

# Spin Hall and Edelstein effects in a ballistic quantum dot with Rashba spin-orbit coupling

Alfonso Maiellaro<sup>1,2\*</sup>, Francesco Romeo<sup>2,3</sup>, Mattia Trama<sup>2</sup>, Jacopo Settino<sup>4</sup>, Claudio Guarcello<sup>2,3</sup>, Carmine Antonio Perroni<sup>5</sup>, Paweł Wójcik<sup>6</sup>, Bartłomiej Szafran<sup>6</sup>, Daniela Stornaiuolo<sup>5</sup>, Marco Salluzzo<sup>7</sup>, Thomas Sand Jaspersen<sup>8</sup>, Nicolas Bergeral<sup>9</sup>, Manuel Bibes<sup>10</sup> and Roberta Citro<sup>2,3†</sup>

**1** CNR-SPIN, c/o Università di Salerno, IT-84084 Fisciano (SA), Italy

**2** Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy

**3** INFN, Sezione di Napoli, Gruppo collegato di Salerno, Italy

**4** Dipartimento di Fisica, Università della Calabria, Via P. Bucci Arcavacata di Rende (CS), Italy

**5** Dipartimento di Fisica Ettore Pancini, Università degli Studi di Napoli Federico II, Via Cinthia, 80126-Napoli, Italy

**6** AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland

**7** CNR-SPIN, Complesso Monte Sant'Angelo-Via Cinthia, I-80126 Napoli, Italy

**8** Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

**9** Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, Paris, France

**10** Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France

\* [alfonso.maiellaro@spin.cnr.it](mailto:alfonso.maiellaro@spin.cnr.it), † [rocitro@unisa.it](mailto:rocitro@unisa.it)

## Abstract

We study spin-resolved transport in a ballistic quantum dot with Rashba spin-orbit coupling, focusing on charge-to-spin conversion and spin Hall effect. In the regime where the dot size is comparable to the Fermi wavelength, we identify a clear crossover from weak localization to weak antilocalization as the Rashba coupling increases. This transition is accompanied by gate-tunable spin currents of Edelstein and spin Hall type, whose behavior reflects the underlying electron wavefunction interference. Notably, the Edelstein current shows an inflection point at the critical Rashba strength, signaling the crossover from weak localization to weak antilocalization. In the presence of an in-plane magnetic field we also report a transition in angular periodicity of the magnetoresistance –from  $\pi$  to  $2\pi$ – arising from the interplay between spin-orbit interaction and Zeeman coupling. These results establish a direct link between quantum coherence, charge-to-spin conversion, and geometric confinement in mesoscopic systems.

Copyright attribution to authors.

This work is a submission to SciPost Physics.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

## 2 **Contents**

|    |                   |                                                                             |    |
|----|-------------------|-----------------------------------------------------------------------------|----|
| 3  | <b>1</b>          | <b>Introduction</b>                                                         | 2  |
| 4  | <b>2</b>          | <b>Theoretical model</b>                                                    | 3  |
| 5  | <b>3</b>          | <b>Numerical results</b>                                                    | 5  |
| 6  | <b>4</b>          | <b>Conclusions</b>                                                          | 8  |
| 7  | <b>A</b>          | <b>Effect of quantum dot size on interference-induced magnetoresistance</b> | 9  |
| 8  | <b>B</b>          | <b>Selective Suppression of Spurious Spin Currents</b>                      | 10 |
| 9  | <b>C</b>          | <b>Rashba Hamiltonian with in-plane Zeeman field</b>                        | 10 |
| 10 | <b>References</b> |                                                                             | 12 |

---

13 **1** **Introduction**

14 Quantum coherence plays a central role in low-dimensional systems, where phase-stable elec-  
15 tronic trajectories give rise to interference phenomena that strongly affect transport proper-  
16 ties [1–7]. Among the mechanisms that enrich such phenomena, spin–orbit coupling (SOC) [6]  
17 plays a crucial role, not only in coherent transport but also in a variety of quantum materi-  
18 als—including topological superconductors [8–10], topological insulators and phase-coherent  
19 Josephson junctions [11, 12]. In systems with SOC, spin and orbital dynamics become entan-  
20 gled: interference between time-reversed trajectories can be modulated by spin precession,  
21 and external fields or geometric asymmetries can tune the resulting transport signatures. This  
22 complexity is further enhanced when SOC is present in confined geometries, where bound-  
23 ary conditions and finite-size effects introduce additional structure to spin-dependent dynam-  
24 ics [13, 14]. In this context, the interplay between quantum coherence, SOC, and confinement  
25 gives rise to unconventional spin and charge transport effects [15–17]. The situation is even  
26 more interesting since spin-orbit coupling has been proven to be tunable using all-electrical  
27 means [18–20]. In particular, spin-to-charge conversion mechanisms—such as Edelstein [21]  
28 and spin Hall [22] effects—become sensitive to interference conditions and can exhibit non-  
29 trivial dependencies on system size, geometry, and Rashba coupling strength. In this context,  
30 Ref. [15] introduced a theoretical framework based on a spin-dependent scattering-matrix ap-  
31 proach to describe charge-to-spin conversion mechanisms, with applications focused on two-  
32 dimensional nanostructures.

33 A key manifestation of spin-dependent interference is the crossover from weak localization  
34 (WL) to weak antilocalization (WAL) [23–25]. This crossover is observed, for example, in two-  
35 dimensional electron gases (2DEGs) in semiconductor heterostructures such as GaAs/AlGaAs  
36 or InAs quantum wells, where gate voltage or carrier density tunes the Rashba spin–orbit  
37 coupling (SOC) strength [26, 27]. It also occurs in thin films of topological insulators (e.g.,  
38  $\text{Bi}_2\text{Se}_3$ ,  $\text{Bi}_2\text{Te}_3$ ), as disorder or Fermi level position changes [28, 29], and in oxide interfaces  
39 such as  $\text{LaAlO}_3/\text{SrTiO}_3$ , where the Rashba coupling can be controlled by gates [30, 31]. The  
40 crossover thus provides a powerful probe of spin coherence and SOC symmetry in mesoscopic  
41 systems. While traditionally associated with diffusive systems and impurity scattering, studies

42 have shown that similar WL–WAL features can emerge in clean, ballistic conductors—provided  
 43 that confinement supports phase-coherent backscattering [32–34].  
 44 Motivated by these studies and by the need of understanding the confinement effects on WL–  
 45 WAL transition, we study spin-resolved quantum transport in a ballistic quantum dot (QD)  
 46 with Rashba SOC, focusing on the regime where the dot size is comparable to the Fermi wave-  
 47 length  $\lambda_F$ . Building on the scattering-matrix framework introduced in Ref. [15], here applied  
 48 to a strongly confined geometry, we find that quantum confinement and spin–orbit interac-  
 49 tion conspire to generate gate-tunable interference effects and spin-polarized currents. This  
 50 allows us to establish a direct connection between spin–charge conversion mechanisms and  
 51 the WL–WAL crossover in mesoscopic ballistic systems. In particular, we apply the analysis to  
 52 QDs based on LAO/STO where a control of SOC can be fully achieved by back gate [35, 36].  
 53 The paper is organized as follow: In Sec. 2 we present the tight binding Hamiltonian and  
 54 the theoretical framework used to describe the multi-terminal quantum transport in a QD.  
 55 In Sec. 3 we analyze the magnetotransport curves and the microscopic spin current patterns.  
 56 Conclusions are drawn in 4, while supplemental material is reported in Appendices A–C.  
 57

## 58 2 Theoretical model

59 We model the QD (represented in Figure 1) using a tight-binding Hamiltonian on a square  
 60 lattice, including kinetic energy, Rashba spin–orbit interaction, and Zeeman coupling. The full  
 61 Hamiltonian reads  $H = H_0 + H_{SO} + H_M$ , where

$$H_0 = \sum_{x,y} \left[ (-\epsilon + 4t) \Psi_{x,y}^\dagger \sigma_0 \Psi_{x,y} - t \left( \Psi_{x,y}^\dagger \sigma_0 \Psi_{x+1,y} + H.c. \right) + \right. \\ \left. - t \left( \Psi_{x,y}^\dagger \sigma_0 \Psi_{x,y+1} + H.c. \right) \right] \quad (1)$$

$$H_{SO} = i\alpha \left( \sum_{x,y} \Psi_{x,y}^\dagger \sigma_y \Psi_{x+1,y} - \Psi_{x,y}^\dagger \sigma_x \Psi_{x,y+1} \right) + H.c. \quad (2)$$

$$H_M = \sum_{x,y} \Psi_{x,y}^\dagger \vec{M} \cdot \vec{\sigma} \Psi_{x,y}. \quad (3)$$

62 Here, the indices  $(x, y)$  span the lattice sites of the quantum dot, corresponding to the blue  
 63 region in Fig. 1(a).  $\Psi_{x,y} = (c_{x,y,\uparrow}, c_{x,y,\downarrow})^T$  is the spinor of annihilation operators,  $\sigma_0$  is the  
 64 identity matrix, and  $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$  is the vector of Pauli matrices. The parameters  $t$ ,  $\alpha$ , and  
 65  $\vec{M} = (M_x, M_y, M_z)$  denote the hopping amplitude, Rashba coupling, and Zeeman field, respec-  
 66 tively. The on-site energy is set to  $\epsilon = \epsilon_0 + \mu$ , where  $\mu$ , determining the filling of the Rashba  
 67 quantum dot, represents the energy offset measured from the lowest energy eigenvalue  $\epsilon_0$ .  
 68 The parameter  $\epsilon_0$  is consistently computed across all realizations of  $\alpha$  and  $\vec{M}$ . When an ex-  
 69 ternal magnetic field is considered, the orbital magnetic effects are embedded in the Peierls  
 70 phase,  $t \rightarrow t e^{i \frac{e}{\hbar} \int_{\vec{r}_i}^{\vec{r}_j} \vec{A} \cdot d\vec{r}} \equiv t(\vec{r}_i, \vec{r}_j)$ , with  $\vec{A}$  the vector potential.  
 71

72 The dot geometry is modeled as a central circular region of radius  $r$  connected to two lateral  
 73 arms of dimensions  $(L_1, W_1)$  and  $(L_2, W_2)$ . This setup incorporates the realistic electrostatic  
 74 confinement obtained in the experiments [38] and includes the surface roughness by randomly  
 75 breaking or preserving hopping terms at the boundary of the circular region (see Fig. 1). In  
 76 this geometry, the effect of the confinement is reflected in the formation of subbands, inducing  
 77 peaks in the density of states of the QD as shown in Figure 1(b). Hereafter we refer to sys-  
 78 tem parameters relevant for oxide interfaces, but results remain valid also for other systems.  
 79

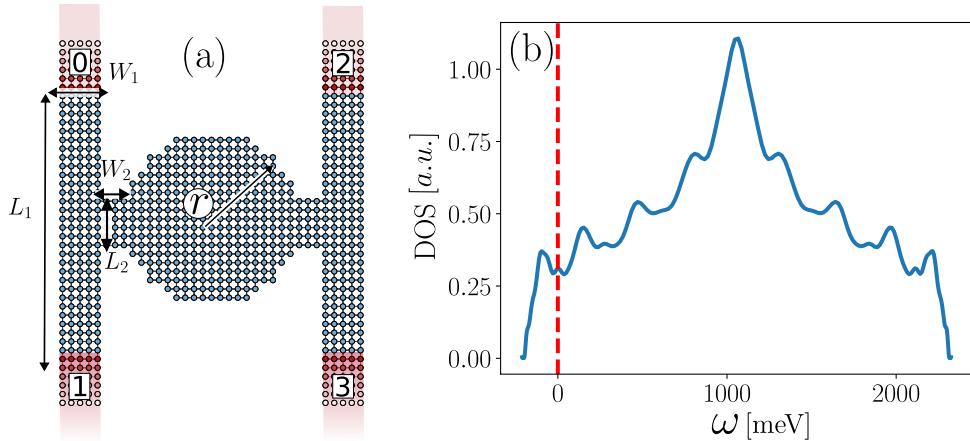


Figure 1: (a) Tight-binding lattice used in our model, implemented via Kwant [37]. The central blue region defines the quantum dot (scattering region), composed of a circular core of radius  $r$  connected to two symmetric compound arms, each consisting of two adjacent rectangles. The four red regions indicate the semi-infinite normal-metal leads, labeled from 0 to 3. Geometric parameters  $L_1$ ,  $L_2$ ,  $W_1$ , and  $W_2$  define the arm sizes, as shown. (b) Density of states (DOS) of the dot. The vertical dashed red line marks the chemical potential considered here.

80 In particular, we use a tight-binding hopping parameter:  $t \approx 313$  meV, based on an effective  
 81 mass  $m_{\text{eff}} = 0.8 m_e$  and lattice constant  $a = 0.39$  nm [39]. Unless otherwise specified, we also  
 82 assume  $\mu = 180$  meV,  $r/a = 10$ ,  $L_1/a = 30$ ,  $W_1/a = 5$ ,  $L_2/a = 6$ , and  $W_2/a = 3$  and explore  
 83 a broad range of  $\alpha$ , which are experimentally tunable via gate voltage [18–20]. The values of  
 84  $\alpha$  considered here are consistent with those reported for LAO/STO interfaces [39, 40] taking  
 85 into account that confinement effects can enhance the effective Rashba coupling. These val-  
 86 ues are also comparable to those observed in KTO-based interfaces, where even larger Rashba  
 87 couplings have been reported [41]. We focus on the regime where the dot size is compa-  
 88 rable to the Fermi wavelength, which enhances quantum interference effects and makes the  
 89 WL–WAL crossover particularly evident. While larger QD sizes have been typically considered  
 90 for LAO/STO, the present choice enables an efficient numerical treatment and captures the  
 91 relevant physics governed by a ballistic regime

92 The QD is connected to four semi-infinite nonmagnetic metal leads, as shown in Fig. 1(a).  
 93 When a dc voltage  $V^j$  is applied to each lead  $j = 0, \dots, 3$ , the charge current  $\langle J_c^j \rangle$ , spin cur-  
 94 rent  $\langle \vec{J}_s^j \rangle$ , and bias-induced spin density  $\langle \vec{\delta s}^j \rangle$  in lead  $j$  can be computed within the scattering  
 95 framework of Ref. [15] as:

$$\langle J_c^j \rangle = \sum_{j'} \frac{e^2}{2\pi\hbar} \left[ 2\mathcal{N}^j \delta^{jj'} - \sum_{m,m'} \text{Tr}(S_{mm'}^{jj'\dagger} S_{mm'}^{jj'}) \right] V^{j'}, \quad (4)$$

$$\langle \vec{J}_s^j \rangle = \sum_{j',m,m'} \frac{e}{4\pi} \text{Tr}(S_{mm'}^{jj'\dagger} \vec{\sigma} S_{mm'}^{jj'}) V^{j'}, \quad (5)$$

$$\langle \vec{\delta s}^j \rangle = \sum_{j',m,m'} \frac{e}{4\pi |\nu_m^j(\mu)|} \text{Tr}(S_{mm'}^{jj'\dagger} \vec{\sigma} S_{mm'}^{jj'}) V^{j'}. \quad (6)$$

96 Here,  $e$  is the electron charge,  $2\mathcal{N}^j$  is the total number of quantum channels in lead  $j$ , and  
 97  $\nu_m^j(\mu)$  is the group velocity of mode  $m$  at chemical potential  $\mu$ . The scattering matrix  $S$  is de-  
 98 composed as  $S = \sum_{jj',mm',\sigma,\sigma'} \mathcal{P}_{jj'} \otimes \mathcal{P}_{mm'} \otimes \mathcal{P}_{\sigma\sigma'} S_{mm'\sigma\sigma'}^{jj'}$ , where  $\mathcal{P}_{\eta\eta'} = |\eta\rangle\langle\eta'|$  is a projection  
 99 operator in the leads, channel and spin subspaces, respectively. In Eqs. (4)–(6), the physical

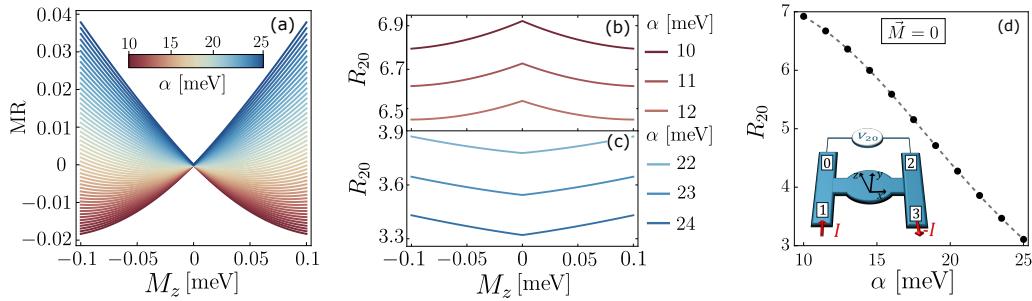


Figure 2: (a) Magnetoresistance MR between leads 2 and 0 as a function of Zeeman energy  $M_z$ , for  $\alpha$  ranging from 10 to 25 meV. The curvature reversal around  $M_z = 0$  highlights a crossover from WL to WAL as  $\alpha$  increases. This transition is also reflected in the color shift from warm tones (WL) to cool tones (WAL). (b)–(c) Resistance  $R_{20}$  vs  $M_z$  for selected values of  $\alpha$  from panel (a), illustrating the curvature evolution that characterizes the WL-to-WAL transition. (d) Resistance  $R_{20}$  as a function of  $\alpha$  for  $\vec{M} = 0$ , showing a monotonic decrease due to the enhanced suppression of backscattering by spin-orbit interaction. The inset illustrates the four-terminal setup and current injection scheme. The resistance curves are expressed in unit of  $R_0 = h/e^2$ .

100 observables evaluated at lead  $j$  depend on all incident channels  $m'$  across the lead  $j'$ . The  
 101 low-filling regime is considered, where only a few transverse modes are active—highlighted  
 102 by the vertical dashed red line in Fig. 1(b).

103 The expressions above are derived in the asymptotic region of the lead, far from the scattering  
 104 center, under the assumption of zero temperature and linear response in the applied voltages.  
 105 The scattering matrix  $S$  entering our equations is computed numerically using the Kwant pack-  
 106 age [37], which is employed as an efficient toolbox to define the system geometry and extract  
 107 the corresponding scattering amplitudes.

108 In our simulations, we inject a current  $I$  from lead 1 to lead 3, such that  $\langle J_c^j \rangle = (\delta^{1j} - \delta^{3j})I$ .  
 109 The voltages at all terminals are then obtained self-consistently by inverting Eq. (4), while the  
 110 corresponding spin currents and spin densities are computed from Eqs. (5)–(6).

### 111 3 Numerical results

112 In Fig. 2(a), we analyze the magnetoresistance between leads 0 and 2, defined as

$$113 \quad MR = \frac{R_{20}(\vec{M}) - R_{20}(0)}{R_{20}(0)},$$

114 under an out-of-plane Zeeman field  $\vec{M} = (0, 0, M_z)$ . Here  $R_{20} = V_{20}/I$ , with  $V_{20}$  the voltage  
 115 difference between leads 2 and 0. The color scale reveals a clear crossover from WL to WAL  
 116 as  $\alpha$  increases. In the WL regime (small  $\alpha$ ), the resistance  $R_{20}$  shows a maximum at  $M_z = 0$   
 117 and decreases with increasing  $|M_z|$ , as shown in Fig. 2(b). Conversely, in the WAL regime  
 118 (large  $\alpha$ ),  $R_{20}$  exhibits a minimum at  $M_z = 0$  and increases with  $|M_z|$ , as seen in Fig. 2(c).  
 119 This inversion signals the crossover and allows us to identify a critical threshold  $\alpha_c \approx 19$  meV  
 120 for the WL–WAL transition. Figure 2(d) further supports this interpretation: the zero-field  
 121 resistance  $R_{20}(M_z = 0)$  decreases monotonically with  $\alpha$ , reflecting the destructive interference  
 122 associated with WAL. The WL–WAL crossover is governed by the spin–orbit length which can  
 123 be expressed as  $\lambda_{SO}/a = t/\alpha \in [31.3, 12.5]$ , where  $a$  is the lattice spacing and the precise trans-  
 124 sition condition depends strongly on the dot size. The WL regime corresponds to  $\lambda_{SO}$  larger

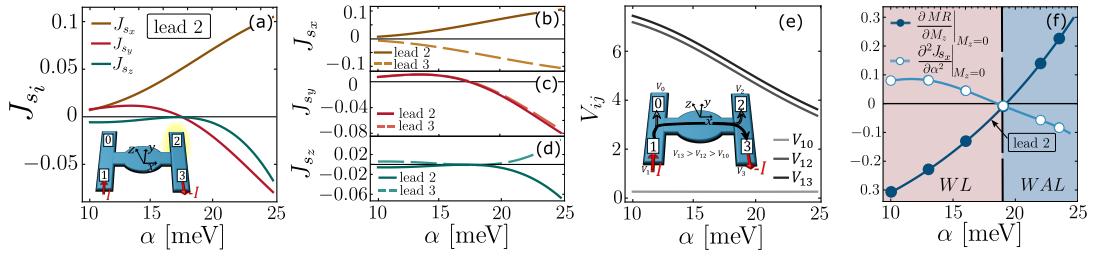


Figure 3: (a)  $x$ -,  $y$ -, and  $z$ -polarized components of the spin current in lead 2 as a function of  $\alpha$  for  $\vec{M} = 0$ . (b)–(d) Comparison of the spin currents in leads 2 (solid lines) and 3 (dashed lines) as a function of  $\alpha$ , showing how spin-polarized transport evolves between the two leads. (e) Voltage differences between the current-injecting lead (lead 1) and all other leads, illustrating how the internal potential landscape evolves with  $\alpha$  and reflects the redistribution of current paths within the scattering region. (f) Comparison between the derivative of the magnetoresistance,  $\partial \text{MR} / \partial M_z$ , and the second derivative of the Edelstein spin current,  $\partial^2 J_{sx} / \partial \alpha^2$ , both evaluated at  $M_z = 0$  and plotted as a function of  $\alpha$ . The sign change in both quantities identifies the crossover from WL to WAL. In the plot,  $\partial^2 J_{sx} / \partial \alpha^2$  is shown scaled by 100 for readability. The voltage and spin current curves are expressed in units of  $V_0 = hI/e^2$  and  $J_s^0 = eV_0/4\pi$ , respectively, where  $I$  is the applied current bias.

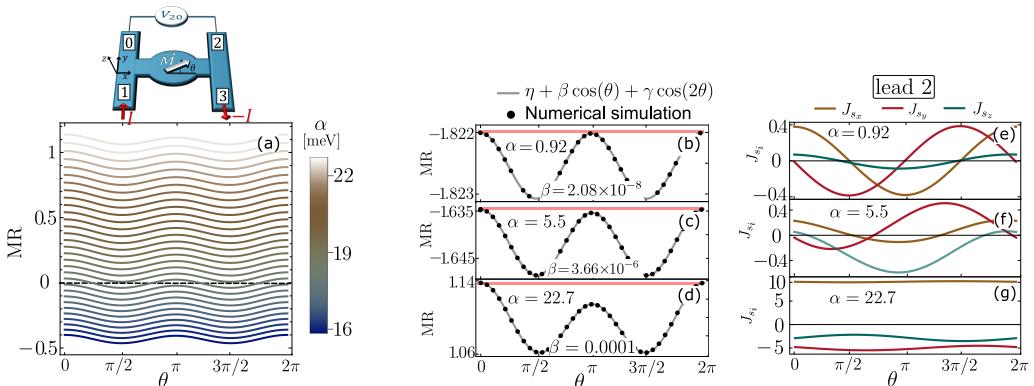


Figure 4: (a) Magnetoresistance MR as a function of the direction  $\theta$  of an in-plane Zeeman field  $\vec{M} = (M \cos \theta, M \sin \theta, 0)$ , for  $\alpha$  ranging from 16 to 22 meV. The field amplitude is kept constant at  $M = 0.05$  meV. (b)–(d) MR for three selected values of  $\alpha$ , showing a transition in angular periodicity from  $\pi$  to  $2\pi$  as  $\alpha$  increases. This behavior reflects the growing dominance of Rashba spin-orbit coupling over the external Zeeman field. The numerical data are well described by a fitting function including  $\cos(\theta)$  and  $\cos(2\theta)$  harmonics. (e)–(g)  $x$ -,  $y$ -, and  $z$ -polarized components of the spin current in lead 2, calculated for the same parameter sets as in panels (b)–(d). At low  $\alpha$ , the spin currents exhibit harmonic oscillations induced by the in-plane field, particularly in  $J_{sx}$  and  $J_{sy}$ , while  $J_{sz}$  remains negligible. At larger  $\alpha$ , the spin currents become nearly constant with  $\theta$ , indicating a regime dominated by the spin-orbit interaction. The spin current curves are expressed in units of  $J_s^0 = eV_0/4\pi$ , with  $V_0 = hI/e^2$  and  $I$  is the applied current bias. For readability, all y-axis values are scaled by  $10^2$ .

124 than the dot size, where spins remain nearly aligned and interference is constructive, while in  
 125 the WAL regime  $\lambda_{SO}$  becomes shorter, leading to spin precession and destructive interference.  
 126 The critical value  $\alpha_c \approx 19$  meV thus corresponds to  $\lambda_{SO} \approx 2r$ , marking the onset of strong  
 127 spin-orbit coupling regime within the dot.

128 While such WL-WAL crossovers are typically observed in disordered diffusive systems due to  
 129 impurity scattering [23–25], here, on the other hand, we show that they also occur in a ballistic  
 130 quantum dot. This happens in a kinematic regime in which the Fermi wavelength  $\lambda_F = 2\pi/k_F$   
 131 is comparable to the dot radius  $r$ , inducing a sequence of scattering processes defining closed  
 132 clockwise and counterclockwise paths that interfere constructively<sup>1</sup> (see Appendix A). Such a  
 133 condition is experimentally relevant for oxide-based quantum dots realized at LAO/STO (001)  
 134 interfaces [38], where the dot size is of the same order as the mean free path. We further con-  
 135 firm that increasing the radius  $r$  (for  $\alpha = 0$ ) suppresses the WL signature, consistent with  
 136 a transition to a genuine ballistic regime where  $\lambda_F \ll r$  (see Appendix A). However, if one  
 137 introduces scattering by impurities or considers a non-uniform background potential in the  
 138 QD region, forming puddles, the transition can be obtained also in the case of larger sizes.  
 139 Let us stress that the situation described here is different from the one described by random  
 140 scattering matrix approach [14, 42].

141 Alongside the MR response, in Fig. 3(a) we investigate the spin current components  $J_{s_i}$  ( $i = x, y, z$ ) flowing into lead 2 as a function of  $\alpha$ . The  $x$ -component,  $J_{s_x}$ , is due to the Edelstein effect  
 142 (EE) [21], and is governed by the transverse electric field along the  $y$ -direction, i.e., the direc-  
 143 tion of charge current injection. Interestingly, we also detect a finite  $J_{s_y}$  component, which is  
 144 not expected in bulk systems. This contribution is due to a confinement effect, which usually  
 145 modifies the potential energy landscape so that the carriers cannot escape. This confinement  
 146 typically results from an electrostatic scalar potential  $V(r)$ , which creates an electric field point-  
 147 ing towards the center of the confinement or towards boundaries even in the absence of an  
 148 out-of-plane magnetic field. This electric field locally tilts the spin orientation and gives rise to  
 149 a nonzero  $J_{s_y}$ , an effect consistent with predictions from Ref. [15]. This effect is a consequence  
 150 of quantum confinement. Indeed, we have verified that by changing the bias configuration,  
 151 the spurious in-plane spin current can be fully suppressed, leaving only the Edelstein and spin  
 152 Hall currents (see Appendix B). In addition, a finite out-of-plane spin current  $J_{s_z}$  appears as a  
 153 hallmark of spin Hall physics. In this regime, spin-up and spin-down carriers are deflected in  
 154 opposite directions, generating a transverse spin Hall current  $J_{s_z}$ , observed in Fig. 3(a). The  
 155  $\alpha$ -dependence of the spin current components is further analyzed in Figs. 3(b)–(d), where we  
 156 compare the signals measured at leads 2 and 3. Both  $J_{s_x}$  and  $J_{s_z}$  change sign between the  
 157 two leads, consistently with their origin from EE and SHE, respectively. Conversely,  $J_{s_y}$  does  
 158 not change sign under lead exchange, confirming its confinement-induced nature. To support  
 159 this interpretation, we analyze in Fig. 3(e) the external bias  $V_{ij}$  measured between lead pairs  
 160 in the absence of  $\vec{M}$ . These potentials qualitatively mimic the internal field profile induced  
 161 by the current bias  $\langle J_c^j \rangle = (\delta^{1j} - \delta^{3j})I$ , suggesting that the sign reversal of  $J_{s_x}$  and  $J_{s_z}$  orig-  
 162 inates from a reversal of the internal flux between the two lateral arms. A clear fingerprint  
 163 of the WL-WAL crossover also emerges from a closer inspection of the Edelstein spin current  
 164 shown in Fig. 3(f). In particular,  $J_{s_x}$  displays an inflection point at the critical Rashba strength  
 165  $\alpha_c \approx 19$  meV, corresponding to the condition  $\lambda_{SO} \approx 2r$ , where electrons complete one full spin  
 166 precession while traversing the dot. A further increase in the spin-orbit coupling shortens  $\lambda_{SO}$ ,  
 167 enhancing spin precession and promoting dephasing among different propagation directions.  
 168 Accordingly, the WL-WAL transition and the Edelstein response share the same microscopic  
 169 origin, both stemming from the progressive increase of spin precession induced by the Rashba

<sup>1</sup>In our simulations, the leads are modeled as semi-infinite electrodes, translationally invariant along the  $y$ -direction, with the transverse motion (along  $x$ ) quantized into five propagating modes. Each mode has its own Fermi wavevector  $k_F$ , and for the five modes we find  $k_F a \in [0.7, 1.8]$ , which corresponds to  $\lambda_F/a \in [3.48, 8.97]$

171 field. Both the inflection point in the spin current and the sign change in the derivative of the  
172 magnetoresistance define the boundary between the weak SOC and strong SOC regime.  
173 Beyond its impact on spin coherence and out-of-plane spin transport, quantum confinement  
174 also influences magnetic anisotropy. This becomes evident under in-plane magnetic fields,  
175 where spin textures and SOC interplay give rise to nontrivial angular dependence of the mag-  
176 netoresistance [43–45]. Motivated by this observation, in Fig. 4(a) we study MR as a function  
177 of the direction  $\theta$  of an in-plane Zeeman field  $\vec{M} = M(\cos \theta, \sin \theta, 0)$ . We observe that the  
178 angular dependence of MR undergoes a periodicity change—from  $\pi$  to  $2\pi$ —as  $\alpha$  increases  
179 (Figs. 4(b)-(d)). This transition reflects the growing influence of spin-orbit interaction over  
180 the Zeeman term. The latter observation can be explained by a symmetry argument. Indeed in  
181 the absence of Rashba interaction, the Hamiltonians with  $\theta = 0$  and  $\theta = \pi$  are related by a uni-  
182 tary transformation, and this relation is broken in the presence of Rashba SOC (see Appendix  
183 C). This argument explains the periodicity change exhibited by the magnetoresistance curves  
184 in Fig. 4. The associated spin currents also exhibit a crossover: from harmonic, field-driven  
185 oscillations with a negligible  $z$ -component (Fig. 4(e)), to nearly flat angular profiles with a siz-  
186 able (confinement-induced) out-of-plane component (Figs. 4(f)-(g)), signaling the suppression  
187 of field-driven spin precession in the Rashba-dominated regime. These results can be under-  
188 stood in terms of expectation values of the spin operators evaluated using the eigenstate of  
189 the translational-invariant Rashba Hamiltonian (see Appendix C), thus confirming this inter-  
190 pretation.

## 191 4 Conclusions

192 We have investigated spin-dependent quantum transport in a ballistic Rashba quantum dot,  
193 focusing on quantum interference effects and spin-charge conversion phenomena. When the  
194 dot radius is comparable to the Fermi wavelength, a clear WL–WAL crossover emerges as the  
195 Rashba coupling strength is increased—a parameter that can be experimentally tuned via gate  
196 voltage. In this regime, coherent backscattering paths undergo constructive or destructive in-  
197 terference depending on  $\alpha$ , leading to a tunable magnetoresistance response. As the dot radius  
198 increases, this interference regime is suppressed, unless effects of disorder or puddles forma-  
199 tion are considered, and the system enters a fully ballistic transport regime where neither WL  
200 nor WAL signatures are observed.  
201 This crossover is accompanied by the emergence of spin-polarized currents driven by the  
202 Rashba interaction, including both Edelstein and spin Hall contributions. Remarkably, the  
203 Edelstein current displays an inflection point at the same critical Rashba strength marking  
204 the WL–WAL transition, highlighting a direct connection between spin-charge conversion and  
205 quantum interference.  
206 Further insight into the role of spin-orbit interaction is provided by the behavior of magne-  
207 toresistance curves under in-plane magnetic fields, which exhibit a transition in angular pe-  
208 riodicity—from  $\pi$  to  $2\pi$ —as  $\alpha$  increases. This behavior is reflected in the evolution of spin  
209 current components and offers an effective probe of magnetic anisotropy linked to intrinsic  
210 spin textures.  
211 Together, our results demonstrate how spin-orbit interaction, quantum coherence, and geo-  
212 metric confinement combine to shape spin and charge transport in mesoscopic systems, with  
213 direct relevance for spin-dependent transport in mesoscopic devices.

214 **Funding information** The authors acknowledge support from Horizon Europe EIC Pathfinder  
215 under the grant IQARO number 101115190. R.C. and F.R. acknowledge funding from Minis-  
216 tero dell’Istruzione, dell’Università e della Ricerca (MIUR) for the PRIN project STIMO (GrantNo.

217 PRIN 2022TWZ9NR). This work received funds from the PNRR MUR project PE0000023-  
 218 NQSTI (TOPQIN and SPUNTO). C.A.P acknowledges funding from the PRIN 2022 PNRR project  
 219 P2022SB73K “Superconductivity in  $\text{KTaO}_3$  Oxide-2DEG NAnodevices for Topological quantum  
 220 Applications” (SONATA) financed by the European Union - Next Generation EU.

221 **A Effect of quantum dot size on interference-induced magnetoresistance**  
 222

223 In Fig. 5(a)-(c), we show MR as a function of out-of-plane magnetization  $M_z$  for increasing  
 224 quantum dot radius  $r = 10, 20$ , and  $50$ . For  $r = 10$ , we observe a clear transition from WL to  
 225 WAL as  $\alpha$  increases (Fig. 5(a)). As the dot radius increases, the MR curves become more irreg-  
 226 ular and the characteristic WL-WAL crossover gradually fades [Fig. 5(b)-(c)]. The behavior  
 227 at  $r = 10$  is associated with a kinematic regime where the Fermi wavelength  $\lambda_F = 2\pi/k_F$  is  
 228 comparable to the dot radius. In this limit, multiple coherent scattering processes form closed  
 229 clockwise and counterclockwise paths that interfere constructively, enhancing the reflection  
 230 probability. This interference pattern is visible in the scattering wavefunction density  $|\psi|^2$  at  
 231  $\alpha = 0$  shown in Fig. 5(d). For larger radii [Figs. 5(e)-(f)], the condition  $r \sim \lambda_F$  no longer  
 232 holds. As a result, the constructive interference responsible for WL is suppressed, and the  
 233 wavefunction profiles indicate increased transmission through the structure, Figs. 5(e)-(f).

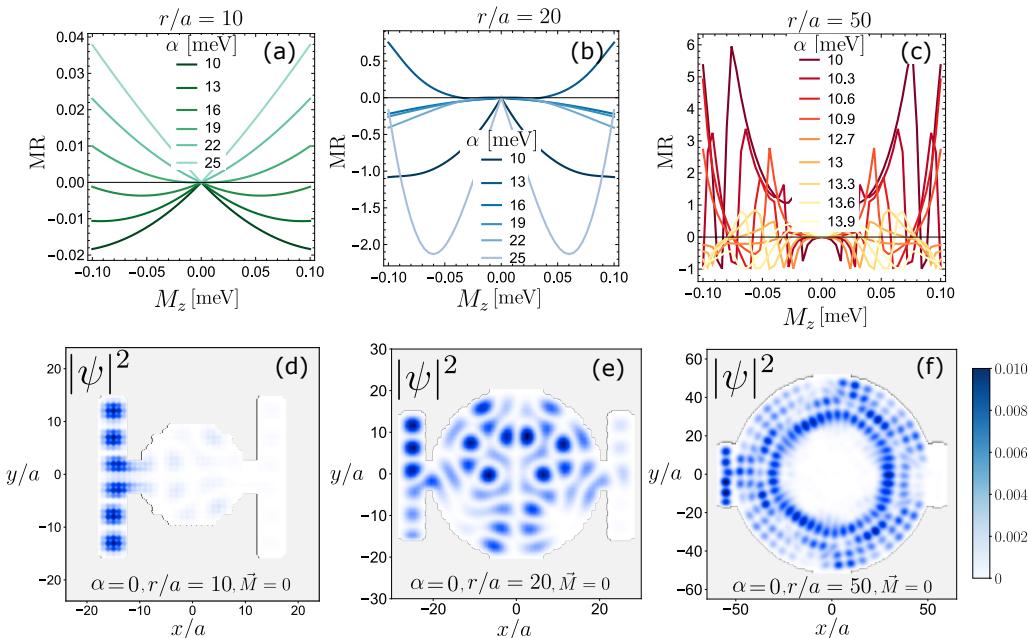


Figure 5: (a)–(c) Magnetoresistance MR as a function of  $M_z$ , for increasing values of the dot radius  $r = 10, 20$ , and  $50$ , and several Rashba coupling strengths  $\alpha$ . For small  $r$ , MR shows a clear crossover from WL to WAL as  $\alpha$  increases. As  $r$  grows, this transition is suppressed, and the MR response becomes more complex. (d)–(f) Probability densities  $|\psi|^2$  of the scattering wavefunction for  $\alpha = 0$  and  $\vec{M} = 0$ , with an electron injected from lead 1. These panels represent single scattering processes and illustrate how the spatial distribution of the wavefunction changes with  $r$ . For  $r = 10$ , backscattering dominates, consistent with the WL regime. As  $r$  increases, transmission becomes more prominent.

## 234 B Selective Suppression of Spurious Spin Currents

235 In Fig. 6, we show that, by adopting a suitable bias configuration involving six terminals and  
 236 injecting a charge current along the  $x$ -direction, it is possible to selectively suppress unwanted  
 237 spin current components. In particular, the spurious in-plane spin current  $|J_{s_x}|$ , which can  
 238 arise due to confinement effects, is fully suppressed across all values of the Rashba coupling  
 239  $\alpha$ . As a result, only the physically meaningful spin responses remain: the Edelstein current  
 240  $|J_{s_y}|$ , which is associated with spin polarization along  $y$  induced by the applied bias, and the  
 241 transverse spin Hall current  $|J_{s_z}|$ , which flows perpendicular to the injected current. Both  $|J_{s_y}|$   
 242 and  $|J_{s_z}|$  grow with increasing  $\alpha$ , reflecting the intrinsic spin-charge conversion mechanisms  
 243 activated by the Rashba interaction. This setup thus enables a clean separation of spin current  
 contributions arising from charge-to-spin conversion mechanisms.

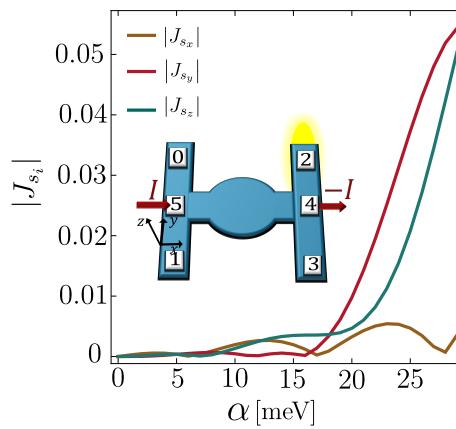


Figure 6: Absolute values of the  $x$ -,  $y$ -, and  $z$ -polarized spin currents in lead 2 as a function of  $\alpha$ , for a six-terminal geometry with current injection along the  $x$ -direction. In this setup, the spurious Edelstein-like contribution to  $J_{s_x}$  is suppressed, in contrast to the four-terminal configuration in Fig. 2. The  $J_{s_i}$  components are expressed in units of  $J_s^0 = eV_0/4\pi$ , with  $V_0 = hI/e^2$  and  $I$  is the applied current bias.

244

## 245 C Rashba Hamiltonian with in-plane Zeeman field

246 We consider the single-particle Hamiltonian in momentum space corresponding to the con-  
 247 tinuum limit of the tight-binding model discussed in the main text. The Hamiltonian for a  
 248 two-dimensional electron gas with Rashba spin-orbit coupling and an in-plane Zeeman field  
 249 is given by

$$H(\vec{k}) = \frac{\hbar^2 k^2}{2m} \sigma_0 + \alpha_R (\sigma_x k_y - \sigma_y k_x) + M (\cos \theta \sigma_x + \sin \theta \sigma_y). \quad (\text{C.1})$$

250 Here  $\alpha_R = 2a\alpha$  is the continuum Rashba coefficient associated with the tight-binding Rashba  
 251 parameter  $\alpha$  and the lattice constant  $a$  introduced in the main text, while  $M$  and  $\theta$  denote  
 252 respectively the modulus and the direction of the in-plane Zeeman field. We explicitly notice  
 253 that for  $\alpha_R = 0$  the unitary equivalence  $\sigma_y H(\theta = 0, \alpha_R = 0) \sigma_y = H(\theta = \pi, \alpha_R = 0)$  can be  
 254 verified, where  $H(\theta, \alpha_R)$  refers to Eq. (C.1).

255 For  $\alpha_R \neq 0$  one observes that  $\sigma_y H(\theta = 0, \alpha_R \neq 0) \sigma_y \neq H(\theta = \pi, \alpha_R \neq 0)$ , being this  
 256 observation related to the interpretation of Fig. 4 of the main text. The Hamiltonian can be

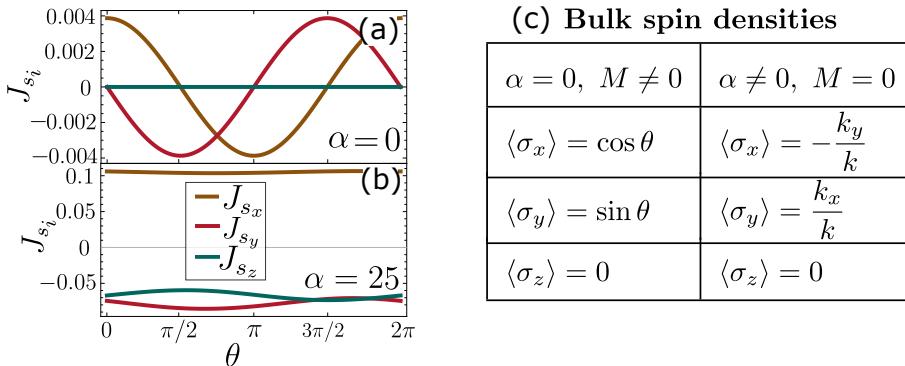


Figure 7:  $x$ ,  $y$  and  $z$ -components of the spin current obtained for  $\alpha = 0$ , panel (a), and  $\alpha = 25$ , panel (b). (c) Expectation values of spin density operators over the lowest band eigenstate of a bulk Hamiltonian with the Rashba coupling  $\alpha$  and Zeeman energy  $M$ , induced by an in-plane magnetic field. The  $J_{s_i}$  components are expressed in units of  $J_s^0 = eV_0/4\pi$ , with  $V_0 = 2\pi\hbar I/e^2$  and  $I$  is the applied current bias.

257 written in compact form as:

$$H(\vec{k}) = \frac{\hbar^2 k^2}{2m} \sigma_0 + \vec{h}(\vec{k}) \cdot \vec{\sigma}, \quad (\text{C.2})$$

258 with effective field:

$$\vec{h}(\vec{k}) = \begin{pmatrix} \alpha_R k_y + M \cos \theta \\ -\alpha_R k_x + M \sin \theta \\ 0 \end{pmatrix}. \quad (\text{C.3})$$

259 The eigenvalues of  $H(\vec{k})$  are:

$$E_{\pm}(\vec{k}) = \frac{\hbar^2 k^2}{2m} \pm |\vec{h}(\vec{k})|, \quad (\text{C.4})$$

260 where:

$$|\vec{h}(\vec{k})| = \sqrt{(\alpha_R k_y + M \cos \theta)^2 + (-\alpha_R k_x + M \sin \theta)^2}. \quad (\text{C.5})$$

261 The corresponding normalized eigenstates are:

$$|\vec{k}, \pm\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm 1 \\ e^{-i\phi_h} \end{pmatrix}, \quad \text{with} \quad \phi_h = \arg(h_x + ih_y), \quad (\text{C.6})$$

262 where  $h_x = \alpha_R k_y + M \cos \theta$  and  $h_y = -\alpha_R k_x + M \sin \theta$ . The expectation values of the Pauli  
263 matrices on these states are:

$$\langle \vec{k}, \pm | \vec{\sigma} | \vec{k}, \pm \rangle = \pm \frac{1}{|\vec{h}(\vec{k})|} \begin{pmatrix} \alpha_R k_y + M \cos \theta \\ -\alpha_R k_x + M \sin \theta \\ 0 \end{pmatrix}. \quad (\text{C.7})$$

264 These results describe spin-momentum locking in the presence of both spin-orbit and Zeeman  
265 interactions, with spin orientation aligned or anti-aligned to the effective in-plane field  $\vec{h}(\vec{k})$ .  
266 In the absence of spin-orbit coupling ( $\alpha_R = 0$ ), the spin aligns with the in-plane Zeeman field,  
267 yielding  $\langle \vec{\sigma} \rangle = (\cos \theta, \sin \theta, 0)$  for the lower-energy state. Conversely, in the absence of Zee-  
268 man field ( $M = 0$ ), the spin lies orthogonal to the momentum due to Rashba interaction:  
269  $\langle \vec{\sigma} \rangle = (-k_y/k, k_x/k, 0)$ . These two limits are summarized in Fig. 7(c) and are recovered from  
270 the general expressions derived above. This behaviour is consistent with the spin current be-  
271 haviour shown in Figs. 7(a)-(b), since spin current and spin density are roughly proportional  
272 in the low-filling regime.

273

274 **References**

275 [1] I. M. C. Kurdak, A. M. Chang, A. Chin and T. Y. Chang, *Quantum interference effects and*  
276 *spin-orbit interaction in quasi-one-dimensional wires and rings*, Phys. Rev. B **46**, 6846  
277 (1992), doi:[10.1103/PhysRevB.46.6846](https://doi.org/10.1103/PhysRevB.46.6846).

278 [2] H. Hirayama, Y. Aoki and C. Kato, *Quantum interference of rashba-type*  
279 *spin-split surface state electrons*, Phys. Rev. Lett. **107**, 027204 (2011),  
280 doi:[10.1103/PhysRevLett.107.027204](https://doi.org/10.1103/PhysRevLett.107.027204).

281 [3] Y. Chen, M. D'Antuono, M. Trama, D. Preziosi, B. Jouault, F. Teppe, C. Consejo, C. A.  
282 Perroni, R. Citro, D. Stornaiuolo and M. Salluzzo, *Dirac-like fermions anomalous magneto-*  
283 *transport in a spin-polarized oxide 2d electron system*, Advanced Materials **37**(1), 2410354  
284 (2025), doi:<https://doi.org/10.1002/adma.202410354>.

285 [4] F. Liang, Y. H. Yang, J. Wang and K. S. Chan, *Detection of spin bias by quantum interference*  
286 *effect in a rashba ring*, Europhysics Letters **87**(4), 47004 (2009), doi:[10.1209/0295-5075/87/47004](https://doi.org/10.1209/0295-5075/87/47004).

288 [5] J. Nitta and T. Koga, *Rashba spin-orbit interaction and its applications to spin-*  
289 *interference effect and spin-filter device*, Journal of Superconductivity **16**(5), 689 (2003),  
290 doi:[10.1023/A:1025309805995](https://doi.org/10.1023/A:1025309805995).

291 [6] Y. A. Bychkov and É. I. Rashba, *Properties of a 2D electron gas with lifted spectral degen-*  
292 *eracy*, ZhETF Pisma Redaktsiiu **39**, 66 (1984), doi:[1984ZhPmR..39...66B](https://doi.org/10.1007/BF030366B).

293 [7] D. Awschalom and M. Flatté, *Challenges for semiconductor spintronics*, Nature Physics **3**,  
294 153 (2007), doi:[10.1038/nphys551](https://doi.org/10.1038/nphys551).

295 [8] R. M. Lutchyn, J. D. Sau and S. Das Sarma, *Majorana fermions and a topological phase*  
296 *transition in semiconductor-superconductor heterostructures*, Phys. Rev. Lett. **105**(7),  
297 077001 (2010), doi:[10.1103/PhysRevLett.105.077001](https://doi.org/10.1103/PhysRevLett.105.077001).

298 [9] J. Alicea, *New directions in the pursuit of majorana fermions in solid state systems*, Reports  
299 on Progress in Physics **75**(7), 076501 (2012), doi:[10.1088/0034-4885/75/7/076501](https://doi.org/10.1088/0034-4885/75/7/076501).

300 [10] T. Yokoyama, Y. Tanaka and N. Nagaosa, *Anomalous josephson effect in diffusive fer-*  
301 *romagnetic junctions with spin-orbit coupling*, Phys. Rev. B **80**(12), 125339 (2009),  
302 doi:[10.1103/PhysRevB.80.125339](https://doi.org/10.1103/PhysRevB.80.125339).

303 [11] A. Maiellaro, M. Trama, J. Settino, C. Guarcello, F. Romeo and R. Citro, *Engineered*  
304 *Josephson diode effect in kinked Rashba nanochannels*, SciPost Phys. **17**, 101 (2024),  
305 doi:[10.21468/SciPostPhys.17.4.101](https://doi.org/10.21468/SciPostPhys.17.4.101).

306 [12] C. Guarcello, A. Maiellaro, J. Settino, I. Gaiardoni, M. Trama, F. Romeo  
307 and R. Citro, *Probing topological superconductivity of oxide nanojunctions us-*  
308 *ing fractional shapiro steps*, Chaos, Solitons Fractals **189**, 115596 (2024),  
309 doi:<https://doi.org/10.1016/j.chaos.2024.115596>.

310 [13] R. Li, Z.-H. Liu, Y. Wu, Z.-Q. Li, J. Ren and Y.-Q. Li, *The impacts of the quantum-*  
311 *dot confining potential on the spin-orbit effect*, Scientific Reports **8**, 7400 (2018),  
312 doi:[10.1038/s41598-018-25692-2](https://doi.org/10.1038/s41598-018-25692-2).

313 [14] I. L. Aleiner and V. I. Fal'ko, *Spin-orbit coupling effects on quantum trans-*  
314 *port in lateral semiconductor dots*, Phys. Rev. Lett. **87**, 256801 (2001),  
315 doi:[10.1103/PhysRevLett.87.256801](https://doi.org/10.1103/PhysRevLett.87.256801).

316 [15] A. Maiellaro, F. Romeo, M. Trama, I. Gaiardoni, J. Settino, C. Guarcello, N. Bergeal,  
317 M. Bibes and R. Citro, *Theory of charge-to-spin conversion under quantum confinement*,  
318 Phys. Rev. Res. **7**, 043100 (2025), doi:[10.1103/zpvy-t4d4](https://doi.org/10.1103/zpvy-t4d4).

319 [16] C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beigné, S. Gam-  
320 barelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla *et al.*, *Tuning spin-charge inter-*  
321 *conversion with quantum confinement in ultrathin bismuth films*, Phys. Rev. B **98**, 184418  
322 (2018), doi:[10.1103/PhysRevB.98.184418](https://doi.org/10.1103/PhysRevB.98.184418).

323 [17] L. Hanlon, L. Oberg, Y. Chen and M. W. Doherty, *Spin-to-charge conversion*  
324 *with electrode confinement in diamond*, Phys. Rev. Appl. **16**, 064050 (2021),  
325 doi:[10.1103/PhysRevApplied.16.064050](https://doi.org/10.1103/PhysRevApplied.16.064050).

326 [18] J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-  
327 Gordon, K. Campman and A. C. Gossard, *Gate-controlled spin-orbit quantum*  
328 *interference effects in lateral transport*, Phys. Rev. Lett. **90**, 076807 (2003),  
329 doi:[10.1103/PhysRevLett.90.076807](https://doi.org/10.1103/PhysRevLett.90.076807).

330 [19] D. M. Zumbühl, J. B. Miller, C. M. Marcus, K. Campman and A. C. Gossard, *Spin-orbit*  
331 *coupling, antilocalization, and parallel magnetic fields in quantum dots*, Phys. Rev. Lett.  
332 **89**, 276803 (2002), doi:[10.1103/PhysRevLett.89.276803](https://doi.org/10.1103/PhysRevLett.89.276803).

333 [20] F. Trier, D. C. Vaz, P. Bruneel, P. Noël, A. Fert, L. Vila, J.-P. Attané, A. Barthélémy,  
334 M. Gabay, H. Jaffrè and M. Bibes, *Electric-field control of spin current generation and*  
335 *detection in ferromagnet-free srtio3-based nanodevices*, Nano Letters **20**(1), 395 (2020),  
336 doi:[10.1021/acs.nanolett.9b04079](https://doi.org/10.1021/acs.nanolett.9b04079), PMID: 31859513, <https://doi.org/10.1021/acs.nanolett.9b04079>.

338 [21] V. Edelstein, *Spin polarization of conduction electrons induced by electric current in two-*  
339 *dimensional asymmetric electron systems*, Solid State Communications **73**(3), 233 (1990),  
340 doi:[https://doi.org/10.1016/0038-1098\(90\)90963-C](https://doi.org/10.1016/0038-1098(90)90963-C).

341 [22] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth and A. H. MacDonald,  
342 *Universal intrinsic spin hall effect*, Phys. Rev. Lett. **92**, 126603 (2004),  
343 doi:[10.1103/PhysRevLett.92.126603](https://doi.org/10.1103/PhysRevLett.92.126603).

344 [23] Y. Aharonov and D. Bohm, *Significance of electromagnetic potentials in the quantum theory*,  
345 Phys. Rev. **115**, 485 (1959), doi:[10.1103/PhysRev.115.485](https://doi.org/10.1103/PhysRev.115.485).

346 [24] G. Bergmann, *Weak localization in thin films: a time-of-flight experiment with conduction*  
347 *electrons*, Physics Reports **107**(1), 1 (1984), doi:[https://doi.org/10.1016/0370-1573\(84\)90103-0](https://doi.org/10.1016/0370-1573(84)90103-0).

349 [25] S. Hikami, A. I. Larkin and Y. Nagaoka, *Spin-orbit interaction and magnetoresistance*  
350 *in the two dimensional random system*, Progress of Theoretical Physics **63**(2), 707  
351 (1980), doi:[10.1143/PTP.63.707](https://doi.org/10.1143/PTP.63.707), <https://academic.oup.com/ptp/article-pdf/63/2/707/5336056/63-2-707.pdf>.

353 [26] G. Bergmann, *Proximity effect in weak localization*, Phys. Rev. Lett. **53**, 1100 (1984),  
354 doi:[10.1103/PhysRevLett.53.1100](https://doi.org/10.1103/PhysRevLett.53.1100).

355 [27] T. Koga, J. Nitta, T. Akazaki and H. Takayanagi, *Rashba spin-orbit coupling*  
356 *probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells*  
357 *as a function of quantum well asymmetry*, Phys. Rev. Lett. **89**, 046801 (2002),  
358 doi:[10.1103/PhysRevLett.89.046801](https://doi.org/10.1103/PhysRevLett.89.046801).

359 [28] H. Steinberg, J.-B. Laloë, V. Fatemi, J. S. Moodera and P. Jarillo-Herrero, *Electrically*  
360 *tunable surface-to-bulk coherent coupling in topological insulator thin films*, Phys. Rev. B  
361 **84**, 233101 (2011), doi:[10.1103/PhysRevB.84.233101](https://doi.org/10.1103/PhysRevB.84.233101).

362 [29] J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi,  
363 X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li *et al.*, *Gate-voltage control of chemical*  
364 *potential and weak antilocalization in  $\text{Bi}_2\text{Se}_3$* , Phys. Rev. Lett. **105**, 176602 (2010),  
365 doi:[10.1103/PhysRevLett.105.176602](https://doi.org/10.1103/PhysRevLett.105.176602).

366 [30] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri and J.-M. Triscone, *Tunable*  
367 *rashba spin-orbit interaction at oxide interfaces*, Phys. Rev. Lett. **104**, 126803 (2010),  
368 doi:[10.1103/PhysRevLett.104.126803](https://doi.org/10.1103/PhysRevLett.104.126803).

369 [31] P. Seiler, J. Zabaleta, R. Wanke, J. Mannhart, T. Kopp and D. Braak, *Antilocalization at*  
370 *an oxide interface*, Phys. Rev. B **97**, 075136 (2018), doi:[10.1103/PhysRevB.97.075136](https://doi.org/10.1103/PhysRevB.97.075136).

371 [32] H. U. Baranger, R. A. Jalabert and A. D. Stone, *Weak localization and integrability in*  
372 *ballistic cavities*, Phys. Rev. Lett. **70**, 3876 (1993), doi:[10.1103/PhysRevLett.70.3876](https://doi.org/10.1103/PhysRevLett.70.3876).

373 [33] I. V. Zozoulenko and K.-F. Berggren, *Ballistic weak localization in regular*  
374 *and chaotic quantum-electron billiards*, Phys. Rev. B **54**, 5823 (1996),  
375 doi:[10.1103/PhysRevB.54.5823](https://doi.org/10.1103/PhysRevB.54.5823).

376 [34] J. Cserti, A. Csordás and U. Zülicke, *Electronic and spin properties of rashba billiards*,  
377 Phys. Rev. B **70**, 233307 (2004), doi:[10.1103/PhysRevB.70.233307](https://doi.org/10.1103/PhysRevB.70.233307).

378 [35] D. Stornaiuolo, S. Gariglio, A. Fête, M. Gabay, D. Li, D. Massarotti and J.-M. Triscone, *Weak localization and spin-orbit interaction in side-gate field effect devices at the  $\text{LaAlO}_3/\text{SrTiO}_3$  interface*, Phys. Rev. B **90**, 235426 (2014),  
381 doi:[10.1103/PhysRevB.90.235426](https://doi.org/10.1103/PhysRevB.90.235426).

382 [36] D. V. Christensen, F. Trier, W. Niu, Y. Gan, Y. Zhang, T. S. Jespersen, Y. Chen and  
383 N. Pryds, *Stimulating oxide heterostructures: A review on controlling  $\text{SrTiO}_3$ -based heterointerfaces with external stimuli*, Advanced Materials Interfaces **6**(21), 1900772 (2019),  
385 doi:<https://doi.org/10.1002/admi.201900772>.

386 [37] C. W. Groth, M. Wimmer, A. R. Akhmerov and X. Waintal, *Kwant: a software package for*  
387 *quantum transport*, New Journal of Physics **16**(6), 063065 (2014), doi:[10.1088/1367-2630/16/6/063065](https://doi.org/10.1088/1367-2630/16/6/063065).

389 [38] G. Prawiroatmodjo, M. Leijnse, F. Trier, D. Christensen, Y. Chen, T. Jespersen, S. Linderoth  
390 and N. Pryds, *Transport and excitations in a negative-U quantum dot at the  $\text{LaAlO}_3/\text{SrTiO}_3$*   
391 *interface*, Nature Communications **8**, 395 (2017), doi:[10.1038/s41467-017-00495-7](https://doi.org/10.1038/s41467-017-00495-7).

392 [39] J. Settino, R. Citro, F. Romeo, V. Cataudella and C. A. Perroni, *Ballistic transport*  
393 *through quantum point contacts of multiorbital oxides*, Phys. Rev. B **103**, 235120 (2021),  
394 doi:[10.1103/PhysRevB.103.235120](https://doi.org/10.1103/PhysRevB.103.235120).

395 [40] A. Jouan, G. Singh, E. Lesne, D. C. Vaz, M. Bibes, A. Barthélémy, C. Ulysse, D. Stornaiuolo,  
396 M. Salluzzo, S. Hurand, J. Lesueur, C. Feuillet-Palma *et al.*, *Quantized conductance in a one-dimensional ballistic oxide nanodevice*, Nature Electronics **3**, 201 (2020),  
398 doi:[10.1038/s41928-020-0383-2](https://doi.org/10.1038/s41928-020-0383-2), Published: 16 March 2020.

399 [41] L. M. Vicente-Arche, J. Bréhin, S. Varotto, M. Cosset-Cheneau, S. Mallik, R. Salazar,  
400 P. Noël, D. C. Vaz, F. Trier, S. Bhattacharya, A. Sander, P. Le Fèvre *et al.*, *Spin-charge*  
401 *interconversion in  $ktao_3$  2d electron gases*, *Advanced Materials* **33**(43), 2102102 (2021),  
402 doi:<https://doi.org/10.1002/adma.202102102>.

403 [42] C. W. J. Beenakker, *Random-matrix theory of quantum transport*, *Rev. Mod. Phys.* **69**,  
404 731 (1997), doi:[10.1103/RevModPhys.69.731](https://doi.org/10.1103/RevModPhys.69.731).

405 [43] V. P. Jovanović, L. Fruchter, Z. Z. Li and H. Raffy, *Anisotropy of the in-plane angular*  
406 *magnetoresistance of electron-doped  $sr_{1-x}la_xcu_2$  thin films*, *Phys. Rev. B* **81**, 134520  
407 (2010), doi:[10.1103/PhysRevB.81.134520](https://doi.org/10.1103/PhysRevB.81.134520).

408 [44] V. P. Jovanović, H. Raffy, Z. Z. Li, G. Reményi and P. Monceau, *High magnetic-field evolution*  
409 *of the in-plane angular magnetoresistance of electron-doped  $sr_{1-x}la_xcu_2$  in the normal*  
410 *state*, *Phys. Rev. B* **103**, 014520 (2021), doi:[10.1103/PhysRevB.103.014520](https://doi.org/10.1103/PhysRevB.103.014520).

411 [45] J. C. A. Prentice and A. I. Coldea, *Modeling the angle-dependent magnetoresistance os-*  
412 *cillations of fermi surfaces with hexagonal symmetry*, *Phys. Rev. B* **93**, 245105 (2016),  
413 doi:[10.1103/PhysRevB.93.245105](https://doi.org/10.1103/PhysRevB.93.245105).