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Abstract

The string hypothesis for Bethe roots represents a cornerstone in the study of quan-
tum integrable systems, providing access to physical quantities such as the ground-state
energy and the finite-temperature free energy. While the t−W scheme and the inho-
mogeneous T−Q relation have enabled significant methodological advances for systems
with broken U(1) symmetry, the underlying physics induced by symmetry breaking re-
mains largely unexplored, due to the previously unknown distributions of the transfer-
matrix roots. In this paper, we propose a new approach to determining the patterns
of zero roots and Bethe roots for the Λ− θ and inhomogeneous Bethe ansatz equations
using tensor-network algorithms. As an explicit example, we consider the isotropic
Heisenberg spin chain with non-diagonal boundary conditions. The exact structures
of both zero roots and Bethe roots are obtained in the ground state for large system
sizes, up to (N ' 60 and 100). We find that even in the absence of U(1) symmetry, the
Bethe and zero roots still exhibit a highly structured pattern. The zero roots organize
into bulk strings, boundary strings, and additional roots, forming two dominant lines
with boundary-string attachments. Correspondingly, the Bethe roots can be classi-
fied into four distinct types: regular roots, line roots, arc roots, and paired-line roots.
These structures are associated with a real-axis line, a vertical line, characteristic arcs
in the complex plane, and boundary-induced conjugate pairs. Comparative analysis
reveals that the t−W scheme generates significantly simpler root topologies than those
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obtained via off-diagonal Bethe Ansatz. The developed framework not only resolves
the root configuration problem in U(1) symmetry-broken systems, but also provides a
transferable approach for studying ground states, excitations, and finite-temperature
properties in quantum integrable models.

Keywords: Bethe Ansatz; Tensor Network; Quantum Integrable Systems
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1 Introduction

Quantum integrable systems provide a rigorous framework for the exact study of one-

dimensional many-body problems. Since Bethe’s solution of the spin-1
2

XXX chain [1], the

Bethe Ansatz has remained a cornerstone of the field, yielding exact results for a broad

class of integrable models [2, 3, 4]. For quantum integrable systems with boundary fields,

integrability can be preserved within the quantum inverse scattering method (QISM) [6, 5],

provided that the boundary reflections satisfy the boundary Yang–Baxter equations [7, 8, 9].

When the boundary fields are parallel, the Hamiltonian retains U(1) symmetry and the

Bethe Ansatz is well established [10, 11]. In contrast, generic non-diagonal boundary terms

break the U(1) symmetry yet the model remains integrable. To address this issue, several

techniques have been developed, including gauge transformation [12], fusion-based T −Q re-

lation [13, 14], q-Onsager algebra [15, 16], separation of variables [17, 18], modified algebraic

Bethe Ansatz [19, 20] and off-diagonal Bethe Ansatz [21, 22]. The eigenvalues of the transfer

matrix of the quantum integrable systems without U(1) symmetry are characterized by the

inhomogeneous T − Q relations. However, the associated Bethe Ansatz equations (BAEs)

are inhomogeneous and the corresponding distributions of Bethe roots are very complicat-

ed. Consequently, the thermodynamic Bethe Ansatz [23, 24, 25] is no longer valid, and

computing the exact physical properties in the thermodynamic limit becomes exceedingly

difficult. Recently, based on off-diagonal Bethe Ansatz, the zero-root method (termed the

t−W scheme) has been proposed [26, 27], which effectively tackles the challenges posed by

the inhomogeneous T −Q relations. The key point is to analyze the zero roots of the transfer

matrix, not those of the Q-operator (i.e., the Bethe roots).

The investigation of zero roots and Bethe roots is essential because their distribution

patterns form the basis of the analysis of the thermodynamic limit and thermodynamic

properties. Although the analytic structure of the inhomogeneous T − Q relation and the

t−W relation are well understood, solving the associated constrained equations numerically

remains challenging. Previous numerical studies of off-diagonal Bethe roots and zero roots

have been restricted to small systems, typically N ≤ 12, and served mainly to check theoreti-

cal conjectures [29, 30]. Particularly in high-rank quantum integrable models, the dimension

of the local Hilbert space is large, and existing numerical approaches are insufficient for ana-

lyzing the structures of zero roots and Bethe roots. In contrast, tensor-network algorithms-

3



especially the density matrix renormalization group (DMRG) [31, 32, 33, 34, 35, 36], make it

possible to obtain high-precision ground state and low-lying spectra for much larger systems,

thereby building a practical bridge between functional formulas and numerical studies [37].

In this paper, we take the spin-1/2 XXX chain subject to arbitrary boundary fields as a

benchmark to verify the efficacy and broad applicability of the numerical method developed

herein. Within the QISM framework, we first represent the transfer matrix t(u) as a matrix

product operator (MPO) and compute its eigenvalue Λ(u) for large lattice sizes using DM-

RG. The DMRG calculations were performed using the ITensor Library [38]. Then we solve

the zeros of the transfer matrix from the numerically obtained Λ(u) and verify them using

the maximum modulus principle and the argument principle [39]; on this basis, we verify

the correctness of the phase regions given in Ref. [40] and describe the concrete structural

changes when parameters cross between these regions. Next, we solve the Bethe roots at

large N directly from the inhomogeneous T −Q relation, adapting the strategy outlined in

Ref. [41], and summarize how their overall structural characteristics evolve with the bound-

ary parameters, in particular the gradual restoration of U(1) symmetry as the non-parallel

boundary fields are reduced from finite values to zero.

The remainder of the paper is organized as follows: Sec. 2 introduces the model under

consideration and its integrability, followed by a concise review of the ODBA formalism

and the zero-root approach. Sec. 3 describes the DMRG/MPO implementation and the

computation of Λ(u); Sec. 4 presents zero roots together with their structural changes across

parameter regions; Sec. 5 discusses the solution of Bethe roots and outlines their structural

evolution; Sec. 6 concludes the work. Appendix A provides the MPO representation of

the transfer matrix, while Appendix B presents the derivation of the maximum modulus

principle. Appendices C and D provide validation data for the zero roots and the Bethe

roots, respectively. Additionally, Appendix E illustrates the crossover behavior of the Bethe

roots as the boundary parameters increase.

2 Integrability

Initially, let V be a two-dimensional linear space with an orthonormal basis {|m〉,m = 0, 1}.
We adopt standard notations: for any matrix A ∈ End(V ), Aj denotes the embedding

operator acting as A on the j-th space and as identity elsewhere in the tensor product V ⊗N .

For B ∈ End(V ⊗ V ), Bij acts nontrivially only on the i-th and j-th spaces.
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We introduce the R-matrix R0,j(u) ∈ End(V0 ⊗ Vj) as

R0,j(u) =


u+ η 0 0 0

0 u η 0
0 η u 0
0 0 0 u+ η

 , (2.1)

where u is the spectral parameter and η is the crossing parameter.

The R-matrix satisfies the following properties:

Initial condition: R0,j(0) = ηP0,j,

Unitarity: R0,j(u)Rj,0(−u) = φ(u) · id,

Crossing symmetry: R0,j(u) = −σy0Rt0
0,j(−u− η)σy0 ,

PT-symmetry: R0,j(u) = Rj,0(u) = R
t0tj
0,j (u),

Z2-symmetry: σα0 σ
α
j R0,j(u) = R0,j(u)σα0 σ

α
j , α = x, y, z,

Fusion condition: R0,j(±η) = ±2ηP
(±)
0,j , (2.2)

where φ(u) = η2 − u2, t0 (tj) denotes transposition in space V0 (Vj), and P0,j is the permu-

tation operator.

The R-matrix satisfies the quantum Yang-Baxter equation (QYBE):

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2). (2.3)

Define the monodromy matrices:

T0(u) = R0,N(u− θN) · · ·R0,1(u− θ1),

T̂0(u) = R1,0(u+ θ1) · · ·RN,0(u+ θN), (2.4)

where V0 is the auxiliary space, V1 ⊗ · · · ⊗ VN is the quantum space, and {θj} are the

inhomogeneity parameters.

The boundary reflection matrices are

K−(u) =

(
p+ u 0

0 p− u

)
, (2.5)

K+(u) =

(
q + u+ η ξ(u+ η)
ξ(u+ η) q − u− η

)
, (2.6)

where p, q, ξ are boundary parameters.
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K−(u) satisfies the reflection equation

R1,2(λ− u)K−1 (λ)R2,1(λ+ u)K−2 (u)

= K−2 (u)R1,2(λ+ u)K−1 (λ)R2,1(λ− u). (2.7)

and K+(u) satisfies the dual reflection equation

R1,2(−λ+ u)K+
1 (λ)R2,1(−λ− u− 2η)K+

2 (u)

= K+
2 (u)R1,2(−λ− u− 2η)K+

1 (λ)R2,1(−λ+ u). (2.8)

Define the double-row monodromy matrix as

U0(u) = T0(u)K−0 (u)T̂0(u). (2.9)

It satisfies the same reflection equation:

R1,2(λ− u)U1(λ)R2,1(λ+ u)U2(u) = U2(u)R1,2(λ+ u)U1(λ)R2,1(λ− u). (2.10)

The transfer matrix is defined by

t(u) = tr0{K+
0 (u)U0(u)}. (2.11)

In the tensor network representation, the transfer matrix t(u) is illustrated in Fig. 1. It also

satisfies the crossing symmetry

t(u) = t(−u− η). (2.12)

Figure 1: Tensor network diagram of the transfer matrix: horizontal bonds denote the
auxiliary space labeled 0, and vertical bonds represent the quantum spaces labeled 1 through
N .
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From the QYBE and reflection equations, the transfer matrices commute:

[t(u), t(v)] = 0, (2.13)

which guarantees the integrability of the system.

The Hamiltonian of the open XXX spin-1
2

chain with general boundary fields is

H =
N−1∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1 + σznσ

z
n+1) +

η

p
σz1 +

η

q
(σzN + ξσxN). (2.14)

This Hamiltonian can be generated by the transfer matrix as

H = η
∂ ln t(u)

∂u

∣∣∣∣
u=0,{θj=0}

−N. (2.15)

To ensure the Hermiticity of the Hamiltonian (2.14) for real η, the boundary parameters

must satisfy:

q∗ = q, p∗ = p, ξ∗ = ξ, when η∗ = η. (2.16)

2.1 ODBA

Let us briefly review the ODBA method [22]. Using the properties of the R-matrix (2.2),

the eigenvalue Λ(u) of t(u) satisfies:

Λ(u) = Λ(−u− η), (2.17)

Λ(0) = a(0), (2.18)

Λ(u) ∼ 2u2N+2 + . . . , u→ ±∞, (2.19)

Λ(θj)Λ(θj − η) = a(θj)d(θj − η), j = 1, . . . , N, (2.20)

where a(u) and d(u) are defined as

a(u) =
2u+ 2η

2u+ η
(u+ p)[(1 + ξ2)

1
2u+ q]

N∏
j=1

(u+ θj + η)(u− θj + η),

d(u) = a(−u− η).

(2.21)

These conditions allow us to construct the following inhomogeneous T − Q relation for

each eigenvalue Λ(u):

Λ(u) = a(u)
Q(u− η)

Q(u)
+ d(u)

Q(u+ η)

Q(u)
+ 2[1− (1 + ξ2)

1
2 ]u(u+ η)
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×
∏N

j=1(u+ θj)(u− θj)(u+ θj + η)(u− θj + η)

Q(u)
. (2.22)

The function Q(u) is parameterized by N Bethe roots {λj | j = 1, . . . , N} as follows:

Q(u) =
N∏
j=1

(u− λj)(u+ λj + η). (2.23)

Now we can take the homogeneous limit θj → 0. In this case, the functional T − Q

relation is

Λ(u) =
2(u+ η)2N+1

2u+ η
(u+ p)[(1 + ξ2)

1
2u+ q]

Q(u− η)

Q(u)

+
2u2N+1

2u+ η
(u− p+ η)[(1 + ξ2)

1
2 (u+ η)− q]Q(u+ η)

Q(u)

+ 2[1− (1 + ξ2)
1
2 ]

[u(u+ η)]2N+1

Q(u)
, (2.24)

and the BAEs read

(
λj + η

λj
)2N+1 (λj + p)[(1 + ξ2)

1
2λj + q]

(λj − p+ η)[(1 + ξ2)
1
2 (λj + η)− q]

= −Q(λj + η)

Q(λj − η)

− [1− (1 + ξ2)
1
2 ](2λj + η)(λj + η)2N+1

(λj − p+ η)[(1 + ξ2)
1
2 (λj + η)− q]Q(λj − η)

, j = 1, . . . , N. (2.25)

The eigenvalue of the Hamiltonian in (2.14) is given by

E =
N∑
j=1

2η2

λj(λj + η)
+
η

p
+
η
√

1 + ξ2

q
+N − 1. (2.26)

2.2 Zero-root method

Now, let us recall the zero-root method [26, 27]. Using (2.17) and (2.19), together with the

fact that Λ(u) is a degree-(2N + 2) polynomial, we can simply parameterize it by its zero

roots {zj | j = 1, . . . , N + 1} as

Λ(u) = 2
N+1∏
j=1

(u− zj)(u+ zj + η). (2.27)

Thus, the constrained equations (2.18) and (2.20) become

N+1∏
j=1

(−zj)(zj + η) = a(0), (2.28)
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and
N+1∏
j=1

(θj − zj)(θj + zj + η) = a(θj)a(−θj), j = 1, . . . , N. (2.29)

In the homogeneous limit {θj = 0 | j = 1, . . . , N}, Eq. (2.28) and (2.29) becomes

N+1∏
j=1

(−zj)(zj + η) = 2pq, (2.30)

and [
Λ(u)Λ(u− η)

](n)
∣∣∣
u=0

=
[
a(u)a(−u)

](n)
∣∣∣
u=0

, n = 0, 1, . . . , N − 1, (2.31)

where the superscript (n) denotes the n-th derivative with respect to u.

The eigenvalue of the Hamiltonian (2.14) can be expressed in terms of the zero roots {zj}
as follows:

E = −
N+1∑
j=1

η2

zj
(
zj + η

) −N. (2.32)

3 DMRG

The density-matrix renormalization group (DMRG) method was originally a high-precision

numerical algorithm for investigating the ground state and low-lying excitations of low-

dimensional, strongly-correlated quantum many-body systems. Later, a variety of techniques

were developed that extended DMRG from zero temperature to finite temperatures and

from the calculation of static quantities to the evaluation of time-dependent or dynamical

correlation functions [42]. These advances not only broadened the scope of DMRG but

also stimulated the emergence of a new generation of algorithms based on so-called tensor-

network states, which represent a quantum state as a product of interconnected tensors and

provide a new tool for exploring quantum many-body systems.

First, let us explain how DMRG obtains the ground state in the language of tensor

networks. Consider a Hermitian Hamiltonian H acting on a vector space formed by the

tensor product of N local spaces, each of dimension d. We depict H as a tensor in Fig. 2.

The DMRG method approximates the ground state of H by constructing a Matrix Prod-

uct State (MPS) representation, which is a tensor network that captures the entanglement

structure of the system. Starting from an initial MPS, the algorithm performs n sweep-

s of energy-minimizing optimization: at each step it updates one or two site tensors and
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Figure 2: Tensor network representation of the Hamiltonian H. The network has N input
and N output indices, each corresponding to a local Hilbert space of dimension d.

applies a singular-value decomposition (SVD), truncating the singular values according to

two criteria—a maximum bond dimension D and a maximum allowed truncation error that

limits the discarded weight. After n sweeps, this variational procedure yields an MPS whose

accuracy is controlled jointly by the bond-dimension limit D, the truncation-error threshold,

and the total number of sweeps. In our calculations, the truncation error is set to 1× 10−12,

the maximum bond dimension is D = 200, and the convergence criterion is defined by a

minimum of 30 sweeps with an energy convergence tolerance of 1× 10−14. The overall goal

of the DMRG procedure is illustrated schematically in Fig. 3.

Figure 3: Here E0(≤ E1 ≤ E2 . . . ) denotes the lowest variational energy obtained by
DMRG, which approximates the true ground-state eigenvalue of H. The shaded region
below H indicates the MPS representation of the approximate ground state corresponding
to this energy.

To make the algorithm efficient, the Hamiltonian H is usually encoded in the form of a

Matrix Product Operator (MPO); see Fig. 4. This MPO representation proves particularly

advantageous for numerical implementations, including tensor network contractions.

Figure 4: Tensor network representation of the Hamiltonian H in MPO form. Each tensor
represents a local operator with one physical index on the top and bottom, and virtual
indices connecting neighboring sites.

Meanwhile, Fig.1 illustrates that the transfer matrix t(u) can be expressed as a tensor

network in MPO form. The transformation from the double-row transfer matrix to the

MPO form is illustrated in Fig. 5. The derivation details are provided in Appendix A.
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Consequently, the transfer matrix is reformulated as an MPO that can be directly handled

by standard tensor-network techniques.

Figure 5: Transformation of the double-row transfer matrix into an MPO. Each local tensor
Wi on the right is obtained by contracting the vertical pair of R-matrices at site i in the
double-row structure, along with the adjacent boundary tensors at the first and last sites.

It should be noted that, although the Hamiltonian and the transfer matrix commute,

their respective ground states are not identical. Our goal is to compute the eigenvalues of

the transfer matrix within the ground state of the Hamiltonian given in Eq. (2.14). Therefore,

we first need to obtain the ground state of the Hamiltonian. To address this, we employ the

ITensor library [38]. Within ITensor, the MPO representation of the Hamiltonian can be

constructed straightforwardly, and its ground state MPS can be efficiently obtained through

DMRG. Subsequently, we compute the inner product of the Hamiltonian’s ground state MPS

with the transfer-matrix MPO, thereby extracting the eigenvalues of the latter.

The errors stem from two sources: first, the numerical error introduced by DMRG in

computing Λ(u); second, the additional error incurred when extracting the zeros or Bethe

roots from the DMRG-supplied Λ(u). Using the U(1)-symmetric case as a benchmark, we

confirm that both contributions are extremely small; in the U(1)-symmetry-broken case, a

dedicated verification routine further confirms that the second error remains negligible.

4 Zero roots

Using the approach described in the previous section, the eigenvalue Λ(u) of the transfer

matrix t(u) at any u can be readily computed within the ground state of the Hamiltonian

Eq. (2.14), even for large N . We can use the DMRG-computed Λ(u) to locate its zeros. The

Bethe Ansatz-DMRG (BA-DMRG) procedure is summarized as follows:

1. Obtain the ground state MPS of the Hamiltonian.
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2. Represent the transfer matrix t(u) as an MPO.

3. Select a set of interpolation points {uj} and compute the corresponding eigenvalues

Λ(uj) of the transfer matrix in the ground state.

4. Reconstruct Λ(u) using the Lagrange interpolation method.

5. Determine the zero roots of Λ(u) through numerical root-finding algorithms.

6. Verify the correctness of the obtained roots (the specific procedures and principles will

be presented in the following sections); if the verification fails, return to step 3 and use

the current results as new interpolation points.

In step 3, from Eq. (2.27), the eigenvalue polynomial Λ(u) can be parameterized in

terms of 2N + 2 points {zj,−zj − η | j = 1, . . . , N + 1}. To improve the precision of the

interpolation procedure, the interpolation nodes {uj}2N+2
j=1 are constructed as {xj,−xj − η |

j = 1, . . . , N + 1}. Instead, they are designed based on the specific structural properties

of the zero roots. In particular, the nodes are chosen as xj = η
2

+ i
N

(
j − N

2

)k
, where

j = 1, 2, . . . , N and k ∈ [1, 1.1] (where i denotes the imaginary unit). This choice ensures a

denser sampling near the accumulation region of the roots, thereby enhancing the accuracy

of the interpolation.

In step 4, through a Lagrange polynomial representation, any degree-(2N+2) polynomial

can be uniquely determined by its values at 2N +3 arbitrary grid points. In the present case

(see Eq. (2.27)), since the leading coefficient of Λ(u) is known to be 2, only 2N + 2 points

are required to fully specify the polynomial

Λ(u) = 2
2N+2∏
j=1

(u− uj) +
2N+2∑
j=1

Λ(uj)
∏

1≤k≤2N+2
k 6=j

u− uk
uj − uk

, (4.1)

where the interpolation nodes {uj}2N+2
j=1 are those defined in step 3.

In step 6, if the root verification fails, the current results are used as updated interpolation

nodes, and the zero roots are recalculated iteratively until the desired precision is achieved.
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4.1 Ground state solution with U(1) symmetry

At ξ = 0, the two boundary fields are parallel, endowing the system with a global U(1)

symmetry. Consequently, the BAEs in Eq. (2.25) reduce to the following homogeneous form:

(
λj + η

λj
)2N+1 (λj + p)(λj + q)

(λj + η − p)(λj + η − q)
= −Q(λj + η)

Q(λj − η)
, j = 1, . . . , N. (4.2)

In this case, the inhomogeneous term in the T −Q relation vanishes and part of the N Bethe

roots may take the value of infinity. The function Q(u) is thus reduced to

Q(u) =
M∏
j=1

(u− λj)(u+ λj + η), M = 0, . . . , N. (4.3)

For the homogeneous BAEs (4.2), we recast them into logarithmic form to enhance numerical

accuracy. This well-established method is used here to generate reference data for comparison

with the BA-DMRG solution, thereby verifying the reliability of the latter.

For convenience, we put η = 1, µj = iλj − 1
2
, p̂ = p − 1

2
, q̂ = q − 1

2
. Eq. (4.2) can be

rewritten as

(µj − iq̂)(µj − ip̂)
(µj + iq̂)(µj + ip̂)

(
µj − i

2

µj + i
2

)2N

=
M∏
l=1
l 6=j

(µj − µl − i)(µj + µl − i)
(µj − µl + i)(µj + µl + i)

. (4.4)

Taking the logarithm of Eq. (4.4), we have

θ2p̂(µj) + θ2q̂(µj) + 2Nθ1(µj) = 2πIj +
M∑
l=1

[θ2(µj − µl) + θ2(µj + µl)]− θ1(µj), (4.5)

where θn(x) = 2 arctan(2x/n), and {Ij} are certain integers (half-odd integers) for N −M
odd (N −M even).

Through analytical considerations [22], it can be concluded that, for the ground state, the

ratio M
N

= 1
2

holds, and the quantum numbers {Ij} are continuously distributed. For even

N , the quantum numbers can be expressed as Ij = −M
2

+ j − 1, where j = 1, 2, . . . ,M . By

substituting these quantum numbers into Eq. (4.5), the M Bethe roots {µj} corresponding

to the ground state can be numerically determined. After transforming {µj} into {λj}, Q(u)

can be constructed, from which Λ(u) is obtained via Eq. (2.24). Finally, the zero roots {zj}
are extracted using a standard numerical root-finding procedure.

Fig. 6 compares the zero roots obtained from the logarithmic BAEs, which are solved

with high numerical precision, and those computed using the BA-DMRG method, showing
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(a) Global configuration of zero roots
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Figure 6: Distribution of zero roots in the complex plane with parameters N = 100,
p = 0.7, q = 0.6, ξ = 0, and η = 1. Red circles represent zero roots obtained from the
logarithmic form of the BAEs, and blue dots correspond to those computed using the BA-
DMRG method. Subplot (b) is an enlarged view of the central portion of the right-hand line
in subplot (a).

an almost perfect match. Since the BAEs solutions are taken as the accurate benchmark,

the strong agreement between the two sets of results—with the maximum absolute error of

6.72×10−8—demonstrates that the BA-DMRG method can reliably and accurately compute

the zero roots.

4.2 Ground state solution without U(1) symmetry

At ξ 6= 0, the two boundary fields are non-parallel, so the system no longer possesses global

U(1) symmetry. The BAEs in Eq. (2.25) are inhomogeneous, so their logarithmic form is

unavailable. Nevertheless, we can still compute the zero roots with the BA-DMRG method.

The results are presented in Fig. 7, while the detailed numerical values of the roots and the

auxiliary data are provided in Table C.1.

For large N , Λ(u) is of high degree, and a poor choice of interpolation nodes can stall

convergence. In the homogeneous case, we have verified that Λ(u) of the transfer matrix

obtained via DMRG is highly accurate (the relative error of Λ(u) at N = 100 computed

by DMRG is no worse than 10−10). Based on this, it suffices to verify the accuracy of

the iteration procedure. Consequently, the zero roots obtained by BA-DMRG demand an
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Figure 7: Distribution of zero roots in the complex plane with parameters N = 100,
p = −0.6, q = −0.3, ξ = 1.2, and η = 1.

independent accuracy check. At large lattice sizes even sizeable displacements of some roots

may leave the energy practically unchanged, so validation via the energy expression (2.32)

is no longer sufficiently stringent. To test the reliability of the zero roots provided by

BA-DMRG method, we therefore employ two independent tools: the maximum-modulus

principle and the argument principle. The former exploits the local analytic properties of

the function Λ(u), whereas the latter directly counts the numbers of zeros and poles inside

a closed contour.

4.2.1 Maximum modulus principle

Let {zj} denote the computed zero roots, for which Λ(zj) should ideally vanish. Owing to

the high degree of Λ(u) for large system size N , the evaluated Λ(zj) may appear large, so

{zj} might seem not to be true zeros. In reality, the genuine zeros of Λ(u) lie extremely

close to the computed {zj}; in other words, {zj} are in fact highly accurate. This can be

rigorously justified using the maximum modulus principle. The maximum modulus principle

is a fundamental result in complex analysis. It states that:

If a function is analytic and non-constant within a domain, then its maximum modulus
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cannot occur strictly inside the domain–it must occur only on the boundary.

This property places strong constraints on the behavior of analytic functions in the

complex plane. Based on this principle, we consider a useful corollary:

Suppose a function f(z) is analytic on the closed disk |z| ≤ R, and there exists a constant

a > 0 such that

|f(z)| > a for all |z| = R, and |f(0)| < a, (4.6)

then f(z) must have at least one zero in the open disk |z| < R.

The derivation of the corollary is given in Appendix B. More generally, if the modulus

|f(z)| demonstrates concave behavior around a point z0, then f(z) must vanish at some point

within the enclosed region. This reflects the fact that analytic functions cannot exhibit a

strict local minimum of modulus unless the function is identically zero or vanishes somewhere

inside the domain.

We apply this result to the eigenvalue function Λ(u) obtained from the DMRG calcula-

tions. For each candidate zero root zj, we numerically evaluate the modulus |Λ(u)| over a

neighborhood around zj in the complex plane. In all tested cases, the modulus |Λ(u)| ex-

hibits a clear valley-shaped behavior: its value at zj is significantly smaller than that on the

surrounding contour. According to the corollary of the maximum-modulus principle, such

a valley-shaped behavior guarantees the existence of a true zero within the neighborhood.

Fig. 8 shows |Λ(u)| sampled around three representative zero-root candidates listed in Ta-

ble C.1: z1 = −1.537797484404868 + 0.000000000000011i, z101 = −0.500000001273242 + 2.1

82890275358742i, and z37 = −1.498541855014614 + 0.190968750516886i. These three points

represent the typical structural types of zero roots in the system. The |Λ(u)| computed by

DMRG exhibits a pronounced concave dip, thereby confirming the reliability of the identified

zero-root candidates.

The maximum modulus principle allows for a visually intuitive identification of zeros via

the concave behavior of the modulus. It provides direct and accessible evidence of zero-

root locations. This approach is particularly effective when the evaluation points lie along

straight lines, where plotting is efficient. However, verifying zeros across the full complex

plane becomes computationally expensive if high visual resolution is required. Therefore,

to rigorously validate all candidate points, we further employ the argument principle, which

gives a definitive count of zeros within closed contours.
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Figure 8: Local behavior of the eigenvalue modulus |Λ(u)| around three representative
zero-root candidates (indices 1, 101, and 37 in Table C.1), with z1 = −1.537797484404868 +
0.000000000000011i, z101 = −0.500000001273242 + 2.182890275358742i, and z37 =
−1.498541855014614 + 0.190968750516886i. All panels are plotted in relative coordinates
centered at the respective zero-root candidates. (a) |Λ(u)| along the real axis (Im(u) = 0).
(b) |Λ(u)| along the vertical line Re(u) = −0.5. (c) Two-dimensional modulus distribution of
|Λ(u)| in the complex-u plane obtained by DMRG. A uniform coordinate precision of 10−12

is used throughout.
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4.2.2 Argument principle

The argument principle establishes a fundamental connection between the number of zeros

and poles of a meromorphic function inside a closed contour and the total change in the

function’s argument along that contour:

Nzeros −Npoles =
1

2πi

∮
C

f ′(z)

f(z)
dz =

1

2π
∆C arg f(z), (4.7)

where ∆C arg f(z) denotes the net change in the function’s argument as the contour C is

traversed once in the positive (counterclockwise) direction.

In this work, the eigenvalue function Λ(u) is analytic and free of poles. Hence, the total

argument change along any closed contour directly equals the number of enclosed zeros.

To apply this principle numerically, we construct a small discrete closed contour around

each candidate zero root u0, composed of five evaluation points arranged as shown in Fig. 9.

These points are symmetrically offset from u0 by a small value δ along the real and imaginary

directions and connected in a counterclockwise order to form a rectangular loop. The path

starts and ends at the same point to ensure formal closure. Importantly, the parameter δ

is chosen to be much smaller than the minimal distance between any two zero roots. This

guarantees that each contour encloses at most one zero. With this contour, ∆C arg f(z) =

arg f(u5)− arg f(u1).

Figure 9: Illustration of the discrete rectangular contour used in the argument principle
test. The path is centered at the candidate root u0 and consists of five points: u1 = u0 + iδ,
u2 = u0 − δ, u3 = u0 − iδ, u4 = u0 + δ, and u5 = u1 to close the loop. The points
are symmetrically offset by a small value δ along the real and imaginary directions. This
minimal closed contour enables phase unwrapping to detect whether exactly one zero lies
inside.

The rationale for using these five points lies in the nature of argument evaluation: when

computing arg f(z) numerically, the returned values lie within the principal branch (−π, π].
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As such, the raw argument at the starting arg f(u1) and ending points arg f(u5) is always

the same, even if the functions phase has changed by a multiple of 2π along the path. To

detect any such hidden change, intermediate points are needed. These enable the use of

phase unwrapping, a technique that corrects artificial phase jumps by adding or subtracting

2π whenever adjacent phase differences exceed π.

With this setup, if the path encloses a zero, the unwrapped argument will exhibit a

net change close to 2π, consistent with the theoretical prediction. Conversely, if no zero is

enclosed, the total unwrapped change remains zero. This makes the verification result (4.7)

strictly binary–either 0 or 1.

Table 1 illustrates this approach using the candidate zero root indexed 202 in Table C.1,

showing how the unwrapped total argument change depends on the choice of δ and confirming

the detection of a single zero. The zero is successfully detected when δ = 10−14, but it is

missed as δ is reduced to 10−15, indicating that z202 = 0.537797484404868− 0.00000000000

0011i is located with an accuracy of the order of 10−14. All candidate roots obtained by the

BA-DMRG method and their verifications are summarized in Table C.1. For the 202 zero

roots at N = 100, the accuracy is better than 1×10−12, providing strong numerical evidence

for the correctness of the roots.

Table 1: Effect of the unwrapping threshold δ on the net argument change and the resulting
zero count ∆ = 1

2π
∆C arg f(z). The five sampling points u1, . . . , u5 (locations as shown in

Fig. 9) encircle the candidate root z202 = 0.537797484404868 − 0.000000000000011i. With
argj ≡ arg f(uj), the unwrapped argj are listed for each δ; values in parentheses give the
raw principal values.

δ arg1 arg2 arg3 arg4 arg5 ∆

10−13 1.557 (1.557) 3.142 (-3.142) 4.726 (-1.557) 6.283 (0) 7.84 (1.557) 1.0

10−14 1.436 (1.436) 3.142 (-3.142) 4.847 ( -1.436) 6.283 (0) 7.719 (1.436) 1.0

10−15 0.634 (0.634) 0 (0) -0.634 (-0.634) 0 (0) 0.634 (0.634) 0.0

This approach achieves high efficiency by evaluating the function at only a few strate-

gically chosen points per candidate. It eliminates the need for dense sampling, making it

particularly advantageous for large-scale zero detection tasks that demand rigorous numerical

accuracy. We note that the dominant source of error is the numerical inaccuracy introduced

by DMRG when computing Λ(u).
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4.3 Structure of the zero roots

After confirming the accuracy of the zero roots, we proceed to analyze their structural

properties as functions of the boundary parameters. The phase diagram and accompanying

description of root structures, first presented in Ref. [40], are recast into the notation used

here in Fig. 10 and Table 2. For convenience, we define q̄ = q√
1+ξ2

. While these structural

characteristics have been extensively studied in Ref. [40], the corresponding phase diagram

for the off-diagonal case was established using a relatively small system size (N ∼ 10). In

this work, we verify these conclusions for large system size (N ∼ 100) using the BA-DMRG

method. Furthermore, we provide a detailed analysis of the root structures as the parameters

cross phase boundaries.

Figure 10: Phase diagram of zero-root configurations for the ground state in the (p, q̄)
plane of boundary parameters at η = 1.

From Fig. 10 and Table 2 we conclude that, for the ground state, the zero roots fall into

three classes:

1. Bulk strings:

±(zj + η)− η

2
.

All zj are purely imaginary; these roots are the most numerous and form two straight

lines parallel to the imaginary axis.
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Table 2: The patterns of zero roots for the ground state in different regions. Roots related
to zj form the bulk strings; those tied to |p| or |q̄| constitute boundary strings; z0 and zx are
the additional roots.

Region {zi}

A
±(zj + η)− η

2
| j = 1, . . . , N − 2,

±z0 − η
2
, ±(|p|+ η

2
)− η

2
, ±(|q̄|+ η

2
)− η

2

B
±(zj + η)− η

2
| j = 1, . . . , N − 2,

±z0 − η
2
, ±(min(|p|, |q̄|) + η

2
)− η

2
, ±(zx + η

2
)− η

2

C ±z0 − η
2
, ±(zj + η)− η

2
| j = 1, . . . , N

D
±(zj + η)− η

2
| j = 1, . . . , N − 2,

±(zx + η
2
)− η

2
, ±(|p|+ η

2
)− η

2
, ±(|q̄|+ η

2
)− η

2

E
±(zj + η)− η

2
| j = 1, . . . , N,

±(min(|p|, |q̄|) + η
2
)− η

2

F ±(zx + η
2
)− η

2
, ±(zj + η)− η

2
| j = 1, . . . , N

2. Boundary strings:

• p-boundary string: ±
(
|p|+ η

2

)
− η

2
.

• q̄-boundary string: ±
(
|q̄|+ η

2

)
− η

2
.

Their positions are completely fixed by the boundary parameters.

3. Additional roots:

z0 and zx.

z0 is a purely imaginary number larger than the maximum of {zj}, while zx is a real

number greater than η
2
.

In fact, the zero-root structures shown in Fig. 10 and Table 2 are strictly valid only

in the thermodynamic limit N → ∞. For finite system sizes N , the zero-root structures

exhibit small deviations. Numerical results indicate that the phase boundaries are typically

slightly smaller than η
2
, approaching η

2
as N → ∞. Nevertheless, these deviations do not

alter the overall structural characteristics of the zero roots, and the essential features can

still be clearly observed even at finite lattice sizes.

In the following, we systematically analyze how zero-root structures evolve as boundary

parameters are varied across the phase boundaries in the off-diagonal case. As the exact
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transition boundary is uncertain at finite N , we provide several representative figures to

illustrate the entire crossing process: The first and last figures correspond to the structures

in two adjacent phase regions in Fig. 10, while the others depict structures close to the

boundary.

We first discuss the transitions from Region A to Region D and from Region B to Region

E. Exactly at p = q̄ = 0 the Hamiltonian energy diverges, and the root configuration changes

discontinuously: A→ D is realized by the mutual conversion of the additional roots z0 → zx,

whereas B → E corresponds to the pairwise annihilation of the additional roots. Away from

this singular point the zero-root pattern still adheres to the regularity listed in Table 2

without any special deviation; hence no further elaboration is required.

Figure 11 illustrates how the root pattern evolves from Region A to Region B. In Region A

the two characteristic structures identified in the phase diagram—the q̄-boundary string

and the p-boundary string—are clearly resolved Fig. 11(a). As |p| increases toward the

phase boundary, the two p-boundary strings separate horizontally and each coalesces with

an additional root zx (Fig. 11(b,c)). Once |p| crosses the boundary, the original p-string

roots are entirely replaced by the new pair zx (Fig. 11(d)).

Fig. 12 illustrates the evolution of the zero roots during the transition from Region B to

Region C. In Region B, the q̄-boundary string can be clearly identified. As |q̄| increases, the

q̄-boundary string and additional root zx gradually converge; upon entering Region C, the

two roots merge into bulk strings.

Fig. 13 displays the evolution of zero roots as parameters change from Region D to

Region E. This behavior closely resembles the transition observed between Regions B and

C. In Region D, three characteristic roots are highlighted: p-boundary string, q̄-boundary

string, and the additional root zx. As the parameter |p| increases, p-boundary string and zx

gradually move closer together. At the limiting position, these two roots merge into bulk

strings, while the q̄-boundary string is preserved.

As shown in Fig. 14, the evolution from Region E to Region F is more similar to the case

between Regions A and B. In Region E, the q̄-boundary string is clearly visible (Fig. 14(a)).

With increasing |q̄|, this root shifts rightward and gradually transforms into an additional

root zx (Fig. 14(b, c)). Once q̄ passes the phase boundary, the q̄-boundary string is completely

replaced by zx (Fig. 14(d)).
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(b) Region A (near the boundary)
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(c) Region B (near the boundary)
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(d) Region B

Figure 11: Zero-root configurations as the boundary parameter crosses the A–B phase
boundary. The parameters are fixed at N = 100, q = 0.4, ξ =

√
3, and η = 1, while p varies

across the four panels: (a) p = 0.48 (Region A), (b) p = 0.49 (Region A, near the boundary),
(c) p = 0.5 (Region B, near the boundary), (d) p = 0.51 (Region B).
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(b) Region B (near the boundary)
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Figure 12: Zero-root configurations as the boundary parameter crosses the B–C phase
boundary. The parameters are fixed as N = 100, p = 1.5, ξ =

√
3, and η = 1, while q

varies across the three panels: (a) q = 0.98 (Region B), (b) q = 0.99 (Region B, near the
boundary), (c) q = 1 (Region C).
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(b) Region D (near the boundary)
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Figure 13: Zero-root configurations as the boundary parameter crosses the D–E phase
boundary. The parameters are fixed as N = 100, q = 0.4, ξ =

√
3, and η = 1, while p varies

across the three panels: (a) p = −0.49 (Region D), (b) p = −0.495 (Region D, near the
boundary), (c) p = −0.5 (Region E).
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(b) Region E (near the boundary)
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(c) Region F (near the boundary)
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(d) Region F

Figure 14: Zero-root configurations as the boundary parameter crosses the E–F phase
boundary. The parameters are fixed as N = 100, p = −1.5, ξ =

√
3, and η = 1, while q

varies across the four panels: (a) q = 0.96 (Region E), (b) q = 0.98 (Region E, near the
boundary), (c) q = 1 (Region F, near the boundary), (d) q = 1.02 (Region F).
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5 Bethe roots

After obtaining Λ(u), the Bethe roots can be determined by solving equations given in

Eq. (2.22). The overall procedure follows a strategy similar to that described in Ref. [41].

However, since the Λ(u) constructed from zero roots deviates slightly from the DMRG result,

we use the DMRG-computed Λ(u) to extract the Bethe roots.

We summarize the BA-DMRG procedure for obtaining the Bethe roots of Λ(u) as follows:

1. Obtain the ground state MPS of the Hamiltonian.

2. Represent the transfer matrix t(u) as an MPO.

3. Select a set of interpolation points {uj} and compute the corresponding eigenvalues

Λ̄(uj) of the transfer matrix in the ground state.

4. Express Q̄(uj ± η) as linear combinations of Q̄(uj) using the Lagrange interpolation

formula.

5. Construct and solve the linear system for Q̄(uj) using the T −Q relation (2.22).

6. Reconstruct the polynomial Q̄(u) using the obtained values of Q̄(uj).

7. Determine the Bethe roots of Q̄(u) through numerical root-finding algorithms.

8. Verify the correctness of the obtained roots (the specific procedures and principles will

be presented in the following sections); if verification fails, return to step 3 and use the

current results as new interpolation points.

In steps 3-7, we perform the normalization by dividing both sides of the T − Q rela-

tion (2.24) by u2N . The related functions are then replaced by Λ̄(u) = Λ(u)
u2N

and Q̄(u) = Q(u)
u2N

.

This normalization is necessary because, during the computation, some values of Λ(u) may

exceed the numerical range of the machine. Therefore, we normalize each variable throughout

the process to ensure numerical stability.

In step 4, Q(u) is a degree-2N polynomial with a unit leading coefficient (2.23), and hence

it can be uniquely specified by its values at 2N distinct points. We select 2N values Q(uj)

as unknowns and use Lagrange interpolation to express Q(uj ± η) as linear combinations of
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Q(uj). Specifically, the interpolation takes the form

Q(u) =
2N∏
j=1

(u− uj) +
2N∑
j=1

Q(uj)
∏

1≤k≤2N
k 6=j

u− uk
uj − uk

. (5.1)

In step 8, if verification fails, iteration is needed: return to step 3 and use the curren-

t results as new interpolation points, repeating this process until the desired accuracy is

achieved.

It is worth emphasizing that, unlike Ref. [41], where Λ(u) is computed using high-precision

arithmetic (e.g., VPA) and thus achieves significantly more digits than the sixteen available

in standard double precision, the Λ(u) obtained from the DMRG does not reach such accu-

racy. High-precision DMRG implementations in ITensor are still immature; consequently, all

DMRG calculations in this study are performed in double precision and are further limited

by the prescribed convergence tolerance. In the homogeneous case, numerical verification

shows that, under the parameter settings adopted in this work, the relative error of Λ(u) at

N = 100 computed by DMRG is no worse than 10−10. Consequently, the 2N interpolation

nodes must be judiciously placed to guarantee numerical stability; otherwise, the iterative

solver struggles to converge. We should select the interpolation points for large lattices by

following the known distribution pattern of Bethe roots on small lattices.

5.1 Ground state solution with U(1) symmetry

For the homogeneous case with ξ = 0, it has already been mentioned in Sec. 4.1 that by

using Eq. (4.5), the Bethe roots can be accurately determined even for large N . The Bethe

roots obtained from the BA-DMRG method can then be compared with these results to

verify the validity of our approach.

As mentioned in Sec. 4.1, in the homogeneous case, the Q(u) function for the ground

state reduces from a 2N -th degree polynomial to an N -th degree polynomial. Starting

from the initial N interpolation nodes {uj}Nj=1, defined as {xj,−xj − η | j = 1, 2, . . . , N
2
}

with xj = −η
2

+ i
N
jk and k ∈ [1, 1.1], and performing iterative refinements, we obtain the

comparison illustrated in Fig. 15. The maximum absolute error between the corresponding

roots is 4.9× 10−11.

These results show that, even for large systems at ξ = 0, the Bethe roots obtained from

the logarithmic BAEs coincide almost perfectly with those delivered by BA-DMRG. Such
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Figure 15: Distribution of Bethe roots in the complex plane with parameters N = 100,
p = 0.7, q = 0.6, ξ = 0, and η = 1. Red circles denote Bethe roots obtained by solving
the logarithmic form of the BAEs, while blue dots represent those computed using the BA-
DMRG method.

consistency confirms the feasibility of the BA-DMRG approach as a reliable numerical tool for

extracting Bethe roots. Together, these findings provide strong evidence that our approach

is both robust and well suited for extension to more general inhomogeneous systems.

5.2 Ground state solution without U(1) symmetry

In the inhomogeneous case, the ground-state Q(u) becomes a degree-2N polynomial, twice

the degree of the homogeneous case. The corresponding Bethe-root pattern exhibits a more

intricate structure. Together these two effects push the solution difficulty sharply upward,

so the attainable lattice size N is therefore limited compared with the homogeneous case 4.

Following the same strategy as in the homogeneous case, but noting that Q(u) is now a

2N -th degree polynomial, the interpolation scheme needs to be modified accordingly. Specif-

ically, the 2N interpolation nodes {uj}2N
j=1 are constructed as {xj,−xj − η | j = 1, 2, . . . , N}.

The first N
2
{xj} nodes are defined as xj = −η

2
+ i

N
jk, where k ∈ [1, 1.1], while the remaining

N
2
{xj} nodes are specified as xj = j + t, with j = N

2
+ 1, N

2
+ 2, . . . , N and t ∈ (0, N

4
). In

addition, another effective choice for the remaining N
2

nodes is xj = t+ (j− N
2

)i− N
4
i, where

t is chosen around N
4

. With the interpolation nodes placed as above, convergence is achieved

4If the precision of BA-DMRG data could be raised beyond 16 significant digits, high-accuracy Bethe
roots for larger systems would become accessible.
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in fewer than 10 iterations.
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Figure 16: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = −0.6, q = −0.3, ξ = 1.2, and η = 1. The blue, purple, and red markers denote the
regular, line, and arc roots, respectively.

With the interpolation nodes detailed above, we compute the Bethe roots for the non-

U(1)-symmetric case; the resulting configuration is shown in Fig. 16. We find that the

ground-state Bethe roots fall into three classes:

1. Regular roots:

• Central roots: zj − η/2, with all zj purely imaginary;

• Boundary strings: ±
(
p− η/2

)
− η/2 and ±

(
q̄ − η/2

)
− η/2, whose positions are

fixed solely by the boundary parameters.

There are precisely N or N − 2 regular roots; their distribution mirrors that of the

homogeneous chain.

2. Line roots: A set of purely real roots.

3. Arc roots: At the outer ends of the line roots, complex roots bifurcate into symmetric

arcs in the upper and lower half-planes.

For the present parameter set the pattern coincides with the periodic-boundary results of

Ref. [41] obtained from the inhomogeneous T −Q relation. Other parameter regions reveal

richer structures, most notably the Paired-line roots introduced in the next subsection.
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Now, an important task is to verify the correctness of the obtained Bethe roots. Among

the available data, the only quantity that can be regarded as fully reliable is Λ(u) calculated

by the DMRG method. Therefore, we substitute the Bethe roots into the T − Q relation

to compute a new quantity Λ′(u) and then compare it with the DMRG result Λ(u). The

comparison is carried out precisely at the positions of the Bethe roots.

From Eq. (2.24), the T −Q relation can be expressed as

Λ(u) =
F (u)

Q(u)
, (5.2)

where

F (u) =
2(u+ η)2N+1

2u+ η
(u+ p)[(1 + ξ2)

1
2u+ q]Q(u− η)

+
2u2N+1

2u+ η
(u− p+ η)[(1 + ξ2)

1
2 (u+ η)− q]Q(u+ η)

+ 2[1− (1 + ξ2)
1
2 ][u(u+ η)]2N+1. (5.3)

For the Bethe roots {λj | j = 1, . . . , N}, both F (λj) = 0 and Q(λj) = 0 hold. Thus, one

obtains

Λ(λj) = lim
u→λj

F (u)

Q(u)
=
F ′(λj)

Q′(λj)
, (5.4)

where F ′(u) and Q′(u) denote derivatives with respect to u, and both derivatives can be

evaluated straightforwardly.

By comparing the values of Λ(λj) obtained from the Bethe roots with those of Λ(λj)

computed via the DMRG method, the relative error is defined as

εj =
|ΛDMRG(λj)− ΛBethe(λj)|

|ΛDMRG(λj)|
. (5.5)

The numerical results show that the maximum relative error is about 0.007759%, which

demonstrates that the obtained Bethe roots are sufficiently accurate. This also indicates

that the procedure is numerically stable. Further detailed data are provided in Appendix D.

In addition, according to the BAEs (2.25), we further verify the correctness of the ob-

tained Bethe roots. The BAEs can be rewritten in the form

A(λj) = −B(λj)− C(λj), j = 1, . . . , N, (5.6)

where

A(λ) =

(
λ+ η

λ

)2N+1 (λ+ p)
[
(1 + ξ2)

1
2λ+ q

]
(λ− p+ η)

[
(1 + ξ2)

1
2 (λ+ η)− q

] , (5.7)

31



B(λ) =
Q(λ+ η)

Q(λ− η)
, (5.8)

C(λ) =

[
1− (1 + ξ2)

1
2

]
(2λ+ η)(λ+ η)2N+1

(λ− p+ η)
[
(1 + ξ2)

1
2 (λ+ η)− q

]
Q(λ− η)

. (5.9)

Define

G(u) =
A(u) + C(u)

−B(u)
. (5.10)

For G(u) = 1, the BAEs are satisfied exactly. We have computed all values of G(λj); the

largest deviation from unity is 0.9999748−0.0000059i, and the detailed numerical results are

provided in Appendix D. These validation data further confirm the accuracy of the Bethe

roots.

5.3 Structure of the Bethe roots

Unlike the zero-root case, the number of Bethe roots in the ground state already differs

between the U(1)-symmetric and U(1)-symmetry-broken cases, leading to markedly distinct

root distributions in the two situations. Since the Bethe roots in the homogeneous case

exhibit simple behavior, this section focuses on analyzing the structure of the inhomoge-

neous Bethe roots. From the BAEs (2.25), it is evident that p and q̄ enter the equations

symmetrically. Therefore, it suffices to analyze the variation with respect to only one of

these parameters. Given the considerable complexity of their configurations, we restrict our

discussion here to the characteristic changes of the Bethe roots as p vary and q̄ fixed.

As p varies, we systematically investigate the resurgence of U(1) symmetry while |p|
is continuously increased from finite values to infinity. In the asymptotic limit |p| → ∞,

the system recovers U(1) symmetry: exactly N Bethe roots diverge to infinity, while the

remaining N roots condense onto the vertical contour Re(u) = −0.5 (Fig. 15). We now

systematically track the reorganization of the Bethe-root configuration from the generic

inhomogeneous distribution shown in Fig. 16 to the regularized pattern exhibited in Fig. 15

under the continuous amplification of |p|. The evolution exhibits two distinct paradigms,

contingent upon the sign of the boundary parameter p.

5.3.1 p > 0 case

In this subsection we focus on the case where the boundary parameter satisfies p > 0. For

clarity, we first illustrate the case with q̄ = 0.35; the negative-q̄ scenario is qualitatively
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similar and its minor differences will be summarized at the end of this subsection. To

establish a baseline for the subsequent analysis, we first present the initial structure of the

Bethe roots for small p. For 0 < p < η
2

or 0 < q̄ < η
2
, the Bethe roots exhibit a clear

boundary-string configuration that is identical to the one appearing in the homogeneous

case. The endpoints of these boundary strings are located at ±(p− η
2
)− η

2
or ±(q̄ − η

2
)− η

2
,

respectively, as illustrated in Fig. 17. We classify boundary strings as regular roots defined

in this work.
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Figure 17: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = 0.15, q = 0.7, ξ =

√
3, and η = 1. The purple points represent the boundary strings, and

the blue points correspond to the paired-line roots, which here appear as a single conjugate
pair.

As p increases, both the line roots and the arc roots gradually move toward the central

roots. During this process, certain arc roots approach the real axis and transform into line

roots. Meanwhile, conjugate pairs aligned along directions parallel to the central roots begin

to appear. They initially occupy the positions of the line roots closest to the central roots,

and this replacement then progresses outward to the more distant line roots. We refer to

these conjugate pairs as the paired-line roots, and such roots occur only when either p > 0

or q̄ > 0.

Quantisation rule. The number of paired-line pairs increases in unit steps. When |q̄| is

small, and as p increases, each time the combination p+ q̄ reaches an integer multiple of η,
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that is, p+ q̄ = kη with k ∈ Z+, one additional pair of paired-line roots appears. For q̄ > 0,

the total number of paired-line root pairs is therefore given by max
{

1, bp + q̄c
}

, where b c
denotes the floor function. The number of regular roots remains unchanged and is always

equal to N .

This minimal configuration is shown in Fig. 17, where the single paired-line root pair lies

on the vertical contour Re(u) = −0.5. As concrete illustrations of this pattern, we present

the cases p = 1.75 and p = 5.55, where the numbers of paired-line root pairs are two and

five, respectively, as shown in Figs. 18 and 19.
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Figure 18: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = 1.75, q = 0.7, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots,

which appear here as two paired-line root pairs.

The increase in the number of paired-line root pairs occurs within an extremely narrow

interval, and within this crossover region the changes in the Bethe-root configuration are

highly intricate. As the system size N grows, the width of this interval becomes even

smaller, indicating that the crossover behavior is dominated by finite-size effects. We provide

a detailed illustration of the crossover behavior in Appendix E.

After all line roots have converted into paired-line root pairs, further increasing p drives

the two members of each paired-line root to split apart: one drifts upward and the other

downward, moving away from the real axis, as illustrated in Fig. 20.

As p is further increased, the arc roots and the paired-line root pairs formed by the N

Bethe roots move away from the center toward infinity, while the N regular roots remain
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Figure 19: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = 5.55, q = 0.7, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots,

which appear here as five paired-line root pairs.
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Figure 20: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = 17.3, q = 0.7, ξ =

√
3, and η = 1.
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at the center. This behavior arises because, for the Hamiltonian (2.14), when either p or

q tends to infinity, the magnetic field at one boundary approaches zero and the previously

broken U(1) symmetry is restored. At this point, the Bethe Ansatz equations are expected

to reduce to those of the homogeneous case. By setting the boundary parameters to be

identical-so that q′ in the homogeneous case equals q̄ in the inhomogeneous case-the central

Bethe roots obtained in the inhomogeneous case can be directly compared with those of the

homogeneous case (see Fig. 21). The two sets of roots show only negligible discrepancies,

which further demonstrates the validity of the algorithm.
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Figure 21: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = 27.3, q = 0.7, ξ =

√
3, and η = 1. Blue circles in panel (b) indicate the Bethe roots

obtained in the homogeneous case with parameters N ′ = 60, p′ = 27.3, q′ = 0.35, ξ′ = 0,
and η′ = 1.

For negative q̄, the evolution of the Bethe-root structure with increasing p closely parallels

the positive-q̄ case, with only two quantitative differences: (i) the number of paired-line root

pairs is max
{

1, bp+ q̄+1c
}

; (ii) the number of regular roots is N−2 at small p, but once all

line roots have transformed into paired-line root pairs, the number of regular roots becomes

N and remains fixed at this value throughout the subsequent evolution. Apart from these

differences, the rest of the analysis remains unchanged.
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5.3.2 p < 0 case

When p < 0 and increase |p| , the structural change is comparatively simpler, and the overall

evolution is identical regardless of the sign of q̄. For consistency with the previous subsection,

we likewise set q̄ = 0.35 in the following analysis.
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Figure 22: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = −1.3, q = 0.7, ξ =

√
3, and η = 1.

In contrast to the case of positive p, as the absolute value of the parameter increases, the

inner line roots move outward away from the center, while the outermost line roots remain

almost unchanged, as shown from Fig. 22 to Fig. 23.

When the two outermost line roots on the real axis approach their limiting separation,

they separate from that position and become part of the arc roots, as shown in Fig. 24.

Eventually, all line roots transform into the arc roots and continue to move toward

infinity, totaling N , while the N regular roots remain at the center. As in the previous

case, the Hamiltonian regains U(1) symmetry, and the Bethe Ansatz equations reduce to

the homogeneous form. A comparison of these two situations, shown in Fig. 25, exhibits

excellent agreement.

6 Conclusion

By combining tensor-network techniques with the Bethe Ansatz, we have performed a sys-

tematic study of the open XXX spin-1
2

chain in the large-lattice case. We accurately compute
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Figure 23: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = −2.4, q = 0.7, ξ =

√
3, and η = 1.

-30 -20 -10 0 10 20 30

-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) Global configuration of Bethe roots

18 20 22 24 26 28

-8

-6

-4

-2

0

2

4

6

8

(b) Enlarged view of the region where the structural
change occurs

Figure 24: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = −2.5, q = 0.7, ξ =

√
3, and η = 1.
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Figure 25: Distribution of Bethe roots in the complex plane with parameters N = 60,
p = −27.3, q = 0.7, ξ =

√
3, and η = 1. Blue circles in panel (b) indicate the Bethe roots

obtained in the homogeneous case with parameters N ′ = 60, p′ = −27.3, q′ = 0.35, ξ′ = 0,
and η′ = 1.

both zero roots and Bethe roots for the ground-state eigenvalue of the transfer matrix; no-

tably, the U(1) symmetry-broken sector at large system sizes is now accessible and validated

by rigorous complex-analysis checks.

We confirmed that, irrespective of whether U(1) symmetry is preserved or broken, the

zero-root pattern remains remarkably simple. At large N we verified the phase diagram

proposed in Ref. [40] and tracked in detail how the zero roots evolve when parameters are

driven across phase boundaries.

In the regime of broken U(1) symmetry, the Bethe roots naturally resolve into four

geometric classes—regular, line, paired-line, and arc. As the boundary parameters are sent

from finite values to infinity, the system’s U(1) symmetry is gradually restored, and we

systematically track the evolutionary trajectories and transition rules of these four Bethe-

root classes across the entire crossover.

In the symmetry-broken regime the zero-root configuration is orders of magnitude simpler

than the full Bethe-root set, offering an efficient shortcut for analytical calculations. The

present accuracy is limited by the precision of the transfer-matrix eigenvalues provided by

DMRG; any future improvement will immediately extend the approach to even larger sys-

tems. The numerical framework established here can be applied straightforwardly to excited
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states and to other quantum integrable models on large lattices.

Acknowledgments

We would like to thank Prof. Y. Wang for his valuable discussions and continuous en-

couragement. Yi Qiao special thanks to Dr. K. Wang for helpful discussions and sug-

gestions on tensor-network numerics. The financial supports from the National Key R&D

Program of China (Grant No.2021YFA1402104), the National Natural Science Foundation

of China (Grant Nos. 12547107, 12434006, 12305005, 12247103 and 12105221), Major Basic

Research Program of Natural Science of Shaanxi Province (Grant Nos. 2021JCW-19 and

2017ZDJC-32), Young Talent Fund of Xi’an Association for Science and Technology (Grant

No. 959202313086), and Shaanxi Fundamental Science Research Project for Mathematics

and Physics (Grant No. 22JSZ005).

A MPO Representation of the Transfer Matrix

To facilitate the derivation of analytical expressions, the R-matrix in Eq. (2.1) can be rewrit-

ten as a 2× 2 operator-valued matrix acting on the space labeled by 0:

R0,j(u) :=

(
aj(u) bj(u)
cj(u) dj(u)

)
0

. (A.1)

For the present R-matrix, Rj,0(u) = R0,j(u). Using the projection notation introduced later,

the matrix elements in the basis {|0〉0, |1〉0} read

aj(u) = R0,j(u)
∣∣0
0

=

(
u+ η 0

0 u

)
j

,

bj(u) = R0,j(u)
∣∣0
1

=

(
0 0
η 0

)
j

,

cj(u) = R0,j(u)
∣∣1
0

=

(
0 η
0 0

)
j

,

dj(u) = R0,j(u)
∣∣1
1

=

(
u 0
0 u+ η

)
j

.

(A.2)

The analytical derivation is presented below. For clarity we set N = 3, with the general

case obtained analogously. For simplicity, we will omit the parameter (u) in the subsequent
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derivation:
tr0

{
K+

0 R0,3R0,2R0,1K
−
0 R1,0R2,0R3,0

}
= tr0

{
K+

0 R0,3R0,2R0,1K
−
0 R0,1R0,2R0,3

}
= K+

0 R0,3R0,2R0,1K
−
0 R0,1R0,2R0,3

∣∣y
y

= K+
0

∣∣y
a
R0,3

∣∣a
b
R0,2

∣∣b
c
R0,1

∣∣c
d
K−0
∣∣d
e
R0,1

∣∣e
f
R0,2

∣∣f
g
R0,3

∣∣g
y

= R0,1

∣∣c
d
K−0
∣∣d
e
R0,1

∣∣e
f
·R0,2

∣∣b
c
R0,2

∣∣f
g
·R0,3

∣∣a
b
K+

0

∣∣y
a
R0,3

∣∣g
y

= R0,1

∣∣c
d
K−0
∣∣d
e
R0,1

∣∣e
f
·Rt0

0,2

∣∣c
b
R0,2

∣∣f
g
·Rt0

0,3

∣∣b
a
K+t0

0

∣∣a
y
Rt0

0,3

∣∣y
g

= (R0,1K
−
0 R0,1)

∣∣c
f
·Rt0

0,2

∣∣c
b
R0′,2

∣∣f
g
· (Rt0

0,3K
+t0
0 Rt0

0,3)
∣∣b
g

= (R0,1K
−
0 R0,1)

∣∣cf · (Rt0
0,2R0′,2)

∣∣bg
cf
· (Rt0

0,3K
+t0
0 Rt0

0,3)
∣∣
bg

= W1 ·W2 ·W3.

(A.3)

In this way, each tensor in Fig. 5 can be explicitly written out:

W1 =


(p+ u)a1a1 + (p− u)b1c1

(p+ u)a1b1 + (p− u)b1d1

(p+ u)c1a1 + (p− u)d1c1

(p+ u)c1b1 + (p− u)d1d1


t

, (A.4)

Wj =


ajaj ajbj cjaj cjbj
ajcj ajdj cjcj cjdj
bjaj bjbj djaj djbj
bjcj bjdj djcj djdj

 , (A.5)

WN =


(q + u+ η)aNaN + ξ(u+ η)(aNbN + cNaN) + (q − u− η)cNbN
(q + u+ η)aNcN + ξ(u+ η)(aNdN + cNcN) + (q − u− η)cNdN
(q + u+ η)bNaN + ξ(u+ η)(bNbN + dNaN) + (q − u− η)dNbN
(q + u+ η)bNcN + ξ(u+ η)(bNdN + dNcN) + (q − u− η)dNdN

 . (A.6)

Notation. Let X0,j be a linear operator on H0 ⊗ Hj, and {|α〉0} a fixed basis of H0. Its

matrix element with respect to the 0-th space is defined as

X0,j

∣∣α
β

:= (〈α|0 ⊗ Ij)X0,j (|β〉0 ⊗ Ij), (A.7)

which is an operator on Hj.

For two operators X0,j and Y0,k, the component of their tensor product is defined by

(X0,jY0,k)
∣∣αγ
βδ

:= X0,j

∣∣α
β
Y0,k

∣∣γ
δ
, (A.8)

where αγ and βδ denote ordered pairs of basis indices.
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In the derivation above, repeated upper-lower index pairs are implicitly summed. When

composite labels such as αγ appear, the summation convention is applied to each component

index separately.

The transpose in the 0-th space is defined directly at the level of matrix elements by

X t0
0,j

∣∣α
β

:= (〈β|0 ⊗ Ij)X0,j (|α〉0 ⊗ Ij) = X0,j

∣∣β
α
. (A.9)

B Corollary of the Maximum Modulus Principle

Let f(z) be analytic on the closed disk |z| ≤ R. Suppose there exists a constant a > 0 such

that

|f(z)| ≥ a for all |z| = R, (B.1)

and

|f(0)| < a. (B.2)

Then f(z) must have at least one zero inside the open disk |z| < R.

Assume to the contrary that f(z) has no zeros in the interior of the disk. Since f(z) is

analytic and nonzero on |z| ≤ R, the reciprocal function

ϕ(z) =
1

f(z)
(B.3)

is also analytic on the closed disk.

By the assumption, we have

|ϕ(0)| =
∣∣∣∣ 1

f(0)

∣∣∣∣ > 1

a
, (B.4)

and on the boundary,

|ϕ(z)| =
∣∣∣∣ 1

f(z)

∣∣∣∣ ≤ 1

a
for all |z| = R. (B.5)

This implies that |ϕ(z)| attains a strict maximum at an interior point z = 0, namely

|ϕ(z)| ≤ 1

a
< |ϕ(0)|, for all |z| = R. (B.6)

This contradicts the maximum modulus principle, which states that the maximum of |ϕ(z)|
on a closed domain is achieved on the boundary unless ϕ(z) is constant.

Therefore, the assumption must be false, and f(z) has at least one zero in |z| < R.
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C Argument Principle: Validation Data

This appendix presents the numerical verification of all detected zero roots via the argument

principle. For each candidate, a closed loop composed of five evaluation points as shown in

Fig. 9 is used to compute the total argument change of the function Λ(u). The chosen offset

δ ensures that only one zero is enclosed per loop, and the result ∆ = 1 confirms the presence

of a zero.

Table C.1: Validation of candidate zero roots for the ground state based on the argument
principle. The model parameters are N = 100, p = −0.6, q = −0.3, ξ = 1.2, and η = 1.
Each row corresponds to one candidate surrounded by a closed path with offset δ. The
columns arg1-arg5 list the phase-unwrapped argument values at the five evaluation points.
∆ = 1

2π
∆C arg f(z) represents the total argument change along the loop.

Index Real(zj) Imag(zj) δ arg1 arg2 arg3 arg4 arg5 ∆

1 -1.537797484405 0.000000000000 10−12 -1.57 -0.00 1.57 3.14 4.71 1.0

2 -1.499950624342 0.010265201348 10−12 -0.32 1.25 2.82 4.39 5.96 1.0

3 -1.499950624342 -0.010265201348 10−12 -2.82 -1.25 0.32 1.89 3.46 1.0

4 -1.499826137427 0.020485525878 10−12 2.47 4.04 5.61 7.18 8.75 1.0

5 -1.499826137427 -0.020485525878 10−12 0.67 2.24 3.81 5.38 6.95 1.0

6 -1.499668437249 0.030659439714 10−12 -1.05 0.52 2.09 3.66 5.23 1.0

7 -1.499668437249 -0.030659439714 10−12 -2.09 -0.52 1.05 2.62 4.19 1.0

8 -1.499508982879 0.040805650649 10−12 1.69 3.26 4.83 6.40 7.97 1.0

9 -1.499508982879 -0.040805650649 10−12 1.45 3.03 4.60 6.17 7.74 1.0

10 -1.499362827910 0.050950483670 10−12 -1.88 -0.31 1.26 2.83 4.40 1.0

11 -1.499362827910 -0.050950483670 10−12 -1.26 0.31 1.88 3.45 5.03 1.0

12 -1.499234729326 0.061118328765 10−12 2.33 3.90 5.47 7.04 8.61 1.0

13 -1.499234729326 -0.061118328765 10−12 0.81 2.38 3.95 5.52 7.09 1.0

14 -1.499124661078 0.071329849178 10−12 -0.35 1.22 2.79 4.36 5.93 1.0

15 -1.499124661078 -0.071329849178 10−12 -2.79 -1.22 0.35 1.92 3.49 1.0

16 -1.499030724545 0.081602732169 10−12 -3.02 -1.45 0.13 1.70 3.27 1.0

17 -1.499030724545 -0.081602732169 10−12 -0.13 1.45 3.02 4.59 6.16 1.0

18 -1.498950502407 0.091952693540 10−12 0.61 2.18 3.75 5.32 6.89 1.0

19 -1.498950502407 -0.091952693540 10−12 2.53 4.10 5.67 7.24 8.81 1.0

Continued on next page

43



Table C.1 – continued from previous page

Index Real(zj) Imag(zj) δ arg1 arg2 arg3 arg4 arg5 ∆

20 -1.498881624162 0.102394318961 10−12 -2.03 -0.46 1.11 2.68 4.25 1.0

21 -1.498881624162 -0.102394318961 10−12 -1.11 0.46 2.03 3.61 5.18 1.0

22 -1.498821967495 0.112941674848 10−12 1.53 3.10 4.67 6.24 7.81 1.0

23 -1.498821967495 -0.112941674848 10−12 1.61 3.18 4.75 6.32 7.90 1.0

24 -1.498769723486 0.123608744783 10−12 -2.13 -0.56 1.01 2.59 4.16 1.0

25 -1.498769723486 -0.123608744783 10−12 -1.01 0.56 2.13 3.70 5.27 1.0

26 -1.498723364861 0.134409764676 10−12 0.49 2.06 3.63 5.20 6.77 1.0

27 -1.498723364861 -0.134409764676 10−12 2.65 4.22 5.79 7.36 8.94 1.0

28 -1.498681620170 -0.145359467945 10−12 0.04 1.62 3.19 4.76 6.33 1.0

29 -1.498681620170 0.145359467945 10−12 3.10 4.67 6.24 7.81 9.38 1.0

30 -1.498643427402 -0.156473301820 10−12 -2.55 -0.98 0.59 2.16 3.73 1.0

31 -1.498643427402 0.156473301820 10−12 -0.59 0.98 2.55 4.12 5.69 1.0

32 -1.498607890702 -0.167767617858 10−12 1.14 2.71 4.28 5.86 7.43 1.0

33 -1.498607890702 0.167767617858 10−12 2.00 3.57 5.14 6.71 8.28 1.0

34 -1.498574252042 -0.179259858798 10−12 -1.71 -0.14 1.43 3.00 4.58 1.0

35 -1.498574252042 0.179259858798 10−12 -1.43 0.14 1.71 3.28 4.85 1.0

36 -1.498541855015 -0.190968750517 10−12 2.28 3.86 5.43 7.00 8.57 1.0

37 -1.498541855015 0.190968750517 10−12 0.86 2.43 4.00 5.57 7.14 1.0

38 -1.498510123234 -0.202914506180 10−12 -2.87 -1.30 0.27 1.84 3.41 1.0

39 -1.498510123234 0.202914506180 10−12 -0.27 1.30 2.87 4.44 6.01 1.0

40 -1.498478538264 -0.215119055622 10−12 -2.81 -1.24 0.33 1.90 3.48 1.0

41 -1.498478538264 0.215119055622 10−12 -0.33 1.24 2.81 4.38 5.95 1.0

42 -1.498446620333 -0.227606305494 10−12 2.19 3.76 5.33 6.90 8.48 1.0

43 -1.498446620333 0.227606305494 10−12 0.95 2.52 4.09 5.66 7.23 1.0

44 -1.498413915387 -0.240402437913 10−12 -1.56 0.01 1.58 3.15 4.72 1.0

45 -1.498413915387 0.240402437913 10−12 -1.58 -0.01 1.56 3.13 4.70 1.0

46 -1.498379979920 0.253536262645 10−12 2.23 3.80 5.37 6.94 8.51 1.0

47 -1.498379979920 -0.253536262645 10−12 0.92 2.49 4.06 5.63 7.20 1.0

48 -1.498344367511 0.267039629271 10−12 -0.25 1.32 2.89 4.46 6.03 1.0
Continued on next page
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Index Real(zj) Imag(zj) δ arg1 arg2 arg3 arg4 arg5 ∆

49 -1.498344367511 -0.267039629271 10−12 -2.89 -1.32 0.25 1.82 3.39 1.0

50 -1.498306617468 0.280947921906 10−12 -2.71 -1.14 0.43 2.00 3.57 1.0

51 -1.498306617468 -0.280947921906 10−12 -0.43 1.14 2.71 4.28 5.85 1.0

52 -1.498266239594 0.295300650461 10−12 2.01 3.58 5.15 6.72 8.29 1.0

53 -1.498266239594 -0.295300650461 10−12 1.14 2.71 4.28 5.85 7.42 1.0

54 -1.498222698566 -0.310142165508 10−12 -1.86 -0.29 1.28 2.85 4.42 1.0

55 -1.498222698566 0.310142165508 10−12 -1.28 0.29 1.86 3.43 5.00 1.0

56 -1.498175399285 -0.325522534071 10−12 2.61 4.19 5.76 7.33 8.90 1.0

57 -1.498175399285 0.325522534071 10−12 0.53 2.10 3.67 5.24 6.81 1.0

58 -1.498123665480 -0.341498614506 10−12 0.25 1.82 3.39 4.96 6.53 1.0

59 -1.498123665480 0.341498614506 10−12 2.89 4.46 6.03 7.60 9.17 1.0

60 -1.498066714188 0.358135397291 10−12 -1.06 0.51 2.08 3.65 5.22 1.0

61 -1.498066714188 -0.358135397291 10−12 -2.08 -0.51 1.06 2.63 4.20 1.0

62 -1.498003623959 -0.375507684154 10−12 1.24 2.81 4.38 5.95 7.52 1.0

63 -1.498003623959 0.375507684154 10−12 1.90 3.47 5.05 6.62 8.19 1.0

64 -1.497933293140 -0.393702223808 10−12 -0.36 1.21 2.78 4.35 5.93 1.0

65 -1.497933293140 0.393702223808 10−12 -2.78 -1.21 0.36 1.93 3.50 1.0

66 -1.497854383995 -0.412820455349 10−12 -0.56 1.01 2.58 4.15 5.72 1.0

67 -1.497854383926 0.412820455322 10−12 -2.58 -1.01 0.56 2.14 3.71 1.0

68 -1.497765248390 0.432982083595 10−12 1.61 3.18 4.75 6.32 7.89 1.0

69 -1.497765245778 -0.432982082050 10−12 1.53 3.10 4.68 6.25 7.82 1.0

70 -1.497663849835 -0.454329835627 10−12 -2.56 -0.99 0.59 2.16 3.73 1.0

71 -1.497663817867 0.454329812915 10−12 -0.59 0.99 2.56 4.13 5.70 1.0

72 -1.497547476813 0.477035682510 10−12 -0.50 1.07 2.64 4.21 5.79 1.0

73 -1.497547289313 -0.477035535699 10−12 -2.64 -1.07 0.50 2.07 3.64 1.0

74 -1.497413408143 -0.501310359159 10−12 1.65 3.22 4.79 6.36 7.93 1.0

75 -1.497412793089 0.501309849137 10−12 1.49 3.06 4.63 6.20 7.77 1.0

76 -1.497255294626 0.527412667506 10−12 -2.88 -1.31 0.26 1.83 3.40 1.0

77 -1.497254083110 -0.527411625020 10−12 -0.26 1.31 2.88 4.46 6.03 1.0
Continued on next page
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Index Real(zj) Imag(zj) δ arg1 arg2 arg3 arg4 arg5 ∆

78 -1.497070337484 -0.555673660500 10−12 -2.07 -0.50 1.07 2.64 4.21 1.0

79 -1.497068864609 0.555672362108 10−12 -1.07 0.50 2.07 3.64 5.21 1.0

80 -1.496845058431 0.586510751527 10−12 2.51 4.09 5.66 7.23 8.80 1.0

81 -1.496843960123 -0.586509770845 10−12 0.63 2.20 3.77 5.34 6.91 1.0

82 -1.496572258922 -0.620483259367 10−12 2.19 3.76 5.33 6.90 8.47 1.0

83 -1.496571777498 0.620482830425 10−12 0.95 2.52 4.09 5.66 7.23 1.0

84 -1.496231071195 0.658339515148 10−12 -0.44 1.13 2.70 4.27 5.84 1.0

85 -1.496230958626 -0.658339417530 10−12 -2.70 -1.13 0.44 2.02 3.59 1.0

86 -1.495795097477 -0.701132402982 10−12 -1.63 -0.06 1.51 3.08 4.65 1.0

87 -1.495795086062 0.701132393799 10−12 -1.51 0.06 1.63 3.20 4.77 1.0

88 -1.495218118382 0.750399337671 10−12 -0.60 0.97 2.54 4.11 5.68 1.0

89 -1.495218118079 -0.750399337475 10−12 -2.54 -0.97 0.60 2.17 3.74 1.0

90 -1.494419555125 -0.808519758323 10−12 -3.08 -1.51 0.06 1.63 3.21 1.0

91 -1.494419554811 0.808519758535 10−12 -0.06 1.51 3.08 4.65 6.22 1.0

92 -1.493242561897 0.879467798895 10−12 -3.09 -1.52 0.06 1.63 3.20 1.0

93 -1.493242557769 -0.879467802695 10−12 -0.06 1.52 3.09 4.66 6.23 1.0

94 -1.491336013025 -0.970656104707 10−12 -2.27 -0.70 0.87 2.44 4.01 1.0

95 -1.491335998112 0.970656121093 10−12 -0.87 0.70 2.27 3.84 5.41 1.0

96 -1.487719917574 1.098563225209 10−12 0.01 1.59 3.16 4.73 6.30 1.0

97 -1.487719897134 -1.098563251194 10−12 3.13 4.70 6.27 7.84 9.41 1.0

98 -1.478277809193 -1.314410092648 10−12 -2.59 -1.02 0.55 2.12 3.69 1.0

99 -1.478277799023 1.314410108052 10−12 -0.55 1.02 2.59 4.16 5.73 1.0

100 -1.192055320267 0.000000000000 10−12 1.57 3.14 4.71 6.28 7.85 1.0

101 -0.500000001273 2.182890275359 10−12 -3.14 -1.57 -0.00 1.57 3.15 1.0

102 -0.499999998727 -2.182890275359 10−12 -0.00 1.57 3.14 4.71 6.28 1.0

103 0.192055320267 -0.000000000000 10−12 -1.57 -0.00 1.57 3.14 4.71 1.0

104 0.478277799023 -1.314410108052 10−12 2.59 4.16 5.73 7.30 8.87 1.0

105 0.478277809193 1.314410092648 10−12 0.55 2.12 3.69 5.26 6.83 1.0

106 0.487719897134 1.098563251194 10−12 -0.01 1.56 3.13 4.70 6.27 1.0
Continued on next page
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Index Real(zj) Imag(zj) δ arg1 arg2 arg3 arg4 arg5 ∆

107 0.487719917574 -1.098563225209 10−12 -3.13 -1.56 0.01 1.59 3.16 1.0

108 0.491335998112 -0.970656121093 10−12 2.27 3.84 5.41 6.98 8.55 1.0

109 0.491336013025 0.970656104707 10−12 0.87 2.44 4.01 5.58 7.15 1.0

110 0.493242557769 0.879467802695 10−12 3.09 4.66 6.23 7.80 9.37 1.0

111 0.493242561897 -0.879467798895 10−12 0.06 1.63 3.20 4.77 6.34 1.0

112 0.494419554811 -0.808519758535 10−12 3.08 4.65 6.22 7.79 9.36 1.0

113 0.494419555125 0.808519758323 10−12 0.06 1.63 3.21 4.78 6.35 1.0

114 0.495218118079 0.750399337475 10−12 0.60 2.17 3.74 5.31 6.89 1.0

115 0.495218118382 -0.750399337671 10−12 2.54 4.11 5.68 7.25 8.82 1.0

116 0.495795086062 -0.701132393799 10−12 1.63 3.20 4.77 6.34 7.91 1.0

117 0.495795097477 0.701132402982 10−12 1.51 3.08 4.65 6.23 7.80 1.0

118 0.496230958626 0.658339417530 10−12 0.44 2.02 3.59 5.16 6.73 1.0

119 0.496231071195 -0.658339515148 10−12 2.70 4.27 5.84 7.41 8.98 1.0

120 0.496571777498 -0.620482830425 10−12 -2.19 -0.62 0.95 2.52 4.09 1.0

121 0.496572258922 0.620483259367 10−12 -0.95 0.62 2.19 3.76 5.33 1.0

122 0.496843960123 0.586509770845 10−12 -2.51 -0.94 0.63 2.20 3.77 1.0

123 0.496845058431 -0.586510751527 10−12 -0.63 0.94 2.51 4.09 5.66 1.0

124 0.497068864609 -0.555672362108 10−12 2.07 3.64 5.21 6.78 8.35 1.0

125 0.497070337484 0.555673660500 10−12 1.07 2.64 4.21 5.78 7.36 1.0

126 0.497254083110 0.527411625020 10−12 2.88 4.46 6.03 7.60 9.17 1.0

127 0.497255294626 -0.527412667506 10−12 0.26 1.83 3.40 4.97 6.54 1.0

128 0.497412793089 -0.501309849137 10−12 -1.65 -0.08 1.49 3.06 4.63 1.0

129 0.497413408143 0.501310359159 10−12 -1.49 0.08 1.65 3.22 4.79 1.0

130 0.497547289313 0.477035535699 10−12 0.50 2.07 3.64 5.21 6.78 1.0

131 0.497547476813 -0.477035682510 10−12 2.64 4.21 5.79 7.36 8.93 1.0

132 0.497663817867 -0.454329812915 10−12 2.56 4.13 5.70 7.27 8.84 1.0

133 0.497663849835 0.454329835627 10−12 0.59 2.16 3.73 5.30 6.87 1.0

134 0.497765245778 0.432982082050 10−12 -1.61 -0.04 1.53 3.10 4.68 1.0

135 0.497765248390 -0.432982083595 10−12 -1.53 0.04 1.61 3.18 4.75 1.0
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136 0.497854383926 -0.412820455322 10−12 0.56 2.14 3.71 5.28 6.85 1.0

137 0.497854383995 0.412820455349 10−12 2.58 4.15 5.72 7.29 8.86 1.0

138 0.497933293140 -0.393702223808 10−12 0.36 1.93 3.50 5.07 6.64 1.0

139 0.497933293140 0.393702223808 10−12 2.78 4.35 5.93 7.50 9.07 1.0

140 0.498003623959 -0.375507684154 10−12 -1.24 0.33 1.90 3.47 5.05 1.0

141 0.498003623959 0.375507684154 10−12 -1.90 -0.33 1.24 2.81 4.38 1.0

142 0.498066714188 0.358135397291 10−12 1.06 2.63 4.20 5.77 7.34 1.0

143 0.498066714188 -0.358135397291 10−12 2.08 3.65 5.22 6.79 8.36 1.0

144 0.498123665480 -0.341498614506 10−12 -0.25 1.32 2.89 4.46 6.03 1.0

145 0.498123665480 0.341498614506 10−12 -2.89 -1.32 0.25 1.82 3.39 1.0

146 0.498175399285 -0.325522534071 10−12 -2.61 -1.04 0.53 2.10 3.67 1.0

147 0.498175399285 0.325522534071 10−12 -0.53 1.04 2.61 4.19 5.76 1.0

148 0.498222698566 -0.310142165508 10−12 1.86 3.43 5.00 6.58 8.15 1.0

149 0.498222698566 0.310142165508 10−12 1.28 2.85 4.42 5.99 7.56 1.0

150 0.498266239594 0.295300650461 10−12 -2.01 -0.43 1.14 2.71 4.28 1.0

151 0.498266239594 -0.295300650461 10−12 -1.14 0.43 2.01 3.58 5.15 1.0

152 0.498306617468 0.280947921906 10−12 2.71 4.28 5.85 7.42 8.99 1.0

153 0.498306617468 -0.280947921906 10−12 0.43 2.00 3.57 5.14 6.72 1.0

154 0.498344367511 0.267039629271 10−12 0.25 1.82 3.39 4.96 6.53 1.0

155 0.498344367511 -0.267039629271 10−12 2.89 4.46 6.03 7.60 9.17 1.0

156 0.498379979920 0.253536262645 10−12 -2.23 -0.66 0.92 2.49 4.06 1.0

157 0.498379979920 -0.253536262645 10−12 -0.92 0.66 2.23 3.80 5.37 1.0

158 0.498413915387 -0.240402437913 10−12 1.56 3.13 4.70 6.27 7.85 1.0

159 0.498413915387 0.240402437913 10−12 1.58 3.15 4.72 6.29 7.86 1.0

160 0.498446620333 -0.227606305494 10−12 -2.19 -0.62 0.95 2.52 4.09 1.0

161 0.498446620333 0.227606305494 10−12 -0.95 0.62 2.19 3.76 5.33 1.0

162 0.498478538264 -0.215119055622 10−12 2.81 4.38 5.95 7.52 9.09 1.0

163 0.498478538264 0.215119055622 10−12 0.33 1.90 3.48 5.05 6.62 1.0

164 0.498510123234 -0.202914506180 10−12 2.87 4.44 6.01 7.59 9.16 1.0
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165 0.498510123234 0.202914506180 10−12 0.27 1.84 3.41 4.98 6.55 1.0

166 0.498541855015 -0.190968750517 10−12 -2.28 -0.71 0.86 2.43 4.00 1.0

167 0.498541855015 0.190968750517 10−12 -0.86 0.71 2.28 3.86 5.43 1.0

168 0.498574252042 -0.179259858798 10−12 1.71 3.28 4.85 6.42 7.99 1.0

169 0.498574252042 0.179259858798 10−12 1.43 3.00 4.57 6.15 7.72 1.0

170 0.498607890702 -0.167767617858 10−12 -1.14 0.43 2.00 3.57 5.14 1.0

171 0.498607890702 0.167767617858 10−12 -2.00 -0.43 1.14 2.71 4.28 1.0

172 0.498643427402 -0.156473301820 10−12 2.55 4.12 5.69 7.27 8.84 1.0

173 0.498643427402 0.156473301820 10−12 0.59 2.16 3.73 5.30 6.87 1.0

174 0.498681620170 -0.145359467945 10−12 -0.04 1.53 3.10 4.67 6.24 1.0

175 0.498681620170 0.145359467945 10−12 -3.10 -1.53 0.04 1.62 3.19 1.0

176 0.498723364861 0.134409764676 10−12 -0.49 1.08 2.65 4.22 5.79 1.0

177 0.498723364861 -0.134409764676 10−12 -2.65 -1.08 0.49 2.06 3.63 1.0

178 0.498769723486 0.123608744783 10−12 2.13 3.70 5.27 6.84 8.41 1.0

179 0.498769723486 -0.123608744783 10−12 1.01 2.59 4.16 5.73 7.30 1.0

180 0.498821967495 0.112941674848 10−12 -1.53 0.04 1.61 3.18 4.75 1.0

181 0.498821967495 -0.112941674848 10−12 -1.61 -0.04 1.53 3.10 4.67 1.0

182 0.498881624162 0.102394318961 10−12 2.03 3.61 5.18 6.75 8.32 1.0

183 0.498881624162 -0.102394318961 10−12 1.11 2.68 4.25 5.82 7.39 1.0

184 0.498950502407 0.091952693540 10−12 -0.61 0.96 2.53 4.10 5.67 1.0

185 0.498950502407 -0.091952693540 10−12 -2.53 -0.96 0.61 2.18 3.75 1.0

186 0.499030724545 0.081602732169 10−12 3.02 4.59 6.16 7.73 9.30 1.0

187 0.499030724545 -0.081602732169 10−12 0.13 1.70 3.27 4.84 6.41 1.0

188 0.499124661078 0.071329849178 10−12 0.35 1.92 3.49 5.06 6.63 1.0

189 0.499124661078 -0.071329849178 10−12 2.79 4.36 5.93 7.51 9.08 1.0

190 0.499234729326 0.061118328765 10−12 -2.33 -0.76 0.81 2.38 3.95 1.0

191 0.499234729326 -0.061118328765 10−12 -0.81 0.76 2.33 3.90 5.47 1.0

192 0.499362827910 0.050950483670 10−12 1.88 3.45 5.03 6.60 8.17 1.0

193 0.499362827910 -0.050950483670 10−12 1.26 2.83 4.40 5.97 7.54 1.0
Continued on next page
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Table C.1 – continued from previous page

Index Real(zj) Imag(zj) δ arg1 arg2 arg3 arg4 arg5 ∆

194 0.499508982879 0.040805650649 10−12 -1.69 -0.12 1.45 3.03 4.60 1.0

195 0.499508982879 -0.040805650649 10−12 -1.45 0.12 1.69 3.26 4.83 1.0

196 0.499668437249 0.030659439714 10−12 1.05 2.62 4.19 5.76 7.33 1.0

197 0.499668437249 -0.030659439714 10−12 2.09 3.66 5.24 6.81 8.38 1.0

198 0.499826137427 0.020485525878 10−12 -2.47 -0.90 0.67 2.24 3.81 1.0

199 0.499826137427 -0.020485525878 10−12 -0.67 0.90 2.47 4.04 5.61 1.0

200 0.499950624342 0.010265201348 10−12 0.32 1.89 3.46 5.04 6.61 1.0

201 0.499950624342 -0.010265201348 10−12 2.82 4.39 5.96 7.53 9.10 1.0

202 0.537797484405 -0.000000000000 10−12 1.57 3.14 4.71 6.28 7.85 1.0

D Complete Numerical Data of Bethe roots

This appendix provides the numerical data of the Bethe roots shown in Fig. 16. Table D.1

lists the values of λj obtained via BA-DMRG together with the relative errors

εj =
|ΛDMRG(λj)− ΛBethe(λj)|

|ΛDMRG(λj)|
. (D.1)

For completeness, the table also includes the quantities

G(λj) = −A(λj) + C(λj)

B(λj)
, (D.2)

which satisfy G(λj) = 1 when the Bethe Ansatz equations hold.

Table D.1: Complete numerical data of the Bethe roots shown in Fig. 16, including their
real and imaginary parts, the relative error εj (%), and the real and imaginary components
of G(λj) used to verify the BAEs.

Index Real(λj) Imag(λj) εj (%) Real(G(λj)) Imag(G(λj))

1 -31.144635856053 14.796601696756 0.006703 0.9999748 -0.0000059

2 -31.144630737854 -14.796570116777 0.001968 1.0000081 0.0000019

3 -31.112214344639 18.776717544408 0.005305 0.9999893 -0.0000181

4 -31.112208092554 -18.776685258374 0.002026 0.9999919 -0.0000011

5 -30.919833829768 11.219153118425 0.007759 0.9999949 0.0000292
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6 -30.919829495799 -11.219135908266 0.002844 0.9999911 -0.0000068

7 -30.750239856538 -23.257584807187 0.001043 1.0000008 0.0000041

8 -30.750230653453 23.257621705199 0.003974 0.9999887 -0.0000100

9 -30.488209934679 7.977090964447 0.006454 0.9999946 0.0000257

10 -30.488203635869 -7.977067087444 0.004396 1.0000098 -0.0000153

11 -29.948109813107 -28.392450661966 0.001033 0.9999971 0.0000029

12 -29.948102286317 28.392480724581 0.000886 1.0000025 -0.0000021

13 -29.886471861961 5.021871040236 0.003508 1.0000000 0.0000141

14 -29.886461311705 -5.021851430529 0.001440 0.9999936 -0.0000027

15 -29.139854377934 2.324152165557 0.001858 0.9999990 0.0000071

16 -29.139835112891 -2.324131745496 0.001823 1.0000068 -0.0000037

17 -28.554561157903 -0.000001725273 0.006368 0.9999900 -0.0000276

18 -28.520722851190 -34.445572210226 0.001345 1.0000031 -0.0000037

19 -28.520701034008 34.445623815124 0.002793 0.9999940 -0.0000087

20 -26.110751938488 -41.953134235061 0.001460 0.9999950 -0.0000025

21 -26.110708589107 41.953171369743 0.002460 0.9999910 0.0000024

22 -26.048468541799 -0.000022547448 0.001902 1.0000002 -0.0000044

23 -22.447037966967 -0.000009420298 0.000789 0.9999999 0.0000011

24 -21.813839553443 -52.408293188729 0.001029 1.0000031 -0.0000022

25 -21.813772641141 52.408320918356 0.001338 0.9999953 0.0000016

26 -18.842897834547 -0.000007572427 0.000416 1.0000003 -0.0000004

27 -15.230029186526 -0.000004753581 0.000205 1.0000000 0.0000002

28 -11.600089350039 -0.000003342822 0.000114 1.0000000 -0.0000000

29 -7.929151648995 -0.000002102855 0.000109 1.0000000 0.0000000

30 -4.110450929140 -0.000001008757 0.000095 1.0000000 -0.0000000

31 -0.500000277559 2.257510359594 0.000391 1.0000000 0.0000000

32 -0.500000003504 1.129742222110 0.000021 1.0000000 0.0000000

33 -0.500000002047 0.924097200566 0.000011 1.0000000 0.0000000

34 -0.500000001365 0.799746423715 0.000007 1.0000000 0.0000000

35 -0.500000000989 0.710186993779 0.000006 1.0000000 0.0000000

36 -0.500000000754 0.640008902738 0.000005 1.0000000 0.0000000
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37 -0.500000000597 0.582172536749 0.000004 1.0000000 0.0000000

38 -0.500000000484 0.532866814709 0.000003 1.0000000 0.0000000

39 -0.500000000401 0.489794157209 0.000003 1.0000000 -0.0000000

40 -0.500000000337 0.451461607346 0.000003 1.0000000 -0.0000000

41 -0.500000000287 0.416843660349 0.000002 1.0000000 0.0000000

42 -0.500000000246 0.385204975890 0.000002 1.0000000 -0.0000000

43 -0.500000000213 0.355999829697 0.000002 1.0000000 0.0000000

44 -0.500000000185 0.328811599828 0.000002 1.0000000 -0.0000000

45 -0.500000000162 0.303314558595 0.000002 1.0000000 0.0000000

46 -0.500000000142 0.279248772918 0.000002 1.0000000 0.0000000

47 -0.500000000125 0.256403055904 0.000002 1.0000000 -0.0000000

48 -0.500000000110 0.234603050708 0.000002 1.0000000 -0.0000000

49 -0.500000000096 0.213702691298 0.000001 1.0000000 0.0000000

50 -0.500000000085 0.193577946499 0.000001 1.0000000 0.0000000

51 -0.500000000074 0.174122144742 0.000001 1.0000000 0.0000000

52 -0.500000000064 0.155242415665 0.000001 1.0000000 -0.0000000

53 -0.500000000055 0.136856934878 0.000001 1.0000000 0.0000000

54 -0.500000000047 0.118892754934 0.000001 1.0000000 0.0000000

55 -0.500000000039 0.101284069415 0.000001 1.0000000 0.0000000

56 -0.500000000032 0.083970799891 0.000001 1.0000000 0.0000000

57 -0.500000000025 0.066897424863 0.000001 1.0000000 -0.0000000

58 -0.500000000019 0.050011990054 0.000001 1.0000000 0.0000000

59 -0.500000000012 0.033265253604 0.000001 1.0000000 -0.0000000

60 -0.500000000006 0.016609929569 0.000001 1.0000000 -0.0000000

61 -0.499999999994 -0.016609929569 0.000001 1.0000000 0.0000000

62 -0.499999999988 -0.033265253604 0.000001 1.0000000 0.0000000

63 -0.499999999981 -0.050011990054 0.000001 1.0000000 -0.0000000

64 -0.499999999975 -0.066897424863 0.000001 1.0000000 0.0000000

65 -0.499999999968 -0.083970799891 0.000001 1.0000000 -0.0000000

66 -0.499999999961 -0.101284069415 0.000001 1.0000000 -0.0000000

67 -0.499999999953 -0.118892754934 0.000001 1.0000000 -0.0000000
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68 -0.499999999945 -0.136856934878 0.000001 1.0000000 -0.0000000

69 -0.499999999936 -0.155242415665 0.000001 1.0000000 0.0000000

70 -0.499999999926 -0.174122144742 0.000001 1.0000000 -0.0000000

71 -0.499999999915 -0.193577946499 0.000001 1.0000000 -0.0000000

72 -0.499999999904 -0.213702691298 0.000001 1.0000000 -0.0000000

73 -0.499999999890 -0.234603050708 0.000002 1.0000000 0.0000000

74 -0.499999999875 -0.256403055904 0.000002 1.0000000 0.0000000

75 -0.499999999858 -0.279248772918 0.000002 1.0000000 -0.0000000

76 -0.499999999838 -0.303314558595 0.000002 1.0000000 -0.0000000

77 -0.499999999815 -0.328811599828 0.000002 1.0000000 0.0000000

78 -0.499999999787 -0.355999829697 0.000002 1.0000000 -0.0000000

79 -0.499999999754 -0.385204975890 0.000002 1.0000000 0.0000000

80 -0.499999999713 -0.416843660349 0.000002 1.0000000 -0.0000000

81 -0.499999999663 -0.451461607346 0.000003 1.0000000 0.0000000

82 -0.499999999599 -0.489794157209 0.000003 1.0000000 0.0000000

83 -0.499999999516 -0.532866814709 0.000003 1.0000000 -0.0000000

84 -0.499999999403 -0.582172536749 0.000004 1.0000000 -0.0000000

85 -0.499999999246 -0.640008902738 0.000005 1.0000000 -0.0000000

86 -0.499999999011 -0.710186993779 0.000006 1.0000000 -0.0000000

87 -0.499999998635 -0.799746423715 0.000007 1.0000000 -0.0000000

88 -0.499999997953 -0.924097200566 0.000011 1.0000000 -0.0000000

89 -0.499999996496 -1.129742222110 0.000021 1.0000000 -0.0000000

90 -0.499999722441 -2.257510359594 0.000391 1.0000000 -0.0000000

91 3.110450929140 0.000001008757 0.000095 1.0000000 0.0000000

92 6.929151648995 0.000002102855 0.000109 1.0000000 -0.0000000

93 10.600089350039 0.000003342822 0.000114 1.0000000 0.0000000

94 14.230029186526 0.000004753581 0.000205 1.0000000 -0.0000002

95 17.842897834547 0.000007572427 0.000416 0.9999997 0.0000004

96 20.813772641141 -52.408320918356 0.001338 0.9999980 -0.0000026

97 20.813839553443 52.408293188729 0.001029 0.9999993 -0.0000024

98 21.447037966967 0.000009420298 0.000789 1.0000001 -0.0000011
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99 25.048468541799 0.000022547448 0.001902 0.9999997 0.0000045

100 25.110708589107 -41.953171369743 0.002460 0.9999971 -0.0000039

101 25.110751938488 41.953134235061 0.001460 0.9999979 0.0000019

102 27.520701034008 -34.445623815124 0.002793 1.0000024 -0.0000037

103 27.520722851190 34.445572210226 0.001345 0.9999991 -0.0000018

104 27.554561157903 0.000001725273 0.006368 1.0000012 0.0000033

105 28.139835112891 2.324131745496 0.001823 0.9999992 -0.0000005

106 28.139854377934 -2.324152165557 0.001858 0.9999993 -0.0000005

107 28.886461311705 5.021851430529 0.001440 1.0000000 0.0000009

108 28.886471861961 -5.021871040236 0.003508 0.9999983 -0.0000006

109 28.948102286317 -28.392480724581 0.000886 1.0000010 0.0000005

110 28.948109813107 28.392450661966 0.001033 1.0000006 0.0000013

111 29.488203635869 7.977067087444 0.004396 0.9999976 -0.0000010

112 29.488209934679 -7.977090964447 0.006454 0.9999965 -0.0000014

113 29.750230653453 -23.257621705199 0.003974 1.0000017 -0.0000038

114 29.750239856538 23.257584807187 0.001043 1.0000011 0.0000001

115 29.919829495799 11.219135908266 0.002844 0.9999989 0.0000015

116 29.919833829768 -11.219153118425 0.007759 0.9999952 -0.0000010

117 30.112208092554 18.776685258374 0.002026 0.9999994 0.0000018

118 30.112214344639 -18.776717544408 0.005305 1.0000035 -0.0000033

119 30.144630737854 14.796570116777 0.001968 1.0000005 -0.0000015

120 30.144635856053 -14.796601696756 0.006703 1.0000006 -0.0000050

E Crossover Behavior of the Paired-Line Roots

This appendix provides a detailed account of how the Bethe-root structure evolves as the

number of paired-line root pairs increases for p > 0. To illustrate the emergence and devel-

opment of paired-line roots, this section presents their evolution from a single pair to three.

First, as the innermost central roots approach the real axis, a pair of new line roots is
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Figure E.1: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 1.11, q = −0.4, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots.

generated (Figs. E.1–E.2).

Subsequently, the two new line roots move outward along the real axis, while the outer

ones move inward (Fig. E.3).

When the two line roots meet, they coalesce into a paired-line root pair (Fig. E.4)

As evolution proceeds, the two points of the pair continue to separate (Fig. E.5).

However, as the system approaches the next crossover region, the separation between the

two points of the paired-line roots contract again (Fig. E.6).

After gradually approaching each other, the two points of the paired-line roots merge

and transform back into line roots (Fig. E.7).

In contrast to their initial formation, the two separated points of the line roots move

toward each other and eventually meet the adjacent line roots (Fig. E.8).

Upon contact, a new paired-line root pair is formed. Such paired-line root pairs are

generated successively outward from the center, indicating that the central paired-line root

pair that vanished during the first crossover has reappeared (Fig. E.9).
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Figure E.2: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 1.13, q = −0.4, ξ =

√
3, and η = 1.
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Figure E.3: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 1.21, q = −0.4, ξ =

√
3, and η = 1.
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Figure E.4: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 1.23, q = −0.4, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots.
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Figure E.5: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 1.73, q = −0.4, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots.
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Figure E.6: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 2.18, q = −0.4, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots.
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Figure E.7: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 2.2, q = −0.4, ξ =

√
3, and η = 1.
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Figure E.8: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 2.22, q = −0.4, ξ =

√
3, and η = 1.
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Figure E.9: Distribution of Bethe roots in the complex plane with parameters N = 40,
p = 2.24, q = −0.4, ξ =

√
3, and η = 1. The blue points correspond to the paired-line roots.
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