A.8)
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•
N
∑

n=1

σ̂
(n)
+ |J , M〉〈J , M ′|σ̂(n)−640

N
∑

n=1

σ̂
(n)
+

�

�na, nb

�


n′a, n′b
�

�(σ̂(n)+ )
† = E(Ĵ)

Æ

na(nb + 1)
�

�na − 1, nb + 1
�


n′a − 1, n′b + 1
�

�

q

n′a(n
′
b + 1)

+ F(Ĵ)
Æ

na(na − 1)
�

�na − 2, nb

�


n′a − 2, n′b
�

�

q

n′a(n′a − 1)

+ G(Ĵ)
Æ

(nb + 1)(nb + 2)
�

�na, nb + 2
�


n′a, n′b + 2
�

�

q

(n′b + 1)(n′b + 2)

= E(Ĵ) â b̂†
�

�na, nb

�


n′a, n′b
�

� â† b̂

+ F(Ĵ) â2
�

�na, nb

�


n′a, n′b
�

� (â†)2

+ G(Ĵ) (b̂†)2
�

�na, nb

�


n′a, n′b
�

� b̂2

(A.9)

•
N
∑

n=1

σ̂
(n)
− |J , M〉〈J , M ′|σ̂(n)+641

N
∑

n=1

σ̂
(n)
−

�

�na, nb

�


n′a, n′b
�

�(σ̂(n)− )
† = E(Ĵ)

Æ

nb(na + 1)
�

�na + 1, nb − 1
�


n′a + 1, n′b − 1
�

�

q

n′b(n
′
a + 1)

+ F(Ĵ)
Æ

nb(nb − 1)
�

�na, nb − 2
�


n′a, n′b − 2
�

�

q

n′b(n
′
b − 1)

+ G(Ĵ)
Æ

(na + 1)(na + 2)
�

�na + 2, nb

�


n′a + 2, n′b
�

�

q

(n′a + 1)(n′a + 2)

= E(Ĵ) â† b̂
�

�na, nb

�


n′a, n′b
�

� â b̂†

+ F(Ĵ) b̂2
�

�na, nb

�


n′a, n′b
�

� (b̂†)2

+ G(Ĵ) (â†)2
�

�na, nb

�


n′a, n′b
�

� â2

(A.10)
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•
N
∑

n=1

σ̂
(n)
− |J , M〉〈J , M ′|σ̂(n)−642

N
∑

n=1

σ̂
(n)
−

�

�na, nb

�


n′a, n′b
�

�(σ̂(n)+ )
† = E(Ĵ)

Æ

nb(na + 1)
�

�na + 1, nb − 1
�


n′a − 1, n′b + 1
�

�

q

n′a(n
′
b + 1)

− F(Ĵ)
Æ

nb(nb − 1)
�

�na, nb − 2
�


n′a − 2, n′b
�

�

q

n′a(n′a − 1)

− G(Ĵ)
Æ

(na + 1)(na + 2)
�

�na + 2, nb

�


n′a, n′b + 2
�

�

q

(n′b + 1)(n′b + 2)

= E(Ĵ) â† b̂
�

�na, nb

�


n′a, n′b
�

� â† b̂

− F(Ĵ) b̂2
�

�na, nb

�


n′a, n′b
�

� (â†)2

− G(Ĵ) (â†)2
�

�na, nb

�


n′a, n′b
�

� b̂2

(A.11)

•
N
∑

n=1

σ̂
(n)
− |J , M〉〈J , M ′|ŝ(n)z643

N
∑

n=1

σ̂
(n)
−

�

�na, nb

�


n′a, n′b
�

�(ŝ(n)z )
† = E(Ĵ)

Æ

nb(na + 1)
�

�na + 1, nb − 1
�


n′a, n′b
�

�

�

n′b − n′a
2

�

− F(Ĵ)
Æ

nb(nb − 1)
�

�na, nb − 2
�


n′a − 1, n′b − 1
�

�

q

n′an′b

+ G(Ĵ)
Æ

(na + 1)(na + 2)
�

�na + 2, nb

�


n′a + 1, n′b + 1
�

�

q

(n′a + 1)(n′b + 1)

= E(Ĵ) â† b̂
�

�na, nb

�


n′a, n′b
�

� (b̂† b̂− â†â)/2

− F(Ĵ) b̂2
�

�na, nb

�


n′a, n′b
�

� â† b̂†

+ G(Ĵ) (â†)2
�

�na, nb

�


n′a, n′b
�

� â b̂
(A.12)
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•
N
∑

n=1

σ̂
(n)
+ |J , M〉〈J , M ′|ŝ(n)z644

N
∑

n=1

σ̂
(n)
+

�

�na, nb

�


n′a, n′b
�

�(ŝ(n)z )
† = E(Ĵ)

Æ

na(nb + 1)
�

�na − 1, nb + 1
�


n′a, n′b
�

�

�

n′b − n′a
2

�

+ F(Ĵ)
Æ

na(na − 1)
�

�na − 2, nb

�


n′a − 1, n′b − 1
�

�

q

n′an′b

− G(Ĵ)
Æ

(nb + 1)(nb + 2)
�

�na, nb + 2
�


n′a + 1, n′b + 1
�

�

q

(n′a + 1)(n′b + 1)

= E(Ĵ) â† b̂
�

�na, nb

�


n′a, n′b
�

� (b̂† b̂− â†â)/2

+ F(Ĵ) â2
�

�na, nb

�


n′a, n′b
�

� â† b̂†

− G(Ĵ) (b̂†)2
�

�na, nb

�


n′a, n′b
�

� â b̂
(A.13)

These expressions agree with Eq. (A.1), taking into account that K̂± = K̂x±iK̂y , L̂± = L̂x±i L̂ y645

and ŝz = σ̂z/2.646

B Derivation of replacement rules647

In this appendix we derive the replacement rules provided in Table 1 and Table 2. We begin648

from the results in Sec. A and get rid of b̂ in favor of Ĵ . To do this, we decompose the boson649

b̂ using its number-phase representation b̂ = eiφ̂/2(b̂† b̂)1/2, absorb eiφ̂/2 into Â† = â†eiφ̂/2,650

replace b̂† b̂ = 2Ĵ − Â†Â. Then we obtain, generically651

•
N
∑

i=1

ŝi
zρ̂ ŝi

z652

N
∑

i=1

ŝzρ̂ ŝz = E(Ĵ)
�

Ĵ − Â†Â
�

ρ̂
�

Ĵ − Â†Â
�

+ F(Ĵ)Â
�

2Ĵ + 2− Â†Â
�1/2

eiφ̂ρ̂e−iφ̂
�

2Ĵ + 2− Â†Â
�1/2

Â†

+ G(Ĵ)
�

2Ĵ − Â†Â
�1/2

e−iφ̂Â†ρ̂Âeiφ̂
�

2Ĵ − Â†Â
�1/2

(B.1)

•
N
∑

i=1

σ̂i
+ρ̂ σ̂

i
−653

N
∑

i=1

σ̂i
+ρ̂ σ̂

i
− = E(Ĵ)

�

2Ĵ − Â†Â
�1/2

Âρ̂Â†
�

2Ĵ − Â†Â
�1/2

+ F(Ĵ)(Â)2eiφ̂ρ̂e−iφ̂(Â†)2

+ G(Ĵ)
�

2Ĵ − Â†Â
�1/2 �

2Ĵ − 1− Â†Â
�1/2

e−iφ̂ρ̂eiφ̂
�

2Ĵ − Â†Â
�1/2 �

2Ĵ − 1− Â†Â
�1/2

(B.2)
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•
N
∑

i=1

σ̂i
−ρ̂ σ̂

i
+654

N
∑

i=1

σ̂i
−ρ̂ σ̂

i
+ = E(Ĵ)Â†

�

2Ĵ − Â†Â
�1/2

ρ̂
�

2Ĵ − Â†Â
�1/2

Â

+ F(Ĵ)
�

2Ĵ + 2− Â†Â
�1/2 �

2Ĵ + 1− Â†Â
�1/2

eiφ̂ρ̂e−iφ̂
�

2Ĵ + 2− Â†Â
�1/2 �

2Ĵ + 1− Â†Â
�1/2

+ G(Ĵ)(Â†)2e−iφ̂ρ̂eiφ̂(Â)2

(B.3)

•
N
∑

i=1

σ̂i
−ρ̂ σ̂

i
−655

N
∑

i=1

σ̂i
−ρ̂ σ̂

i
− = E(Ĵ)Â†

�

2Ĵ − Â†Â
�1/2

ρ̂Â†
�

2Ĵ − Â†Â
�1/2

− F(Ĵ)
�

2Ĵ + 2− Â†Â
�1/2 �

2Ĵ + 1− Â†Â
�1/2

eiφ̂ρ̂e−iφ̂(Â†)2

− G(Ĵ)(Â†)2e−iφ̂ρ̂eiφ̂
�

2Ĵ − Â†Â
�1/2 �

2Ĵ − 1− Â†Â
�1/2

(B.4)

•
N
∑

i=1

σ̂i
−ρ̂ ŝi

z656

N
∑

i=1

σ̂i
−ρ̂ ŝi

z = E(Ĵ)Â†
�

2Ĵ − Â†Â
�1/2

ρ̂
�

Ĵ − Â†Â
�

− F(Ĵ)
�

2Ĵ + 2− Â†Â
�1/2 �

2Ĵ + 1− Â†Â
�1/2

eiφ̂ρ̂e−iφ̂
�

2Ĵ + 2− Â†Â
�1/2

Â†

+ G(Ĵ)(Â†)2e−iφ̂ρ̂Âeiφ̂
�

2Ĵ − Â†Â
�1/2

(B.5)

•
N
∑

i=1

σ̂i
+ρ̂ ŝi

z657

N
∑

i=1

σ̂i
+ρ̂ ŝi

z = E(Ĵ)
�

2Ĵ − Â†Â
�1/2

Âρ̂
�

Ĵ − Â†Â
�

+ F(Ĵ)(Â)2eiφ̂ρ̂e−iφ̂
�

2Ĵ + 2− Â†Â
�1/2

Â†

− G(Ĵ)
�

2Ĵ − Â†Â
�1/2 �

2Ĵ − 1− Â†Â
�1/2

e−iφ̂ρ̂Âeiφ̂
�

2Ĵ − Â†Â
�1/2

(B.6)

These expressions are exact, as is the Holstein-Primakoff mapping for collective states, but full658

rotational invariance is no longer manifest. As described in the main text, this representation659

is particularly convenient when the state is polarized along+z, but the nature of the expansion660

will depend on the mean field value of the Bloch vector length. To get Table 1, valid when661
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j < 1 (where j is the mean field length in units of N/2), we introduce scaled variables l̂, q̂ ∼ 1662

as follows663

Ĵ =
N j
2
+
p

N l̂

φ̂ =
q̂
p

N

(B.7)

and expand the expressions to O(N0), with the neglected terms being of size N−1/2. This yields664

•
N
∑

i=1

ŝi
zρ̂ ŝi

z665

N
∑

i=1

ŝzρ̂ ŝz =
N
4
ρ̂ +

ρ̂

2
−

1
2 j

Â†Âρ̂ −
1
2 j
ρ̂
�

Â†Â+ 1
�

+
�

1+ j
2 j

�

Âρ̂Â† +
�

1− j
2

�

Â†ρ̂Â

=
N
4
ρ̂ +

�

1+ j
2 j

�

�

ÂρÂ† −
{ÂÂ†, ρ̂}

2

�

+
�

1− j
2 j

�

�

Â†ρ̂Â+
{ÂÂ†, ρ̂}

2

�

(B.8)

•
N
∑

i=1

σ̂i
+ρ̂ σ̂

i
−666

N
∑

i=1

σ̂i
+ρ̂ σ̂

i
−

=
1
j
Âρ̂Â† + 0−

1− j
2 j
{Â†Â, ρ̂}+

N(1− j)
2

ρ̂ −
i
p

N
2
(1− j)[q̂, ρ̂]−

1− j
4
[q̂, [q̂, ρ̂]]−

p
N l̂ρ̂ + i[q̂, l̂ρ̂]

=
N(1− j)ρ̂

2
−
p

N
�

i(1− j)
2

[q̂, ρ̂] + l̂ρ̂
�

+
1
j
Âρ̂Â† −

(1− j)
2 j

{Â†Â, ρ̂}+
(1− j)

4
[q̂, [ρ̂, q̂]] + i[q̂, l̂ρ̂]

(B.9)

•
N
∑

i=1

σ̂i
−ρ̂ σ̂

i
+667

N
∑

i=1

σ̂i
−ρ̂ σ̂

i
+

=
1
j
Â†ρ̂Â+ 0−

1+ j
2 j
{ÂÂ†, ρ̂}+

N(1+ j)
2

ρ̂ +
i
p

N
2
(1+ j)[q̂, ρ̂]−

1+ j
4
[q̂, [q̂, ρ̂]] +

p
N l̂ρ̂ + i[q̂,l̂ρ̂] +

ρ̂

2

=
N(1+ j)ρ̂

2
+
p

N
�

i(1+ j)
2

[q̂, ρ̂] + l̂ρ̂
�

+
1
j
Â†ρ̂Â−

(1+ j)
2 j

{ÂÂ†, ρ̂}+
(1+ j)

4
[q̂, [ρ̂, q̂]] + i[q̂, l̂ρ̂] +

ρ̂

2

(B.10)
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•
N
∑

i=1

σ̂i
−ρ̂ σ̂

i
−668

N
∑

i=1

σ̂i
−ρ̂ σ̂

i
− =

1
j
Â†ρ̂Â† −

(1+ j)
2 j

ρ̂(Â†)2 −
(1− j)

2 j
(Â†)2ρ̂

=
1
j

�

(Â†)2ρ̂(Â†)2 −
{(Â†)2, ρ̂}

2

�

+
1
2

�

(Â†)2, ρ̂
�

(B.11)

•
N
∑

i=1

σ̂i
−ρ̂ ŝi

z669

N
∑

i=1

σ̂i
−ρ̂ ŝi

z =
1
2

√

√N
j

Â†ρ̂ −
l̂

2 j3/2
Â†ρ̂ −

p
N(1+ j)

2
p

j
ρ̂Â† +

(1− j)
2 j3/2

l̂ρ̂Â† −
i(1+ j)

2
p

j
[q̂, ρ̂]Â†

=
p

N

2
p

j

�

Â†ρ̂ − (1+ j)ρ̂Â†
�

+
l̂

2 j3/2
�

(1− j)ρ̂Â† − Â†ρ̂
�

−
i(1+ j)

2
p

j
[q̂, ρ̂]Â†

(B.12)

•
N
∑

i=1

σ̂i
+ρ̂ ŝi

z670

N
∑

i=1

σ̂i
+ρ̂ ŝi

z =
1
2

√

√N
j

Âρ̂ −
l̂

2 j3/2
Âρ̂ −

p
N(1− j)

2
p

j
ρ̂Â+

(1+ j)
2 j3/2

l̂ρ̂Â+
i(1− j)

2
p

j
[q̂, ρ̂]Â†

=
p

N

2
p

j

�

Âρ̂ − (1− j)ρ̂Â
�

+
l̂

2 j3/2
�

(1+ j)ρ̂Â− Âρ̂
�

+
i(1− j)

2
p

j
[q̂, ρ̂]Â†

(B.13)

To get Table 2, valid when j = 1, we instead expand the expressions assuming that671

Â, Â†,δĴ , φ̂ ∼ 1.672

C Superradiant laser below upper threshold673

In this appendix we analyze the superradiant laser model of Eq. (24) in the coherent phase.674

As mentioned in the main text, in this case the system will develop a nonzero Jmf
− in the steady675

state, which can be chosen to have any arbitrary phase. We thus choose Jmf
− to be real and676

positive (thus the Bloch vector points along the x direction). We thus perform a rotation of677

the spin operators678

σ̂i
+ = (ŝ

i
z)
′ sinθ + (σ̂i

+)
′ (1+ cosθ )

2
+ (σ̂i

−)
′ (cosθ − 1)

2
, (C.1)
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where θ is the rotation angle about the +y axis [and hence ŝi
y = (ŝ

i
y)
′]. In principle θ is679

determined from the solution to the mean field equations, but we show in this appendix that680

it can also be determined by requiring that the terms proportional to
p

N coming from Table 1681

vanish. If we perform the replacement rules in the rotated coordinate system, we arrive at the682

following bosonic master equation683

∂t ρ̂ =
w
p

N(2− j cosθ ) sinθ

4
p

j

��

Â− Â†
�

, ρ̂
�

+
NCγ j

p

N j sinθ

4
[
�

Â† − Â
�

, ρ̂]

+
iw
p

N
8
(1+ j)(cosθ − 1)2[q̂, ρ̂]−

iw
p

N
8
(1− j)(cosθ + 1)2[q̂, ρ̂]

+
w
4 j

D
�

(1+ cosθ )Â+ (cosθ − 1)Â†
�

ρ̂ +
NCγ j

4
D
�

(1+ cosθ )Â† + (cosθ − 1)Â
�

ρ̂

+
3NCγ j1/2 sinθ

4

�

Â† − Â, ρ̂
�

l̂

+
w( j + 1)(sinθ )2

2 j
D[Â]ρ̂ +

w(1− j)(sinθ )2

2 j
D[Â†]ρ̂ +

w(sinθ )2

4

�

(Â)2 − (Â†)2, ρ̂
�

+
w(1− j)(1+ cosθ )2 +w(1+ j)(1− cosθ )2

8
D[q̂]ρ̂ + iw(1+ (cosθ )2)

4

�

q̂, {l̂, ρ̂}
�

−
w sinθ (2+ j cosθ )

4 j3/2
�

Â− Â†, ρ̂
�

l̂ +
iw sinθ (1− j cosθ )

4
p

j

�

q̂,
�

(Â+ Â†), ρ̂
	�

+
iw sinθ (cosθ − j)

4
p

j

�

[q̂, ρ̂],
�

Â− Â†
��

(C.2)

Cancellation of the terms proportional to
p

N leads to684

j(cosθ )2 + j = 2 cosθ , NCγ j2 = w(2− j cosθ ) (C.3)

which can be solved to give j cosθ = w/NCγ (i.e. the z component of the Bloch vector) and685

( j sinθ )2 = 2w(NCγ− w)/(NCγ)2 (i.e. the transverse component of the Bloch vector and is686

proportional to the emitted light intensity). These are the same results that would be obtained687

by solving the mean field equations of motion. Massaging this result leads to688

∂t ρ̂ =
iw(sinθ )2

8

�

[p̂, { x̂ , ρ̂}] + [{p̂, ρ̂}, x̂]
�

−
iw(sinθ )2

8
[ x̂ p̂+ p̂ x̂ , ρ̂] +

iw(1+ (cosθ )2)
4

�

q̂, {l̂, ρ̂}
�

−
w sinθ (2+ (cosθ )2)

p

2 j cosθ
[p̂, ρ̂] l̂ +

iw(sinθ )3
p

j

4
p

2cosθ
[q̂, {ρ̂, x̂}]

+
NCγ cosθ

2
(1+ j cosθ )D[ x̂]ρ̂ +

�

�

w
2 j
+

NCγ j
2

�

+
w(sinθ )2

2 j

�

D[p̂]ρ̂

+
wj(sinθ )4

8 cosθ
D[q̂]ρ̂ +

w(sinθ )3
p

j

4
p

2
[q̂, [ρ̂, p̂]]

(C.4)
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The first two lines describe relaxation (in accordance with linear response calculated by, e.g.,689

Heisenberg-Langevin equations) and the last two lines describe diffusion. In particular690

d 〈p̂2〉
d t

=
NCγ cosθ

2
(1+ j cosθ ), (C.5)

which is related to the laser phase by φ̂ = Ĵy/(N j sinθ/2) ≈ p̂/(sinθ
p

N j/2). Thus, the691

phase diffuses according to692

1
2

d 〈φ̂2〉
d t

=
Cγ cosθ

2 j(sinθ )2
(1+ j cosθ ) =

Cγ
4

�

NCγ+w
NCγ−w

�

, (C.6)

which agrees with known results [95] in the appropriate limit (NCγ, w� γ) and determines693

the laser linewidth.694

D Transverse field Ising model with finite dissipation695

In this appendix we analyze the transverse field Ising model with finite dissipation. For com-696

pleteness, we copy here the master equation defining the evolution697

∂t ρ̂ = −i
h

−δĴz −
g
N

Ĵ2
x , ρ̂

i

+ γ
N
∑

i=1

�

σ̂+i ρ̂σ̂
i
− −
{σ̂−i σ̂

+
i , ρ̂}

2

�

(D.1)

In the quadratic approximation, we have Eq. (33)698

∂t ρ̂ = −
i
2

�

∆p̂2 + (∆− g) x̂2, ρ̂
�

+ γD[Â]ρ̂ +∆
�

δĴ , ρ̂
�

+ γ
�

δĴρ̂ − e−iφ̂δĴ eiφ̂
�

, (D.2)

There is an instability at ∆∗ defined by γ = 2
p

∆∗(g −∆∗). Since the longitudinal boson699

just equilibrates to |δJ = 0〉 we project out this degree of freedom and work with the reduced700

density matrix for the transverse boson ρ̂T. If we introduce the conjugate pair [ x̂s, p̂ f ] = i701

according to702

x̂s =
u−1 x̂ + u p̂
p

2
, p̂ f =

u p̂− u−1 x̂
p

2
, (D.3)

where u= [∆∗/(g −∆∗)]1/4, the equation simplifies to703

∂t ρ̂T = −
iγ
2

�

x̂s, {p̂ f , ρ̂T}
�

+
g
4

�

�

x̂s, [ρ̂T, x̂s]
�

+
�

p̂ f , [ρ̂T, p̂ f ]
�

�

+
�

g − 2∆∗

2

�

�

x̂s, [ρ̂T, p̂ f ]
�

.

(D.4)
The first term introduces relaxation for p̂ f with rate γ but does not affect x̂s. The next term704

introduces noise and diffusion, which only manifests in 〈 x̂2
s 〉 and 〈p̂2

f 〉. The last term introduces705

mixed noise, whch appears in 〈{ x̂s, p̂ f }〉. Because of the relaxation, the variance of p̂ f never706

grows too much. However, the noise in x̂s keeps growing and is stabilized by nonlinearities.707

We thus introduce ŷs = N fx x̂s, which will behave classically, and hence commutators become708

Poisson brackets according to [ , ] ≈ iN− fx { , }pb. The density matrix ρ̂T becomes a classical709

probability distribution ρc that satisfies the classical master equation710

∂tρc = γ∂p f
(p f ρc) +

g
4
∂ 2

p f
ρc +

g
4N2 fx

∂ 2
y ρc −

�

g − 2∆∗

2N fx

�

∂p f
∂yρc . (D.5)

Note that the first two terms are O(N0) and will thus equilibrate first. This determines the711

steady state probability distribution of p f , ∼ e−2γp2
f /g . Interpreting the right-hand side of the712
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master equation as an operator in phase space, we apply a Schrieffer-Wolff transformation to713

get rid of the term∝ N− fx , and then project the operator onto the steady state manifold of714

the N0 term (operationally this means that we write ρc ∝ e−2γp2
f /g P(y), apply the operator715

and integrate over p). This leads to an effective classical master equation for y716

∂t P(y) =
g

4N2 fx
∂ 2

y P(y). (D.6)

This diffusion equation will be stabilized by the nonlinearity, which we now analyze. The717

nonlinearity comes from the Ĵ2
x term in the Hamiltonian. Expressing the bosonic operators in718

terms of x̂s and p̂ f we get that719

gĴ2
x

N
=

g x̂2

2
−

g
16N

(u4 + 1) x̂4
s +

gu4

8N
( x̂3

s p̂ f + p̂ f x̂3
s ), (D.7)

and we have kept up to terms with x̂3
s . The nonlinear terms induce the following evolution720

−i
h g

16N
(u4 + 1) x̂4

s , ρ̂
i

→
gN3 fx

4N
(u4 + 1)y3∂p f

ρc

−i

�

−
gu4

8N
( x̂3

s p̂ f + p̂ f x̂3
s ), ρ̂

�

→−
3gu4 y2p f N2 fx

4N
∂p f
ρc +

gu4N2 fx

4N
y3∂yρc

(D.8)

Projecting onto the steady state manifold of the N0 term (and doing a Schrieffer-Wolff trans-721

formation to get rid of the first term) leads to the following master equation722

∂t P =
3gu4N2 fx

4N
y2P +

gu4N2 fx

4N
y3∂y P +

g
4N2 fx

∂ 2
y P. (D.9)

We choose fx = 1/4 to arrive at723

∂t P =
g

N1/2

�

(∆∗)2

γ2
∂y(y

3P) +
1
4
∂ 2

y P

�

. (D.10)

Time evolution of the slow mode is thus reduced by a factor of N−1/2. The relation between724

the p̂ f , x̂s, and the original spin operators is725

Ĵx =
u
2
(N3/4 ŷ − N1/2 p̂ f ) =

√

√∆∗

2γ

�

N3/4 ŷ − N1/2 p̂ f

�

Ĵy =
u−1

2
(N3/4 ŷ + N1/2 p̂ f ) =

1
2

s

γ

2∆∗
�

N3/4 ŷ + N1/2 p̂ f

�

(D.11)

E Effective Hamiltonian for the thermal phase transition of the726

Dicke model727

Here we derive the effective Hamiltonian that describes the thermal properties of the Dicke728

model in the vicinity of its phase transitions, Eq. (50). We begin from729

ĤD =ωĉ† ĉ +ω0 Ĵz +
2λ
p

N
Ĵx(ĉ + ĉ†). (E.1)
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The critical point is determined by λ
p

j = pωω0/2 and j = tanh(βcω0/2). The quadratic730

approximation in the disordered phase at the critical point (including the degeneracy factor)731

is732

K̂eff

βc
=ωĉ† ĉ +ω0Â†Â+

p
ωω0

2
(Â+ Â†)(ĉ + ĉ†) +

f ′′( j)l̂2

βc
, (E.2)

Omitting temporarily the l̂2 contribution, this model is more easily solved if we represent733

it in terms of quadratures x̂ = (Â + Â†)/
p

2, p̂ = −i(Â − Â†)/
p

2, ŷ = (ĉ + ĉ†)/
p

2 and734

q̂ = −i(ĉ − ĉ†)/
p

2, leading to735

K̂eff

βc
= −
(ω+ω0)

2
+

1
2

�

ωq̂2 +ω0 p̂2
�

+
1
2
(ω ŷ2 +ω0 x̂2 + 2

p

ωω0 x̂ ŷ). (E.3)

We first introduce the canonical rescalings p̃ = (ω0/ω)1/4 p̂, x̃ = (ω/ω0)1/4 x̂ , and q̃ = (ω/ω0)1/4q̂,736

ỹ = (ω0/ω)1/4 ŷ which makes uniform the terms quadratic in p̂, q̂737

K̂eff

βc
= −
(ω+ω0)

2
+
p
ωω0

2

�

q̃2 + p̃2
�

+
1

2
p
ωω0

(ω0 x̃ +ω ỹ)2 . (E.4)

This representation makes it clear that the mode k̂ = (ω0 x̃ +ω ỹ)/(ω2
0 +ω

2)1/2 is gapped,738

while the mode m̂= (ω x̃ −ω0 ỹ)/(ω2
0 +ω

2)1/2 is gapless739

K̂eff

βc
= −
(ω+ω0)

2
+
p
ωω0

2

�

p̃2
k + p̃2

m

�

+
(ω2

0 +ω
2)

2
p
ωω0

k̂2, (E.5)

where p̂k,m are the associated canonical momenta. The gapped mode can be put in to standard740

form by canonically rescaling ĝ = (ω2
0+ω

2)1/4(ω0ω)−1/4k̂ and p̂g = (ω2
0+ω

2)1/4(ω0ω)−1/4 p̂k,741

with [ ĝ, p̂g] = i. Furthermore, the quantity that fluctuates strongly at the critical point742

is m̂ so schematically we have that m̂ � k̂, p̂k, p̂m and therefore x̃ ≈ ω m̂/(ω2
0 + ω

2)1/2,743

ỹ ≈ −ω0 m̂/(ω2
0 +ω

2)1/2. We now add the nonlinearity, coming from the next term in the744

expansion of Ĵx745

Ĵx −

√

√N j
2

x̂ ≈ −
1

4
p

2N j
x̂3 +

l̂ x̂
p

2 j

≈ −
1

4
p

2N j

�ω0

ω

�3/4 ω3m̂
(ω2

0 +ω2)3/2
+

l̂ m̂
p

2 j

�ω0

ω

�1/4 ω

(ω2
0 +ω2)1/2

(E.6)

The correction to the Hamiltonian from the nonlinearity is then746

δK̂1
eff

βc
=
p
ωω0
p

N j

�

Ĵx −

√

√N j
2

x̂

�

(ĉ + ĉ†) =
1

4N j

ω3ω2
0 m̂4

(ω2
0 +ω2)2

−
1

j
p

N

(ωω0)3/2 l̂ m̂2

(ω2
0 +ω2)

(E.7)

Note that the mode m̂ couples to spin length fluctuations. To account for small deviations about747

the transition temperature, we recall that the effective Hamiltonian is obtained by adding the748

degeneracy factor to ĤD749

K̂ = β ĤD − log
�

dĴ

�

, (E.8)

so that a change in temperature is accounted for by750

δK̂2
eff = (β − βc)ĤD. (E.9)

The most important terms that will be added are751

δK̂2
eff = −(β − βc)

ω0N j
2
−ω0(β − βc)

p
N l̂. (E.10)
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The first term is a c-number but it may contribute to quantities like the average energy. Putting752

all these things together leads to753

K̂ tr
eff = −

βc(ω+ω0)
2

+
βc(ω2

0 +ω
2)1/2

2
(p̂2

g + ĝ2)

+
βc
p
ωω0

2
p̂2

m + f ′′( j)l̂2 −ω0(β − βc)
p

N l̂ +
βc

4N j

�

ω3ω2
0

(ω2
0 +ω2)2

�

m̂4

−
βc

j
p

N

�

(ωω0)3/2

(ω2
0 +ω2)

�

l̂ m̂2

(E.11)

If we were looking at ground state physics, we would scale m̂ and p̂m such that they would754

have the same N prefactor and then adapt the scaling of λ
p

j −pωω0/2 accordingly. This755

would lead to a quantum Hamiltonian with a gap∝ N−1/3. At Tc and large N , this nonlinear756

Hamiltonian would be highly excited, with an excitation level that depends on N and would757

thus change the scalings that are relevant near the ground state phase transition. For the758

gapless mode, the correct procedure is to stabilize the thermal excitation of the system against759

the nonlinearity ∝ m̂4/N (by demanding that K̂ tr
eff ∼ 1) and to treat the mode classically.760

The effective Hamiltonian will thus have a quantum piece, coming from the gapped mode,761

and a classical piece, coming from the gapless mode and spin length fluctuations. To take the762

classical limit appropriately we define ŝ and p̂s such that763

ŝ = m̂

�

β1/4
c ω3/4ω

1/2
0

(ω2
0 +ω2)1/2(N j)1/4

�

p̂s = p̂m

�

(ω2
0 +ω

2)1/2( j)1/4

β
1/4
c ω3/4ω

1/2
0

�

.

(E.12)

With these definitions, [ŝ, p̂s] = iN−1/4 and we can take the classical limit by letting commu-764

tators become Poisson brackets according to { , }pb ≈ −iN−1/4[ , ]. The effective Hamiltonian765

is then766

K̂ tr
eff = −

βc(ω+ω0)
2

+
βc(ω2

0 +ω
2)1/2

2
(p̂2

g + ĝ2)

+
(βcω0)3/2

2
p

j

�

ω2

ω2 +ω2
0

�

p2
s + f ′′( j)l2 +

s4

4
+

�

p
N(β − βc)ω0 −

√

√βcω0

j
s2

�

l

(E.13)

where we are now treating s, ps, l as classical variables. The last thing to do is to scale the767

distance to the critical point with N such that768

ξ=
(β − βc)

p
N

βc
(E.14)

so that the effective Hamiltonian reads769

K̂ tr
eff = −

βc(ω+ω0)
2

+
βc(ω2

0 +ω
2)1/2

2
(p̂2

g + ĝ2)

+
(βcω0)3/2

2
p

j

�

ω2

ω2 +ω2
0

�

p2
s + f ′′( j)l2 +

s4

4
+

�

ξβcω0 −
√

√βcω0

j
s2

�

l

(E.15)
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For completeness, we include here the exact relation between the original transverse bosons770

Â, Â† and the final expression in terms of ĝ, ŝ:771

ĝ =

�

ω2
0 +ω

2

ω0ω

�1/4 �
ω0(ω/ω0)1/4(Â+ Â†) +ω(ω0/ω)1/4(ĉ + ĉ†)

p
2(ω2

0 +ω2)1/2

�

p̂g =

�

ω2
0 +ω

2

ω0ω

�−1/4 �
ω0(ω0/ω)1/4(Â− Â†) +ω(ω/ω0)1/4(ĉ − ĉ†)

i
p

2(ω2
0 +ω2)1/2

�

ŝ =

�

β1/4
c ω3/4ω

1/2
0

(ω2
0 +ω2)1/2(N j)1/4

��

ω(ω/ω0)1/4(Â+ Â†)−ω0(ω0/ω)1/4(ĉ + ĉ†)
p

2(ω2
0 +ω2)1/2

�

p̂s =

�

(ω2
0 +ω

2)1/2( j)1/4

β
1/4
c ω3/4ω

1/2
0

��

ω(ω0/ω)1/4(Â− Â†)−ω0(ω/ω0)1/4(ĉ − ĉ†)

i
p

2(ω2
0 +ω2)1/2

�

(E.16)
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