

Generalized Holstein-Primakoff mapping and $1/N$ expansion of collective spin systems undergoing single particle dissipation

Diego E. Barberena^{1*}

¹ T.C.M. Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0US, UK

* db985@cam.ac.uk

Abstract

We develop a generalization of the Schwinger boson and Holstein-Primakoff transformations that is applicable to ensembles of N spin $1/2$'s with weak permutational symmetry. These generalized mappings are constructed by introducing two independent bosonic variables that describe fluctuations parallel and transverse to the collective Bloch vector built out of the original spin $1/2$'s. Using this representation, we develop a systematic $1/N$ expansion and write down explicitly leading and next-to-leading order terms. We then illustrate how to apply these techniques using four example systems: (i) an ensemble of atoms undergoing spontaneous emission, incoherent pumping and single particle dephasing; (ii) a superradiant laser above and in the vicinity of the upper lasing transition; (iii) the all-to-all transverse field Ising model subject to incoherent pumping in the vicinity of its ordering phase transition; and (iv) the Dicke model at finite temperature both away and in the vicinity of its thermal phase transition. Thus, these mappings provide a common, Bloch-sphere based, geometrical description of all-to-all systems subject to single particle dissipation or at finite temperature, including their phase transitions.

Copyright attribution to authors.

This work is a submission to SciPost Physics.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

¹

Contents

1	Introduction	2
2	Models and motivation	5
5	2.1 Motivation	5
3	Operator mapping	8
7	3.1 Type I: Replacement rules when $j < 1$	10
8	3.2 Type II: Replacement rules when $j = 1$	11
4	Examples	11
10	4.1 Pumping+decay+dephasing	12
11	4.2 Superradiant laser above upper threshold	14
5	Driven-dissipative phase transitions	15
13	5.1 Superradiant laser near upper threshold	15

14	5.2 Dissipative all-to-all transverse field Ising model	19
15	6 Thermal behaviour	22
16	7 Conclusions and outlook	25
17	A Expressing local dissipators in terms of Schwinger bosons	26
18	B Derivation of replacement rules	30
19	C Superradiant laser below upper threshold	34
20	D Transverse field Ising model with finite dissipation	36
21	E Effective Hamiltonian for the thermal phase transition of the Dicke model	37
22	References	40
23		
24		

25 1 Introduction

26 Collective spin systems arise very frequently in the field of quantum technologies, e.g. when
27 atoms interact with light inside an optical cavity [1] or when ions communicate via a common
28 motional mode [2,3]. They often provide minimal theoretical descriptions of non-equilibrium
29 phenomena such as superradiance [4,5], driven-dissipative dynamics [6–20] and novel kinds
30 of lasing [21–26], and are thus fundamental ingredients of many iconic models from quantum
31 optics [6,8,27,28]. Moreover, collective spin systems are also well suited for the preparation
32 of highly entangled spin squeezed states [28–37], with current efforts now focusing on using
33 them for the improvement of state-of-the-art sensors [38,39].

34 When collective spin systems are built out of ensembles of atoms, physical processes can-
35 not fundamentally distinguish between the atoms that partake in them. This indiscernibility
36 is a crucial ingredient for the creation of the quantum-enhanced correlations that underpin
37 metrological applications, and often takes the form of a mathematically exact permutational
38 symmetry among the atoms. This is advantageous because theoretical analyses based on this
39 symmetry are considerably simpler [5], while often still capturing the qualitative properties of
40 similar but less symmetric models [40–47]. Even when typical sources of decoherence such as
41 spontaneous emission into free space are included, a restricted amount of this permutational
42 symmetry is retained [48–50], although correlations are usually damaged as a result.

43 The main technical simplification brought about by permutational symmetry is a reduction
44 of the space of quantum states that the system explores during its dynamics. The typical,
45 exponentially large in N , Hilbert space of N spins is brought down to a subspace whose size
46 is polynomial in N . The exact degree of reduction will then depend on whether the symmetry
47 acts in a strong or a weak sense [51–53]. If there are only coherent interactions, governed
48 by a Hamiltonian, or the sources of dissipation are collective, e.g. by coupling the atoms to a
49 lossy cavity mode, the symmetry will be realized strongly. In this case, the size of the relevant
50 subspace will be $\sim N(N^2)$ for closed (open) system dynamics. In contrast, in the presence
51 of single particle sources of dissipation such as spontaneous emission, the symmetry will be
52 realized weakly. The evolution will then be inherently open and the subspace of explored
53 density matrices will be of size $\sim N^3$ [48,50,54]. These reductions are routinely exploited in

54 numerical simulations [55], although the N^3 scaling is still very limiting in practice. Further
55 gains can be achieved using (stochastic) Monte Carlo wavefunction techniques [56], at the
56 expense of requiring averages (with low statistical uncertainty) over multiple repetitions of
57 the stochastic evolution.

58 When the permutational symmetry is strong, analytical insight is often provided by us-
59 ing bosonic representations of the spin operators [57–59], which are based on a second-
60 quantization approach that has found successful application in fields like e.g. polaritonic
61 chemistry [60, 61]. More concretely, collective spin operators can be expressed exactly in
62 terms of two Schwinger bosons, in a way that makes manifest their nature as components of
63 an $SO(3)$ vector. Moreover, the strength of the symmetry provides a constraint that can be
64 used to mathematically eliminate one of the bosons. The resulting expressions in terms of
65 a single boson are known as the Holstein-Primakoff (HP) transformation [62]. Although HP
66 hides manifest rotational covariance, it provides a way of performing a systematic expansion
67 in powers of $1/N$ [58, 59]. The leading terms in this expansion give rise to the mean field
68 approximation, and the leading corrections typically describe gaussian fluctuations about the
69 mean field state. If the expansion is done carefully, it can also be used to analyze phase transi-
70 tions, although in this case fluctuations acquire a non-gaussian character [14, 63–65]. Either
71 way, the mean field quantum state can be visualized as an arrow (the Bloch vector) on the
72 surface of a collective Bloch sphere, of radius $N/2$, while fluctuations can be represented as
73 a small distribution about the tip of this arrow. Both the distribution and the arrow tip lie on
74 the surface of the sphere [Fig. 1(a)].

75 When the permutational symmetry is weak, i.e. in the presence of single particle deco-
76 herence or at finite temperature, the naive HP mapping breaks down and a Schwinger boson
77 representation from which to obtain a modified HP approximation has not been derived in full
78 generality. Applying second quantization in superoperator space leads to alternative bosonic
79 representations [66] that recover the N^3 scaling, but the interpretation of the resulting bosons
80 using Bloch spheres is not clear, and the nature of the large N approximation in this represen-
81 tation has not been investigated. Following the more standard HP transformation, Ref. [67]
82 used phase space methods and Fokker-Planck equations to analyse specific master equations.

83 In this paper, we extend the results of Ref. [67] and provide a comprehensive description of
84 generalized boson mappings for spin 1/2 systems undergoing single particle dissipation. We
85 identify a rotationally covariant structure that expresses local dissipation in terms of Schwinger
86 bosons, and then use this representation to derive a modified HP transformation. We find that
87 the original HP boson from strongly symmetric systems still appears and still describes fluctu-
88 ations perpendicular to the mean field Bloch vector, which can now lie within the sphere and
89 not only on its surface. In addition, there is now a second boson that accounts for longitudinal
90 fluctuations parallel to the Bloch vector [Fig. 1(b)].

91 This technique is of wide generality, as is the geometrical picture that accompanies it. To
92 demonstrate this, this paper will fulfill three goals

- 93 (α) Establish an exact operator mapping between generic terms in a spin Lindblad master
94 equation and terms in an associated bosonic master equation.
- 95 (β) Devise a set of simple “replacement rules” to analyze the large N limit of such systems
96 at their steady states, along with a clearly defined procedure on how to compute further
97 corrections in $1/N$. When possible, these “rules” should establish direct analogies to
98 standard bosonic constructs (e.g. baths at some finite temperature).
- 99 (II) Show that the exact mapping can also be used to get analytical control over the critical
100 region of driven-dissipative and thermal phase transitions when the number of spins N
101 is sent to ∞ .

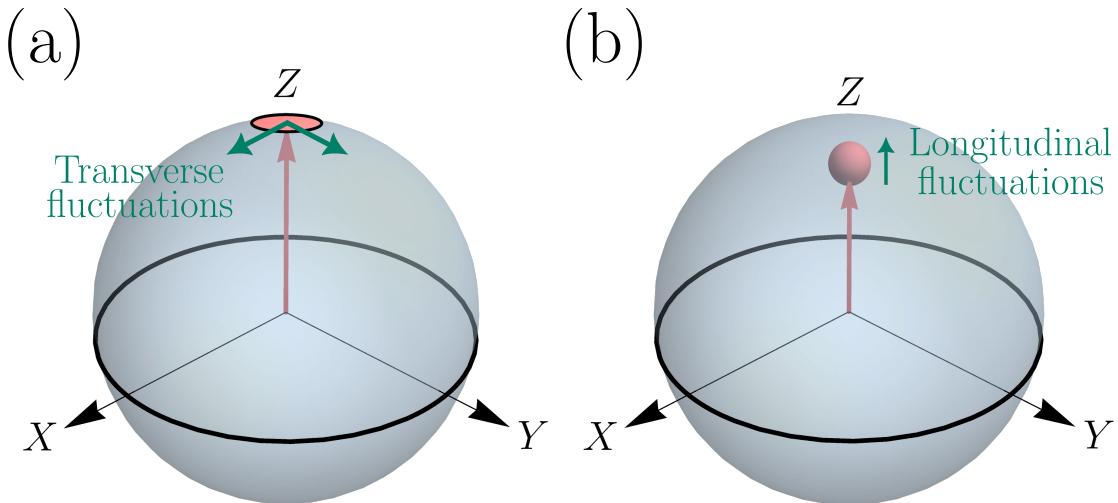


Figure 1: (a) For systems made up of N spin $1/2$ and with strong permutational symmetry, both the collective Bloch vector (arrow in red) and fluctuations lie on the surface of the collective Bloch sphere, of radius $N/2$. Fluctuations are transverse to the collective Bloch vector and are described by the Holstein-Primakoff boson. (b) When the permutational symmetry is only weak, the Bloch vector can lie inside the sphere now, and there are also longitudinal fluctuations, which are described by a different boson. The noise distribution can now be three-dimensional.

102 In carrying out items (α) and (β) , we will establish a simple “recipe” to study generic all-to-all
 103 spin systems undergoing local dissipation or at finite temperature. Furthermore, item (Π) is
 104 a generalization of techniques that have been used in the past to describe phase transitions
 105 of all-to-all systems [14, 63, 64] including only collective sources of dissipation [65]. It also
 106 provides an alternative, operator based, analysis of phenomena that are more routinely studied
 107 using Keldysh path integral techniques [68–70]. To progressively fulfill the above three goals,
 108 we organize this paper as follows

109 **Section 2** *Basic notation and review of (α) , (β) and (Π) for strong permutational symmetry.* We
 110 introduce the spin master equation that we will study and illustrate (α) , (β) and (Π) by
 111 focusing on the ground state properties of an example Hamiltonian.

112 **Section 3** *Items (α) and (β) for weak permutational symmetry.* We write down the exact op-
 113 erator mappings and provide their large N approximation.

114 **Section 4** *Examples.* We illustrate how to use the mappings away from phase transitions by
 115 means of two examples: a collection of spins undergoing single particle dephasing, spon-
 116 taneous emission and incoherent pumping; and a superradiant laser above the upper
 117 lasing threshold.

118 **Section 5** *Item (Π) for weak permutational symmetry.* We illustrate how to use the mappings
 119 in the vicinity of phase transition points by means of two examples: a superradiant laser
 120 near threshold and a driven-dissipative transverse field Ising model.

121 **Section 6** *Thermal states.* We show that the generalized mapping can also be used to ana-
 122 lyze thermal properties of collective all-to-all models. We illustrate this using the Dicke
 123 model, and derive effective Hamiltonians in each of its two thermal phases and also in
 124 the vicinity of its thermal phase transition.

125 2 Models and motivation

126 The type of models that we will study are defined in systems of N qubits. The Hilbert space of
 127 each qubit is spanned by the states $|\uparrow\rangle_i, |\downarrow\rangle_i$, ($i = 1, \dots, N$), in which local spin matrices

$$\begin{aligned}\hat{s}_x^i &= \frac{1}{2}(|\uparrow\rangle\langle\downarrow|_i + |\downarrow\rangle\langle\uparrow|_i) \\ \hat{s}_y^i &= \frac{1}{2i}(|\uparrow\rangle\langle\downarrow|_i - |\downarrow\rangle\langle\uparrow|_i) \\ \hat{s}_z^i &= \frac{1}{2}(|\uparrow\rangle\langle\uparrow|_i - |\downarrow\rangle\langle\downarrow|_i)\end{aligned}$$

128 act. Importantly, the density matrix of the system $\hat{\rho}$ evolves under a Liouvillian with the
 129 following structure:

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \mathcal{L}\hat{\rho} + \sum_{\alpha, \beta, i} \gamma_{\alpha\beta} \left(\hat{s}_\alpha^i \hat{\rho} \hat{s}_\beta^i - \frac{\{\hat{s}_\alpha^i \hat{s}_\beta^i, \hat{\rho}\}}{2} \right), \quad (1)$$

130 where \hat{H} and \mathcal{L} are a “collective” Hamiltonian and Liouvillian, respectively, meaning that they
 131 are constructed entirely in terms of the collective spin operators $\hat{J}_{x,y,z} = \sum_i \hat{s}_{x,y,z}^i$ (and/or
 132 $\hat{J}^\pm = \hat{J}_x \pm i\hat{J}_y$). The third contribution, parameterized by the rates $\gamma_{\alpha\beta}$, describes single particle
 133 processes such as spontaneous emission, incoherent pumping, and dephasing. The collective
 134 parts, \hat{H} and \mathcal{L} , describe instead processes such as superradiant emission of light (with jump
 135 operator $\propto \hat{J}^-$) or collective exchange interactions (with Hamiltonian $\propto \hat{J}^+ \hat{J}^-$), which may
 136 arise via mediation of a cavity mode or a common motional mode.

137 Collective spin operators are invariant under the action of permutation operators \hat{U}_P , i.e.
 138 $\hat{U}_P^\dagger \hat{J}_{x,y,z} \hat{U}_P = \hat{J}_{x,y,z}$. As a consequence, when $\gamma_{\alpha\beta} = 0$ the evolution equation is independently
 139 invariant under $\hat{\rho} \rightarrow \hat{U}_P \hat{\rho}$ and $\hat{\rho} \rightarrow \hat{\rho} \hat{U}_P$. By definition, this means that permutations are a
 140 strong symmetry of the system [51–53]. It is then useful to construct the spin length operator
 141 \hat{J} , defined as the positive square root of

$$\hat{J}(\hat{J} + 1) = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2. \quad (2)$$

142 Using the eigenvalues of \hat{J} as labels, we can then organize the 2^N possible quantum states
 143 of the system in terms of their behaviour under permutations. In particular, we will focus
 144 on the so-called Dicke manifold, which comprises all quantum states that are invariant under
 145 permutations. The dimension of the Dicke manifold for N spins is $N + 1$, and they are all
 146 eigenstates of \hat{J} with eigenvalue $N/2$. A typical basis of this manifold is given by the Dicke
 147 states $|J, M\rangle$, which are also eigenstates of \hat{J}_z with eigenvalue M (we are keeping the label J
 148 in the state to make connections with Sec. 3 more direct, although it has the value $N/2$ for the
 149 Dicke states).

150 2.1 Motivation

151 To give a better characterization of what kind of description we are after, we will illustrate items
 152 $(\alpha), (\beta)$ and (Π) of the introduction using the more familiar setting of Hamiltonian systems
 153 and ground states, so for now we set $\mathcal{L} = 0$ and $\gamma_{\alpha\beta} = 0$. We thus consider an all-to-all version
 154 of the transverse field Ising model, also known as the Lipkin-Meshkov Glick model [8, 71, 72]

$$\hat{H} = -\hat{J}_z - \frac{g}{N} \hat{J}_x^2, \quad (3)$$

155 which is expressed entirely in terms of collective spin operators. Because of the all-to-all con-
 156 nectivity of the model, mean field theory provides an accurate description of the ground state
 157 when $N \rightarrow \infty$. Specifically, there are two ground state phases [see Fig. 2(a)]:

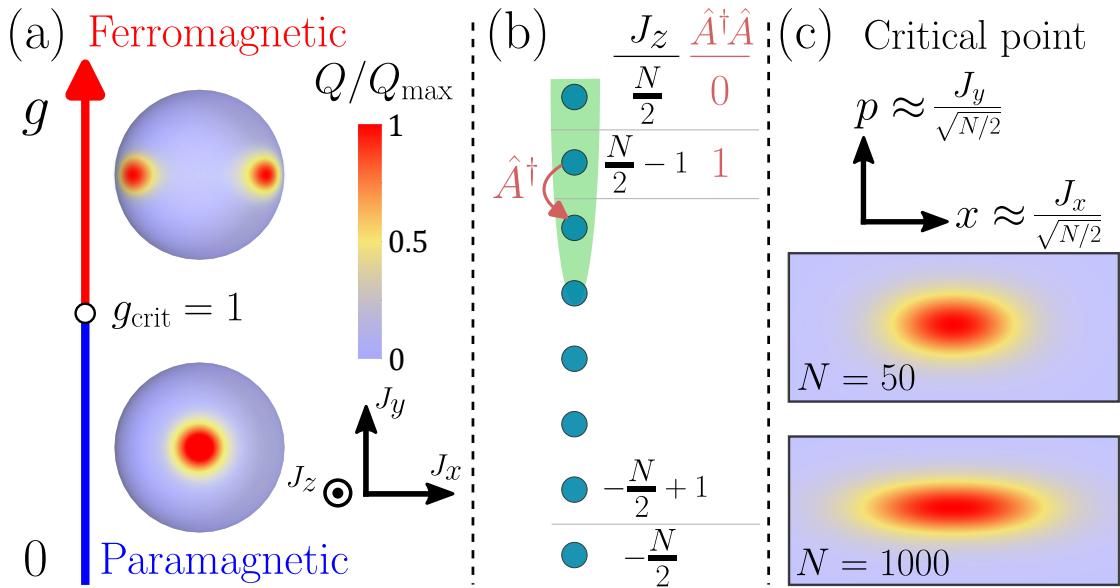


Figure 2: (a) Husimi distribution, $Q \propto |\langle \theta, \phi | gnd \rangle|^2$, of the ground state $|gnd\rangle$, where $|\theta, \phi\rangle$ is a spin-coherent state [73]. In the paramagnetic phase ($g < 1$), the Bloch vector is polarized along $+z$. In the ferromagnetic ($g > 1$) phase, the Bloch vector acquires a $\pm x$ component. (b) Dicke states, which are permutationally symmetric eigenstates of \hat{J}_z . The states can equally be labeled by the occupation number of the Holstein-Primakoff boson $(\hat{A}^\dagger \hat{A})$. The green shaded area is the region of Hilbert space where the large N approximation is accurate. (c) Husimi distribution at the critical point $g = 1$, plotted as a function of the quadratures $x \approx J_x/\sqrt{N/2}$ and $p \approx J_y/\sqrt{N/2}$ for $N = 50, 1000$. As N increases the ground state gets squeezed along the J_y direction.

- Paramagnetic: When $g < 1$, there is only one ground state, characterized by $\langle \hat{J}_z \rangle = N/2$ and $\langle \hat{J}_{x,y} \rangle = 0$. Thus, the collective Bloch vector $\langle \hat{\mathbf{J}} \rangle = \langle (\hat{J}_x, \hat{J}_y, \hat{J}_z) \rangle$ points along the $+z$ direction.
- Ferromagnetic: When $g > 1$, there are two degenerate ground states, with $\langle \hat{J}_z \rangle = N/(2g)$, $\langle \hat{J}_x \rangle = \pm(N/2)\sqrt{1-g^{-2}}$ and $\langle \hat{J}_y \rangle = 0$. The Bloch vector points now in the xz plane.

Operationally, these are obtained by calculating the equations of motion for the expectations $\langle \hat{J}_a \rangle$, factorizing operator products $\langle \hat{J}_a \hat{J}_b \rangle \rightarrow \langle \hat{J}_a \rangle \langle \hat{J}_b \rangle$, setting the time derivatives to 0 and solving the ensuing nonlinear equations. Alternatively, in the case of ground states the mean field solution can also be obtained by replacing operators by classical variables $(\hat{J}_x, \hat{J}_y, \hat{J}_z) \rightarrow N(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) - 2$ and minimizing the resulting classical Hamiltonian with respect to the parameters θ, ϕ .

Studying fluctuations requires going beyond the simple factorization scheme used to obtain the mean field results. This is achieved by representing the collective spin operators in terms of Schwinger bosons

$$\hat{\mathbf{J}} = \frac{1}{2} \begin{pmatrix} \hat{b}^\dagger & \hat{a}^\dagger \end{pmatrix} \boldsymbol{\sigma} \begin{pmatrix} \hat{b} \\ \hat{a} \end{pmatrix}, \quad (4)$$

where $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)^T$, and $(\hat{a}, \hat{a}^\dagger)$ and $(\hat{b}, \hat{b}^\dagger)$ are two pairs of bosonic variables satisfying standard commutation relations $[\hat{a}, \hat{a}^\dagger] = [\hat{b}, \hat{b}^\dagger] = 1$. In the Schwinger boson representation, the spin length \hat{J} also has a simple form

$$\hat{J} = \frac{a^\dagger \hat{a} + \hat{b}^\dagger \hat{b}}{2}. \quad (5)$$

175 For Hamiltonian systems, this constitutes item (α) in the introduction.

176 Physically, the number operators $\hat{b}^\dagger \hat{b}$ and $\hat{a}^\dagger \hat{a}$ count the number of spins in $|\uparrow\rangle$ and $|\downarrow\rangle$ respectively. Because of permutational symmetry, basis states in the Dicke manifold are specified 177 uniquely by the occupation numbers of $|\uparrow\rangle$ and $|\downarrow\rangle$. Since there are N spins in total, quantum 178 states $|\psi\rangle$ in the Dicke manifold are subject to the constraint 179

$$(\hat{a}^\dagger \hat{a} + \hat{b}^\dagger \hat{b}) |\psi\rangle = N |\psi\rangle, \quad (6)$$

180 or equivalently $\hat{J} |\psi\rangle = (N/2) |\psi\rangle$. To study fluctuations in the paramagnetic ground state, we 181 recognize that the collective spin points along $+z$, so that $\hat{b}^\dagger \hat{b} \sim N$ and $\hat{a}^\dagger \hat{a} \sim 1$. It is thus 182 convenient to use the number-phase representation for $\hat{b} = e^{i\hat{\phi}/2} (\hat{b}^\dagger \hat{b})^{1/2}$ [74], where $e^{i\hat{\phi}/2}$ 183 reduces the occupation of the \hat{b} boson by 1 with unit amplitude. Using the constraint Eq. (6) 184 and defining $\hat{A} = \hat{a} e^{-i\hat{\phi}/2}$ enables us to represent the collective spin operators in terms of a 185 single Holstein-Primakoff boson [62]

$$\begin{aligned} \hat{J}_z &= \frac{N}{2} - \hat{A}^\dagger \hat{A} \\ \hat{J}^+ &= (N - \hat{A}^\dagger \hat{A})^{1/2} \times \hat{A} \\ \hat{J}^- &= \hat{A}^\dagger (N - \hat{A}^\dagger \hat{A})^{1/2} \end{aligned} \quad (7)$$

186 This is an alternative version of item (α) in the introduction. The Holstein-Primakoff mapping 187 is exact, but it is more convenient when the Bloch vector is aligned along $+z$, because then 188 $\langle \hat{A}^\dagger \hat{A} \rangle \ll N$, $\text{Var}(\hat{A}^\dagger \hat{A}) \ll N^2$, and the square roots can be expanded in a Taylor series. This 189 establishes a systematic way of studying fluctuations with a controlled small parameter $N^{-1/2}$. 190 For later convenience, we also define here the quadrature operators $\hat{x} = (\hat{A} + \hat{A}^\dagger)/\sqrt{2}$ and 191 $\hat{p} = -i(\hat{A} - \hat{A}^\dagger)/\sqrt{2}$.

192 To leading order in $1/N$, we can approximate

$$\begin{aligned} \hat{J}^+ &\approx \sqrt{N} \hat{A} \\ \hat{J}^- &\approx \sqrt{N} \hat{A}^\dagger \\ \hat{J}_z &= N/2 - \hat{A}^\dagger \hat{A} \end{aligned} \quad (8)$$

193 This set of replacement rules constitutes item (β) in the introduction, and provides a direct 194 analogy to boson creation/destruction processes. Replacing these expressions in Eq. (3) leads 195 to the fluctuation Hamiltonian

$$\hat{H} \approx -\frac{(N+1)}{2} + \frac{\hat{p}^2}{2} + \frac{(1-g)\hat{x}^2}{2} + O(N^{-1/2}). \quad (9)$$

196 Since the Hamiltonian is quadratic in boson operators, expectation values can be calculated 197 analytically. For instance,

$$\begin{aligned} \langle \hat{J}_x^2 \rangle &\approx \frac{N}{4} (1-g)^{-1/2} \\ \langle \hat{J}_y^2 \rangle &\approx \frac{N}{4} (1-g)^{1/2} \end{aligned} \quad (10)$$

198 To analyze fluctuations about the ferromagnetic ground state, one first needs to rotate the 199 mean field collective Bloch vector (which is now tilted in the xz plane) to the $+z$ axis. All the 200 other steps then follow through identically.

201 As we approach the critical point through the paramagnetic phase ($g \rightarrow 1^-$), Eq. (10) 202 predicts that fluctuations in $\hat{J}_x \sim \hat{x}$ diverge. In reality, this just means that the leading order 203 approximation in $1/N$ fails, but the Holstein-Primakoff mapping remains exact. To get control

204 over the phase transition region, we need to keep the relevant nonlinearity in the next order
 205 in $1/N$, which is given by

$$\hat{J}_x \approx \sqrt{\frac{N}{2}} \hat{x} - \frac{\hat{x}^3}{4\sqrt{2N}}. \quad (11)$$

206 Note that, at the same order in $1/N$, there are also terms of the form $\hat{x}^2 \hat{p}$, but these are smaller
 207 than \hat{x}^3 on account of \hat{x} being the variable with diverging fluctuations (and will later be shown
 208 to be parametrically smaller in $1/N$). The corrected Hamiltonian near $g = 1$ is thus

$$\hat{H} \approx -\frac{(N+1)}{2} + \frac{\hat{p}^2}{2} + \frac{(1-g)\hat{x}^2}{2} + \frac{\hat{x}^4}{4N}. \quad (12)$$

209 The dependence with N can be made manifest by canonically rescaling $\hat{x} = N^{1/6} \hat{y}$ and $\hat{p} = N^{-1/6} \hat{q}$,
 210 and introducing a scaled coupling constant ξ that measures deviations from the critical point
 211 according to $g = 1 - \xi/N^{2/3}$. In terms of these variables \hat{H} becomes

$$\hat{H} \approx -\frac{(N+1)}{2} + \frac{1}{N^{1/3}} \left(\frac{\hat{q}^2}{2} + \frac{\xi \hat{y}^2}{2} + \frac{\hat{y}^4}{4} \right), \quad (13)$$

212 which is still a bosonic Hamiltonian, but now with a non-gaussianity that is especially relevant
 213 at $g = 1$ and an energy gap that scales like $N^{-1/3}$ [75]. Using this formulation, and since
 214 $\hat{y}, \hat{q} \sim 1$, we immediately see that fluctuations in \hat{J}_y at the critical point scale as $\hat{J}_y \sim \sqrt{N} \hat{p} \sim N^{1/3}$
 215 and so the state is squeezed along the y direction. Because of the same reason, the terms
 216 neglected in Eq. (11) are of size $\hat{x}^2 \hat{p} \sim N^{1/6}$ and parametrically smaller than $\hat{x}^3 \sim N^{1/2}$, justifying
 217 their omission a posteriori, and indicating that the large N expansion in the vicinity
 218 of the critical point is in fact an expansion in powers of $N^{1/3}$ rather than $N^{1/2}$. This type of
 219 analysis [12, 14, 63, 64, 69] constitutes item (II) in the introduction.

220

221 3 Operator mapping

222 We now consider all of Eq. (1), following closely the logic of Sec. 2.1, and begin by discussing
 223 permutational symmetry. Unlike collective Hamiltonians and Liouvillians, local dissipation
 224 is only symmetric with respect to permutations in the weak sense [51–53]. In consequence,
 225 Eq. (1) does not preserve the Dicke manifold, and the associated steady state Bloch vector is no
 226 longer restricted to have the maximum length $N/2$. Nevertheless, it is still possible to define a
 227 “generalized” Dicke manifold [48, 50] of density matrices, which IS preserved by Eq. (1), and
 228 which can still be depicted using Bloch spheres [see Fig 1(b)].

229 The “generalized” Dicke manifold for N spins is spanned by the matrices $|\overline{J, M}\rangle\langle\overline{J, M'}|$,
 230 which are the unique (up to normalization) permutationally symmetric density matrices that
 231 are also right/left eigenstates of \hat{J} with equal eigenvalue $0 < J \leq N/2$, and right/left eigen-
 232 states of \hat{J}_z with eigenvalues M, M' , respectively. Importantly, the $|\overline{J, M}\rangle\langle\overline{J, M'}|$ is not an outer
 233 product of Dicke states with different J, M , but in many respects it behaves like one, so it is
 234 useful to picture the dynamics of the system as if it were happening in a Hilbert space spanned
 235 by the states $|\overline{J, M}\rangle$. This defines the Dicke triangle [56, 76–78], depicted in Fig. 3(b). The up-
 236 shot of all of this is that the 4^N dimensional space of density matrices is reduced to a subspace
 237 of dimension $\sim N^3$.

238 Given Eq. (1), the first line of attack is a mean field analysis. We assume that this has been
 239 done, resulting in a mean field Bloch vector $\mathbf{J}_{\text{mf}} = (J_x^{\text{mf}}, J_y^{\text{mf}}, J_z^{\text{mf}})$, and that the axes have been
 240 rotated so that \mathbf{J}_{mf} is aligned with the positive z axis. We thus have that $J_x^{\text{mf}} = J_y^{\text{mf}} = 0$ and
 241 $J_z^{\text{mf}} > 0$. Moreover, the length of the Bloch vector J_{mf} coincides with J_z^{mf} .

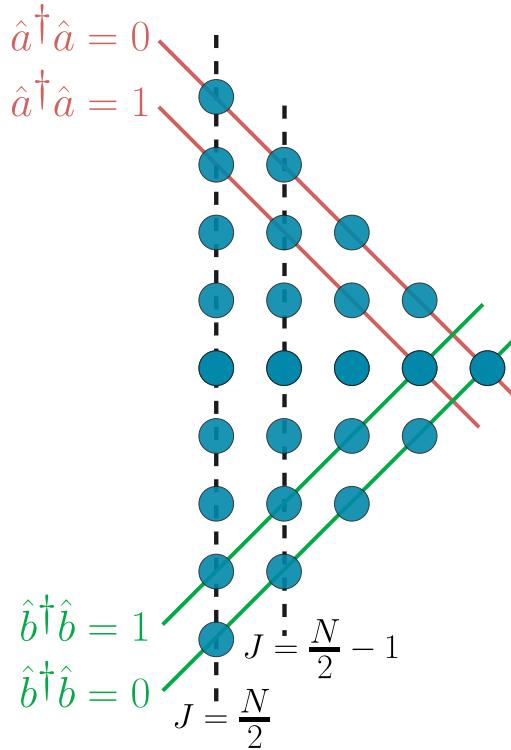


Figure 3: Dicke triangle, with “states” $|J, M\rangle$, and their enumeration in terms of Schwinger bosons. The column with $J = N/2$ corresponds to the Dicke states from Fig. 2(b).

242 To study fluctuations, we will make use of the Schwinger boson representation in Eq. (4),
 243 which we reproduce here for reference purposes

$$\hat{J} = \frac{1}{2} \begin{pmatrix} \hat{b}^\dagger & \hat{a}^\dagger \end{pmatrix} \boldsymbol{\sigma} \begin{pmatrix} \hat{b} \\ \hat{a} \end{pmatrix} \quad (14)$$

$$\hat{j} = \frac{\hat{a}^\dagger \hat{a} + \hat{b}^\dagger \hat{b}}{2}.$$

244 The main difference with respect to Sec. 2.1 is that $2\hat{j} = \hat{a}^\dagger \hat{a} + \hat{b}^\dagger \hat{b}$ is now allowed to fluctuate.
 245 Since basis elements of density matrices in Schwinger boson space are specified by four
 246 numbers (left and right eigenvalues of $\hat{a}^\dagger \hat{a}$ and $\hat{b}^\dagger \hat{b}$), they can accommodate the three index
 247 object $|\langle J, M | J, M' \rangle|$ [see Fig. 3].

248 The Hamiltonian, the collective Liouvillian, and the anticommutator terms of Eq. (1) are
 249 constructed in terms of collective operators, so for them Eq. (14) suffices. However, terms
 250 such as $\hat{s}_\alpha \hat{p} \hat{s}_\beta$ require a distinct bosonic description. We construct it by combining rotational
 251 properties of the spin operators with the results from Ref. [48], which provides the (superop-
 252 erator) matrix elements of $\hat{s}_\alpha \hat{p} \hat{s}_\beta$ between generalized Dicke states. To do this, we recall that
 253 spin operators transform as $SO(3)$ vectors under rotations, a feature that is made manifest in
 254 Eq. (14), given that $(\hat{b} \hat{a})^T$ transforms as a $SU(2)$ doublet. There are, however, more ways of
 255 constructing $SO(3)$ vectors out of $(\hat{b} \hat{a})^T$. For local dissipation, we will need

$$\hat{K} = \frac{1}{2} \begin{pmatrix} \hat{b} & \hat{a} \end{pmatrix} i\sigma_y \boldsymbol{\sigma} \begin{pmatrix} \hat{b} \\ \hat{a} \end{pmatrix} \quad (15)$$

$$\hat{L} = -\frac{1}{2} \begin{pmatrix} \hat{b}^\dagger & \hat{a}^\dagger \end{pmatrix} \boldsymbol{\sigma} i\sigma_y \begin{pmatrix} \hat{b}^\dagger \\ \hat{a}^\dagger \end{pmatrix} = \hat{K}^\dagger.$$

256 The vector $\hat{\mathbf{K}}$ ($\hat{\mathbf{L}}$) is constructed out of two destruction (creation) operators, so it changes the
 257 value of \hat{J} by -1 ($+1$). Using the three vectors $\mathbf{J}, \mathbf{K}, \mathbf{L}$, we can express local dissipator terms
 258 as (see Appendix A)

$$\sum_{i=1}^N \hat{s}_\alpha^i \hat{\rho} \hat{s}_\beta^i = \hat{E} \hat{J}_\alpha \hat{\rho} \hat{J}_\beta + \hat{F} \hat{K}_\alpha \hat{\rho} \hat{L}_\beta + \hat{G} \hat{L}_\alpha \hat{\rho} \hat{K}_\beta, \quad (16)$$

259 where

$$\begin{aligned} \hat{E} &= \frac{1 + N/2}{2\hat{J}(\hat{J} + 1)} \\ \hat{F} &= \frac{N/2 + \hat{J} + 2}{2(\hat{J} + 1)(2\hat{J} + 3)} \\ \hat{G} &= \frac{N/2 - \hat{J} + 1}{2\hat{J}(2\hat{J} - 1)} \end{aligned} \quad (17)$$

260 are functions only of the spin length \hat{J} . At this level of generality, this corresponds to item (α)
 261 in the introduction.

262 To build up a Holstein-Primakoff mapping, we need to get rid of the \hat{b} boson. As in
 263 Sec. 2.1, we do this by using a number-phase decomposition for $\hat{b} = e^{i\hat{\phi}/2}(\hat{b}^\dagger \hat{b})^{1/2}$, introduc-
 264 ing $\hat{A} = \hat{a} e^{-i\hat{\phi}/2}$, and replacing $\hat{b}^\dagger \hat{b}$, wherever it appears, using the relation $\hat{b}^\dagger \hat{b} = 2\hat{J} - \hat{A}^\dagger \hat{A}$.
 265 We also introduce $\delta\hat{J} = \hat{J} - J_{\text{mf}}$, which measures fluctuations of \hat{J} with respect to its mean
 266 field value. As a consequence of these choices, both $\delta\hat{J}$ and $\hat{A}^\dagger \hat{A}$ are $\ll N$. This furnishes two
 267 independent, physically transparent, sets of variables:

- 268 • The pair $\delta\hat{J}, e^{i\hat{\phi}}$ describes fluctuations parallel to the mean field spin direction, and
 269 satisfies a standard number/phase relation $\delta\hat{J} e^{i\hat{\phi}} = e^{i\hat{\phi}}(\delta\hat{J} - 1)$. Note that $e^{i\hat{\phi}}$ reduces
 270 $\delta\hat{J}$ by 1 while keeping $\hat{A}^\dagger \hat{A}$ fixed, so it reduces $\hat{b}^\dagger \hat{b}$ by 2.
- 271 • The pair \hat{A}, \hat{A}^\dagger satisfy $[\hat{A}, \hat{A}^\dagger] = 1$ and describe fluctuations transverse to the mean field
 272 spin direction. This is most easily seen by considering $\hat{J}^+ = \hat{a} \hat{b}^\dagger \approx \hat{A} \sqrt{2J_{\text{mf}}}$. The prefac-
 273 tor in front of \hat{A} is no longer exactly \sqrt{N} but is still of the same order since $J_{\text{mf}} \sim N$.

274 From this representation we can now perform a large N approximation systematically. The
 275 qualitative nature of the expansion will depend on whether the (mean field) normalized spin
 276 length $j = J_{\text{mf}}/(N/2)$ is less than or equal to 1. We treat these cases independently and call
 277 them type I and type II, respectively, for ease of reference.

278 3.1 Type I: Replacement rules when $j < 1$

279 When $j < 1$, the mean field steady state is localized along the upper boundary of the Dicke
 280 triangle, but away from the corners, as depicted by the shaded region in Fig. 4(a). The fluctua-
 281 tions in $\delta\hat{J}$ will generically be of size \sqrt{N} , while $\hat{\phi}$ can be taken to be sharply defined, with
 282 fluctuations $\delta\hat{\phi} \sim 1/\sqrt{N}$. This means that $e^{i\hat{\phi}}$ can be expanded in a Taylor series. To take
 283 this into account, and to make manifest the various scalings with N , we introduce normalized
 284 longitudinal bosons $\hat{l} = N^{-1/2}\delta\hat{J}$, $\hat{q} = \sqrt{N}\hat{\phi}$, with commutator $[\hat{l}, \hat{q}] = i$. After some algebra
 285 (see Appendix B), we obtain the associated bosonic approximations of the spin dissipators, as
 286 shown in Table 1.

287 These “replacement rules” constitute item (β) in the introduction. At the same time,
 288 they provide intuitive bosonic pictures. For example, in white-noise dephasing ($\hat{s}_z \hat{\rho} \hat{s}_z$) the

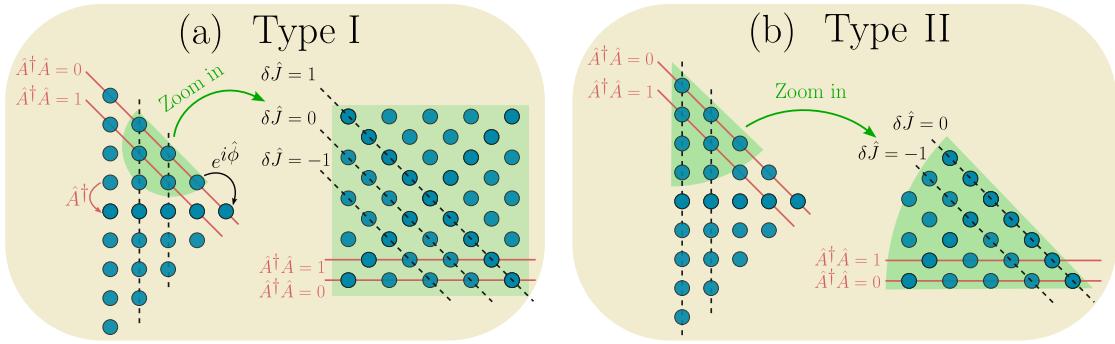


Figure 4: (a) Dicke triangle, now described in terms of the Holstein-Primakoff boson and \hat{J} . The operator \hat{A} moves vertically, while $e^{i\hat{\phi}}$ moves parallel to upper boundary. Shaded green region represents states around a type I steady state, i.e., polarized along $+z$ with mean field length $J_{\text{mf}} < N/2$. The large N expansion focuses on states within the shaded region, which upon zooming in becomes a half-plane ($\hat{A}^\dagger \hat{A} > 0$, and no restriction on $\delta \hat{J}$). (b) Dicke triangle again, but shaded region now represents states around a type II steady state, i.e., polarized along $+z$ with mean field length $J_{\text{mf}} = N/2$. The shaded region is now a squashed quarter plane, with $\hat{A}^\dagger \hat{A} > 0$ and $\delta \hat{J} < 0$.

289 transverse boson behaves as if it were connected to a finite temperature bath with absorption-emission rates that depend on the normalized mean field spin length j . In incoherent
 290 pumping ($\hat{\sigma}_+ \hat{\rho} \hat{\sigma}_-$), which drives the system towards $+z$, the transverse boson is connected to
 291 a 0 temperature bath, while the longitudinal boson (\hat{l}) is subject to diffusion (term $[\hat{q}, [\hat{p}, \hat{q}]]$)
 292 and relaxation (term $[\hat{q}, \{\hat{l}, \hat{\rho}\}]$). In incoherent decay ($\hat{\sigma}_- \hat{\rho} \hat{\sigma}_+$), which drives the Bloch vector
 293 towards $-z$ and away from $+z$, the transverse boson is instead connected to a ∞ temperature
 294 bath. Note also that some dissipators (including incoherent pumping/decay) have terms
 295 that are proportional to \sqrt{N} . These terms should cancel in the full Liouvillian (only) if the
 296 expansion is done about the correct mean field steady state.
 297

298 3.2 Type II: Replacement rules when $j = 1$

299 When $j = 1$, the mean field steady state is localized near the upper corner of the Dicke triangle,
 300 as depicted by the shaded region in Fig. 4(b). Now $\delta \hat{J} < 0$ (the spin length can only be
 301 smaller than $N/2$) and fluctuations will also be $\delta \hat{J} \sim 1$. Consequently, the phase variable
 302 will have fluctuations $\delta \hat{\phi} \sim 1$ and we can no longer Taylor expand the exponential. Instead,
 303 we have to keep the expressions for the longitudinal boson intact. Physically, this means that
 304 the discreteness of $\delta \hat{J}$ is relevant. This leads to the replacement rules shown in Table 2 (see
 305 Appendix B).

306 4 Examples

307 In this section we illustrate the full machinery using two simple examples: (i) a collection of
 308 atoms undergoing incoherent pumping, decay and white-noise dephasing; (ii) superradiant
 309 lasing above the upper threshold.

Spin term	Boson term
$\sum_{i=1}^N (\hat{s}_z^i \hat{\rho} \hat{s}_z^i - \frac{1}{2} \{ \hat{s}_z^i \hat{s}_z^i, \hat{\rho} \})$	$\left(\frac{j+1}{2j} \right) \left(\hat{A} \hat{\rho} \hat{A}^\dagger - \frac{1}{2} \{ \hat{A}^\dagger \hat{A}, \hat{\rho} \} \right) + \left(\frac{1-j}{2j} \right) \left(\hat{A}^\dagger \hat{\rho} \hat{A} - \frac{1}{2} \{ \hat{A} \hat{A}^\dagger, \hat{\rho} \} \right)$
$\sum_{i=1}^N (\hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i - \frac{1}{2} \{ \hat{\sigma}_-^i \hat{\sigma}_+^i, \hat{\rho} \})$	$\frac{1}{j} \left(\hat{A} \hat{\rho} \hat{A}^\dagger - \frac{1}{2} \{ \hat{A}^\dagger \hat{A}, \hat{\rho} \} \right)$ $+ \frac{(1-j)}{4} [\hat{q}, [\hat{\rho}, \hat{q}]] + \frac{i}{2} [\hat{q}, \{ \hat{l}, \hat{\rho} \}] - \frac{i\sqrt{N}(1-j)}{2} [\hat{q}, \hat{\rho}]$
$\sum_{i=1}^N (\hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i - \frac{1}{2} \{ \hat{\sigma}_+^i \hat{\sigma}_-^i, \hat{\rho} \})$	$\frac{1}{j} \left(\hat{A}^\dagger \hat{\rho} \hat{A} - \frac{1}{2} \{ \hat{A} \hat{A}^\dagger, \hat{\rho} \} \right)$ $+ \frac{(1+j)}{4} [\hat{q}, [\hat{\rho}, \hat{q}]] + \frac{i}{2} [\hat{q}, \{ \hat{l}, \hat{\rho} \}] + \frac{i\sqrt{N}(1+j)}{2} [\hat{q}, \hat{\rho}]$
$\sum_{i=1}^N (\hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_+^i - \frac{1}{2} \{ \hat{\sigma}_+^i \hat{\sigma}_+^i, \hat{\rho} \})$	$\frac{1}{j} \left(\hat{A} \hat{\rho} \hat{A} - \frac{1}{2} \{ \hat{A}^2, \hat{\rho} \} \right) - \frac{1}{2} [\hat{A}^2, \hat{\rho}]$
$\sum_{i=1}^N (\hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i - \frac{1}{2} \{ \hat{s}_z^i \hat{\sigma}_+^i, \hat{\rho} \})$	$\sqrt{N} \left(\frac{2-j}{4\sqrt{j}} \right) [\hat{A}, \hat{\rho}] - \left(\frac{2+j}{4j\sqrt{j}} \right) [\hat{A}, \hat{\rho}] \hat{l} + i \left(\frac{1-j}{2\sqrt{j}} \right) [\hat{q}, \hat{\rho}] \hat{A}$
$\sum_{i=1}^N (\hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i - \frac{1}{2} \{ \hat{s}_z^i \hat{\sigma}_-^i, \hat{\rho} \})$	$\sqrt{N} \left(\frac{j+2}{4\sqrt{j}} \right) [\hat{A}^\dagger, \hat{\rho}] - \left(\frac{2-j}{4j\sqrt{j}} \right) [\hat{A}^\dagger, \hat{\rho}] \hat{l} - i \left(\frac{1+j}{2\sqrt{j}} \right) [\hat{q}, \hat{\rho}] \hat{A}^\dagger$

Table 1: Replacement rules, to order N^0 , when $j < 1$. The first three lines correspond to typical Lindbladian terms that describe white-noise dephasing (first line), incoherent pumping (second line) and incoherent decay (third line). The remaining dissipators can be obtained by conjugation of the last three lines.

310 4.1 Pumping+decay+dephasing

311 We first study a single particle problem in which an ensemble of two-level atoms with excited
 312 state lifetime γ^{-1} and inhomogeneous lifetime $2\gamma_d^{-1}$ is incoherently pumped with rate w . The
 313 master equation describing this evolution is

$$\partial_t \hat{\rho} = \sum_{i=1}^N (\gamma \mathcal{D}[\hat{\sigma}_-^i] \hat{\rho} + w \mathcal{D}[\hat{\sigma}_+^i](\hat{\rho}) + \gamma_d \mathcal{D}[\hat{s}_z^i] \hat{\rho}), \quad (18)$$

314 where $\mathcal{D}[\hat{O}] \hat{\rho} = \hat{O} \hat{\rho} \hat{O}^\dagger - \{\hat{O}^\dagger \hat{O}, \hat{\rho}\}/2$ is a standard dissipator. The γ_d is the consequence of a
 315 white-noise-correlated dephasing process, while the incoherent pumping process results from
 316 coherently driving to a rapidly decaying auxiliary level [see Fig. 5(a)]. This master equation

Spin term	Boson term
$\sum_{i=1}^N \hat{s}_z^i \hat{\rho} \hat{s}_z^i$	$\frac{N\hat{\rho}}{4} + \hat{A}e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger - \frac{1}{2} \{\hat{A}^\dagger \hat{A}, \hat{\rho}\} + O(N^{-1})$
$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i$	$\hat{A} \hat{\rho} \hat{A}^\dagger - e^{-i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{i\hat{\phi}} + O(N^{-1})$
$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i$	$N e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} + O(N^0)$
$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_+^i$	$\hat{A} \hat{\rho} \hat{A} - (\hat{A})^2 e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} + O(N^{-1})$
$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i$	$\frac{1}{2} \sqrt{N} \hat{A} \hat{\rho} + O(N^{-1/2})$
$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i$	$\sqrt{N} \left(\frac{1}{2} \hat{A}^\dagger \hat{\rho} - e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger \right) + O(N^{-1/2})$

Table 2: Replacement rules, to leading non-vanishing order in $1/N$, when $j = 1$. The first three lines correspond to typical Lindbladian terms that describe white-noise dephasing (first line), incoherent pumping (second line) and incoherent decay (third line). The remaining dissipators can be obtained by conjugation of the last three lines.

317 can be solved exactly, leading to the following steady state observables

$$\begin{aligned} \langle \hat{J}_z \rangle &= \frac{N}{2} \left(\frac{w-\gamma}{w+\gamma} \right) & \langle \hat{J}_{x,y} \rangle &= 0 \\ \text{Var}(\hat{J}_z) &= \frac{N\gamma w}{(\gamma+w)^2} & \text{Var}(\hat{J}_{x,y}) &= \frac{N}{4} \end{aligned} \quad (19)$$

318 that we can then compare against the results obtained via the $1/N$ expansion. The expressions
319 for the expectation values should be obtained directly from mean field results. The bosonic
320 description will then provide the variances. We begin by calculating the mean field steady
321 state, which is aligned along $+z$ if $w > \gamma$ and has $j = (w - \gamma)/(w + \gamma)$. Since $j < 1$, we use
322 Table 1 to arrive at an effective bosonic description (as promised, the \sqrt{N} contributions cancel
323 among each other)

$$\partial_t \hat{\rho} = \underbrace{(\gamma + w + \gamma_d) \left((\bar{n} + 1) \mathcal{D}[\hat{A}] \hat{\rho} + \bar{n} \mathcal{D}[\hat{A}^\dagger] \hat{\rho} \right)}_{\text{Transverse dynamics}} + \underbrace{D \left[\hat{q}, [\hat{\rho}, \hat{q}] \right] + \frac{i(w + \gamma)}{2} \left[\hat{q}, \{\hat{l}, \hat{\rho}\} \right]}_{\text{Longitudinal dynamics}}, \quad (20)$$

324 where $\bar{n} = \gamma(w - \gamma)^{-1}$ and $D = \gamma w / (\gamma + w)$. Thus, the transverse boson is effectively coupled
325 to a bath with decay rate $\gamma + w + \gamma_d$ and thermal occupation \bar{n} , while the longitudinal boson \hat{l}
326 undergoes relaxation with rate $(\gamma + w)$ and diffusion with coefficient D . The divergence in \bar{n} as
327 $\gamma \rightarrow w$ indicates that at $\gamma = w$ the mean field Bloch vector has zero length, and the expansions
328 break down (we are then at the rightmost corner of the Dicke triangle). When $\gamma > w$, the
329 Bloch vector points along $-z$ so it first has to be rotated to $+z$.

330 From the boson master equation we can immediately calculate transverse variances

$$\langle \hat{J}_x^2 \rangle \approx \frac{Nj}{4} \langle (\hat{A} + \hat{A}^\dagger)^2 \rangle = \frac{Nj}{4} (2\bar{n} + 1) = \frac{N}{4}, \quad (21)$$

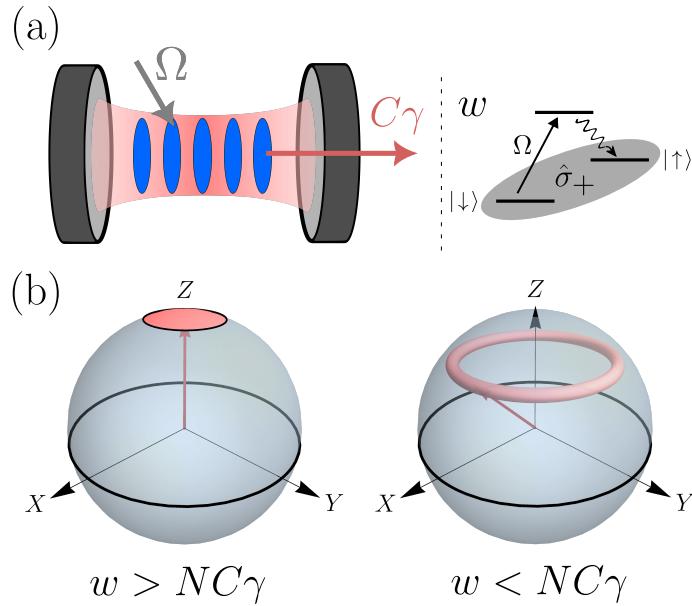


Figure 5: (a) Schematic of a superradiant laser. Atomic excitations are transformed into cavity photons, which then quickly escape the system with rate $C\gamma$ per atom. Population inversion is obtained by coherently driving auxiliary levels. (b) When $w > NC\gamma$ the Bloch vector points along $+z$. When $w < NC\gamma$, the mean field Bloch vector acquires a transverse component ($J_{\text{mf}}^+ \neq 0$). At long times, phase diffusion leads to a circular distribution.

331 with an identical result for $\langle \hat{J}_y^2 \rangle$, and in agreement with Eq. (19). For the \hat{J}_z variance, we use
 332 $\hat{J}_z = \hat{J} - \hat{A}^\dagger \hat{A}$. To leading order in $1/N$, we then have that $\text{Var}(\hat{J}_z) = \text{Var}(\hat{J}) = N \langle \hat{l}^2 \rangle$, which can
 333 be calculated directly from the boson description, yielding

$$N \langle \hat{l}^2 \rangle = N \frac{D}{(\gamma + w)} = \frac{N\gamma w}{(\gamma + w)^2}. \quad (22)$$

334 This is again in agreement with Eq. (19).

335 4.2 Superradiant laser above upper threshold

336 In this subsection we study a model for superradiant lasing, described by the following master
 337 equation [22, 24, 79]

$$\partial_t \hat{\rho} = C\gamma \mathcal{D}[\hat{J}^-] + w \sum_{i=1}^N \mathcal{D}[\sigma_-^i] \hat{\rho} \equiv \mathcal{L}_{\text{sr}} \hat{\rho}, \quad (23)$$

338 which includes incoherent pumping (with rate w), and collective emission (\hat{J}^-) induced by
 339 coupling the atomic transition to a lossy cavity mode [see Fig 5(a)]. The collective decay rate
 340 per particle, $C\gamma$, depends on the cavity cooperativity C and the lifetime of the excited state γ .
 341 We are assuming that $\gamma \ll w, NC\gamma$ so that we can neglect spontaneous emission terms $\mathcal{D}[\hat{\sigma}_-^i]$
 342 in the master equation. Solving the mean field equations under these assumptions leads to
 343 two different phases: an incoherent phase when $w > NC\gamma$, with the Bloch vector completely
 344 polarized along $+z$ ($J_{\text{mf}}^z = J_{\text{mf}} = N/2$ so $j = 1$) and no coherence ($J_{\text{mf}}^- = 0$); and a lasing phase
 345 when $w < NC\gamma$, with nonzero coherence $J_{\text{mf}}^- \neq 0$.

346 Fluctuations in the incoherent phase are easier to analyze because the Bloch vector is
 347 already pointing along $+z$. Since $j = 1$, we need to use the replacement rules in Table 2,

348 along with Eq. (14) for collective operators. This leads to

$$\partial_t \hat{\rho} = w \mathcal{D}[\hat{A}] \hat{\rho} + NC\gamma \mathcal{D}[\hat{A}^\dagger] \hat{\rho} + w \left(\delta \hat{J} \hat{\rho} - e^{-i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{i\hat{\phi}} \right) \quad (24)$$

349 Once again, the transverse boson behaves as if it were connected to a finite temperature bath,
 350 now with decay rate $w - NC\gamma$ and thermal occupation $\bar{n} = NC\gamma(w - NC\gamma)^{-1}$, while the dy-
 351 namics of the longitudinal boson drives the system towards $\delta J = 0$ ($J = N/2$). Using the
 352 boson description we can directly import known results for steady state two-time correlation
 353 functions [80, 81]

$$\langle \hat{S}_x(\tau) \hat{S}_x \rangle \equiv \text{Tr} \left[\hat{S}_x e^{\mathcal{L}_{sr} \tau} (\hat{S}_x \hat{\rho}_{ss}) \right] \approx \frac{N}{4} \left(\frac{w + NC\gamma}{w - NC\gamma} \right) e^{-(w - NC\gamma)\tau} \quad (25)$$

354 and then obtain power spectral densities. As $w \rightarrow NC\gamma$, fluctuations (encoded in \bar{n}) diverge,
 355 indicating that a more careful analysis (deferred to Sec. 5) is required. The decay constant
 356 $w - NC\gamma$ could be identified as the “linewidth” of the emitted light in the incoherent phase,
 357 and is in agreement with Eq. (4) of Ref. [77] in the appropriate limit (strong pumping, no
 358 dephasing, negligible spontaneous emission and large cavity decay rate).

359 When $w < NC\gamma$, the mean field Bloch vector no longer points along $+z$, and its transverse
 360 direction can be arbitrarily chosen to lie along the $+x$ direction due to the weak $U(1)$ phase
 361 symmetry of the system. To study fluctuations, the Bloch vector first needs to be rotated onto
 362 the $+z$ axis, and only then should the replacement rules be used. In this configuration, the \hat{S}_y
 363 variable is a proxy for the azimuthal phase of the Bloch vector, will undergo diffusion, and its
 364 two-time correlation function will encode the linewidth of the laser (see Appendix C). Because
 365 of the diffusive behaviour phase fluctuations will grow with time, at long times the large N
 366 expansion about the mean field steady state will break down, and the distribution will become
 367 symmetrical about rotations along the z axis, as depicted in Fig. 5(b), although modified large
 368 N techniques are still applicable.

369 All of the results presented so far can also be obtained using second-order cumulant tech-
 370 niques, although we believe that the boson formalism provides a simple picture of the longi-
 371 tudinal fluctuations. However, paralleling the purely Hamiltonian case, the formalism can be
 372 extended to describe the vicinity of the phase transition in a controlled way.

373 5 Driven-dissipative phase transitions

374 In this section we address item (II) in the introduction and show how the bosonic representa-
 375 tion can be used to describe the properties at, and in the vicinity of, driven-dissipative phase
 376 transitions in all-to-all models. We will consider two examples: the first one will be a con-
 377 tinuation of the analysis of the superradiant laser in Section 4 and the second one will be a
 378 dissipative generalization of the all-to-all transverse field Ising model, previously analyzed in
 379 Ref. [70].

380 5.1 Superradiant laser near upper threshold

381 Here we describe the onset of the lasing transition when $N \rightarrow \infty$. Equation (24) naively
 382 indicates that fluctuations diverge as $w \rightarrow NC\gamma \equiv w_c$. As in the Hamiltonian case, this is a
 383 breakdown of the large N approximation as implemented by Table 2. We expect instead that
 384 higher order terms in the $1/N$ expansion will stabilize the system. To pursue this, we need to
 385 extend Table 2 by including further corrections. We show the resulting replacement rules in
 386 Table 3. For completeness, we also include the expansion of collective operators $\hat{J}_{\pm,z}$.

Spin term	Boson term
$\mathcal{D}_{zz}(\hat{\rho}) \equiv \sum_{i=1}^N \hat{s}_z^i \hat{\rho} \hat{s}_z^i$	$\frac{N\hat{\rho}}{4} + \left(\hat{A} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger - \frac{1}{2} \{ \hat{A}^\dagger \hat{A}, \hat{\rho} \} \right)$ $- \frac{1}{N} \left[\hat{A} e^{i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger + \hat{A}^\dagger e^{-i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{i\hat{\phi}} \hat{A} + \frac{1}{2} \hat{A} \{ \hat{A}^\dagger \hat{A}, e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \} \hat{A}^\dagger \right]$ $+ \frac{1}{N} \left[\delta \hat{J} \hat{\rho} + \delta \hat{J} \{ \hat{A}^\dagger \hat{A}, \hat{\rho} \} + \hat{A}^\dagger \hat{A} \hat{\rho} \hat{A}^\dagger \hat{A} \right] + O(N^{-2})$
$\mathcal{D}_{+-}(\hat{\rho}) \equiv \sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i$	$\left[\hat{A} \hat{\rho} \hat{A}^\dagger - e^{-i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{i\hat{\phi}} \right] - \frac{1}{N} \left[2 \delta \hat{J} \hat{A} \hat{\rho} \hat{A}^\dagger + \frac{1}{2} \{ \hat{A}^\dagger \hat{A}, \hat{A} \hat{\rho} \hat{A}^\dagger \} \right]$ $+ \frac{1}{N} \left[\{ \hat{A}^\dagger \hat{A}, e^{-i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{i\hat{\phi}} \} + (\hat{A})^2 e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (\hat{A}^\dagger)^2 \right] + O(N^{-2})$
$\mathcal{D}_{-+}(\hat{\rho}) \equiv \sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i$	$N e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} + \left[\delta \hat{J} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} + \hat{A}^\dagger \hat{\rho} \hat{A} - \{ \hat{A}^\dagger \hat{A}, e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \} \right] + O(N^{-1})$
$\mathcal{D}_{++}(\hat{\rho}) \equiv \sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_+^i$	$\hat{A} \hat{\rho} \hat{A} - (\hat{A})^2 e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} + O(N^{-1})$
$\mathcal{D}_{+z}(\hat{\rho}) \equiv \sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i$	$\frac{\sqrt{N} \hat{A} \hat{\rho}}{2} + \frac{1}{\sqrt{N}} \left[e^{-i\hat{\phi}} \hat{\rho} \delta \hat{J} e^{i\hat{\phi}} \hat{A} + (\hat{A})^2 e^{i\hat{\phi}} \hat{\rho} \hat{A}^\dagger \right]$ $- \frac{1}{\sqrt{N}} \left[\frac{\delta \hat{J} \hat{A} \hat{\rho}}{2} + \frac{\hat{A}^\dagger (\hat{A})^2 \hat{\rho}}{4} + \hat{A} \hat{\rho} \hat{A}^\dagger \hat{A} \right] + O(N^{-3/2})$
$\mathcal{D}_{-z}(\hat{\rho}) \equiv \sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i$	$\sqrt{N} \left(\frac{\hat{A}^\dagger \hat{\rho}}{2} - e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger \right) - \frac{1}{2\sqrt{N}} \left[\delta \hat{J} \hat{A}^\dagger \hat{\rho} + (\hat{A}^\dagger)^2 \hat{A} \hat{\rho} + 2 \hat{A}^\dagger \hat{\rho} \hat{A}^\dagger \hat{A} \right]$ $+ \frac{1}{\sqrt{N}} \left[\hat{A}^\dagger \hat{A} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger + \frac{1}{2} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger \hat{A} \hat{A}^\dagger + \frac{1}{2} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} \hat{A}^\dagger \right] + O(N^{-3/2})$
\hat{J}_+	$\sqrt{N} \hat{A} + \frac{1}{N} \delta \hat{J} \hat{A} - \frac{1}{2N} \hat{A}^\dagger \hat{A} \hat{A}$
\hat{J}_z	$\frac{N}{2} + \delta \hat{J} - \hat{A}^\dagger \hat{A}$

Table 3: Lindbladian terms to higher order in $1/N$ (highlighted in green). All other combinations can be obtained by complex conjugation. We also include expressions for collective spin operators

387 Setting $w = w_c + \delta w$ in Eq. (24), with the understanding that $\delta w \ll NC\gamma$, leads to the
 388 following bosonic master equation

$$\begin{aligned} \partial_t \hat{\rho} = & (w_c + \delta w) \mathcal{D}[\hat{A}] \hat{\rho} + w_c \left(\delta \hat{J} \hat{\rho} - e^{-i\hat{\phi}} \delta \hat{J} \hat{\rho} e^{i\hat{\phi}} \right) \\ & + \frac{w_c}{N} \mathcal{D}[\hat{A} e^{i\hat{\phi}}] (\hat{A} \hat{\rho} \hat{A}^\dagger) - \frac{2w_c}{N} e^{-i\hat{\phi}} \left\{ \mathcal{D}[\hat{A} e^{i\hat{\phi}}] (\delta \hat{J} \hat{\rho}) \right\} e^{i\hat{\phi}} \\ & + w_c \mathcal{D}[\hat{A}^\dagger] \hat{\rho} + \frac{2w_c}{N} \mathcal{D}[\hat{A}^\dagger] (\delta \hat{J} \hat{\rho}) + \frac{w_c}{2N} \left(\{\hat{A} \hat{A}^\dagger \hat{A}^\dagger \hat{A}, \hat{\rho}\} - \hat{A}^\dagger \{\hat{A}^\dagger \hat{A}, \hat{\rho}\} \hat{A} \right) \end{aligned} \quad (26)$$

389 We will now begin with the simplifications. First, even though at the critical point the trans-
 390 verse boson occupation diverged and timescales associated to it became very long ($w - NC\gamma$)⁻¹,
 391 the longitudinal boson was still forced to decay to $\delta J = 0$ within a finite timescale ($NC\gamma$)⁻¹.
 392 Thus we can project the system into the steady state subspace of the longitudinal boson. Math-
 393 ematically, this is performed by computing the matrix element of the evolution superoperator
 394 (using the trace inner product) between the right/left steady states of the longitudinal boson,
 395 which are $|\delta J = 0\rangle\langle\delta J = 0|$ and the identity, respectively. This yields an equation for the
 396 reduced density matrix of the transverse boson $\hat{\rho}_T$:

$$\begin{aligned} \partial_t \hat{\rho}_T = & (w_c + \delta w) \mathcal{D}[\hat{A}] \hat{\rho}_T + w_c \mathcal{D}[\hat{A}^\dagger] \hat{\rho}_T \\ & + \frac{w_c}{N} \mathcal{D}[\hat{A}] (\hat{A} \hat{\rho}_T \hat{A}^\dagger) + \frac{w_c}{2N} \left([\hat{A}, (\hat{A}^\dagger)^2 \hat{A} \hat{\rho}_T] + [\hat{\rho}_T \hat{A}^\dagger (\hat{A})^2, \hat{A}^\dagger] \right), \end{aligned} \quad (27)$$

397 which ought to describe the critical properties of the lasing transition.

398 Given that \bar{n} diverges in the linear theory and that it is stabilized by $1/N$ corrections, we
 399 expect that the size of the steady state distribution in boson phase space will scale with N
 400 and hence be very large, much larger than the size of quantum noise. This implies that we
 401 can treat \hat{A}, \hat{A}^\dagger , when suitably normalized, as classical variables. To take the classical limit,
 402 we introduce $\hat{\alpha} = N^{-f_A} \hat{A}$, where f_A is a number to be determined, with commutation relations
 403 $[\hat{\alpha}, \hat{\alpha}^\dagger] = N^{-2f_A}$. Since we want the $\hat{\alpha}$ variables to be of size ~ 1 in the classical limit, we need
 404 to consider an effective Planck constant equal to N^{-2f_A} . Thus, when $N \rightarrow \infty$ commutators
 405 become Poisson brackets $[\ , \] \approx iN^{-2f_A} \{ \ , \ }^{\text{pb}}$. This leads to $\{\alpha, \bar{\alpha}\}^{\text{pb}} = -i$, where we are now
 406 treating $\alpha, \bar{\alpha}$ as classical commuting variables. To take the classical limit of Eq. (27), we express
 407 it as much as possible in terms of commutators (and sometimes double commutators).

408 The resulting classical master equation for ρ_c (the classical analogue of $\hat{\rho}$) is

$$\begin{aligned} \partial_t \rho_c = & \frac{i\delta w}{2} \left(\{\alpha, \rho_c \bar{\alpha}\}^{\text{pb}} + \{\alpha \rho_c, \bar{\alpha}\}^{\text{pb}} \right) - \frac{w_c}{N^{2f_A}} \{\alpha, \{\rho_c, \bar{\alpha}\}^{\text{pb}}\}^{\text{pb}} \\ & + \frac{iw_c}{N^{1-2f_A}} \left(\bar{\alpha} \{\alpha^2 \rho_c, \bar{\alpha}\}^{\text{pb}} + \alpha \{\alpha, \rho_c \bar{\alpha}^2\}^{\text{pb}} \right) \end{aligned} \quad (28)$$

409 In the previous equation, the first line came from the linear theory, while the second line is
 410 the nonlinearity. We can make all the terms of the same size if we choose $f_A = 1/4$ and
 411 keep $\zeta = N^{1/2} \delta w / w_0$ fixed as $N \rightarrow \infty$. Then the partial differential equation governing the
 412 evolution of ρ_c , the classical probability distribution, is

$$\frac{\partial \rho_c}{\partial (w_0 t / \sqrt{N})} = \frac{\zeta}{2} [\partial_{\bar{\alpha}} (\bar{\alpha} \rho_c) + \partial_\alpha (\alpha \rho_c)] + \partial_{\alpha \bar{\alpha}}^2 \rho_c + \alpha \partial_{\bar{\alpha}} (\bar{\alpha}^2 \rho_c) + \bar{\alpha} \partial_\alpha (\alpha^2 \rho_c) \quad (29)$$

413 This equation determines the cross-over behaviour in the vicinity of the phase transition point
 414 ($\zeta = 0$), manifestly shows that timescales are slowed down by a factor of \sqrt{N} and demonstrates

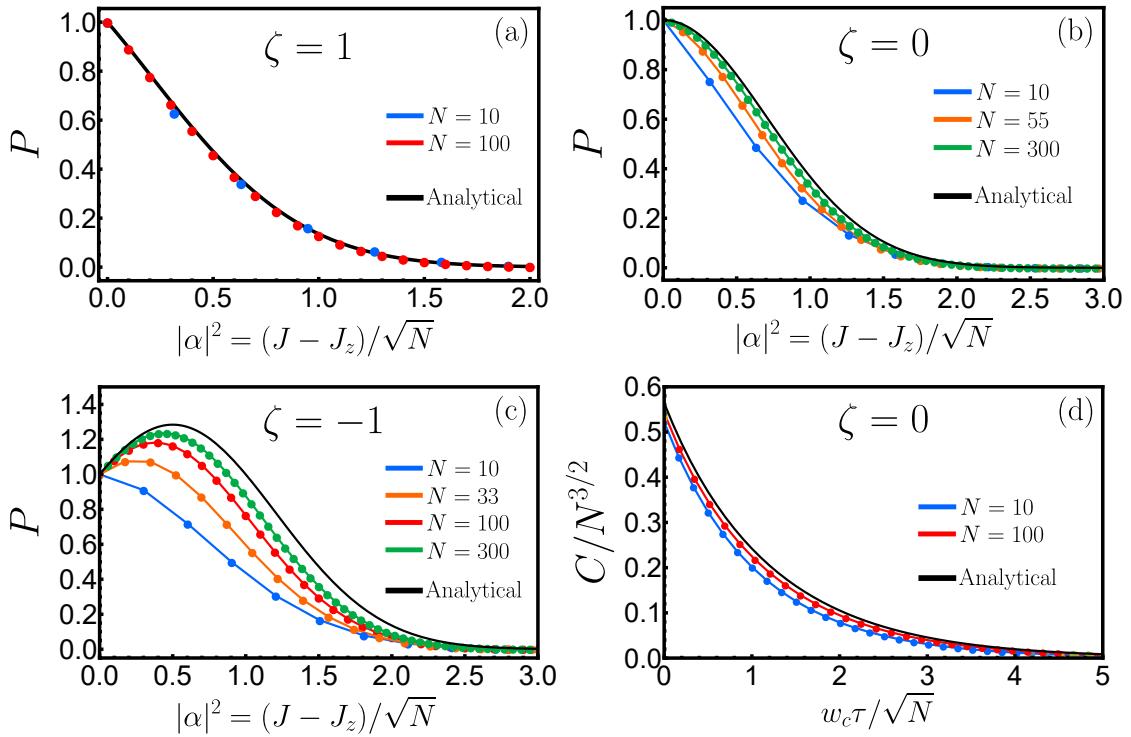


Figure 6: (a) Probability distribution $P = \rho_c^{ss}/\mathcal{N}(\zeta) = e^{-|\alpha|^4 - \zeta|\alpha|^2}$, normalized such that $P = 1$ at $\alpha = 0$, as a function of $|\alpha|^2$ for $\zeta = 1$ (incoherent phase) and $N = 10, 100$. (b) Same as (a), but for $\zeta = 0$ (transition point) and $N = 10, 55, 300$. (c) Same as (a), but for $\zeta = -1$ (coherent phase) and $N = 10, 33, 100, 300$. (d) First order coherence function as a function of time for $N = 10, 100$ versus analytical profile obtained from Eq. (31).

415 that the system is self-similar as N increases, provided ζ is kept fixed. The steady state of the
 416 equation can in fact be written down analytically,

$$\rho_c^{ss} = \mathcal{N}(\zeta) \exp(-|\alpha|^4 - \zeta|\alpha|^2), \quad (30)$$

417 where $\mathcal{N}(\zeta)$ is a normalization factor with respect to the measure $d\alpha d\bar{\alpha}$. When $\zeta > 0$ (incoherent
 418 regime), the distribution is peaked at 0 and becomes gaussian when $\zeta \gg 1$. Similarly,
 419 when $\zeta \ll -1$, the distribution is also gaussian, but now peaked at $|\alpha|^2 = -\zeta/2$, indicating a
 420 nonzero value of $\langle \hat{J}^+ \hat{J}^- \rangle$. In the vicinity of $\zeta = 0$, the distribution is non-gaussian.

421 We benchmark this analytical result against numerical simulation of Eq. (26) for $\zeta = -1, 0, 1$
 422 and different values of N up to $N = 300$. To obtain ρ_c^{ss} from these numerical results, we iden-
 423 tify $|\alpha|^2$ with $\hat{A}^\dagger \hat{A} / \sqrt{N} = (\hat{J} - \hat{J}_z) / \sqrt{N}$ and plot the resulting probabilities in Fig. 6 (a), (b) and
 424 (c) against the analytical formula. We find good agreement when the distribution is peaked
 425 around $|\alpha|^2 = 0$, especially at larger N , and observe a trend towards convergence as N in-
 426 creases when the peak is at finite $|\alpha|^2$. In general, we expect corrections to be of relative size
 427 $N^{-1/2}$ rather than N^{-1} due to the scalings around the critical point, indicating that even at
 428 $N = 300$ we can expect errors of about 6%.

429 The classical master equation Eq. (29) defines a classical generator of time evolution \mathcal{M}_{sr} ,
 430 which encodes more information than just the steady state distribution ρ_c^{ss} . In particular,
 431 correlation functions of the quantum system can be calculated, to leading order in $1/N$, using

432 \mathcal{M}_{sr} . For example, the two-point function

$$C(\tau) = \text{Tr}[\hat{J}^+ e^{\mathcal{L}_{\text{sr}}\tau} (\hat{J}^- \hat{\rho}_{\text{ss}})] \approx N^{3/2} \int \alpha e^{\mathcal{M}_{\text{sr}}\tau} (\bar{\alpha} \rho_c^{\text{ss}}) d\alpha d\bar{\alpha} \quad (31)$$

433 can be expressed entirely in terms of the classical master equation, with a predicted scaling of
 434 $N^{3/2}$. This is illustrated in Fig. 6(d), which verifies the $N^{3/2}$ scaling of $C(\tau)$ and demonstrates
 435 good agreement between the full numerical solution of Eq. (26) and the classical formulas.

436 5.2 Dissipative all-to-all transverse field Ising model

437 Here we consider a dissipative version of the transverse field Ising model, defined by the fol-
 438 lowing master equation

$$\partial_t \hat{\rho} = -i \left[-\Delta \hat{J}_z - \frac{g}{N} \hat{J}_x^2, \hat{\rho} \right] + \gamma \sum_{i=1}^N \mathcal{D}[\hat{\sigma}_+^i] \hat{\rho} \equiv \mathcal{L}_{\text{tf}} \hat{\rho}, \quad (32)$$

439 which is a generalization of the Hamiltonian model studied in Sec. 2.1 that includes incoherent
 440 pumping from the $|\downarrow\downarrow\rangle \rightarrow |\uparrow\uparrow\rangle$ states (this is equivalent to the model studied in Ref. [70] after a
 441 rotation by π about the x axis). Assuming $\Delta > 0$, the system displays two mean field phases:
 442 a disordered phase, with $J_z^{\text{mf}} = N/2$ and $J_{x,y}^{\text{mf}} = 0$, and an ordered phase, with $J_{x,y,z}^{\text{mf}} \neq 0$, and
 443 a phase boundary defined by $\gamma = 2\sqrt{\Delta(g - \Delta)}$. We will approach the critical boundary from
 444 the disordered phase because the Bloch vector is already aligned along $+z$, and we will do so
 445 by varying Δ while keeping g fixed. Since $j = 1$ in this phase, we use the replacement rules
 446 from Table 2, which to leading order give rise to the following bosonic master equation:

$$\partial_t \hat{\rho} = -\frac{i}{2} \left[\Delta \hat{p}^2 + (\Delta - g) \hat{x}^2, \hat{\rho} \right] + \gamma \mathcal{D}[\hat{A}] \hat{\rho} + i\Delta [\delta \hat{J}, \hat{\rho}] + \gamma \left(\delta \hat{J} \hat{\rho} - e^{-i\hat{\phi}} \delta \hat{J} e^{i\hat{\phi}} \right), \quad (33)$$

447 where the quadratures $\hat{x} = (\hat{A} + \hat{A}^\dagger)/\sqrt{2}$ and $\hat{p} = -i(\hat{A} - \hat{A}^\dagger)/\sqrt{2}$ are defined as before. Once
 448 again, the longitudinal boson evolution just drives the system to the state $|\delta J = 0\rangle$. The insta-
 449 bility towards the ordered phase as Δ is reduced can then be interpreted in the boson language
 450 as being caused by the switch from a regular to an inverted parabolic potential when $\Delta < g$.
 451 Dissipation provides some stabilization, reducing the range of Δ for which there is an ordered
 452 phase, but if γ is small there will still be an instability as Δ is further reduced. If γ is large
 453 enough, the instability disappears and the disordered phase is always stable.

454 We will work in a regime of vanishingly small dissipation, with γ scaling with N in a yet-
 455 to-be-determined way, and leave the analysis of finite γ to Appendix D. As in Sec. 2.1, in the
 456 vicinity of the phase transition the system will be stabilized by a quartic nonlinearity coming
 457 from the Hamiltonian. Guided from our experience in Sec. 2.1, we expect fluctuations in \hat{x} and
 458 \hat{p} to behave differently, so we express the master equation, now including the non-linearity,
 459 in terms of the quadratures. We also project out the longitudinal boson and work with the
 460 reduced density matrix for the transverse boson $\hat{\rho}_{\text{T}}$

$$\partial_t \hat{\rho} = -\frac{i}{2} \left[\Delta \hat{p}^2 + (\Delta - g) \hat{x}^2 + \frac{g \hat{x}^4}{2N}, \hat{\rho}_{\text{T}} \right] + \frac{\gamma}{2} \mathcal{D}[\hat{x}] \hat{\rho}_{\text{T}} + \frac{i\gamma}{4} \left([\{\hat{p}, \hat{\rho}_{\text{T}}\}, \hat{x}] + [\hat{p}, [\hat{x}, \hat{\rho}_{\text{T}}]] \right). \quad (34)$$

461 Note that we have omitted a $\mathcal{D}[\hat{p}] \hat{\rho}_{\text{T}}$ term because fluctuations in \hat{p} will be smaller than
 462 fluctuations in \hat{x} . It turns out that, unlike the case of the Hamiltonian model of Sec. 2.1,
 463 fluctuations in \hat{p} will not be reduced, but will instead stay of the same size without any N
 464 dependence. Given that fluctuations in \hat{x} are still enhanced, the distribution in phase space will
 465 be large compared to the size of the quantum noise, and we can treat it as a classical probability

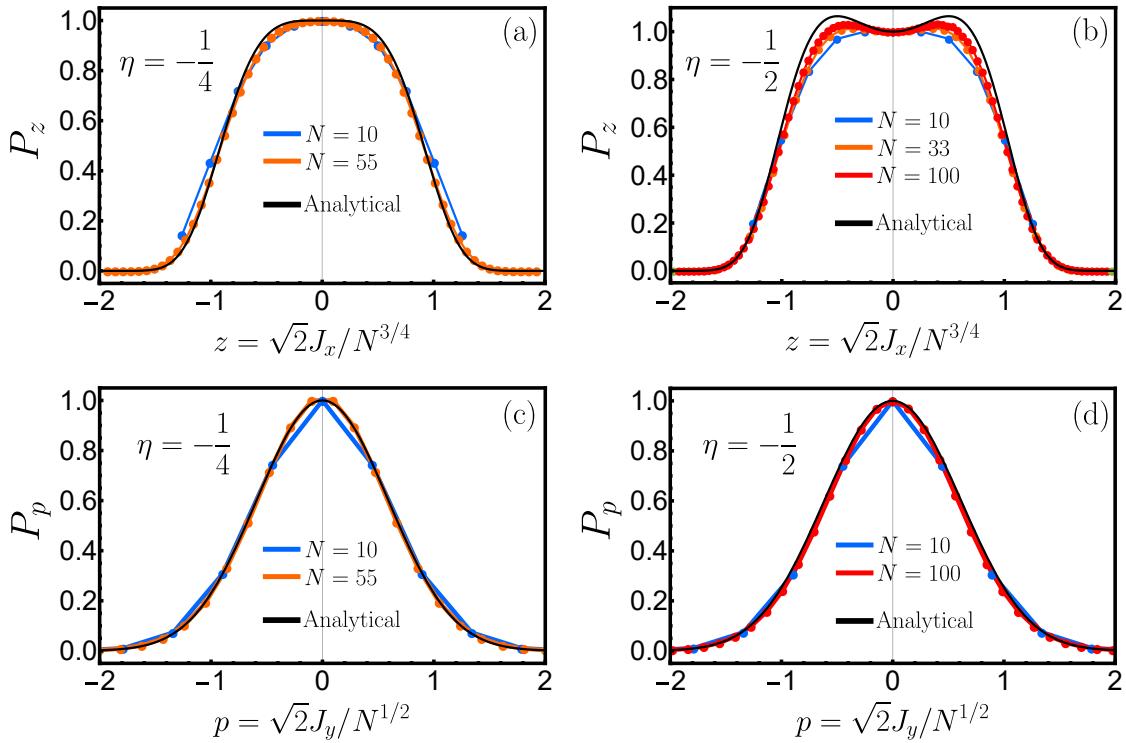


Figure 7: (a) Marginal probability distribution P_z , obtained by integrating Eq. (36) over p and fixing $P_z = 1$ at $z = 0$, for $N = 10, 55$ and $\eta = -1/4$. (b) Same as (a) but with $N = 10, 33, 100$ and $\eta = -1/2$. (c) Marginal probability distribution P_p , obtained by integrating Eq. (36) over z and fixing $P_p = 1$ at $p = 0$, for $N = 10, 55$ and $\eta = -1/4$. (d) Same as (c) but with $N = 10, 100$ and $\eta = -1/2$.

466 distribution. Thus, if we introduce a scaled $\hat{z} = \hat{x}N^{-f_x}$, which satisfies $[\hat{z}, \hat{p}] = iN^{-f_x}$, we
 467 should replace commutators by Poisson brackets according to $[\cdot, \cdot] \approx iN^{-f_x}\{\cdot, \cdot\}^{\text{pb}}$. We then
 468 simultaneously scale the distance to the critical point by defining η using $\Delta = g + \eta\Delta N^{-f_\Delta}$,
 469 scale the strength of dissipation by introducing a reduced $\gamma_{\text{red}} = \gamma N^{-f_\gamma}$, and demand that all
 470 the terms be of the same size in Eq. (34). This leads to $f_x = 1/4$, $f_\Delta = 1/2$ and $f_\gamma = 1/4$, and
 471 to a classical master equation for the probability distribution ρ_c , which is a function of z and
 472 p (i.e. the classical analogues of \hat{z} and \hat{p}),

$$\frac{\partial \rho_c}{\partial (\Delta t / N^{1/4})} = [(\eta z + z^3)\partial_p \rho_c - p \partial_z \rho_c] + \frac{\gamma_{\text{red}}}{4\Delta} [\partial_p^2 \rho_c + 2\partial_p(p\rho_c) + 2\partial_z(z\rho_c)]. \quad (35)$$

473 The first bracket of Eq. (35) is just Hamiltonian flow, with a classical Hamiltonian

$$H_c = \frac{1}{4}(2p^2 + 2\eta z^2 + z^4),$$

474 while the second bracket introduces diffusion and relaxation. The steady state solution can be
 475 written down analytically

$$\rho_c^{ss} = \mathcal{N} \exp \left[-2 \left(p - \frac{\gamma_{\text{red}} z}{2\Delta} \right)^2 - 2 \left(\eta + \frac{\gamma_{\text{red}}^2}{4\Delta^2} \right) z^2 - z^4 \right], \quad (36)$$

476 is Boltzmann like, and reduces to $\exp(-4H_c)$ in the limit $\gamma_{\text{red}} \ll \Delta$ (\mathcal{N} is a normalization
 477 factor).

478 To benchmark this solution, we first make contact with the original spin variables by re-
 479 calling that, to leading order, $\hat{J}_x = \hat{x}\sqrt{N/2} = \hat{z}N^{3/4}/\sqrt{2}$ and $\hat{J}_y = \hat{p}\sqrt{N/2}$. We then simulate

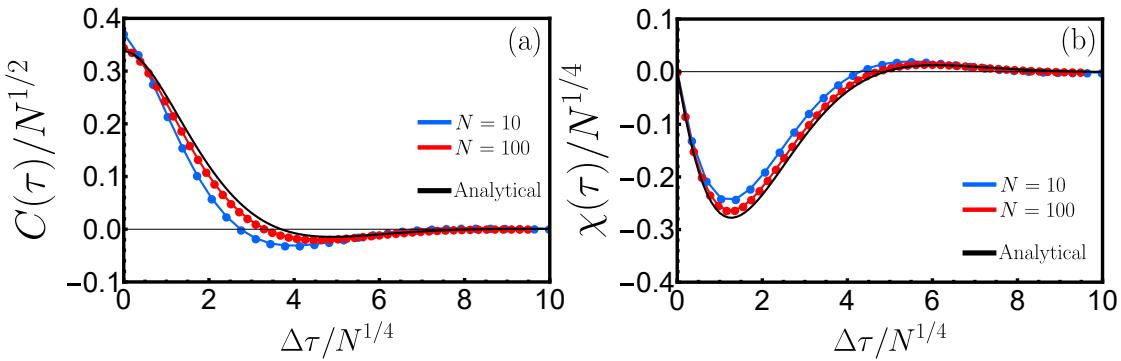


Figure 8: (a) Scaled correlation function $C(\tau)/N^{1/2}$ as a function of scaled time $\Delta\tau/N^{1/4}$ for $N = 10, 100$, $\gamma_{\text{red}} = \Delta$ and $\eta = -1/4$. (b) Scaled response function $\chi(\tau)/N^{1/4}$ as a function of scaled time $\Delta\tau/N^{1/4}$ for $N = 10, 100$, $\gamma_{\text{red}} = \Delta$ and $\eta = -1/4$.

Eq. (32) to obtain the steady state for N up to 100, calculate the probability distributions associated to the \hat{J}_x, \hat{J}_y operators, and compare them against the marginal probability distributions obtained from Eq. (36). The results are shown in Fig. 7 for $\gamma_{\text{red}}/\Delta = 1$ and $\eta = -1/2, -1/4$, demonstrating good agreement for all of them. Note that the critical e^{-z^4} profile is obtained at $\eta = -\gamma_{\text{red}}^2/(4\Delta^2)$ rather than $\eta = 0$. This can also be derived using the equation for the mean field critical boundary after replacing Δ, γ in favor of $\eta, \gamma_{\text{red}}$ and letting $N \rightarrow \infty$.

As in the case for the superradiant transition, Eq. (35) defines a classical generator of time evolution \mathcal{M}_{tf} that encodes the response of the system to perturbations. We can use it to calculate correlation and response functions such as

$$\begin{aligned} C(\tau) &= \frac{\langle \{\hat{J}_x(\tau), \hat{J}_x(0)\} \rangle}{N} \approx N^{1/2} \overline{z(\tau)z(0)} \\ \chi(\tau) &= \frac{\langle [\hat{J}_x(\tau), \hat{J}_x(0)] \rangle}{iN} \approx \frac{N^{1/4}}{2} \overline{\{z(\tau), z(0)\}^{\text{pb}}}, \end{aligned} \quad (37)$$

where $\hat{J}_x(\tau) = e^{\mathcal{L}_{\text{tf}}^{\ddagger}\tau}(\hat{J}_x)$, $\mathcal{L}_{\text{tf}}^{\ddagger}$ is the adjoint of \mathcal{L}_{tf} with respect to the trace inner product, the overlines are averages with respect to ρ_c^{ss} in Eq. (36), $z(\tau) = e^{\mathcal{M}_{\text{tf}}^{\ddagger}\tau}(z)$, and $\mathcal{M}_{\text{tf}}^{\ddagger}$ is the adjoint of \mathcal{M}_{tf} with respect to the inner product on phase space (integration over z and p). After some manipulations, we get

$$\begin{aligned} C(\tau) &\approx N^{1/2} \int dz dp z e^{\mathcal{M}_{\text{tf}}\tau}(z \rho_c^{ss}) \\ \chi(\tau) &\approx \frac{N^{1/4}}{2} \int dz dp z e^{\mathcal{M}_{\text{tf}}\tau}(\partial_p \rho_c^{ss}). \end{aligned} \quad (38)$$

These scalings are consistent with the scalings reported in Ref. [70]. We compare these formulas against numerical solution of Eq. (32) in Fig. (8), demonstrating good agreement that improves as N increases.

6 Thermal behaviour

In this section, we show that the generalized boson mappings can also be used to study thermal behaviour of collective Hamiltonians. Consider the Dicke model [82], which hosts both ground

499 state [59] and thermal phase transitions [27, 83], and is defined by the Hamiltonian

$$\hat{H}_D = \omega \hat{c}^\dagger \hat{c} - \omega_0 \hat{J}_z + \frac{2\lambda}{\sqrt{N}} (\hat{c} + \hat{c}^\dagger) \hat{J}_x, \quad (39)$$

500 where \hat{c}, \hat{c}^\dagger describe a bosonic mode (often photons in a cavity [16] or motional modes in an
501 ion crystal [84]). The thermal properties of the system are encoded in the partition function

$$Z_D = \text{Tr}(e^{-\beta \hat{H}_D}), \quad (40)$$

502 where $\beta = 1/T$ is the inverse temperature. To be more precise, the trace is taken over the
503 2^N dimensional Hilbert space of N independent spin 1/2, not only over the permutationally
504 symmetric Dicke states [85, 86]. Mathematically, this partition function is often calculated
505 (in the large N limit) by representing the trace as an integral and performing a saddle point
506 approximation [83]. However, our treatment will be closer in spirit to the purely Hamiltonian
507 analysis of the Tavis-Cummings model of Ref. [87].

508 The thermal state $e^{-\beta \hat{H}_D}$ is weakly permutationally symmetric, so it is amenable to analysis
509 by means of the operator mappings of Sec. 3. Since only collective spin operators appear, we
510 will only need the lower entries of Table 3. The only subtlety is that the bosonic representation
511 only counts each different spin length sector J once, so we need to take into account explicitly
512 the degeneracy of each different J , given by

$$d_J = \frac{N!(2J+1)}{(N/2-J)!(N/2+J+1)!}. \quad (41)$$

513 This entropic factor, when balanced against energetics, will end up determining the average
514 spin length $Nj/2$. To take this into account, we define an effective Hamiltonian

$$\hat{K} = \beta \hat{H}_D - \log(d_j), \quad (42)$$

515 where we have also included the dependence with β because it is a tunable parameter. The
516 thermal state is now $e^{-\hat{K}}$, and the explicit inclusion of d_J means that we now have to use the
517 bosonic representation of \hat{H}_D .

518 As in previous examples, we first examine the mean field behaviour. Since the spin length
519 is expected to be $j < 1$, we use the type I replacement $\hat{J} = Nj/2 + N^{1/2}\hat{l}$ to express the
520 degeneracy factor as

$$\log(d_j) = -\frac{N}{2}f(j) - f'(j)N^{1/2}\hat{l} - f''(j)\hat{l}^2 \quad (43)$$

521 where

$$f(j) = (1-j)\log\left(\frac{1-j}{2}\right) + (1+j)\log\left(\frac{1+j}{2}\right). \quad (44)$$

522 For the mean field analysis, we will only keep the leading $\propto N$ term. We then treat the rest
523 of operators in the Hamiltonian as classical variables, i.e. $\hat{c} \rightarrow c\sqrt{N}$, $\hat{J}_x \rightarrow N \sin \theta/2$, and
524 $\hat{J}_z \rightarrow N \cos \theta/2$ (we assume beforehand that the spin will have $J_y^{\text{mf}} = 0$). At order $\propto N$, the
525 resulting free energy F is given by

$$\frac{F}{N} = \omega|c|^2 - \frac{\omega_0 j \cos \theta}{2} + \frac{f(j)}{2\beta} + \lambda j \sin \theta (c + \bar{c}) \quad (45)$$

526 Minimizing with respect to c, θ, j leads to two type of solutions. The first type has $\theta = c = 0$
527 and

$$\begin{aligned} j &= \tanh\left(\frac{\beta \omega_0}{2}\right) \\ \frac{F}{N} &= -\frac{1}{\beta} \log[2 \cosh(\beta \omega_0/2)] \end{aligned} \quad (46)$$

528 In this configuration, the system has no cavity field, the spin is pointing along $+z$ and the spin
 529 length is determined by the temperature. The free energy is that of N independent two-level
 530 systems. This solution describes the disordered phase. The second type of solution has

$$\begin{aligned} \frac{\omega\omega_0}{4\lambda^2\cos\theta} &= \tanh\left(\frac{\beta\omega_0}{2\cos\theta}\right) \\ j &= \tanh\left(\frac{\beta\omega_0}{2\cos\theta}\right) \\ c &= -\frac{\lambda j \sin\theta}{\omega} \\ \frac{F}{N} &= \frac{\omega_0 j}{4} \frac{(\sin\theta)^2}{\cos\theta} - \frac{1}{\beta} \log\left[2 \cosh\left(\frac{\beta\omega_0}{2\cos\theta}\right)\right] \end{aligned} \quad (47)$$

531 The first equation determines the rotation angle as a function of temperature and Hamiltonian
 532 parameters, while the last two provide the associated values of spin length and cavity field.
 533 There are two possible solutions to these equations, related by $\theta \rightarrow -\theta$ and $c \rightarrow -c$. These con-
 534 figurations correspond to the ordered superradiant phase and only exist when $\lambda_{\text{eff}}^2 = \lambda^2 j > \omega\omega_0/4$.
 535 This determines the critical temperature $\tanh(\beta_c\omega_0/2) = \omega\omega_0/(4\lambda^2)$ below which the system
 536 orders. This approach to the thermal Dicke transition provides a very intuitive picture of the
 537 underlying physics: the primary effect of a finite temperature is to establish an equilibrium
 538 spin length j via a competition between energy and entropy. Once j is fixed, this univocally
 539 determines whether the low energy spectrum of \hat{H}_D displays symmetry-breaking or not.

540 Applying the type I replacement rules for the collective spin operators allows us to obtain
 541 the effective Hamiltonian that describes fluctuations of the system. In the disordered phase
 542 the spin is already pointing along $+z$, so we can use the rules directly. As in previous examples
 543 terms proportional to \sqrt{N} cancel, leading to

$$\frac{\hat{K}_{\text{eff}}}{\beta} = \omega_0 \hat{A}^\dagger \hat{A} + \omega \hat{c}^\dagger \hat{c} + \lambda_{\text{eff}} (\hat{A}^\dagger + \hat{A})(\hat{c} + \hat{c}^\dagger) + \frac{f''(j)}{\beta} \hat{l}^2 \quad (48)$$

544 Longitudinal fluctuations decouple from the other degrees of freedom, and have size $\delta J \sim \sqrt{N}$.
 545 Transverse fluctuations couple to the cavity field, but the effective coupling constant $\lambda_{\text{eff}} = \lambda \sqrt{j} \leq \lambda$
 546 is temperature dependent and becomes larger with decreasing temperature [86]. If $\lambda > \sqrt{\omega\omega_0}/2$
 547 the system develops an instability when $\lambda_{\text{eff}} = \lambda \sqrt{j} = \sqrt{\omega\omega_0}/2$. If $\lambda < \sqrt{\omega\omega_0}/2$, the system
 548 cannot reach the instability for any temperature. Equation (48) can also be used to calculate
 549 the excitation spectrum at finite temperature, and compute average values and correlation
 550 functions using $e^{-\hat{K}_{\text{eff}}}$ as the approximate quantum state (summing over both mean field solu-
 551 tions in the case of the superradiant phase).

552 In the superradiant phase we first need to rotate the spin operators and displace the cavity
 553 boson before applying the replacement rules. The resulting effective Hamiltonian is instead
 554 (with displaced cavity field $\hat{d} = \hat{c} - \sqrt{N}c$)

$$\hat{K}_{\text{eff}}^{\text{sr}} = \beta\omega \hat{d}^\dagger \hat{d} + \frac{\beta\omega_0}{\cos\theta} \hat{A}^\dagger \hat{A} + f''(j) \hat{l}^2 + \beta\lambda(\hat{d} + \hat{d}^\dagger) [\sqrt{j} \cos\theta (\hat{A} + \hat{A}^\dagger) + 2 \sin\theta \hat{l}], \quad (49)$$

555 and indicates that the spin length fluctuations now couple to the rest of degrees of freedom.
 556 Both effective Hamiltonians for the Dicke model at finite temperature were derived before
 557 in Ref. [88] using diagrammatic methods and a fermionic Majorana representation of spin
 558 1/2 systems. Our method provides the same results, but our variables of choice (\hat{A}, \hat{l}) possess
 559 intrinsic geometric meaning.

560 We finalize this section by studying the phase transition region. As in all the previous
 561 examples, we begin from the disordered phase. As the temperature is decreased and λ_{eff} ap-
 562 proaches the critical value, one of the normal modes of the system becomes soft (its excitation

563 energy goes to 0 in Eq. (48)], while the other one retains a gap $\sim N^0$. As in Sec. 2.1, further
 564 terms in the $1/N$ expansion will introduce a quartic nonlinearity that creates a gap to exci-
 565 tations of the soft mode of size $\sim N^{-1/3}$. Because of the finite T_c , excitations of the gapped
 566 mode might be present or not depending on the relative sizes of T_c and other scales of the sys-
 567 tem such as ω, ω_0 . However, the soft mode will always be highly excited, and can be treated
 568 classically. Furthermore, the soft mode will turn out to couple nonlinearly to fluctuations in
 569 the spin length, which can also be treated classically because $e^{-\beta \hat{H}_D}$ is always diagonal in the
 570 \hat{J} basis.

571 Because of these considerations, the effective Hamiltonian in the vicinity of the phase transi-
 572 tion will be a combination of a quantum quadratic piece, describing the gapped mode, and a
 573 classical nonlinear part, describing the soft and spin length modes. This effective Hamiltonian
 574 is given by (see Appendix E and omitting constant contributions)

$$\begin{aligned} \hat{K}_{\text{eff}}^{\text{tr}} = & \frac{\beta_c(\omega_0^2 + \omega^2)^{1/2}}{2} (\hat{p}_g^2 + \hat{g}^2) \\ & + \frac{(\beta_c \omega_0)^{3/2}}{2\sqrt{j}} \left(\frac{\omega^2}{\omega^2 + \omega_0^2} \right) p_s^2 + f''(j) l^2 + \frac{s^4}{4} - \left(\beta_c \omega_0 \xi + \sqrt{\frac{\beta_c \omega_0}{j}} s^2 \right) l \end{aligned} \quad (50)$$

575 where $[\hat{g}, \hat{p}_g] = i$ and $\{\hat{s}, \hat{p}_s\}^{\text{pb}} = 1$ are the gapped and gapless modes, defined in Eq. (E.16)
 576 from Appendix E and

$$\xi = \frac{\sqrt{N}(\beta - \beta_c)}{\beta_c} \quad (51)$$

577 measures the relative deviation from the critical temperature in units of $1/\sqrt{N}$. Spin observ-
 578 ables will include contributions from both soft and gapped modes, which may make a simple
 579 finite size scaling analysis more challenging. Because of this, we focus on the specific heat
 580 (C_v) as the phase transition point is crossed, which will also be dominated by the soft mode.
 581 We can obtain an analytical expression for C_v

$$\frac{C_v}{N} = \frac{\beta_c^2 \omega_0^2 (1 - j_c^2)}{4} + b^2 g''(b\xi), \quad (52)$$

582 where $g(z) = \log \left[\int dx \exp(-x^4 + zx^2) \right]$ can be expressed in terms of modified Bessel func-
 583 tions, and

$$b = \frac{(\beta_c \omega_0)^{3/2} (1 - j_c^2)}{\sqrt{4j_c - 2\beta_c \omega_0 (1 - j_c^2)}}. \quad (53)$$

584 We point out that this contribution to C_v depends only on $\beta_c \omega_0$ (which also determines j_c) and
 585 $(\beta - \beta_c)/\beta_c$, and is otherwise independent of ω/ω_0 . In particular, the same formula should
 586 hold in the limit $\omega \gg \omega_0$ if we keep $\beta_c \omega_0$ [or equivalently $\lambda^2/(\omega \omega_0)$] fixed, in which case the
 587 Dicke model reduces to Eq. (3) with $g = 4\lambda^2/(\omega \omega_0)$, and for which larger system sizes can be
 588 numerically probed. We show the specific heat as a function of ξ in Fig. 9 for N up to 6400,
 589 calculated by brute-force evaluation of the partition sum. There is a good agreement with the
 590 analytical formula for $\xi \lesssim 1$. For $\xi \gtrsim 1$ the numerical results have not yet converged to their
 591 $N \rightarrow \infty$ limit, presumably because we are zooming in on a violent discontinuity (see inset),
 592 but the numerical curves seem to be approaching the analytical result.

593 7 Conclusions and outlook

594 In this paper we have shown in detail how to construct a Schwinger boson mapping for systems
 595 of N spin 1/2's undergoing open system, permutationally symmetric, dynamics. Using this

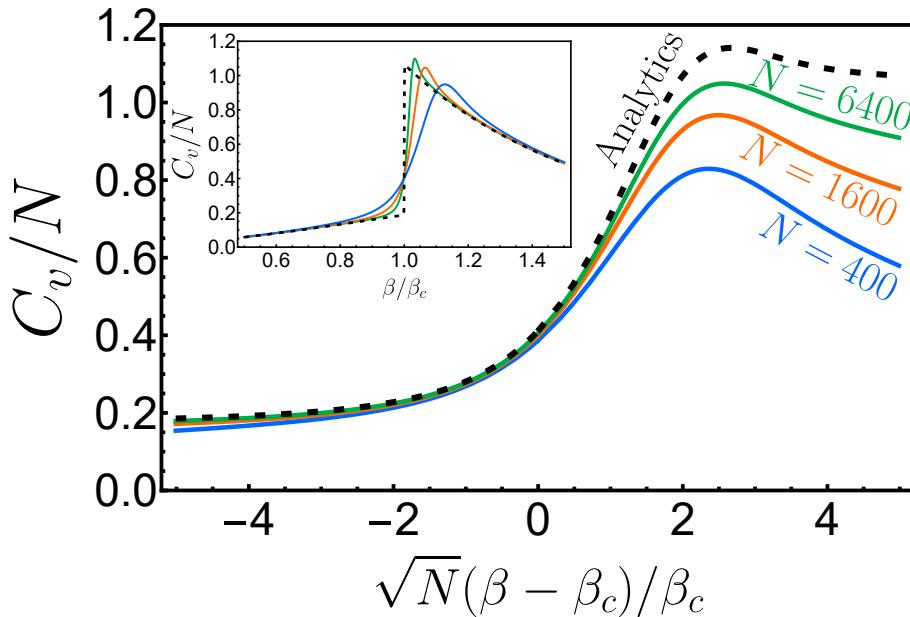


Figure 9: Specific heat C_v as a function of scaled temperature $\sqrt{N}(\beta - \beta_c)/\beta_c$ for different $N = 400, 1600, 6400$ in the LMG limit ($\omega/\omega_0 \rightarrow \infty$ while keeping λ^2/ω fixed) and fixed $j_c = 1/2 \rightarrow \beta_c \omega_0 \approx 1.099$. Inset shows the same plot but as a function of β/β_c illustrating that mean field is a good approximation away from β_c .

596 mapping we then introduced a generalization of the Holstein-Primakoff transformation and
 597 developed a systematic expansion in powers of $1/N$. We explicitly calculated the leading
 598 and next-to-leading order terms in the expansion and illustrated how to use it by means of
 599 various examples. These examples included the analysis of driven-dissipative and thermal
 600 phase transitions and their finite size scaling properties.

601 We believe these methods have wide applicability and could be helpful in the analysis of the
 602 various permutationally symmetric models that are routinely studied in the literature. This in-
 603 cludes the various generalizations of the Dicke model that have been considered over the years,
 604 but also models arising in other areas of study, such as reaction-diffusion phenomena [89] and
 605 non-reciprocal interactions [90].

606 Although we developed the Schwinger boson mapping by rewriting the results from Ref. [48],
 607 the rotationally covariant structure that we identified in Eq. (16) hints at the possibility of a
 608 different, simpler, group theoretic derivation. Such a derivation would also be of use when
 609 seeking multilevel generalizations of the mapping in the presence of single particle dissipation
 610 (in the strongly symmetric case the mapping is standard [91–93]).

611 Acknowledgements

612 The author thanks N. Cooper for helpful discussions and O. Scarlatella and M. Wampler for
 613 feedback on this manuscript.

614 **Funding information** This work was supported by the Simons Investigator Award (Grant
 615 No. 511029) and the Engineering and Physical Sciences Research Council [grant numbers
 616 EP/V062654/1 and EP/Y01510X/1]. Numerical simulations were performed using QuTIP [94]
 617 and its Permutationally Invariant Quantum Solver (PIQS) [55].

618 A Expressing local dissipators in terms of Schwinger bosons

619 In this section, we show that

$$\sum_{i=1}^N \hat{s}_\alpha^i \hat{\rho} \hat{s}_\beta^i = E(\hat{J}) \hat{J}_\alpha \hat{\rho} \hat{J}_\beta + F(\hat{J}) \hat{K}_\alpha \hat{\rho} \hat{L}_\beta + G(\hat{J}) \hat{L}_\alpha \hat{\rho} \hat{K}_\beta, \quad (\text{A.1})$$

620 where

$$\begin{aligned} E(\hat{J}) &= \frac{1+N/2}{2\hat{J}(\hat{J}+1)}, & F(\hat{J}) &= \frac{N/2+\hat{J}+2}{2(\hat{J}+1)(2\hat{J}+3)}, & G(\hat{J}) &= \frac{N/2-\hat{J}+1}{2\hat{J}(2\hat{J}-1)} \\ \hat{K} &= \frac{1}{2} \begin{pmatrix} \hat{b} & \hat{a} \end{pmatrix} i\sigma_y \sigma \begin{pmatrix} \hat{b} \\ \hat{a} \end{pmatrix}, & \hat{L} &= -\frac{1}{2} \begin{pmatrix} \hat{b}^\dagger & \hat{a}^\dagger \end{pmatrix} \sigma i\sigma_y \begin{pmatrix} \hat{b}^\dagger \\ \hat{a}^\dagger \end{pmatrix} \end{aligned} \quad (\text{A.2})$$

621 is equivalent to the matrix elements calculated in Ref. [48]. These were given as [Eq. (42) in
622 Ref. [48]]

$$\begin{aligned} \sum_{n=1}^N \hat{s}_q^{(n)} \overline{|J, M\rangle \langle J, M'|} (\hat{s}_r^{(n)})^\dagger &= \frac{1}{2J} \left(1 + \frac{\alpha_N^{J+1}}{d_N^J} \frac{2J+1}{J+1} \right) \times A_q^{J,M} \overline{|J, M_q\rangle \langle J, M'_r|} A_r^{J,M'} \\ &+ \frac{\alpha_N^J}{2Jd_N^J} \times B_q^{J,M} \overline{|J-1, M_q\rangle \langle J-1, M'_r|} B_r^{J,M'} \\ &+ \frac{\alpha_N^{J+1}}{2(J+1)d_N^J} \times D_q^{J,M} \overline{|J+1, M_q\rangle \langle J+1, M'_r|} D_r^{J,M'}, \end{aligned} \quad (\text{A.3})$$

623 We will first explain the various objects that appear in this formula. First, the $\overline{|J, M\rangle \langle J, M'|}$ are
624 the permutationally symmetric density matrices that are right (left) eigenmatrices of \hat{J}_z with
625 eigenvalue M (M') and left/right eigenmatrices of \hat{J} with equal eigenvalue J . The specific
626 normalization chosen in Ref. [48] will not be relevant for our discussion. Then q, r range over
627 $= +, -, z$, with $M_\pm = M \pm 1, M_z = M$ and there are various numerical coefficients

$$\begin{aligned} \alpha_N^J &= \frac{N!}{(N/2-J)!(N/2+J)!} \\ d_N^J &= \frac{N!(2J+1)!}{(N/2-J)!(N/2+J+1)!} \\ A_+^{J,M} &= \sqrt{(J-M)(J+M+1)} \\ A_-^{J,M} &= \sqrt{(J+M)(J-M+1)} \\ A_z^{J,M} &= M \\ B_+^{J,M} &= \sqrt{(J-M)(J-M-1)} \\ B_-^{J,M} &= -\sqrt{(J+M)(J+M-1)} \\ B_z^{J,M} &= \sqrt{(J+M)(J-M)} \\ D_+^{J,M} &= -\sqrt{(J+M+1)(J+M+2)} \\ D_-^{J,M} &= \sqrt{(J-M+1)(J-M+2)} \\ D_z^{J,M} &= \sqrt{(J+M+1)(J-M+1)} \end{aligned} \quad (\text{A.4})$$

628 Note that Ref. [48] wrote $\hat{\sigma}$ instead of \hat{s} in Eq. (A.3), but the right hand side of the equation
 629 matches the expression with spin 1/2 operators \hat{s} (this can be checked by setting $q = r = z$
 630 and taking traces of both sides). This does not matter for $\hat{\sigma}_\pm = \hat{s}_\pm = \hat{s}_x \pm i\hat{s}_y = (\hat{\sigma}_x \pm i\hat{\sigma}_y)/2$,
 631 but is important for $\hat{s}_z = \hat{\sigma}_z/2$. To proceed, let us begin by calculating the coefficients in front
 632 of $A_q^{J,M} |J, M\rangle\langle J, M'| A_r^{J,M'}, B_q^{J,M} |J-1, M\rangle\langle J, M'| A_r^{J-1,M'}, D_q^{J+1,M} |J, M\rangle\langle J, M'| D_r^{J+1,M'}$ which
 633 are

$$\begin{aligned} \frac{1}{2J} \left(1 + \frac{\alpha_N^{J+1}}{d_N^J} \frac{2J+1}{J+1} \right) &= \frac{N/2+1}{2J(J+1)} = E(J) \\ \frac{\alpha_N^J}{2Jd_N^J} &= \frac{N/2+J+1}{(2J+1)2J} = F(J-1) \\ \frac{\alpha_N^{J+1}}{2(J+1)d_N^J} &= \frac{N/2-J}{2(J+1)(2J+1)} = G(J+1). \end{aligned} \quad (\text{A.5})$$

634 Noting that

$$\begin{aligned} E(J) |J, M\rangle\langle J, M'| &= E(\hat{J}) |J, M\rangle\langle J, M'| \\ F(J-1) |J-1, M\rangle\langle J-1, M'| &= F(\hat{J}) |J-1, M\rangle\langle J-1, M'| \\ G(J+1) |J+1, M\rangle\langle J+1, M'| &= G(\hat{J}) |J+1, M\rangle\langle J+1, M'|, \end{aligned} \quad (\text{A.6})$$

635 we can rewrite Eq. (A.3) as

$$\begin{aligned} \sum_{n=1}^N \hat{s}_q^{(n)} \overline{|J, M\rangle\langle J, M'|} (\hat{s}_r^{(n)})^\dagger &= E(\hat{J}) A_q^{J,M} \overline{|J, M_q\rangle\langle J, M'_r|} A_r^{J,M'} + F(\hat{J}) B_q^{J,M} \overline{|J-1, M_q\rangle\langle J-1, M'_r|} B_r^{J,M'} \\ &\quad + G(\hat{J}) D_q^{J,M} \overline{|J+1, M_q\rangle\langle J+1, M'_r|} D_r^{J,M'}, \end{aligned} \quad (\text{A.7})$$

636 which already indicates which terms in Eq. (A.7) should be identified with which in Eq. (A.1).
 637 To proceed, we express J, M and in terms of the Schwinger boson occupation numbers $n_a = J-M, n_b = J+M$
 638 and analyze Eq. (A.7) on a case-by-case basis

$$\bullet \quad \sum_{n=1}^N \hat{s}_z^{(n)} \overline{|J, M\rangle\langle J, M'|} \hat{s}_z^{(n)}$$

$$\begin{aligned} \sum_{n=1}^N \hat{s}_z^{(n)} \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} (\hat{s}_z^{(n)})^\dagger &= E(\hat{J}) \left(\frac{n_b - n_a}{2} \right) \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} \left(\frac{n'_b - n'_a}{2} \right) \\ &\quad + F(\hat{J}) \sqrt{n_a n_b} \overline{|n_a - 1, n_b - 1\rangle\langle n'_a - 1, n'_b - 1|} \sqrt{n'_a n'_b} \\ &\quad + G(\hat{J}) \sqrt{(n_a + 1)(n_b + 1)} \overline{|n_a + 1, n_b + 1\rangle\langle n'_a + 1, n'_b + 1|} \sqrt{(n'_a + 1)(n'_b + 1)} \\ &= E(\hat{J}) \left(\frac{\hat{b}^\dagger \hat{b} - \hat{a}^\dagger \hat{a}}{2} \right) \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} \left(\frac{\hat{b}^\dagger \hat{b} - \hat{a}^\dagger \hat{a}}{2} \right) \\ &\quad + F(\hat{J}) \hat{a} \hat{b} \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} \hat{a}^\dagger \hat{b}^\dagger \\ &\quad + G(\hat{J}) \hat{a}^\dagger \hat{b}^\dagger \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} \hat{a} \hat{b} \end{aligned} \quad (\text{A.8})$$

640

- $$\sum_{n=1}^N \hat{\sigma}_+^{(n)} \overline{|J, M\rangle \langle J, M'|} \hat{\sigma}_-^{(n)}$$

$$\sum_{n=1}^N \hat{\sigma}_+^{(n)} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{\sigma}_+^{(n)})^\dagger = E(\hat{J}) \sqrt{n_a(n_b+1)} \overline{|n_a-1, n_b+1\rangle \langle n'_a-1, n'_b+1|} \sqrt{n'_a(n'_b+1)}$$

$$+ F(\hat{J}) \sqrt{n_a(n_a-1)} \overline{|n_a-2, n_b\rangle \langle n'_a-2, n'_b|} \sqrt{n'_a(n'_a-1)}$$

$$+ G(\hat{J}) \sqrt{(n_b+1)(n_b+2)} \overline{|n_a, n_b+2\rangle \langle n'_a, n'_b+2|} \sqrt{(n'_b+1)(n'_b+2)}$$

$$= E(\hat{J}) \hat{a} \hat{b}^\dagger \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{a}^\dagger \hat{b}$$

$$+ F(\hat{J}) \hat{a}^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{a}^\dagger)^2$$

$$+ G(\hat{J}) (\hat{b}^\dagger)^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{b}^2$$

(A.9)

641

- $$\sum_{n=1}^N \hat{\sigma}_-^{(n)} \overline{|J, M\rangle \langle J, M'|} \hat{\sigma}_+^{(n)}$$

$$\sum_{n=1}^N \hat{\sigma}_-^{(n)} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{\sigma}_-^{(n)})^\dagger = E(\hat{J}) \sqrt{n_b(n_a+1)} \overline{|n_a+1, n_b-1\rangle \langle n'_a+1, n'_b-1|} \sqrt{n'_b(n'_a+1)}$$

$$+ F(\hat{J}) \sqrt{n_b(n_b-1)} \overline{|n_a, n_b-2\rangle \langle n'_a, n'_b-2|} \sqrt{n'_b(n'_b-1)}$$

$$+ G(\hat{J}) \sqrt{(n_a+1)(n_a+2)} \overline{|n_a+2, n_b\rangle \langle n'_a+2, n'_b|} \sqrt{(n'_a+1)(n'_a+2)}$$

$$= E(\hat{J}) \hat{a}^\dagger \hat{b} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{a} \hat{b}^\dagger$$

$$+ F(\hat{J}) \hat{b}^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{b}^\dagger)^2$$

$$+ G(\hat{J}) (\hat{a}^\dagger)^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{a}^2$$

(A.10)

642

$$\bullet \quad \boxed{\sum_{n=1}^N \hat{\sigma}_-^{(n)} \overline{|J, M\rangle \langle J, M'|} \hat{\sigma}_-^{(n)}}$$

$$\begin{aligned}
& \sum_{n=1}^N \hat{\sigma}_-^{(n)} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{\sigma}_+^{(n)})^\dagger = E(\hat{J}) \sqrt{n_b(n_a+1)} \overline{|n_a+1, n_b-1\rangle \langle n'_a-1, n'_b+1|} \sqrt{n'_a(n'_b+1)} \\
& \quad - F(\hat{J}) \sqrt{n_b(n_b-1)} \overline{|n_a, n_b-2\rangle \langle n'_a-2, n'_b|} \sqrt{n'_a(n'_a-1)} \\
& \quad - G(\hat{J}) \sqrt{(n_a+1)(n_a+2)} \overline{|n_a+2, n_b\rangle \langle n'_a, n'_b+2|} \sqrt{(n'_b+1)(n'_b+2)} \\
& = E(\hat{J}) \hat{a}^\dagger \hat{b} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{a}^\dagger \hat{b} \\
& \quad - F(\hat{J}) \hat{b}^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{a}^\dagger)^2 \\
& \quad - G(\hat{J}) (\hat{a}^\dagger)^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{b}^2
\end{aligned} \tag{A.11}$$

643

$$\bullet \quad \boxed{\sum_{n=1}^N \hat{\sigma}_-^{(n)} \overline{|J, M\rangle \langle J, M'|} \hat{s}_z^{(n)}}$$

$$\begin{aligned}
& \sum_{n=1}^N \hat{\sigma}_-^{(n)} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{s}_z^{(n)})^\dagger = E(\hat{J}) \sqrt{n_b(n_a+1)} \overline{|n_a+1, n_b-1\rangle \langle n'_a, n'_b|} \left(\frac{n'_b - n'_a}{2}\right) \\
& \quad - F(\hat{J}) \sqrt{n_b(n_b-1)} \overline{|n_a, n_b-2\rangle \langle n'_a-1, n'_b-1|} \sqrt{n'_a n'_b} \\
& \quad + G(\hat{J}) \sqrt{(n_a+1)(n_a+2)} \overline{|n_a+2, n_b\rangle \langle n'_a+1, n'_b+1|} \sqrt{(n'_a+1)(n'_b+1)} \\
& = E(\hat{J}) \hat{a}^\dagger \hat{b} \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} (\hat{b}^\dagger \hat{b} - \hat{a}^\dagger \hat{a})/2 \\
& \quad - F(\hat{J}) \hat{b}^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{a}^\dagger \hat{b}^\dagger \\
& \quad + G(\hat{J}) (\hat{a}^\dagger)^2 \overline{|n_a, n_b\rangle \langle n'_a, n'_b|} \hat{a} \hat{b}
\end{aligned} \tag{A.12}$$

644 •
$$\sum_{n=1}^N \hat{\sigma}_+^{(n)} \overline{|J, M\rangle\langle J, M'|} \hat{s}_z^{(n)}$$

$$\sum_{n=1}^N \hat{\sigma}_+^{(n)} \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} (\hat{s}_z^{(n)})^\dagger = E(\hat{J}) \sqrt{n_a(n_b+1)} \overline{|n_a-1, n_b+1\rangle\langle n'_a, n'_b|} \left(\frac{n'_b - n'_a}{2}\right)$$

$$+ F(\hat{J}) \sqrt{n_a(n_a-1)} \overline{|n_a-2, n_b\rangle\langle n'_a-1, n'_b-1|} \sqrt{n'_a n'_b}$$

$$- G(\hat{J}) \sqrt{(n_b+1)(n_b+2)} \overline{|n_a, n_b+2\rangle\langle n'_a+1, n'_b+1|} \sqrt{(n'_a+1)(n'_b+1)}$$

$$= E(\hat{J}) \hat{a}^\dagger \hat{b} \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} (\hat{b}^\dagger \hat{b} - \hat{a}^\dagger \hat{a})/2$$

$$+ F(\hat{J}) \hat{a}^2 \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} \hat{a}^\dagger \hat{b}^\dagger$$

$$- G(\hat{J}) (\hat{b}^\dagger)^2 \overline{|n_a, n_b\rangle\langle n'_a, n'_b|} \hat{a} \hat{b}$$
(A.13)

645 These expressions agree with Eq. (A.1), taking into account that $\hat{K}_\pm = \hat{K}_x \pm i \hat{K}_y$, $\hat{L}_\pm = \hat{L}_x \pm i \hat{L}_y$
 646 and $\hat{s}_z = \hat{\sigma}_z/2$.

647 B Derivation of replacement rules

648 In this appendix we derive the replacement rules provided in Table 1 and Table 2. We begin
 649 from the results in Sec. A and get rid of \hat{b} in favor of \hat{J} . To do this, we decompose the boson
 650 \hat{b} using its number-phase representation $\hat{b} = e^{i\hat{\phi}/2} (\hat{b}^\dagger \hat{b})^{1/2}$, absorb $e^{i\hat{\phi}/2}$ into $\hat{A}^\dagger = \hat{a}^\dagger e^{i\hat{\phi}/2}$,
 651 replace $\hat{b}^\dagger \hat{b} = 2\hat{J} - \hat{A}^\dagger \hat{A}$. Then we obtain, generically

652 •
$$\sum_{i=1}^N \hat{s}_z^i \hat{\rho} \hat{s}_z^i$$

$$\sum_{i=1}^N \hat{s}_z^i \hat{\rho} \hat{s}_z^i = E(\hat{J}) (\hat{J} - \hat{A}^\dagger \hat{A}) \hat{\rho} (\hat{J} - \hat{A}^\dagger \hat{A})$$

$$+ F(\hat{J}) \hat{A} (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} \hat{A}^\dagger$$

$$+ G(\hat{J}) (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} e^{-i\hat{\phi}} \hat{A}^\dagger \hat{\rho} \hat{A} e^{i\hat{\phi}} (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2}$$
(B.1)

653 •
$$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i$$

$$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i = E(\hat{J}) (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \hat{A} \hat{\rho} \hat{A}^\dagger (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2}$$

$$+ F(\hat{J}) (\hat{A})^2 e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (\hat{A}^\dagger)^2$$

$$+ G(\hat{J}) (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} - 1 - \hat{A}^\dagger \hat{A})^{1/2} e^{-i\hat{\phi}} \hat{\rho} e^{i\hat{\phi}} (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} - 1 - \hat{A}^\dagger \hat{A})^{1/2}$$
(B.2)

654 •
$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i$$

$$\begin{aligned} \sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i &= E(\hat{J}) \hat{A}^\dagger (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \hat{\rho} (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \hat{A} \\ &\quad + F(\hat{J}) (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} + 1 - \hat{A}^\dagger \hat{A})^{1/2} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} + 1 - \hat{A}^\dagger \hat{A})^{1/2} \\ &\quad + G(\hat{J}) (\hat{A}^\dagger)^2 e^{-i\hat{\phi}} \hat{\rho} e^{i\hat{\phi}} (\hat{A})^2 \end{aligned} \quad (B.3)$$

655 •
$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_-^i$$

$$\begin{aligned} \sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_-^i &= E(\hat{J}) \hat{A}^\dagger (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \hat{\rho} \hat{A}^\dagger (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \\ &\quad - F(\hat{J}) (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} + 1 - \hat{A}^\dagger \hat{A})^{1/2} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (\hat{A}^\dagger)^2 \\ &\quad - G(\hat{J}) (\hat{A}^\dagger)^2 e^{-i\hat{\phi}} \hat{\rho} e^{i\hat{\phi}} (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} - 1 - \hat{A}^\dagger \hat{A})^{1/2} \end{aligned} \quad (B.4)$$

656 •
$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i$$

$$\begin{aligned} \sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i &= E(\hat{J}) \hat{A}^\dagger (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \hat{\rho} (\hat{J} - \hat{A}^\dagger \hat{A}) \\ &\quad - F(\hat{J}) (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} + 1 - \hat{A}^\dagger \hat{A})^{1/2} e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} \hat{A}^\dagger \\ &\quad + G(\hat{J}) (\hat{A}^\dagger)^2 e^{-i\hat{\phi}} \hat{\rho} \hat{A} e^{i\hat{\phi}} (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \end{aligned} \quad (B.5)$$

657 •
$$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i$$

$$\begin{aligned} \sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i &= E(\hat{J}) (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \hat{A} \hat{\rho} (\hat{J} - \hat{A}^\dagger \hat{A}) \\ &\quad + F(\hat{J}) (\hat{A})^2 e^{i\hat{\phi}} \hat{\rho} e^{-i\hat{\phi}} (2\hat{J} + 2 - \hat{A}^\dagger \hat{A})^{1/2} \hat{A}^\dagger \\ &\quad - G(\hat{J}) (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} (2\hat{J} - 1 - \hat{A}^\dagger \hat{A})^{1/2} e^{-i\hat{\phi}} \hat{\rho} \hat{A} e^{i\hat{\phi}} (2\hat{J} - \hat{A}^\dagger \hat{A})^{1/2} \end{aligned} \quad (B.6)$$

658 These expressions are exact, as is the Holstein-Primakoff mapping for collective states, but full
 659 rotational invariance is no longer manifest. As described in the main text, this representation
 660 is particularly convenient when the state is polarized along $+z$, but the nature of the expansion
 661 will depend on the mean field value of the Bloch vector length. To get Table 1, valid when

662 $j < 1$ (where j is the mean field length in units of $N/2$), we introduce scaled variables $\hat{l}, \hat{q} \sim 1$
 663 as follows

$$\begin{aligned}\hat{J} &= \frac{Nj}{2} + \sqrt{N} \hat{l} \\ \hat{\phi} &= \frac{\hat{q}}{\sqrt{N}}\end{aligned}\tag{B.7}$$

664 and expand the expressions to $O(N^0)$, with the neglected terms being of size $N^{-1/2}$. This yields

$$\begin{aligned}665 \quad \bullet \quad & \boxed{\sum_{i=1}^N \hat{s}_z^i \hat{\rho} \hat{s}_z^i} \\ & \sum_{i=1}^N \hat{s}_z^i \hat{\rho} \hat{s}_z^i = \frac{N}{4} \hat{\rho} + \frac{\hat{\rho}}{2} - \frac{1}{2j} \hat{A}^\dagger \hat{A} \hat{\rho} - \frac{1}{2j} \hat{\rho} (\hat{A}^\dagger \hat{A} + 1) + \left(\frac{1+j}{2j} \right) \hat{A} \hat{\rho} \hat{A}^\dagger + \left(\frac{1-j}{2} \right) \hat{A}^\dagger \hat{\rho} \hat{A} \\ & = \boxed{\frac{N}{4} \hat{\rho} + \left(\frac{1+j}{2j} \right) \left(\hat{A} \hat{\rho} \hat{A}^\dagger - \frac{\{\hat{A} \hat{A}^\dagger, \hat{\rho}\}}{2} \right) + \left(\frac{1-j}{2j} \right) \left(\hat{A}^\dagger \hat{\rho} \hat{A} + \frac{\{\hat{A} \hat{A}^\dagger, \hat{\rho}\}}{2} \right)}\end{aligned}\tag{B.8}$$

$$\begin{aligned}666 \quad \bullet \quad & \boxed{\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i} \\ & \sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{\sigma}_-^i \\ & \frac{1}{j} \hat{A} \hat{\rho} \hat{A}^\dagger + 0 = \frac{1-j}{2j} \{\hat{A}^\dagger \hat{A}, \hat{\rho}\} + \frac{N(1-j)}{2} \hat{\rho} - \frac{i\sqrt{N}}{2} (1-j) [\hat{q}, \hat{\rho}] - \frac{1-j}{4} [\hat{q}, [\hat{q}, \hat{\rho}]] - \sqrt{N} \hat{l} \hat{\rho} + i[\hat{q}, \hat{l} \hat{\rho}] \\ & = \boxed{\frac{N(1-j)}{2} \hat{\rho} - \sqrt{N} \left(\frac{i(1-j)}{2} [\hat{q}, \hat{\rho}] + \hat{l} \hat{\rho} \right) + \frac{1}{j} \hat{A} \hat{\rho} \hat{A}^\dagger - \frac{(1-j)}{2j} \{\hat{A}^\dagger \hat{A}, \hat{\rho}\} + \frac{(1-j)}{4} [\hat{q}, [\hat{\rho}, \hat{q}]] + i[\hat{q}, \hat{l} \hat{\rho}]}\end{aligned}\tag{B.9}$$

$$\begin{aligned}667 \quad \bullet \quad & \boxed{\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i} \\ & \sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_+^i \\ & = \frac{1}{j} \hat{A}^\dagger \hat{\rho} \hat{A} + 0 - \frac{1+j}{2j} \{\hat{A} \hat{A}^\dagger, \hat{\rho}\} + \frac{N(1+j)}{2} \hat{\rho} + \frac{i\sqrt{N}}{2} (1+j) [\hat{q}, \hat{\rho}] - \frac{1+j}{4} [\hat{q}, [\hat{q}, \hat{\rho}]] + \sqrt{N} \hat{l} \hat{\rho} + i[\hat{q}, \hat{l} \hat{\rho}] + \frac{\hat{\rho}}{2} \\ & = \boxed{\frac{N(1+j)}{2} \hat{\rho} + \sqrt{N} \left(\frac{i(1+j)}{2} [\hat{q}, \hat{\rho}] + \hat{l} \hat{\rho} \right) + \frac{1}{j} \hat{A}^\dagger \hat{\rho} \hat{A} - \frac{(1+j)}{2j} \{\hat{A} \hat{A}^\dagger, \hat{\rho}\} + \frac{(1+j)}{4} [\hat{q}, [\hat{\rho}, \hat{q}]] + i[\hat{q}, \hat{l} \hat{\rho}] + \frac{\hat{\rho}}{2}}\end{aligned}\tag{B.10}$$

668 •
$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_-^i$$

$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{\sigma}_-^i = \frac{1}{j} \hat{A}^\dagger \hat{\rho} \hat{A}^\dagger - \frac{(1+j)}{2j} \hat{\rho} (\hat{A}^\dagger)^2 - \frac{(1-j)}{2j} (\hat{A}^\dagger)^2 \hat{\rho}$$

$$= \boxed{\frac{1}{j} \left((\hat{A}^\dagger)^2 \hat{\rho} (\hat{A}^\dagger)^2 - \frac{\{(\hat{A}^\dagger)^2, \hat{\rho}\}}{2} \right) + \frac{1}{2} [(\hat{A}^\dagger)^2, \hat{\rho}]} \quad (B.11)$$

669 •
$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i$$

$$\sum_{i=1}^N \hat{\sigma}_-^i \hat{\rho} \hat{s}_z^i = \frac{1}{2} \sqrt{\frac{N}{j}} \hat{A}^\dagger \hat{\rho} - \frac{\hat{l}}{2j^{3/2}} \hat{A}^\dagger \hat{\rho} - \frac{\sqrt{N}(1+j)}{2\sqrt{j}} \hat{\rho} \hat{A}^\dagger + \frac{(1-j)}{2j^{3/2}} \hat{l} \hat{\rho} \hat{A}^\dagger - \frac{i(1+j)}{2\sqrt{j}} [\hat{q}, \hat{\rho}] \hat{A}^\dagger$$

$$= \boxed{\frac{\sqrt{N}}{2\sqrt{j}} (\hat{A}^\dagger \hat{\rho} - (1+j) \hat{\rho} \hat{A}^\dagger) + \frac{\hat{l}}{2j^{3/2}} ((1-j) \hat{\rho} \hat{A}^\dagger - \hat{A}^\dagger \hat{\rho}) - \frac{i(1+j)}{2\sqrt{j}} [\hat{q}, \hat{\rho}] \hat{A}^\dagger} \quad (B.12)$$

670 •
$$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i$$

$$\sum_{i=1}^N \hat{\sigma}_+^i \hat{\rho} \hat{s}_z^i = \frac{1}{2} \sqrt{\frac{N}{j}} \hat{A} \hat{\rho} - \frac{\hat{l}}{2j^{3/2}} \hat{A} \hat{\rho} - \frac{\sqrt{N}(1-j)}{2\sqrt{j}} \hat{\rho} \hat{A} + \frac{(1+j)}{2j^{3/2}} \hat{l} \hat{\rho} \hat{A} + \frac{i(1-j)}{2\sqrt{j}} [\hat{q}, \hat{\rho}] \hat{A}^\dagger$$

$$= \boxed{\frac{\sqrt{N}}{2\sqrt{j}} (\hat{A} \hat{\rho} - (1-j) \hat{\rho} \hat{A}) + \frac{\hat{l}}{2j^{3/2}} ((1+j) \hat{\rho} \hat{A} - \hat{A} \hat{\rho}) + \frac{i(1-j)}{2\sqrt{j}} [\hat{q}, \hat{\rho}] \hat{A}^\dagger} \quad (B.13)$$

671 To get Table 2, valid when $j = 1$, we instead expand the expressions assuming that
 672 $\hat{A}, \hat{A}^\dagger, \delta \hat{J}, \hat{\phi} \sim 1$.

673 C Superradiant laser below upper threshold

674 In this appendix we analyze the superradiant laser model of Eq. (24) in the coherent phase.
 675 As mentioned in the main text, in this case the system will develop a nonzero J_-^{mf} in the steady
 676 state, which can be chosen to have any arbitrary phase. We thus choose J_-^{mf} to be real and
 677 positive (thus the Bloch vector points along the x direction). We thus perform a rotation of
 678 the spin operators

$$\hat{\sigma}_+^i = (\hat{s}_z^i)' \sin \theta + (\hat{\sigma}_+^i)' \frac{(1 + \cos \theta)}{2} + (\hat{\sigma}_-^i)' \frac{(\cos \theta - 1)}{2}, \quad (C.1)$$

679 where θ is the rotation angle about the $+y$ axis [and hence $\hat{s}_y^i = (\hat{s}_y^i)'$]. In principle θ is
 680 determined from the solution to the mean field equations, but we show in this appendix that
 681 it can also be determined by requiring that the terms proportional to \sqrt{N} coming from Table 1
 682 vanish. If we perform the replacement rules in the rotated coordinate system, we arrive at the
 683 following bosonic master equation

$$\begin{aligned}
 \partial_t \hat{\rho} = & \frac{w\sqrt{N}(2-j\cos\theta)\sin\theta}{4\sqrt{j}} [(\hat{A}-\hat{A}^\dagger), \hat{\rho}] + \frac{NC\gamma j\sqrt{Nj}\sin\theta}{4} [(\hat{A}^\dagger-\hat{A}), \hat{\rho}] \\
 & + \frac{iw\sqrt{N}}{8}(1+j)(\cos\theta-1)^2[\hat{q}, \hat{\rho}] - \frac{iw\sqrt{N}}{8}(1-j)(\cos\theta+1)^2[\hat{q}, \hat{\rho}] \\
 & + \frac{w}{4j}\mathcal{D}[(1+\cos\theta)\hat{A} + (\cos\theta-1)\hat{A}^\dagger]\hat{\rho} + \frac{NC\gamma j}{4}\mathcal{D}[(1+\cos\theta)\hat{A}^\dagger + (\cos\theta-1)\hat{A}]\hat{\rho} \\
 & + \frac{3NC\gamma j^{1/2}\sin\theta}{4} [\hat{A}^\dagger-\hat{A}, \hat{\rho}] \hat{l} \\
 & + \frac{w(j+1)(\sin\theta)^2}{2j}\mathcal{D}[\hat{A}]\hat{\rho} + \frac{w(1-j)(\sin\theta)^2}{2j}\mathcal{D}[\hat{A}^\dagger]\hat{\rho} + \frac{w(\sin\theta)^2}{4} [(\hat{A})^2 - (\hat{A}^\dagger)^2, \hat{\rho}] \quad (C.2) \\
 & + \frac{w(1-j)(1+\cos\theta)^2 + w(1+j)(1-\cos\theta)^2}{8}\mathcal{D}[\hat{q}]\hat{\rho} + \frac{iw(1+(\cos\theta)^2)}{4} [\hat{q}, \{\hat{l}, \hat{\rho}\}] \\
 & - \frac{w\sin\theta(2+j\cos\theta)}{4j^{3/2}} [\hat{A}-\hat{A}^\dagger, \hat{\rho}] \hat{l} + \frac{iw\sin\theta(1-j\cos\theta)}{4\sqrt{j}} [\hat{q}, \{(\hat{A}+\hat{A}^\dagger), \hat{\rho}\}] \\
 & + \frac{iw\sin\theta(\cos\theta-j)}{4\sqrt{j}} [[\hat{q}, \hat{\rho}], (\hat{A}-\hat{A}^\dagger)]
 \end{aligned}$$

684 Cancellation of the terms proportional to \sqrt{N} leads to

$$j(\cos\theta)^2 + j = 2\cos\theta, \quad NC\gamma j^2 = w(2-j\cos\theta) \quad (C.3)$$

685 which can be solved to give $j\cos\theta = w/NC\gamma$ (i.e. the z component of the Bloch vector) and
 686 $(j\sin\theta)^2 = 2w(NC\gamma - w)/(NC\gamma)^2$ (i.e. the transverse component of the Bloch vector and is
 687 proportional to the emitted light intensity). These are the same results that would be obtained
 688 by solving the mean field equations of motion. Massaging this result leads to

$$\begin{aligned}
 \partial_t \hat{\rho} = & \frac{iw(\sin\theta)^2}{8} ([\hat{p}, \{\hat{x}, \hat{\rho}\}] + [\{\hat{p}, \hat{\rho}\}, \hat{x}]) - \frac{iw(\sin\theta)^2}{8} [\hat{x}\hat{p} + \hat{p}\hat{x}, \hat{\rho}] + \frac{iw(1+(\cos\theta)^2)}{4} [\hat{q}, \{\hat{l}, \hat{\rho}\}] \\
 & - \frac{w\sin\theta(2+(\cos\theta)^2)}{\sqrt{2j}\cos\theta} [\hat{p}, \hat{\rho}] \hat{l} + \frac{iw(\sin\theta)^3\sqrt{j}}{4\sqrt{2}\cos\theta} [\hat{q}, \{\hat{\rho}, \hat{x}\}] \\
 & + \frac{NC\gamma\cos\theta}{2}(1+j\cos\theta)\mathcal{D}[\hat{x}]\hat{\rho} + \left[\left(\frac{w}{2j} + \frac{NC\gamma j}{2} \right) + \frac{w(\sin\theta)^2}{2j} \right] \mathcal{D}[\hat{p}]\hat{\rho} \\
 & + \frac{wj(\sin\theta)^4}{8\cos\theta}\mathcal{D}[\hat{q}]\hat{\rho} + \frac{w(\sin\theta)^3\sqrt{j}}{4\sqrt{2}} [\hat{q}, [\hat{\rho}, \hat{p}]] \quad (C.4)
 \end{aligned}$$

689 The first two lines describe relaxation (in accordance with linear response calculated by, e.g.,
 690 Heisenberg-Langevin equations) and the last two lines describe diffusion. In particular

$$\frac{d \langle \hat{p}^2 \rangle}{dt} = \frac{NC\gamma \cos \theta}{2} (1 + j \cos \theta), \quad (\text{C.5})$$

691 which is related to the laser phase by $\hat{\phi} = \hat{J}_y/(Nj \sin \theta/2) \approx \hat{p}/(\sin \theta \sqrt{Nj/2})$. Thus, the
 692 phase diffuses according to

$$\frac{1}{2} \frac{d \langle \hat{\phi}^2 \rangle}{dt} = \frac{C\gamma \cos \theta}{2j(\sin \theta)^2} (1 + j \cos \theta) = \frac{C\gamma}{4} \left(\frac{NC\gamma + w}{NC\gamma - w} \right), \quad (\text{C.6})$$

693 which agrees with known results [95] in the appropriate limit ($NC\gamma, w \gg \gamma$) and determines
 694 the laser linewidth.

695 D Transverse field Ising model with finite dissipation

696 In this appendix we analyze the transverse field Ising model with finite dissipation. For com-
 697 pleteness, we copy here the master equation defining the evolution

$$\partial_t \hat{\rho} = -i \left[-\delta \hat{J}_z - \frac{g}{N} \hat{J}_x^2, \hat{\rho} \right] + \gamma \sum_{i=1}^N \left(\hat{\sigma}_i^+ \hat{\rho} \hat{\sigma}_i^- - \frac{\{\hat{\sigma}_i^-, \hat{\sigma}_i^+\}, \hat{\rho}}{2} \right) \quad (\text{D.1})$$

698 In the quadratic approximation, we have Eq. (33)

$$\partial_t \hat{\rho} = -\frac{i}{2} [\Delta \hat{p}^2 + (\Delta - g) \hat{x}^2, \hat{\rho}] + \gamma \mathcal{D}[\hat{A}] \hat{\rho} + \Delta [\delta \hat{J}, \hat{\rho}] + \gamma (\delta \hat{J} \hat{\rho} - e^{-i\hat{\phi}} \delta \hat{J} e^{i\hat{\phi}}), \quad (\text{D.2})$$

699 There is an instability at Δ^* defined by $\gamma = 2\sqrt{\Delta^*(g - \Delta^*)}$. Since the longitudinal boson
 700 just equilibrates to $|\delta J = 0\rangle$ we project out this degree of freedom and work with the reduced
 701 density matrix for the transverse boson $\hat{\rho}_T$. If we introduce the conjugate pair $[\hat{x}_s, \hat{p}_f] = i$
 702 according to

$$\hat{x}_s = \frac{u^{-1} \hat{x} + u \hat{p}}{\sqrt{2}}, \quad \hat{p}_f = \frac{u \hat{p} - u^{-1} \hat{x}}{\sqrt{2}}, \quad (\text{D.3})$$

703 where $u = [\Delta^*/(g - \Delta^*)]^{1/4}$, the equation simplifies to

$$\partial_t \hat{\rho}_T = -\frac{i\gamma}{2} [\hat{x}_s, \{\hat{p}_f, \hat{\rho}_T\}] + \frac{g}{4} ([\hat{x}_s, [\hat{\rho}_T, \hat{x}_s]] + [\hat{p}_f, [\hat{\rho}_T, \hat{p}_f]]) + \left(\frac{g - 2\Delta^*}{2} \right) [\hat{x}_s, [\hat{\rho}_T, \hat{p}_f]]. \quad (\text{D.4})$$

704 The first term introduces relaxation for \hat{p}_f with rate γ but does not affect \hat{x}_s . The next term
 705 introduces noise and diffusion, which only manifests in $\langle \hat{x}_s^2 \rangle$ and $\langle \hat{p}_f^2 \rangle$. The last term introduces
 706 mixed noise, which appears in $\langle \{\hat{x}_s, \hat{p}_f\} \rangle$. Because of the relaxation, the variance of \hat{p}_f never
 707 grows too much. However, the noise in \hat{x}_s keeps growing and is stabilized by nonlinearities.
 708 We thus introduce $\hat{y}_s = N^{f_x} \hat{x}_s$, which will behave classically, and hence commutators become
 709 Poisson brackets according to $[\cdot, \cdot] \approx iN^{-f_x} \{\cdot, \cdot\}^{\text{pb}}$. The density matrix $\hat{\rho}_T$ becomes a classical
 710 probability distribution ρ_c that satisfies the classical master equation

$$\partial_t \rho_c = \gamma \partial_{p_f} (p_f \rho_c) + \frac{g}{4} \partial_{p_f}^2 \rho_c + \frac{g}{4N^{2f_x}} \partial_y^2 \rho_c - \left(\frac{g - 2\Delta^*}{2N^{f_x}} \right) \partial_{p_f} \partial_y \rho_c. \quad (\text{D.5})$$

711 Note that the first two terms are $O(N^0)$ and will thus equilibrate first. This determines the
 712 steady state probability distribution of p_f , $\sim e^{-2\gamma p_f^2/g}$. Interpreting the right-hand side of the

713 master equation as an operator in phase space, we apply a Schrieffer-Wolff transformation to
 714 get rid of the term $\propto N^{-f_x}$, and then project the operator onto the steady state manifold of
 715 the N^0 term (operationally this means that we write $\rho_c \propto e^{-2\gamma p_f^2/g} P(y)$, apply the operator
 716 and integrate over p). This leads to an effective classical master equation for y

$$\partial_t P(y) = \frac{g}{4N^{2f_x}} \partial_y^2 P(y). \quad (\text{D.6})$$

717 This diffusion equation will be stabilized by the nonlinearity, which we now analyze. The
 718 nonlinearity comes from the \hat{J}_x^2 term in the Hamiltonian. Expressing the bosonic operators in
 719 terms of \hat{x}_s and \hat{p}_f we get that

$$\frac{g\hat{J}_x^2}{N} = \frac{g\hat{x}^2}{2} - \frac{g}{16N}(u^4 + 1)\hat{x}_s^4 + \frac{gu^4}{8N}(\hat{x}_s^3\hat{p}_f + \hat{p}_f\hat{x}_s^3), \quad (\text{D.7})$$

720 and we have kept up to terms with \hat{x}_s^3 . The nonlinear terms induce the following evolution

$$\begin{aligned} -i\left[\frac{g}{16N}(u^4 + 1)\hat{x}_s^4, \hat{p}_f\right] &\rightarrow \frac{gN^{3f_x}}{4N}(u^4 + 1)y^3\partial_{p_f}\rho_c \\ -i\left[-\frac{gu^4}{8N}(\hat{x}_s^3\hat{p}_f + \hat{p}_f\hat{x}_s^3), \hat{p}_f\right] &\rightarrow -\frac{3gu^4y^2p_fN^{2f_x}}{4N}\partial_{p_f}\rho_c + \frac{gu^4N^{2f_x}}{4N}y^3\partial_y\rho_c \end{aligned} \quad (\text{D.8})$$

721 Projecting onto the steady state manifold of the N^0 term (and doing a Schrieffer-Wolff trans-
 722 formation to get rid of the first term) leads to the following master equation

$$\partial_t P = \frac{3gu^4N^{2f_x}}{4N}y^2P + \frac{gu^4N^{2f_x}}{4N}y^3\partial_y P + \frac{g}{4N^{2f_x}}\partial_y^2 P. \quad (\text{D.9})$$

723 We choose $f_x = 1/4$ to arrive at

$$\partial_t P = \frac{g}{N^{1/2}}\left[\frac{(\Delta^*)^2}{\gamma^2}\partial_y(y^3P) + \frac{1}{4}\partial_y^2 P\right]. \quad (\text{D.10})$$

724 Time evolution of the slow mode is thus reduced by a factor of $N^{-1/2}$. The relation between
 725 the \hat{p}_f , \hat{x}_s , and the original spin operators is

$$\begin{aligned} \hat{J}_x &= \frac{u}{2}(N^{3/4}\hat{y} - N^{1/2}\hat{p}_f) = \sqrt{\frac{\Delta^*}{2\gamma}}(N^{3/4}\hat{y} - N^{1/2}\hat{p}_f) \\ \hat{J}_y &= \frac{u^{-1}}{2}(N^{3/4}\hat{y} + N^{1/2}\hat{p}_f) = \frac{1}{2}\sqrt{\frac{\gamma}{2\Delta^*}}(N^{3/4}\hat{y} + N^{1/2}\hat{p}_f) \end{aligned} \quad (\text{D.11})$$

726 E Effective Hamiltonian for the thermal phase transition of the 727 Dicke model

728 Here we derive the effective Hamiltonian that describes the thermal properties of the Dicke
 729 model in the vicinity of its phase transitions, Eq. (50). We begin from

$$\hat{H}_D = \omega\hat{c}^\dagger\hat{c} + \omega_0\hat{J}_z + \frac{2\lambda}{\sqrt{N}}\hat{J}_x(\hat{c} + \hat{c}^\dagger). \quad (\text{E.1})$$

730 The critical point is determined by $\lambda\sqrt{j} = \sqrt{\omega\omega_0}/2$ and $j = \tanh(\beta_c\omega_0/2)$. The quadratic
 731 approximation in the disordered phase at the critical point (including the degeneracy factor)
 732 is

$$\frac{\hat{K}_{\text{eff}}}{\beta_c} = \omega\hat{c}^\dagger\hat{c} + \omega_0\hat{A}^\dagger\hat{A} + \frac{\sqrt{\omega\omega_0}}{2}(\hat{A} + \hat{A}^\dagger)(\hat{c} + \hat{c}^\dagger) + \frac{f''(j)\hat{l}^2}{\beta_c}, \quad (\text{E.2})$$

733 Omitting temporarily the \hat{l}^2 contribution, this model is more easily solved if we represent
 734 it in terms of quadratures $\hat{x} = (\hat{A} + \hat{A}^\dagger)/\sqrt{2}$, $\hat{p} = -i(\hat{A} - \hat{A}^\dagger)/\sqrt{2}$, $\hat{y} = (\hat{c} + \hat{c}^\dagger)/\sqrt{2}$ and
 735 $\hat{q} = -i(\hat{c} - \hat{c}^\dagger)/\sqrt{2}$, leading to

$$\frac{\hat{K}_{\text{eff}}}{\beta_c} = -\frac{(\omega + \omega_0)}{2} + \frac{1}{2}(\omega\hat{q}^2 + \omega_0\hat{p}^2) + \frac{1}{2}(\omega\hat{y}^2 + \omega_0\hat{x}^2 + 2\sqrt{\omega\omega_0}\hat{x}\hat{y}). \quad (\text{E.3})$$

736 We first introduce the canonical rescalings $\tilde{p} = (\omega_0/\omega)^{1/4}\hat{p}$, $\tilde{x} = (\omega/\omega_0)^{1/4}\hat{x}$, and $\tilde{q} = (\omega/\omega_0)^{1/4}\hat{q}$,
 737 $\tilde{y} = (\omega_0/\omega)^{1/4}\hat{y}$ which makes uniform the terms quadratic in \hat{p}, \hat{q}

$$\frac{\hat{K}_{\text{eff}}}{\beta_c} = -\frac{(\omega + \omega_0)}{2} + \frac{\sqrt{\omega\omega_0}}{2}(\tilde{q}^2 + \tilde{p}^2) + \frac{1}{2\sqrt{\omega\omega_0}}(\omega_0\tilde{x} + \omega\tilde{y})^2. \quad (\text{E.4})$$

738 This representation makes it clear that the mode $\hat{k} = (\omega_0\tilde{x} + \omega\tilde{y})/(\omega_0^2 + \omega^2)^{1/2}$ is gapped,
 739 while the mode $\hat{m} = (\omega\tilde{x} - \omega_0\tilde{y})/(\omega_0^2 + \omega^2)^{1/2}$ is gapless

$$\frac{\hat{K}_{\text{eff}}}{\beta_c} = -\frac{(\omega + \omega_0)}{2} + \frac{\sqrt{\omega\omega_0}}{2}(\tilde{p}_k^2 + \tilde{p}_m^2) + \frac{(\omega_0^2 + \omega^2)}{2\sqrt{\omega\omega_0}}\hat{k}^2, \quad (\text{E.5})$$

740 where $\hat{p}_{k,m}$ are the associated canonical momenta. The gapped mode can be put in to standard
 741 form by canonically rescaling $\hat{g} = (\omega_0^2 + \omega^2)^{1/4}(\omega_0\omega)^{-1/4}\hat{k}$ and $\hat{p}_g = (\omega_0^2 + \omega^2)^{1/4}(\omega_0\omega)^{-1/4}\hat{p}_k$,
 742 with $[\hat{g}, \hat{p}_g] = i$. Furthermore, the quantity that fluctuates strongly at the critical point
 743 is \hat{m} so schematically we have that $\hat{m} \gg \hat{k}, \hat{p}_k, \hat{p}_m$ and therefore $\tilde{x} \approx \omega\hat{m}/(\omega_0^2 + \omega^2)^{1/2}$,
 744 $\tilde{y} \approx -\omega_0\hat{m}/(\omega_0^2 + \omega^2)^{1/2}$. We now add the nonlinearity, coming from the next term in the
 745 expansion of \hat{J}_x

$$\begin{aligned} \hat{J}_x - \sqrt{\frac{Nj}{2}}\hat{x} &\approx -\frac{1}{4\sqrt{2Nj}}\hat{x}^3 + \frac{\hat{l}\hat{x}}{\sqrt{2j}} \\ &\approx -\frac{1}{4\sqrt{2Nj}}\left(\frac{\omega_0}{\omega}\right)^{3/4}\frac{\omega^3\hat{m}}{(\omega_0^2 + \omega^2)^{3/2}} + \frac{\hat{l}\hat{m}}{\sqrt{2j}}\left(\frac{\omega_0}{\omega}\right)^{1/4}\frac{\omega}{(\omega_0^2 + \omega^2)^{1/2}} \end{aligned} \quad (\text{E.6})$$

746 The correction to the Hamiltonian from the nonlinearity is then

$$\frac{\delta\hat{K}_{\text{eff}}^1}{\beta_c} = \frac{\sqrt{\omega\omega_0}}{\sqrt{Nj}}\left(\hat{J}_x - \sqrt{\frac{Nj}{2}}\hat{x}\right)(\hat{c} + \hat{c}^\dagger) = \frac{1}{4Nj}\frac{\omega^3\omega_0^2\hat{m}^4}{(\omega_0^2 + \omega^2)^2} - \frac{1}{j\sqrt{N}}\frac{(\omega\omega_0)^{3/2}\hat{l}\hat{m}^2}{(\omega_0^2 + \omega^2)} \quad (\text{E.7})$$

747 Note that the mode \hat{m} couples to spin length fluctuations. To account for small deviations about
 748 the transition temperature, we recall that the effective Hamiltonian is obtained by adding the
 749 degeneracy factor to \hat{H}_D

$$\hat{K} = \beta\hat{H}_D - \log(d_j), \quad (\text{E.8})$$

750 so that a change in temperature is accounted for by

$$\delta\hat{K}_{\text{eff}}^2 = (\beta - \beta_c)\hat{H}_D. \quad (\text{E.9})$$

751 The most important terms that will be added are

$$\delta\hat{K}_{\text{eff}}^2 = -(\beta - \beta_c)\frac{\omega_0Nj}{2} - \omega_0(\beta - \beta_c)\sqrt{Nl}\hat{l}. \quad (\text{E.10})$$

752 The first term is a c-number but it may contribute to quantities like the average energy. Putting
 753 all these things together leads to

$$\begin{aligned}\hat{K}_{\text{eff}}^{\text{tr}} = & -\frac{\beta_c(\omega + \omega_0)}{2} + \frac{\beta_c(\omega_0^2 + \omega^2)^{1/2}}{2}(\hat{p}_g^2 + \hat{g}^2) \\ & + \frac{\beta_c\sqrt{\omega\omega_0}}{2}\hat{p}_m^2 + f''(j)\hat{l}^2 - \omega_0(\beta - \beta_c)\sqrt{N}\hat{l} + \frac{\beta_c}{4Nj}\left[\frac{\omega^3\omega_0^2}{(\omega_0^2 + \omega^2)^2}\right]\hat{m}^4 \\ & - \frac{\beta_c}{j\sqrt{N}}\left[\frac{(\omega\omega_0)^{3/2}}{(\omega_0^2 + \omega^2)}\right]\hat{l}\hat{m}^2\end{aligned}\quad (\text{E.11})$$

754 If we were looking at ground state physics, we would scale \hat{m} and \hat{p}_m such that they would
 755 have the same N prefactor and then adapt the scaling of $\lambda\sqrt{j} - \sqrt{\omega\omega_0}/2$ accordingly. This
 756 would lead to a quantum Hamiltonian with a gap $\propto N^{-1/3}$. At T_c and large N , this nonlinear
 757 Hamiltonian would be highly excited, with an excitation level that depends on N and would
 758 thus change the scalings that are relevant near the ground state phase transition. For the
 759 gapless mode, the correct procedure is to stabilize the thermal excitation of the system against
 760 the nonlinearity $\propto \hat{m}^4/N$ (by demanding that $\hat{K}_{\text{eff}}^{\text{tr}} \sim 1$) and to treat the mode classically.
 761 The effective Hamiltonian will thus have a quantum piece, coming from the gapped mode,
 762 and a classical piece, coming from the gapless mode and spin length fluctuations. To take the
 763 classical limit appropriately we define \hat{s} and \hat{p}_s such that

$$\begin{aligned}\hat{s} = & \hat{m}\left[\frac{\beta_c^{1/4}\omega^{3/4}\omega_0^{1/2}}{(\omega_0^2 + \omega^2)^{1/2}(Nj)^{1/4}}\right] \\ \hat{p}_s = & \hat{p}_m\left[\frac{(\omega_0^2 + \omega^2)^{1/2}(j)^{1/4}}{\beta_c^{1/4}\omega^{3/4}\omega_0^{1/2}}\right].\end{aligned}\quad (\text{E.12})$$

764 With these definitions, $[\hat{s}, \hat{p}_s] = iN^{-1/4}$ and we can take the classical limit by letting commu-
 765 tators become Poisson brackets according to $\{, \}^{\text{pb}} \approx -iN^{-1/4}[\, , \,]$. The effective Hamiltonian
 766 is then

$$\begin{aligned}\hat{K}_{\text{eff}}^{\text{tr}} = & -\frac{\beta_c(\omega + \omega_0)}{2} + \frac{\beta_c(\omega_0^2 + \omega^2)^{1/2}}{2}(\hat{p}_g^2 + \hat{g}^2) \\ & + \frac{(\beta_c\omega_0)^{3/2}}{2\sqrt{j}}\left(\frac{\omega^2}{\omega^2 + \omega_0^2}\right)p_s^2 + f''(j)l^2 + \frac{s^4}{4} + \left[\sqrt{N}(\beta - \beta_c)\omega_0 - \sqrt{\frac{\beta_c\omega_0}{j}}s^2\right]l\end{aligned}\quad (\text{E.13})$$

767 where we are now treating s, p_s, l as classical variables. The last thing to do is to scale the
 768 distance to the critical point with N such that

$$\xi = \frac{(\beta - \beta_c)\sqrt{N}}{\beta_c}\quad (\text{E.14})$$

769 so that the effective Hamiltonian reads

$$\begin{aligned}\hat{K}_{\text{eff}}^{\text{tr}} = & -\frac{\beta_c(\omega + \omega_0)}{2} + \frac{\beta_c(\omega_0^2 + \omega^2)^{1/2}}{2}(\hat{p}_g^2 + \hat{g}^2) \\ & + \frac{(\beta_c\omega_0)^{3/2}}{2\sqrt{j}}\left(\frac{\omega^2}{\omega^2 + \omega_0^2}\right)p_s^2 + f''(j)l^2 + \frac{s^4}{4} + \left[\xi\beta_c\omega_0 - \sqrt{\frac{\beta_c\omega_0}{j}}s^2\right]l\end{aligned}\quad (\text{E.15})$$

770 For completeness, we include here the exact relation between the original transverse bosons
 771 \hat{A}, \hat{A}^\dagger and the final expression in terms of \hat{g}, \hat{s} :

$$\begin{aligned}\hat{g} &= \left(\frac{\omega_0^2 + \omega^2}{\omega_0 \omega} \right)^{1/4} \left[\frac{\omega_0(\omega/\omega_0)^{1/4}(\hat{A} + \hat{A}^\dagger) + \omega(\omega_0/\omega)^{1/4}(\hat{c} + \hat{c}^\dagger)}{\sqrt{2}(\omega_0^2 + \omega^2)^{1/2}} \right] \\ \hat{p}_g &= \left(\frac{\omega_0^2 + \omega^2}{\omega_0 \omega} \right)^{-1/4} \left[\frac{\omega_0(\omega_0/\omega)^{1/4}(\hat{A} - \hat{A}^\dagger) + \omega(\omega_0/\omega)^{1/4}(\hat{c} - \hat{c}^\dagger)}{i\sqrt{2}(\omega_0^2 + \omega^2)^{1/2}} \right] \\ \hat{s} &= \left[\frac{\beta_c^{1/4} \omega^{3/4} \omega_0^{1/2}}{(\omega_0^2 + \omega^2)^{1/2} (Nj)^{1/4}} \right] \left[\frac{\omega(\omega/\omega_0)^{1/4}(\hat{A} + \hat{A}^\dagger) - \omega_0(\omega_0/\omega)^{1/4}(\hat{c} + \hat{c}^\dagger)}{\sqrt{2}(\omega_0^2 + \omega^2)^{1/2}} \right] \\ \hat{p}_s &= \left[\frac{(\omega_0^2 + \omega^2)^{1/2} (j)^{1/4}}{\beta_c^{1/4} \omega^{3/4} \omega_0^{1/2}} \right] \left[\frac{\omega(\omega_0/\omega)^{1/4}(\hat{A} - \hat{A}^\dagger) - \omega_0(\omega/\omega_0)^{1/4}(\hat{c} - \hat{c}^\dagger)}{i\sqrt{2}(\omega_0^2 + \omega^2)^{1/2}} \right]\end{aligned}\tag{E.16}$$

772 References

773 [1] F. Mivehvar, F. Piazza, T. Donner and H. R. and, *Cavity qed with quantum*
 774 *gases: new paradigms in many-body physics*, *Advances in Physics* **70**(1), 1 (2021),
 775 doi:[10.1080/00018732.2021.1969727](https://doi.org/10.1080/00018732.2021.1969727).

776 [2] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys,
 777 M. J. Biercuk and J. J. Bollinger, *Engineered two-dimensional ising interactions in a*
 778 *trapped-ion quantum simulator with hundreds of spins*, *Nature* **484**(7395), 489 (2012),
 779 doi:[10.1038/nature10981](https://doi.org/10.1038/nature10981).

780 [3] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X.
 781 Gong and C. Monroe, *Observation of a many-body dynamical phase transition with a 53-*
 782 *qubit quantum simulator*, *Nature* **551**(7682), 601 (2017), doi:[10.1038/nature24654](https://doi.org/10.1038/nature24654).

783 [4] R. H. Dicke, *Coherence in spontaneous radiation processes*, *Phys. Rev.* **93**, 99 (1954),
 784 doi:[10.1103/PhysRev.93.99](https://doi.org/10.1103/PhysRev.93.99).

785 [5] M. Gross and S. Haroche, *Superradiance: An essay on the theory of collective spontaneous*
 786 *emission*, *Physics Reports* **93**(5), 301 (1982), doi:[https://doi.org/10.1016/0370-1573\(82\)90102-8](https://doi.org/10.1016/0370-1573(82)90102-8).

788 [6] H. J. Carmichael, *Analytical and numerical results for the steady state in cooperative res-*
 789 *onance fluorescence*, *Journal of Physics B: Atomic and Molecular Physics* **13**(18), 3551
 790 (1980), doi:[10.1088/0022-3700/13/18/009](https://doi.org/10.1088/0022-3700/13/18/009).

791 [7] D. F. Walls, P. D. Drummond, S. S. Hassan and H. J. Carmichael, *Non-equilibrium phase*
 792 *transitions in cooperative atomic systems*, *Progress of Theoretical Physics Supplement* **64**,
 793 307 (1978), doi:[10.1143/PTPS.64.307](https://doi.org/10.1143/PTPS.64.307).

794 [8] S. Morrison and A. S. Parkins, *Dynamical quantum phase transitions in the dissipative*
 795 *lipkin-meshkov-glick model with proposed realization in optical cavity qed*, *Phys. Rev. Lett.*
 796 **100**, 040403 (2008), doi:[10.1103/PhysRevLett.100.040403](https://doi.org/10.1103/PhysRevLett.100.040403).

797 [9] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin and J. I. Cirac, *Dis-*
 798 *sipative phase transition in a central spin system*, *Phys. Rev. A* **86**, 012116 (2012),
 799 doi:[10.1103/PhysRevA.86.012116](https://doi.org/10.1103/PhysRevA.86.012116).

800 [10] T. E. Lee, C.-K. Chan and S. F. Yelin, *Dissipative phase transitions: Independent versus collective decay and spin squeezing*, Phys. Rev. A **90**, 052109 (2014), doi:[10.1103/PhysRevA.90.052109](https://doi.org/10.1103/PhysRevA.90.052109).

803 [11] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte and R. Fazio, *Boundary time crystals*, Phys. Rev. Lett. **121**, 035301 (2018), doi:[10.1103/PhysRevLett.121.035301](https://doi.org/10.1103/PhysRevLett.121.035301).

805 [12] P. Kirton and J. Keeling, *Superradiant and lasing states in driven-dissipative dicke models*, New Journal of Physics **20**(1), 015009 (2018), doi:[10.1088/1367-2630/aaa11d](https://doi.org/10.1088/1367-2630/aaa11d).

807 [13] J. S. Ferreira and P. Ribeiro, *Lipkin-meshkov-glick model with markovian dissipation: A description of a collective spin on a metallic surface*, Phys. Rev. B **100**, 184422 (2019), doi:[10.1103/PhysRevB.100.184422](https://doi.org/10.1103/PhysRevB.100.184422).

810 [14] P. Titum and M. F. Maghrebi, *Nonequilibrium criticality in quench dynamics of long-range spin models*, Phys. Rev. Lett. **125**, 040602 (2020), doi:[10.1103/PhysRevLett.125.040602](https://doi.org/10.1103/PhysRevLett.125.040602).

813 [15] O. Somech and E. Shahmoon, *Quantum entangled states of a classically radiating macroscopic spin*, PRX Quantum **5**, 010349 (2024), doi:[10.1103/PRXQuantum.5.010349](https://doi.org/10.1103/PRXQuantum.5.010349).

815 [16] K. Baumann, C. Guerlin, F. Brennecke and T. Esslinger, *Dicke quantum phase transition with a superfluid gas in an optical cavity*, Nature **464**(7293), 1301 (2010), doi:[10.1038/nature09009](https://doi.org/10.1038/nature09009).

818 [17] J. Klinder, H. Keßler, M. Wolke, L. Mathey and A. Hemmerich, *Dynamical phase transition in the open dicke model*, Proceedings of the National Academy of Sciences **112**(11), 3290 (2015), doi:[10.1073/pnas.1417132112](https://doi.org/10.1073/pnas.1417132112), <https://www.pnas.org/doi/pdf/10.1073/pnas.1417132112>.

822 [18] R. M. Kroese, Y. Guo, V. D. Vaidya, J. Keeling and B. L. Lev, *Spinor self-ordering of a quantum gas in a cavity*, Phys. Rev. Lett. **121**, 163601 (2018), doi:[10.1103/PhysRevLett.121.163601](https://doi.org/10.1103/PhysRevLett.121.163601).

825 [19] G. Ferioli, A. Glicenstein, I. Ferrier-Barbut and A. Browaeys, *A non-equilibrium superradiant phase transition in free space*, Nature Physics **19**(9), 1345 (2023), doi:[10.1038/s41567-023-02064-w](https://doi.org/10.1038/s41567-023-02064-w).

828 [20] E. Y. Song, D. Barberena, D. J. Young, E. Chaparro, A. Chu, S. Agarwal, Z. Niu, J. T. Young, A. M. Rey and J. K. Thompson, *A dissipation-induced superradiant transition in a strontium cavity-qed system*, Science Advances **11**(17), eadu5799 (2025), doi:[10.1126/sciadv.adu5799](https://doi.org/10.1126/sciadv.adu5799), <https://www.science.org/doi/pdf/10.1126/sciadv.adu5799>.

833 [21] J. Chen, *Active optical clock*, Chinese Science Bulletin **54**(3), 348 (2009), doi:[10.1007/s11434-009-0073-y](https://doi.org/10.1007/s11434-009-0073-y).

835 [22] D. Meiser, J. Ye, D. R. Carlson and M. J. Holland, *Prospects for a millihertz-linewidth laser*, Phys. Rev. Lett. **102**, 163601 (2009), doi:[10.1103/PhysRevLett.102.163601](https://doi.org/10.1103/PhysRevLett.102.163601).

837 [23] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland and J. K. Thompson, *A steady-state superradiant laser with less than one intracavity photon*, Nature **484**(7392), 78 (2012), doi:[10.1038/nature10920](https://doi.org/10.1038/nature10920).

840 [24] G. A. Kazakov and T. Schumm, *Active optical frequency standard using sequential coupling of atomic ensembles*, Phys. Rev. A **87**, 013821 (2013), doi:[10.1103/PhysRevA.87.013821](https://doi.org/10.1103/PhysRevA.87.013821).

842 [25] M. A. Norcia, M. N. Winchester, J. R. K. Cline and J. K. Thompson, *Superradiance on*
843 *the millihertz linewidth strontium clock transition*, *Science Advances* **2**(10), e1601231
844 (2016), doi:[10.1126/sciadv.1601231](https://doi.org/10.1126/sciadv.1601231).

845 [26] S. A. Schäffer, M. Tang, M. R. Henriksen, A. A. Jørgensen, B. T. R. Christensen and J. W.
846 *Thomsen, Lasing on a narrow transition in a cold thermal strontium ensemble*, *Phys. Rev.*
847 *A* **101**, 013819 (2020), doi:[10.1103/PhysRevA.101.013819](https://doi.org/10.1103/PhysRevA.101.013819).

848 [27] K. Hepp and E. H. Lieb, *Equilibrium statistical mechanics of matter interacting with the*
849 *quantized radiation field*, *Phys. Rev. A* **8**, 2517 (1973), doi:[10.1103/PhysRevA.8.2517](https://doi.org/10.1103/PhysRevA.8.2517).

850 [28] M. Kitagawa and M. Ueda, *Squeezed spin states*, *Phys. Rev. A* **47**, 5138 (1993),
851 doi:[10.1103/PhysRevA.47.5138](https://doi.org/10.1103/PhysRevA.47.5138).

852 [29] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore and D. J. Heinzen, *Spin*
853 *squeezing and reduced quantum noise in spectroscopy*, *Phys. Rev. A* **46**, R6797 (1992),
854 doi:[10.1103/PhysRevA.46.R6797](https://doi.org/10.1103/PhysRevA.46.R6797).

855 [30] J. Ma, X. Wang, C. Sun and F. Nori, *Quantum spin squeezing*, *Physics Reports* **509**(2), 89
856 (2011), doi:<https://doi.org/10.1016/j.physrep.2011.08.003>.

857 [31] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied and P. Treutlein, *Quantum metrology with nonclassical states of atomic ensembles*, *Rev. Mod. Phys.* **90**, 035005 (2018),
858 doi:[10.1103/RevModPhys.90.035005](https://doi.org/10.1103/RevModPhys.90.035005).

860 [32] M. H. Schleier-Smith, I. D. Leroux and V. Vuletić, *States of an ensemble of two-*
861 *level atoms with reduced quantum uncertainty*, *Phys. Rev. Lett.* **104**, 073604 (2010),
862 doi:[10.1103/PhysRevLett.104.073604](https://doi.org/10.1103/PhysRevLett.104.073604).

863 [33] I. D. Leroux, M. H. Schleier-Smith and V. Vuletić, *Implementation of cavity*
864 *squeezing of a collective atomic spin*, *Phys. Rev. Lett.* **104**, 073602 (2010),
865 doi:[10.1103/PhysRevLett.104.073602](https://doi.org/10.1103/PhysRevLett.104.073602).

866 [34] O. Hosten, N. J. Engelsen, R. Krishnakumar and M. A. Kasevich, *Measurement noise 100*
867 *times lower than the quantum-projection limit using entangled atoms*, *Nature* **529**(7587),
868 505 (2016), doi:[10.1038/nature16176](https://doi.org/10.1038/nature16176).

869 [35] K. C. Cox, G. P. Greve, J. M. Weiner and J. K. Thompson, *Deterministic squeezed*
870 *states with collective measurements and feedback*, *Phys. Rev. Lett.* **116**, 093602 (2016),
871 doi:[10.1103/PhysRevLett.116.093602](https://doi.org/10.1103/PhysRevLett.116.093602).

872 [36] K. A. Gilmore, M. Affolter, R. J. Lewis-Swan, D. Barberena, E. Jordan, A. M.
873 *Rey and J. J. Bollinger, Quantum-enhanced sensing of displacements and electric*
874 *fields with two-dimensional trapped-ion crystals*, *Science* **373**(6555), 673 (2021),
875 doi:[10.1126/science.abi5226](https://doi.org/10.1126/science.abi5226).

876 [37] E. Pedrozo-Peña, S. Colombo, C. Shu, A. F. Adiyatullin, Z. Li, E. Mendez, B. Braverman,
877 A. Kawasaki, D. Akamatsu, Y. Xiao and V. Vuletić, *Entanglement on an optical atomic-clock*
878 *transition*, *Nature* **588**(7838), 414 (2020), doi:[10.1038/s41586-020-3006-1](https://doi.org/10.1038/s41586-020-3006-1).

879 [38] J. M. Robinson, M. Miklos, Y. M. Tso, C. J. Kennedy, T. Bothwell, D. Kedar, J. K. Thompson
880 and J. Ye, *Direct comparison of two spin-squeezed optical clock ensembles at the 10-17 level*,
881 *Nature Physics* **20**(2), 208 (2024), doi:[10.1038/s41567-023-02310-1](https://doi.org/10.1038/s41567-023-02310-1).

882 [39] Y. A. Yang, M. Miklos, Y. M. Tso, S. Kraus, J. Hur and J. Ye, *Clock precision beyond the*
883 *standard quantum limit at 10^{-18} level* (2025), [2505.04538](https://arxiv.org/abs/2505.04538).

884 [40] M. A. Norcia, R. J. Lewis-Swan, J. R. K. Cline, B. Zhu, A. M. Rey and J. K. Thompson,
885 *Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser*, Sci-
886 ence **361**(6399), 259 (2018), doi:[10.1126/science.aar3102](https://doi.org/10.1126/science.aar3102).

887 [41] M. A. Perlin, C. Qu and A. M. Rey, *Spin squeezing with short-range spin-exchange interac-*
888 *tions*, Phys. Rev. Lett. **125**, 223401 (2020), doi:[10.1103/PhysRevLett.125.223401](https://doi.org/10.1103/PhysRevLett.125.223401).

889 [42] T. Bilitewski, L. De Marco, J.-R. Li, K. Matsuda, W. G. Tobias, G. Valtolina, J. Ye and A. M.
890 Rey, *Dynamical generation of spin squeezing in ultracold dipolar molecules*, Phys. Rev. Lett.
891 **126**, 113401 (2021), doi:[10.1103/PhysRevLett.126.113401](https://doi.org/10.1103/PhysRevLett.126.113401).

892 [43] T. Comparin, F. Mezzacapo and T. Roscilde, *Robust spin squeezing from the tower*
893 *of states of $u(1)$ -symmetric spin hamiltonians*, Phys. Rev. A **105**, 022625 (2022),
894 doi:[10.1103/PhysRevA.105.022625](https://doi.org/10.1103/PhysRevA.105.022625).

895 [44] J. Franke, S. R. Muleady, R. Kaubruegger, F. Kranzl, R. Blatt, A. M. Rey, M. K. Joshi
896 and C. F. Roos, *Quantum-enhanced sensing on optical transitions through finite-range*
897 *interactions*, Nature **621**(7980), 740 (2023), doi:[10.1038/s41586-023-06472-z](https://doi.org/10.1038/s41586-023-06472-z).

898 [45] J. T. Young, S. R. Muleady, M. A. Perlin, A. M. Kaufman and A. M. Rey, *Enhanc-*
899 *ing spin squeezing using soft-core interactions*, Phys. Rev. Res. **5**, L012033 (2023),
900 doi:[10.1103/PhysRevResearch.5.L012033](https://doi.org/10.1103/PhysRevResearch.5.L012033).

901 [46] G. Bornet, G. Emperauger, C. Chen, B. Ye, M. Block, M. Bintz, J. A. Boyd, D. Barredo,
902 T. Comparin, F. Mezzacapo, T. Roscilde, T. Lahaye *et al.*, *Scalable spin squeezing in a*
903 *dipolar rydberg atom array*, Nature **621**(7980), 728 (2023), doi:[10.1038/s41586-023-06414-9](https://doi.org/10.1038/s41586-023-06414-9).

905 [47] W. J. Eckner, N. Darkwah Oppong, A. Cao, A. W. Young, W. R. Milner, J. M. Robinson,
906 J. Ye and A. M. Kaufman, *Realizing spin squeezing with rydberg interactions in an optical*
907 *clock*, Nature **621**(7980), 734 (2023), doi:[10.1038/s41586-023-06360-6](https://doi.org/10.1038/s41586-023-06360-6).

908 [48] B. A. Chase and J. M. Geremia, *Collective processes of an ensemble of spin-1/2 particles*,
909 Phys. Rev. A **78**, 052101 (2008), doi:[10.1103/PhysRevA.78.052101](https://doi.org/10.1103/PhysRevA.78.052101).

910 [49] M. Xu, D. A. Tieri and M. J. Holland, *Simulating open quantum systems by ap-*
911 *plying $su(4)$ to quantum master equations*, Phys. Rev. A **87**, 062101 (2013),
912 doi:[10.1103/PhysRevA.87.062101](https://doi.org/10.1103/PhysRevA.87.062101).

913 [50] S. Hartmann, *Generalized dicke states*, Quantum Info. Comput. **16**(15–16), 1333–1348
914 (2016).

915 [51] B. Buča and T. Prosen, *A note on symmetry reductions of the lindblad equation: trans-*
916 *port in constrained open spin chains*, New Journal of Physics **14**(7), 073007 (2012),
917 doi:[10.1088/1367-2630/14/7/073007](https://doi.org/10.1088/1367-2630/14/7/073007).

918 [52] V. V. Albert and L. Jiang, *Symmetries and conserved quantities in lindblad master equations*,
919 Phys. Rev. A **89**, 022118 (2014), doi:[10.1103/PhysRevA.89.022118](https://doi.org/10.1103/PhysRevA.89.022118).

920 [53] S. Lieu, R. Belyansky, J. T. Young, R. Lundgren, V. V. Albert and A. V. Gorshkov, *Symmetry*
921 *breaking and error correction in open quantum systems*, Phys. Rev. Lett. **125**, 240405
922 (2020), doi:[10.1103/PhysRevLett.125.240405](https://doi.org/10.1103/PhysRevLett.125.240405).

923 [54] B. Q. Baragiola, B. A. Chase and J. Geremia, *Collective uncertainty in partially po-*
924 *larized and partially decohered spin- $\frac{1}{2}$ systems*, Phys. Rev. A **81**, 032104 (2010),
925 doi:[10.1103/PhysRevA.81.032104](https://doi.org/10.1103/PhysRevA.81.032104).

926 [55] N. Shammah, S. Ahmed, N. Lambert, S. De Liberato and F. Nori, *Open quantum systems*
927 *with local and collective incoherent processes: Efficient numerical simulations using permutational*
928 *invariance*, Phys. Rev. A **98**, 063815 (2018), doi:[10.1103/PhysRevA.98.063815](https://doi.org/10.1103/PhysRevA.98.063815).

929 [56] Y. Zhang, Y.-X. Zhang and K. Mølmer, *Monte-carlo simulations of superradiant lasing*, New
930 Journal of Physics **20**(11), 112001 (2018), doi:[10.1088/1367-2630/aaec36](https://doi.org/10.1088/1367-2630/aaec36).

931 [57] E. Ressayre and A. Tallet, *Holstein-primakoff transformation for the study of cooperative*
932 *emission of radiation*, Phys. Rev. A **11**, 981 (1975), doi:[10.1103/PhysRevA.11.981](https://doi.org/10.1103/PhysRevA.11.981).

933 [58] M. Hillery and L. D. Mlodinow, *Semiclassical expansion for nonlinear dielectric media*,
934 Phys. Rev. A **31**, 797 (1985), doi:[10.1103/PhysRevA.31.797](https://doi.org/10.1103/PhysRevA.31.797).

935 [59] C. Emery and T. Brandes, *Quantum chaos triggered by precursors of a quantum*
936 *phase transition: The dicke model*, Phys. Rev. Lett. **90**, 044101 (2003),
937 doi:[10.1103/PhysRevLett.90.044101](https://doi.org/10.1103/PhysRevLett.90.044101).

938 [60] J. B. Pérez-Sánchez, A. Koner, S. Raghavan-Chitra and J. Yuen-Zhou, *Cut-e as a 1/n*
939 *expansion for multiscale molecular polariton dynamics*, The Journal of Chemical Physics
940 **162**(6), 064101 (2025), doi:[10.1063/5.0244452](https://doi.org/10.1063/5.0244452).

941 [61] K. Schwennicke, A. Koner, J. B. Pérez-Sánchez, W. Xiong, N. C. Giebink, M. L. Weichman
942 and J. Yuen-Zhou, *When do molecular polaritons behave like optical filters?*, Chem. Soc.
943 Rev. **54**, 6482 (2025), doi:[10.1039/D4CS01024H](https://doi.org/10.1039/D4CS01024H).

944 [62] T. Holstein and H. Primakoff, *Field dependence of the intrinsic domain magnetization of a*
945 *ferromagnet*, Phys. Rev. **58**, 1098 (1940), doi:[10.1103/PhysRev.58.1098](https://doi.org/10.1103/PhysRev.58.1098).

946 [63] G. Liberti, F. Plastina and F. Piperno, *Scaling behavior of the adiabatic dicke model*, Phys.
947 Rev. A **74**, 022324 (2006), doi:[10.1103/PhysRevA.74.022324](https://doi.org/10.1103/PhysRevA.74.022324).

948 [64] G. Liberti, F. Piperno and F. Plastina, *Finite-size behavior of quantum collective spin systems*,
949 Phys. Rev. A **81**, 013818 (2010), doi:[10.1103/PhysRevA.81.013818](https://doi.org/10.1103/PhysRevA.81.013818).

950 [65] D. Barberena and A. M. Rey, *Critical steady states of all-to-all squeezed and*
951 *driven superradiance: An analytic approach*, Phys. Rev. A **109**, 013709 (2024),
952 doi:[10.1103/PhysRevA.109.013709](https://doi.org/10.1103/PhysRevA.109.013709).

953 [66] V. Sukharnikov, S. Chuchurka, A. Benediktovitch and N. Rohringer, *Second quantiza-*
954 *tion of open quantum systems in liouville space*, Phys. Rev. A **107**, 053707 (2023),
955 doi:[10.1103/PhysRevA.107.053707](https://doi.org/10.1103/PhysRevA.107.053707).

956 [67] A. K. Forbes, P. D. Blocher and I. H. Deutsch, *Modeling local decoherence of a spin ensemble*
957 *using a generalized holstein-primakoff mapping to a bosonic mode*, Optica Quantum **2**(5),
958 310 (2024), doi:[10.1364/OPTICAQ.528078](https://doi.org/10.1364/OPTICAQ.528078).

959 [68] L. M. Sieberer, M. Buchhold and S. Diehl, *Keldysh field theory for driven open quan-*
960 *tum systems*, Reports on Progress in Physics **79**(9), 096001 (2016), doi:[10.1088/0034-4885/79/9/096001](https://doi.org/10.1088/0034-4885/79/9/096001).

962 [69] E. G. Dalla Torre, Y. Shchadilova, E. Y. Wilner, M. D. Lukin and E. Demler, *Dicke*
963 *phase transition without total spin conservation*, Phys. Rev. A **94**, 061802 (2016),
964 doi:[10.1103/PhysRevA.94.061802](https://doi.org/10.1103/PhysRevA.94.061802).

965 [70] D. A. Paz and M. F. Maghrebi, *Driven-dissipative ising model: An exact field-theoretical*
966 *analysis*, Phys. Rev. A **104**, 023713 (2021), doi:[10.1103/PhysRevA.104.023713](https://doi.org/10.1103/PhysRevA.104.023713).

967 [71] H. Lipkin, N. Meshkov and A. Glick, *Validity of many-body approximation methods for a*
968 *solvable model: (i). exact solutions and perturbation theory*, Nuclear Physics **62**(2), 188
969 (1965), doi:[https://doi.org/10.1016/0029-5582\(65\)90862-X](https://doi.org/10.1016/0029-5582(65)90862-X).

970 [72] S. Morrison and A. S. Parkins, *Collective spin systems in dispersive optical cavity*
971 *qed: Quantum phase transitions and entanglement*, Phys. Rev. A **77**, 043810 (2008),
972 doi:[10.1103/PhysRevA.77.043810](https://doi.org/10.1103/PhysRevA.77.043810).

973 [73] J. M. Radcliffe, *Some properties of coherent spin states*, Journal of Physics A: General
974 Physics **4**(3), 313 (1971), doi:[10.1088/0305-4470/4/3/009](https://doi.org/10.1088/0305-4470/4/3/009).

975 [74] L. Susskind and J. Glogower, *Quantum mechanical phase and time operator*, Physics
976 Physique Fizika **1**, 49 (1964), doi:[10.1103/PhysicsPhysiqueFizika.1.49](https://doi.org/10.1103/PhysicsPhysiqueFizika.1.49).

977 [75] S. Dusuel and J. Vidal, *Finite-size scaling exponents of the lipkin-meshkov-glick model*,
978 Phys. Rev. Lett. **93**, 237204 (2004), doi:[10.1103/PhysRevLett.93.237204](https://doi.org/10.1103/PhysRevLett.93.237204).

979 [76] N. Shammah, N. Lambert, F. Nori and S. De Liberato, *Superradiance with local phase-
980 breaking effects*, Phys. Rev. A **96**, 023863 (2017), doi:[10.1103/PhysRevA.96.023863](https://doi.org/10.1103/PhysRevA.96.023863).

981 [77] K. Debnath, Y. Zhang and K. Mølmer, *Lasing in the superradiant crossover regime*, Phys.
982 Rev. A **98**, 063837 (2018), doi:[10.1103/PhysRevA.98.063837](https://doi.org/10.1103/PhysRevA.98.063837).

983 [78] Q. Wu, Y. Zhang, H. Wu, S.-L. Su, K.-K. Liu, M. Oxborrow, C.-X. Shan and K. Mølmer, *The-
984 retorical study of superradiant masing with solid-state spins at room temperature*, Science
985 China Physics, Mechanics & Astronomy **67**(6), 260314 (2024), doi:[10.1007/s11433-023-2347-0](https://doi.org/10.1007/s11433-023-2347-0).

987 [79] Y. Zhang, C. Shan and K. Mølmer, *Ultranarrow superradiant lasing by
988 dark atom-photon dressed states*, Phys. Rev. Lett. **126**, 123602 (2021),
989 doi:[10.1103/PhysRevLett.126.123602](https://doi.org/10.1103/PhysRevLett.126.123602).

990 [80] H. Carmichael, *An Open Systems Approach to Quantum Optics*, Springer Berlin Heidel-
991 berg, doi:[10.1007/978-3-540-47620-7](https://doi.org/10.1007/978-3-540-47620-7) (1993).

992 [81] H.-P. Breuer and F. Petruccione, *460non-markovian dynamics in physical systems*, In
993 *The Theory of Open Quantum Systems*. Oxford University Press, ISBN 9780199213900,
994 doi:[10.1093/acprof:oso/9780199213900.003.10](https://doi.org/10.1093/acprof:oso/9780199213900.003.10) (2007).

995 [82] P. Kirton, M. M. Roses, J. Keeling and E. G. Dalla Torre, *Introduction to the dicke model:
996 From equilibrium to nonequilibrium, and vice versa*, Advanced Quantum Technologies
997 **2**(1-2), 1800043 (2019), doi:<https://doi.org/10.1002/qute.201800043>.

998 [83] Y. K. Wang and F. T. Hioe, *Phase transition in the dicke model of superradiance*, Phys. Rev.
999 A **7**, 831 (1973), doi:[10.1103/PhysRevA.7.831](https://doi.org/10.1103/PhysRevA.7.831).

1000 [84] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner, K. A. Gilmore, J. E. Jordan,
1001 J. Cohn, J. K. Freericks, A. M. Rey and J. J. Bollinger, *Verification of a many-ion simulator*
1002 *of the dicke model through slow quenches across a phase transition*, Phys. Rev. Lett. **121**,
1003 040503 (2018), doi:[10.1103/PhysRevLett.121.040503](https://doi.org/10.1103/PhysRevLett.121.040503).

1004 [85] M. A. Alcalde, M. Bucher, C. Emary and T. Brandes, *Thermal phase transitions for
1005 dicke-type models in the ultrastrong-coupling limit*, Phys. Rev. E **86**, 012101 (2012),
1006 doi:[10.1103/PhysRevE.86.012101](https://doi.org/10.1103/PhysRevE.86.012101).

1007 [86] P. Pérez-Fernández and A. Relaño, *From thermal to excited-state quantum phase transition: The dicke model*, Phys. Rev. E **96**, 012121 (2017), doi:[10.1103/PhysRevE.96.012121](https://doi.org/10.1103/PhysRevE.96.012121).

1008

1009 [87] K. Hepp and E. H. Lieb, *On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model*, Annals of Physics **76**(2), 360 (1973), doi:[https://doi.org/10.1016/0003-4916\(73\)90039-0](https://doi.org/10.1016/0003-4916(73)90039-0).

1010

1011

1012 [88] Y. Alavirad and A. Lavasani, *Scrambling in the dicke model*, Phys. Rev. A **99**, 043602 (2019), doi:[10.1103/PhysRevA.99.043602](https://doi.org/10.1103/PhysRevA.99.043602).

1013

1014 [89] M. Wampler and N. R. Cooper, *Absorbing state phase transitions beyond directed percolation in dissipative quantum state preparation*, Phys. Rev. Res. **7**, 033053 (2025), doi:[10.1103/6pg7-3pxf](https://doi.org/10.1103/6pg7-3pxf).

1015

1016

1017 [90] T. Nadolny, C. Bruder and M. Brunelli, *Nonreciprocal synchronization of active quantum spins*, Phys. Rev. X **15**, 011010 (2025), doi:[10.1103/PhysRevX.15.011010](https://doi.org/10.1103/PhysRevX.15.011010).

1018

1019 [91] E. J. Davis, G. Bentsen, L. Homeier, T. Li and M. H. Schleier-Smith, *Photon-mediated spin-exchange dynamics of spin-1 atoms*, Phys. Rev. Lett. **122**, 010405 (2019), doi:[10.1103/PhysRevLett.122.010405](https://doi.org/10.1103/PhysRevLett.122.010405).

1020

1021

1022 [92] R. E. F. Silva and J. Feist, *Permutational symmetry for identical multilevel systems: A second-quantized approach*, Phys. Rev. A **105**, 043704 (2022), doi:[10.1103/PhysRevA.105.043704](https://doi.org/10.1103/PhysRevA.105.043704).

1023

1024

1025 [93] B. Sundar, D. Barberena, A. M. Rey and A. P. Orioli, *Squeezing multilevel atoms in dark states via cavity superradiance*, Phys. Rev. Lett. **132**, 033601 (2024), doi:[10.1103/PhysRevLett.132.033601](https://doi.org/10.1103/PhysRevLett.132.033601).

1026

1027

1028 [94] J. Johansson, P. Nation and F. Nori, *Qutip 2: A python framework for the dynamics of open quantum systems*, Computer Physics Communications **184**(4), 1234 (2013), doi:<https://doi.org/10.1016/j.cpc.2012.11.019>.

1029

1030

1031 [95] D. A. Tieri, M. Xu, D. Meiser, J. Cooper and M. J. Holland, *Theory of the crossover from lasing to steady state superradiance* (2017), [1702.04830](https://arxiv.org/abs/1702.04830).

1032