Quantum Otto engine powered by critical XY-I" chain
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We present a theoretical study of the thermodynamic properties of a four-stroke engine whose working
medium is an XY quantum spin chain. The cycle alternates unitary strokes—realized via controlled modu-
lations of a transverse magnetic field—with thermalization strokes produced by coupling the chain to thermal
reservoirs at different temperatures. The open-system dynamics are treated within a thermodynamically consis-
tent formalism based on a nonlocal Lindblad master equation. Depending on the choice of system parameters,
the device exhibits four distinct operating regimes and can act either as a heat engine or as a refrigerator. No-
tably, we observe a marked improvement of the machine’s performance in the vicinity of the quantum critical
point. We also analyze the roles played by the off-diagonal coupling I' and the anisotropy parameter ~, and
discuss strategies to optimize the engine’s figures of merit in both operational modes.

I. INTRODUCTION

Thermodynamics is a fundamental branch of physics de-
voted chiefly to the study of heat [I]. It has not only un-
derpinned the design of internal combustion engines but also
contributed to our understanding of the thermodynamic as-
pects of black holes. Technological progress has driven the
miniaturization of components [2]], placing many devices in
regimes where quantum effects are non-negligible. In par-
allel, the rise of quantum technologies and the development
of nanoscale systems that exchange heat and perform work
have made it increasingly pertinent to examine these processes
within a quantum-mechanical framework [3]]. Despite the ma-
turity of classical thermodynamics, its extension to quantum
systems poses conceptual challenges and remains an active
area of research. Early efforts to generalize the notions of
heat and work to the quantum domain date back to the 1980s
[4]. Only recently has a renewed interest in quantum ther-
mal machines spurred prolific scientific advancements, start-
ing with the groundbreaking proposal of the maser [5] as the
first example of a quantum machine.A quantum thermal ma-
chine may be broadly characterised as a device composed of
quantum subsystems that is able to perform work by evolving
through an appropriate thermodynamic cycle [[6]]. A variety of
proposals have explored few-body quantum machines based
on classical cycles such as the Carnot [7, 18], Otto [9, 10],
Stirling [[11} [12], Brayton [13]], and Diesel cycles [[14]. Im-
plementations and theoretical models have been investigated
across several platforms, including particles in infinite poten-
tial wells [[15]], nuclear magnetic resonance systems [16]], ul-
tracold atomic setups [17]], and relativistic scenarios [18,[19]].

Nevertheless, the influence of many-body interactions on
the thermodynamic performance of quantum machines re-
mains incompletely understood [20422]. Systems with long-
range interactions present attractive opportunities for quantum
technologies because of their enhanced robustness against ex-
ternal perturbations [23H25]. Such stability facilitates better
control over dynamically generated excitations and helps mit-
igate their harmful effects. In particular, a dynamical phase
transition is well defined when o < 1 [26} [27], whereas

for a > 1 the sharp critical point broadens into a chaotic
crossover region in which the dynamics and the long-time
state become highly sensitive to system parameters. Employ-
ing many-body quantum systems as the working medium of
thermal machines is a promising route to achieving a quantum
advantage [28, 29], although it poses substantial analytical
and numerical challenges; nonetheless, several preliminary
studies have reported encouraging results [30432]. Quantum
criticality has been identified as a possible resource for im-
proving engine performance [33H35]], but the precise role of
many-body interactions in determining the thermodynamic ef-
ficiency of quantum engines remains an open question. One
of the main obstacles lies in the difficulty of solving the dy-
namics of these many-body systems [36H38]]. In contrast to
the more conventional modeling frameworks based on mas-
ter equations incorporating Lindblad operators acting locally
within the system’s physical degrees of freedom [39-41]], the
present approach naturally accommodates stationary thermal
states, thereby circumventing potential thermodynamic incon-
sistencies that may arise in local dissipative schemes [42} 43]].

Quantum critical behaviour in S = 1/2 Ising systems has
been experimentally established in several compounds, no-
tably LiHoF4 [39], CoNb206 [40], and SrCo2V208 [41]].
More recently, it has become apparent that the combined
influence of spin—orbit coupling (SOC) and the crystalline
electric field can stabilise a well-isolated Kramers doublet
ground state [42], thereby producing strongly anisotropic
Jeft = 1/2 moments that are naturally captured by a general-
ized 3 x 3 exchange tensor Jgg: together with an anisotropic
g-tensor [43]]. In this context, off-diagonal exchange inter-
actions—nontrivial manifestations of SOC—require careful
treatment and are particularly pertinent in systems proposed
to host spin-liquid phases [44]. Such symmetric off-diagonal
couplings have been identified as central to a variety of mag-
netic phenomena, including weak ferromagnetism [45, 46],
the emergence of spin-spiral textures [47], and the formation
of skyrmion lattices [48]]. Recently, symmetric off-diagonal
terms commonly denoted I" and I'" have been shown to signifi-
cantly affect candidate Kitaev materials such as a-RuClI3 [49-
54], B-Li2IrO3 [55, 156], and A2IrO3 [57HS9]. Despite ex-
tensive investigation, the microscopic consequences of these
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off-diagonal couplings remain incompletely understood: they
have been proposed to favour spin-liquid behaviour in diluted
RuCl13 [60]], while other studies suggest they may enhance the
robustness of topological phases [52]. Owing to their rich
and varied phenomenology, theoretical models that incorpo-
rate these interactions continue to provide a fruitful arena for
further exploration [61]].

The structure of this paper is as follows. In Section [[I}
we first present and describe our XY-I" chain model and dis-
cuss its critical behavior and the dynamic of the chain in the
Otto cycle (see Fig[I). The Section [[l]] introduces the micro-
scopic framework of a four-stroke Otto engine, with its work-
ing medium comprising a quantum XY spin chain interact-
ing with two thermal reservoirs (see Fig[2). We explore the
permissible operational mode regimes, which are markedly
affected by the temperatures of the hot and cold reservoirs,
the anisotropy parameter v, and the I interaction strength I'.
Next, we will investigate the impact of reservoir temperatures
on the performance of a quantum engine and the influence of
spin interactions through variations in the chain size N. Fur-
thermore, we will analyze the effect of anisotropy and I' in-
teraction on the dynamics and performance of the cycle, as
well as the influence of quantum criticality. Section[[V]is ded-
icated to the study of the stability of the quantum heat en-
gine and refrigerator through the analysis of the scaling fac-
tor for different thermal reservoir sizes, as well as the perfor-
mance of our system for various anisotropies and the symmet-
ric off-diagonal interaction, aiming at better optimization. We
present our conclusions in Section V] Additional technical de-
tails are provided in the appendices, including the diagonaliza-
tion procedure for the quantum XY-I" chain (Appendix [A} [C),
as well as on the modeling of thermal correlations and their
behavior in the vicinity of the phase transition (Appendix [D}
[E) and we will also see the probability of a nonadiabatic tran-
sition and LZSM problem in Appendix [F}

II. XY GAMMA

The model considered in this paper is a one-dimensional
spin-% XY chain in a transverse field [62]], supplemented by
a generalized I interaction. This model, is solvable chain and
one of the benchmark integrable models [63H65], serves as the
working substance of our study, the Hamiltonian is given by

H = Hxy + Hr, (1)
with
L 5 5 L
Hxy =-J Z [<1+5)Uﬁafb+1+(l—i)agozH} —h Z o
n=1 n=1
2
and
L
Hp =T (otoly +y0boin). @)
n=1

where of* denote the standard Pauli matrices at site ¢, v €
[—1,1] is the parameter characterizing the anisotropy , the
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FIG. 1: We present the effective central charge c.g, deter-
mined through fitting procedures applied to Sy, /2(L), plotted
against the transverse field strength h and the anisotropy ~.
Along the phase boundary dividing the ferromagnetic (FM)
and paramagnetic (PM) regimes, a conformal field theory
without gap is clearly visible, manifesting an effective cen-
tral charge of cer = 1/2. The other transition lines, however,
display a null effective central charge. Throughout the interi-
ors of both the FM and PM phases, this quantity remains zero,
whereas in the spiral phase it adopts the value c.g = 1. These
findings are obtained for the parameter set J = 1.0, 6 = 0.6,
and I' = 0.6.Finally, we note that the residual fluctuations ob-
served in the spiral phase are attributable to finite-size effects
and will be suppressed by increasing the system size , vanish-
ing in the thermodynamic limit . — oo.

Hamiltonian describes a generalised XY spin chain, with
~v = =£1 recovering the transverse-field Ising model and v = 0
corresponding to the rotationally invariant XX chain. Here,
J denotes the overall ferromagnetic coupling, J quantifies
the anisotropy in the spin-exchange interaction, and & rep-
resents the intensity of the applied uniform transverse field.
The parameter I' controls the magnitude of additional off-
diagonal exchange contributions, while  determines their rel-
ative weighting with respect to the standard XY terms. The
system consists of N lattice sites in total. The ground-state
phase structure features three distinct regimes, as depicted in

Fig[T]:
* Ferromagnetic (FM) phase, which is gapped,
* Paramagnetic (PM) phase, which is also gapped,

 Spiral phase, which is gapless and characterized by
quasi-long-range order.

The identification of critical behaviour relies on examin-
ing the time evolution of entanglement entropy after a sud-
den global quench performed at zero temperature, following
the methodology described in Ref [66]. For this purpose,
we partition the quantum system into two subsystems A and
B such that the total Hilbert space reads H = Ha ® Hp,



with the initial state being a pure many-body wave function
p = |¥o)(¥y|. The von Neumann entropies characterising
the reduced states of these two partitions,

Sap=-Tr(pa/pInpasp),

and measuring the bipartite quantum correlations, where the
reduced density operators are p4,p = Trp,ap [67]. In what
follows we take |¥() to be the ground state of the pre-quench
Hamiltonian. At time ¢ = 0 a system parameter is abruptly
changed to a new value and the state subsequently evolves un-
der the post-quench Hamiltonian. For an infinite chain of free
spinless fermions, the entanglement entropy of a contiguous
block A containing ¢ sites can be obtained from the spectrum
of the correlation matrix. Denoting the entropy by S¢(t) one
has

20
Se(t) = =Y Aslndg, )
r=1
where {), } are the eigenvalues of the 2¢ x 2¢ matrix
e T
M = (TT R) . (5)

Here the ¢ x ¢ blocks are constructed from two-point correla-
tors,

@nm = <CILCm>; Tnm = <cilcj-n>7 an = 6nm_@mn;
with c}; (cp,) the fermionic creation (annihilation) operators. It
is well established for one-dimensional integrable models that
entanglement spreads ballistically after a global quench [68]]:
the entropy growth scales with the boundary of subsystem A
rather than its volume, in agreement with the so-called area
law. Ground states of noncritical, short-range Hamiltonians
with finite correlation length therefore display a saturation of
entanglement entropy for large subsystems [69]. At a quan-
tum critical point, however, an interval of size L/2 exhibits

a logarithmic violation of the strict area law. In that case the
entropy behaves as

Suja(L) = G- InL+b,

(6)

where c.g denotes the effective central charge and b is a
nonuniversal constant [70, [71]. More precisely, we found that
the FM and PM phases are separated by a critical point at
her = 1 (for v > 6%/(40'2)), while the spiral phase emerges
for h < 1 and is delineated by phase transitions at v.; =
§2/(4T2) (from the FM phase) and at ho = /1 — 62 — 412y
(from the PM phase, for v < §2/(4'2)).

The system under consideration is described by a Hamilto-
nian featuring the spin-1/2 Pauli operators o%, where j de-
notes the j-th site and o = =z,y, z specifies the Cartesian
components. The coupling constant J may take positive val-
ues J > 0. We consider periodic boundary conditions with
an even number of sites. For the purposes of this study, we
adopt J = 1 as the reference energy scale and work in natural
units where i = kp = 1. The exact diagonalization of the

Hamiltonian is readily achieved by reformulating it in terms
of independent fermionic degrees of freedom, thereby obtain-
ing the entire eigenvalue spectrum. It is a standard result
[72] that the non-interacting fermionic equivalent of the XY
model emerges from the successive application of the Jordan-
Wigner transformation and a Bogoliubov rotation in recipro-
cal space, leading to a fully separable form of the Hamilto-
nian.The dynamic is modeled by nonlocal master equation
chosen to model the interaction between the system and en-
vironment [73]]. For the sake of generality, we now examine
a broader setup involving Np distinct and independent ther-
mal baths, each maintained at its respective temperature 7;,,
where the index n runs over the set {1,..., Ng} to identify
individual reservoirs. The Hamiltonian describing this setup
reads:

Np
I:Ienv - Z/dk&n(k)éil(k)én(k),

n=1

with &, (k) > 0 and ¢, (k), ¢}, (k) being fermionic annihi-
lation and creation operators. Given the mutual independence
of the Ny reservoirs, the reduced density matrix associated
with the entire environment takes on a product form.

Np
Penv = ® pt(,::gp
n=1

with pt():t?] representing the canonical density matrix of the nth

fermionic reservoir maintained at temperature 7;,. For each
reservoir n, we consider it coupled to p selected lattice sites of
the system, the indices of which form the set I,,. The system-
environment coupling is modelled through a quadratic interac-
tion Hamiltonian that possesses a separable, factorized form.

Hin = gj > / dk ga (k) (by + B}) (2 (k) + €, (k)

n=1pel,

where 135[,” and B,(,T) are the fermionic operators of the system.
With g,, (k) characterizing the magnitude of the coupling link-
ing the kth excitation mode of the nth thermal reservoir to the
designated system sites p € I,,. It can be written in a factor-
ized form

Np
Hiy = On & Rn7
n=1
by defining
On = S (b,+B}), and R, = / kg (k) [en () + E4(8)]
pEln

Let’s introduce the density of states associated with the nth
bath:

Jn(w) = w/dkz 1 (B)|26 [ — en(K)]. (B.4)
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FIG. 2: Diagram illustrating the XY-I" quantum Otto engine,
which encompasses two adiabatic processes and two equili-
bration intervals. In the transition (A — B), the setup ex-
periences adiabatic transformation as the perpendicular mag-
netic field is elevated from h; to hy. Next, during the interval
(B — C), equilibrium is achieved with the low-temperature
bath at T.. The subsequent adiabatic reversal (C — D) re-
turns the field to h;, before equilibration occurs with the high-
temperature bath at T}, in the final interval (D — A).

Under the assumption that the baths have a very large band-
width compared to the frequencies of the system, we can ap-
proximate J,,(w) & J,. Tracing out all the environmental
degrees of freedom and imposing the Born—-Markov approxi-
mation for the baths (for more details consult [10] Appendix
B).Itis possible to derive a microscopic Lindblad master equa-
tion:

d

dtpsys( ) = _i[ﬁsysvpsys] + D[psys]a

with

Dips] = Z%k[l—fn(wk))< bl — 0L} )

1. ~ 1 . -
(N

where the {I;k,f)z} jump operators are the fermionic Bo-
goliubov quasiparticles.The operators are local in the energy
eigenbasis and nonlocal in the sites, giving rise to a global
master equation [73].Under the assumption of no degenera-
cies in the spectrum , equation can be used to obtain an ana-
lytic expression for the time evolution of the correlation func-
tions. Defining

z Zn'Ynkfn(wk) ; = !
o= T S M e =

we have

<61Tcl;k>t = fr (1 —e
Then:

-23, 'Ynkt) + <B£Bk>0672 2 Tkt

®)
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III. THE QUANTUM OTTO CYCLE

In the present study, we propose a fully microscopic reali-
sation of a four-stroke quantum Otto cycle, in which the work-
ing medium is a quantum XY spin chain interacting with two
independent thermal baths. We further explore the extent to
which proximity to quantum critical points can affect key per-
formance characteristics, focusing primarily on operation as a
heat engine and as a refrigerator. At the start of each stroke of
the cycle (corresponding to points A, B, C, and D in Fig. 2),
the state of the working fluid together with its average internal
energy is characterised as detailed below:

efHA/TA “
pA=—Fp (H(t:))pa = Tr(paHa), (92)
pp=UpaUT, (H(t))pn = Tr(ppHp), (9b)

e—Hp/Tc .
p=UpcU", (H(ty))pp = Tr(ppHa), (9d)

We assume that during the unitary strokes the control param-
eter h varies linearly in time. In particular the protocol for the
first (A—B) stroke is taken as

h(t) =h;+6t,  te(0,7], (10)

with sweep rate § = (hy — h;)/7. The third (C—D) stroke is
implemented by the time-reversed ramp

R'(t) =hy —4dt, te0,7] (11)

The corresponding unitary evolutions are the time-ordered ex-
ponentials

U:Texp(—z/ontH[h(t)}), (12)

:Texp(—i/ dtH[h’(t)]), (13)
0

where 7 denotes time-ordering. During the second and fourth
strokes the external driving is switched off and the system is
coupled to the reservoirs; in these thermalisation strokes the
system relaxes to the Gibbs states, at the respective tempera-
tures 17, T5. We assume h; < hy with 0h = hy — h; = 0.5
(see Fig[2)for details):

(a) A — B: Adiabatic ramp of the transverse field;
During this isolated stroke the transverse magnetic field
is increased linearly from h; to hy over a duration T,
while the working medium remains decoupled from the
thermal reservoirs , and the process is assumed adia-
batic (no heat exchange with the baths).

hy—h; hy — hy
ht)=h;+ L " te [0, By =l }
T T

(b) B — C': Thermalization with the cold bath;
The Hamiltonian H (t¢) is held fixed while the system
is coupled to a cold reservoir at temperature 7.. The
working medium is left to relax until it reaches the cor-
responding thermal state .
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FIG. 3: Operating regimes of the quantum Otto engine. Panel (a) displays results in the I"— h; plane for 7}, = 1.0, T, = 0.75
and I' € [0,1]. Panel (b) shows the v— h; plane for the same temperatures with v € [—1, 1]. Panel (c) gives the T./T) — h;
dependence as the ratio T;./T}, is varied from 0.5 to 1 while I" is held at 0. Panel (d) reports how the behavior changes when dh
is swept from O to 1 (note that panels (a)—(c) were produced with §h = 0.5). The color legend marks four operational classes:
accelerator (orange), heater (red), heat engine (green), and refrigerator (blue).

(¢) C — D: Adiabatic ramp-down of the transverse
field
The working medium is isolated from the baths and the
transverse field is decreased linearly from h s back to h;
over a duration 7/, the process being assumed adiabatic
(no heat exchange with the reservoirs).

hy— hi hy— hi
h(t) = hy — fT t, te[O,f}

T

(d) D — A: Thermalization with the hot bath;
The Hamiltonian H (¢;) is kept constant and the system
is coupled to the hot reservoir at temperature 7}, until it
returns to the initial thermal state.

In the following, we denote by Q. the heat exchanged
during thermalization with the cold (hot) reservoir, adopting
the sign convention Q) > 0 when heat is absorbed by the
system. Let p, be the density matrix of the system at the
points « € {A, B,C, D}. Then,

Qe = (H(tr))pe — (H(tf))ps (14)
Qn = (H(t:))pa — (H(t:))pp- (15)

In particular, knowledge of the system’s internal energy at the
four cycle points A, B, C, D is sufficient to fully character-
ize its thermodynamic properties. Consider the limit of an
infinitely slow cycle, § — 0 (equivalently 7 — o0). In this
regime—hereafter referred to as adiabatic—the unitary evolu-
tion is sufficiently slow for the adiabatic theorem to apply, so
that transitions between distinct instantaneous eigenstates of
the Hamiltonian are suppressed. The performance of a heat
engine is characterized by two key metrics: the work out-
put W and the efficiency 7, where the efficiency is given by
the ratio of work produced to heat absorbed. The second law
of thermodynamics imposes an upper limit on the efficiency,
known as the Carnot efficiency:

T,
and n<no=1— L. (16)
Th

The work performed by the system during the adiabatic phase:

W:W/Qh

Wiy = [t = e~ (),

This analysis can be readily adapted to parameter regimes
where the engine functions as a refrigerator. In such cases,
the key quantities are the heat (). removed from the cold reser-
voir and the coefficient of performance (COP) of a refrigera-
tor quantifies its efficiency by measuring the ratio of heat ex-
tracted from the cold reservoir to the work input required to
achieve this transfer due to the second law, is bounded by the
Carnot COP:

Nr = Qe
Wi

Le A7)
Ty, — T

and nr < g, =

Introduce the transition probability 1 — P, defined as the
probability of a nonadiabatic transition between the energy
levels of the k-th mode occurring during the unitary stroke of
the cycle.For any fixed finite NV, one can choose the driving
duration large enough that the evolution becomes adiabatic;
in this limit nonadiabatic transitions are suppressed and we
may take P, = 1 (see Appendix [Fland for more details
) .Within a Landau—Zener framework one expects this effect
to be relevant when the quench velocity scales like § ~ AZ?
[128]. Conversely, if the quench is either too fast (approach-
ing the sudden-quench limit) or too slow (approaching the adi-
abatic limit) relative to the gap, the dynamics become insensi-
tive to the gap closure and the associated critical enhancement
is suppressed [129] .

A. Fonctionement mode

We commence by examining the operational modes attain-
able by the Otto cycle described earlier (see Fig[3). Through
the integration of the Clausius inequality with the first law
of thermodynamics, the computational findings unequivocally
illustrate that the engine possesses the capacity to function
across all four thermodynamic regimes , heat engine (green),
refrigerator (blue), heater (red) and accelerator (orange) mode
with each occupying significant regions in the parameter
space [[74]:

 Refrigerator (R): In this regime the device consumes
energy to pump heat from the cold reservoir into the hot
reservoir; accordingly Q. > 0, Q@ < 0,and W < 0.



¢ Accelerator (A): In this mode the device absorbs en-
ergy while assisting the transfer of heat from the hot
reservoir to the cold reservoir; accordingly i.e., Q. < 0,
Qp >0,and W < 0.

Heat engine (E): Operating as a heat engine, the device
converts heat drawn from the hot reservoir into useful
work; consequently, Q. < 0, Qp > 0, and W > 0.

Heater (H): In this mode the device consumes external
energy and raises the temperatures of both reservoirs;
accordingly , Q. < 0, @y < 0,and W < 0.

Figure[3[a—d) presents phase diagrams of the XY-I" Otto en-
gine, illustrating how the device’s operational regimes depend
sensitively on the hot and cold reservoir temperatures, the
anisotropy parameter -y, and the symmetric off-diagonal inter-
action interaction strength I'. These quantities jointly deter-
mine the appearance and stability of distinct thermodynamic
modes across the control-parameter space. All simulations re-
ported below assume a quench amplitude 6h = hy—h; = 0.5,
and the default system size [V unless otherwise stated.

Panels (a) and (b) isolate the roles of the coupling I" and the
anisotropy -y, respectively. The ~ term, entering effectively as
a squared contribution, produces qualitatively similar behav-
ior for positive and negative signs of I': regions characterized
by heat-engine and accelerator operation appear both before
and after the quantum critical point (see Fig. [3p), while re-
frigerator and heater regimes emerge at the critical field. In
the vicinity of the transverse-field critical point the accelera-
tor and engine domains proliferate on both sides of the transi-
tion, and the boundary separating these domains from heater
and refrigerator behavior shifts abruptly with I" and ~, sig-
nalling the underlying quantum phase transition. Anisotropy
(Fig. Bb) enforces heater and refrigerator operation for nega-
tive and small values of v, whereas larger « produces a richer
mixture of modes: engine and accelerator regions interchange
near the phase boundary.

Panels (c) and (d) illustrate the influence of the temperature
ratio T../Ty and the quench amplitude dh. Thermal effects
are most pronounced close to the XY critical point A¢yy = 1,
where the vanishing energy gap [75] renders quenches more
dissipative and complicates coherent work extraction; this
gives rise to a reentrant heat-engine region that is more promi-
nent at T,./T}, = 0.5 than at T../T}, = 1.0 (Fig. ). Denot-
ing the temperature difference by AT = T} — 1., we find
that large thermal gradients favor the engine regime, while
reducing AT drives the system through intermediate accel-
erator and heater behaviors and ultimately into the refrig-
erator domain. Increasing the quench amplitude (Fig. 3[d)
displaces the left boundary of the heat-engine region toward
lower transverse-field values and enlarges the refrigerator sec-
tor at lower 7; the panels quantify how the engine and refrig-
erator boundaries evolve with 6h for N = 100, T, = 0.75,
and T, = 1.0.

In summary, the XY-I" quantum Otto engine implemented
on a finite Heisenberg spin chain exhibits a rich, tunable ther-
modynamic phase structure governed by ~, I, the temperature

ratio T /Ty, and the quench amplitude §h. All four opera-
tional modes—heat engine, refrigerator, heater, and accelera-
tor—occupy substantial regions of parameter space. Engine
and accelerator regimes dominate near and beyond the critical
point for intermediate values of y and I', whereas refrigerator
and heater modes tend to concentrate around h.it = 1, where
quantum critical fluctuations suppress coherent work extrac-
tion. These results underscore the decisive roles of micro-
scopic interactions, thermal gradients, and quench intensity in
shaping the performance and control of quantum thermal ma-
chines.

B. Temperature influence

In this section we examine how reservoir temperatures in-
fluence the performance of both a quantum heat engine and a
refrigerator, with thermodynamic observables plotted as func-
tions of the initial transverse field h; (see Fig. @). For the
engine calculations we set N = 100 and fix the hot-reservoir
temperature at T, = 1.0, while varying the cold tempera-
ture over the set 7, € {0.15,0.2,0.3,0.4,0.45}. In finite-
temperature systems situated near a quantum critical point one
generally expects enhanced heat exchange and energy conver-
sion: the specific heat diverges [[L16], permitting large heat
transfer for modest temperature differences, and the magnetic
susceptibility—quantifying the magnetization response to an
applied field—also grows large close to criticality [75]]. Since
the work associated with changing the magnetic field is di-
rectly proportional to the magnetization [83]], these thermo-
dynamic divergences produce pronounced features in the en-
gine’s output.

Figures a)—(b) display the work per spin W/N and the
efficiency 7 as functions of h;. As the cold-reservoir tempera-
ture decreases, the thermal gradient AT = T}, — T, increases,
and enhances the population of critical modes , which am-
plifies the extracted work per cycle, wich yields a prominent
peak in W/N near the critical field hei = 1. This peak re-
flects the enhanced thermal and quantum fluctuations at the
transition, where the effect appears as a pronounced growth
of the correlation length &, leading to a stronger collective
response [84]. Linking these quantities to the measured en-
ergy responses to reveal their influence on the system’s ener-
getic behavior. In practice, a large susceptibility means that
a small variation in field or temperature causes a large varia-
tion in the stored energy. This is explained by the amplifica-
tion of the heat capacity and susceptibilities near the critical
point [85], these enhanced quantities enable larger energy ex-
changes, which in turn result in more efficient conversion into
work.

The paramagnetic peak becomes increasingly dominant rel-
ative to the ferromagnetic feature as AT grows, and 7 ex-
hibits a concomitant improvement with larger AT, attaining
its maximum in the vicinity of the critical point where am-
plified heat capacity facilitates more efficient adiabatic ex-
changes.

Where quasi-particle excitations populate differently as the
thermal bias increases, which can amplify the response in this
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FIG. 4: (a-b) Average work per site W/N and thermodynamic efficiency 7 as functions of the starting transverse field h;,
computed for system size N = 100, fixed hot bath temperature 7}, = 1.0, and different cold bath temperatures (75 = T)
ranging over T, € {0.15,0.2,0.3,0.4,0.45}. The curves reveal two distinct peaks: the first, for h; < heit, originates from
quenches spanning the quantum phase transition, while the second, for h; > h., corresponds to evolution entirely within the
paramagnetic phase. The critical-crossing peak grows more prominent as 7 rises. (c-d) Operation as a quantum refrigerator
with Tj, = 1.0 and selected cold temperatures 7. € {0.8,0.82,0.85,0.9,0.95}. The coefficient of performance (COP) is shown
using an analogous analysis to the upper panels. In contrast to the heat exchange patterns, near-degenerate regimes (high 77)
display enhanced refrigeration performance specifically when the protocol crosses the critical point, yielding higher COP values

as T, approaches T},.

parameter region [86]]. Transport studies show that the current
(and thus the energy exchange efficiency) carries asymmetric
signatures depending on the phase and thermal bias; this ex-
plains why, at larger AT, the paramagnetic component of the
peak can dominate.

Overall, the engine displays a clear athermal signature asso-
ciated with criticality that strengthens under stronger thermal
gradients.

Where in the quantum critical point (QCP): critical quan-
tities (quantum correlations, divergence of the Griineisen pa-
rameter) [87]] make the system’s response qualitatively differ-
ent from a simple thermal response, and this effect is amplified
when the thermal gradient is large enough to massively excite
the critical modes [88]].

For the refrigerator (Fig. f{c)—(d)) we again take N = 100
and T, = 1.0, but probe T, € {0.8,0.82,0.85,0.9,0.95}.
Performance deteriorates as 7. approaches T},.

In near-equilibrium (small AT’) the stationary heat flux J
is given by linear response J o< AT [89] 90]. Thus when
T. approaches T}, we have a drop in fluxes , where in near-
equilibrium (T, — T} ) the thermal driving force vanishes and
the flux follows linear response , hence the concomitant de-

crease in )./N and COP causes a loss of efficiency .

Near-equilibrium conditions (small AT') reduce the refrig-
erator’s ability to pump heat, although a residual enhancement
persists close to the critical field owing to the same critical
susceptibilities that benefit the engine.

Importantly, unlike the engine, the refrigerator does not ex-
hibit pronounced athermal behavior before versus after the
transition; its response is primarily governed by the magni-
tude of the thermal gradient.

The athermal effects tied to spectral structure are largely
masked as soon as AT is small the engine measures the sys-
tem’s ability to convert an energy difference into work , this
can reveal the spectral structure and increased fluctuations
(athermal) [91},192]]. The refrigerator, which aims to move heat
against a gradient, depends strongly on the gradient magni-
tude and transport coefficients; if AT is small, the “athermal”
component (quantum structure) is subordinate and barely vis-
ible. Transport studies [93.[94].

In summary, the critical field h; = 1 plays a central role
for both devices by leveraging quantum criticality to boost
work and heat exchange, with the effect most evident un-
der large thermal gradients (e.g., high T}, low T, for the
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FIG. 5: (a) The work per spin, denoted as W/N, is analyzed as a function of the initial transverse field h; across various system
sizes N € {20, 30,40, 50}, with cold reservoir temperatures set at 7, = 0.16 and cold reservoir at T, = 0.45. (b) The lower
panels replicate the analysis of the upper panels but focus on the efficiency of the heat engine, 7. The critical field, hy = 1,
is indicated by red dotted lines . (¢) The upper panels present the heat extracted from the cold reservoir per spin, denoted as
Q./N, as a function of the initial transverse field h;, evaluated across various system sizes IV, with cold reservoir temperatures

of T, = 0.8 and hot reservoir T},
performance (COP) of the refrigerator.

engine; conversely, small AT undermines refrigeration per-
formance). These results underscore the interplay between
divergent thermodynamic susceptibilities (specific heat and
magnetic susceptibility) and nonequilibrium driving in shap-
ing the operation of quantum thermal machines [[/6H78]. The
findings therefore emphasize that optimizing such devices re-
quires careful tuning of reservoir temperatures in conjunction
with control of the working-medium parameters to exploit or
mitigate critical effects.

C. Spin influence

In this section, we shall examine the influence of cor-
relations between particles and their consequential impact
upon the performance of quantum heat engine and refrigerator
modes Fig[5] by changing the system size N in fixed cold and
hot reservoirs. The performance of a heat engine is defined by
two main factors: the work output, W, and the efficiency, 7.
Our focus here is on determining and analyzing the parameter
ranges that optimizes both quantities.

To isolate non-extensive effects we normalize all exten-
sive quantities by N and present the work per spin W/N
and the efficiency 7 as functions of the initial transverse field

1.0. (d) the analysis mirrors that of the upper panels but focuses on the coefficient of

h;. Panels (a)—(b) display these observables for a range of
system sizes while holding the reservoirs at 7;, = 0.45 and
T. = 0.16. A salient feature is the emergence of a double-
peak structure in both W/N and : a critical peak appearing
for h; < 1 (associated with quenches that traverse the quan-
tum critical point h..iy = 1) and a paramagnetic peak located
at h; > 1 (corresponding to quenches confined to the param-
agnetic phase).

In the paramagnetic phase is to leading order insensitive to
N , this can be explained by the correlation length wich is
short, so spins are weakly correlated at long distances ,and is
small compared to system size = spatial correlations decay
rapidly; energy exchanged during strokes is mostly local [95]].
contributions are essentially local and additive, so the engine
behaves like a collection of single-spin Otto engines

In contrast, the critical peak shows pronounced size depen-
dence: the divergence of correlations at the QCP is limited by
finite system size, leading to collective enhancement (finite-
size scaling) of W/N and 7; characterize how long-range
correlations near the QCP enhance the collective response
[96]]. Explaining why fluctuation-related quantities would di-
verge in the thermodynamic limit and turn into strongly N-
dependent peaks in finite systems. characterize how long-
range correlations near the QCP enhance the collective re-
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FIG. 6: (a) The work per spin, denoted as W/N, is analyzed as a function of the initial transverse field h; across various system
anisotropy ~y, with cold reservoir temperatures set at 7, = 0.16 and cold reservoir at T}, = 0.45 varying v € {0.2,0.5,0.7,1.0}.
(c) The lower panels replicate the analysis of the upper panels but focus on the efficiency of the heat engine, 7. The critical
field, hqqe = 1, is indicated by red dotted lines. (¢) The upper panels present the heat extracted from the cold reservoir per spin,
denoted as )../N, as a function of the initial transverse field h;, evaluated across various system sizes N, with cold reservoir
temperatures of 7, = 0.9 and hot reservoir at T, = 1.0 . (d) the analysis mirrors that of the upper panels but focuses on the

coefficient of performance (COP) of the refrigerator.

sponse.

Panels (c)—(d) report the refrigerator performance: the up-
per panels show the heat extracted per spin Q./N versus h;
across several N, and the lower panels show the correspond-
ing coefficient of performance (COP). These results were ob-
tained for 75, = 1.0 and T, = 0.8. Consistent with previous
studies [10], when the cold-reservoir temperature is relatively
large one observes a pre-transition sensitivity to V.

Indicating locally dominated absorption; in contrast, COP
as a ratio can amplify residual critical signatures (especially at
higher T,) and reveal a weak subcritical peak , pre-transition
N-sensitivity when T, is relatively large thermal modes are
more populated; if the unitary stroke crosses regions with
small gap, collective contributions (correlated over sites) [98]
manifest before the proper transition, and these depend on net-
work size (larger spatial radius modes).

In the large thermal-gap scenario considered here, however,
the dependence on system size is markedly weaker and is fol-
lowed by a sharp decline across the phase boundarys; this size
sensitivity is further suppressed at still larger 7.. The ex-
tracted heat )./N is generically convex in h; and shows only
a mild N-dependence, whereas the COP can reveal residual
signatures of criticality for higher T,

And gives asymptotic correlation function forms and show
how local observable response varies with A and model pa-

rameters: convexity of Q./N(h) is expected when per-site
absorption is dominated by regular local contributions plus
a local critical bump [99], show that COP and other ther-
modynamic quantities can retain criticality signatures even
when Q./N is smooth — COP as a ratio (sensitive to rela-
tive changes between (). and input work) can amplify small
structures and make residual critical effects visible. (e.g., if
Win drops locally faster than ., COP rises) — hence resid-
ual critical signatures detectable in COP while @)./N appears
smooth.

In particular, a distinct sub-critical peak at h; < 1 persists
and scales with NV, reinforcing the conclusion that quantum
critical fluctuations can enhance collective refrigeration ef-
fects under appropriate thermal conditions.

The strokes involves QCP crossing, long correlation length
and mode coupling allow collective responses: extracted en-
ergy (or pumped heat) becomes coherent over multiple sites
and evolves non-trivially with V. Observed subcritical peak
scaling in your data is the expected signature of collective en-
hancement via critical fluctuations [101]; , effectively enhance
refrigeration under suitable thermal conditions .

In summary, finite-size correlations selectively amplify
thermodynamic response near the quantum critical point: the
engine’s critical peak is strongly size-dependent and reflects
cooperative phenomena, while the paramagnetic response re-



mains essentially extensive. For the refrigerator, size effects
are more subtle and contingent on the thermal gap; close to
equilibrium (small AT) the device shows little finite-size sen-
sitivity, whereas larger gaps can reveal N-dependent critical
features. These findings highlight the dual role of reservoir
temperatures and quantum criticality in sculpting the opera-
tional landscape of many-body quantum thermal machines,
and they point to system size as a practical knob for enhancing
or suppressing collective performance.

D. The impact of anisotropy

This section analyzes the influence of anisotropy on the
thermodynamic performance of the quantum Otto machine,
with emphasis on features induced by the quantum phase tran-
sition (see Fig.[6). Panels (a)—(b) summarize the heat-engine
behaviour:

For low anisotropies ~ the system extracts on average more
energy per site and achieves higher efficiencies near the criti-
cal regime [[101]] : effective gap reduction and increased low-
energy mode density , make modes thermally accessible and
favor collective exchanges.

Increasing v brings the system closer to transverse Ising
(7 — 1) where spectrum and excitation nature change (typi-
cally larger gap depending on diagram point). Gap opening
(or reorganization) makes energy response less sensitive to
small h variations with transition effect becomes smoother
(less abrupt) [103]]. Additionally, suppression of available
low-energy modes reduces W/N.Concurrently the paramag-
netic peak (located at ~; > 1) gains prominence, particularly
around v = 1. Thus, low ~ favors enhanced critical responses,
whereas larger anisotropy shifts the balance toward paramag-
netic operation and smooths the transition-induced features.

For high v (near Ising), paramagnetic-side dynamics and
spectrum favor excitations that, though more local, can be ef-
ficiently exploited by the cycle depending on h; trajectory.
Result is a sharper, sometimes dominant paramagnetic peak
as local contributions become more coherent and additive
(hence robust peak at h > 1). We observes this reversal be-
tween critical and paramagnetic contributions depending on
parameters.y modulates dominant excitation nature (collec-
tive low-energy vs local) [[102]]. Low ~y favorizes more gapless
modes with amplified critical responses. High ~ have a more
local behavior with larger gap, additive paramagnetic peaks,
softened features.

The efficiency 1 mirrors these trends: it attains its highest
values for small -y, with a pronounced suppression at the crit-
ical field hepie = 1.

Efficiency 7 (nr) depends on work(absorbed heat ratio).
For small ~, greater extractable energy per spin (accessible
critical modes) often translates to better conversion if losses
are controlled to high 7. However, sharp suppression at h = 1
may come from non-adiabatic irregularities or abrupt gap
change (more dissipation) [[104], leading to n dip exactly at
QCP if protocol is not ideally slow.

Panels (c)—(d) report the refrigerator metrics.

We observe that Q./N increases for low anisotropies -,
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especially in the paramagnetic sector: reducing ~ brings the
model closer to the XX case, increases the density of ther-
mally accessible modes and allows greater heat absorption per
site [[105] .

COP = |Q.|/W;, depends on both absorbed energy and
input work. As « increases from 0, two effects compete:
(a) partial gap opening reduces irreversible losses (improv-
ing COP); (b) excitation structure change makes conversion
less favorable (relative (). reduction or Wi, increase)[100,
107]. The trade-off can produce an intermediate optimum
(v = 0.7 per your numerical parameters). Beyond a certain
anisotropy threshold (post-critical), spectrum reorganization
suppresses critical advantage and COP drops then stabilizes.
The anisotropy enhance efficiency in certain ranges and the
effect is strongly parameter-dependent , and convertible heat
fraction .

In summary, anisotropy controls the switch between col-
lective mechanisms (low v, enhanced extraction) and gapped-
spectrum behaviors (high v, COP potentially improved up to
a threshold) [[108,, |109].

In short, whereas small anisotropy amplifies heat extrac-
tion and critical enhancement, larger anisotropy can improve
refrigeration performance up to a threshold beyond which crit-
ical advantages are lost.

These observations can be rationalized in terms of many-
body quantum correlations. Small ~y preserves stronger quan-
tum coherence and nonlocal correlations (entanglement and
spin—spin correlations) [79, |80]], which amplify collective re-
sponses near criticality and thus boost engine performance.
Large anisotropy suppresses critical fluctuations and drives
the system toward a more classical paramagnetic-like regime:
this stabilizes dynamics but reduces the capacity to harness
critical energy fluctuations, explaining the observed satura-
tion and subsequent fall-off of the COP at high +. The sat-
uration phenomenon may therefore indicate a practical quan-
tum bound: when correlations are overly quenched, the ad-
vantages conferred by the phase transition can no longer be
exploited, producing a sharp degradation in thermodynamic
performance.

Overall, the anisotropy parameter v emerges as a key con-
trol knob for tailoring operational regimes of quantum thermal
machines: tuning v allows one to trade off between exploit-
ing critical, cooperative enhancements and attaining robust-
ness associated with paramagnetic-like behaviour.

E. Influence of the symmetric off-diagonal interaction

We now examine the impact of the The symmetric off-
diagonal interaction I" , on the thermodynamic performance
of the quantum Otto machine, focusing on behavior near the
quantum phase transition (see Fig.[7). The I" coupling intro-
duces an symmetric, chiral term o D - (S; x §]) that com-
petes with conventional exchange interactions and thereby al-
ters both the spectral structure and collective dynamics of the
spin chain [62] 182]].

For the heat engine (Fig. —b), the work per spin W/N at-
tains its largest values immediately before the transition when
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FIG. 7: (a) The work per spin, denoted as W/N, is analyzed as a function of the initial transverse field h; across various
~ interaction intensity I' with cold reservoir temperatures set at 7, = 0.16 and cold reservoir at 7, = 0.45 varying I €
{0.0,0.3,0.6,1.0}. (b) The lower panels replicate the analysis of the upper panels but focus on the efficiency of the heat engine,
1. The critical field, hqy = 1, is indicated by red dotted lines (c¢) .The upper panels present the heat extracted from the cold
reservoir per spin, denoted as )../N, as a function of the initial transverse field h;, evaluated across various system sizes N,
with cold reservoir temperatures of 7. = 0.9 and hot reservoir at 7, = 1.0. (d) the analysis mirrors that of the upper panels but
focuses on the coefficient of performance (COP) of the refrigerator.

I" is small, with the global maximum located at I"' = 0.

The chain retains the ”standard” alignment dictated by the
exchange and the transverse field. The collective excitations
(low-energy modes near the QCP) are coherent and extended
across the lattice — they can be coordinated by the strokes
of the Otto cycle to store and then release energy efficiently.
* The work extracted per unitary stroke results from the re-
organization of the level occupations. If the spectrum fea-
tures many weakly energetic modes (small gap) [L10], a small
parameter variation (field) allows significant energy displace-
ment between levels — hence a large WW. Without The sym-
metric off-diagonal interaction, the level structure favors this
collective transfer, hence the maximum at I" = 0.

This indicates that weak or vanishing I coupling preserves
spin alignment and coherent collective response, which favor
efficient energy extraction in the pre-critical regime. As I in-
creases, the I' term introduces magnetic frustration and spin
misalignment; consequently W/N decreases and the domi-
nant extraction feature shifts into the paramagnetic sector.

The I' term is symmetric and favors canting chiral order
rather than simple ferromagnetic alignment. It breaks local
alignment and tends to decorrelate spins from each other: co-
herent collective modes are weakened. Frustration and cant-
ing result in: (i) modification of the spectrum (reordering of

levels, opening/closing of gaps at different k points), (ii) re-
duction of the effective correlation length of the participating
modes, (iii) partial localization of excitations. These effects
reduce the efficiency of collective energy transfer to W/N
decreases. In the strongly gapped paramagnetic regime, the
contributions become local and additive (each site or small
subregion provides an independent contribution). When col-
lective modes are suppressed by off-diagonal interaction, the
most efficient extraction can occur for field values where the
local (paramagnetic) response is favorable — hence the shift
of the peak.

In this large-I" regime, the paramagnetic peak can outper-
form the critical peak, so that post-critical operation becomes
comparatively more effective.

In the strongly gapped paramagnetic regime, the contri-
butions become local and additive (each site or small subre-
gion provides an independent contribution). When collective
modes are suppressed by off-diagonal interaction [111]], the
most efficient extraction can occur for field values where the
local (paramagnetic) response is favorable — hence the shift
of the peak.

The efficiency 7 displays a complementary but nontrivial
pattern: the paramagnetic phase generally yields higher 7,
especially for small I', whereas near the critical field the ef-



ficiency either falls sharply (for weak v coupling) or varies
smoothly (for stronger I'), reflecting the interplay between en-
hanced susceptibility, instability and the y-induced modifica-
tion of level spacings.

The efficiency n = W/Qy, (or variant according to your
definition). It depends on both the extracted work and the
input heat. Two important effects:

If W decreases but (0, decreases even more, 7 can increase.
In the local paramagnetic regime, the heat input per site can be
lower (fewer excitations to sustain) . Near the QCP, the very
strong susceptibility (large xr, large C) can amplify the Qp,
required to produce a small energy gain or generate dissipa-
tion via non-adiabatic excitations; if the protocol is not slow
enough, these irreversibilities cause 7 to drop.

The influence of the The symmetric off-diagonal interaction
modifies the energy level spacings and the density of states. If
T" smooths the variation of levels around the QCP (spectral
reordering), the response in i becomes gentler, the drop in 7
at the QCP is damped . If I' is weak, gap closure and high
sensitivity make the exchange more fragile (non-adiabatic ex-
citations) with abrupt drop in 7 [112]]. In summary: I" acts
as a spectral damper: it can reduce the amplitude of fluctu-
ations (and losses related to non-adiabaticity), making 7(h)
smoother. Adiabaticity finite-time: if unitary strokes are too
fast, non-adiabatic excitations are created, increasing losses.
The effect is maximal near the QCP (small gap) and accentu-
ates the drop in 7 if I" is weak. Coupling to reservoirs (local
vs global, Markovianity): the way baths inject/extract heat
controls whether exchanges exploit local or global modes.
Certain coupling structures restore collective efficiency even
when I' is moderate. Finite size N: the critical peak scales
as predicted by finite-size scaling (amplitude/width); the role
of off-diagonal interaction can modify effective exponents or
simply the constant in the scaling. Testing several N is essen-
tial. Temperature thermal gradient: the visibility of collective
effects depends on the thermal occupation of modes: if T is
too high, modes can saturate; if too low, access to low-energy
modes is reduced.

For the refrigerator (Fig. [7c—d), the extracted heat per spin
Q./N follows an analogous trend: maximal cooling is ob-
served at small I", where coherent collective modes and large
susceptibilities facilitate effective heat uptake.

Collective modes susceptibility: near the critical point (or
in the pre-critical regime), the chain has numerous low-energy
excitations that are strongly correlated (long correlation length
&, high density of low-¢ modes). These modes allow efficient
reception and storage of energy when an isochore connects
the system to the cold reservoir: a small variation in mode
population yields a large local energy variation with large Q..
Why small T" helps: the off-diagonal interaction (symmet-
ric term) tends to break alignment and confine the fragment
modes [113]. For I' = 0, these modes remain extended and
coherent; the susceptibility (e.g., fidelity susceptibility xr,
derivatives of correlations) is large and enables efficient heat
pumping per site. Where that informational quantities (QFS,
WYSI) and correlation derivatives exhibit singularities(log-
divergences) at the QCP and grow with N [114]] , these are
precisely the signatures that enable high QQ./N when coupling
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the system to the cold reservoir.

The coefficient of performance (COP) behaves nonmono-
tonically with I': it increases with I" up to an intermediate opti-
mum (empirically near I' ~ 0.5), after which further strength-
ening of the off-diagonal interactionsuppresses coherence and
reduces COP.

And it depends on both the pumped heat and the input work.
Two competing effects as I' increases: Damping of losses: a
slight increase in I" can modify certain gaps and reduce non-
adiabatic transitions or parasitic couplings to baths wich de-
crease in irreversible losses to COP rises. Destruction of co-
herence: beyond a threshold, I' fragments collective modes,
reduces useful low-¢ density, and increases dissipation. In-
termediate optimal value: the non-monotonic behavior (opti-
mum ~ 0.5 here) corresponds to the balance point between
these two effects: enough symmetric off-diagonal interaction
to reduce certain losses, but not too much to break collective
coherence.

Beyond the transition the COP partially recovers and be-
comes relatively insensitive to I' in the strongly paramagnetic
regime, consistent with a crossover to more diffusive, incoher-
ent heat transport.

The strongly gapped paramagnetic phase or when domi-
nated by local fluctuations, thermal exchanges become mainly
local and incoherent. The role of extended modes is weak; ab-
sorption and transport occurs via local transitions that depend
little on the fine details of the I' coupling. Non-equilibrium
transport studies show that for strong I" , thermal conduction
shifts from more coherent regimes to more diffusive regimes
— this change explains the weakening of the COP-I" depen-
dence. For & strongly paramagnetic, plot COP vs I for several
N': curves overlap to a weak dependence. Transport behavior
measurement: stationary current J vs I' shows plateau with
low sensitivity in paramagnetic regime.

Physically, these findings reflect a balance between two
competing effects of the symmetric off-diagonal interaction .
At small T, the symmetric off-diagonal interaction term opens
additional transition channels and enhances the system’s re-
sponsiveness to driving, thereby improving thermodynamic
performance. At large I', however, the induced frustration and
loss of spin alignment undermine quantum coherence, perturb
the level structure and impede collective dynamics—effects
that collectively reduce work extraction and refrigeration effi-
ciency. The observed intermediate optimum (e.g. COP peak-
ing around I' = 0.5) highlights that moderate chiral coupling
can be beneficial, while excessive I strength is detrimental.

In summary, I constitutes an effective control parameter for
tuning quantum thermodynamic cycles: judicious adjustment
of the I interaction can enhance either engine or refrigerator
operation, but over-driving the chiral coupling quenches the
cooperative phenomena that underpin superior performance.
These results thus underscore the subtle interplay between
chirality, critical fluctuations and nonequilibrium thermody-
namics in many-body quantum heat engines. [62} 82]
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FIG. 8: (a) The Scaling Factor per spin, denoted as IT/N, is analyzed as a function of the initial transverse field h; across
various system size , with cold reservoir temperatures (for our case 7o = T,) set at T, = 0.16 and hot reservoir at 7}, = 0.45
varying N € {20, 30, 40, 50}.(b) The lower panels replicate the analysis of the upper panels but focus on the Scaling Factor per
spin ITz /N of quantum refrigerator. The critical field, k¢ = 1, is indicated by red dotted lines. (¢) The upper panels present
ITI/N as a fonction of h;, evaluated at various temperature of the cold reservoir T, € {0.15,0.35,0.45}, with fixed hot reservoir
temperature 7, = 1.0 . (d) The analysis mirrors that of the upper panels but focuses on IIr/N of the quantum refrigerator with

varied T, € {0.8,0.85,0.9} and fixed T,=1.0.

IV. SCALING FACTOR
A. Ciritical effect on the stabilty of the system

The factor II serves as a metric to assess how proficiently
a heat engine extracts mechanical output, notwithstanding an
efficiency that remains below the theoretical Carnot maximum
(811

w

I=—.:
Ticarnot — 1]

(18)

A high scaling factor means that the system is optimized to ex-
tract significant work, even in non-ideal conditions. In quan-
tum engines, a higher II reflects more efficient energy conver-
sion through quantum effects like correlations and superposi-
tion. It also suggests lower energy losses, allowing the system
to approach Carnot efficiency. Overall, a high scaling factor
indicates that the system is productive, efficient, and resilient
to fluctuations.

It is not evident whether the absolute maximum of II corre-
sponds to the critical point or to the paramagnetic peak. Since
critical behavior becomes more pronounced with increasing
system size, relatively large values of N might be required
in order to capture the effects of critical enhancement. It is

worth noting that, while the height of the paramagnetic peak
in II/N displays a conventional linear scaling, II ~ N, the
critical peak exhibits a growth that appears to be faster than
linear.

We now proceed to investigate the influence of the the sta-
bility of the operational regimes across different system sizes
Fig[B}a, particular attention is devoted to how variations in
the temperature 7, Fig[8}c affect the location and nature of
the performance maxima.

A substantial enhancement in engine performance is illus-
trated in Fig[8}a, where the thermodynamic efficiency metric
per spin IT/N is plotted as a function of the initial transverse
field h;. In the presence of a pronounced temperature gra-
dient between the reservoirs, optimal performance is gener-
ally achieved when quenches are carried out within the para-
magnetic phase. Conversely, increasing the temperature of
the cold reservoir reduces the overall temperature gradient,
thereby limiting heat absorption and suppressing work pro-
duction away from criticality. Under such conditions, the
performance peaks of II tend to align with the critical field
h; = hgi, indicating that energy conversion becomes less
efficient far from criticality but is enhanced near the critical
point. Nevertheless, predicting whether the global maximum
of IT occurs at the critical or paramagnetic peak remains non-
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(a-b) Behavior of the maxima of the critical and of the paramagnetic peak of II/N versus N for the engine mode (E),

with T, = 0.16 and T, = 0.45 varying I € {0,0.3,0.6,1.0}. (c-d) Bottom panels: behavior of the maxima of the critical and
of the paramagnetic peak of I /N versus N, varying I" € {0,0.3,0.6,1.0} for 7. = 0.9 and T}, = 1.0 for the refrigerator

mode (R).

trivial. Furthermore, since critical phenomena become more
pronounced with increasing system size, relatively large val-
ues of N may be required to fully harness critical enhance-
ment effects.
In analogy with the engine mode (E), we define a comple-
mentary quantity to assess the refrigerator performance:
Qe

HRzia

19
onn (19)

where 0nr = n& — n® denotes the deviation of the refrig-
erator’s coefficient of performance (COP) from the Carnot
limit. Figb presents the behavior of II/N for the same
parameter set as our previous results.The plots[8}d shows that
the optimal refrigeration performance is consistently achieved
within the paramagnetic phase, regardless of system size. The
augmentation of the critical peak becomes distinctly appar-
ent when examining the performance trends as a function of
the transverse field for differente thermal gaps similar to that
reported for the study of the Ising [10] and long-range Ising
models [74]. However, in our case, a larger thermal gap was
chosen, which preserves the refrigerator (R) operational mode
without switching to the quantum heat engine (E) regime. As
a result, the dependence of the critical peak on the chain size
is weaker compared to [10]. Unlike the engine (E) mode , we
observe that the stability and performance do not depend sig-
nificantly on the thermal gap AT in the the (R) mode for a
fixed N. Specifically, [Tz /N is larger for intermediate tem-
peratures compared to cases where AT is either narrower or

broader. In particular, for small systems, the discretization of
energy levels, boundary effects, and the absence of a true ther-
modynamic limit significantly influence the energy exchange
processes. These effects can lead to fluctuations and non-
extensive behaviors in quantities such as heat and work per
spin. For example, the specific heat of finite spin chains shows
strong fluctuations and non-monotonic behavior for small IV,
before stabilizing into an intensive quantity as N increases
[I18]. Additionally, quantum coherence and entangle-
ment, which play a significant role in small quantum systems,
can enhance or suppress the performance of quantum thermal
machines. These effects are negligible in the thermodynamic
limit but can substantially affect observables such as work and
efficiency at small N [120]. This highlights the emer-
gence of distinctly non-classical thermodynamic signatures in
small quantum systems [121} [122]]. Moreover, boundary con-
tributions in finite spin chains are non-negligible when N is
small, altering local and global observables, including the ef-
fective energy exchange per spin [124]). Therefore, the
tendency of the work/heat per spin to become independent of
N in the large- N limit aligns well with the extensivity princi-
ple of thermodynamics. For small N, however, the observed
behavior is fully consistent with the known physics of finite-
size quantum systems[125] [127].
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FIG. 10: (a-b) Evolution of the maximum values of II/N as a function of chain length NV in the heat-engine regime (E), at
temperatures 7, = 0.16 and T}, = 0.45, for several anisotropy strengths v € {0.2,0.5,0.7,1.0}. Distinct curves illustrate the
height of the critical peak and that of the paramagnetic peak. (c-d) Lower panels: size dependence of the peak amplitudes of
IIg/N in the refrigerator regime (R), with 7. = 0.9 and 7}, = 1.0, and the same set of  values v € {0.2,0.5,0.7,1.0}. The
data separate the contributions from the critical and paramagnetic maxima.

B. Enhancement of the performance with the system size

The enhancement of the critical peak becomes evident
when the performance is examined as a function of system
size. To quantify this effect we perform regression fits to ex-
tract a scaling exponent a such that the relevant peak ampli-
tude (per spin) scales as N“. This analysis distinguishes three
regimes—small, intermediate and large chains—and permits a
direct comparison between peaks located in the paramagnetic
sector (pre-transition) and those appearing in the ferromag-
netic sector (post-transition).

For the quantum heat engine (Fig. Pp—b) increasing the
Dzyaloshinskii—Moriya parameter I" generally reduces perfor-
mance, an effect that is most pronounced for small N. The
fitted exponent grows from ¢ =0 at I' = 0 to a ~ 0.23 at
I" = 1, indicating that finite-size fluctuations migrate toward
intermediate chain lengths and produce an enhanced (nearly
linear) N-dependence for the engine mode. In physical terms,
larger I' accelerates the crossover from vanishing-size scaling
to a regime with appreciable system-size sensitivity.

By contrast, the refrigerator (Fig. Pk—d) displays a dis-
tinct response. While stronger I' reduces absolute stability,
it simultaneously weakens the size dependence: the exponent
controlling the paramagnetic peak decreases from a~0.0055
atI' = 0to a~0.001 atI" = 1. Thus, although increasing the
off-diagonal coupling lowers overall performance, it also sup-

presses the growth rate with NV, yielding qualitatively similar
behavior on both sides of the transition.

Anisotropy produces related but distinguishable effects.
For the engine mode (Fig. [[0p-b) the exponent drops from
a~034aty =02toa~0at~y = 1. This trend in-
dicates that small v amplifies sensitivity to N (approaching
near-linear scaling in the critical regime), whereas large v
drives the system toward classical, extensive or saturated be-
haviour (IT/N ~ 1). The qualitative response is similar be-
fore and after the phase transition, but post-critical dynamics
become more classical and less dependent on system size as y
increases.

For the refrigerator (Fig. [[0c—d), intermediate anisotropy
(v =~ 0.5) confers slightly better stability than very low
anisotropy: the fitted exponents are a ~ 0.0072 at v = 0.5
versus a2 0.0070 at v = 0.2, both indicating a very weak N-
dependence. After the transition a more linear, size-sensitive
behaviour emerges, mirroring the tendencies observed for the
engine.

Deviations observed for small [V are consistent with finite-
size effects: spectral discreteness and amplified fluctuations
produce departures from thermodynamic-limit scaling. As N
increases these mesoscopic anomalies subside and the system
crosses over to the asymptotic scaling captured by the expo-
nent a.

Finally, the enhancement of the critical peak should be
viewed as a crossover phenomenon associated with the clos-



ing of the spectral gap A at criticality.

V. CONCLUSION

We have introduced a quantum Otto cycle that utilizes a
many-body working medium, specifically a transverse-field
quantum Ising chain. This system undergoes alternating pro-
cesses, an unitary evolution driven by a time-varying trans-
verse field [130] and thermalisation while coupled to a ther-
mal reservoir. The dynamics during the thermalisation phases
are governed by a nonlocal Lindblad master equation, which
provides an accurate representation of the system’s interac-
tion with thermal baths [[131]. Our analysis of the engine’s
operational regimes demonstrates that it can function as ei-
ther a heat engine or a refrigerator across a wide range of pa-
rameters, depending on the temperatures of the reservoirs and
the characteristics of the thermodynamically adiabatic trans-
formations [[132]] . To assess the heat engine’s performance,
we evaluated critical metrics, including the work output, ef-
ficiency, and their ratio. These measures reveal a dual-peak
pattern: one peak corresponds to quenches spanning the quan-
tum critical point, while the other emerges from quenches
within the paramagnetic phase. The peak linked to the quan-
tum critical point becomes more distinct as the temperature
difference between the reservoirs decreases, exhibiting a su-
perlinear scaling with system size, which highlights the role
of quantum criticality.We further extended our investigation
to the refrigerator mode, analyzing the heat extracted from
the cold reservoir, the coefficient of performance (COP), and
their ratio. Although less prominent than in the heat engine,
signatures of quantum criticality remain evident in this config-
uration. Additionally, we explored the effects of partial ther-
malisation, shedding light on the behavior of more realistic
quantum many-body engines interacting with external baths.

These findings offer valuable insights for near-term exper-
imental implementations using ion traps, which can simulate
interacting spin chains with on the order of 102 spins. While
the engine’s absolute performance is typically maximized for
quenches within the paramagnetic phase, its scaling with sys-
tem size N can be optimized for quenches across the criti-
cal point. However, the superextensive scaling of the criti-
cal peak levels off at large N, suggesting a finite range of
system sizes where the performance enhancement near criti-
cality can be effectively harnessed. The figure illustrates an
enhanced thermal sensitivity within the paramagnetic phase,
which exhibits greater stability and a more pronounced depen-
dence on the thermal gap. In particular, the quantum heat en-
gine demonstrates improved stability for larger thermal gaps
AT, whereas the refrigerator regime displays the opposite
trend. Moreover, both regimes show a tendency toward satu-
ration and reduced fluctuations compared to the behavior ob-
served near the critical point.In this study, we primarily con-
centrated on the engine’s performance in terms of work out-
put (or heat exchanged) per spin. Nevertheless, several areas
merit further exploration, including the optimization of power
output—a complex challenge requiring detailed consideration
of both the thermalisation protocol and the adiabatic trans-

16

formations . For instance, determining the optimal operat-
ing speed would necessitate accounting for the thermalisation
timescale [132]], which depends on the microscopic properties
of the modeled bath. Moreover, it remains uncertain whether
a partially thermalised stroke would underperform compared
to a fully thermalised one. To address the potential reduc-
tion in power output [133]] , due to slower parameter adjust-
ments during the adiabatic stroke, advanced methods such
as shortcuts to adiabaticity, variational optimization, and re-
inforcement could be employed [134].Furthermore, examin-
ing the statistical distribution of the work output could pro-
vide additional experimental insights. The work output may
exhibit significant fluctuations, potentially compromising the
engine’s stability. While these fluctuations are expected to di-
minish with increasing system size, they may be amplified by
quantum criticality. Lastly, the approach outlined here can
be readily adapted to systems beyond the bosonic quadratic
model used in this work, potentially revealing alternative per-
formance characteristics[[135H139]].
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Appendix A: Energy Spectrum and Finite-Size Effects

Its Hamiltonian is given by:

H = Hxy + Hr, (A1)

where

L L
1) 1)
Hxy =J E Kl+§>0£a£+1+(1—5)07‘%0%4_1}Jrh g o5,
n=1 n=1
(A2)
and

L
Hy =Ty (ofoly +70kon). (A3
n=1

Here, the operators oy, (with a = z, y, 2) act on the nth site
of the chain. The parameters J, §, and h represent the ferro-
magnetic coupling, the anisotropy parameter, and the strength
of the uniform transverse field, respectively. Additionally, I
determines the amplitude of off-diagonal exchange interac-
tions, while ~ controls their relative weight. We impose peri-
odic boundary conditions (or+1 = o1), with L denoting the
length of the spin chain.The analytical solution of this Hamil-
tonian follows three steps: a Jordan—Wigner transformation,
followed by a Fourier transformation, and finally a Bogoli-
ubov transformation. These steps lead to the diagonalized
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FIG. 11: (a-b) The magnetization and the susceptibility of the XX model in the ground-state as a function of h/J. (¢) Specific

heat as a function of the Temperature 7/]J.

Hamiltonian: The energy spectrum of the system can be ef-
ficiently analyzed by employing the Jordan-Wigner transfor-
mation [140]], which maps spin operators to spinless fermionic
operators via the nonlocal relations:

o = —[J (0 —2cfe)(c; +cb), (Ad)
I<j
4

1 _ ot Yy __ s ox 2
aj—l QCij, oj =10507,

(AS5)
where c; (c}) annihilates (creates) a spinless fermion at site
j and the canonical anticommutation relations {c;,¢;} =
{CZ‘L’C}} =0, {C;‘rvcj} = 0ij -

Applying the Jordan—Wigner transformation to the Hamil-
tonian , yields a quadratic fermionic form which naturally sep-
arates into bulk and boundary contributions,

H=H,+ H.. (A6)
The bulk part reads
N-1
H, = Z [(_CJ‘C;H —CCi+1 T+ VC}C;H + C;Cj+1)
j=1

+il(=cjel 1y + e+ efelyy — clejin)

+ iFoz(cjc}L-+1 +cjcip1 + c;r-c;L-Jrl + C;Cj+]_)
N

+hY (1 - 2cley). (A7)
j=1

The edge term arising from the Jordan—Wigner string is

H, = s[(—chI —~yener + 'ycj\,c]; + c}f\,cl)
+ iI‘(chcJ{ +cnel + c}r\,cJ{ - c}f\,cl)

+iTalenel 4+ ener + clyel + C}LVC1)} ;. (A8)

where the phase factor s = (—1)VrF!

depends on the total
fermion number N, = ) j cj.cj and enforces parity sectors.

Consequently the fermionic chain may obey either periodic

(¢cy41 = c1); the 1/N corrections coming from the bound-
ary term vanish in the thermodynamic limit. Introducing the
Fourier transform

1 i P it
Ci = —— e "y, cl = — e™er, (A9

(and using the half-integer momenta appropriate to the an-
tiperiodic sector, k = nw/N withn = —(N — 1), —(N —
3),..., (N — 1)), the bilinear Hamiltonian becomes

H= Z [(2cosk + 2T'(a — 1) sink — 2h)c£ck} + Nh
k
+> {[(@+1) +in]sinkc_pep + He}. (AL0)
k

This quadratic form can be written in Bogoliubov—de Gennes
(BdG) notation as

A= e (),
k

(Al1)

Diagonalization is achieved via the Bogoliubov transforma-
tion

b = upcy, + vkew’“ctk, b_p = upc_p — vke“"’“cz,

(A12)
with real coefficients satisfying uy = u_g, v_ = —vj and
phases i = ¢_j.The Hamiltonian becomes diagonal,

A=Y ¢ (bzbk - %), (A13)
k
Where the excitation spectrum ¢y, is given by :
e = Py + /A2 + B + Q3, (Al14)
with
Ay, = 2[J cos(k) — h] (A15)
By, = 2J ¢ sin(k), (A16)
P, = 2T(y — 1) sin(k), (A17)
Qr = 2T (v + 1) sin(k). (A18)



The Bogoliubov transformations introduce angles defined
as:

B2 2
tan(20;) = Sf"QgQ, tan(20y) = sgn(k) 7\/2:%7
(A19)

In the thermodynamic limit, the ground state is formed by
filling all negative-energy quasiparticle states:
be|GS) =0 ife, >0,  bL|GS) =0 ife; <0,
(A20)
with the single-particle spectrum

er = 2/T2(1 + )2
(A21)

In the thermodynamic limit the ground state is obtained by
filling all modes with £, < 0 and leaving empty those with
er > 0. Equivalently, the ground state |G S) satisfies

belGS) =0 forep >0,  bl|GS) =0 fore; <0,
(A22)
and the ground-state energy reads

Ey=—5 lek]. (A23)

Appendix B: Critical lines

The critical points are determined by the condition that the
excitation gap vanishes, namely €, = 0. Three distinct criti-
cal situations can be identified, depending on the sign of the
combination 4aIl'? + 2. When 4aI'2 4+ 42 > 0, the critical
mode occurs at k. = 0, and the corresponding critical field is

hea =1
When 4al? + 72 = 0 with h < 1, the critical momentum is

k. = arccos h, and the critical coupling parameter takes the
value

72

OLCJ = 7@
Finally, for 4al? + 72 < 0, one can define another criti-
cal condition where the system becomes gapless. The corre-
sponding critical field can be expressed as

heo =+/1—72 -4,

and the associated critical mode satisfies k. = arccos(h,, 5)-
In the gapless region, which is enclosed by the last two criti-
cal conditions, the excitation spectrum ¢j, contains two Fermi
points, denoted by £z, and k. Defining

X =4al” + 47,

sin? k 4 (cosk — h)2 + 42 sin? k—2I'(1—q) sin ke (ke + 0k) =
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these two Fermi points are given by

(BI)

(2 —1)X + X2
kpn = h+ .
L.R arccos( - X

As h approaches the critical value h. 2, the two Fermi points
merge into a single point at arccos(h_ %) The critical ex-
ponents z (dynamical) and v (correlatlon length) can be de-
termined from the scaling relations A ~ (A — \.)*
A(Ae) ~ (k— k.)*, where A denotes the spectral gap. At the
critical field h = h, 2, where cos k. = hg% and e(k.) = 0, an
expansion of g5 around k. up to second order in 0k = k — k.
yields

I'(1 - «)cos? k.
2sin k.

(hc_é - h0,2)2

k2
2T sin k(1 — «) ok,

(B2)
which indicates a quadratic dependence and thus z = 2. Ex-
panding the energy gap near h.o with 6h = h — h. 2, one
obtains

Ame(ly) = o2 —hed) B3
~e(ke) = T(1—a)sink, ( c2),  (B3)
implying vz = 1, which gives v = % nd z = 2. Near

the critical field h.; = 1, for which k.
relation can be expanded as

=0, he dispersion

e =2/ (1+ )2 +~2 k| — 2T'(1 — )k, (B4)
showing a linear dependence in k and therefore z = 1. The
corresponding energy gap behaves as

A=celke=0)=2/h—1 =2(h—hc1)"%, BS)

which yields ¥ = 1 and z = 1. Expanding the dispersion
relation around .1 = —v?/(41'?) with 6k = k — k. (where
k. = arccos h) gives

1= R2T(1 = acn) (k—ke)?, (B6)
leading again to z = 2. Finally, the gap near « ; behaves as

AT sin k
A= 1—C (o — 1), (B7)
— Ol

which confirms that vz = 1.

Appendix C: Scaling, spectra and universality classes

Typically, one may introduce spatial and temporal char-
acteristic scales that diverge as the control parameter A\ ap-
proaches its critical value A.. The power-law divergence of
these scales is encoded by the correlation-length exponent v
and the dynamical exponent z, which in turn allow the classifi-
cation of transitions into universality classes. The low-energy
behaviour controlling the critical properties is governed by the
states in the vicinity of the momentum where the gap closes.



The dynamical exponent z relates energy and length scalings
and can be read off from the spectral shape close to the gap-
closing mode via A ~ (k — k.)?, while the gap vanishes as
A ~ (A= A.)¥® when A\ — A.. Expanding at the critical
line h; around the gap-closing momentum k. = 0 yields the
low-k form

er 22 +T2(1+ )2 k| — 201 —a)k.  (CD)

This relativistic-like dispersion at the critical line & ; implies
a linear scaling in momentum and therefore z = 1. The gap
close to h. 1 is well approximated by

A ~2|h —heal, (C2)

from which vz = 1 follows; hence the transition between
phase I and phase II belongs to the two-dimensional Ising
universality class with ¥ = 1 and z = 1. On the bound-
ary between the gapped phase Il and the gapless phase III
the spectrum closes at an incommensurate momentum k., =
arccos(h;%). An expansion around this momentum gives a
quadratic dispersion of the form

(h;,% - hC,2)2
2T (1 — ) sin k.

(1 — «) cos? ke

o 2
25sin k. (kb = ke)”,

£k =~

(C3)
which indicates z = 2. Expanding the gap near h. > (taking
0h = h — h¢ ) yields

2 (hc,Z - h;%)

A~ ———— 22
I'(1 — «)sin k.

(h = he2), (C4

so that vz = 1 and therefore v = % These exponents (v = %,
z = 2) identify the transition as belonging to the Lifshitz uni-
versality class, which here corresponds to the quantum criti-
cality of free fermions. For the transition between phase I and
the gapless phase III at the coupling threshold c. 1, the dis-
persion around the gap-closing momentum k. = arccos h is

again quadratic:

e 2 V1—h2T(1—aeq) (k— ko), (C5)
implying z = 2. The gap for « slightly above c. ; scales as

4T sin k.
o 1-— Qe 1

A (v — ), (C6)

which again yields vz = 1 and therefore places this transition
in the Lifshitz universality class with v = % and z = 2.

Appendix D: Thermal and Magnetic criticality

Since the ground state is invariably by the vacuum, the
first excited state corresponds to a state occupied by a single
fermion. Consequently, the energy gap is determined by the
smallest of all e, values, expressed as:

A= HlkiHGk- (D1)
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For the sake of simplicity, we shall consider the transverse-
field Ising model (TFIM) with v = 1. In this case, the disper-
sion relation reduces to:

e = Vh2 + J2 — 2hJ cosk, (D2)
where g denotes the transverse field strength and J represents
the coupling constant. Differentiating with respect to k, we
obtain:

e, Jhsink

%_ €k

0, (D3)

indicating that the extrema of €5, occur at k = 0 or k = 7. For
h > 0, the minimum is located at k = 7, whereas for g < 0,
it shifts to k& = 0. Evaluating the dispersion relation at these
points yields:
Ek:0:|h—J|, Ek:ﬂ—:|h+J|. (D4)
Focusing on the case where h > 0, we observe that the
energy gap vanishes at the critical point:
he = J. (D5)
This result demonstrates that the TFIM exhibits a phase tran-
sition at the same critical value h. as the XX model. At this
critical point, the gap closes entirely. However, in contrast to
the XX model, the gap in the TFIM reopens as h exceeds h.,
signifying a distinct post-critical behavior.

A kr
(N) L / dk = Ekp _L arccos (?) ,  (D6)
T

S 27 kg us

with kp = arccos(—h/J). Substituting this result into
Eq. (D7), the magnetization becomes:

-1 ifh/J < —1,
m= %arccos(—%)—l if —1<h/J<1, (D7)
1 ifth/J > 1.

This expression is illustrated in Fig[TT}a, which depicts the
magnetization of the XX model in its ground state as a func-
tion of the transverse field h/.J.

As observed, the magnetization exhibits a kink at the criti-
cal points:

he ==%J, (D8)
marking the phase transition of the model. The derivative of
the magnetization with respect to g, known as the susceptibil-
ity , is given by:

, 0 ifh)J < —1,

m T .

xX= g = \/JQQ/_ihz if —1<h/J<1, (D9)
0 ifh)J > 1,

which diverges as h approaches h., as illustrated in Fig[TT}b.



The dispersion relation is:

ex = \Vh2+ J2 — 2hJ cosk (D10)

This represents the energy of fermionic quasiparticles in the
system. The internal energy U for a system of N sites in one
dimension, summing over all momentum modes k, is given
by:

(D11)

U= Zek<nk>
k

where (ng) is the thermal occupation number for the
fermionic quasiparticles, following the Fermi-Dirac distribu-
tion (adjusted for the quasiparticle vacuum):

_ 1
Coefer 11

(k)

Here, 8 = 1/(kpT), with kp being the Boltzmann constant
(often set to 1 in theoretical calculations for simplicity), and T’
is the temperature.In the thermodynamic limit (N — c0), the
sum over k£ becomes an integral over the first Brillouin zone
(—m < k < 7) for a one-dimensional lattice:

N [T 1
efer 41

(D12)

U dk (D13)

The factor N/(27) accounts for the density of states in k-
space, as the number of k-points in [—m, 7] is N, and the

spacing is 27 /N.To find C, illustrated in Figc, differenti-
ate the internal energy with respect to temperature:

ou
=Y D14
Co= o7 (D14)
Substitute U':

N [T 1
U=— - —dk D15
o | F B 11 (D15)
Since 3 = 1/(kpT), we have 22 = — oz Assuming

kp = 1 for simplicity (common in theoretical physics), 3 =
o8 1
1/T, and 5F = — 77
Differentiate U with respect to 7"

Uz%:% _ﬂek.(?aT(eﬂekl—l—l)dk (D16)
Compute the derivative of the occupation number:
1
flex) = P11 (D17)
Thus:
N o [Me sy

v T onr2 |k (Ber 1 1)2
This integral can be simplified by recognizing that:

ebBex 1 ebBex
(eBek +1)2  eBek +1 efer +1

flen) (1 — flex))
(D19)
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So:
p— N "
YoonT?

eif(en)(1 = fer))dk  (D20)

Due to the divergence of the specific heat near criticality, a
system at a phase transition is capable of exchanging consid-
erable amounts of heat, even under minimal temperature gra-
dients. An analogous phenomenon may occur in our magnetic
system. In the vicinity of the quantum critical point, the mag-
netic susceptibility—quantified as the derivative of the mag-
netization with respect to the transverse field—diverges. This
signals an extreme sensitivity of the magnetization to even
slight variations in the external field.

Appendix E: Correlation Functions

To evaluate the two-qubit correlation functions, we intro-
duce the operators:

Ai=cl e, Bi=c —a, (E1)

where cz and c; denote the creation and annihilation operators
at site ¢, respectively. It can be readily confirmed that these
operators satisfy:

{Ai,Aj} = 2(51']‘7 {B“B]} = —2(51‘]‘7 {Al,B]} =0.
(E2)

The Pauli matrices are then expressed as:

i—1 i—1
J;:AlHAija UZy:ZBZHAJB], U;:A231
J=1 Jj=1
(E3)
Using the Jordan-Wigner transformation, the x-component
correlation function is:

Gyl = (0h00) = (0} +01)(0} +00))

j—1
n=i+1

= (BjA;i11Bit1---Aj_1Bj_14;). (E4)
Similarly, the y- and z-component correlations are:
Gyl = (1)) 7"(AiBiy1Aig1 -~ Bi_1A;_1B;),  (ES)
GL = (AiB;A; Bj). (E6)
The cross-correlations are:

Gh = i(B;Aiy1Bit1 - Aj_1B;_1B;), (E7)

Ty

G;% = i<AiAi+1Bi+1 ce Aj—lBj—lAj>' (ES)

By applying Wick’s theorem , these correlations are expanded
using contractions (A;A;), (BxB), and (B A;), yielding a
Pfaffian representable as a 2r X 2r antisymmetric determinant,
where = |j — ¢|. Under reflection symmetry (I' = 0), we
have:

(ArAy) = 6,  (BrBi) = =, (E9)



vanishing for k # [, reducing the Pfaffian to an r x r Toeplitz
determinant. However, with broken reflection symmetry due
to off-diagonal I' interactions, and a non-positive excitation
spectrum , (A A;) and (ByB;) are finite for k # [ in the
gapless phase, implying non-zero (c%,07) and (c}07). The
z-component correlation is decomposed as:

GYl = (BiAi)(BjA;j) —
— (A A;)(B; By),

(B;Ai)(BiA;)

(E10)
where the final term is often incorrectly neglected. For
nearest-neighbor correlations (r = 1):

Goit! = (BiAis1), GLit' = —(A;Bi),
GI’H_I = Z<B‘Bi+1> Gi’H_l = i<AiAi+1>,
Goi 1 = (A;B;Aiy1Biy1)

= (o) {ot) — (oot ) (opayt)
+ (ohoyt Y oroith). (E11)

Non vanishing cross-correlations introduce nontrivial ef-
fects in systems lacking reflection symmetry, fostering a gap-
less phase with quasi-long-range order. Since the Hamilto-
nian is quadratic in fermionic operators, complete knowledge
of the matrix G allows for the direct computation of zero-
temperature expectation values of the Hamiltonian. Addition-
ally, the action of any operator that is quadratic in the creation
b and annihilation operators b preserves the Gaussian char-
acter of the state. The nearest-neighbour two-point correla-
tors exhibit sharp changes when the system crosses quantum
critical points separating gapless and gapped phases. For ex-
ample, at h = 0.50 increasing the interaction-range exponent
a causes the leading nearest-neighbour correlation to switch
from a positive G{/* to a negative G{**, signalling a quantum
phase transition from the gapless spiral phase into a gapped
ferromagnetic (FM) phase. By contrast, the dominant corre-
lations G{* for h = 1.17 are consistent with phase II being
paramagnetic (PM). Comparable behaviour for a = 0.50 is
displayed in [110, [140]: across h.; the dominant nearest-
neighbour correlator changes from negative G** to positive
G{#, and the first derivative of G{** develops a pronounced
peak at h. ; . Finite-size scaling of the field-derivative of G{"*
reveals a logarithmic singularity at the second-order critical
point. Numerically we find

aniv
( a;L )max =acInN + ¢3, (E12)
aGZEJE
8}1 =bgIn|h — he| + ca, (E13)

with fitted coefficients ag¢ = 0.2789 + 0.0045, bg =
—0.2811 + 0.0001, ¢3 = 0.1758 and ¢4 = 0.0265. From
these amplitudes one can estimate the correlation-length ex-
ponent via

V=

G

= 0.9922 £ 0.0209,
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in excellent agreement with the value obtained from the sec-
ond derivative of the ground-state energy density. The FM
region supports long-range order (LRO) interaction , whereas
the PM regime does not. We also observe that in the gapped
phases the magnitudes of G;"¥ and G{* coincide, while they
become asymmetric in the gapless regime. This suggests that
the quantity
Ac=lGy| -6
serves as an effective order parameter to detect the spiral phase
in the XY—-Gamma model. To assess whether genuine long-
range order exists inside the gapless spiral region, we com-
puted the vector-chiral correlator difference
G| = lay

for several separations 7 ; absolute values are taken to remove
sign-ambiguities arising from the Pfaffian evaluation. In the
gapped phases the difference vanishes (since G*Y = GY7),
while it remains finite in the spiral regime. As 7 increases
the correlation difference decays in an oscillatory manner ap-
proximately as »—'/2 | indicating quasi-long-range order of an
incommensurate spiral. To characterise the spiral further we
examined four-site (dimer) correlations. The dimer correlator
between sites j and j + 7 is defined by

Djjar = (Rjkjer) = (i) (Kjtr), (E14)
where the z-component of the vector-chiral operator is
kj = (0 X 0j11) - (E15)

Equations (E14)-(E15) were used to probe dimer and chiral
correlations (for more details consult [[62]]) . The two adjacent

dimers one finds the relation

(Kikiv1) = (BiBita), (E16)

where B; denotes the appropriate two-spin operator defined in
the text. For dimers separated by a distance r = j — ¢ > 1 the
dimer—dimer correlator can be written in the form

(BiBj)(Bit1Bj+1) —
— (BiBj1){Biy1Bj),

(BiBi+1)(BjBj+1)
(E17)

(Kikij) =

which follows from the decomposition of the four-point func-
tion into products of two-point building blocks. Importantly,

nonzero cross-correlations of the type appearing in Eq.
produce nontrivial effects whenever reflection symmetry is
broken. Such correlations are a hallmark of the gapless regime
and are responsible for the emergence of quasi-long-range in-
commensurate (spiral) order in the model.

Appendix F: Two-level decoupling and mapping to an LZSM
problem

For the time-dependent Hamiltonian H (h(t)) the unitary
dynamics couples, for each momentum k, only the pair of ba-



sis states |0, 0_) and |15, 1_j). Consequently, the full evo-
lution factorizes into /N independent two-dimensional prob-
lems, one per k-mode [[141]. Introducing the Bogoliubov am-
plitudes wy(¢) and vi(t), the mode dynamics can be written
as a 2 X 2 matrix Schrédinger equation

od fuk) U
i <vk> = Hy(t) <0k> : (F1)

where Hy(t) is the two-level Hamiltonian with h = h(t).By
performing the change of variables :

Ay (tk —h+ 5t)

t = ,
)

(F2)

the evolution (FI) is mapped onto a standard Lan-
dau—Zener-Stiickelberg—Majorana (LZSM) form [[142} [143]],

—ut 1
P A k Rl (F3)
dt’ Vi 1 thl Vk

with Q, = &§/A%. The general solution of can be
expressed in terms of parabolic-cylinder (Weber) functions
D, (z) [144] [145]]. A convenient form for the coefficients is

vp(t') =aD_s 1(—iz) +bD_4 1(iz), (F4a)
.0
uk(t’) = <th/ — 2Zat/> Uk(t/), (F4b)
where
s ! 2= /Qpt /4, (F5)
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and the complex constants a and b are fixed by the initial val-

ues ug(t;) and vg(¢;). The many-body state then factorizes
into a product of k-mode states,

@ () = [ [l (), (F6)
k
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with:

Vi (1)) = uk(t) [0k, 0—k) + vi(t) [k, 1),  (F7)

and the time dependence understood through ¢’ = ¢'(¢). It
is useful to introduce the instantaneous eigenvectors of Hy(t)
[146l[147],

ok (1)) = @k (A(t)) [0k, 0—k) = i (R(1)) [k, 1-k),  (F8)

where 1y, (h) = cos (0(h)/2), vx(h) = sin (0 (h)/2), and
0 (h) = arctan(Ay/(h — t)) is the Bogoliubov angle for
chemical potential h. The occupation probability of the in-
stantaneous eigenstate during evolution is therefore

Pi(t) = [0 O] = an (h(1)) i (t)+5i (A1) 1(’1’353)'2'
Substituting the explicit solutions (F4a)—(F4b) into (FI) yields
an exact (but rather involved) analytic expression for Py (t) in
terms of parabolic-cylinder functions. A simpler and physi-
cally transparent approximation emerges in the slow-driving
limit, 6 — 0, where the final protocol duration 7 = |h -
h;]/§ — oo. To leading nontrivial order in this adiabatic
regime the transition probability takes the celebrated LZSM
form

2
P~ 1— exp( - LAk) + 0. (F10)

)
Although corrections of order 62 formally dominate for fixed
Aj as 6 — 0, when the system traverses the critical region
the dynamics is governed by the soft modes with small Ay.
For thermodynamic observables the exponentially small Lan-
dau—Zener contribution in (FI0) therefore outweighs the ana-
lytic O(6?) terms and controls the nonadiabatic response.

Qe = (H(ts))pe (1 =2P) = (H(tf))ps

Qn = (H(t:))p, (1 = 2Pc) — (H(t:)) .-

In this work we employ a driving time-scale for which the
adiabatic approximation is valid; consequently, in the long-
time (quasistatic) adiabatic limit we set P, = 1 for all modes
k, thereby neglecting nonadiabatic transitions.
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