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Exact zero modes in interacting Majorana X- and Y-junctions
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Abstract

We report the emergence of exact zero modes in junctions of two, three and four short
interacting Majorana wires, equivalent to a chain with an impurity bond, Y- and X- junc-
tions respectively. These exact zero modes are due to incommensurate short-range cor-
relations induced by the interacting Majorana fermions, and they appear as unavoided
level crossings between in-gap states upon continuously tuning the interaction. In a
junction of only two chains we report exact zero modes and parity switching as soon as
the coupling between the chains across a junction is positive. Remarkably, for junctions
with multiple chains the in-gap states group up into sets of parity pairs – pairs of states
with opposite parity and similar energies. We demonstrate that the formation of these
parity pairs are always due to the effective interaction of the outer edges of the junction.
The behavior within each pair can be efficiently described by two coupled chains. In the
Y-junction, we detect four in-gap states (two parity pairs) that show exact zero modes not
only within each pair but also between them. This is attributed to an additional Majo-
rana fermion localized at the center of junction that is protected by symmetry. Therefore,
coupling between the Majorana fermions at the outer edges of the junction is mediated
by that in the center. We argue that this is a generic feature of junctions with an odd
number of arms. In the X-junction we detect eight in-gap states (four parity pairs) that
are the result of two Majorana degrees of freedom localized at the center of the junction.
However, we demonstrate that, by contrast to the Y-junction, the appearance of Majo-
rana fermions at the center of the X-junction is not protected and the interaction across
the junction can be tuned to the point where there are only Majorana fermions localized
at the four outer edges of the junction, forming four in-gap states.
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1 Introduction22

Topological phases of matter have been at the forefront of condensed matter physics, with a23

particular interest in Majorana fermions – particles that are their own antiparticles. As noted24

by Kitaev [1], a chain of spinless Dirac fermions, an effective model of a p-wave superconduc-25

tor, displays topoligically non-trivial properties with a single "unpaired" zero-energy Majorana26

fermion localized at its edges. This generates a partner-state with opposite parity for each27

state in the many-body spectrum, creating a degeneracy for each of them. If this affects the28

entire spectrum these zero energy modes are referred to as strong zero modes (SZM) – a term29

popularized by Fendley [2]. Because of their foundational framework for fault tolerant quan-30

tum computing [3–5], observing signatures of these SZM has been the hallmark in various31

experimental works over the past decades [6–12].32

In the Kitaev chain Majorana fermions are non-interacting, but there are multiple proposals33

extending the model to the interacting case [13–19]. Such interacting Majorana chains have34

been studied in various contexts, including quantum phase transitions [19–23], and in the35

presence of quenched disorder [24–30] with a recent focus on many-body localization at high36

energy [31–35]. Several forms of interaction have been proposed, but here we focus on the37

Hamiltonian with the simplest non-trivial translationally-invariant interaction term, described38

by39

H =
N
∑

j=1

i tγ jγ j+1 − gγ jγ j+1γ j+2γ j+3, (1)

where γ j are the typical Majorana fermionic operators satisfying γ†
j = γ j , γ

2
j = 1 and {γi ,γ j}= 2δi j;40

N the number of Majorana fermions in the chain; t is the hopping amplitude and g is the cou-41

pling strength of the interaction term.42

Contrary to the non-interacting case, no explicit and exact construction of SZM exist for this43

model – or interacting chains in general [36–39], with the notable exception being the inte-44

grable XXZ chain [40,41]. However, in incommensurate phases the effective coupling between45
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edges states can be fined-tuned to a set of points where it vanishes and, correspondingly, the46

energy levels of the in-gap states cross each other – called exact zero modes (EZM) [12,42–45].47

While these do not guarantee the presence of SZM, EZM do signal edge states. On top of that,48

in-gap states are easily accessible numerically through exact diagonalization or by targeting49

excited states in the density matrix renormalization group algorithm [46].50

Interestingly, systematic studies of localized edge states in multi-chain junctions of Kitaev51

chains are scarce and limited to situations in which the outer edge states are either screened52

[47] or pushed far from the junction [48], or the Majorana fermions are non-interacting [49].53

At the same time the interest in physics of junctions in general is steadily increasing following54

technological developments in the contexts of coupled superconducting wires [50–53] and55

braiding protocols based on tri-junctions [54]; and recent conceptual progress on Majorana56

corner states in second-order topological superconductors [55–58] that may eventually open57

up new avenues to explore more complex junction architectures. Here we aim to fill this58

knowledge gap by studying Majorana edge states through EZM in interacting Kitaev chains59

coupled at the edges in moderately sized Y- and X-junctions.60

In this paper we focus on the family of interacting Majorana chains defined in Eq.(1) cou-61

pled at one edge, as illustrated in Fig.1, by some coupling term Hcoupling(α), with α being an62

external parameter controlling the strength of the coupling across the junction. For practical63

reasons we re-formulate the Hamiltonian of Eq.(1) in terms of spins using the Jordan-Wigner64

transformation (see Appendix A for more details):65

H(n) =
n
∑

i

Ñi
∑

j=1

�

Jσx
i, jσ

x
i, j+1 − hσz

i, j + gσz
i, jσ

z
i, j+1 + gσx

i, jσ
x
i, j+2

�

+Hcoupling(α), (2)

where σx
i, j and σz

i, j are Pauli matrices acting on site j in chain i and n is the number of chains.66

Each chain i contains Ñi = Ni/2 spins. We use h and J notations of the transverse field Ising67

model, t(2 j) = h and t(2 j + 1) = −J , explicitly allowing alternation the Majorana hopping68

term when h ̸= J . Hcoupling(α) depends on the geometry of the junction and will be defined69

explicitly in the corresponding sections. We limit ourselves to the symmetric case in which J ,70

g, h and N are the same for each chain, and we assume an even number of Majorana fermions71

per chain.72
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Figure 1: Sketches of the junction geometries addressed in this paper; two cou-
pled Majorana chains (left), Y-junction (middle), and X-junction (right). Dark green
dotted lines denote the coupling between the ends of the chains that is described
by Hcoupling(α). In red we mark the Majorana degrees of freedom γi,k in arm
i, with 1 ≤ k ≤ Ni . And in dark blue the corresponding spin-1/2 σi,k, with
1≤ k ≤ Ñi = Ni/2.
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We study oscillations in the in-gap energy spectrum by tuning the magnetic field h – ef-73

fective parameter that allows to tune the coupling between the edge states in this model –74

while the system is initialized in the incommensurate topologically non-trivial parity-broken75

Z2 phase located at |h|< 1 and 0 < g ≲ 0.4 [19]. We fix g = 0.2 unless stated otherwise. For76

more information on the calculation of the low-energy spectrum of the Hamiltonian, we refer77

to Appendix B.78

The rest of the paper is structured as follows. In Sec. 2 we benchmark our method with the79

simplest case of two coupled chains. We present numerical evidences of the exact zero modes80

in the Y-junction in Sec. 3. In Sec. 4 we study exact zero modes appearing in X-junction and81

discuss the strategy to manipulate them. Finally, we conclude our results and put them into82

perspective in Sec. 5.83

2 Two coupled chains84

We start our analysis with the simplest case of two chains coupled to each other. Equivalently,85

one can consider this system as a long chain with a single impurity bond. This system is similar86

to the junction studied recently in Ref. [59], in which two non-interacting Kitaev chains with87

different magnetic fields h and coupling strengths J were considered. Here we consider the88

coupling of two identical but interacting Majorana chains instead. The term that couples the89

ends of these two chains consists of all two and four Majorana operators that cross the junction:90

Hcoupling(α) =H(i, j)

≡α
�

i tγi,Ni
γ j,N j
− g(γi,Ni−2γi,Ni−1γi,Ni

γ j,N j

+ γi,Ni−1γi,Ni
γ j,N j−1γ j,N j

+γi,Ni
γ j,N j−2γ j,N j−1γ j,N j

)
�

,

(3)

where i and j label two chains, simply i = 1 and j = 2 here. Through the Jordan-Wigner91

transformation, we find that92

H(i, j) = αgσz
i,Ñi
σz

j,Ñ j
+αi

�

Jσx
i,Ñi
σx

j,Ñ j
+ gσx

i,Ñi−1
σx

j,Ñ j
+ gσx

i,Ñi
σx

j,Ñ j−1

�

k=Ñm
∏

i<m≤ j,k=1

σz
m,k, (4)

where we, in accordance to the hopping term in Eq.(2), relabeled t as J . The string of σz
93

operators is a result of the two chains being ordered such that its ends meet. Note, one of94

the σz operators in this string acts on the same site as the σx operator in chain j (effectively95

hiding the Hermitian nature of the coupling at a first glance). For two chains of Ni = N j = 2096

Majorana fermions coupled by Eq.(3), we show the four lowest energies as a function of the97

coupling strength α in Fig.2(a), centered around the average of the two smallest energies for98

visual clarity. We label each energy level by calculating the parity99

P =
n
∏

i=1

j=Ñi
∏

j=1

σz
i, j (5)

from its corresponding state, taking the product over all spins in the systems. We observe, as100

expected, that when the two chains are uncoupled (α = 0), the ground and second excited101

state are both unique and have P = 1, while the first excited state is double degenerate with102

P = −1. When we couple the two chains this degeneracy is lost and two states with opposite103

parity pair up – from now on we will refer to such a pair as parity pairs – and form the in-gap104

spectrum while the other two become part of the bulk excitation spectrum.105
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Figure 2: Numerical results for the energy spectrum of two chains of N = 20 Majo-
rana fermions each, coupled by Eq.(3). We fix the four-Majorana coupling strength
at g = 0.2. All data are centered around the average of the two lowest energy levels.
(a) Four lowest energy levels as a function of the coupling strength α. The magnetic
field h = 0.3 is fixed. When coupling the two chains (α > 0), two states with op-
posite parity (light blue crosses and dark blue dots) form the in-gap spectrum while
the other two become part of the bulk excitations (grey lines). (b) In-gap spectrum
as a function of the magnetic field h for a small coupling strength α = 0.015. Exact
zero modes appear as soon as α > 0. For small α the intervals where negative parity
sector forms the ground-state are much shorter compared to that of positive one. In-
set: first crossings between the parity sectors zoomed in. (c) Same as in (b) but for
α= 0.6. Interval in which the ground state has a negative parity is larger compared
to α = 0.015. (d) Same as in (b) but for negative coupling α = −1. We observe no
parity switching and no exact zero modes. Inset: Final avoided crossing zoomed in.

For the in-gap spectrum we show its dependence on the magnetic field h in Fig.2(b) for106

when the chains are weakly coupled, i.e. α = 0.015. The two weakly coupled chains show107

clear oscillations with a vanishing energy gap between the two parity sectors. Unlike the108

uniform interacting Kitaev chain though, the interval in which the negative parity sector is109

the ground state is much smaller than that of a positive parity sector. When increasing the110

coupling up to α = 0.6 the intervals over which the negative parity sector is the ground state111

become much wider, as demonstrated in Fig.2(c). Intuitively, this is a result of the two coupled112

chains approaching the single-chain limit α→ 1 where symmetry between even and odd parity113

sectors is restored.114

We also computed the in-gap spectrum for the case of negative coupling α = −1 across115

the junction, presented in Fig.2(d). Now we detect a set of avoided crossings showing no116

parity switching, and thus no EZM appear. This provides a first indication that the sign of the117

interaction at a junction plays a crucial role on the formation of EZM in the in-gap spectrum.118

In addition to the energy spectrum, we also visualize the spatial location of Majorana119

fermions in the two chains by calculating the local density of states (LDOS)120

LDOS(l)k (ω, j) = Im

��

ψl

�

�

�

�

γk, j
1

ω+ iη−H(n) + El
γk, j

�

�

�

�

ψl

��

, (6)
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for each Majorana fermion 1≤ j ≤ Nk in chain k. For both in-gap statesψl , with an energy El ,121

we carry out this procedure for the two chains in the junction. We always set the broadening122

parameter η = 0.1 and compute the LDOS at frequency ω = 0 – value for which a Majorana123

zero mode is normally expected. We calculate the LDOS numerically by iteratively solving the124

eigenvalue problem obtained from Eq.(6) with the conjugate-gradient method (see [60] for125

more detail). In Fig. 3(a) we provide the LDOS for the ground state for four different coupling126

strengths α and two magnetic fields h. In all four cases there are clear Majorana edge states127

localized at the ends of the two chains. There also appear two modes at the center of the128

junction for small α that slowly disappear upon increasing α and upproaching a single-chain129

limit. The LDOS profiles for α= −1 and α= +1 are similar. Interestingly, as show in Fig.3(b),130

the spatial profile of both in-gap states is nearly identical, highlighting that the states differ131

solely by the interaction between Majorana edge states rather than by their spatial appearance132

and location.133
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Figure 3: Spatial profile two chains containing N = 20 Majorana fermions each,
coupled by four different strengthsα. Data is provided for the two in-gap states. Four-
Majorana interaction strength is fixed at g = 0.2. Blue circles and orange diamonds
depict the strength of the magnetic field h. (a) Spatial profile for the ground state.
Left side indicates the first chain while the right side the second chain. Amplitude
of local density of states for α = 0.015 in the middle of the chain is slightly smaller
than at the edges. As expected, the local density of states in the center vanishes
when approaching the single interacting Kitaev chain limit, i.e. α→ 1. For negative
coupling α = −1 the Majoranas in the center is also absent. (b) Same as in (a) but
for the excited state. Local density of states is only shown for the first arm. Note that
the profile is visually identical to that of the ground state.
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3 The Y-junction: three coupled chains134

Let us now move on to the case when three chains are coupled at the ends, forming the Y-135

junction. The full three-chain coupling term136

Hcoupling(α) =

 

2
∑

i=1

3
∑

j>i

H(i, j)
!

+H(1,2,3), (7)

consists of all possible two chain couplings (the terms in the brackets) and the term that couples137

three chains labeled i, j and k:138

H(i, j,k) ≡ −gα2
�

γi,Ni−1γi,Ni
γ j,N j

γk,Nk
+ γi,Ni

γ j,N j−1γ j,N j
γk,Nk

+ γi,Ni
γ j,N j

γk,Nk−1γk,Nk

�

. (8)

Note, the factor α2 stems from the Majorana operators crossing the gap between the chains139

twice. In terms of spin-operators140

H(i, j,k) =gα2i

 

σz
i,Ñi
σx

j,Ñ j
σx

k,Ñk

l=Ñm
∏

j<m≤k,l=1

σz
m,l

+σx
i,Ñi
σz

j,Ñ j
σx

k,Ñk

l=Ñm
∏

i<m≤k,l=1

σz
m,l

+σx
i,Ñi
σx

j,Ñ j
σz

k,Ñk

l=Ñm
∏

i<m≤ j,l=1

σz
m,l

!

.

(9)

Again, the σz strings are due to the chosen ordering of the chains.141

For a junction of three chains containing N = 14 Majorana fermions each coupled by Eq.9,142

we show the eight lowest energy levels as a function of the coupling strength α in Fig.4(a) –143

we provide the same plot but for the full range −1 ≤ α ≤ 1 in Appendix C.1. At the decou-144

pled point α = 0 the degenerate sets of excitations come in triplets – contrary to the doublet145

excitations for two coupled chains – that is a direct consequence of having three arms in the146

junction. The ground state corresponds to the state with all three arms of the junction being147

in the parity sector P = 1; the first three-fold degenerate excitation set has P = −1 and corre-148

sponds to two arms with parity 1 and one arm with parity −1; the next set has two arms with149

parity −1 and one with parity +1, so the overall parity is P = 1 again; finally, the eighth state,150

highest in energy, corresponds to all three arms being in the parity −1 sector. As soon as α > 0151

four out of the eight states become part of the bulk excitation spectrum while the remaining152

four make up the in-gap spectrum and form two parity pairs. For comparison, we provide the153

results for N = 12 Majorana fermions per arm featuring similar exact zero modes in Appendix154

C.2.155

We show the dependence of this in-gap spectrum on the magnetic field h for a fixed α= 1156

in Fig.4(b). Again, for visual clarity, we center the data around the average of the four energy157

levels. Similar to the previous case we detect exact level crossings with a vanishing energy158

gap. Note, this time it is not the energy within each parity pairs that is vanishing but the159

energy gap between the two pairs. Since the splitting between the parity sectors vanishes fast160

with the system size 1, all four states are degenerate at the points of exact zero modes. As a161

reference, we also show the two in-gap states of a single interacting Kitaev chain of N = 14162

1For instance, there are two consecutive crossing points located within the distance δh ≈ 2 · 10−3 for N = 10
Majorana fermions per arm. Increasing the number of Majorana sites to N = 14 per arm reduces this the distance
to δh≈ 2 · 10−4.
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Figure 4: Energy spectrum of three interacting Kitaev chains, each containing N = 14
Majorana fermions, coupled as defined by Eq. 7 in a Y-junction geometry for a fixed
four-Majorana interaction strength g = 0.2. Dots and crosses denote the positive and
negative parity sectors respectively. (a) Eight lowest energies, centered around the
average of the four in-gap states, as a function of the coupling strength α and a fixed
magnetic field h= 0.45. In a Y-junction four states make up the in-gap spectrum and
group up into two parity pairs (red and blue curves), while the other four become
bulk excitations (grey lines). (b) In-gap spectrum as a function of h at α = 1, cen-
tered around the average of the lowest four levels. Note that there are two levels
marked with red and two different levels with blue that are barely distinguishable on
this scale; the oscillations within each pair is analyzed in (c). Parity pairs show mul-
tiple crossings as a fincvtion of h. For reference, we show level crossings in a single
interacting Kitaev chain of N = 14 Majorana fermions (grey curve). (c) Same data as
in (b) but centered around the average of each parity pair. For comparison, we show
two chains of N = 14 Majorana fermions each coupled with a strength α = 1.25.
(d)-(f) In-gap spectrum for α = −1 plotted with the same convention as in (a)-(c).
While we still see two parity pairs (d) and crossing between them (e), the crossings
within each pair are now avoided (f).

Majorana fermions (grey lines in Fig.4(b)) – same length as a single arm in the Y-junction.163

Quite fascinating, the single chain shows the same number of crossings between the two parity164

sectors as the ones occurring between two parity pairs of the Y-junction. This implies that the165

crossings we observe are controlled by a characteristic length of a single arm, rather then, for166

instance the interaction between the outer edges separated by a lattice distance that is twice as167

large. This interesting phenomenon is attributed to the odd number of Majorana zero modes168

at the center of the junction. Since they can not annihilate all at once, an additional Majorana169

degree of freedom is localized at the center of the junction and the crossing between the pairs170

are due to the interaction of this additional Majorana zero mode with those localized at the171

outer edges. Therefore, we expect similar behavior for other multi-chain junctions with an172

odd number of arms.173

In Fig.4(c) we plot the same data as in the panel (b) but now centered around the average174

of each parity pair. There is a stark symmetry present: the same parity sectors of the two parity175

pairs completely mirror each other 2. Strikingly, the oscillations resemble those of two chains176

2Red crosses almost perfectly overlap with blue dots, and visa versa
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Figure 5: Spatial profile of Majorana fermions in the Y-junction for two coupling
strenghts α. Data is presented for the ground state – for other in-gap states we refer
to Appendix C.4 – and for three different magnetic fields h (blue circles, orange
diamonds and green squares). The four-Majorana interaction strength is fixed at
g = 0.2. (a) Local density of states for all three chains for α = 1. Third chain is
greyed out for visual clarity. Each chain has a clear Majorana zero mode localized at
its edge and another mode appears at the center of the junction with its amplitude
distributed equally among the three arms. The amplitude and spatial distribution
varies with the magnetic field. Asymmetry in the energy spectrum with respect to
the magnetic field (see Fig.4(b)) is also present here. (b) Same as in (a) but for
α= −1. Note, the spectrum appears the same as in (a) but mirrored around h= 0.

of N = 14 Majorana fermions coupled by a strength α= 1.25 – in Appendix C.3 we show that177

this similarity with this non-universal value of α holds throughout most of the incommensurate178

region. Intuitively, one can argue that in the Y-junction each arm is coupled to two other arms179

and that it is therefore natural to expect α > 1 when comparing with two coupled chains.180

This simple comparison demonstrates that characteristic length scale for level crossings within181

each parity sector is twice larger than the length of an arm implying that the crossings within182

each parity pair are, by contrast to the previous case, due to interactions of the Majorana183

fermions localized at outer edges. This picture is further supported by twice as many crossings184

in Fig.4(c) compared to Fig.4(b), and a significantly smaller amplitude that is expected to185

decay exponentially fast with the distance between the localized edge states.186

When the chains are coupled with a negative coupling α < 0 we again report four in-gap187

states that group into two parity pairs, as shown in Fig.4(d). Like in the case with positive188

coupling α we see crossings between the two parity pairs when we vary the magnetic field h189

(see Fig.4(e)) with, again, a characteristic length scale similar to that of a single arm. In strik-190

ing contrast is the behavior within each parity pair presented in Fig.4(f) – no parity switching191

and thus no exact level crossing.192

We would like to emphasize that the difference between the cases of α being −1 or 1 is193

interesting. When centering the data around the entire in-gap spectrum, both cases show194

similar behavior. The similarity with a single chain that is precisely the length of a single arm195

suggests that the dominant energy scale here is that of the coupling between the outer edges196

and the Majorana in the center of the junction – fewer oscillations and a larger amplitude,197

compared to centering the data around each parity pair, are characteristic of systems where198

the interaction between the edge states can be continuously tuned [12,42]. By centering the199

data around each parity pair we effectively ’zoom-in’ on the coupling between the outer edges,200

note the reduced amplitude and increased frequency of the oscillations. However, only when201
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the coupling is positive do we observe a vanishing of the parity gap.202

We provide the spatial profile of the Majorana fermions in the junction for the ground state203

in Fig.5(a) for α = 1 and three values of the magnetic field h (we show the LDOS for the full204

in-gap spectrum in Appendix C.4). Each of the arms is symmetric with respect to one another205

and has a clear Majorana zero mode localized at the outer edges – similar to two couple chains.206

On top of this another Majorana degree of freedom is localized at the center of the junction,207

equally distributed between the three chains. One can notice that for h > 0 the Majorana208

degree of freedom in the center of the junction is less localized, effectively shortening the209

distance between the Majorana fermions at the edges and the center. In Fig.5(b) we show the210

LDOS α= −1 that is qualitatively similar to the previous case with a single Majorana degree of211

freedom localized in the center of the junction and three of them localized at the outer edges.212

4 The X-junction: four coupled chains213

Let us now proceed with the X-junction in which we couple the ends of four chains. The214

Hamiltonian describing this coupling is given by215

Hcoupling(α) =

 

3
∑

i=1

4
∑

j>i

H(i, j)
!

+

 

2
∑

i=1

3
∑

j>i

4
∑

k> j

H(i, j,k)
!

+H(1,2,3,4), (10)

where the terms in the first brackets contain all possible two chain couplings, the second all216

possible three chain couplings, and the final term217

H(i, j,k,l) ≡− gα3γi,Ni
γ j,N j

γk,Nk
γl,Nl

=− gα3σx
i,Ñi
σx

j,Ñ j
σx

k,Ñk
σx

l,Ñl





l=Ñq
∏

i<m≤ j,q=1

σz
m,q





 

q=Ñl
∏

k<m≤l,q=1

σz
m,q

!

(11)

couples the outer four Majorana fermions in four chains labeled i, j, k and l. The factor α3
218

comes from the Majorana operators crossing the center of the junction three times. We provide219

the sixteen lowest eigenvalues for four chains of N = 10 Majorana fermions in Fig.6(a) 3.220

When the chains are uncoupled, i.e. α = 0, both the ground and sixteenth state are unique221

and have parity P = 1, in which the former has all arms in the party +1 sector while the latter222

has parity −1 for all four of them. The remaining states group up into three degenerate sets;223

two of these are quartets with a parity of −1, and they correspond to either the four possible224

configurations for a single excitation in an arm or the four possibilities for an excitation in three225

arms at once; the other set is six-fold degenerate and accounts for two excitations distributed226

over two of the four arms. As soon as the chains are coupled the degeneracy of these states227

is lifted and eight states form the in-gap spectrum and partner up into four parity pairs, while228

the other eight become part of the bulk excitation spectrum.229

Fig.6(b)-(d) shows how the relative energy of these eight in-gap states changes with the230

magnetic field h for a fixed junction coupling α= 1. The picture is more complex and remark-231

ably different in comaprison to the Y-junction shown in Fig.4. To understand the underlying232

physics, let us first take a look at Fig.6(d) - the crossings within each parity pair. As in the233

case of Y-junction these crossings are reasonably well described by two coupled chains – this234

similarity holds through a large part of the incommensurate interval as shown in Appendix235

D.3. This implies that the energy splitting within each parity pair, as in all previous cases, are236

3Results for smaller system sizes are qualitatively similar and provided in Appendix D.1
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Figure 6: Energy spectrum of four Majorana chains of N = 10 Majorana fermions
each coupled in the X-junction geometry. The interaction strength is kept constant
at g = 0.2. Dots and crosses mark parity sectors P = 1 and P = −1 respectively. (a)
16 lowest energy levels as a function of the coupling strength α > 0, eight of which
form four parity pairs (blue, red, green and purple) of in-gap states. Magnetic field
is kept constant at h= 0.6. Data is centered around the average of these eight in-gap
states. (b) In-gap spectrum centered around its average as a function of magnetic
field h. Note that there are two levels marked for each of the four pairs that are barely
distinguishable on this scale; the oscillations within each pair are analyzed in (d).
Spectrum looks remarkably different from the Y-junction (see Fig.4 for comparison).
First and last parity, and third and fourth pair never cross. There is only a single
crossing between the second and third pair and two very rapid intersections between
the third and fourth pair occur on the right. Crossings between first and second
pair occur shortly after each other. Inset: avoided crossing zoomed between first
and fourth pair zoomed in. (c) Same data as in panel (b) the group of lower four
and higher four in-gap states centered around their corresponding average. Only
crossings between the first and second pair occur. Inlet: second crossing zoomed in.
Spectrum acts surprisingly similar to a system of two weakly coupled chains, i.e. by
a strength α= 0.015, of N = 5 Majoranas each (grey lines). (d) Same data as in (b)
but centered around the mean of each parity pair. Oscillations in the energy show
a remarkable similarity with two chains coupled with a coupling strength α = 1.33
(grey line).

due to the coupling between Majorana fermions localized at the outer edges of the system that237

are separated by the lattice distance twice larger than the distance of a single arm.238

By looking at Fig.6(c) we see that crossings between pairs one and two resembles a weakly239

coupled pair of chains (grey lines) 4, except now we have two copies of it. The number of240

pairwise crossings and periodicities of oscillations in Fig.6(c) matches those in Fig.6(d). At241

the same time, the other two parity pairs show avoided crossings, as is clearly visible in the242

4The two weakly coupled chains do not fit the first and second parity pairs of the X-junction due to the slight
delocalization of the Majorana fermions at the center of the junction, shortening the effective length scale over
which the center and edges couple.
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Figure 7: Spatial profile of Majorana degrees of freedom in the X-junction for three
different junction strengths; (a) α= 1, (b) α= 0.5 and (c) α= −1; and three values
of the magnetic fields h (blue circles, orange diamonds and green squares); and
g = 0.2. All data are computed for N = 10 Majoranas per arm and is presented for
the ground state only – data for all in-gap states is provided in Appendix D.3. Third
and fourth chain are greyed out for visual clarity. In all profiles we see Majorana zero
modes localized at the outer edges ( j = 1). In (a) and (b) two Majorana modes are
localized at the center of the junction equally distributed between four legs. In (c)
We see no signature of the Majorana degrees of freedom at the center of the junction.

inset of Fig.6(c), and resembles the physics of two chains with α < 0 presented in Fig.2(d),243

except again we have two copies of each state.244

We interpret these results as follows. In the center of the X-junction four Majorana fermions245

neither fully annihilate as in the case of two chains, nor create some symmetric structure246

with all four degrees of freedom present. Instead, our results suggest that a pair of Majorana247

fermions is localized at the center of the junction. This picture is fully supported by our LDOS248

calculations presented in Fig.7(a) showing that the total density of the Majorana degrees of249

freedom in the center is about twice as large as the LDOS at each of the four outer edges.250

This picture also explains the unusual number of in-gap states that we observe: six localized251

Majorana fermions – four localized at the outer edges and two in the center of the junction –252

have a total Hilbert space of size (
p

2)6 = 8.253

In the picture outlined above the state of the pair of Majorana fermions in the center of the254

junction determines the splitting between the lower and higher four in-gap states. At α = 1255

the system is fine-tuned (see Fig.6(a)) such that we observe all of them on a roughly same256

scale. For smaller values of α, we see a clear separation between the two parity-pair below257

and the two parity-pairs above, as clearly visible in Fig.8(a) for α = 0.5. When we vary the258

value of h, as shown in Fig.8(a)-(c), the picture still holds though: despite the four lower states259

being well separated from the upper four, pairwise crossing (avoided crossings for the upper260

four levels), as well as crossing within each parity pair, remains qualitatively identical to the261

case described in Fig.6. In the LDOS presented in Fig.7(b) we also notice that the Majorana262

fermions are now better localized in the center of the junction.263

The situation is drastically different if we change the parity of the coupling in the junction264

– in Fig.8(d)-(f) we show examples for α < 0. In Fig.8(d) we observe only four in-gap states,265

indicating that the Majorana degrees of freedom in the center of the junction vanished, leaving266

only the four Majorana edge states localized at the outer edges of the junction. This is fully267

supported by the LDOS calculations that we present in Fig.7(c), with a negligibly small density268

of states in the center of the junction. As a result, the in-gap spectrum behaves, unlike the Y-269

junction, qualitatively different from α > 0 under tuning of the magnetic field h, see Fig.8(e).270

Negative coupling at the junction leads to a sequence of level crossings for h > 0 but only271

between states with negative parity, and a set of avoided crossings for h< 0. This rich behavior272
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Figure 8: Energy spectrum of four chains of N = 10 Majorana fermions each cou-
pled in the X-junction geometry. All shown examples are for the interaction strength
g = 0.2. Colors denote the different parity pairs that make up the in-gap spectrum;
dots (crosses) mark a parity P = 1 (P = −1). (a) Eight states that make up the in-gap
spectrum for the junction coupling α = 0.5 as a function of magnetic field h. Data
is centered around its average. Each parity pair contain two energy levels that are
visually indistinguishable on this scale. We show the oscillations within each pair
in (c). (b) Same data as in panel (a) but pair one and two centered around their
average, and the same for pair three and four. Grey lines depict the in-gap spectrum
of a two weakly coupled chains of N = 5 Majoranas each, which shows a remarkable
similarity to the behavior of the first and second parity pairs. Note that the two par-
ity sectors of each pair, i.e. the dots and crosses, are visually indistinguishable. (c)
Same data as in (a) but centered around the mean of each parity pair. Oscillations
in the energy resemble those of the re-scaled spectrum of two chains coupled with a
coupling strength α = 0.67 (grey line). (d) Spectrum of the sixteen lowest energies
as a function of the coupling strength α ≤ 0 and h = 0.6. By contrast to α > 0 (see
Fig.6(a) for comparison) there are only four in-gap states forming two parity pairs.
Data is centered around the lowest four states. (e) Four in-gap states as a function of
the magnetic field h for α= −1. Positive parity sectors never cross while the negative
ones show multiple points with a vanishing energy gap. (f) Energy for each parity
pair centered around its average. Similar to the the Y-junction for α = −1 (Fig.4(f))
we see no parity switching within the pairs.

suggests that in junctions with an even number of arms the appearance and character of exact273

zero modes can be manipulated by the type and strength of the coupling across the junction.274

In agreement with our results for α = −1 in the Y-junction, presented in Fig.4(f), there are275

only avoided crossings within each parity pair, suggesting that this feature is generic for all276

junctions with α < 0.277

5 Conclusion and Discussion278

To summarize, we report the appearance of exact zero modes in interacting Kitaev chains279

coupled in Y- and X-junctions as well as in a junction coupling two chains through a weaker link.280
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We focussed on topologically non-trivial phases with alternating hopping between even and281

odd pairs of Majorana sites and the simplest non-trivial interaction g spanning four consecutive282

Majorana fermions. We studied these junctions numerically with exact diagonalization by first283

mapping them to their dual spin-1/2 models.284

In the junction with two chains we report exact zero modes and parity switching in the in-285

gap spectrum as soon as the coupling across the junction α becomes positive. Exact zero modes286

must also be expected in more generic situations including, in particular, quench disorder with287

eventual weak bonds as impurities. This is because the short-range incommensurability that288

gives rise to the sequence of exact zero modes, by continuously tuning an external parameter,289

persists in the presence of this disorder [30, 61]. This creates an inspiring perspective to ob-290

serve regular parity switching in disordered interacting Majorana chains, which we leave for291

future investigations.292

In the Y-junction we report four in-gap states that group into two parity pairs. These four293

states are attributed to there being four Majorana degrees of freedom: three localized at the294

outer edges and a single Majorana fermion localized in the center of the junction 5. This cen-295

tral degrees of freedom mediates the interaction between the outer degrees of freedom and296

is responsible for the exact level crossings between two parity pairs. Appearance of the Majo-297

rana fermion in the center of the Y-junction is protected by symmetry, and we expect, for the298

same reason, similar behavior for junctions with an odd number of arms. Such junctions can299

then, as this suggests, be effectively used as a single tuning knob to manipulate all outer edge300

states. This might be of particular interest as the Y-junction has been used to realize braiding301

of Majorana fermions that requires the constant tuning of variables, such as the electrostatic302

potential, to move Majorana fermions around in the junction [54,62–67].303

The X-junction, on the other hand, has eight in-gap states that group into four parity pairs,304

which stems from the emergence of two Majorana fermions in the center of the junction.305

These degrees of freedom are stabilized by the symmetric four-Majorana coupling term shown306

in Eq.(11). Unlike the Y-junction, the appearance of these two additional Majorana fermions307

in the center of the junction is not protected: we have shown that localization of these degrees308

of freedom and even their appearance can be tuned by the coupling at the junction. On top of309

that, the asymmetric nature of the in-gap spectrum between sets of parity pairs suggest that310

the X-junction for positive coupling can be viewed as two weakly coupled chains crossing each311

other in the middle, with the control of the impurity bond depending inversely on the strength312

of the coupling in the junction.313

Finally, we observe that in all junctions in-gap states appear as parity pairs. Within each314

parity pairs the energy levels behave similarly to the two weakly coupled chains, showing315

exact zero modes for α > 0 and a set of avoided crossings for α < 0. The characteristic316

length controlling the frequency of the parity switching is well described by the lattice distance317

between two outer edges of the junction. This suggests that the formation of parity pairs are318

due to interactions between the Majorana fermions localized at those edges. This property319

seems to be generic for any junction and shows no signature of even-odd effect with respect320

to the number of chains coupled in the junction; neither is it sensitive to the location of the321

Majorana degrees of freedom near the center at the junction.322
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A Mapping Majorana fermions to spins329

To map Majorana fermions to spins, we first start of with the usual relation between Dirac330

fermion and Majoranas:331

γ2 j−1 = c†
j + c j

γ2 j = i(c†
j − c j).

(A.1)

The Dirac fermions can directly be mapped to Pauli spin operator through the Jordan-Wigner332

transformation, such that333

σz
j = 1− 2c†

j c j ,

σx
j = K j(c

†
j + c j),

σ
y
j = iK j(c

†
j − c j),

(A.2)

where K j =
∏ j−1

k=1σ
z
k. For convenience, we rename every odd numbered Majorana operators334

γ2 j−1 = a j and all even numbered γ2 j = b j (see Fig.9 for a sketch). In terms of the odd and335

even Majorana operators, the Jordan-Wigner transformation can be formulated as336

a j = K jσ
x
j ,

b j = K jσ
y
j

= −iK j+1σ
x
j ,

a j b j = iσz
j ,

(A.3)

where in the second relation we used σ y = −iσzσx . Before mapping the interacting Kitaev337

chain to its dual spin model, we first rewrite Eq. 1 in terms of a j and b j as well, such that338

H =
Ñ
∑

j=1

iha j b j − iJ b ja j+1 − gza j b ja j+1 b j+1

− gx b ja j+1 b j+1a j+2.

(A.4)

Note, the sum runs over the number of Majorana pairs Ñ = N/2 – equivalently the number339

of spins. The hopping amplitude t and coupling strength g are renamed into their respective340

i,2j-3 i,2j-2 i,2j i,2j+1 i,2j+2 i,2j+3 i,2j+4i,2j-1

t t
gg

t t t t t

i,j

h
gx

gz

h -J h h

a i,jb i,j+1a i,j+1b i,j+2a i,j+2bi,j-1a i,j-1b

-J -J

Figure 9: Schematic of labeling of the Majorana chain. In the top image we show the
ordinary interacting Kitaev chain consisting of Majorana operators γi,2 j+1 with the
hopping t and four-Majorana interaction strength g. Bottom: same as in the top but
all odd 2 j + 1 and even 2 j numbered Majoranas are re-labeled as a j and b j respec-
tively. In addition, we renamed t and g into the coupling strength J , magnetic field
h and x and z component of g according to the following: t(2 j) = h, t(2 j+1) = −J ,
g(2 j) = gz and g(2 j + 1) = gx .
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spin counterpart for which t(2 j) = h, t(2 j+1) = −J , g(2 j) = gz and g(2 j+1) = gx . We also341

show this renaming in Fig.9. By applying the Jordan-Wigner transformation to the interacting342

Kitaev chain we find the spin Hamiltonian343

H =
˜N/2
∑

j=1

Jσx
j σ

x
j+1 − hσz

j + gzσ
z
jσ

z
j+1 + gxσ

x
j σ

x
j+2, (A.5)

which is the as the one shown in the brackets in Eq.(2) when setting gx = gz = g.344

We always arrange the chains inward, as shown in the illustrations in Fig.1, causing the345

final three Majorana fermions of each chain to be bi,Ñi−1, ai,Ñi
and bi,Ñi

. As result, even for346

the benchmark case of coupling two chains, strings of σz-operators appear after applying the347

Jordan-Wigner transformation on the terms Hcoupling(α) that couple these chains.348
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B Computing the low-energy spectrum349

To compute the eigenvalues and eigenvectors of the spin Hamiltonians we use the Lanczos350

algorithm [68] with its subspace spanned by the Krylov basis. We construct this Krylov basis351

without explicitly constructing the Hamiltonian as a (sparse) matrix. For an N -body system,352

any arbitrary many-body quantum state is encoded as a 2N dimensional vector, where each353

element describes a product state of the N spins and its relative phase in the full many-body354

state. Essentially, all the 2N indices of this vector can be straightforwardly converted to a binary355

string of length N . By considering this as a product state of spin – we adopt the convention356

that 1 corresponds to spin-up and 0 to spin-down – operators can be directly applied to this bit357

string. To be more precise, the operatorsσx
j andσz

j act on such a binary string in the following358

way: σx
j flips 0 to 1 at site j, or visa versa, and σz

j multiplies the relative phase by −1 when in359

site j is spin down. Applying the Hamiltonian would entail summing over all product states, or360

equivalently binary numbers, and tracking how the operators that make up the Hamiltonian361

affect it.362

To illustrate this, we encode 3
5 |↑↓〉+

4
5 |↑↑〉 as

�

0, 0, 3
5 , 4

5

�T
, and applying the operator σx

0σ
z
1363

to this vector results in
�

−3
5 , 4

5 , 0, 0
�T

.364

As an initial guess for the Lanczos algorithm we always use a vector with its elements365

initialized as random complex numbers.366
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C Additional results Y-junction367

C.1 In-gap spectrum as a function of −1≤ α≤ 1368

In the main text we discussed the energy spectrum of the Y-juncton as a function of the coupling369

strength α, see Fig.4(a) and (d). In Fig.10 we show the same data but over an extended range370

α, i.e. 0 ≤ α ≤ 1 in panel (a) and −1 ≤ α ≤ 0 in panel (b). The data is shown for a fixed371

magnetic field h; different values of h could result in different curves, but the number of in-gap372

states remains invariant. We observe that the number of in-gap states remains four in both373

intervals, further confirming the robustness of the four Majorana modes in the junction.374
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Figure 10: In-gap spectrum of the Y-junction for three chains of N = 14 Majoranas
s a function of the coupling strength α. Four out of the eight states form the in-gap
spectrum and group into two pairs with opposite parity (blue and red lines). Crosses
depict a parity P = −1 and dots +1. We fix the four-Majorana interaction strength
g = 0.2. The spectra are provided for a fixed magnetic field h = 0.45. (a) Spectrum
for 0≤ α≤ 1. (b) Same as in (a) but for −1≤ α≤ 0.
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C.2 In-gap spectrum as a function of h for N = 12 Majoranas per arm375

Characteristic of chains where the interaction between the edge states can be continuously376

tuned and depends on the distance between the edges is that the amplitude and frequency of377

the corresponding oscillations depends on the system size [12, 42]. In the Y-junction, these378

finite size effects also appear. We show the in-gap spectrum for three arms of N = 12 Majoranas379

each in Fig.11(a) and (b). The spectrum is qualitatively the same as the one for N = 14380

Majoranas per arm (see Fig.4); the four in-gap states group up into two parity pairs; the381

energy of these pairs oscillate and the energy gap between them closes; the parity gap within382

each pair also vanishes frequently. The amplitude of the oscillations for N = 12 Majoranas383

per arm is larger while its frequency is smaller, showing the same finite size effect as for the384

regular interacting Kitaev chain [19].385
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Figure 11: In-gap spectrum of three chains of N = 12 Majoranas, coupled with a
strength α = 1, in the Y-junction as a function of the magnetic field h. This spec-
trum consists of four states that group into two pairs (red and blue data), each pair
containing a state with negative (crosses) and positive (dots) parity. Four-Majorana
interaction strength is fixed at g = 0.2. In both panels, the number of EZM are
smaller, and the amplitude of the oscillations bigger, than the Y-junction with three
arms of N = 14 Majoranas each (see Fig.4 for reference). (a) Spectrum centered
around its average. Pairs show a vanishing energy gap between them when varying
h. For each pair the two parity sectors are barely distinguishable. (b) Same data as
in (a) but centered around the average of each parity pair. Opposite parity sectors of
both pairs, e.g. red dots and blue crosses, almost perfectly align with each other.
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C.3 In-gap spectrum as a function of the four-Majorana interaction strength386

In addition to this, we show the effect varying the four-Majorana interaction strength g on387

Y-junction in Fig.12(a). We fix the magnetic field h = 0.45 and coupling strength α = 1; the388

results are centered around their average. Similar to a single interacting Kitaev chain [19],389

we see clear crossings of energy levels upon tuning g. On top of that, the value of g strongly390

affects the formation of the two parity pairs. For small values the two parity sectors of each391

pair show visually inseparable differences. On the other hand, this similarity is destroyed for392

g ≳ 0.2, resulting in a sequence of pair-wise energy crossings.393

We show logarithm of the absolute value of parity gap EP=1 − EP=−1 for both parity pairs394

in Fig.12(b). Dips indicate a vanishing of this gap. The parity gaps associated to both pairs395

align closely up to the boundary of the incommensurate region at large g. Rather interestingly,396

the similarity with the two chains coupled with α = 1.25 holds through most of the incom-397

mensurate interval. Although the matching coupling α seems non-universal, our results imply398

that crossings within each parity gap are controlled by outer edge states and can effectively be399

described by the simplest two-chain junction.400
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Figure 12: Energies of the four in-gap states as a function of the four-Majorana in-
teraction strength g for three chains of N = 14 Majorana fermions coupled in the
Y-junction geometry. We fix the magnetic field h= 0.45 and coupling strength α= 1.
(a) Data centered around the average of the in-gap spectrum. In-gap states pair
up and form two pairs (blue and red curves). Dots and crosses denote the positive
and negative parity sectors respectively. (b) Logarithm of the absolute parity gap
|EP=1 − EP=−1|; dips indicate exact zero modes. Data is shown for both parity pairs
(dark blue open circles and crosses respectively). Grey diamonds correspond to two
chains of N = 14 Majorana fermions each, coupled with α= 1.25.

21



SciPost Physics Submission

C.4 Spatial profile for all in-gap states401

Similar to the two chains with an impurity bond, the spatial profile of all four in-gap states in402

the Y-junction shows remarkable similarities. In Fig.13(a) and (b) we show the LDOS of a sin-403

gle arm with N = 14 Majoranas of the Y-junction for both positive and negative coupling. The404

profiles do not show any visual differences, suggesting that also in more complex structures,405

such as the Y-junction, the only difference between the states is the interaction between the406

Majorana degrees of freedom.407
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Figure 13: Spatial profile of three chains of N = 14 Majoranas coupled in the Y-
junction for the four in-gap states (ψ0,1,2,3). We show the local density of states
for three magnetic fields h (blue circles, orange diamonds, green squares). Data is
presented for a single arm of the junction only. (a) Local density of states for positive
coupling α = 1. Note that the profiles are visually identical. (b) Same as in (a) but
for negative coupling α= −1.
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D Additional results X-junction408

D.1 In-gap spectrum for N = 8 Majoranas per arm409

The X-junction shows finite size effects that are expected for systems with edge states where the410

interaction between the edges can be continuously tuned and is distance dependent [12,42]. In411

Fig.14 we show the spectrum of the eight in-gap states for the X-junction with N = 8 Majoranas412

per arm as a function of the magnetic field h. Qualitatively, the spectrum behaves similar to413

the one depicted for N = 10 Majoranas per arm in Fig.6. That is, the states group into four414

parity pairs; pairs one and two show regular crossings, pair two and three cross only once,415

and pairs three and four do not cross; the parity gap within each pair closes at approximately416

the same time.417
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Figure 14: In-gap spectrum for the X-junction with N = 8 Majoranas per arm as a
function of the magnetic field h. Chains are coupled with a strength α = 1. States
group into four pairs (red, blue, green and pink curves); each pair consisting of a
state with negative and positive parity, crosses and dots respectively. We fix the four-
Majorana interaction strength g = 0.2. Amplitude of the oscillations is larger while
its frequency is smaller compared to the case of N = 10 Majoranas per arm (see
Fig.4). (a) Spectrum centered around its average. Red and green data cross once.
(b) Spectrum of pair one and two centered around its average, and the same for pairs
three and four. Only blue and red cross curves cross, green and purple do not. (c)
Spectrum of each pair centered around its respective average. Parity gap closes in all
pairs.
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D.2 Dependence on the four-Majorana interaction strength418

We show the dependence of the in-gap spectrum on the four-Majorana interaction strength g419

in Fig.15(a) for N = 10 Majorana fermions per arm and a fixed magnetic field h= 0.6. Similar420

to the Y-junction, the behavior of the in-gap spectrum strongly depends on the value of g. For421

small values parity pairs are nicely formed, and there is a clear divergence of the third and422

fourth pair from the first two as we approach the boundary of the incommensurate region. In423

stark contrast to this is the in-gap spectrum at g ≳ 0.18. Similarities between the negative424

and positive parity sectors in each pair is destroyed and there are a lot of sporadic crossings425

between the energy levels. Note, the first and second parity pairs, and the third and fourth,426

behave similar to those of the Y-junction.427

In Fig.15(b) we show the logarithm of absolute parity gap of each parity pair. A vanishing428

parity gap occurs at multiple instances of g for each pair. Remarkably, only in the region429

0.11 ≲ g ≲ 0.15 does this vanishing occur at approximately the same point. For small g430

the grouping of the first and second, and the third anf fourth parity pairs can be observed:431

vanishing of the parity gap of the first two pairs occurs simultaneously while it also occurs432

simultaneously for the third and fourth pair but at a different value of g. On the other boundary433
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Figure 15: Energy spectrum of the eight in-gap states of four chains coupled in the
X-junction geometry as a function of the four-Majorana interaction strength g. Data
is shown for N = 10 Majorana fermions per arm, coupled by a strength α = 1.0,
and a fixed magnetic field h = 0.6. States partner up with a single other state with
opposite parity P into parity pairs (blue, red, green and pink data).Crosses denote
parity −1 and dots +1. (a) Spectrum centered around its average. Formation of
parity pairs is destroyed for large g. Third and fourth pair diverge away from the first
two for small g. (b) Logarithm of the absolute value of the parity gap. Dips indicate
a vanishing of this gap. Parity pairs one and two (three and four) are dark purple
(neon pink) and odd (even) pairs open circles (crosses). For small g, the parity gap
vanishes simultaneously for the first and second parity pair and, equivalently, for the
third and fourth pair, but at a difference location. Parity gap vanishes at difference
locations for each pair for g large. Grey line with diamonds shows the parity gap for
two chains of N = 10 Majorana fermions coupled by a strength α = 1.33. The two
systems show similar behavior.

24



SciPost Physics Submission

vanishing of the gap is much more sporadic and occurs at different locations for each pair. We434

once again observe that the difference within the pairs of eigenvalues in the X-junction is435

similar to two chains of N = 10 Majoranas each coupled by a strength α= 1.33.436
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D.3 Spatial profile for all in-gap states437

We show the LDOS for a single arm of N = 10 Majoranas of the X-junction in Fig.16(a)-(c) for438

all in-gap states. We present the data for the same couplings as shown in Fig.7. Again, similar439

to the other two cases discussed in this study, all in-gap states show identical spatial profiles of440

the Majoranas, suggesting that these profiles are merely influences by the interaction between441

the edge states and not the442
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Figure 16: Spatial profile of four chains of N = 10 Majoranas each coupled at its
ends in the X-junction for three different coupling strengths α. We present the local
density of states for a single arm for the in-gap spectrum. We show the local density of
states for three magnetic fields h (blue circles, orange diamonds, green squares). (a)
Local density of states for the eight in-gap states (ψ0,1,2,3,4,5,6,7) for positive coupling
α= 1. Note that the profiles are visually identical. (b) Same as in (a) but for coupling
α= 0.5. (c) Spatial profiles for the four in-gap states (ψ0,1,2,3) for negative coupling
α= −1.
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