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Abstract

We explore the long-time behavior of Local Operator Entanglement entropy (LOE) in
finite-size interacting integrable systems. For certain operators in the Rule 54 automa-
ton, we prove that the LOE saturates to a value that is at most logarithmic in system size.
The logarithmic bound relies on a feature of Rule 54 that does not generalize to other
interacting integrable systems: namely, that there are only two types of quasiparticles,
and therefore only two possible values of the phase shift between quasiparticles. We
present a heuristic argument, supported by numerical evidence, that for generic inter-
acting integrable systems (such as the Heisenberg spin chain) the saturated value of the
LOE is volume-law in system size.
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1 Introduction44

1.1 Background45

Finding metrics that sharply distinguish between quantum chaotic and integrable dynamics has46

proved challenging. Classically, the Lyapunov spectrum (which quantifies the rate at which47

nearby trajectories diverge) serves as a diagnostic of chaos [1, 2]. However, the notion of48

trajectories is not well-defined in quantum systems, outside of certain semiclassical limits. In49

these semiclassical limits, the Lyapunov exponents can be computed from the growth rate of50

the out-of-time-order correlator (OTOC) [3–8]. OTOCs have been measured in experiments51

on intermediate-scale quantum devices [9–11].52

Heuristically, the OTOC describes how the footprint of an initially local operator spreads53

under time evolution in the Heisenberg picture, as it becomes increasingly nonlocal (and54

therefore unobservable in practice). Indeed, the average of the OTOC over all operators55

supported in a spatial region can be rigorously related to information-theoretic measures of56

scrambling [12, 13]. It is unclear, however, to what extent these information-theoretic mea-57
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sures distinguish between chaotic systems with a few conservation laws and integrable systems58

with extensively many conservation laws. More generally, one is interested in the dynamics of59

specific, initially simple operators, and for these there is no direct relation between the OTOC60

and information scrambling. Instead, explicit calculations of generic OTOCs in integrable sys-61

tems show features that are qualitatively (and in some cases quantitatively) very similar to62

the behavior expected in chaotic systems or random unitary circuits [14–17]. The essential63

challenge is that although the many-body eigenstates of integrable systems are labeled by64

quasiparticle occupation numbers, the action of local operators on the quasiparticle states is65

highly nontrivial [18].66

An obvious drawback of the OTOC is that it probes the “size” of an operator, rather than67

its complexity. One possible scenario for interacting integrable dynamics is that operators68

spread while remaining in some sense simple: unitary Clifford circuits furnish an extreme69

example of this scenario, where a single-site Pauli operator evolves to a single long string70

of Pauli operators. A metric that attempts to quantify the complexity of an operator is its71

operator-space entanglement entropy (which has recently been related to the non-Cliffordness72

of evolution [19]). To compute this, one writes the operator O : H → H as a normalized73

state |O〉 ∈H⊗ H̃ in a doubled Hilbert space, and computes its entanglement entropy as one74

would for a state (we define this explicitly below). We will be concerned with operators that75

are initially local (as opposed to, say, the time evolution operator itself as in [20, 21]), and76

accordingly call this metric the “local operator entanglement” (LOE).77

The growth of LOE was first considered for integrable systems that map onto free fermions78

[22–24] (see also [25]). In these systems, the LOE grows as Log [t] or slower; its saturated79

value for a subsystem of size ℓ scales as Log [ℓ]. This behavior contrasts with that seen in80

generic chaotic systems, where the membrane picture [26–28] predicts linear growth in time81

and a saturation value that scales linearly in ℓ, i.e., with a volume law. The intermediate case82

of interacting integrable systems was first discussed in Refs. [29–31] (see also [32]) for the83

integrable cellular automaton known as Rule 54. These works established that the half-system84

LOE at early times (i.e., times much shorter than the system size L) scales as SO(t) = Log [t] 1.85

Similar bounds were conjectured to hold for interacting integrable systems in general, based86

on suggestive numerical evidence. Why this scaling should hold beyond the exactly solvable87

case of Rule 54, however, has remained unclear.88

Our main objective in the present work is to explore the late-time asymptotics of the half-89

system LOE in finite-size systems. We use periodic boundary conditions to ensure that inte-90

grability is preserved at all times. Taking the late-time limit in a finite-size system allows us to91

make simple arguments based on the dephasing between many-body eigenstates with different92

quasiparticle content. These arguments lead us to the following key conclusions, supported93

by numerics: (i) in Rule 54, the LOE saturates to a value that is at most logarithmic in sys-94

tem size—a result we can prove for this simple model; (ii) in the Heisenberg spin chain, our95

representative example of a generic interacting integrable model, the (von Neumann) LOE96

instead seems to reach a volume law, a result that our numerics and a simple picture based on97

dephasing both suggest; and (iii) the Rényi entropies for α > 1 saturate at values logarithmic98

in system size in integrable models, as a trivial consequence of the many conservation laws.99

After discussing these results, we comment on how they might relate to previous conjectures100

concerning the finite-time growth of LOE.101

1.2 Defining local operator entanglement102

We start with an operator O : H→ H, which can be written in a reference basis (we choose103

the computational basis) as O =
∑

x y Ox y |x〉〈y|. To convert this into a state, one flips the bras104

1For single site Pauli-Z. Other bounds for other operators are derived or conjectured in these works.
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to kets, giving the state |O〉 ∝
∑

x y Ox y |x〉⊗| ỹ〉 ∈H⊗H̃ (up to normalization). We normalize105

|O〉 so that 〈O|O〉= 1. We then trace out all sites in the doubled Hilbert space that are outside106

the region A of interest—we denote the complement of A as Ā. This gives the super-density107

matrix ρ(A)O ≡ TrĀ(|O〉〈O|). The operator entanglement entropies are the Rényi entropies of108

this super-density matrix, specifically:109

Sα(|O〉; A)≡ (1−α)−1 Log
�

TrA

�

TrĀ(|O〉〈O|)α
	�

. (1)

The limit α→ 0 is the logarithm of the minimum bond dimension required to represent O110

as a matrix-product operator, and thus has a direct meaning in terms of computational com-111

plexity. We will primarily focus on the α→ 1 limit, the von Neumann operator entanglement,112

but also comment on other values of α. Unless otherwise stated, numerical results for LOE113

will be reported in units of log base-4, which we term quats.114

2 Rule 54 Cellular Automaton115

2.1 Definition116

The Rule 54 Cellular Automaton (CA) was introduced as a model of integrable dynamics117

in [33]. It is not Bethe-ansatz solvable in the customary sense, but can be regarded (like118

most integrable CAs) as a nondispersive limit of a family of Bethe-ansatz solvable integrable119

models [34]. Nonetheless, Rule 54 exhibits the essential features of interacting integrabil-120

ity in 1+ 1 dimensions: stable, interacting chiral quasiparticle excitations. In the automaton121

limit, these quasiparticles are nondispersive: they come in two flavors, left- and right-moving.122

Scattering events between opposite chirality quasiparticles impart a uniform time delay.123

Computational basis states, or bitstrings, are evolved with a three-site update,124

Un = |101〉 〈111|+ |100〉 〈110|+ |111〉 〈101|
+ |110〉 〈100|+ |001〉 〈011|+ |010〉 〈010|
+ |011〉 〈001|+ |000〉 〈000| , (2)

which acts on sites {n− 1, n, n+ 1}. We can then define a full Floquet pump (δt = 2) as125

U54 =

� N
∏

n Even

Un

�� N
∏

n Odd

Un

�

. (3)

A simple example of the dynamics of the Rule 54 model is shown in Fig. 1. We count the126

full update of Eqn. (3) as two time steps and each qubit as one spatial site. This choice im-127

plies unit velocity of quasiparticles while retaining the clarity of the computational basis states128

for entanglement calculations, but at the cost of non-scattering quasiparticles occupying two129

adjacent sites (position with respect to even/odd lattice sites decides quasiparticle chirality).130

Additionally, time delays are two time units rather than one.131

An essential feature of this model on a periodic chain is that a full Floquet cycle, U54,132

acts as a permutation on computational basis states. We will call this permutation σ. σ133

possesses a cycle decomposition: σ =
⊕

kσ
k. This decomposition furnishes the dynamics134

with orbits of computational basis states spanning Hk, where
⊕

k Hk = H. An orbit has135

length (recurrence time) Ck = dim (Hk) and consists of computational basis states
�

�φk, p
�

136

(with p running from 1 to Ck) satisfying U54

�

�φk,p
�

=
�

�

�φ
k, (p+1)Ck

¶

, where we introduce the137

shorthand (⋆)Ck
= 1+ (⋆− 1) mod Ck. The eigenstates can be constructed as138

�

�Ek,n
�

=
Ck
∑

p=1

e2πinp/Ck
�

�φk, p
�

. (4)
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Figure 1: (Left) Rule 54 dynamics on a generic quasiparticle density (nL ≈ nR ≈ L/4)
initial state. (Right) Rule 54 dynamics on a low quasiparticle density initial state.

The eigenvalues of U54 are thus (n)Ck
multiples of the Ckth root of unity. Typical cycle length139

scales as Ck ∼ L2 [15]. As a result the eigenstates of Rule 54 have sub-volume-law von Neu-140

mann entanglement entropy,141

SA
vN ∼

¨

|A| |A|< 2 Log [L]
O (2Log [|L|]) |A|≳ 2 Log [L]

(5)

in nats for a bipartition of size A. However, Rule 54 is expected to exhibit ballistic von Neumann142

(though not Rényi [35]) entanglement entropy growth after a global quench from a generic143

product state following exactly the quasiparticle picture proposed by Calabrese and Cardy [36].144

2.2 Rule 54 Conserved Quantities145

The Rule 54 chain has two types of conserved quantities: quasiparticle number and Asymptotic146

Spacings (AS). The AS refer to the distance between two quasiparticles of the same chirality in147

the absence of quasiparticles of the opposite chirality. This can be conceptualized on periodic148

boundary conditions by cutting the chain in an empty region. The AS can then be measured149

after the left and right movers separate out from each other. Given all AS of a computational150

basis state the recurrence time can always be calculated, though the converse is not true.151

Indeed, exponentially many (in L) distinct AS may possess the same (typical) recurrence time.152

Quasiparticle number sectors consist of the subspaces with a fixed and distinct number of153

right and left moving quasiparticles, denoted N⃗ = [NL , NR]. The number sectors on periodic154

boundary conditions can be counted:155

# (L) =

¨

1
8 L2 + 1

2 L + 1 L mod 4= 0
1
8 L2 + 1

2 L + 1
2 L mod 4= 2

. (6)

The above result is exact and accounts for correlations between the number of left and right156

movers. The average filling is NL/R ≈ L/4 and the maximum filling is NL = NR = L/2. Sectors157

with the same quasiparticle occupations have approximately commensurate recurrence times;158

if N (k)L/R = N (l)L/R, then Ck and Cl typically differ by at most an O (1) factor. We can perform a159
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heuristic calculation which leverages this fact to simplify the problem of long-time LOE in the160

Rule 54 chain before we derive more rigorous bounds for diagonal operators along the same161

lines in Section 2.3.162

Rule 54 maps diagonal operators to diagonal operators, so we can work in the I2→ |+X 〉163

and Z→ |−X 〉 basis, treating the diagonal elements as states. We can write the operator state164

for Zx (t) as165

|Zx (t)〉 =
−1
p

2L

∑

k,p

eiπφk, p
x

�

�

�φ
k, (p+t)Ck

¶

=
−1
p

2L

∑

k,p

eiπφ
k, (p−t)Ck
x

�

�φk, p
�

, (7)

where we emphasize the shorthand notation (n)Ck
= (n− 1) mod Ck + 1 and introduce φk,p

x166

as the xth entry of φk,p (recall these are the bitstrings in cycle k).167

Then, we can transform to the energy eigenbasis using Eqn. (4) to get168




Ek, n
�

�ρZx
(t)
�

�E l, m
�

(8)

=
∑

p,q

exp



2πi

 

mq
Cl
−

np
Ck
+
φ

k, (p−t)Ck
x −φ

l, (q−t)Cl
x

2

!



.

Define NL/R to be the quasiparticle occupation of
�

�E l,m
�

and ÑL/R to be the quasiparticle169

occupation of



Ek,n
�

�. Then for NL/R ̸= ÑL/R the sign of the summand in Eqn. (8), given170

by exp
h

iπ
�

φ
k, (p−t)Ck
x −φ

l, (q−t)Cl
x

�i

, is pseudo-random since Ck and Cl are incommensurate if171

NL/R and ÑL/R are incommensurate. When the operator is marginalized, we sum contributions172

from different global number sectors and the coherences resulting from off-diagonal elements173

in this basis are therefore suppressed as a sum of random phases. That is, we expect dephasing174

to occur in the number-sector basis.175

2.3 Diagonal Operator Bound176

Above, we argued that the super-density matrix ρZx
(t) should look approximately block-177

diagonal in the quasiparticle number eigenbasis at late times. We cannot rigorously show178

that dephasing happens. Instead, we upper-bound the LOE by showing that |Zx〉 can be writ-179

ten as a sum of at most O
�

L8
�

terms which factorize between A and Ā with contributions180

naturally organized by the number sectors in which coherent evolution occurs. We start in the181

diagonal operator state mapping (i.e., neglecting the dual-space for diagonal operators). Let182
�

πN⃗

	

(where N⃗ = [NL , NR]) be the orthogonal projectors onto the subspace of H with NL/R183

left/right movers; these operators are discussed further in Appendix B.2. We can then write184

|Zx (t)〉=
∑

N⃗

πN⃗ |Zx (t)〉 (9)

identically since
∑

N⃗ πN⃗ = I. There are at most O
�

L2
�

terms in this sum per Eqn. 6.185

We now turn to the bond dimension of the wavefunction projected into each quasiparticle186

number sector. Our objective will be to show that this is also O(Poly (L)) at all times. Our187

argument will rely on three main claims. First, the state corresponding to any local diagonal188

operator can be expressed as linear combination of O(1) terms in the quasiparticle basis, where189

each term “tags” O(1) quasiparticles near the operator insertion site. Second, in each quasi-190

particle number sector, any such initial states recur (up to a global translation) on a timescale191

6
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t ∼ L that we will call the self-scattering time. At the self-scattering time, each left (right)192

moving quasiparticle has scattered off every right (left) moving quasiparticle exactly once.193

The self-scattering time is sharp because the model is dispersionless. Third, we will write the194

time-evolved operator state projected into a quasiparticle number sector, at any time before195

the self-scattering time, as a sum of O(L2) terms, each of which can be expressed as a matrix196

product state (MPS) with bond dimension O(L4). This gives us the bond dimension bound of197

O
�

L6
�

for each of the terms of Eqn. 9; putting this together with the number of terms in Eqn. 9198

we will arrive at the final bound199

SvN ≤ S(0) ≲ 8Log2 [L] . (10)

This bound is expected to be very loose; it should be possible to reduce the prefactor, but we200

will not attempt this here as our main objective is just to show that the LOE will never exceed201

O(Log [L]).202

Expanding the operator.—As discussed above, we will think of a diagonal operator as a203

state |O〉 ∈ H. This state is a product of |+ X 〉 everywhere except at the operator insertion.204

For example,205

Zx = I+ 2π1
x−1π

1
xπ

1
x+1 − 2π1

xπ
1
x+1

−2π1
x−1π

1
x − 2π0

x−1π
1
xπ

0
x+1,

→ |+X + X + X 〉+ 2 |−Z − Z − Z〉
−2 |−Z − Z + X 〉 − 2 |+X − Z − Z〉
−2 |+Z − Z + Z〉 (11)

where π0/1 → |±Z〉 and |+X 〉 = |+Z〉+ |−Z〉. By expanding a region of O(1) sites around x206

in the computational basis, one can write any operator-state as a sum over O(1) terms, each a207

with particular pattern of left- and right-moving quasiparticles near point x . Since this super-208

position only involves O(1) terms, we can specialize to one of these terms without changing209

the asymptotic scaling of the bond dimension. In Appendix B we work out the details explicitly210

for the first nontrivial term above; however, the mechanism is generic to local, diagonal oper-211

ators. To summarize, the operator-state can be written as a sum of O(1) terms, each of which212

is an equal-weight superposition of computational basis states far from x but projects onto213

some number of adjacent left and right moving quasiparticles initially centered at x , which214

we refer to as “marked” quasiparticles. In what follows we will consider states that have this215

structure—i.e., a projector onto a particular configuration of “marked” quasiparticles on O(1)216

sites near the operator insertion, and | . . .+ X + X . . .〉 far from the insertion.217

Dynamics.—At short times, it is known [29–31, 37] that local operators can be evolved218

with a bond dimension growing as χ ∼ tν with ν = 2. However, these results only hold at219

early times relative to system size: they assume that each pair of quasiparticles has collided220

only once or not at all. This assumption breaks down in each sector at the “self-scattering221

time,” when quasiparticles that started out near each other collide for the second time. As we222

will see explicitly, the maximum bond dimension across any bipartition of the operator state223

projected into a sector is periodic in the self-scattering time due to the recurrence, so it suffices224

to consider operator evolution up to that time. However, the self-scattering time is different225

for each sector, so we have to evolve the operator state separately in each sector.226

We now discuss what this evolution looks like, in terms of a single term of Eqn. 11 that227

represents a set of marked quasiparticles (for simplicity, one left and one right mover, which228

capture the key features of the evolution). Crucially, quasiparticles of the same chirality never229

cross due to the asymptotic spacings being conserved. Thus, the number of time delays ex-230

perienced by the left/right marked quasiparticle can be counted as the number of right/left231

movers between the marked quasiparticles. A schematic of this principle is shown in Fig.232

7
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Figure 2: Schematic showing left (blue) and right (red) marked quasiparticles scat-
tering. Dashed lines represent the “free” marked quasiparticle worldlines; distances
between the solid and dashed lines indicate the accrued time delay. Between the
marked quasiparticles, there are two left movers and one right mover, corresponding
to a marked left mover with one delay and a marked right mover with two delays.

2. Consequently, at a given time t, the locations of the marked quasiparticles are fixed by the233

quasiparticle occupation between them up to an O (1) number of cases (depending on whether234

they are currently scattering).235

We call the region bounded by the left and right marked quasiparticles and containing the236

initial quasiparticle location RI and its complement RII. At time t, the marked quasiparticles237

can encounter O (t) quasiparticles each and therefore there are at most O
�

t2
�

fillings, n⃗, on238

RI which correspond with xL/R, the locations of the marked left and right mover. Our time-239

evolved operator state is thus the sum of at most O
�

t2
�

terms: projectors onto the marked240

quasiparticles at locations xL = (x − t + 2nR)L and xR = (x + t − 2nL)L with a projector onto241

n⃗ quasiparticles between them. Each term has bond dimension of at most O
�

t2
�

(see Ap-242

pendix B.2).243

Now, we consider projecting this time evolved operator state into a given number sector244

with filling N⃗ term by term, where each term has a fixed filling n⃗ on RI. The number projector245

will act trivially on RI (this region is already at fixed filling, n⃗) and fix the filling on RII to246

N⃗ − n⃗− [1, 1] (where the additional subtraction is for the marked quasiparticles). Thus, the247

action of the projector is simply to add a number projector onto region RII. The positional dis-248

tribution of the marked quasiparticles will broaden as the number of time delays experienced249

by them fluctuates. This is illustrated in Fig. 3.250

Since the total number of time delays in the system is fixed at N⃗ , as the marked quasi-251

particles traverse the system and as RII becomes smaller the number of possible positions will252

begin to diminish until the marked quasiparticles collide. We note that the marked quasipar-253

ticles will never scatter twice with the same quasiparticle until they have scattered once with254

every quasiparticle of the opposite chirality. Because the total number of time delays is fixed,255

the marked quasiparticles will then collide at fixed time and place. Therefore the operator256

8
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Figure 3: Marked quasiparticle pair refocusing in a fixed-filling sector with xrf (n⃗)
antipodal to x . (Top) Initial state of marked quasiparticles at t = 0. Red and blue
striped regions indicate quasiparticles which have yet to scatter with the marked
quasiparticles (region RII). (Middle) Marked quasiparticle distributions after broad-
ening. All R/L quasiparticles in region RI have scattered with the L/R marked quasi-
particle exactly once. All R/L quasiparticles in region RII have not yet scattered with
the marked quasiparticles. (Bottom) Quasiparticles arriving at refocusing point with
sharp distributions. RII is empty and RI contains N⃗ quasiparticles.

projected into a sector of filling N⃗ will refocus at position and time257

xrf (n⃗) =
�

L
2
+ NR − NL + x

�

L

trf (n⃗) =
L
2
+ NL + NR. (12)

The operator can then be evolved again from its new position within the number sector N⃗258

to arbitrarily late times. Since trf is O (L), we can substitute in O (L) for O (t) in the bond259

dimension bounds above.260

Bond dimension counting.—For each term we get a bond dimension of order O
�

L4
�

from261

the two number projectors on RI and RII and have O
�

L2
�

terms (choices of xL and xR). There-262

fore, the operator state projected into a global number sector can be evolved indefinitely with263

a bond dimension of O
�

L6
�

. Putting together these results with the cardinality of global num-264

ber sectors, O
�

L2
�

, we can can write our time evolved operator state as a sum across O
�

L8
�

265

factorized (between any A and Ā) terms. This leads to the bound266

SvN ≤ S(0) ≲ 8Log2 [L] (13)

for all times, where we have exploited the fact that the Hartley entropy (which is the logarithm267

of the bond dimension) upper bounds the von Neumann entropy. This bound is expected to268

be very loose in large part because number fluctuations are central limiting (rather than flatly269

distributed).270
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2.4 Numerical evidence271
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Figure 4: Late-time averaged LOE of single-site Z gate with half-space bipartition.
(Top) LOE entropy density in bits per qubit. (Bottom) Operator entropy as a function
of system size. Numerical results are compared to 2 Log2 [L/2].

In accordance with the theoretical predictions of Section 2.3, numerical evidence indicates272

that diagonal operators saturate to logarithmic scaling rules at long times per Fig. 4. The time273

average shown in this figure is drawn from a sampling of 1110+37n 2 Floquet pumps (δt = 2)274

with n ∈ N ∩ [0, 99]. The lateness of the initial time is unnecessary (though shorter time275

samples are in full agreement), but the fact that the timestep is prime is of significant import.276

The density of states for system size L in Rule 54 has spikes at multiples of 2π/L, so times277

which are sufficiently large multiples of L will experience strong recurrences.278

Though the results of Fig. 4 are shown in bits or bits per qubit, we note that the most satu-279

rated system size still has less than half its possible maximum entropy since it is diagonal. The280

deviation of the maximum entropy density from 1/2 in quats per qubit (or 1 in bits per qubit)281

is consistent with a Page correction [38]. We note the strong agreement with 2Log [L/2], as282

shown in Fig. 4. The operator Z1Z2 produces qualitatively identical results, but adding a trace283

to the initial operator starkly changes the saturation, as expected [32].284

Probing the saturation of off-diagonal operators is considerably more difficult numerically.285

Rényi entropies are not reliable indicators of the von Neumann entropy, due to substantial286

overlap with conserved quantities (see also [35]). We can gain additional insights by con-287

sidering smaller bipartitions, but we are limited to system sizes of L ≤ 16 for the half-space288

bipartition which registers deviations from volume law at the smallest system sizes. For L ÷ 3289

and L ÷ 4, we must account for strong parity effects.290

We select traceless, single-site initial operator X. Half/third-space bipartitions for the two-291

site operator XLX1 were also examined, showing very similar results (much like the case of292

diagonal operators). Long time averages are shown in Fig. 5. It is challenging to immediately293

interpret this data, but it is evident that there is a downturn in the half-space bipartite entropy294

density for system sizes between L = 10 and L = 14. Additionally, there is an evident downturn295

in the less sensitive third-space bipartition entropy density for system sizes greater than L = 18.296

2This expression scans as a perfect line of iambic hexameter broken in the middle– otherwise known as an
alexandrine.
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Figure 5: Late-time averaged half, third, and quarter space partitioned LOE of a
single-site, off-diagonal X gate. (Left) Entropy densities in quats per qubit for half,
third, and quarter space bipartitions. (Right) Entropies in quats. Appendix F.3 ex-
plains why larger system sizes are attainable for L ÷ 3 than L ÷ 4.

Fig. 5 suggests that off-diagonal operators in Rule 54 will also saturate to sub-volume297

laws, like diagonal operators. Indeed, off-diagonal operators refocus like diagonal operators298

(see Appendix B.3), though with a timescale O
�

L2
�

that makes analogous logarithmic bounds299

challenging to establish. Again, for a maximimum half-space entropy density at L = 10, the300

deviation from 1 is consistent with a Page correction.301

3 LOE for General Integrable Models302

Rule 54 is simpler than generic integrable models in a few different ways: (i) there are only two303

types of quasiparticles, because of the lack of dispersion, (ii) for the same reason, it is possible304

to write down diagonal operators that remain diagonal in the computational basis at all times,305

and (iii) the expansion of a local operator in the quasiparticle basis is relatively simple. General306

integrable models, like the Heisenberg model, have none of these features: instead, they have307

dispersive quasiparticles, so there are formally infinitely many different quasiparticle types,308

parameterized by a continuous “rapidity” label. (There might be additional discrete “string”309

indices but these will not matter for our analysis.) Moreover, when two quasiparticles collide,310

the scattering phase shift generally depends on both rapidities. Therefore, the “refocusing”311

phenomenon discussed in Rule 54 does not take place in general.312

In this section we will argue informally that these differences lead to a parametrically313

larger saturated value of operator entanglement in generic interacting integrable models. Our314

discussion will have three parts. First, we will introduce a toy model (which we call the K-315

flavor model) that generalizes Rule 54 to the case of many inequivalent flavors, and use this316

model to argue for volume-law scaling of the LOE in general interacting integrable systems.317

Second, we will provide numerical support for volume-law scaling of the late-time LOE in318

the Heisenberg model. Third, we will discuss why free fermions, despite having nontrivial319

dispersion, evade this argument for volume-law entanglement. (It is known [25, 39, 40] that320

local operators have either constant or logarithmic entanglement in these systems.)321
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3.1 K-Flavor model322

A generic interacting integrable model like the Heisenberg spin chain has two key features—323

(i) the existence of dispersive quasiparticles and (ii) the rapidity-dependence of the scatter-324

ing phase shifts—that distinguish it from Rule 54. These features also make such models325

intractable. In this section, instead, we study a toy model that captures feature (ii), by gen-326

eralizing Rule 54 to a model with K inequivalent flavors of quasiparticles. Eventually, we will327

take K ∼ N . Each of the K flavors is still nondispersive, and the K scattering phase shifts328

(that a left-mover of one flavor has with all right-movers) are taken to be incommensurate329

real numbers. Thus, as phrased, the K-flavor model does not have a lattice realization; it can330

be regarded as a nondispersive hard-rod gas in the continuum. However, one can still define331

and analyze diagonal operators (which map to states) exactly as in Rule 54.332

In the K-flavor model, a marked quasiparticle dephases over time between states with333

distinct vectors N⃗ = (N1 . . . NK),
∑K
α=1 Nα ≤ L. Therefore, in the late-time limit, the operator334

density matrix is diagonal in N⃗ , and its entropy is lower-bounded by the Shannon entropy of335

the probability distribution of the infinite temperature state over N⃗ sectors.336

Then, the (categorical) sector probability distribution is337

p ({Nα}) =
1
Z
Θ

�

L −
∑

α

Nα

� K
∏

α=1

�

L
Nα

�

Z =
L
∑

N=0

�

K L
N

�

. (14)

To understand the entropy of this distribution, we can leverage a saddle point at O (1)338

occupation per flavor. A potentially competing contribution from O (L) filling in O (1) flavors339

(due to the non-trivial multiplicities) can be ruled out. Around this saddle point, the distribu-340

tion can be approximated by the (equal-probability) multinomial distribution: let
∑

α Nα = N ,341

then342

p (N ; {Nα}) =
N !K−N
∏

α Nα!
. (15)

A general closed form expression for the entropy of this distribution is not known; however,343

in the case of N → ∞ and K → ∞, with ρ ≡ N/K held constant and O (1), the filling344

in each different flavor can be made independent to a good approximation and the entropy345

scales with L. An intuitive way to see this is that each flavor acts as an independent degree346

of freedom, implying that entropy scales as K multiplied by an order one constant related to347

ρ. This captures one of the two terms, and the other is proportional to the filling, N . The348

calculation is equivalent to the free energy of a lattice Bose-Einstein gas with occupation N349

and K sites, for which we provide an exact formula in Appendix C, in addition to other relevant350

calculations.351

3.2 Heisenberg model352

The dephasing argument we outlined for the K-flavor model works a fortiori for the Heisenberg353

model, which has the same structure of scattering phase shifts, as well as dispersing quasipar-354

ticles (which add a further dephasing mechanism). On these grounds, therefore, we would355

expect the Heisenberg model to exhibit a volume-law LOE at late times. Note that our analysis356

of the K-flavor model does not depend in any crucial way on the fact that quasiparticles can357

be created locally. Provided that the excitation creates or “tags” quasiparticles, the motion of358

these quasiparticles through an infinite-temperature state is sufficient to cause the dephasing359

that we need to argue for a volume law.360
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We now numerically examine the saturation behaviour of the Heisenberg model. For sys-361

tem sizes beyond approximately L = 14 it is challenging to both time evolve to sufficiently late362

times and extract entropy for sufficient time samples, since exact diagonalization is needed for363

both tasks. To attain larger system sizes in the long time limit we make use of a U(1) projec-364

tion and symmetry resolution technique, detailed in Appendix E; similar symmetry resolutions365

have recently appeared in the literature [39,40]. Results are shown for systems sizes of L = 4366

to L = 18 in Fig. 6, using initial operator Z1Z2 with a half-space bipartition. The operator is367

projected into the half-filling U(1) charge sector; this appears to have little impact upon the368

entropy density at late times for the system sizes which could be verified by full Hilbert space369

exact diagonalization. The numerical results from this symmetry projection scheme show a
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Figure 6: Time averaged LOE of U(1) projected Z1Z2 at late time with half-space
bipartition. (Top) Operator entropy density (quats per qubit). (Bottom) Operator
entropy (in quats). Data was sampled from t = 500 to t = 600 in intervals of 5 time
units.

370

sharply-defined volume-law, with non-decreasing entropy density in system size. The distinc-371

tion between even and odd system sizes is significant as the dimension of the U(1) charge372

sector which dominates the entropy has a pronounced even-odd effect (that is, the even-odd373

effect is not merely an artifact of the symmetry resolution).374

To verify the validity of numerics in the U(1) symmetry resolution scheme, the differences375

with the full Hilbert space results for system sizes up to and including L = 13 is shown in Fig.376

17 of Appendix E.3. Differences are significant at early times for small L, but diminish in L377

(though the time to which they remain increases in L– averages are taken at sufficiently late378

times that this is not a concern for data shown in Fig. 6). This model exhibits considerably379

smaller, and exponentially diminishing in L, fluctuations in operator entropy at late times.380

3.3 What about free fermions?381

Models such as the XX and transverse-field Ising spin chains provide an interesting intermedi-382

ate case: they have dispersive quasiparticles (and therefore exponentially many “sectors”) but383

are simple enough that direct calculations of the LOE are possible. These calculations (which384

use very different methods than the semiclassical reasoning here) show that there are two385

types of operators: parity-even operators, which are bilinear in the fermionic quasiparticles,386

and have O(1) LOE; and parity-odd operators, which involve a Jordan-Wigner string in the387
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fermionic representation, and have O(Log [t]) growth of LOE. The basic distinction between388

these free models and interacting ones is that the dephasing arguments on which we are relying389

do not apply: the propagator for a fermionic quasiparticle is state-independent, so coherences390

of the operator between states with distinct quasiparticle content cannot be neglected.391

4 Discussion392

In this work we investigated the saturation of LOE in the Rule 54 and quantum Heisenberg393

chains. For Rule 54 we derived late time bounds for the LOE of diagonal operators and per-394

formed a robust numerical analysis for off-diagonal operators which indicated that LOE will395

saturate logarithmically. For the quantum Heisenberg chain, we conjectured volume-law sat-396

uration, and supported this conjecture with numerical evidence.397

4.1 Rényi entropies398

So far, we have focused on the Von Neumann entropy. It is straightforward to see that operator399

Rényi entropies with α > 1 are never volume-law in the models we are considering; indeed,400

they are generically not volume-law for operators in any model with conservation laws. The401

argument for this is simple: if one expands the operator at a generic very late time in an402

operator basis that includes the conserved charge, its overlap onto the conserved charge will403

generically be polynomially small in 1/L. Thus the largest Schmidt coefficient of the operator-404

state will scale polynomially in 1/L, immediately implying that the min-entropy (and therefore405

all Rényi entropies with α > 1) are at most logarithmic in L.406

4.2 Time dynamics407

Numerical results on saturation timescales and intermediate times are provided in Appendix D.408

For Rule 54, our numerical results suggest that the entropy saturates on the self-scattering409

timescale: namely, t ∼ L for diagonal operators and t ∼ L2 for off-diagonal operators. For the410

Heisenberg model, our numerical results on the saturation timescale are inconclusive.411

The dephasing picture, however, suggests a natural conjecture for the temporal growth of412

entanglement. After a time t, a marked quasiparticle has spread out through collisions over413

a distance t1/2. However, its quantum mechanical broadening over this timescale is t1/3, so414

its position does not distinguish between collision histories that gave the same phase shift415

to within this resolution. Thus the quasiparticle position only carries ∼ (1/6)Log [t] bits of416

information about its collision history, consistent with the observed logarithmic growth of417

entanglement. The dynamics of the crossover between the early and late-time regimes of418

entanglement growth is an interesting topic for future work.419

4.3 Other directions420

There are a few avenues by which our conjecture for volume laws in generic interacting inte-421

grable models could be made more rigorous or contradicted. A particularly intriguing avenue422

is via the so-called no-resonance theorems [41–46], which may provide a rigorous motiva-423

tion for dephasing, which would be sufficient to demonstrate volume law entanglement. The424

differences between the interacting single-body dispersive and non-dispersive cases are well425

motivated in this picture since in interacting, single-body dispersive systems if time delays de-426

pend non-trivially on the rapidity of scattering quasiparticles, the spectrum is far likelier to427

be incommensurate, since the time delay function must be fine-tuned. However, this point428
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raises the question of whether single-body dispersion and uniform interactions are sufficient429

to achieve volume law LOE, which we do not resolve.430

While we are not aware of any numerical techniques that can handle larger system sizes at431

late times than those given for the Rule 54 chain in this study, a large scale numerical study of432

the model proposed in [34] (a dispersive generalization of the Rule 54 chain) could potentially433

be illuminating. The central difficulty of such a study is that this model has a six-site update434

rule and larger system sizes would be needed to study the scaling behaviour of LOE with435

system size. If the saturation of this model were understood, it might be sufficient to resolve436

the above ambiguity (whether uniform time delays in addition to single body dispersion are437

sufficient). Additional studies of LOE on finite chains with integrability preserving boundary438

conditions might also prove insightful.439
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A Operator Support and Operator States455

A.1 Why OTOCs Measure Operator Support456

A standard tool to probe operator support (region on which the operator acts not as the iden-457

tity) is an Out of Time-Order Correlator/Commutator (OTOC). The OTOC is defined as458

C (x) = 1
8

3
∑

k=1

�

�

�

O,σk
x

��

�

2
. (A.1)

where we assume this operator to be Hilbert Schmidt normalized (|O|2 = Tr
�

O†O
�

= 1).459

Let us denote the subset of normalized Pauli strings that act as a non-identity on site x as460

Ŝx . We can separate the Pauli string decomposition into two parts for a given site x461

O =
∑

Ŝ∈Ŝx

aŜ Ŝ + Everything Else. (A.2)
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The OTOC then measures the fraction of O that acts non-trivially as462

C (x , t) =

�

�

�

�

�

�

∑

Ŝ∈Ŝx

aŜ Ŝ

�

�

�

�

�

�

2

=
∑

Ŝ∈Ŝx

�

�aŜ

�

�

2
. (A.3)

This quantity can be extracted by taking the commutator with Pauli matrices since the local463

Pauli only anticommutes with non-identity entries in the string, Ŝ.464

A.2 Operator Entropy465

Equivalent to the definition in the main text, we can also define operator entanglement in the466

pure operator formalism467

Ô =
∑

k

p

Fk ÔA
k ⊗ ÔB

k =
∑

k

p

Fk
OA

k ⊗OB
k

�

�OA
k

�

�

�

�OB
k

�

�

(A.4)

where Ô is Hilbert-Schmidt normalized. By exact analogy with the state case, we then define468

the operator entropy on region A in quats as469

SO;A
vN = −

∑

k

FkLog4 [Fk] . (A.5)

A slightly counterintutive feature of operator entropy is that the product of two operators470

do not have additive entropy. Consider two operators Ô and Q̂, for the vast majority of choices471
�

�ÔQ̂
�

�

2 ̸= 1. Then, we find that472

OQ
|OQ|

=
∑

j,k

√

√

√

√

FkDj

�

�

�ÔA
k Q̂A

j

�

�

�

2 �
�

�ÔB
k Q̂B

j

�

�

�

2

|OQ|2

×
ÔA

k Q̂A
j

�

�

�ÔA
k Q̂A

j

�

�

�

⊗
ÔB

k Q̂B
j

�

�

�ÔB
k Q̂B

j

�

�

�

(A.6)

where the Schmidt bases of operators O and Q are labeled by k and j respectively. The Schmidt473

basis of OQ has cardinality upper bounded by the product of the cardinalities of the Schmidt474

bases of O and Q, and therefore the Hartley entropy of the product OQ is upper bounded475

by the sum of the Hartley entropy of O and Q. However, other entropy metrics do not have476

straightforward inequalities. The essential difficulty comes from the factor of |OQ| which is477

needed to normalize the product.478

B Ancillaries for Analytic Results479

B.1 Time Evolution480

He we present a proof of the bounds described in Section 2.3, examining in detail the structure481

of diagonal operator support in Rule 54. The derivation is mostly a minor deviation from pre-482

vious work, per [30,31]. We will work in the operator formalism for notational convenience.483

We start with π1
x−1π

1
xπ

1
x+1 as our initial operator at t = 0. We assume the even/odd pump484

order of Eqn. 3 and x to be odd, though the even case is simply related by symmetry (see485

16



SciPost Physics Submission

Eqn. F.5). We define a set of projectors, which we call “marked projector” operators. These486

are487

IR/L
x = π1

xπ
1
x±1 S x = π

0
x−1π

1
xπ

0
x+1 (B.1)

so as to project onto an isolated and scattering quasiparticle respectively. It is convenient to488

adopt the notation that an R/L quasiparticle “lives” on its left/rightmost 1. The time delay489

consists of two timesteps which are disambiguated by the lattice parity (even/oddness) of490

the site upon which the scattering quasiparticles sit with respect to the even/oddness of the491

timestep; at a given time S x and S x+1 imply the quasiparticle pair are at different stages of492

a scattering event, per Fig. 7. A marked quasiparticle’s location is fixed up to three cases by493

its scattering history — for π1
x−1π

1
xπ

1
x+1 the number of quasiparticles of the opposite chirality494

between them (on RI per the main text).

Figure 7: Three cases for a right mover at xR (marked in red). (Left) free, IR
x (Middle)

first delay, S x (Right) second delay, S x−1. The first and second delayed quasiparticles
will always have the same (distinct) relative spatial shifts compared to their free
counterpart. After the second delay, the number projector on RI will pick up the left
mover and take xR→ xR − 2.

495

For isolated quasiparticles, we can define the time delayed shift and position as496

δxL/R

�

t, nR/L

�

= t − 2nR/L

xL/R

�

t, nR/L

�

=
�

x ∓δxL/R

�

t, nR/L

��

L . (B.2)

Per the main text, we consider projecting into an overall number sector with N⃗ quasiparticles.497

Above we defined the quasiparticle occupation projector between (x , y), π(x ,y)
n⃗ , as the operator498

counting quasiparticles between a quasiparticle at x and a quasiparticle at y not including the499

endpoints. This operator is defined explicitly in Eqn. B.4. It is not defined in the absence of500

quasiparticles which “live” at its endpoints x and y , or more structure fixing the boundary bits.501

We note that (y, x) denotes the open complement of (x , y).502

The operator can be evolved by projecting onto all possible locations of the marked quasi-503

particles originating from the pattern 1x−11x1x+1 with all possible fillings consistent with that504

location between them (on RI) and all possible fillings consistent with the total filling con-505

straint from the global number projector beyond them (on RII). There are three cases at any506

given filling for each marked quasiparticle (shown in Fig. 7), which leads to nine terms in the507
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sum. The result is508

πN⃗ U† (t)π1
x−1π

1
xπ

1
x+1U (t)πN⃗ = πN⃗ U† (t)π1

x−1π
1
xπ

1
x+1U (t)

=
∑

n⃗

�

I L
xL(t,n⃗)

π
(xL(t,n⃗),xR(t,n⃗))
n⃗ IR

xR(t,n⃗)
π
(xR(t,n⃗)+1,xL(t,n⃗)−1)
N⃗−n⃗−[1,1]

+I L
xL(t,n⃗)

π
(xL(t,n⃗),xR(t,n⃗))
n⃗ SR

xR(t,n⃗)
π
(xR(t,n⃗),xL(t,n⃗)−1)
N⃗−n⃗−[2,1]

+I L
xL(t,n⃗)

π
(xL(t,n⃗),xR(t,n⃗)−1)
n⃗ SR

xR(t,n⃗)−1π
(xR(t,n⃗)−1,xL(t,n⃗)−1)
N⃗−n⃗−[2,1]

+S L
xL(t,n⃗)

π
(xL(t,n⃗),xR(t,n⃗))
n⃗ IR

xR(t,n⃗)
π
(xR(t,n⃗)+1,xL(t,n⃗))
N⃗−n⃗−[1,2]

+S L
xL(t,n⃗)

π
(xL(t,n⃗),xR(t,n⃗))
n⃗ SR

xR(t,n⃗)
π
(xR(t,n⃗),xL(t,n⃗))
N⃗−n⃗−[2,2]

+S L
xL(t,n⃗)

π
(xL(t,n⃗),xR(t,n⃗)−1)
n⃗ SR

xR(t,n⃗)−1π
(xR(t,n⃗)−1,xL(t,n⃗))
N⃗−n⃗−[2,2]

+S L
xL(t,n⃗)−1π

(xL(t,n⃗)−1,xR(t,n⃗))
n⃗ IR

xR(t,n⃗)
π
(xR(t,n⃗)+1,xL(t,n⃗)−1)
N⃗−n⃗−[1,2]

+S L
xL(t,n⃗)−1π

(xL(t,n⃗)−1,xR(t,n⃗))
n⃗ SR

xR(t,n⃗)
π
(xR(t,n⃗),xL(t,n⃗)−1)
N⃗−n⃗−[2,2]

+S L
xL(t,n⃗)−1π

(xL(t,n⃗)−1,xR(t,n⃗)−1)
n⃗ SR

xR(t,n⃗)−1π
(xR(t,n⃗)−1,xL(t,n⃗)−1)
N⃗−n⃗−[2,2]

�

(B.3)

where xL/R (n⃗)≡ xL/R

�

t, nR/L

�

=
�

x ∓δxL/R

�

t, nR/L

��

L per Eqn B.2. The entropic cost of this509

superposition to account for the cases is an O (1) constant [47–49]. We define the number510

projectors carefully in the next section. Since the number projectors have bond dimension511

of at most O
�

L2
�

each; there are O
�

L2
�

terms for each number sector; and there are O
�

L2
�

512

sectors, the bond dimension of the evolved operator is at most O
�

L8
�

at leading order per the513

main text. This bond dimension of the operator as an MPO is exactly equivalent to the bond514

dimension of the operator as an MPS in the state mapping by definition.515

For other diagonal operators we expect the casework to be more complicated, but the516

procedure fundamentally the same (as we argued in the main text). The initial operator can517

be broken into the quasiparticle basis locally. Then, each term can be understood as two518

local formations of left and right movers with fixed asymptotic spacings. Each term can then519

be time evolved by counting the number of time delays experienced by the whole formation520

(quasiparticles between the formations) and splitting into cases (exponentially many in the521

initial size of the operator) which account for the current scattering status of the quasiparticles522

in the formation. Since the number of cases is only exponential in the support of the initial523

operator in the quasiparticle basis, the casework can only introduce an O (1) correction to LOE524

for initially local operators.525

B.2 Number Projectors, Marginals of Number Projectors, and Bulk Support526

To construct the number projectors of Rule 54, we begin by reviewing (and slightly modify-527

ing) the number counting scheme which is given, for example, in the supplementary material528

of [50]. Particularly, we want to define number operators on a region between xL and xR,529

A= (xL , xR); it is helpful to define the regional even and odd sublattices as Re/o = A∩Leven/odd.530

Then the number operators on A can be expressed as531

nA
R/L (t) =

∑

x∈(xL ,xR)

π0
x−1π

1
xπ

0
x+1 +

¨
∑

x∈Ro
πxπx±1 t even

∑

x∈Re
πxπx±1 t odd

(B.4)
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where the even and odd time distinction assumes the pump ordering of Eqn. (3). The projec-532

tors will “hang over the edge” onto sites xL/R. We define the number projectors as533

πA
n⃗ =

∑

{φk|n⃗(φk ,t)=n⃗}

�

�φk
� 


φk
�

� (B.5)

where φk are bitstrings on [xL , xR]. Formally, when supported on regions with boundaries,534

the number projectors are ill-defined at their boundaries; generally, we need to fix the last535

boundary bits at xL/R, to accurately count quasiparticles on a region. This pathology is cured536

by the marked quasiparticle operators in the previous section (which project out the “wrong”537

boundary indices). We now concern ourselves with how to Schmidt decompose these number538

projectors.539

A priori, it appears challenging to define a low bond-dimension MPO to project onto a given540

occupation. To do this it is helpful to consider the number projector with fixed boundary bits541

πA
n⃗π

i
xL
π j

xR
= πA

n⃗ (i, j) (B.6)

which is a pure operator state on A. Bipartitioning AB into A and B, we write the Schmidt542

decomposition as543

πAB
n⃗ =

∑

i, j, k, l ∈{0,1}
{n⃗A n⃗B | n⃗A+n⃗B=n⃗+V⃗ (i, j,k,l)}

πA
n⃗A
(i, j)πB

n⃗B
(k, l) (B.7)

where V⃗ counts the isolated quasiparticles living on the boundary sites which are double544

counted (it is only nonzero when either or both i = l = 1 and j = k = 1). Here, i and j545

are the sites in B most proximate to A and k and l are the sites in A most proximate to B.546

The above equation demonstrates that number projectors have Hartley entropy of at most547

Log2 [4Min (N (A) , N (B))] in bits since each term is a product across the given bipartition.548

Once again, this statement also applies to the state mappings of these operators by definition.549

Schematically, the marginalization of number projectors with normalization follows straight-550

forwardly (we note that for orthogonal projectors the Hilbert-Schmidt norm and trace are551

equivalent, so for bitstring-diagonal projectors the normalization is done by simple state count-552

ing)553

TrB

�

πAB
n⃗

�

2−|AB| =
∑

n⃗A

# (n⃗A|n⃗AB)# (n⃗B|n⃗AB)
# (n⃗AB)

πA
n⃗A

2|A|
. (B.8)

where in the last line n⃗B ≡ n⃗AB−n⃗A. From this schematic formula, we can see the von Neumann554

entropy is that of the subsystem filling distribution on A or B conditioned on global filling on555

AB of n⃗ up to O (1) corrections from the boundary indices.556

B.3 Off-Diagonal Operators557

For off-diagonal operators in Rule 54, the dephasing argument has some distinctions from the558

diagonal case. We start with the operator state559

|Xn〉=
∑

k,p

Xn

�

�φk,p ⊗ φ̃k,p
�

. (B.9)

The action of Xn in the orbit-sector basis is difficult to understand. While the quasiparticle560

number is not severely violated (Xn can change nL or nR by at most one each), Xn has bra561

and ket bitstrings which lie in many different orbital sectors. Nonetheless, the number sector562

argument can still be applied to understand refocusing, with the sum of Eqn. 9 modified to563

|O〉=
∑

N⃗ ,M⃗

πN⃗ ⊗ π̃M⃗ |O〉 (B.10)
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to account for both the bra and ket occupations.564

The refocusing argument still applies because it is a property of any bitstring under Rule565

54 dynamics: given any bitstring starting with total occupation N⃗ and marked quasiparticle566

pairs (in both the original and dual spaces) at position x , the (dual) marked quasiparticles567

will show back up again at position xrf

�

N⃗
�

( x̃rf

�

M⃗
�

) and time trf

�

N⃗
�

( t̃rf

�

M⃗
�

). Then, the bra568

and ket refocusing will occur at time trf = lcm
�

trf

�

N⃗
�

, trf

�

M⃗
��

, which will scale as O
�

L2
�

, in569

accordance with the dynamical exponent z = 2. Logarithmic saturation cannot be established570

rigorously by the same argument as diagonal operators since the operator needs to be evolved571

past the self-scattering time.572

C Details of K-flavor Model573

As a first step, we would like to show that the K-flavor model has an entropy dominated by the574

filling N = L. First, we calculate free energy (here defined simply as the log of the partition575

function) at infinite temperature and fixed filling f (N) ≡ Log [Z|N ] in the limit of K →∞576

and L→∞ with K/L held constant. In this limit one can verify577

f (N) = (N − K L)Log [1− N/K L]

+N Log [K L/N]

≈ N Log [K L/N] + N − N2/K L (C.1)

From here, one can calculate the free energy difference between N > n, as578

f (N)− f (n) = (N − n)Log [K L/N] + N − n

+

�

n2 − N2
�

K L
− n Log [N/n] . (C.2)

When N is greater than n this difference diverges sufficiently quickly in the relevant limit.579

Thus we may restrict our filling to N = L without loss of generality.580

For the K-flavor model there are two broad possibilities for the saddle point contribution581

to the partition function, as detailed in the main text: (i) O (1) filling in each flavor (ii) O (L)582

filling in O (1) flavors. Though, intuitionally, it is expected that the filling be as evenly dis-583

tributed as possible to maximize entropy the non-trivial multiplicity function means that a584

more careful approach is justified. We estimate the contributions to the partition function at585

infinite temperature at fixed filling N = L,586

Z(i) ∼
��

L
L/K

��K

(C.3)

Z(ii) ∼ Poly (K)Poly (L)
��

L
O (L)

��η

whereη is an O (1), real number. Then, the corresponding free energies scale as f(i) ∼ L Log [K]587

and f(ii) ∼ L to leading order, so we see that (i) dominates (ii) parametrically as L and K are588

taken sufficiently large with fixed ratio. Additionally, we see that (i) reproduces the leading589

free energy of the overall partition function. Thus the dominant contribution comes from590

states with low filling in many different flavors, which in turn allows us to treat each flavor’s591

count as Poissonian.592

Now we would like to calculate the entropy of the categorical distribution in the saddle593

point approximation: this calculation is equivalent to the free energy of free bosons with filling594

N = L and system size K . The number of microstates is simply595

# Microstates =
�

N + K − 1
K − 1

�

(C.4)
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and thus the free energy is596

f ≈ N
�

Log
�

1+ρ−1
�

+ρ−1 Log [1+ρ]
�

∼ L (C.5)

where we remind the reader of the definition N/K = ρ. Thus, we find that the entropy scales597

extensively.598

D Intermediate Times and Saturation Timescales599

D.1 Rule 54: Intermediate Times600

For diagonal operators, the growth is essentially logarithmic as shown in Fig. 8. For early
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Figure 8: LOE of single-site Z gate at early time with half-space bipartition in system
sizes of L = 6 (cold) to L = 30 (hot). (Top) LOE entropy density in bits per qubit.
(Bottom) Operator entropy as a function of time.

601

times, we see a uniform in system size logarithmic growth, followed by a period of accelerated602

growth from L/2 to L– see Fig. 11). We note that up to this timescale, there is no entropy603

growth at the second bipartition interface and the accelerated region is largely accounted604

for by the second bipartition beginning to contribute before the first is exhausted. It is this605

effect that is responsible for smaller system sizes initially overtaking larger system sizes– since606

the timescale for the second biparition to enter is O (L), the smaller system sizes will see its607

contribution earlier. After the first interface is saturated, the LOE returns to simple logarithmic608

growth with fluctuations up to its saturation time.609

For the off-diagonal operators, we can compare directly to the logarithmic bounds pro-610

posed in [30, 31] and find that the bounds are weakly broken by fluctuations after operator611

self-scattering. However, the qualitative features are robust to the addition of periodic bound-612

ary conditions on finite size systems. We note that in a periodic system we must have two613

bipartition interfaces, so the bounds must trivially be doubled as compared to those discussed614

in [30, 31]. A, perhaps surprising, feature of the data shown in Fig. 9 is that the hydrody-615

namic fluctuations drive the entropy growth to initially overshoot its saturation value. An616

interpretation for this overshoot in terms of the refocusing picture is not apparent.617
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Figure 9: LOE of single-site X gate at early time with half-space bipartition in system
sizes of L = 6 (cold) to L = 16 (hot). (Top) LOE entropy density in quats per qubit.
(Bottom) Operator entropy as a function of time. Logarithmic upper bound as deter-
mined in [30] (doubled to account for two bipartitions), Log4 [t].

D.2 Heisenberg Circuit: Intermediate Times618

To determine the behaviour of LOE in the Heisenberg model with PBC at short times and619

compare to the logarithmic bounds given in [30,31], we will make use of the integrable trot-620

terization [51] of the Heisenberg model, which we will refer to as the Floquet Heisenberg621

model. It is a 2-site, SU(2)-invariant brickwork circuit given by the gate622

Un,m =
1+ iλPn,m

1+ iλ
. (D.1)

For the spin 1/2 case, Pn,m =
1
2 (σn ·σm + 1), which has eigenvalue of 1 on the symmetric623

triplet sector and −1 on the antisymmetric singlet sector. This circuit retains an analogue of a624

Yang-Baxter equation and is meaningfully Bethe-Ansatz integrable. A significant consequence625

of its brickwork structure is a strict lightcone. The lack of a local energy conservation and the626

strict lightcone, however, are the only significant distinctions as compared to the continuous-627

time Heisenberg model. The strict lightcone is helpful to understand the early time dynamics628

of LOE growth, since the operator growth is upper bounded at all coupling strengths (in par-629

ticular, we use λ= 1).630

Instead of the log bound of 2
3 Log4 [t] (in quats) conjectured in [31] for certain operators631

in the Heisenberg model, we compare to 1
2Log4 [t] and Log4 [t] per bipartition interface as632

general references (not specific to any bound). The results of Fig. 10 suggest that logarithmic633

bounds must be broken on periodic boundary conditions. The presence of a logarithmic bound634

and a volumetric saturation would indicate an exponential saturation timescale (divergent z)635

which, while not fundamentally incompatible, appear challenging to reconcile (e.g., Fig. 14636

and Fig. 15). We note, however, that these numerical results have little relevance to the case637

of LOE growth on infinite systems and they should not be directly compared to those of [30].638

D.3 Dynamical Scaling Concepts639

Generally, the timescale analysis can be broken into four cases delineated by the saturation640

(volume or log law) and growth (logarithmic or algebraic). To organize these scenarios, we641
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Figure 10: Operator entropy of Z1 in Floquet Heisenberg for system sizes 6 (cold) to
14 (hot). (Left) LOE density. (Right) LOE compared to Log4 [t] and 2 Log4 [ t ] (all
in units of quats).

can refer to the dynamical scaling relation,642

S (t)∼ Lα u (t/Lz) (D.2)

where we define643

u (x) =

¨

xβ x ≪ 1

1 x ≫ 1
(D.3)

and the cases interpolating between x ≫ 1 and x ≪ 1 are left unspecified. We also define644

x0 = Log [x] and x∞ = exp (x). Generally, it is true that zβ = α. However, when α goes645

to zero (i.e., saturation scales as a log), either z or β must go to zero with the other entirely646

unspecified. Of course, α > 1 is strictly forbidden by the upper bound of the von Neumann647

entropy, SA
vN ≤ Log

�

dim
�

HA
��

.648

Scaling Collapse.—To extract the exponents from numerical data, one performs a data col-649

lapse. A generally applicable method for performing such a collapse on a dynamical quantity650

f (L, t) is as follows:651

1. Calculate the late-time averaged value of f (L, t), as a function of system size:

f∞ (L) = lim
T,δt→∞

1
δt

∫ T+δt

T
f (L, t) d t.

Plotting Log [ f∞ (L)] against Log [L], if Eqn. (D.2) holds, the slope will converge to α652

for sufficiently large Log [L].653

2. With α determined, we can extract u (t/Lz)∼ f (L, t)/ f∞ (L). Plotting f (L, t)/ f∞ (L)654

as a function of t/Lz , it will collapse onto a single, well-defined function for sufficiently655

large L with the correct choice of z.656

3. From here the exponent β can be deduced from α and z, but it can also be extracted657

directly from a log-log plot of u as a function of x = t/Lz .658
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Since data collapses are not always clean for numerically accessible system sizes, it is is some-659

times helpful to make use of the simpler threshold method.660

Threshold Method.— One very elementary method to determine z, is to examine the scaling661

of a dynamical quantity as it crosses a threshold. If we have early-time sample set {τn} = T ,662

then we say that the threshold times are defined663

ΩO (L;ζ)≡min {τn ∈ T : f (L, t)/ f∞ (L)> ζ} . (D.4)

Assuming that Ω (L) demonstrates algebraic behaviour in L for fixed ζ, we can assume scaling664

form665

ΩO (L;ζ) = Lz f (ζ) (D.5)

then extract z by plotting Ω on a log-log scale against L with various ζ fixed.666

D.4 Rule 54: Saturation Timescales667

We now turn to a scaling analysis of the saturation time. In the case of diagonal operators668

in Rule 54 we will only use the dynamical scaling method as the operator self-scattering time669

does not parametrically separate from the saturation time. For both diagonal and off-diagonal670

operators we find that the saturation times scale like the self-scattering times in L: L and L2
671

respectively.672
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Figure 11: Data Collapse for diagonal operator Z1 with z = 1 scaled time, or t/L.
The y-axis is the saturation fraction, or SO;A

vN (t)/S
O;A
vN (∞). The green highlighted

region indicates the operator self-scattering regime, after which strong hydrodynamic
fluctuations are evident. The crossing of the x-axis occurring at different values is a
sublattice parity effect, whereby the operator has zero entanglement after the first
timestep (thus we see the first data point is zero entropy density at 1/L).

Using z = 1 scaled time (namely, t/L) data collapse is shown in Fig. 11, which is derived673

from the same data as Fig. 8. The exponents are consistent with a logarithmic growth up674

to saturation scale 2Log2 [L], implying the prefactor of the logarithmic growth is also upper675

bounded by 2 (in bits, not quats), which is consistent with [31]when both bipartition interfaces676

are accounted for. In terms of the dynamical exponents α, β , and z, this is α = β = 0 with677

z = 1. Since the operator self-scattering time and the saturation time both scale with L, the678
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Figure 12: Scaled data for the off-diagonal operator X1. The x-axis is scaled time (i.e.,
t/Lz) and the y-axis is saturation fraction, or SO;A

vN (t)/S
O;A
vN (∞). (Left) z = 1 scaled

time, showing the operator self-scattering regime highlighted in green. (Right) z = 2
scaled time showing the long-time data collapse past the self scattering regime.
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Figure 13: Timescales of half-space bipartition LOE with initial operator X1. Thresh-
old method with ζ (fraction of saturated value for threshold) going from 0.7 (cold)
to 0.95 (hot) in 0.05 increments. (Top) Direct threshold times on linear scale. (Bot-
tom) Log-log plot of threshold times. Dashed diagonals are “diffusion lines,” which
have slope 2 (indicating the dynamical exponent for diffusion).

operator self-scattering does not interfere with the data collapse (in contrast to the off-diagonal679

case).680

The direct finite size scaling method for off-diagonal operators is not as straightforward681

as for diagonal operators since the operator self-scattering time (which is O (L)) has not fully682

separated from the saturation time (which is O
�

L2
�

) for the system sizes considered. The effect683

of the self-scattering is, however, limited and we can still extract a relatively clear dynamical684
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exponent of z = 2 using the data collapse presented in the right panel of Fig. 12 and the685

elementary threshold method of Fig. 13.686

D.5 Heisenberg Chain: Saturation Timescales687
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Figure 14: Timescales of operator Z1. Threshold method with ζ (fraction of saturated
value for threshold) going from 0.6 (cold) to 0.9 (hot) in 0.1 increments. (Top) Direct
threshold times on linear scale. (Bottom) Log-log plot of threshold times. Dashed
diagonals are diffusion lines (z = 2).
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Figure 15: Timescales of operator Z1Z2. Threshold method with ζ (fraction of satu-
rated value for threshold) going from 0.6 (cold) to 0.9 (hot) in 0.1 increments. (Top)
Direct threshold times on linear scale. (Bottom) Log-log plot of threshold times.
Dashed diagonals are diffusion lines (z = 2).

The saturation timescale in the Heisenberg model presents a substantial challenge for mul-688

tiple reasons. First, one cannot make use of the symmetry resolution scheme used for the satu-689
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ration values. Thus, we are limited to small system sizes, and finite size effects are pronounced.690

Second, the data collapse is ambiguous, showing stronger agreement in some regions than oth-691

ers depending on the chosen exponent. Due to this difficulty, we only show the data processed692

via the threshold method in Figs. 14 and 15, which show very similar results. The results are693

inconclusive, showing some agreement with z = 2.694

E U(1) Subgroup and Numerical Methods695

E.1 Symmetry Principles696

We can make use of the U(1) subgroup of the Heisenberg model by breaking down our problem697

into different subspaces labeled by eigenvalues of
∑

x∈L Zx . LetQn be the subspaces of definite698

U(1) charge, labeled by n. Thus, if we choose an operator which is uncharged (and therefore699

also block diagonal), we can write its dynamics as700

O (t) =
⊕

n
e−i H|Qn t O|Qn

ei H|Qn t . (E.1)

Ideally, we would work individually in different symmetry sectors to determine the time de-701

pendent entropy of an operator which is the direct sum of restrictions in multiple symmetry702

sectors. A priori, doing this is challenging because the restriction to a symmetry sector breaks703

the local tensor factorization of the full Hilbert space. However, there is a way to restore this704

tensor factorization, which we detail in the next section.705

E.2 Symmetry Resolved Entropy706

Our ultimate goal will be to determine the operator entropy of such a state by working only707

in sectors, but first we will work this procedure out for states. Any state in H can be written708

as a sum across states belonging to each charge sector, with coefficients that remain invariant709

under time evolution710

|Ψ (t)〉=
⊕

r
Cr |ψ (t) ∈Qr〉 ≡

⊕

r
Cr |Qr (t)〉 , (E.2)

where we have introduced shorthand notation in the last equality. It helps to make the addi-711

tional simplification of assuming the state is only in a single sector, Q, and therefore we can712

write it as713

|Q〉=
⊕

n

Q(n)A ,Q(n)B

�

�

�Q(n)A +Q
(n)
B =Q

o

Dn

�

�

�Q(n)A , Q(n)B

¶

(E.3)

where L = A∪ B is an arbitrary but spatially local bipartition. Note that this does not mean714

that
�

�

�Q(n)A , Q(n)B

¶

is itself AB tensor-factorizable. But we can Schmidt decompose as715

�

�

�Q(n)A , Q(n)B

¶

=
∑

k

q

F n
k

�

�

�

�

ψ
Q(n)A
k ⊗ψO(n)B

k

·

(E.4)

with
n

ψ
Qn

A/B

k

o

∈Q(n)A/B. Then the entropy of a state living in a single Qn is simply716

SO; A
vN = −

∑

n,k

|Dn|
2 F n

k Log
�

|Dn|
2 F n

k

�

. (E.5)
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Now, let us verify this decomposition. We begin in a single symmetry sector, and then we717

decompose as in Eqn. (E.3):718

TrB

�

ρAB
�

= TrB

��

⊕

n
Dn

�

�

�Q(n)A , Q(n)B

¶

��

⊕

m
D̄m

¬

Q(m)A , Q(m)B

�

�

�

��

=
∑

ψ∈HB

�

⊕

n
δ
ψ∈Q(n)B

Dn

�

ψ

�

�

�

�

Q(n)A , Q(n)B

���

⊕

m
δ
ψ∈Q(m)B

D̄m

�

Q(m)A , Q(m)B

�

�

�

�

ψ

��

. (E.6)

In the last line, we have defined the following Kronecker-like δ function719

δψ∈V =

¨

1 ψ ∈ V
0 ψ /∈ V

(E.7)

which allows the following further simplification720

TrB

�

ρAB
�

=
⊕

n
|Dn|

2
∑

ψ∈Qn

D

ψ
�

�

�Q(n)A , Q(n)B

¶¬

Q(n)A , Q(n)B

�

�

�ψ
E

=
⊕

n
|Dn|

2 TrQ(n)B

h

ρAB
�

�

Q(n)A ⊗Q
(n)
B

i

(E.8)
which is the desired result, from which we conclude that Eqn. (E.5) is valid.721

For operator states, the generalization is straightforward, if detailed. To begin we consider722

an operator which is U (1) uncharged and therefore block diagonal. Thus, we can write O as723

O =
⊕

r
Cr O|Qr

=
⊕

r
Cr

∑

ψk ,ψl∈Qr

Ok,l

�

�

Qn
|ψk〉 〈ψl | . (E.9)

Trivially, the operator state mapping becomes724

|O〉=
⊕

r
Cr

∑

ψk ,ψl∈Qr

Ok,l

�

�

Qr

�

�ψk, ψ̃l

�

(E.10)

and we can simplify by a change of basis to get725

|O〉=
⊕

r
Cr

�

�Qr , Q̃r

�

(E.11)

where the
��

�Qr , Q̃r

�	

are one representative state in each Qr ⊗ Q̃r sector. Now, we can per-726

form a decomposition analogous to Eqn. (E.3), but subject to a different constraint. Instead727

of Q(n,r)
A +Q(n,r)

B =Qr we require that Q(n,r)
A +Q(n,r)

B = Q̃(n,r)
A + Q̃(n,r)

B =Qr 3. Thus, we can728

rewrite
�

�Qr , Q̃r

�

as729

�

�Qr , Q̃r

�

=
⊕

n

Q(n)A ,Q(n)B

�

�

�Q(n)A +Q
(n)
B =Qr

o

n

Q̃(m)A ,Q̃(m)B

�

�

�Q̃(m)A +Q̃(m)B =Qr

o

D(r)n,m

�

�

�Q(n)A ,Q(n)B , Q̃(m)A , Q̃(m)B

¶

. (E.12)

These basis states can be Schmidt decomposed as730

�

�

�Q(n)A ,Q(n)B , Q̃(m)A , Q̃(m)B

¶

=
∑

k

q

F n,m
k

�

�

�

�

Ψ
Q(n)A ⊗Q̃

(m)
A

k ⊗ΨQ(n)B ⊗Q̃
(m)
B

k

·

. (E.13)

3Which also implies Q(n,r)
A +Q(n,r)

B − Q̃(n,r)
A − Q̃(n,r)

B = 0, the condition for an operator to not carry charge.
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We will once again make the simplification of assuming that there is only a single non-zero Cr731

to begin. Then, the reduced density matrix is732

ρA
O =

∑

s,t

∑

k,l

­

ψ
Q(s)B
k ψ̃

Q̃(t)B
l

�

�

�

�

�

⊕

n,m
Dn,m

�

�

�Q(n)A ,Q(n)B , Q̃(m)A , Q̃(m)B

¶

�

×

�

⊕

p,q
D̄p,q

¬

Q(p)A ,Q(p)B , Q̃(q)A , Q̃(q)B

�

�

�

�
�

�

�

�

ψ
Q(s)B
k ψ̃

Q̃(t)B
l

·

=
∑

n,m,k,l

�

�Dn,m

�

�

2
δn,pδm,q

�

ψ
Q(n)B
k ψ̃

Q̃(m)B
l

�

�

�

�

Q(n)A ,Q(n)B , Q̃(m)A , Q̃(m)B

�

×
�

Q(p)A ,Q(p)B , Q̃(q)A , Q̃(q)B

�

�

�

�

ψ
Q(s)B
k ψ̃

Q̃(t)B
l

�

=
∑

n,m,k

�

�Dn,m

�

�

2
F n,m

k

�

�

�

�

Ψ
Q(n)A ⊗Q̃

(m)
A

k

·­

Ψ
Q(n)A ⊗Q̃

(m)
A

k

�

�

�

�

. (E.14)

The entropy then can be written:733

SO;A
vN = −

∑

n,m,k

�

�Dn,m

�

�

2
F n,m

k Log4

�
�

�Dn,m

�

�

2
F n,m

k

�

(E.15)

in quats.734

This derivation is not as useful for the case of operators which live in multiple sectors.735

However, the projection seemingly does not matter much at late times in practice (see Fig.736

17). However, it may be of use for less coarse metrics and thus could be a fruitful future737

direction.738

E.3 U(1) Projection and Time Regimes739

We note that projecting into a single symmetry sector has significant impact on early time740

dynamics. If one uses this symmetry projection scheme to extract timescales, it returns tightly741

diffusive results as shown in Fig. (16).742

Nonetheless, per Fig. (17), starting at approximately the saturation timescale the U(1)743

projection scheme demonstrates very strong agreement with the non-projected results. We744

expect that at late time, the lack of coherence between different U(1) sectors in the Heisenberg745

model should render the projection scheme essentially irrelevant to the operator entropy.746

F Computational Methods for CA Dynamics747

F.1 Computational Tools for Diagonal Operator Evolution and Time Averages748

Rather than an explicit implementation of the time evolution operators introduced in Eqn. (2),749

it is vastly more efficient to introduce a dictionary of states and their mappings, leveraging750

the bitstring representation of computational basis states. If we vectorize the computational751

basis on H, which we will denote
∑

i êi

�

�φ i
�

= ⃗|φ〉, then we can apply the time evolution752

elementwise. If we decompose a state as |ψ〉 = ψ⃗ · ⃗|φ〉, we can say that |ψ (t)〉 = ψ⃗ · |φ⃗ (t)〉.753

Now we define computational basis states as
�

�φ i
�

=
⊗L

n=1

�

�φ i
n

�

and introduce the map754

F
��

�φ i
��

= 1+
L−1
∑

n=0

φ i
n2n, (F.1)
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Figure 16: U(1) projected timescales of operator Ẑ1Ẑ2. Threshold method with ζ
going from 0.7 (cold) to 0.95 (hot) in 0.05 increments. (Top) Direct threshold times
on linear scale. (Bottom) Log-log plot of threshold times. Dashed diagonals are “dif-
fusion lines,” which have slope 2 (indicating the dynamical exponent for diffusion).
System size L = 18 has a coarser time sample than smaller system sizes, resulting in
a slight shift in the data.
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Figure 17: Differences between full Hilbert space and U(1) projected LOE (top) and
LOE density (bottom) for system sizes 7 (cold) to 13 (hot) with initial operator Ẑ1.

which relates the bitstring and the element of vector basis. Now one can define a time evolution755

on a state by the following transformation:756

ψ⃗ · |φ⃗ (2)〉=
∑

i

ψi

�

�φ i (2)
�

=
∑

i

ψi|φF[U54|φ i〉]〉

≡
∑

i

ψi |φσ(i)〉=
∑

i

ψσ−1(i)|φ i〉 (F.2)
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where we have used the fact that a sum is invariant under a permutation of its indices in the757

last step. We can work inductively from the above calculation as follows758

ψi (t + 2) =ψσ−1(i) (t) |ψ (2t)〉=
∑

i

ψσ(−t)(i)|φ i〉 (F.3)

Note that to maintain a uniform σ for time evolutions, only the full Floquet cycle operator was759

used (with both even and odd updates). Computationally, this operation is a simple reshape.760

To determine late time behaviour, it is most straightforward to exponentiate by squares:761

σ(2
n+1) = σ(2

n)
�

σ(2
n)
�

(F.4)

Should the inversion of σ prove prohibitive, it can in most cases be forgone or otherwise762

accounted for simply. In Rule 54 time reversal is equivalent to conjugation by a single lattice763

site translation since764

T UevenUoddT−1UevenUodd

= T UevenT−1T UoddT−1UevenUodd

= UoddUevenUevenUodd = I. (F.5)

The final identity follows from the fact that if s′n = sn−1 + sn + sn+1 + sn−1sn+1 mod 2 and765

s′′n = sn−1 + s′n + sn+1 + sn−1sn+1 mod 2, then s′′n = 2sn−1 + sn + 2sn+1 + 2sn−1sn+1 mod 2 = sn766

so that U2
even = U2

odd = I. Thus it is sufficient to simply conjugate by a translation operator to767

invert.768

F.2 Time Evolution of Off-Diagonal Operators769

For diagonal operators in Rule 54, the time evolution is extremely simply defined by Eqn.770

(F.2). However, off-diagonal operators are somewhat more complicated. We begin with a771

local operator that has decomposition into the computational basis states772

O =
∑

i, j

Oi j

�

�φ i
� 


φ j
�

� . (F.6)

The operator cannot be mapped to a non-doubled state; however, the sparsity of local operators773

means that a sparse matrix representation reduces the memory scaling in the computational774

basis from 4L to at worst 3 · 4|U |+
1
2 |U | where U is the lattice subset on which the operator775

is initially supported and U = L \ U is the complement. Since Rule 54 dynamics acts on776

computational basis states as a permutation, no new matrix elements are made and this scaling777

behaviour remains constant throughout evolution, in contrast to typical sparse representations.778

Leveraging this sparse representation for time evolution is very simple:779

O (t) =
∑

i, j

Oi j

�

�φσ(i)
� 


φσ( j)
�

� (F.7)

which can be implemented as a transformation on the vectors which store the indices of the780

non-zero values. The reshape can be pre-computed and the reduced density matrix derived in781

a sparse representation, but extracting the entropy requires a return to a dense representation.782

F.3 Comment on L÷ 3 v.s. L÷ 4 Partitions for Off-Diagonal Operators783

Upon viewing Fig. 5, a question is apparent: why are larger system sizes displayed for the784

L÷ 3 partition than the L÷ 4 partition?785
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For the system sizes examined, evolving the operator itself is nearly trivial, but extracting786

the entropies is non-trivial. In our simulations, system sizes less than 16 are computed by787

reshaping the sparse matrix O (t) so that its indices within H̃A
and HB are transposed (i.e.,788

HA⊗ H̃
A

are the row indices and HB ⊗ H̃B
are the column indices). The reshaped operator is789

then converted to a dense matrix and its singular values are extracted. However, for system790

sizes larger than 16, it was necessary to leave the partially reshaped operator in sparse form791

and then compute the operator density matrix by contracting the indices for HB ⊗ H̃B
. Then792

the eigenvalues can be calculated directly. The memory cost of storing the operator density793

matrix as a dense matrix is 4|A| rather than the 4|L | of storing the partially reshaped operator as794

a dense matrix. The cost of this procedure is that a new computational bottleneck arises: the795

matrix multiplication to trace the subsystem B = Ā. For partition L÷3 this matrix multiplication796

is tenable up to and including system sizes |L |= 24, whereas for L÷4 it becomes prohibitively797

difficult at |L |= 22.798
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[37] B. Buča, K. Klobas and T. Prosen, Rule 54: exactly solvable model of nonequilibrium890

statistical mechanics, Journal of Statistical Mechanics: Theory and Experiment 2021(7),891

074001 (2021), doi:10.1088/1742-5468/ac096b.892

[38] D. N. Page, Average entropy of a subsystem, Physical Review Letters 71(9), 1291–1294893

(1993), doi:10.1103/physrevlett.71.1291.894

[39] A. Rath, V. Vitale, S. Murciano, M. Votto, J. Dubail, R. Kueng, C. Branciard, P. Calabrese895

and B. Vermersch, Entanglement barrier and its symmetry resolution: Theory and experi-896

mental observation, PRX Quantum 4(1) (2023), doi:10.1103/prxquantum.4.010318.897

[40] S. Murciano, J. Dubail and P. Calabrese, More on symmetry resolved operator entan-898

glement, Journal of Physics A: Mathematical and Theoretical 57(14), 145002 (2024),899

doi:10.1088/1751-8121/ad30d1.900

[41] N. Linden, S. Popescu, A. J. Short and A. Winter, Quantum mechani-901

cal evolution towards thermal equilibrium, Phys. Rev. E 79, 061103 (2009),902

doi:10.1103/PhysRevE.79.061103.903

[42] K. Kaneko, E. Iyoda and T. Sagawa, Characterizing complexity of many-body quantum904

dynamics by higher-order eigenstate thermalization, Phys. Rev. A 101, 042126 (2020),905

doi:10.1103/PhysRevA.101.042126.906

34

https://doi.org/10.21468/scipostphys.8.4.067
https://doi.org/10.1007/s00220-019-03494-5
https://doi.org/10.1103/PhysRevLett.122.250603
https://doi.org/10.1103/PhysRevB.104.094410
https://doi.org/10.1088/1751-8121/adc9e6
https://doi.org/10.1103/physrevlett.123.170603
https://doi.org/10.1103/PhysRevX.12.031016
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/ac096b
https://doi.org/10.1103/physrevlett.71.1291
https://doi.org/10.1103/prxquantum.4.010318
https://doi.org/10.1088/1751-8121/ad30d1
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevA.101.042126


SciPost Physics Submission

[43] Y. Huang, Extensive entropy from unitary evolution, arXiv preprint arXiv:2104.02053907

(2021).908

[44] D. K. Mark, J. Choi, A. L. Shaw, M. Endres and S. Choi, Benchmarking quantum909

simulators using ergodic quantum dynamics, Phys. Rev. Lett. 131, 110601 (2023),910

doi:10.1103/PhysRevLett.131.110601.911

[45] J. Riddell and N. Pagliaroli, No-resonance conditions, random matrices, and quantum912

chaotic models, Journal of Statistical Physics 191(11) (2024), doi:10.1007/s10955-024-913

03354-0.914

[46] J. Riddell and B. Bertini, Rationally independent free fermions with local hopping, Physical915

Review E 110(6) (2024), doi:10.1103/physreve.110.064101.916

[47] N. Linden, S. Popescu and J. A. Smolin, Entanglement of superpositions, Phys. Rev. Lett.917

97, 100502 (2006), doi:10.1103/PhysRevLett.97.100502.918

[48] G. Gour, Reexamination of entanglement of superpositions, Phys. Rev. A 76, 052320919

(2007), doi:10.1103/PhysRevA.76.052320.920

[49] G. Gour and A. Roy, Entanglement of subspaces in terms of entanglement of superpositions,921

Phys. Rev. A 77, 012336 (2008), doi:10.1103/PhysRevA.77.012336.922

[50] S. Gopalakrishnan, D. A. Huse, V. Khemani and R. Vasseur, Hydrodynamics of operator923

spreading and quasiparticle diffusion in interacting integrable systems, Phys. Rev. B 98,924

220303 (2018), doi:10.1103/PhysRevB.98.220303.925

[51] M. Vanicat, L. Zadnik and T. Prosen, Integrable trotterization: Local con-926

servation laws and boundary driving, Physical Review Letters 121(3) (2018),927

doi:10.1103/physrevlett.121.030606.928

35

https://doi.org/10.1103/PhysRevLett.131.110601
https://doi.org/10.1007/s10955-024-03354-0
https://doi.org/10.1007/s10955-024-03354-0
https://doi.org/10.1007/s10955-024-03354-0
https://doi.org/10.1103/physreve.110.064101
https://doi.org/10.1103/PhysRevLett.97.100502
https://doi.org/10.1103/PhysRevA.76.052320
https://doi.org/10.1103/PhysRevA.77.012336
https://doi.org/10.1103/PhysRevB.98.220303
https://doi.org/10.1103/physrevlett.121.030606

	Introduction
	Background
	Defining local operator entanglement

	Rule 54 Cellular Automaton
	Definition
	Rule 54 Conserved Quantities
	Diagonal Operator Bound
	Numerical evidence

	LOE for General Integrable Models
	K-Flavor model
	Heisenberg model
	What about free fermions?

	Discussion
	Rényi entropies
	Time dynamics
	Other directions

	Operator Support and Operator States
	Why OTOCs Measure Operator Support
	Operator Entropy

	Ancillaries for Analytic Results
	Time Evolution
	Number Projectors, Marginals of Number Projectors, and Bulk Support
	Off-Diagonal Operators

	Details of K-flavor Model
	Intermediate Times and Saturation Timescales
	Rule 54: Intermediate Times
	Heisenberg Circuit: Intermediate Times
	Dynamical Scaling Concepts
	Rule 54: Saturation Timescales
	Heisenberg Chain: Saturation Timescales

	TEXT Subgroup and Numerical Methods
	Symmetry Principles
	Symmetry Resolved Entropy
	TEXT Projection and Time Regimes

	Computational Methods for CA Dynamics
	Computational Tools for Diagonal Operator Evolution and Time Averages
	Time Evolution of Off-Diagonal Operators
	Comment on TEXT v.s. TEXT Partitions for Off-Diagonal Operators

	References

