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Abstract

We show that the semiclassical limit of thermodynamic Bethe Ansatz equations naturally
reconstructs the algebro-geometric spectra of finite-gap periodic potentials. This corre-
spondence is illustrated using the traveling-wave (snoidal) solution of the defocusing
modified Korteweg–de Vries equation. In this framework, the Bethe-root distribution of
the associated quantum field theory yields an Abelian differential of the second kind on
the elliptic Riemann surface specified by the spectral endpoints, a structure central to
the algebro-geometric theory of solitons. The semiclassical parameter is identified with
the large-rank limit of the internal symmetry group (O(2N)) of the underlying quantum
field theory (the Gross-Neveu model with a chemical potential). Our analysis indicates
that the analytic structure of the spectrum is dictated solely by the Dynkin diagram (DN)
and its large-rank limit (D∞), independently of the particular integrable model used to
realize it.

Dedicated to the memory of Igor Krichever

1 Introduction and Background

1.1 Finite-gap potentials and the Peierls phenomenon

The spectrum of a one-dimensional elliptic operator, such as the Schrödinger operator

−
d2

d x2
+ u(x) (1)

with a general periodic potential u(x), consists of an infinite sequence of spectral bands. The
bands are admissible energy intervals separated by an infinite sequence of gaps. There exists,
however, a distinguished class of potentials that gives rise to only a finite number of gaps and,
correspondingly, a finite number of spectral bands.

It has been known for nearly fifty years that isospectral deformations of finite-gap poten-
tials are periodic solutions of nonlinear integrable equations [1]. For example, the Korteweg–
de Vries (KdV) equation, a paradigmatic example in soliton theory,

ut − 6uux + ux x x = 0 (2)

describes a one-parameter family of isospectral deformations of a finite-gap potential of the
Schrödinger operator (1) .
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The concept of finite-gap potentials is central to the algebro-geometric approach to soliton
theory [2]. At the same time, the role of finite-gap solutions in the quantum counterpart of
soliton theory, namely quantum integrable models and their algebro-geometric description, is
yet to be understood. This paper aims to shed some light on this issue. We will show how a
finite-gap solution emerges as the semiclassical limit of the thermodynamic Bethe Ansatz.

Our approach relies on an important property of finite-gap potentials: they minimize the
energy functional of certain electronic systems modeling the Peierls instability, a key phe-
nomenon in condensed matter physics. Formulated in 1930 and published in 1954 [4], Rudolf
Peierls showed that, in one spatial dimension, electrons induce a periodic displacement of crys-
talline ions with a period commensurate with the mean distance between electrons. In turn,
the ion displacement modifies the electronic spectrum. The spectrum near the Fermi energy
is no longer continuous, instead exhibiting a sequence of gaps separated by fully occupied or
empty conducting bands. In the early 1980s, it was shown that the Peierls periodic displace-
ments correspond to finite-gap potentials [5–7]. The finite-gap potential ∆(x) minimizes the
energy of the electron-phonon system:

E[∆] = 1
2λ

∫

∆2d x +
∑

E<µ

E . (3)

Here, ∆ represents the ion displacement, the first term is the elastic energy with λ > 0, and
the second term is the electronic energy, where the sum runs over energy levels consecutively
occupied by Ns electrons. The sum is bounded by the chemical potential µs, a function of
Ns. The two terms, having opposite signs, compete, forcing ∆ to be periodic with period
L/Ns, where L is the system length. Introducing the density of states ρ(E)dE, normalized by
Ns =
∫

ρ(E)dE, we replace the second term by the integral
∫

Eρ(E)dE.
We focus on a class of finite-gap potentials corresponding to the Peierls phenomenon near

commensurate half-filling. In this case, the energy levels in (3) are the eigenvalues of the
one-dimensional Dirac operator:

HDψE = EψE , HD = −iα∂x + β∆ , (4)

where α,β are Dirac matrices satisfying α2 = β2 = 1 and βα = −αβ . The minimum of the
energy (3) is achieved under the self-consistency relation

∆(x) = λ
∑

E<µ

ψ∗E(x)βψE(x) . (5)

In essence, the finite-gap state is completely determined by the spectrum of the Hamilto-
nian, which in turn is determined by the density of states ρ(E). This is the primary object of
our study.

It is instructive to formulate the problem as a quantum field theory. The Lagrangian reads

L= ψ̄(i /D−∆)ψ− 1
2λ
∆2 +

M
2
∆̇2 , (6)

where the fermionic field ψ and ψ̄ :=ψ†γ0, and the gap-field ∆(x) are both quantum fields.
Here, /D = γ0(∂0 − iµ) + γ1∂x , γ0 = β , γ1 = βα are Dirac gamma matrices, and the chemical
potential µ is counted from zero energy. The ion mass M (in units of the electron mass) is
assumed large. In this limit M →∞, the dynamics of ∆ is adiabatic, obeying condition(5) .
Hence, the problem is reduced to the Peierls model (3,4,5).

Isospectral deformations of the finite-gap potential ∆(x) obey integrable hierarchies. In
our case, it is the hierarchy generated by the defocusing modified KdV (mKdV) equation (note
the sign of the nonlinear term):

∆t − 6∆2∆x +∆x x x = 0 , (7)
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and the Dirac operator, teh Hamiltonian HD of the Peierls model, appears as the Lax (Zakharov-
Shabat) operator of mKdV [9,10].

If the adiabatic condition is removed while retaining integrability, one may be able to
identify the quantum version of finite-gap solutions. This is the approach taken in this pa-
per. We identify (i) an integrable quantum field theory whose adiabatic limit yields (4,5), (ii)
the quantum state corresponding to a finite-gap potential, and then (iii) compute the spectrum
density. We demonstrate this approach for the simplest finite-gap potential, the traveling wave
of mKdV, known as the snoidal wave. The spectrum of the snoidal wave consists of two sym-
metrical gaps, as shown in Fig. 1. No immediate obstacles appear for extending this approach
to a more general finite-gap setting.

Figure 1: The spectrum of the traveling (snoidal) wave: the central band (−E−, E−)
is formed by hybridized zero modes of Dirac operator localized on kinks; the most
upper/lower bands (−∞,−E+), (E+,∞) correspond to elementary fermions; the
spectrum ends on the Fermi momentum ±PF . The intervals (−E+,−E−), (E−, E+)
are gaps.

If the adiabatic condition is relaxed by assuming a finite M in (6) , the problem is not
known to be integrable. However, a natural modification retains integrability. We just assume
that a fermion state is N -component multiplet ψa : a = 1, . . . , N . Then the limit N → ∞
restores the adiabatic condition. The Lagrangian of this integrable model, known as the N -
species Gross-Neveu (GN) model [11], reads

L=
N
∑

a=1

ψa i /Dψa +
λ
2

� N
∑

a=1

ψaψa

�2

. (8)

It could be brought closer to the Peierls model by expressing the interaction via a mediating
(this time quantun) gap-field :

L=
N
∑

a=1

ψa(i /D−∆)ψa −
1

2λ∆
2 . (9)

The model reduces to the Peierls model (6) in the limit of a large number of fermionic
species N →∞, effectively imposing an adiabatic condition (5) . We see it by Integrating out
the auxiliary N−1 fermionic species. This replaces the term M∆̇2 in (6) with N logDet(i /D+∆).
Comparing with the gradient expansion of the determinant, one identifies M with N/µ2.

Unlike the Peierls model (6) , the GN model is integrable [12, 13]. Analyzing the finite-
N solution, we find that the large-N limit reproduces the finite-gap spectrum of the Dirac
operator.

The GN model is an early example of an integrable system invariant under a Lie group,
the G-invariant integrable systems, with G = O(2N). This becomes evident when representing
each Dirac spinor in (8) as a pair of Majorana spinors (Reψa, Imψa) .
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A defining feature of G-systems is that their complete quantum solution can be read directly
from the Dynkin scheme—DN in the present case—which encodes the fundamental represen-
tations of G and their automorphisms. In particular, the particle content of the DN model is
in direct correspondence with the fundamental representations of DN , including the vector
representation, antisymmetric tensor representations of ranks r = 2, . . . , N − 2, and the two
chiral spinor representations.

A semiclassical limit depends on the chosen quantum state. The state we consider is a
thermodynamic state that consist of a large number Ns (increased proportionaly to the system
size L), of pairs of spinors with opposite chirality. We show that the large N limit of this state
corresponds to the traveling wave and that the lower level excitations are only vector particles.
They are minuscule representations of DN and they retain the semiclassical meaning.

Figure 2: The mass spectrum of the Dynkin scheme DN : mv and ms are the masses
of multiplets of minuscule representations: the vector and spinors with opposite
chirality–the marked nodes on the scheme.

In the semiclassical limit, the vector particles, referred to as elementary fermions, represent
the eigenstates of the Dirac operator (6) , while the spinors correspond to half-soliton–like
bright or dark kinks, depending on their chirality [14]. In the quantum theory at finite N ,
vector particles appear as bound states of spinors, and a spinor itself can be viewed as a bound
state of a spinor and a vector particle. This pattern changes in the semiclassical limit. As N
increases, the mass of a spinor becomes N times the mass of a vector particle, as depicted in
Fig. 3; consequently, kinks can no longer be treated as particle-like excitations (see Sec. 6).
Nevertheless, elementary fermions can be scattered by a kink and may become localized on it.

There are other states that lead to the same limit. They are large rank-r antisymmetric
tensors: r/N → 1. They could be considered as a pair of a dark and bright kinks, Fig. 3.
Like in the case of of the spinor built ground state, the case we primeraly focus on, the vector
particles are the only excitations survived the semiclassical limit.

In the next sections, we briefly summarize the results of (i) the algebro-geometric argu-
ments yielding the symmetric 2-gap spectrum, Sec. 1.3 and (ii) the scattering problem of Dirac
fermions by a kink, Sec. 3. These results serve as benchmarks for comparison with the large
N limit of the exact solution of the O(2N)-invariant quantum problem.

1.2 2-gap potential: mKdV traveling wave

When the chemical potential in (3) is zero, the adiabatic condition (5) implies that the optimal
gap function is uniform, and is given by

∆0 = Λe−π/(N−1)λ . (10)

Its value is determined by the UV cutoff Λ (the Fermi energy of the underlying lattice model).
∆0 sets the overall scale of momentum and energy. Consequently, the spectrum of the Dirac
equation P2 = E2 −∆2

0 contains a single symmetric gap (−∆0,∆0).
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At a non-zero chemical potential, the Peierls phenomenon induces a periodic gap function.
The simplest example is a traveling wave∆(x+c t) of mKdV (7) , which satisfies the ODE [29]:

c∆x − 6∆2∆x +∆x x x = 0 . (11)

The periodic solution of this equation is the snoidal wave [9]:

∆(x , k) =∆0k1/2 sn(k−1/2ξ, k), ξ=∆0 x , (12)

with elliptic modulus k determined by the velocity in (11) as c = ∆2
0 (k
−1 + k). [A scaling

transformation ∆(x)→ λ∆0(λx) leaves solutions of (11) invariant with an arbitrary λ. The
condition (5) fixes λ = ∆0.] The period of the wave matches the mean distance between
fermions. Equating it to the period of the elliptic sine

(L/Ns)∆0 = 4k1/2K(k) (13)

where K(k) is the complete elliptic integral of the first kind, determines the elliptic modulus
k (albeit implicitly).

In the limit of large period, the snoidal wave (12) degenerates to a kink:

∆(x) →
k→1
∆0 tanhξ . (14)

The formula

sn(ξ, k) =
π

2kK ′

∞
∑

n=−∞
(−1)n tanh
� π

2K ′
(ξ+ 2nK)
�

(15)

represents the traveling wave as a lattice of alternating bright-dark kinks, Fig. 3, where K ′ = K(k′)
and k′ =

p
1− k2 is the complementary elliptic modulus.

Figure 3: A periodic snoidal wave. The dashed line represents a half-fermion zero
mode localized on kinks.

1.3 The spectrum

We now consider a 2-gap solution of the Dirac equation (4) . Among the extensive literature,
we refer to papers on the commensurate Peierls phenomenon [7,8].

The states ψE(x) in a periodic potential are characterized by the unitary Bloch factor
Λ(E) = eiP L , which defines the quasi-momentum as a multi-valued map P(E). Symmetries
of the Dirac operator imply that each value of E corresponds to two momenta, ±P, and each
momentum P corresponds to pairs ±E equal in number to the positive-energy bands. For a
finite number of bands, the momentum is single-valued on a hyperelliptic Riemann surface.
For two gaps, this surface is an elliptic curve determined by the spectrum endpoints E±:

y2 = (E2
− − E2)(E2

+ − E2) . (16)

The spectrum consists of four bands, two of which merge at E = 0 to form a central band:
E : [−∞,−E+], [−E−, E−], [E+,+∞], with two gaps [−E+,−E−], [E−, E+]. The surface
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comprises two copies of the complex E-plane, glued along the bands. Fig. 1 illustrates this
spectrum.

The spectrum is fully characterized by the density of states:

ρ(E) =
2π
L

�

�

�

�

dP
dE

�

�

�

�

, (17)

which is the central object of interest.
According to the general theory of finite-gap spectra [3], the differential of the momentum

is an Abelian differential on the complex curve (16) :

dP =
C − E2

y(E)
dE , (18)

where (P, E) is considered as a complex point on the curve. The numerator in (18) is a second-
order polynomial, which in our case is even dues the reflection symmetry of the spectrum,
with the leading coefficient fixed by the relativistic asymptote |dP/dE| → 1 as |E| → ∞.
The constant C determines the density of states at E = 0, where the kink’s bands cross:
C = E−E+ |dP/dE|E=0. The physical spectrum corresponds to the real section of the spec-
tral curve P2 = F(E2).

The differential dP has a second-order pole at E = ∞ with local parameter E ∼ 1/z,
making it an Abelian differential of the second kind.

It is subject to the normalization conditions:
∫

bands

dP = (2π/L)Ns,

∫

gaps

dP = 0 . (19)

(we recalll that L/Ns is the period and Ns is the number of bright (or dark) kinks, which also
equals the number of fermions).

The first integral is over the spectrum (bands) and the second over the gaps. In these
terms, the conditions (19) correspond to integrals over the a and b cycles of the elliptic curve
(16) :
∮

b dP = (2π/L)Ns,
∮

a dP = 0. These normalization conditions express the spectrum
endpoints E± and the constant C in terms of Ns/L. Quoting the results [7]:

E± =
∆0

2

�

k−1/2 ± k1/2
�

, C = E2
+

E(r)
K(r)

, r = 2(k1/2 + k−1/2)−1 . (20)

Here the elliptic modulie k is determined by the period of the wave by virtue (13) , r is the
Landen-transformed modulus, and E(r) is the complete elliptic integral of the second kind.
The algebro-geometric approach allows extension to multiple-gap solutions, albeit in a less
explicit form [8].

In the paper, we obtain the density of states (18) as the large-N limit of the thermody-
namic Bethe equations with O(2N) symmetry relevant to the GN model.

A short version of this work was published in [15]. Other relevant references are: on semi-
classical limit of thermodynamic Bethe equations and finite gap solutions; for KdV [16] and
Landau-Lifshitz [17] equations; [18] on relations between GN-model and Peierls phenomenon.

2 Finite-gap potentials and equilibrium quantum states

Now we describe a direct correspondence between finite-gap solutions and a special class of
eigenstates of the associated quantum field theory.
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The spectrum of a relativistic integrable quantum field theory at zero chemical potential
consists of a finite set of mass shells

p2 = (p0)2 −m2
q, q = 1, . . . , N , (21)

each for a multiplet, where mq is the particle mass spectrum. In integrable systems, scattering
of particles is factorized into a product of consecutive two-particle scattering events. We denote
the scattering phase of a two-particle scattering by Θqq′(p, p′).

Particles are in a semiclassical correspondence with solitons and their bound states in
classical nonlinear equations. By contrast, periodic solutions correspond to more intricate
thermodynamic states. They involve a macroscopic number of particles in a given multiplet,
Nq∝ L, scaled with the system size, whose momenta, denoted by Pq, are piecewise uniformly
distributed. Momentum is a multiply-valued function of energy E. The differential of the
spectrum map E→ Pq, given by dPq = (dPq/dE)dE, defines the density of states

ρq(E)dE := L
2π |dPq|,
∫

ρq(E)dE = Nq . (22)

The density of states is a defining, albeit local, characterization of the spectrum.
At large energy, well exceeding the chemical potential, the spectrum tends toward the mass

shells, hence |dPq/dE| → 1. This property motivates a parametrization of the spectrum by the
mass shell as multiply-valued maps p→ Pq, p→ Eq.

A momentum Pq differs from the momentum of the asymptotic state p by scattering phases
accumulated from interactions with other particles. The total scattering phase in a thermo-
dynamic state is

∑

q′
∫

Θqq′(p, p′)ρq′(p′)dp′, where ρq(p)dp = L
2π |dPq|, but now dPq is the

differential of the map p→ Pq. Hence,

Pq(p) = p+
1

2π

∑

q′

∫

Θqq′(p, p′) |dPq′(p
′)| . (23)

This is the thermodynamic Bethe equation, defining a differential of the map p→ Pq.
It is convenient to formulate the Bethe equations in terms of the rapidity of asymptotic

states, defined as the invariant relativistic measure

dθ =

�∫ ∞

−∞
δ((p0)2 − p2 −m2

q) dp

�

dp0 =
dp0
q

(p0)2 −m2
q

. (24)

Rapidity makes Lorentz boosts additive. Consequently, the two-particle scattering phase de-
pends only on the difference of rapidities Θqq′(p, p′) = Θqq′(θ − θ ′). Viewed as a complex
variable, rapidity uniformizes the mass shell:

p0 = mq coshθ , p = mq sinhθ . (25)

Differentiating the Bethe equation (23) we obtain an integral equation that determines the
differential of the map θ → Pq

d
dθ Pq(θ) = mq coshθ +

∑

q′

∫

Kqq′(θ − θ ′) dPq′(θ
′) , (26)

where

Kqq′(θ ) =
1

2π
d

dθΘqq′(θ) . (27)
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Similarly, the differential of energy dEq satisfies the relativistic counterpart of Eq. (26):

d
dθ Eq(θ ) = mq sinhθ +

∑

q′

∫

Kqq′(θ − θ ′) dEq′(θ
′) . (28)

Once the scattering phases are known, the thermodynamic Bethe equations (26,28) determine
the differentials of the number of particles in each multiplet through the normalization of the
momentum differential (22) .

In Ref. [19] it was argued that solutions of these equations give a minimum to the total
energy

E =
∑

q

∫

Eq(p)ρq(p)dp = (L/2π)
∑

q

∫

E dPq, (29)

provided that the support of ρq consists of a finite number of disjoint intervals. These argu-
ments prompt our main proposition:

The semiclassical limit of finite-interval thermodynamic Bethe states yields the finite-gap
spectrum of a linear operator (Lax operator) that appears as the Hamiltonian in the adi-
abatic approximation of the underlying quantum model. If the system is relativistic, the
Hamiltonian is the Dirac operator.

To support this statement we demonstrate that the differentials determined by the Bethe equa-
tions (26,28) become the real section of a Abelian differential of the second kind single-valued
on a Riemann surface determined by the end points of the spectrum. This is illustrated here
on the example of the traveling wave.

The traveling wave we focus on corresponds to a one-interval state filled by equally dis-
tributed O(2N) spinors of opposite chirality. We denote the spectrum of the spinor state by
(Ps, Es), and assume that spinor rapidities occupy an interval |θ | < B, where B is determined
by the given number of spinors of the same chirality Ns (in total 2Ns spinors) via condition
(22) . Then the Bethe equations are simplified further:

d
dθ

�

Ps
Es

�

= ms

�

coshθ
sinhθ

�

+

∫ B

−B
Kss(θ − θ ′) d
�

Ps
Es

�

, (30)

with
Kss(θ ) = K±±(θ) + K±∓(θ ) . (31)

Using the explicit form of the S-matrix yielding Kss (Sec. 5.1,5.2) and their large-rank limit
(Sec. 6), we recover the spectrum of the traveling wave (Sec. 7.1) already described in Sec. 1.3.
We briefly comment on other states that yield the same semiclassical limit.

3 Scattering by a kink: Pöschl-Teller problem

A building block of a periodic solution, and a benchmark of the underlying quantum theory
is the scattering phase of an elementary fermion by a kink, a potential given by (14) . It is
a special case of the classical Pöschl-Teller problem – a Schrödinger operator (1) with the
potential u(x) =∆2 −∆x =∆2

0(1− 2/ cosh2 ξ).
In the Majorana basis, α = σ2, β = σ1, solution of the Dirac equation (4) with energy

p0 =
q

∆2
0 + p2 is ψp(x) = eipxχp(x) with

χp(x) =

�

(tanhξ− ip)/p0

1

�

. (32)
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At x → ±∞ the asymptotics of the wave function is given by the wave function of the Dirac
operators with the uniform mass H(0)± = −iα∂x ± β∆0. They are connected by the chirality
operator Γ = γ0γ1 = σ2 (a kink acts like chirality flip) H(0)+ = ΓH(0)− Γ . Hence,

Γχp(+∞) = A(p)χp(−∞) , (33)

where A(p) =
�

p+i∆0
p−i∆0

�1/2
is a pure phase. It is a meromorphic function of rapidity

A(θ ) = tanh
�

θ

2
+

iπ
4

�

, (34)

having a physical pole θ = iπ/2. The pole corresponds to a Majorana zero-energy (counted

from ∆0) bound state localized on the kink

�

1/coshξ
0

�

. It is depicted in Fig. 3. This is the

Jackiw-Rebbi effect [20] of emergence a spinor state. As the number of kinks increases, they
form a periodic structure, Fig. 3, and the zero-modes hybridize into the central (kink’s) band,
Fig. 1.
[We comment that the proper Pöschl-Teller model describes only one chiral component of

the Dirac multiplet, the transmission amplitude is a meromorphic function of the momentum
p equal to a square of A(p): A(p)/A(−p) = A2(p) = p+i∆0

p−i∆0
.]

In Sec. 5.2, we show that A(θ) given by (34) indeed arises as a semiclassical limit of the
exact vector-spinor scattering amplitude in the GN model. and later in Sec. 5.4 we comment
on how the complete quantum S-matrix has grown up from it.

4 General properties of Lie group-invariant system

As we already stated, our system is an integrable system invariant under O(2N) Lie group.
The major property of Lie-group invariant is that the symmetry alone determines the major
properties of the system. We briefly review them following Ref. [21–23].

4.1 Particle content

The main properties of Lie group invariant systems are:

- Particle content: Particles are multiplets of isotopic subspaces of representations (gener-
ally reducible) which are in one-to-one correspondence with the fundamental represen-
tations. Hence, the number of distinct particles equals the rank of the Lie algebra. If the
weight of a fundamental representation is minuscule [30], the particle representation is
irreducible.

- The C T transformation: The charge conjugation and the time reversal that converts
a particle to an antiparticle corresponds to a symmetry of the Dynkin diagram, that
permutes the simple roots in a way that preserves the Cartan matrix and yields the outer
automorphisms of the Lie algebra.

- Particles are bound states of "elementary" particles. They are a subset of minuscule repre-
sentations. The Clebsch-Gordon decomposition of the Kronecker product of elementary
representations contains other fundamental representations. The number of elementary
particles is at most two in accordance with the degree of the symmetry of the Dynkin
diagram.
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These properties have been established by direct Bethe-Ansatz solutions of G-integrable mod-
els. Here we accept them at the start. They and the factorized bootstrap fully determine the
scattering S-matrix.

In our case the Dynkin scheme is DN . Representations of DN are subject mod 4-periodicity.
This structure, however, is not shown up in the semiclassical limit achieved at N →∞. We,
therefore, choose N/2 to be an even integer, when spinor representations are real-orthogonal.
It helps to avoid unnecessary complications in formulas at finite N .

The N fundamental representations of DN are N−2 exterior powersΛrv, r = 1, . . . , N−2 of
the defining representation v – real 2N -vectors, and two spinor representations s± with chiral-
ity ± of Spin (2N), each of dimension 2N−1. Among them the vector and two spinors v and s±
are minuscule. The particle content of our model, which we denote by Vq, q = 1, . . . , N , is iso-
topic subspaces of minuscule representations, and N − 3 reducible representations generated
by antisymmetric tensors Λrv

Vq : {Vr =
[r/2]
⊕

p=0
Λr−2p v, r = 1, . . . , N − 2, VN−1 = s−, VN = s+} . (35)

The minuscule representations have a semiclassical meaning in the Peierls model (6) .
Spinors correspond to the kinks (14) , and vectors are fermions in (6) [14]. Other particles, the
N−3 particles being bound states of vector particles, are not bound to their vector constituents.
We, therefore, focus on minuscule representations.

The external automorphism, the charge conjugation, generated by the symmetry of the
Dynkin diagram plays an important role. It is a linear transformation defined by CVq = V ∗q .
The conjugate representation, which we denote Vq̄ := V ∗q is a contravariant representation. It
describes antiparticles. C acts as an identity on representation other than spinors. At even
N the charge conjugation keeps spinor chirality, so particles and antiparticle have the same
chirality. If N is odd chirality of a spinor particle and its antiparticle are opposite. In sym-
bols, if Γ is a chirality matrix (Γ 2 = 1, Γ T = Γ ), the ΓC = (−1)NCΓ . Furthermore, if N/2 is
an even integer, the case we choose, the charge conjugation matrix C is symmetric (in gen-
eral CT = (−1)[N/2]C. Finaly, the many-body states we consider consist of even number of
spinor particles (avoiding another source of alternating signs, this time in eigenvalues of the
monodromy matrix).

4.2 Factorized theory of scattering

4.2.1 Factorized S-matrix

In integrable models the scattering is factorized into a consecutive associative product of two-
particle scattering. The scattering matrix Sqq′(p, p′), the building blocks of the theory, is a
function of momenta and representations of scattered particles. The Lorentz invariance yields
that the S-matrix depends on the difference of rapidities Sqq′(θ − θ ′). It acts in the isotopic
subspaces of the product of representations of each particle Vq ⊗ Vq′ .

The scattering is factorized if the associativity condition for the scattering of three particles,
referred to as the Yang–Baxter equation, holds:

Sqq′(θ)Sqq′′(θ + θ
′)Sq′,q′′(θ

′) = Sqq′′(θ
′)Sqq′′(θ + θ

′)Sqq′(θ) . (36)

4.2.2 Cross-unitarity

The particle-antiparticle scattering matrix acts in Vq̄ ⊗ Vq′ . It is obtained by applying charge
conjugation together with the sign reversal of energy:

Sq̄q′(θ ) = CSqq′(θ
C)C , (37)
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where C acts in the space of the first particle Vq and

θ C = iπ− θ . (38)

The particle–particle and particle–antiparticle S-matrices are both unitary:

Sqq′(θ )Sqq′(−θ ) = 1, Sq̄q′(θ)Sq̄q′(−θ ) = 1 . (39)

4.2.3 Spectral decomposition

The eigenvalues of the S-matrix correspond to the Clebsch–Gordan decomposition of the tensor
product of the fundamental representations into a sum of irreducible components:

vq ⊗ vq′ = ⊕
ωqq′

vωqq′
, (40)

where ωqq′ enumerates the irreducible representations in the decomposition. We use ω to
denote the highest weight of the representation. Then

Sqq′(θ ) =
∑

ωqq′

sωqq′
(θ)Pωqq′

, (41)

where Pω is the projector onto the space of weight ω. The amplitudes sω(θ) are unitary

sω(θ ) sω(−θ ) = 1 (42)

meromorphic functions with at most simple poles. They are the eigenvalues of the S-matrix.

4.2.4 Bound states and bootstrap

Eqs. (36) and (39) determine the S-matrix up to a real scalar factor obeying the cross-unitarity
condition

Xqq′(θ )Xqq′(−θ ) = 1, Xq̄q′(θ)Xq̄q′(−θ ) = 1 , (43)

where Xq̄q′(θ ) = Xqq′(iπ−θ ). Solutions of (43) are characterized by a finite set of parameters

θ
qq′

j representing poles on the physical sheet:

Xqq′(θ) =
∏

j

sin
�1

2(θ + θqq′, j)
�

sin
�1

2(θ − θqq′, j)
� . (44)

Some of the poles, usually purely imaginary, correspond to bound states, i.e., additional parti-
cles. The positions of the physical poles determine the mass of the bound state [see [22] for a
sufficient condition for a pole to represent a bound state]. We therefore introduce a minimal
solution of (36,39) that is analytic on the physical sheet, denoted S(θ ). Then the S-matrix
can be written as the product of this matrix and the scalar factor:

Sqq′(θ ) = Xqq′(θ) Sqq′(θ ) . (45)

The matrix factor represents kinematic and symmetry properties and may be common to a
class of models, whereas the scalar factor encodes model-specific dynamics.

These are the elements of the bootstrap strategy, summarized as follows. We seek only the
S-matrix of the elementary particles, which in our case are spinors all other particles appear
as bound states. The S-matrix of the elementary particles is obtained in two steps. The first
step is to find a minimal solution S(θ ) of the Yang–Baxter equation and cross-unitarity. It
satisfies all kinematic constraints. The model-specific dynamics is encoded in the positions
of the poles of the factor X in (44) . In G-invariant systems the poles are introduced so that
the spectrum of bound states is minimal: bound states of bound states must not extend the
spectrum beyond the minimal particle set. In G-invariant systems this minimal content consists
of the fundamental representations, as discussed in Sec. 4.1.
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4.2.5 Fusion formula

If a physical pole ϑb appears in the amplitude sqb
of the spectral decomposition of Sqq′ , a

bound state is the multiplet of the representation Vqb
. The fusion formula [22, 24] gives the

scattering matrix of the Vqb
-particle. If q is a minuscule representation, the pole appears in a

single channel. In this case the fusion formula simplifies:

Sqb ,q′′(θ) =Pqb

�

Sqq′′(θ +
1
2ϑb)Sq′,q′′(θ −

1
2ϑb)
�

Pqb
. (46)

A pole ϑb that gives rise to a bound state must lie on the physical sheet, and its residue
has to satisfy a specific condition [24]. For minuscule representations this reduces to the sign
of the residue of the factor X : res Xqq′ < 0. Then the mass of the bound state is expressed
in terms of the masses of the scattered particles and the position of the pole. If the parent
particles have the same mass, the mass of the bound state is

mb = 2m cosh
�1

2ϑb

�

. (47)

4.2.6 Cartan component

A general result of representation theory states that among all highest weights appearing in
the Clebsch–Gordan decomposition of representations with highest weights ωq and ωq′ , the
maximal dominant weight is the sum:

Ωqq′ =ωq +ωq′ . (48)

This component is referred to as the Cartan component of the tensor product, or the top
Clebsch–Gordan component. It appears with multiplicity one. The highest weights of the
remaining representations in the decomposition (40) are obtained from the top component
by subtracting multiples of simple roots: ω= Ω−

∑

i miαi . The amplitudes of the Cartan com-
ponents serve as a kind of "root" for (nested) Bethe Ansatz equations. The scattering phases in
Eq. (30) of Sec. 2 correspond to the Cartan components thus, they are the only components we
need. Furthermore, for Cartan components the fusion formula (46) becomes multiplicative:

sΩb
(θ) = sΩq

(θ + 1
2ϑb) sΩq′

(θ − 1
2ϑb) . (49)

The Bethe equations (23) equate the Bloch factors eiPq L to the eigenvalues of the mon-
odromy matrix (also called the transfer matrix), given by the product of scattering matrices of
a particle q with all other particles labeled by qi:

Tq(θ , {θi}) = eipL
∏

i

Sqqi
(θ − θi), p = mq coshθ . (50)

The monodromy matrix acts in the space

Vq ⊗ (⊗
i
Vqi
) = ⊕

ω
Vω , (51)

whereω labels the highest weights of the irreducible representations appearing in the decom-
position. Accordingly, we decompose the monodromy matrix as

Tq(θ , {θi}) = eipL
∑

ω

tω(θ , {θi})Pω . (52)

Among the states in (51) , we are interested in the Cartan component, the state with
maximal highest weight:

Ω=ωq ⊕
�

⊕
i
ωqi

�

. (53)
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For this component, the eigenvalues of the monodromy matrix reduce to the product of the
Cartan amplitudes of the two-particle S-matrices in (41) :

tΩ(θ , {θi}) =
∏

i

sΩq+Ωqi
(θ − θi) . (54)

Hence the kernels in Eqs. (30) are

Kqqi
(θ) =

1
2πi

d
dθ

log sΩq+Ωqi
(θ ) , (55)

where q is a spinor or vector representation and qi are spinor representations. In the next
section we review the explicit forms of Kqqi

.

5 O(2N)-scattering matrix

Here we review the O(2N) scattering matrix. The vector-vector and vector-tensor components
of the S-matrices were computed in Ref. [12], and the complete S-matrix, including vector-
spinor and spinor-spinor components, was given in Ref. [13]. We follow Refs. [21–23, 25],
some formulas in this section are new.

5.1 Spinor-spinor scattering

The spinor S-matrix acts in the representation spaces s± ⊗ s±, s± ⊗ s∓. Their Clebsch-Gordon
decompositions (N = even) are

s± ⊗ s± = Λ
0 v⊕Λ2 v⊕ · · · ⊕ΛN

±v s+ ⊗ s− = Λ
1 v⊕Λ3 v⊕ · · · ⊕ΛN−1 v (56)

In terms of highest weights (expressed in the usual orthonormal basis e1, . . . , eN ) hw
�

Λ0v
�

= 0
and hw
�

Λrv
�

= e1 + e2 + · · · + er if r < N . For even N , the case we focus on, ΛN v is a
reducible representation which splits in two parts (ΛN v)±, each belongs to s± ⊗ s±. Their
hw
�

ΛN
±v
�

= e1 + e2 + · · ·+ eN−1 ± eN . The spinors hw
�

s±
�

= 1
2(e1 + e2 + · · ·+ eN−1 ± eN ). The

Cartan components of s+⊗s− and s±⊗s± are the largest even/odd-rank antisymmetric tensors
ΛN−1v and ΛN

±v.
According to the decomposition (56) and (41) the S-matrices of spinors with like/opposite

chirality S±± and S±∓ are given by the formula

S±±(θ)± S±∓(θ) =
N
∑

q=0

(±1)qsq(θ )Pq (57)

with unitary amplitudes

sq(θ )sq(−θ ) = 1 . (58)

The Yang-Baxter equation (36) establishes the relation between the amplitudes

sN−q−1(θ ) = (−1)q
θ + 2πi

h∨ q

θ − 2πi
h∨ q

sN−q+1(θ) , (59)

where

dual Coxeter number : h∨ = 2N − 2 (60)
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is the DN dual Coxeter number (the dual Coxeter number and the Coxeter number are equal
for the simply-laced root systems). This leaves two amplitudes undetermined. We choose
them to be Cartan components denoted by sN−1 := s+− = s−+ and sN := s++ = s−−.

The amplitudes are further restricted by the cross-unitarity conditions. They are based on
the action of the charge conjugation C in (37) . For N/2 being an even integer

s±±(θ ) = −
N
∏

0≤q=even

θ C − 2πi
h∨ q

θ − 2πi
h∨ q

sC
±±(θ ), s±∓(θ) =

N−1
∏

1≤q=odd

θ C − 2πi
h∨ q

θ − 2πi
h∨ q

sC
±∓(θ ) , (61)

where we denoted sC(θ ) = s(θ C).
These data and the minimal pole assumption are sufficient to find the amplitudes sq(θ). In

particular, the Cartan components follow solely from cross-unitarity and the pole assumption.
They are

log s++(θ)± log s+−(θ ) =
N−2
∑

r=0

(±1)r log
Γ
�

1
2 −

ϑr+θ
2πi

�

Γ
�

1
2 +

ϑr+1−θ
2πi

�

Γ
�

1
2 −

ϑr−θ
2πi

�

Γ
�

1
2 +

ϑr+1+θ
2πi

� , (62)

where ϑr is given by (65) below.
For references we write the factor Xss and SN :=S++, SN−1 :=S+− defined by

sq(θ) = (−1)qXss(θ)Sq(θ )

logS++(θ)± logS+−(θ ) =
N−2
∑

r=0

(±1)r log
Γ
�

1
2 +

ϑr−θ
2πi

�

Γ
�

1
2 −

ϑr+1−θ
2πi

�

Γ
�

1
2 +

ϑr+θ
2πi

�

Γ
�

1
2 −

ϑr+1+θ
2πi

� , (63)

Xss(θ ) =
N−2
∏

r=0

sinh 1
2(θ + ϑr)

sinh 1
2(θ − ϑr)

. (64)

The factor Xss introduces physical poles

ϑr = iπ
�

1− 2r/h∨
�

, ϑC
r = ϑN−r−1, r = 1 . . . N − 2 (65)

in the channels of representations entering Vr , see (35) . They correspond to bound states
with the mass given by

mr = 2ms sin(πr/h∨), r = 1 . . . N − 2 , (66)

where ms is the mass of the spinor. There is no bound state in the scalar channel and in the
Cartan components. This is the effect of the bootstrap: bound states do not proliferate beyond
the Dynkin diagram.

Summing up, the scattering phases of Cartan componentsΘ±± =
1
i log sN , Θ±∓ =

1
i log sN−1,

and their derivatives are now given

K±± =
1

2π
d

dθ
Θ±±, K±∓ =

1
2π

d
dθ
Θ±∓ . (67)

They are compactly written in terms of the Fourier integral that also valid for N odd or even,
alike

K±±(θ ) = δ(θ )+
1

4π

∫ ∞

0

�

tanh πx
2

e−
2πx
h∨ − 1

−
1

e−
2πx
h∨ + 1

�

cos(xθ)d x ,

K±∓(θ) =
1

4π

∫ ∞

0

�

tanh πx
2

e−
2πx
h∨ − 1

+
1

e−
2πx
h∨ + 1

�

cos(xθ)d x .

(68)
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[For references we mention the Fourier representation of the factor (64) Xss = −
1

8π

∫∞
0

tanh(πx
2 )

sinh
�

πx
h∨

� cos(xθ )d x].

Then Kss(θ ), defined by (31)

Kss(θ) := K±±(θ) + K±∓(θ ) = δ(θ ) + K̃ss(θ) , (69)

with

K̃ss(θ ) =
1

2π

∫ ∞

0

tanh πx
2

e−
2πx
h∨ − 1

cos(xθ )d x . (70)

5.2 Fermion-spinor scattering

Elementary fermions form the vector multiplet v. For N even, they can be viewed as bound
states of spinors with opposite chirality. We focus on their scattering with a spinor, the quantum
analog of the Pöschl -Teller problem (Sec. 3). There are only two channels:

v⊗ s± = s∓ ⊕ (3/2)± , (71)

corresponding to a spinor with opposite chirality and the Cartan component: a spin-3/2
Rarita–Schwinger field with hw(3/2±) =

3
2 e1 +

1
2(e2 + · · · ± eN ).

The Yang-Baxter equation relates the two amplitudes giving the vector-vector S-matrix

Sv±(θ ) = sv±(θ )

�

θ + 1
2ϑ1

θ − 1
2ϑ1

P∓ +P3/2±

�

. (72)

Here ϑ1 is given in (65) , andP±,P3/2± are projectors onto spinor and spin-3/2 representations
with chirality ±.

The cross-unitarity

sC
v±(θ ) = sv±(θ )

θ − 1
2ϑ1

θ C − 1
2ϑ1

, (73)

which yields the minimal solution

Svs(θ) =
Γ

�

1
2 +

θ−1
2ϑ1

2πi

�

Γ

�

1−
θ+

1
2ϑ1

2πi

�

Γ

�

1
2 −

θ+
1
2ϑ1

2πi

�

Γ

�

1+
θ−1

2ϑ1

2πi

� . (74)

The pole assignment ensures that the bound state of a vector and a spinor is a spinor (as
indicated by the Pöschl -Teller problem):

Xv±(θ) = ±
tanh 1

2(θ +
1
2ϑ1)

tanh 1
2(θ −

1
2ϑ1)

. (75)

[Sign factors of the amplitudes follow from the fusion formula (46) ].
Collecting terms:

sv±(θ)≡ Xv±(θ )Svs(θ) = ±
Γ

�

−θ+1
2ϑ1

2πi

�

Γ

�

1
2 +

θ+
1
2ϑ1

2πi

�

Γ

�

θ−1
2ϑ1

2πi

�

Γ

�

1
2 −

θ+
1
2ϑ1

2πi

� . (76)
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The Fourier representations of the vector-spinor and rank–r antisymmetric tensor- spinor
are

Kvs(θ ) :=
1

2πi
d

dθ
log sv±(θ ) = −

1
π

∫ ∞

0

e
πx
h∨

cosh πx
2

cos(xθ) d x . (77)

Krs(θ ) =
(r−1)/2
∑

n=−(r−1)/2

Kvs

�

θ + i
2nπ
h∨

�

= −
1
π

∫ ∞

0

e
πx
h∨

cosh πx
2

sinh πx
h∨ r

sinh πx
h∨

cos(xθ ) d x . (78)

5.3 Fermion-fermion scattering

Elementary fermions form vector multiplets of O(2N). Their scattering possesses three chan-
nels: singlet, antisymmetric rank-2 tensor, and traceless symmetric rank-2 tensor:

v⊗ v= S2v⊕Λ2v ⊕Λ0v . (79)

Accordingly the S-matrix reads

Svv(θ ) = svv(θ)

�

PS +
θ + 2πi

h∨

θ − 2πi
h∨
PA+

θ + 2πi
h∨

θ − 2πi
h∨

θ + iπ
θ − iπ

P0

�

, (80)

where PS ,PA,P0 are the corresponding projectors and the Cartan component is

svv(θ) = Xvv(θ)Svv(θ ) (81)

with

Svv(θ) =
Γ
� −θ

2πi + 1
�

Γ
�

θ
2πi +

1
2

�

Γ
�

ϑC
1+θ
2πi

�

Γ
�

ϑC
1−θ
2πi +

1
2

�

Γ
�

θ
2πi + 1
�

Γ
� −θ

2πi +
1
2

�

Γ
�

ϑC
1−θ
2πi

�

Γ
�

ϑC
1+θ
2πi +

1
2

� , Xvv(θ ) = −
tanh 1

2(θ + ϑ1)

tanh 1
2(θ − ϑ1)

. (82)

The Fourier representation of the vector-vecor and tensor-tensor scattering are

Kvv(θ) =
1

2πi
d

dθ
log svv(θ) = δ(θ) + K̃vv(θ ), K̃vv(θ ) =

1
π

∫ ∞

0

cos xϑ1
2

cosh πx
2

e
πx
h∨ cos(xθ )d x .

(83)

Kr r ′(θ) = δr r ′δ(θ) + K̃r r ′(θ ), K̃r r ′(θ ) = −
1
π

∫ ∞

0

cos x
2ϑr

cosh πx
2

sin x
2ϑ

C
r ′

sin x
2ϑ

C
1

e
πx
h∨ cos(xθ )d x , r ′ ≥ r .

(84)

5.4 Fusion

Scattering amplitudes satisfy fusion relations (46) . They, together with a minimal analytic
assignmens, allow all amplitudes to be determined from a single known amplitude, e.g., svv(θ),
and for that reason could be used as defining conditions for the bootstrap approaoch.

A pole ϑ1 in spinor-spinor amplitude indicates that for even N an elementary fermion can
be viewed as a bound state of a spinor and its antiparticle of opposite chirality.

The fusion formula (49) for Cartan components then yields:

s++
�

θ − 1
2ϑ1

�

sC
+−

�

θ + 1
2ϑ1

�

= ±sv±(θ), or
s++
�

θ + iπ
h∨
�

s+−
�

θ − iπ
h∨
� = ±sv±

�

θ +
iπ
2

�

. (85)
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Similarly, vector-vector fusion gives

sv±
�

θ − 1
2ϑ1

�

sv∓
�

θ + 1
2ϑ1

�

= svv(θ) . (86)

It is important to notice that fusion relation holds for X-factors and the minimal solution
S separately:

−
Xss

�

θ + iπ
h∨
�

Xss

�

θ − iπ
h∨
� = ±Xv±

�

θ +
iπ
2

�

,
S++
�

θ + iπ
h∨
�

S+−
�

θ − iπ
h∨
� =Svs

�

θ +
iπ
2

�

. (87)

Xv±
�

θ − 1
2ϑ1

�

Xv∓
�

θ + 1
2ϑ1

�

= Xvv(θ ), Sv±
�

θ − 1
2ϑ1

�

Sv∓
�

θ + 1
2ϑ1

�

=Svv(θ ) . (88)

The fusion relations imply relations for the differentials of the scattering phase

K̃±±

�

θ +
iπ
h∨

�

− K±∓

�

θ −
iπ
h∨

�

= Kvs

�

θ +
iπ
2

�

, (89)

Kvs

�

θ +
1
2
ϑ1

�

+ Kvs

�

θ −
1
2
ϑ1

�

= K̃vv (θ ) . (90)

and the relation

Kss

�

θ −
2iπ
h∨

�

− Kss

�

θ +
2iπ
h∨

�

=
∑

ϵ=±

�

Kvs

�

θ −
iπ
2
+ ϵ

iπ
h∨

�

− Kvs

�

θ +
iπ
2
+ ϵ

iπ
h∨

��

. (91)

followed from(89) . Integral representations (67,69,77,83) provide an immediate check.

The fusion rules are powerful relations reflecting no more that the structure of the scheme
DN . They could be seen as defining conditions for the bootstrap: knowing sv±(θ ), all other
amplitudes are determined by the fusion.

6 Semiclassical limit of scattering

Now we are armed to study the limit h∨→∞.
We recall that we focus on a thermodynamic state that consists of a large number Ns of

spinors with + chirality and the same number Ns of spinors with − chirality [31] . We observe
that only minuscule representations – spinors and elementary fermions survive in our limit.
The high rank antisymmetric states (Vr with r of the order of N) disappear from the spectrum,
because their too heavy. A lower rank tensors are decoupled into r elementary fermions.

Elementary fermions interact to tehmselves via quantum fluctuations of ∆ represented by
the GN-model, but in the adiabatic limit ∆ is frozen: vector particles interact with kinks, but
not to themselves. We clearly see it from (83) : Kvv and all Kr r ′ with light r/h∨, r ′/h∨ → 0
vanish, and Krs→ rKvs as follows from (78,84). We see it also from the mass spectrum formula
(66). At r/h∨→ 0 and mv kept fixed, the mass spectrum stops being concave as mr → rmv . It
is consistent with the fusion rule (86) . As the pole of the vector-vector scattering θ = ϑ1→ iπ
disappears from the physical sheet, the fusion rule prompts svv(θ )→ 1. At the same time the
pole of the fermion-spinor scattering Xv± in (75) equall to θ = ϑ1/2 → iπ/2 remains on
the physical sheet: vectors keep forming bound states with kinks. We have seen in the Pöschl
-Teller model of Sec. 3 : a pole in the scattering amplitude (33) corresponds to the Majorana
zero mode, a bound state of the fermion and the kink. Comparing with the classical case, we
identify mv with ∆0 in (10)

∆0 = mv = lim
h→∞

(2π/h∨)ms . (92)
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The limit of the vector-spinor scattering obtained from the explicit quantum formulas
(76,77) is in agreement with the Pöschl -Teller amplitude (34)

sv±→±A(θ ) = ± tanh
�

θ

2
+

iπ
4

�

(93)

We remark that the limiting values of the building blocks of sv± are X v± = ±S−2
vs = ∓A2. [To

compare the Pöschl -Teller scattering with quantum formulas we recall the representation of
projectors in (72) in terms of O(2N) gamma-matrices: (P±)µν =

1
2(N−2)(δµν∓Σµν)Γ±, where

Σµν =
1
2[γ

µ,γν] is the spin operator. At N = 2, that corresponds to the Pöschl–Teller, P±
vanishes as in this case 1∓Σ = Γ∓. Then Pv∓ = 1 and the S-matrix given by (72) is reduced
to ±A(p) in agreement with (33) ].

Hence,

lim
h∨→∞

Kvs = −
1

2π coshθ
. (94)

Now we turn to the limit of the spinor-spinor scattering. We see that leading large N order
of the spinor-spinor scattering is no longer meromorphic and, as such, does not represent
particle scattering any longer. It has a branch cut along the real axis. Defining

kss := lim
h∨→∞

1
h∨ K̃ss , (95)

and taking the limit of (70) we obtain

kss(θ) = −
1

(2π)2

∫ ∞

0

1
x

tanh
πx
2

cos(xθ )d x = −
1

2π2
log

�

�

�

�

coth
θ

2

�

�

�

�

. (96)

In the next section we show how this formula from fusion relations.
The regular part of the scattering phase that corresponds to (96) is expressed in terms of

the Euler dilogarithm Li2(z) =
∑∞

n=0
zn

n2

lim
h∨→∞

π

h∨
[Θss(θ)−Θss(∞)]→ Li2

�

−e−θ
�

− Li2
�

e−θ
�

, θ > 0 . (97)

We repeat that the limiting value of the spinor-spinor scattering cannot be associated with a
scattering problem and does not seem to have an obvious analog in the classical soliton theory.
In the quantum theory kinks are true particles.

We observe a similar pattern, if the ground state is made out of heavy antisymmetric tensors
with rank r∗ := 1

2(h
∨ − 2r). Then, assuming r, r ′ ∼ 1 the formula (84) promts

lim
h∨→∞

Kr∗r ′ = kvs, lim
h∨→∞

1
h∨ K̃r∗r ′∗ = 2kss . (98)

Once again, this illustrates that the semiclassical limit obscures many subtle features of the
quantum theory.

6.1 Semiclassical limit of fusion relation

It is instructive to obtain the limiting values of Kss (96) without using the explicit formulas
(68) . follows from the fusion formulas Sec. (5.4).

Take the fusion relation in the form of (91) and expand its LHS in 2iπ/h∨ and use the
property kvs(θ) = −kvs(θ + iπ). Then (91) prompts the relation

2π d
dθ kss(θ) = −ikvs

�

θ +
iπ
2

�

=
1

π sinhθ
. (99)

We know its RHS from the solution of the Pöschl-Teller problem. Integration prompts the
formula (96) . We observe that the kernels in the pairs of equations (102,103) for vector
particles and for kinks are related, so the pairs of equations are not independent.
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7 Semiclassical limit of the thermodynamic Bethe equations

Given the scattering we are equipped to address the spectrum. The spectrum is determined
by the thermodynamic Bethe equations quoted in the end of Sec. 2 with Kss and Kvs given
by (69„77). We recall that these equations describe the spectrum of a state that consists of
equal number of spinors of opposite chirality occupying a single interval. Now we study the
semiclassical limit of these equations.

We begin with a general remark on the Bethe equation (30) , which we repeat here

d
dθ

�

Ps
Es

�

= ms

�

coshθ
sinhθ

�

+

∫ B

−B
Kss(θ − θ ′) d
�

Ps
Es

�

. (100)

The equation holds for an arbitrary real θ . However, the meaning of the equation depends on
the position of θ , as was emphasized in Ref. [27] (where thermodynamic Bethe equation was
introduced). If θ is chosen within the interval (−B, B), then the term in the LHS is merely the
density of states (2π/L)ρs, see Sec. 2. In this case, we write (100) as

|θ |< B : −
∫ B

−B
K̃ss(θ − θ

′) d

�

Ps
Es

�

= ms

�

coshθ
sinhθ

�

, (101)

where K̃ss is defined in (69) and explicitly given by (70) . This equation alone determines
the density of the occupied states. However, if θ is outside of the interval, where there is no
particles, the LHS describes a density of "holes", an unoccupied part of the spectrum suitable
for excitations. Once the density of occupied states is found by solving the Bethe equations
(101) within the interval, the density of "holes" is determined by the RHS of (100) evaluated
outside of the interval.

In a regular situation the particle branch and "hole" branch are smoothly connected form-
ing a smooth Ps(θ). The semiclassical limit is singular, and this is an essence of the Peierls
phenomenon. We see that K̃ss and the mass of a spinor particle ms are of the order of N (see
(92,106)), and balance each other in (101) . However, if |θ |> B, there is an imbalance, since
the LHS in (100) is of the order 1. In the large N limit, the LHS should be treated as null.
This means that the spinor branch is stopped at the end of the occupied region. The large
N limit truncates the Bethe equations by forcing the spinor branch to be fully occupied, in
complete agreement with the Peierls phenomenon: the Fermi momentum is the end point of
the spectrum.

Dividing both sides of (101) by h∨, taking the limit and using (92,95) we obtain the
semiclassical Bethe equations

|θ |< B : −
∫ B

−B
kss(θ − θ ′)d
�

Ps
Es

�

=
∆0

2π

�

coshθ
sinhθ

�

, kss(θ ) = −
1

2π2
log

�

�

�

�

coth
θ

2

�

�

�

�

. (102)

This agrees with the Peierls phenomenon: the spectrum ends at the Fermi momentum.
Next we turn to the Bethe equations for the vector branch. The Bethe equations are spec-

ifications of (26,28) for q = v, q′ = ±. In this case all the terms are of the same order. Taking
the limit we obtain

d
dθ

�

Pv
Ev

�

=

∫ B

−B
kvs(θ − θ ′) d
�

Ps
Es

�

+∆0

�

coshθ
sinhθ

�

, (103)

where kvs follows from (94)

kvs(θ) := 2 lim
h∨→∞

Kvs(θ ) = −
1

π coshθ
. (104)
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These equations describe an occupied part of the spectrum. It should be clear that the two
branches are interdependent. Once the occupied part of the spectrum is known (by solving
Eq.(102) ), then the evaluation of the RHS of (103) yields the spectral branch of the vector
particles. It is noteworthy that kss and kvs are interconnected singular kernels (94,106). The
remaining part of the paper dwells on this property.

Let us differentiate (102) and use the fusion relation (99) . We obtain

|θ |< B : −
∫ B

−B
kvs

�

iπ
2
+ θ − θ ′
�

d

�

Ps
Es

�

= i∆0 sinhθ (105)

and compare (105) with (103) . The arguments below equally apply for the momentum and
energy. We write the momentum equation explicitly:

|θ |< B : 0=
1
π

∫ B

−B

dPs

sinh(θ − θ ′)
+∆0 sinhθ , (106)

|θ |> B : d
dθ Pv(θ) =

1
π

∫ B

−B

dPs

cosh(θ − θ ′)
+∆0 coshθ . (107)

The equation (106) is a standard singular integral equation that defines 2πi-periodic
analytic function f (ξ) in the complex plane, cut along the interval [−B, B]. The boundary
value of this function on the interval is

|θ |< B : f (θ )dθ = d(iPs(θ) +∆0 coshθ ) . (108)

Define an analytic function on the physical sheet

F(ξ) =
1
π

∫ B

−B

Im f (θ )dθ
sinh(ξ− θ )

+∆0 sinhξ . (109)

Since, ∆0 coshθ is also a boundary value of an analytic function∆0 coshξ, dPs(θ) can also be
analytically extended. We denote it by dPs(ξ). Therefore, F(ξ)dξ = idPs(ξ). Now we notice
that (107) implies the relation between momenta differentials of elementary fermions and
kinks. Similar relation holds for the energy: energy-momentum of the elementary fermions
branch treated as a function of rapidity are obtained by the analytic continuation of the energy-
momentum of the central band from the interval of the real rapidity Imθ = 0, |θ | < B to the
line Imθ = π/2: the band of hybridized zero modes - the kink’s band and the elementary
fermion bands are different real sections of a single spectral curve sliced by the line Imθ = 0
and Imθ = π/2 respectively. Naturally, the spectral density of each branch is given by the
same Abelian differential, which we now compute. This miracle, of course, does not occur at
finite N .

7.1 Spectral curve

The semiclassical Bethe equations are singular integral equations with Cauchy-type kernels.
These equations can be formulated as a Riemann–Hilbert problem and, in the case of a single
interval, admit explicit solutions. Let us take the equation for the energy (102) and integrate
it by parts. In this way we obtain a single integral equation

−

B
∫

−B

g(θ ′)
sinh(θ − θ ′)

dθ ′

π
=∆0 sinhθ , (110)
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where g(θ )dθ is either dPs or Es(θ)dθ in the P > 0, E < 0 quadrant of the spectrum. Other
quadrants are obtained by reflections. Solutions inside the interval, with at most integrable
singularities at the endpoints, are given by

g(θ ) =
C

p

sinh2 B − sinh2 θ
−∆0

p

sinh2 B − sinh2 θ , (111)

with a real constant C yet to be determined.
We begin with the energy Es. Since the energy must remain finite, we set C = 0. Further-

more, because the kink band (the central band ) is formed by hybridized fermionic zero modes
localized on kinks, the spectrum is symmetric with respect to E = 0. That fixes the additive
constant. Hence, the kinks energy vs rapidity reads

E2
s (θ) =∆

2
0(sinh2 B − sinh2 θ ) = E2

− − p2 . (112)

where we denoted

E+ ± E− =∆0 e±B . (113)

We see that ±E− are the end point of the central band and therefore endpoint of the gaps. We
emphasize that the rapidity θ or p in (112) , do no longer correspond to asymptotic states, as
it happens before the large N limit is taken when all bands extend to infinite energy. Later we
will see that ±E+ are another end points of the gaps.

We now turn to the momentum. It features a van Hove square-root singularity at the
endpoints, and in this case C ̸= 0:

dPs = − (C/Es(θ )− Es(θ ))dθ . (114)

Using (112), we express the mass-shell measure dθ = dp0/p (see (24)) in terms of Es:

dθ = −
Es dEs

y(Es)
, (115)

where

y2 = (E2
− − E2

s )(E
2
+ − E2

s ) . (116)

Conmbining (114-116) we see that the spectral density is given by an Abelian differential of
the second kind on the elliptic curve defined by (116), as expected from the algebro-geometric
approach (see, Sec. 1.3)

dPs =
C − E2

y(E)
dE . (117)

The most lower band (and the most upper band) in Fig. 1 correspond to elementary
fermions. We analytically continue the central band energy (112) to the line ξ = θ + iπ

2 ,
obtaining

E2
v =∆

2
0 cosh2 θ + E2

− = E2
+ +∆

2
0 sinh2 θ . (118)

Equivalently,

E2
v = E2

+ + p2 . (119)
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Hence, ±E+ is the endpoint of the elementary fermion bands and the endpoints of the gaps. No
wonder that the analytical form of the differential of momentum for the elementary fermion
branch

dPv =
C − E2

y(E)
dE (120)

is of no different from that of the central band. Different branches of the spectrum are real
sections of the a single complex curve.

The remaining task is to express the parameters E± and C in terms of the number of par-
ticles Ns. Similar to the algebro-geometric approach of the Sec. 1.3, these parameters follow
from the conditions given by Eq. (19)

∫ E−

−E−

dPs = (2π/L)Ns,

∫ E+

E−

dPs = 0 . (121)

Together they yield the expressions quoted in Eq. (20).
[In Ref. [15] we did not explore the second condition of (121) . The nessesary information

was extracted by evaluating the first equation of (102) at θ = 0 that brings the same result.]

8 Summary

Let us summarize the main results of this work.
We studied the large-rank limit of an integrable quantum field theory with Lie-group sym-

metry in the presence of a specific chemical potential. Our analysis focused on the Lie group
O(2N). The chemical potential was chosen so that the ground state is the thermodynamic
state composed of spinor particles. The scattering of such theory, as well as everything else, is
defined entirely by the Dynkin scheme of type DN .

Our primary goal was to determine the limiting form of the particle spectrum as the rank
of the Lie algebra increases. We demonstrated that the spectrum coincides with the finite-gap
potential of the Dirac equation previously obtained by algebro-geometric methods in soliton
theory. In this context, the Dirac operator acts as the Lax (Zakharov–Shabat) operator gen-
erating classical soliton equations, such as the modified Korteweg–de Vries (mKdV) equation
and the increasing Coxeter dual number serves as a semiclassical parameter.

A central observation of this work is the mechanism by which meromorphic differentials,
fundamental objects in the algebro-geometric approach to soliton theory, emerge in the large-
rank limit. Before the limit is taken, the differentials of momentum and energy are not mero-
morphic, as the should not in a regular quantum theory. We illustrated this phenomenon us-
ing the simplest nontrivial finite-gap potential: the traveling-wave solution of the defocusing
mKdV equation, corresponding to a two-gap spectrum and an associated elliptic curve. We do
not anticipate conceptual obstacles to extending our approach to more complicated finite-gap
potentials and also to different large rank Dynkin scheme.

At the same time, the methods of quantum integrable models employ several structures
whose classical counterparts in soliton theory have not yet been identified. In our framework,
the spectrum arises from the large-rank limit of the thermodynamic Bethe equations, which
take a form quite different from those used in classical finite-gap theory. Before the limit, the
Bethe equations describe a smooth quantum spectrum. However, in the large-rank limit, these
equations degenerate into singular integral equations, whose solutions are Abelian meromor-
phic differentials. We do not know of a classical analogue of the singular Bethe equations
within soliton theory.

Another conceptual issue concerns the role of spinor particles in the classical theory of
solitons. The Bethe equations are built from the scattering amplitudes of spinor particles.
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In the classical limit, the objects that correspond most closely to spinors are kinks—the half-
soliton solutions of the mKdV equation. Yet kinks are not particles in the classical sense, and
the limiting form of the spinor scattering amplitude does not have an obvious interpretation as
kink–kink scattering. Nevertheless, this amplitude enters the Bethe equations and ultimately
determines the finite-gap spectrum. Its precise meaning within the classical soliton theory
remains unclear. The same can be said about the role of the fusion relations in the classical
setting.

These features, like nearly all other structural elements discussed in this paper, originate
from the Lie algebra of the underlying Lie-group symmetry of the quantum theory. It is there-
fore natural to expect that in the classical limit, infinite-rank Lie algebras should also emerge
as the relevant organizing structures, even if their role has not yet been identified.
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