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Abstract

We study spin-resolved transport in a ballistic quantum dot with Rashba spin-orbit cou-
pling, focusing on charge-to-spin conversion and spin Hall effect. In the regime where
the dot size is comparable to the Fermi wavelength, we identify a clear crossover from
weak localization to weak antilocalization as the Rashba coupling increases. This tran-
sition is accompanied by gate-tunable spin currents of Edelstein and spin Hall type,
whose behavior reflects the underlying electron wavefunction interference. Notably, the
Edelstein current shows an inflection point at the critical Rashba strength, signaling the
crossover from weak localization to weak antilocalization. In the presence of an in-plane
magnetic field we also report a transition in angular periodicity of the magnetoresistance
—from 7 to 27— arising from the interplay between spin-orbit interaction and Zeeman
coupling. These results establish a direct link between quantum coherence, charge-to-
spin conversion, and geometric confinement in mesoscopic systems.
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1 Introduction

Quantum coherence plays a central role in low-dimensional systems, where phase-stable elec-
tronic trajectories give rise to interference phenomena that strongly affect transport proper-
ties[1-7]. Among the mechanisms that enrich such phenomena, spin—orbit coupling (SOC) [6]
plays a crucial role, not only in coherent transport but also in a variety of quantum materi-
als—including topological superconductors [8-10], topological insulators and phase-coherent
Josephson junctions [11,12]. In systems with SOC, spin and orbital dynamics become entan-
gled: interference between time-reversed trajectories can be modulated by spin precession,
and external fields or geometric asymmetries can tune the resulting transport signatures. This
complexity is further enhanced when SOC is present in confined geometries, where bound-
ary conditions and finite-size effects introduce additional structure to spin-dependent dynam-
ics [13,14]. In this context, the interplay between quantum coherence, SOC, and confinement
gives rise to unconventional spin and charge transport effects [15-17]. The situation is even
more interesting since spin-orbit coupling has been proven to be tunable using all-electrical
means [18-20]. In particular, spin-to-charge conversion mechanisms—such as Edelstein [21]
and spin Hall [22] effects—become sensitive to interference conditions and can exhibit non-
trivial dependencies on system size, geometry, and Rashba coupling strength. In this context,
Ref. [15] introduced a theoretical framework based on a spin-dependent scattering-matrix ap-
proach to describe charge-to-spin conversion mechanisms, with applications focused on two-
dimensional nanostructures.

A key manifestation of spin-dependent interference is the crossover from weak localization
(WL) to weak antilocalization (WAL) [23-25]. This crossover is observed, for example, in two-
dimensional electron gases (2DEGs) in semiconductor heterostructures such as GaAs/AlGaAs
or InAs quantum wells, where gate voltage or carrier density tunes the Rashba spin-orbit
coupling (SOC) strength [26,27]. It also occurs in thin films of topological insulators (e.g.,
Bi,Ses, Bi,Te;), as disorder or Fermi level position changes [28,29], and in oxide interfaces
such as LaAlO;/SrTiO5, where the Rashba coupling can be controlled by gates [30,31]. The
crossover thus provides a powerful probe of spin coherence and SOC symmetry in mesoscopic
systems. While traditionally associated with diffusive systems and impurity scattering, studies
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have shown that similar WL-WAL features can emerge in clean, ballistic conductors—provided
that confinement supports phase-coherent backscattering [32-34].

Motivated by these studies and by the need of understanding the confinement effects on WL-
WAL transition, we study spin-resolved quantum transport in a ballistic quantum dot (QD)
with Rashba SOC, focusing on the regime where the dot size is comparable to the Fermi wave-
length Ap. Building on the scattering-matrix framework introduced in Ref. [15], here applied
to a strongly confined geometry, we find that quantum confinement and spin—orbit interac-
tion conspire to generate gate-tunable interference effects and spin-polarized currents. This
allows us to establish a direct connection between spin—charge conversion mechanisms and
the WL-WAL crossover in mesoscopic ballistic systems. In particular, we apply the analysis to
QDs based on LAO/STO where a control of SOC can be fully achieved by back gate [35,36].
The paper is organized as follow: In Sec. 2 we present the tight binding Hamiltonian and
the theoretical framework used to describe the multi-terminal quantum transport in a QD.
In Sec. 3 we analyze the magnetotransport curves and the microscopic spin current patterns.
Conclusions are drawn in 4, while supplemental material is reported in Appendices A- C.

2 Theoretical model

We model the QD (represented in Figure 1) using a tight-binding Hamiltonian on a square
lattice, including kinetic energy, Rashba spin—orbit interaction, and Zeeman coupling. The full
Hamiltonian reads H = Hy + Hgg + H;, where

Ho=» [(—e +40¥] oo, , —t(¥] oo, +He)+
X,y (D
— (W] ooy 1 +H.C)]

Hyo=ia(D W] 0,1~V 0.0, HH.c. )
X,y
Hy=) ¥l M-5¥,,. 3)
x’y

Here, the indices (x, y) span the lattice sites of the quantum dot, corresponding to the blue
region in Fig. 1(a). W, , = (Cyxy1,Cx,y, )7 is the spinor of annihilation operators, o is the
identity matrix, and & = (0,0, 0,) is the vector of Pauli matrices. The parameters t, a, and
M= (M, M,, M,) denote the hopping amplitude, Rashba coupling, and Zeeman field, respec-
tively. The on-site energy is set to € = € + u, where u, determining the filling of the Rashba
quantum dot, represents the energy offset measured from the lowest energy eigenvalue €.
The parameter €, is consistently computed across all realizations of @ and M. When an ex-
ternal magnetic field is considered, the orbital magnetic effects are embedded in the Peierls

phase, t — t e'f [5 Adr t(7:, 7)), with A the vector potential.

The dot geometry is modeled as a central circular region of radius r connected to two lateral
arms of dimensions (L,, W;) and (L,, W,). This setup incorporates the realistic electrostatic
confinement obtained in the experiments [38] and includes the surface roughness by randomly
breaking or preserving hopping terms at the boundary of the circular region (see Fig. 1). In
this geometry, the effect of the confinement is reflected in the formation of subbands, inducing
peaks in the density of states of the QD as shown in Figure 1(b). Hereafter we refer to sys-
tem parameters relevant for oxide interfaces, but results remain valid also for other systems.
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Figure 1: (a) Tight-binding lattice used in our model, implemented via Kwant [37].
The central blue region defines the quantum dot (scattering region), composed of a
circular core of radius r connected to two symmetric compound arms, each consisting
of two adjacent rectangles. The four red regions indicate the semi-infinite normal-
metal leads, labeled from O to 3. Geometric parameters L, L,, W;, and W, define
the arm sizes, as shown. (b) Density of states (DOS) of the dot. The vertical dashed
red line marks the chemical potential considered here.

In particular, we use a tight-binding hopping parameter: t ~ 313 meV, based on an effective
mass m.g = 0.8 m, and lattice constant a = 0.39 nm [39]. Unless otherwise specified, we also
assume y = 180 meV, r/a = 10, L;/a =30, W;/a =5, L,/a = 6, and W,/a = 3 and explore
a broad range of a, which are experimentally tunable via gate voltage [18-20]. The values of
a considered here are consistent with those reported for LAO/STO interfaces [39,40] taking
into account that confinement effects can enhance the effective Rashba coupling. These val-
ues are also comparable to those observed in KTO-based interfaces, where even larger Rashba
couplings have been reported [41]. We focus on the regime where the dot size is compa-
rable to the Fermi wavelength, which enhances quantum interference effects and makes the
WL-WAL crossover particularly evident. While larger QD sizes have been typically considered
for LAO/STO, the present choice enables an efficient numerical treatment and captures the
relevant physics governed by a ballistic regime

The QD is connected to four semi-infinite nonmagnetic metal leads, as shown in Fig. 1(a).
When a dc voltage V/ is applied to each lead j = 0,...,3, the charge current (J2), spin cur-

rent (J;] ), and bias-induced spin density (5s’) in lead j can be computed within the scattering
framework of Ref. [15] as:

2
iy e <5 it i’y |y

iy = Z% NI e(s7 5Ty v, 4
i’ m,m’

- e TR .

F) = D0 TS B8V ©)
j,mm’

(65 = — (s TSI i ©)

j,mm’ 47T|Vr]n(‘u')|

Here, e is the electron charge, 2N is the total number of quantum channels in lead j, and
vl,(u) is the group velocity of mode m at chemical potential u. The scattering matrix S is de-
composed as S =3 v 5 50 Pij ® Py ® Porrr Sfi:n,oa,, where P,,., = 1) (0’| is a projection
operator in the leads, channel and spin subspaces, respectively. In Egs. (4)-(6), the physical

4
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Figure 2: (a) Magnetoresistance MR between leads 2 and O as a function of Zee-
man energy M,, for a ranging from 10 to 25 meV. The curvature reversal around
M, = 0 highlights a crossover from WL to WAL as a increases. This transition is also
reflected in the color shift from warm tones (WL) to cool tones (WAL). (b)—(c) Re-
sistance R,y vs M, for selected values of a from panel (a), illustrating the curvature
evolution that characterizes the WL-to-WAL transition. (d) Resistance R, as a func-
tion of a for M = 0, showing a monotonic decrease due to the enhanced suppression
of backscattering by spin-orbit interaction. The inset illustrates the four-terminal

setup and current injection scheme. The resistance curves are expressed in unit of
RO = h/ez.

observables evaluated at lead j depend on all incident channels m’ across the lead j’. The
low-filling regime is considered, where only a few transverse modes are active—highlighted
by the vertical dashed red line in Fig. 1(b).

The expressions above are derived in the asymptotic region of the lead, far from the scattering
center, under the assumption of zero temperature and linear response in the applied voltages.
The scattering matrix S entering our equations is computed numerically using the Kwant pack-
age [37], which is employed as an efficient toolbox to define the system geometry and extract
the corresponding scattering amplitudes. .

In our simulations, we inject a current I from lead 1 to lead 3, such that (J!) = (Y — §%/)I.
The voltages at all terminals are then obtained self-consistently by inverting Eq. (4), while the
corresponding spin currents and spin densities are computed from Egs. (5)-(6).

3 Numerical results

In Fig. 2(a), we analyze the magnetoresistance between leads 0 and 2, defined as

_ Ryo(M) —Ry(0)
Ry0(0)

under an out-of-plane Zeeman field M = (0,0, M,). Here Ryq = Vyo/I, with V,q the voltage
difference between leads 2 and 0. The color scale reveals a clear crossover from WL to WAL
as a increases. In the WL regime (small ), the resistance Ry, shows a maximum at M, = 0
and decreases with increasing |M,|, as shown in Fig. 2(b). Conversely, in the WAL regime
(large a), Ry exhibits a minimum at M, = 0 and increases with |M,|, as seen in Fig. 2(c).
This inversion signals the crossover and allows us to identify a critical threshold a, ~ 19 meV
for the WL-WAL transition. Figure 2(d) further supports this interpretation: the zero-field
resistance R, (M, = 0) decreases monotonically with a, reflecting the destructive interference
associated with WAL. The WL-WAL crossover is governed by the spin—orbit length which can
be expressed as Agq/a = t/a € [31.3,12.5], where a is the lattice spacing and the precise tran-
sition condition depends strongly on the dot size. The WL regime corresponds to Ag, larger

MR

B
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Figure 3: (a) x-, y-, and z-polarized components of the spin current in lead 2 as a
function of a for M = 0. (b)-(d) Comparison of the spin currents in leads 2 (solid
lines) and 3 (dashed lines) as a function of a, showing how spin-polarized transport
evolves between the two leads. (e) Voltage differences between the current-injecting
lead (lead 1) and all other leads, illustrating how the internal potential landscape
evolves with a and reflects the redistribution of current paths within the scattering
region. (f) Comparison between the derivative of the magnetoresistance, MR /J M,,
and the second derivative of the Edelstein spin current, 82JSX /2 a?, both evaluated at
M, = 0 and plotted as a function of a. The sign change in both quantities identifies
the crossover from WL to WAL. In the plot, aZJsx /da? is shown scaled by 100 for
readability. The voltage and spin current curves are expressed in units of V = hI /e?
and J 50 = eV, /4m, respectively, where I is the applied current bias.
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Figure 4: (a) Magnetoresistance MR as a function of the direction 6 of an in-plane
Zeeman field M = (M cos 6, M sin 6, 0), for a ranging from 16 to 22 meV. The field
amplitude is kept constant at M = 0.05 meV. (b)-(d) MR for three selected val-
ues of a, showing a transition in angular periodicity from 7 to 27 as a increases.
This behavior reflects the growing dominance of Rashba spin-orbit coupling over the
external Zeeman field. The numerical data are well described by a fitting function in-
cluding cos(60) and cos(26) harmonics. (e)-(g) x-, y-, and z-polarized components
of the spin current in lead 2, calculated for the same parameter sets as in panels
(b)-(d). At low a, the spin currents exhibit harmonic oscillations induced by the in-
plane field, particularly in J; and J; , while Js, remains negligible. At larger a, the
spin currents become nearly constant with 8, indicating a regime dominated by the
spin-orbit interaction. The spin current curves are expressed in units of J 30 =eVy/4m,
with V, = hI/e? and I is the applied current bias. For readability, all y-axis values
are scaled by 102.
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than the dot size, where spins remain nearly aligned and interference is constructive, while in
the WAL regime Agq becomes shorter, leading to spin precession and destructive interference.
The critical value a, ~ 19 meV thus corresponds to Agy A~ 2r, marking the onset of strong
spin—orbit coupling regime within the dot.

While such WL-WAL crossovers are typically observed in disordered diffusive systems due to
impurity scattering [23-25], here, on the other hand, we show that they also occur in a ballistic
quantum dot. This happens in a kinematic regime in which the Fermi wavelength Ay = 27t /kp
is comparable to the dot radius r, inducing a sequence of scattering processes defining closed
clockwise and counterclockwise paths that interfere constructively' (see Appendix A). Such a
condition is experimentally relevant for oxide-based quantum dots realized at LAO/STO (001)
interfaces [38], where the dot size is of the same order as the mean free path. We further con-
firm that increasing the radius r (for @ = 0) suppresses the WL signature, consistent with
a transition to a genuine ballistic regime where A; < r (see Appendix A). However, if one
introduces scattering by impurities or considers a non-uniform background potential in the
QD region, forming puddles, the transition can be obtained also in the case of larger sizes.
Let us stress that the situation described here is different from the one described by random
scattering matrix approach [14,42].

Alongside the MR response, in Fig. 3(a) we investigate the spin current components J;, (i = x,
¥, %) flowing into lead 2 as a function of a. The x-component, J; , is due to the Edelstein effect
(EE) [21], and is governed by the transverse electric field along the y-direction, i.e., the direc-
tion of charge current injection. Interestingly, we also detect a finite J;, component, which is
not expected in bulk systems. This contribution is due to a confinement effect, which usually
modifies the potential energy landscape so that the carriers cannot escape. This confinement
typically results from an electrostatic scalar potential V (r), which creates an electric field point-
ing towards the center of the confinement or towards boundaries even in the absence of an
out-of-plane magnetic field. This electric field locally tilts the spin orientation and gives rise to
anonzero J; ,an effect consistent with predictions from Ref. [15]. This effect is a consequence
of quantum confinement. Indeed, we have verified that by changing the bias configuration,
the spurious in-plane spin current can be fully suppressed, leaving only the Edelstein and spin
Hall currents (see Appendix B). In addition, a finite out-of-plane spin current J; appears as a
hallmark of spin Hall physics. In this regime, spin-up and spin-down carriers are deflected in
opposite directions, generating a transverse spin Hall current J , observed in Fig. 3(a). The
a-dependence of the spin current components is further analyzed in Figs. 3(b)-(d), where we
compare the signals measured at leads 2 and 3. Both J; and J; change sign between the
two leads, consistently with their origin from EE and SHE, respectively. Conversely, Js, does
not change sign under lead exchange, confirming its confinement-induced nature. To support
this interpretation, we analyze in Fig. 3(e) the external bias V;; measured between lead pairs
in the absence of M. These potentials qualitatively mimic the internal field profile induced
by the current bias (J]) = (6 — §%)I, suggesting that the sign reversal of J;, and J;_orig-
inates from a reversal of the internal flux between the two lateral arms. A clear fingerprint
of the WL-WAL crossover also emerges from a closer inspection of the Edelstein spin current
shown in Fig. 3(f). In particular, J; displays an inflection point at the critical Rashba strength
a, ~ 19 meV, corresponding to the condition Agy ~ 2r, where electrons complete one full spin
precession while traversing the dot. A further increase in the spin—orbit coupling shortens Agg,
enhancing spin precession and promoting dephasing among different propagation directions.
Accordingly, the WL-WAL transition and the Edelstein response share the same microscopic
origin, both stemming from the progressive increase of spin precession induced by the Rashba

In our simulations, the leads are modeled as semi-infinite electrodes, translationally invariant along the y-
direction, with the transverse motion (along x) quantized into five propagating modes. Each mode has its own
Fermi wavevector kg, and for the five modes we find kza € [0.7,1.8], which corresponds to A /a € [3.48,8.97]



171

172

173

174

175

176

177

178

179

180

181

182

183

184

186

187

188

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

SciPost Physics Submission

field. Both the inflection point in the spin current and the sign change in the derivative of the
magnetoresistance define the boundary between the weak SOC and strong SOC regime.
Beyond its impact on spin coherence and out-of-plane spin transport, quantum confinement
also influences magnetic anisotropy. This becomes evident under in-plane magnetic fields,
where spin textures and SOC interplay give rise to nontrivial angular dependence of the mag-
netoresistance [43—-45]. Motivated by this observation, in Fig. 4(a) we study MR as a function
of the direction 0 of an in-plane Zeeman field M = M(cos,sin6,0). We observe that the
angular dependence of MR undergoes a periodicity change—from 7 to 2mr—as a increases
(Figs. 4(b)-(d)). This transition reflects the growing influence of spin-orbit interaction over
the Zeeman term. The latter observation can be explained by a symmetry argument. Indeed in
the absence of Rashba interaction, the Hamiltonians with 6 = 0 and 8 = 7 are related by a uni-
tary transformation, and this relation is broken in the presence of Rashba SOC (see Appendix
C). This argument explains the periodicity change exhibited by the magnetoresistence curves
in Fig. 4. The associated spin currents also exhibit a crossover: from harmonic, field-driven
oscillations with a negligible z-component (Fig.4(e)), to nearly flat angular profiles with a siz-
able (confinement-induced) out-of-plane component (Figs.4(f)-(g)), signaling the suppression
of field-driven spin precession in the Rashba-dominated regime. These results can be under-
stood in terms of expectation values of the spin operators evaluated using the eigenstate of
the translational-invariant Rashba Hamiltonian (see Appendix C), thus confirming this inter-
pretation.

4 Conclusions

We have investigated spin-dependent quantum transport in a ballistic Rashba quantum dot,
focusing on quantum interference effects and spin-charge conversion phenomena. When the
dot radius is comparable to the Fermi wavelength, a clear WL-WAL crossover emerges as the
Rashba coupling strength is increased—a parameter that can be experimentally tuned via gate
voltage. In this regime, coherent backscattering paths undergo constructive or destructive in-
terference depending on a, leading to a tunable magnetoresistance response. As the dot radius
increases, this interference regime is suppressed, unless effects of disorder or puddles forma-
tion are considered, and the system enters a fully ballistic transport regime where neither WL
nor WAL signatures are observed.

This crossover is accompanied by the emergence of spin-polarized currents driven by the
Rashba interaction, including both Edelstein and spin Hall contributions. Remarkably, the
Edelstein current displays an inflection point at the same critical Rashba strength marking
the WL-WAL transition, highlighting a direct connection between spin-charge conversion and
quantum interference.

Further insight into the role of spin-orbit interaction is provided by the behavior of magne-
toresistance curves under in-plane magnetic fields, which exhibit a transition in angular pe-
riodicity—from 7 to 2m—as «a increases. This behavior is reflected in the evolution of spin
current components and offers an effective probe of magnetic anisotropy linked to intrinsic
spin textures.

Together, our results demonstrate how spin-orbit interaction, quantum coherence, and geo-
metric confinement combine to shape spin and charge transport in mesoscopic systems, with
direct relevance for spin-dependent transport in mesoscopic devices.
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A Effect of quantum dot size on interference-induced magnetore-
sistance

In Fig. 5(a)-(c), we show MR as a function of out-of-plane magnetization M, for increasing
quantum dot radius r = 10, 20, and 50. For r = 10, we observe a clear transition from WL to
WAL as a increases (Fig. 5(a)). As the dot radius increases, the MR curves become more irreg-
ular and the characteristic WL-WAL crossover gradually fades [Fig. 5(b)-(c)]. The behavior
at r = 10 is associated with a kinematic regime where the Fermi wavelength Ap = 27 /kp is
comparable to the dot radius. In this limit, multiple coherent scattering processes form closed
clockwise and counterclockwise paths that interfere constructively, enhancing the reflection
probability. This interference pattern is visible in the scattering wavefunction density |1)|? at
a = 0 shown in Fig. 5(d). For larger radii [Figs. 5(e)-(f)], the condition r ~ A no longer
holds. As a result, the constructive interference responsible for WL is suppressed, and the
wavefunction profiles indicate increased transmission through the structure, Figs. 5(e)-(f).
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Figure 5: (a)-(c) Magnetoresistance MR as a function of M,, for increasing values
of the dot radius r = 10, 20, and 50, and several Rashba coupling strengths a. For
small r, MR shows a clear crossover from WL to WAL as a increases. As r grows,
this transition is suppressed, and the MR response becomes more complex. (d)-(f)
Probability densities [1)|? of the scattering wavefunction for a = 0 and M = 0, with
an electron injected from lead 1. These panels represent single scattering processes
and illustrate how the spatial distribution of the wavefunction changes with r. For
r = 10, backscattering dominates, consistent with the WL regime. As r increases,
transmission becomes more prominent.



234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

SciPost Physics Submission

B Selective Suppression of Spurious Spin Currents

In Fig. 6, we show that, by adopting a suitable bias configuration involving six terminals and
injecting a charge current along the x-direction, it is possible to selectively suppress unwanted
spin current components. In particular, the spurious in-plane spin current |J; |, which can
arise due to confinement effects, is fully suppressed across all values of the Rashba coupling
a. As a result, only the physically meaningful spin responses remain: the Edelstein current
|sz |, which is associated with spin polarization along y induced by the applied bias, and the
transverse spin Hall current |J; |, which flows perpendicular to the injected current. Both |sz|
and |J; | grow with increasing a, reflecting the intrinsic spin-charge conversion mechanisms
activated by the Rashba interaction. This setup thus enables a clean separation of spin current
contributions arising from charge-to-spin conversion mechanisms.

0.05¢

0.041

= 0.03¢

0.02¢

0.01}

0 5 10 15 20 25
O [meV]
Figure 6: Absolute values of the x-, y-, and z-polarized spin currents in lead 2
as a function of a, for a six-terminal geometry with current injection along the x-
direction. In this setup, the spurious Edelstein-like contribution to J; is suppressed,
in contrast to the four-terminal configuration in Fig. 2. The J;, components are ex-
pressed in units of J 50 = eV, /4m, with V; = hI/e? and I is the applied current bias.

C Rashba Hamiltonian with in-plane Zeeman field

We consider the single-particle Hamiltonian in momentum space corresponding to the con-
tinuum limit of the tight-binding model discussed in the main text. The Hamiltonian for a
two-dimensional electron gas with Rashba spin—orbit coupling and an in-plane Zeeman field

is given by
N 2k2 .
H(k) = .00 + ag(oyk, — 0o, ky)+M(cosbo, +sinbo,). (C.1)

Here ap = 2aa is the continuum Rashba coefficient associated with the tight-binding Rashba
parameter a and the lattice constat a introduced in the main text, while M and 6 denote
respectively the modulus and the direction of the in-plane Zeeman field. We explicitly notice
that for ag = 0 the unitary equivalence o, H(6 =0, ag =0) o, = H(6 =7, ag =0) can be
verified, where H(60, ag) refers to Eq. (C.1).

For ap # 0 one observes that o, H(6 = 0, ag # 0) 0, # H(6 = 7, ag # 0), being this
observation related to the interpretation of Fig. 4 of the main text. The Hamiltonian can be

10
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Figure 7: x, y and z-components of the spin current obtained for @ = 0, panel
(a), and a = 25, panel (b). (c¢) Expectation values of spin density operators over
the lowest band eigenstate of a bulk Hamiltonian with the Rashba coupling a and
Zeeman energy M, induced by an in-plane magnetic field. The J; components are
expressed in units of JSO = eV /4m, with V, = 2nhI/e? and I is the applied current
bias.

written in compact form as:
- K2k2 - o
H(k)= ——o,+h(k)- G, (C.2)
2m
with effective field:

agk, + M cos 6

E(E) =| —agk, +Msin6 |. (C.3)
0
The eigenvalues of H (7&) are:
- RKkE o o
Ei(k) = —— £ |h(k)], (C.4
2m
where:
(k)| = 4/ (agk, + M cos 0)2 + (—agk, + M sin 0)2. (C.5)
The corresponding normalized eigenstates are:
- 1 +1 ) .
|k, %) = E (e‘i¢h) , with ¢, =arg(h, +ih,), (C.6)
where h, = agk, + M cos6 and h, = —agk, + M sin6. The expectation values of the Pauli

matrices on these states are:

agk, + M cos 0

k,:l:5'k,:l: =t —ark, + Msin0 |. C.7
( | | ) | 7 (k)l R™x 0 ( )
These results describe spin-momentum locking in the presence of both spin-orbit and Zeeman
interactions, with spin orientation aligned or anti-aligned to the effective in-plane field h(k).
In the absence of spin-orbit coupling (ai = 0), the spin aligns with the in-plane Zeeman field,
yielding (&) = (cos 6,sin 6, 0) for the lower-energy state. Conversely, in the absence of Zee-
man field (M = 0), the spin lies orthogonal to the momentum due to Rashba interaction:
(6) = (=ky/k, ky/k,0). These two limits are summarized in Fig. 7(c) and are recovered from
the general expressions derived above. This behaviour is consistent with the spin current be-
haviour shown in Figs. 7(a)-(b), since spin current and spin density are roughly proportional
in the low-filling regime.
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