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Abstract: Rindler worldsheets are well known to transition into a tensionless regime in

the infinite acceleration limit, acquiring an emergent Carrollian structure. In this work, we

uncover an entirely new manifestation of such tensionless dynamics by constructing a time-

evolving Milne worldsheet within the future (expanding) and past (contracting) regions of

the background target spacetime. We show that as the Milne worldsheet approaches its

null horizons, it reveals a deep and previously unexplored interplay between tensionless

string dynamics and an emergent Carrollian structure, governed by an ultra-high frequency

limit in time evolution. Our results demonstrate that non-inertial string dynamics can

emerge in two structurally independent yet complementary settings—governed either by

worldsheet acceleration (Rindler) or by the frequency of its intrinsic time evolution (Milne).

Remarkably, we uncover a non-trivial duality-like correspondence between Rindler and

Milne worldsheets near their respective null horizons, both exhibiting identical tensionless

physics despite their distinct causal and dynamical origins. This discovery positions the

Milne construction as a genuine time-like counterpart to the ultra-relativistic (Carrollian)

or infinite-boost limit, offering new foundational insights into the deep structure of non-

inertial string theory.
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1 Introduction

Carrollian structures and Carrollian physics have emerged as compelling tools with a wide

range of applications. For comprehensive details of these developments, we refer to [1, 2].

The so-called Carroll regime is fundamentally tied to two complementary approaches. First,

it naturally arises in the ultra-relativistic limit, where the speed of light (c) approaches zero,

c→ 0 [3, 4].1 As a related aspect, Carroll gravity can be derived via a systematic ‘small c’

expansion of general relativity (GR) [2], which can be viewed as a perturbative expansion

1Readers should note that if the system in question has a characteristic velocity vc, the ultra-relativistic

limit for the Carroll regime should be interpreted as c/vc → 0.
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around the Carroll point c → 0.2 Alternatively, Carrollian geometry emerges on null

hypersurfaces, such as event horizons or conformal boundaries, due to the degenerate nature

of the induced spacetime metric [5–7]. These insights have found extensive application in

string theory, particularly in the study of tensionless limits at high energies [8–10], string

dynamics in black hole spacetimes [11–13], and microstate modeling of black holes [14].

To date, string theory remains arguably the most promising framework for constructing

a quantum theory of gravity. It generalizes the concept of point particles (as employed in

quantum field theory) to one-dimensional fundamental strings, thereby offering a natural

basis for a quantum theory of GR. These strings are characterized by an intrinsic length

scale ℓs, which determines their tension through the relation α′ ∼ ℓ2s (e.g., see (2.8)). In

non-interacting regime, the tension of strings acts as the sole free parameter and leads to

two extreme limits. The infinite tension limit (T → ∞) corresponds to the point-particle

limit (ℓs → 0), where strings lose their distinctive ‘stringy’ nature (α′ → 0), and string

theory reduces to the low-energy sector of GR and supergravity. Conversely, the tensionless

limit (T → 0) propels strings into an ‘ultra-stringy’ regime (α′ → ∞), where they become

infinitely stretchable (ℓs → ∞), pushing the framework into its ultra-high-energy sector, far

from the end of GR and supergravity. Notably, the tensionless limit bears some similarities

to the point-particle limit, akin to the massless limit in point-particles, where the string

worldsheet becomes null [15] and corresponds to the “null” sector of string theory. In

this context, the connection between null strings and Ambitwistor strings [16, 17] is also

noteworthy. All of this underscores the significance of investigating the tensionless limit of

string theory to gain a deeper understanding of how strings perceive generic null surfaces

and, possibly the spacetime singularities.

This work focuses on exploring the broad direction of probing the tensionless regime

of closed-string worldsheets through reaching their Carrollian point. Carrollian strings

naturally arise on the worldsheet when their tension vanishes [8] or when the background

target spacetime possesses a Carrollian structure [18]. Detailed studies of this tensionless ↔
Carrollian regime, both classical and quantum, have revealed intriguing aspects of string

theory to date.3 A key insight is that the degrees of freedom underlying tensionless strings

are fundamentally distinct from those in their usual tensile state. Interestingly, the Bo-

goliubov transformations (involving quantum modes, vacuum states, and oscillators) on

tensile worldsheets at the Carrollian limit help probe into their tensionless regime.

It has long been speculated (e.g., see [24]) that the distinction between closed and

open strings becomes blurred as soon as the tensionless limit is approached. Bagchi et al.

in [9, 21] provided a concrete demonstration of how an open string description and related

symmetries emerge from closed strings in the tensionless limit, which is contrary to the

conventional wisdom. They discovered the existence of a Bose-Einstein condensation of all

perturbative closed string degrees of freedom onto the emergent open string, further spec-

ulating a new phase transition at the point of vanishing string tension [21]. Furthermore, a

2An equivalent approach to the ‘small c’ expansion involves setting c = ϵĉ, where ϵ is a dimensionless

parameter, and expanding around ϵ→ 0.

3For details, readers are referred to the discussions in [8–10, 18–23] and the references therein.
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picture of “null string complementarity” has been observed for accelerated Rindler world-

sheets approaching their tensionless limit [11, 25]. Interestingly, all these manifestations

of the closed-to-open string transition are deeply connected to strings near the Hagedorn

temperature where a novel phase transition introduces new degrees of freedom [26]. At

this extreme high-temperature limit of string theory, strings effectively become tensionless

[27, 28], favoring the formation of long strings over heating up a gas of strings [29, 30].

Recently, investigation of the non-inertial worldsheets at the quantum level has become a

center of interest [31]. However, to date, there has been no independent or intrinsic inves-

tigation of tensionless physics on time-evolving worldsheets as a novel non-inertial branch,

in contrast to the established framework based on the null or Carrollian limit of Rindler

worldsheets studied in [11, 25]. Building on these insights, we aim to extend the existing

Carrollian analysis of inertial (Minkowski) and accelerated (Rindler) worldsheets to the

tensionless dynamics of a time-evolving worldsheet—referred to as the ‘Milne worldsheet’

in this paper.

More precisely, the aim of this work is motivated by the following critical aspects and

fundamental questions that remain unexplored:

• Let us consider three distinct sets of observers—OM, OR, and OK—residing on

Minkowski, Rindler, and Milne worldsheets, respectively. Naturally, OM has full ac-

cess to the entire background target spacetime, which is partitioned into four causally

disconnected regions: F (future), P (past), R (right), and L (left), as illustrated in

fig. 1. However, from the perspective of OM, the observer OR follows well-known hy-

perbolic trajectories and remains strictly confined to either the space-like separated

R or L Rindler wedges. By contrast, OK is confined to the time-like separated F

(top) and P (down) Milne wedges.4 The motion of OK is inherently non-inertial but

follows linear trajectories where time evolves while the space-like coordinate remains

fixed. Notably, there exists a special trajectory (e.g., refer to the η = 0 line in fig. 2)

where OK remains static in space while still undergoing time evolution—a possibil-

ity fundamentally absent in the case of OR. Evidently, neither OR nor OK has full

access to the entire Minkowski background spacetime. Therefore, from the perspec-

tive of the Minkowski worldsheet, non-inertial worldsheets emerge in two distinct yet

complementary ways: (i) the Rindler worldsheet, where acceleration generates R-L

entanglement between causally disconnected wedges, and (ii) the Milne worldsheet,

where time evolution drives F-P entanglement, allowing for both static and non-static

configurations. These formulations suggest that non-inertial string dynamics cannot

4Please bear in mind that the F and P regions are also conventionally referred to as the Future and Past

“Kasner wedges” in any generic spacetime dimension, as they respectively correspond to expanding and

contracting degenerate Kasner universes (e.g., see [32–36], as well as the excellent review [37] and references

therein). While all four regions (F, P, R, L) together can be mapped to a global Rindler spacetime via

coordinate transformations from Minkowski space, it is conventional to refer only to the static regions R

and L as the ‘Rindler wedges’. However, since the current paper employs a two-dimensional analysis for

the string worldsheet formulation, these F and P regions are also commonly referred to as “Milne wedges”,

since the degenerate Kasner geometry in two dimensions exactly reduces to the Milne universe under a

suitable change of coordinates (e.g., see [38]).
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Figure 1: A Minkowski spacetime diagram partitioned into four causally disconnected

regions: the right (R: x > c|t|) and left (L: x < c|t|) Rindler wedges, as well as the future

(F: ct > |x|) and past (P: ct < |x|) Milne wedges. Notably, the F and P regions of spacetime

correspond to the degenerate Milne universes, exhibiting highly anisotropic expansion and

contraction, respectively.

be fully described within a single unified framework but instead depend on the na-

ture of the underlying worldsheet evolution—whether governed by time evolution

or acceleration. More technically, it is well recognized that the physics of a target

spacetime is inherently imprinted onto its associated worldsheet. In this context,

the Minkowski target spacetime of the worldsheet tied to OM must be precisely di-

vided—half into the R and L regions and half into the F and P regions—between the

worldsheets of OR and OK, thereby giving rise to their respective Rindler and Milne

target backgrounds. This naturally suggests that the complete description of non-

inertial worldsheets is governed by a fundamental 1-to-2 correspondence between OM
and the pair (OR, OK). In other words, the physics of the Milne branch of non-inertial

worldsheets is not merely a complementary extension but an essential, missing piece

of a more comprehensive picture. Its independent exploration is therefore crucial to

achieving a deeper and more unified understanding of non-inertial string dynamics.

While the framework of tensile string theory and the tensionless limit on the Rindler

worldsheet have been extensively studied in [11, 25], a comprehensive analysis of

the Milne worldsheet remains an open problem. The fundamental differences be-

tween Rindler and Milne worldsheets introduce an inherent rigidity that prevents a

straightforward extrapolation of results from one framework to the other. Moreover,

the causal horizons separating Rindler and Milne wedges eliminate any direct com-
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munication between OR and OK from a field-theoretic perspective, reinforcing the

possibility that the physics governing these two worldsheets may be fundamentally

different. This naturally leads to the central question: What governs the dynamics

of string theory on a Milne worldsheet? Does it share a deep correspondence with

its Rindler counterpart, or do these two frameworks encode entirely distinct physical

principles? Addressing this question requires a non-trivial investigation, as any po-

tential equivalence or disparity between the two worldsheet frameworks must emerge

from a deeper analysis of their intrinsic structures, rather than relying solely on

their field-theoretic aspects—particularly in terms of quantum entanglement struc-

tures, causal properties, and the Bogoliubov transformations governing their quantum

modes. The outcome of such an analysis is expected to provide a new perspective on

non-inertial string dynamics, offering new insights into the interplay between string

theory, quantum field theory, and the causal structure of spacetime.

• Tensionless worldsheets are known to exhibit a degenerate structure, as exemplified

by the Rindler worldsheet when OR reaches the causal boundary or null horizons

from the R or L regions by taking the infinite acceleration limit [11, 25]. This ten-

sionless limit is fundamentally linked to an infinite boost, giving rise to an emergent

Carrollian structure on the accelerated worldsheet. A distinct yet comparable sce-

nario may occur for OK, where the worldsheet observer approaches the same null

horizons from the side of F or P regions, naturally leading to the question of whether

a tensionless limit can be realized in the Milne counterparts of non-inertial world-

sheets. More precisely, one may ask: Do the Rindler and Milne worldsheets exhibit

identical physics as they approach their respective null horizons? If so, what is the

precise nature and interpretation of the limiting process in Milne time evolution that

corresponds to the well-known tensionless or Carrollian point attained by taking the

infinite acceleration limit in the Rindler case? Can a time-like analog of the Carrol-

lian or infinite boost limit be defined on non-inertial worldsheets? Investigating these

questions requires identifying a characteristic parameter governing time evolution in

the Milne worldsheet that plays a role analogous to the acceleration parameter in

the Rindler counterpart. A preliminary hint arises from the field-theoretic perspec-

tive: the Bogoliubov transformations relating the quantum modes of OR and OM
are structurally identical to those between OK and OM, provided an equivalence is

established between Rindler acceleration and the frequency of time evolution (e.g.,

see [39]). Extending this analysis to string theory will clarify the role of Carrollian

structures as probes for tensionless non-inertial worldsheets. If a well-defined time-

like Carrollian limit exists, it could transform the existing 1-to-2 correspondence

between OM and the pair (OR, OK) into an emergent 1-to-1 unification. In this sce-

nario, OR and OK —which were previously causally disconnected—would gain mutual

access to each other’s physics along a shared limiting framework, bridging the gap

between acceleration-driven and time-evolution-driven worldsheets. Such a construc-

tion would not only solidify the foundational role of the Milne worldsheet but also

reveal deeper connections between tensionless string theory, Carrollian limits, and
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non-Lorentzian extensions of string dynamics.

• The worldsheet vacuum always plays a pivotal role in testing and verifying string-

theoretical predictions and phenomena. The construction of Rindler worldsheets in

[11, 25] has already demonstrated the emergence of an evolving vacuum that contin-

uously transforms with increasing worldsheet acceleration, allowing the Minkowski

vacuum to be expressed as a squeezed or coherent state. Through the lens of quan-

tum field theory, this coherent Minkowski vacuum is often interpreted as an entangled

state between the modes residing in the R and L Rindler wedges, and OR necessar-

ily perceives this acceleration-induced Minkowski vacuum as a thermalized state, in

accordance with the Unruh effect [40]. Interestingly, recent studies have shown that

the Minkowski vacuum can also be structured through entangled states spanning the

F and P wedges, leading to an alternative realization of the Unruh effect (e.g., see

[34, 35, 39]). In fact, it has been argued that the typical intrinsic nature of the fre-

quency of the time-evolution (as compared to the Rindler acceleration parameter)

enables the timelike Unruh temperature (5.11) more feasible for detection [39]. This

naturally raises several fundamental questions: Can the Minkowski vacuum be equiv-

alently constructed on the Milne worldsheet, just as it is on the Rindler worldsheet? Is

it possible to achieve a global representation of the Minkowski vacuum by entangling

both the Milne and Rindler components? What is the precise interpretation and im-

plication of the notion of time-like Unruh temperature in the context of a non-inertial

worldsheet vacuum?

Furthermore, both the closed Rindler worldsheet vacua and the induced Minkowski

vacuum are known to manifest as open string-bound states of opposite nature at

the tensionless limit [11, 25], a phenomenon deeply tied to Hagedorn physics at the

extreme high-energy regime of string theory [26–28]. This naturally prompts a crucial

investigation: Does the same “null string complementarity” picture hold between the

Milne worldsheet vacua and the corresponding time-like induced Minkowski vacuum at

the Carrollian/tensionless limit? Additionally, can the time-like Unruh temperature

of non-inertial worldsheet vacua serve as a probe or even a mechanism for triggering

the Hagedorn transition in string theory?

Motivated by this,5 we now present the technical objective of this paper by briefly

elucidating the structure of the tensionless Milne worldsheet in comparison to its Rindler

counterpart. The Rindler worldsheet is analogous to an accelerated observer moving within

a background target spacetime spanning space-like separated wedges (e.g., R and L in figs. 1

and 2). It has been established that, in the limit of infinite acceleration, the Rindler world-

sheet manifests to a tensionless state [11, 25]. This transition effectively corresponds to

reaching the accelerated worldsheet horizon by inducing a degenerate metric structure.

Consequently, this links the Carroll limit of the background target spacetime to a Carroll

5This motivation extends beyond the central questions highlighted as well as answered in this paper.

Further open problems and promising future directions are outlined in section 5.4.
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limit of the accelerated worldsheet. In the present work, our technical objectives are three-

fold. First, we extend the analysis by replacing the target spacetime with one that spans

time-like separated wedges (e.g., F and P in figs. 1 and 2). This worldsheet setup defines

a structure analogous to a time-evolving observer, which we recognize as the Milne world-

sheet. Next, we embed the standard Milne physics of quantum field theory [32–35, 39, 41]

into the string worldsheet theory. Specifically, we consider quantum modes living in the

two causally disconnected Milne worldsheet wedges. These two sets of modes are inherently

independent, yet their entanglement must suffice to describe the entire Milne worldsheet

via a quantum mode expansion. Notably, this ‘time-like entanglement’ has been shown to

have an interpretation exactly analogous to the conventional entanglement between modes

in the Rindler worldsheet wedges [39] (also see [41, 42]). Finally, we hypothesize that the

mode functions of the Milne worldsheet must relate to their inertial (i.e., Minkowski) coun-

terparts via Bogoliubov transformations, analogous to the Rindler case, but parameterized

by the dynamics of time evolution. Our ultimate goal is to determine whether limiting the

characteristic time-evolution parameter—and correspondingly the mode functions and Bo-

goliubov coefficients— can enable the construction of a Carrollian structure for the Milne

worldsheet. Such a Carrollian structure would be expected to manifest as the ‘tension-

less limit’ of time-evolving string worldsheets. In this process, we aim to address all the

fundamental questions outlined earlier in our motivation.

Some aspects of the technical setup and analysis in this paper may appear similar

to those in [11, 25], which constructed the tensionless Rindler worldsheet. Admittedly,

both studies primarily employ the well-established methodology of Unruh [40] to derive

the necessary Bogoliubov transformations relating the modes and oscillation operators of

the non-inertial worldsheet to their Minkowski counterparts. However, the present work

extends this framework by providing a more rigorous and generalized treatment of the

underlying computations.6 Moreover, to facilitate a comparative analysis, the structural

organization of the Milne worldsheet framework has been deliberately aligned with that

of the well-established Rindler worldsheet [11, 25]. Nevertheless, as the paper progresses,

we systematically highlight the fundamental differences in interpreting the Milne world-

sheet parameters, emphasizing how these distinctions shape its characteristic features and

outcome of the current study.

The rest of this paper is organized as follows. In section 2, we provide a concise re-

view of the foundational aspects of ordinary Milne physics, a textbook overview of the

worldsheet theory of closed tensile strings, and the setup and limits of tensionless string

worldsheets. In section 3, we introduce the novel framework of time-evolving Milne world-

sheets, formulating their quantum mode expansion, quantum vacuum state, and associated

6For interested readers, the detailed derivations presented in sections A, 3.3 and 3.4 serve as a systematic

introduction to Unruh’s treatment [40] (also see [43]) in the context of string worldsheets. Unlike [11, 25],

our analysis does not impose any prior restrictions or set the velocity of light to unity (c = 1) for Carrollian

considerations. More specifically, readers are encouraged to explore this formulation in terms of the standard

and elegant light-cone coordinate representation, which allows comprehensive handling of all left- and right-

moving worldsheet modes, along with their Hermitian conjugates, across both causally disconnected wedges

of the non-inertial worldsheet framework.
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Figure 2: The possible trajectories of Minkowski observers in the future (F) and past

(P) Milne wedges, with coordinates (ξ, η) ∈ (−∞,+∞), bounded by the two null horizons

J +(ξ = −∞, x = +ct, η = +∞) and J −(ξ = −∞, x = −ct, η = −∞). The constant η

straight lines (in red) represent the only physically allowed trajectories, where the Milne

time evolves. Notably, all observers along the η = 0 line remain static yet non-inertial.

Bogoliubov transformations. Subsequently, section 4 explores the possible limits on a closed

Milne worldsheet, leading to the emergence of Carrollian structures and the correspond-

ing tensionless physics. Finally, section 5 summarizes the key findings and discusses the

broader implications of the tensionless Milne worldsheets. Given the technical intricacies

of the subject, we include section A to present detailed formulations of the ‘global modes’

essential for structuring the Milne worldsheet expansion discussed in section 3.

2 Preliminaries: a quick tour to the basics

2.1 The Milne physics

The inertial metric describing a Minkowski spacetime in global coordinates is given by

ds2M = c2dt2 − dx2 − dx2
⊥, (2.1)

where x⊥ represents coordinates that are transverse to the plane (ct, x). The top Milne

wedge F (ct > |x|) and down Milne wedge P (ct < |x|) as depicted in fig. 2 can be connected

to the Minkowski spacetime (2.1) via adopting the following transformations [33, 34, 39, 41]

(F) : t = a−1eaξ cosh (aη/c) , x = ca−1eaξ sinh (aη/c) ,

(P) : t = −a−1eaξ cosh (aη/c) , x = −ca−1eaξ sinh (aη/c) .
(2.2)
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Any specific Minkowski observer, satisfying the transformations (2.2) and their inverse

(2.5), moves along a fixed constant η coordinate line, intersecting with all the constant ξ

hyperbolas in the Milne wedges F and P, as described by:

c2t2 − x2 = c4κ−2, ct = x coth (aη/c) , (2.3)

where a is introduced as a real parameter with units of sec−1, following the convention in

[39, 41]. Throughout this paper, we refer to a as the Milne parameter. Notably, κ = ac e−aξ

represents an evolution in time analogous to the proper acceleration for Rindler observers.

The coordinates ξ and η are adopted respectively as the ‘time’ and ‘space’ coordinates of

the Milne spacetime (in both the F and P wedges), resulting in the following metric

ds2K = e2aξ
(
c2dξ2 − dη2

)
− dx2

⊥. (2.4)

The inverse of the transformations (2.2) is given by,

η =
c

2a
ln

(
ct+ x

ct− x

)
, ξ =

1

2a
ln

(
a2

c2
(
c2t2 − x2

))
. (2.5)

Therefore, at any moment, one can interpret ac as the redefined time-evolution parame-

ter (analogous to the redefined acceleration for Rindler observers) of an observer in Milne

spacetime (2.4) (expanding in F and contracting in P). The Milne- or time-evolution be-

comes infinite when one hits the null horizons at ξ → −∞ and η → ±∞. Notably, for a

Rindler observer with a uniform acceleration a′ in the R and L wedges (see figs. 1 and 2),

the scaling parameter a should be substituted by a′/c.

Note that here the η = constant straight lines are timelike, and therefore, any motion

of an object must follow these trajectories. Use of (2.3) yields,

t =
eaξ

a
cosh (aη/c) . (2.6)

So these trajectories can be described by the above relation, where on the right-hand side,

only ξ is changing along the path of a moving object. Moreover, in the F sector, as the

object moves along these trajectories, the space increases. Therefore, the trajectories can

be related to the expansion of space. The P sector corresponds to the reverse one, i.e.,

contraction of space. Moreover, the black hole interior geometry in Kruskal coordinates

bears considerable similarity with F and P sectors, except the presence of singularity.

Therefore, understanding physics in the F-P sectors illuminate both the Milne and black

hole sides.

2.2 Worldsheet theory of tensile closed strings

We start by revisiting a closed tensile bosonic string moving in a D-dimensional Minkowski

background spacetime with metric ηµν , (µ, ν = 0, . . . , D−1). The related Polyakov action,

which describes D massless scalar fields Xµ(σa) coupled to the two-dimensional dynamical

worldsheet metric γab(σ
a) with coordinates σa = (τ, σ) for a, b = 0, 1, is given by [44]

SP = −T
2

∫
dτdσ

√−γ γab∂aXµ∂bX
νηµν , (2.7)
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where γ = det γab and T is the string tension related to the conventional Regge slope

parameter α′ (in units of string length squared) as

T =
1

2πα′ . (2.8)

In the conformal gauge, where γab = diag(−1, 1), and under the periodic boundary condi-

tion for the closed string (along the spatial coordinate σ with arbitrary periodicity ℓ),

Xµ(τ, σ) = Xµ(τ, σ + ℓ), (2.9)

the most general solution to the equations of motion corresponding to (2.7) is usually

expressed in a standard mode expansion, as described in [44]. However, the objective of

this work requires restructuring the conventional mode expansion of the worldsheet solution

and expressing it in the following form, which resembles a simple Klein-Gordon massless

scalar field solution:

Xµ(τ, σ) = xµ + α′pµτ +
√
2πα′

∑
n>0

[
α̃µnṼn + αµnVn + α̃µ−nṼ∗

n + αµ−nV∗
n

]
, (2.10)

where α̃µ0 = αµ0 =
√

α′

2 p
µ. This solution describes the motion of the string’s center-of-mass,

with position xµ and momentum pµ, while carrying a superposition of an infinite collection

of right- and left-moving oscillation modes, with coefficients α̃µn and αµn, respectively. The

right-moving Ṽn and left-moving Vn modes, along with their Hermitian conjugates {Ṽ∗
n,V∗

n},
are successively expressed as

Ṽn =
ie−iωn(τ−σ/c)

√
4πn

, Ṽ∗
n = − ie

iωn(τ−σ/c)
√
4πn

,

Vn =
ie−iωn(τ+σ/c)

√
4πn

, V∗
n = − ie

iωn(τ+σ/c)

√
4πn

.

(2.11)

It is important to note that the parameter ωn = 2πcn
ℓ serves as the frequency for the above

mode functions on a closed inertial worldsheet with arbitrary periodicity ℓ, satisfying the

closed string condition (2.9). The oscillators {α̃µn, αµn} are essentially a rescaled creation

operators (for n < 0) and annihilation operators (for n > 0), satisfying the commutation

relation7

[α̃µn, α̃
ν
m] = [αµn, α

ν
m] = nηµνδn+m,0, (2.12)

and related via their respective hermitian conjugates α̃µ−n = (α̃µn)† and αµ−n = (αµn)†.

Furthermore, they annihilate a Minkowski worldsheet vacuum state |0M⟩, defined to obey:

α̃µn|0M⟩ = αµn|0M⟩ = 0, ∀ n > 0. (2.13)

7For each mode n and oscillation direction µ, the commutation (2.12) satisfy a quantum harmonic

oscillator algebra with the standard normalization α̃µ
n → √

nα̃µ
n, α̃

µ
−n → √

n(α̃µ
n)

†, and similarly for the

holomorphic counterparts.
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2.3 Tensionless strings and their worldsheet theory

In this section, we discuss two widely adopted and well-established approaches for formu-

lating tensionless string theory from its tensile counterpart. The first approach, as outlined

in [45], involves constructing the action and formulating the tensionless theory from first

principles, providing an intrinsic look at tensionless strings. The second approach, known

as the limiting approach [8, 9], involves taking the appropriate limit on worldsheet coor-

dinates derived from the tensile closed string theory. This limiting process, referred to

as worldsheet contraction, results in the so-called “ultra-relativistic limit” or “Carrollian

limit” [46], where the worldsheet speed of light tends to zero. Our goal is to briefly revisit

both approaches to access their mutual integrity, which will essentially lead us to re-derive

the Bogoliubov transformations between the tensionless operators and their tensile coun-

terparts within the context of the inertial Minkowski worldsheet of closed strings.

Revisiting the theory of a tensile worldsheet propagating in a Minkowski target space,

one can observe that the action (2.7) becomes ill-defined when tension T of fundamen-

tal strings vanishes. However, as demonstrated in [45], there is a systemic treatment to

construct an intrinsic action describing the tensionless string worldsheets,

S0 =

∫
dτdσ V aV bhab, hab = ∂aX

µ∂bX
νηµν , (2.14)

where hab acts as a induced metric which is degenerate or “null” (i.e., dethab = 0) on the

tensionless worldsheet. V a is introduced as a vector density replacing the tensile metric

density T √− det γab γ
ab → V aV b at T = 0. In the transverse gauge, V a = (1, 0), and by

incorporating the closed string periodicity condition (2.9), the field equations describing the

tensionless worldsheet (2.14) were originally solved through a mode expansion involving

intrinsic yet anharmonic oscillators [9]. However, it is possible to transform the entire

setup into the framework of the standard harmonic oscillator basis, expressing the mode

expansion for the tensionless closed Minkowski worldsheet as

Xµ(τ, σ) = xµ + α̂′p̂µτ +
√
2πα̂′

∑
n>0

[
c̃µnṼn + cµnVn + cµ−nṼ

∗
n + cµ−nV

∗
n

]
, (2.15)

where c̃µ0 = cµ0 =
√

α̂′

2 p̂
µ represents the zero-mode part in terms of the string’s center-of-

mass momentum p̂µ, and the constant α̂′ (with dimensions of length-squared) replaces the

analogous α′ parameter in the tensile mode expansion (2.10). The harmonic oscillators

{c̃µn, cµn, c̃µ−n, cµ−n} correspond to the operators of right- and left-moving tensionless world-

sheet modes. These operators do not interact with each other and satisfy the commutation

relations,

[
c̃µn, c̃

ν
m

]
=
[
cµn, c

ν
m

]
= nηµνδn+m,0, (2.16)

with their respective Hermitian conjugates c̃µ−n = (c̃µn)† and cµ−n = (cµn)†. The right- and

left-moving {Ṽn, Vn}, along with their conjugates {Ṽ ∗
n , V

∗
n } have a frequency ωn = 2πcn

ℓ ,
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are successively given by:

Ṽn =
i (1− iωnτ) e

iωnσ/c

√
4πn

, Ṽ ∗
n = − i (1 + iωnτ) e

−iωnσ/c

√
4πn

,

Vn =
i (1− iωnτ) e

−iωnσ/c

√
4πn

, V ∗
n = − i (1 + iωnτ) e

iωnσ/c

√
4πn

.

(2.17)

Next, we will explore how the c-oscillators intrinsically characterize the quantum struc-

ture of a tensionless worldsheet and how they map to their tensile counterparts, i.e., the

α-oscillators. To do this, we must revisit the framework developed in [8, 9], which intro-

duces a parametric space by limiting the tensile theory, corresponding to the string tension

being exactly zero. This approach successfully recovers all the physics and results associ-

ated with intrinsic tensionless strings. The basic premise of this limiting approach lies in

the physical interpretation of the tensionless limit of fundamental strings. As the tension

approaches zero, fundamental strings become long and floppy, and their length tends to

infinity. Technically, this situation can be realized in worldsheet coordinates by setting the

limit σ → ∞. However, directly applying σ → ∞ would disrupt the “closedness” condition

(2.9) of strings, since their ends are fixed and identified in terms of a periodic σ. Instead

of taking σ → ∞, we can alternatively consider a limit where [9],

σ → σ, τ → ϵτ, α′ ≡ α̂′

ϵ
, ϵ→ 0. (2.18)

The above approach is referred to as the worldsheet contraction. The tensionless limit

(2.18) corresponds to an infinite boost limit β = σ
cτ → ∞ on the worldsheet. Consequently,

this infinite boost tensionless limit can also be understood as the so-called Carrollian or

ultra-relativistic limit [6, 47],8

c→ ϵc, β ≡ β̂

ϵ
, ϵ→ 0, (2.19)

where β̂ is the Carroll boost parameter. This algebraic realization sets the speed of light c

to zero on the closed string worldsheet, rendering it a null or degenerate manifold. Notably,

one must adopt either limit (2.18) or (2.19) exclusively to avoid ambiguity in structuring

a tensionless worldsheet. By carefully implementing the typical limit (2.18) at every stage

of the tensile worldsheet setup in section 2.2, one can validate the quantum mode expan-

sion (2.15) of an intrinsic tensionless string worldsheet. This process leads to deriving

the intrinsic tensionless oscillation operators in terms of the tensile α operators. Finally,

switching to the harmonic c-oscillator basis precisely reproduces the mode expansion (2.15)

associated with the contracted quantum modes (2.17), resulting in the following Bogoli-

ubov transformations between the tensionless and tensile mode creation and annihilation

8Since the Minkowski worldsheet is inertial, the infinite boost limit β = v
c
→ ∞ can be achieved only

by taking the Carrollian limit c→ 0 for a uniform worldsheet velocity v.
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operators (for all n > 0):

c̃µn = β+α̃
µ
n + β−α

µ
−n, cµn = β+α

µ
n + β−α̃

µ
−n,

c̃µ−n = β+α̃
µ
−n + β−α

µ
n, cµ−n = β+α

µ
−n + β−α̃

µ
n,

(2.20)

where β± = 1
2

(√
ϵ± 1√

ϵ

)
. One must keep in mind that all the above identifications

remain valid as ϵ → 0. However, the current framework of the tensionless worldsheet

induces a parametric evolution in ϵ that defines a natural ‘flow’ valid throughout the

parameter space ϵ ∈ [1, 0]. This flow essentially leads us to interpret the c-oscillators

(2.20) as a set of evolving creation and annihilation operators {c̃µn(ϵ), cµn(ϵ), c̃µ−n(ϵ), cµ−n(ϵ)},
which interpolate between the original tensile pairs

{
α̃µn, α

µ
n, α̃

µ
−n, α

µ
−n
}
at ϵ = 1 and their

tensionless counterparts {c̃µn, cµn, c̃µ−n, cµ−n} as ϵ → 0. These operators indeed annihilate an

evolving vacua |0c(ϵ)⟩ , which changes with respect to the ϵ parameter:

|0c(ϵ)⟩ : c̃µn(ϵ)|0c(ϵ)⟩ = cµn(ϵ)|0c(ϵ)⟩ = 0, ∀ n > 0. (2.21)

The tensionless vacuum state |0c⟩ is obtained as a special limiting case of the tensile evolving

vacua (2.21), i.e., |0c⟩ = limϵ→0|0c(ϵ)⟩.

3 Milne road to time-evolving worldsheets

This section elucidate the setup of embedding the Milne physics on string target space

and worldsheets, followed by exploring their quantum mode expansion and the Bogoliubov

transformations of related oscillators.

3.1 From Minkowski to Milne worldsheet: the embedding setup

Now, we aim to explore the closed string worldsheet moving in a Milne target spacetime,

which resides in the analogous F and P regions as in fig. 2. In this context, we first express

the target spacetime metric for the Minkowski worldsheet (2.7) as

ds2 =
(
cdX0

)2 − (dX1
)2 − (dXi

)2
, ∀ i ∈ (2, D − 2). (3.1)

We then consider the inertial components {X0, X1} subject to the standard transformations

(2.2) into a new accelerated set {X̄0, X̄1} while keeping the other D − 2 spatial directions

Xi invariant, yielding:

X0 = ±a−1eaX̄
0
cosh

(
aX̄1/c

)
, X1 = ±ca−1eaX̄

0
sinh

(
aX̄1/c

)
, Xi = X̄i, (3.2)

where ± denotes the F and P wedges, respectively. The above transformations, in turn,

embed the closed string worldsheet into a time-evolving (expanding in F and contracting

in P) Milne target spacetime having a proper Rindler acceleration analogous ac. Then the

metric describing this new target spacetime is given by,

ds2 = e2aX̄
0
[(
cdX̄0

)2 − (dX̄1
)2]− (dXi

)2
, (3.3)
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where the related Milne horizons correspond to the regime X̄0 → −∞ and X̄1 → ±∞
by setting an infinite time-evolution limit a

c → ∞. Notably, throughout this work, we

always consider the closed string with a Milne worldsheet effectively propagating only in

two directions, and the i-directions do not depend on the related worldsheet coordinates.

It is also important to note the notion of two distinct observers associated with the

Minkowski and Milne worldsheets: one being an inertial observer traveling through flat

Minkowski spacetime, and the other being a time-evolving observer moving within Milne

spacetime. The induced metric on the newly embedded worldsheet is expressed as follows

hab ∝ e2aX̄
0
∂aX

µ∂bX
νηµν , ∀ µ, ν ∈ (0, 1). (3.4)

This metric remains regular everywhere except in the limit where X̄0 → −∞, which cor-

responds to approaching the horizons of the Milne target space. In this limit, the metric

(3.4) degenerates as its conformal factor e2aX̄
0
becomes non-invertible and vanishes. In

other words, when embedding a worldsheet into a Milne target space, certain ‘divergent

points’ also emerge on the worldsheet metric. These points can be interpreted as the loca-

tions where a worldsheet horizon is induced and coincides with the target space horizon.

In section 4, we will also explore how these worldsheet divergent points correspond to the

limit a
c → ∞ where the Milne worldsheet becomes ‘null’ or ‘tensionless’.

In this work, we examine a scenario in which the worldsheet of the time-evolving string

under consideration is assumed to uphold the same physical structure as the target space-

time in which it is embedded. More precisely, we argue that when a string propagates in

a Milne background, the worldsheet can inherit a corresponding Milne structure from the

target spacetime.9 Therefore, when considering the mapping Xµ(τ, σ) → X̄µ(f(τ, σ)), we

must associate the Milne worldsheet with new coordinates (ξ, η), which are reparametriza-

tions of their Minkowski counterparts (τ, σ), given by

(F) : τ = a−1eaξ cosh (aη/c) , σ = ca−1eaξ sinh (aη/c) ,

(P) : τ = −a−1eaξ cosh (aη/c) , σ = −ca−1eaξ sinh (aη/c) .

(3.5)

These transformations induce a two-dimensional metric structure for the closed string Milne

worldsheet,

ds2 = e2aξ
(
c2dξ2 − dη2

)
. (3.6)

Here all the related trajectories describing the evolution of the Milne worldsheet are divided

into the causally disconnected regions F (cτ > |σ|) and P (cτ < |σ|). These regions are

bounded by two horizons, defined in terms of the worldsheet coordinates as

cτ = ±σ, η = ±∞, ξ = −∞, (3.7)

9It is important to underscore that such a choice of matching geometrical structures between the world-

sheet and target spacetime is not a universal feature. There exist numerous examples in string theory—such

as the Gomis–Ooguri string [48]—where the worldsheet and target space exhibit different structures.
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where the worldsheet time-evolution hits the limit a→ ∞. At this point, we can also define

the inverse mapping between the coordinates of the Minkowski and Milne worldsheets via

η =
c

2a
ln

(
cτ + σ

cτ − σ

)
, ξ =

1

2a
ln

(
a2

c2
(
c2τ2 − σ2

))
. (3.8)

Notably, this mapping diverges at the two singular points cτ = ±σ where the Milne world-

sheet metric (3.6) degenerates. This corresponds to the analogous notion of reaching the

horizons of the associated Milne target space, which in turn induces similar horizons on its

worldsheet.

3.2 Periodicity and its regularization

However, it is important to note that the closed string worldsheet with Milne or acceler-

ated coordinates (ξ, η) is technically distinct from the worldsheet with Minkowski or inertial

reparametrization (τ, σ). Arguably, the mapping from an inertial to an accelerated world-

sheet actually induces “folds” on the associated closed strings [11]. In this context, the

divergent points cτ = ±σ associated with the mapping (3.8) are precisely where these folds

appear. The incorporation of time-evolution on the worldsheet causes the closed string to

become increasingly elongated, eventually becoming infinitely stretched at the divergent or

fold points (e.g., see fig. 4). The entire scenario can be viewed as if the Milne worldsheet

splits into two causally disconnected pieces in the (ξ, η) parametrization, corresponding

to cτ > σ (top Milne wedge F) and cτ < σ (down Milne wedge P). In other words, the

Milne worldsheet can be interpreted as two open strings glued together at the fold points

cτ = ±σ, with appropriate boundary conditions to preserve the closed string properties.

In the above discussion, we now need to explore how the periodicity of the worldsheet

is affected by the Milne parametrization (ξ, η). This is crucial in defining the ‘closed-

ness’ condition for the string with Milne worldsheet X̄µ(ξ, η). From the perspective of

the Minkowski target space, the closed string worldsheet always satisfies the boundary

condition,

Xµ(τ, σ) = Xµ(τ +∆τ, σ +∆σ), ∆τ = 0, ∆σ = ℓ, (3.9)

where ℓ is an arbitrary periodicity of the Minkowski worldsheet explicitly associated with

the coordinate σ. Evidently, when transitioning from the Minkowski to Milne mapping

Xµ(τ, σ) → X̄µ(ξ, η), this condition (3.9) must be modified. For the closed string to remain

closed in this new embedding, we must impose the following condition for µ = (0, 1):

Xµ(τ, σ) =


±a−1eaX̄

0(ξ(τ,σ),η(τ,σ)) cosh
(
aX̄1 (ξ(τ, σ), η(τ, σ)) /c

)
±ca−1eaX̄

0(ξ(τ,σ),η(τ,σ)) sinh
(
aX̄1 (ξ(τ, σ), η(τ, σ)) /c

) ,
(3.10)

= Xµ(τ, σ + ℓ) =


±a−1eaX̄

0(ξ(τ,σ+ℓ),η(τ,σ+ℓ)) cosh
(
aX̄1 (ξ(τ, σ + ℓ), η(τ, σ + ℓ)) /c

)
±ca−1eaX̄

0(ξ(τ,σ+ℓ),η(τ,σ+ℓ)) sinh
(
aX̄1 (ξ(τ, σ + ℓ), η(τ, σ + ℓ)) /c

) .
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With this periodic condition in the embedding of the non-inertial target space, the related

Milne worldsheet with (ξ, η) parametrization must be induced with an effective periodicity

Leff along the angular direction ξ,

X̄µ(ξ, η) = X̄µ(ξ +∆ξ, η +∆η), ∆ξ = Leff , ∆η = 0. (3.11)

Interestingly, this effective periodicity appears along the time-like coordinate ξ, which was

space-like in the original setup (3.9) of its inertial (Minkowski) counterpart. Moreover, this

characteristic contrasts with the analogous setup of an accelerated Rindler worldsheet, as

developed in [11] (e.g., refer to Section 5.2). To understand this, let us revisit the trans-

formation (3.10), which shifts the worldsheet target space from Minkowski to Milne. This

transformation introduces a non-inertial frame evolving in time (measured by the Milne pa-

rameter a) along X0. Consequently, the Milne worldsheet structure undergoes deformation

due to stretching along the time-like ξ coordinate. To counterbalance this deformation, the

closed Milne worldsheet must incorporate the periodicity or boundary condition (3.11). It

is also crucial to note that the equivalence between the ‘closedness’ conditions in eqs. (3.9)

and (3.11) is well-defined and comparable only at τ = 0.10 However, this setting will in-

duce a singularity (an artifact of the divergences due to the worldsheet horizon situated

at cτ = ±σ) and hit our present setup for computing the effective periodicity Leff . To

regulate this, we consider that the closedness condition (3.11) must be accompanied by an

effective periodicity in the following form:

Leff = ξ(0, ℓ)− ξ(0, 0) = lim
φ→0

1

2a

[
ln

(
a2

c2
(
0− (φ+ ℓ)2

))
− ln

(
a2

c2
(
0− φ2

))]
. (3.12)

In this simplistic setup, we set a constant parameter φ as the initial value of the inertial

σ coordinate and define a regularized effective periodicity Lφ for the Milne worldsheet of

closed strings, given as

Lφ =
1

a
ln

(
1 +

ℓ

φ

)
= ξ(0, φ+ ℓ)− ξ(0, φ). (3.13)

Further, the above regularization setup needs to be appropriately accounted for in the

original mapping (3.5) between Minkowski and Milne worldsheets. The regularized trans-

formations of their coordinates are given by

(F) : τ = a−1ea(ξ−ψ) cosh (aη/c) , σ + φ = ca−1ea(ξ−ψ) sinh (aη/c) ,

(P) : τ = −a−1ea(ξ−ψ) cosh (aη/c) , σ + φ = −ca−1ea(ξ−ψ) sinh (aη/c) ,
(3.14)

where ψ is introduced as a regularization parameter in the Milne worldsheet coordinates

to capture the effect of considering the initial value ξ(0, φ) in step (3.13). Now, if we look

at the two coordinate patches (τ, σ) and (ξ, η) in the regularized mapping (3.14), there

10This can be understood by considering the Milne worldsheet as a hyperboloid with constant η slices

forming elliptical cross-sections. In the inertial case, at constant τ , smoothly connected circular slices

appear parallel to the x-axis. The origins of the inertial τ and non-inertial η slices coincide only at τ = 0.
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exists an offset between their origins. However, this mismatch can be adjusted by tuning

the non-inertial parameter ψ in terms of the inertial parameter φ via,

φ = ± c
a
e−a(ψ−

iπ
2a). (3.15)

It is evident that as we approach the horizon cτ = ±σ of the non-inertial worldsheet, its

time-evolution increases (i.e., ac → ∞), causing the regularization parameter φ → 0 while

assuming ψ is positive.11 In this extremal limit, the effective periodicity approaches:

Leff → Lφ ≈ 1

a
ln

(
aℓ

c

)
+ ψ. (3.16)

At this point, the inverse transformations between the regularized worldsheet coordinates

are expressed as

η =
c

2a
ln

(
cτ + σ + φ

cτ − σ − φ

)
, ξ − ψ =

1

2a
ln

(
a2

c2
(
c2τ2 − (σ2 + φ)2

))
. (3.17)

The above-developed setup of regularized coordinates and periodicity of the Milne world-

sheet will play a crucial role in the analysis of their quantum mode expansion in the

next section. Notably, readers familiar with the literature may find these relations closely

analogous to those of the Rindler worldsheet [11, 25], although the interpretation of the

parameters involved is entirely different.

3.3 Quantum mode expansions

We have already established that the two-dimensional metric structures of the Minkowski

and Milne worldsheets are conformally connected. Therefore, the Milne worldsheet X̄µ(ξ, η)

must satisfy the same two-dimensional massless Klein-Gordon equations of motion (EOM)

as the conformal gauge-fixed Minkowski worldsheet Xµ(τ, σ):

□ξ,ηX̄
µ = 0 = □τ,σX

µ, (3.18)

along with the Virasoro constraints:

∂ξX̄
µ∂ηX̄µ = 0, (∂ξX̄

µ)2 + (∂ηX̄
µ)2 = 0, (3.19)

where□ξ,η = (c−2∂2ξ−∂2η) is the D’Alembertian on the worldsheet with (ξ, η) reparametriza-

tion. Consequently, we can now express the corresponding mode expansion solution, fol-

lowing the schematic form of (2.10) for the inertial worldsheet. Here, each mode-expansion

component must be expanded with the associated mode functions and oscillation operators

in both the F and P wedges for the Milne worldsheet. In this context, the most general

11To ensure that ψ remains positive in the definition (3.15), it is necessary to satisfy the condition

0 < |aφ
c
| < 1. In the present analysis, we assume this inequality holds consistently, even as we approach

the Milne worldsheet horizon limit a
c
→ ∞, by carefully fixing the regularization parameter φ→ 0.
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solution to the EOM (3.18) is given by:

X̄µ(ξ, η) = x̄µ + α′p̄µξ +
√
2πα′

∑
n>0;
Λ=F,P

[
β̃Λ µ
n ŨΛ n + βΛ µ

n UΛ n + β̃Λ µ
−n ŨΛ ∗

n + βΛ µ
−n UΛ ∗

n

]
.

= x̄µ + α′p̄µξ +
√
2πα′

∑
n>0

[
β̃F µ
n ŨF n + β̃P µ

n ŨP n + βF µ
n UF n + βP µ

n UP n + h.c.
]
,

(3.20)

where the center of mass parameters x̄µ and p̄µ correspond to the zero modes of the

worldsheet. The coefficients
{
β̃F µ
n , β̃P µ

n

}
and

{
βF µ
n , βP µ

n

}
are creation operators (for n < 0)

and annihilation operators (for n > 0) associated with the right- and left-moving Milne

mode functions
{

ŨF n, ŨP n

}
and

{
UF n, UP n

}
. These oscillators satisfy the commutation

relations, [
β̃Λ µ
n , β̃Λ′ ν

m

]
=
[
βΛ µ
n , βΛ′ ν

m

]
= nηµνδΛ,Λ′δn+m,0, ∀ Λ,Λ′ = (F,P) (3.21)

and are related via their respective Hermitian conjugates β̃Λ µ
−n =

(
β̃Λ µ
n

)†
and βΛ µ

−n =(
βΛ µ
n

)†
. Furthermore, they annihilate the Milne worldsheet vacuum state |0K⟩, defined to

obey:

β̃F µ
n |0K⟩ = β̃P µ

n |0K⟩ = βF µ
n |0K⟩ = βP µ

n |0K⟩ = 0, ∀ n > 0. (3.22)

We now turn to a critical aspect of this analysis: the form of the mode expansion functions

that comprise the quantized Milne worldsheet solution (3.20). These functions are assumed

to have a structure similar to their Minkowski counterparts in (2.11). Within the context

of the regularized (ξ, η) mapping depicted in eqs. (3.14) and (3.17), Milne mode functions

must be associated with a redefined and regulated frequency,

Ωn =
2πcn

Lφ
, (3.23)

where Lφ is the regularized periodicity (3.13) along the ξ-coordinate of the Milne world-

sheet. We now introduce the light-cone coordinates valid throughout the Minkowski world-

sheet:

σ+ = cτ + σ, σ− = cτ − σ, (3.24)

and their analogs in the Milne worldsheet F and P wedges are:

(F) : η+F = cξ + η, η−F = cξ − η,

(P) : η+P = −cξ + η, η−P = −cξ − η.
(3.25)

Within our regularization scheme, these inertial and non-inertial sets are related as follows

σ+ + φ =


+ c
ae

a
c (η

+
F−cψ) : F

− c
ae

−a
c (η

−
P+cψ) : P

, σ− − φ =


+ c
ae

a
c (η

−
F −cψ) : F

− c
ae

−a
c (η

+
P+cψ) : P

. (3.26)
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In terms of the above light-cone coordinates, the right-moving (along η−F and η−P ) and

left-moving (along η+F and η+P ) mode functions of frequency Ωn, as well as their Hermitian

conjugates in the F and P wedges associated with the quantized Milne worldsheet, can be

reexpressed as follows:

ŨF n =
ie−iΩnη

−
F /c√

4πn
, ŨF ∗

n = − ie
iΩnη

−
F /c√

4πn
, (3.27a)

ŨP n =
ie−iΩnη

−
P /c√

4πn
, ŨP ∗

n = − ie
iΩnη

−
P /c√

4πn
, (3.27b)

UF n =
ie−iΩnη

+
F /c√

4πn
, UF ∗

n = − ie
iΩnη

+
F /c√

4πn
, (3.27c)

UP n =
ie−iΩnη

+
P /c√

4πn
, UP ∗

n = − ie
iΩnη

+
P /c√

4πn
. (3.27d)

3.4 Bogoliubov transformations

To better explore the Milne worldsheet from the perspective of the Minkowski worldsheet,

we aim to derive the relevant Bogoliubov transformations that connect their quantum

modes and oscillation operators. For this purpose, we follow the standard and elegant

method developed by Unruh [40]. The process begins by considering the modes of the Milne

worldsheet that are analytically valid throughout the entire spacetime, including both the

F and P wedges. However, it is important to note that the original or local Milne modes

(3.27) are non-analytic, as ŨF n = UF n = 0 in P and ŨP n = UP n = 0 in F. To resolve this,

we need to restructure these local mode functions into appropriate linear combinations

that allow for analytic continuation between the F and P wedges. In this analysis, we

introduce a novel basis in which these new combinations of modes as the “global modes”

for the Milne worldsheet at the Minkowski level. These are the so-called Unruh modes [40],

which analytically match the natural positive-frequency Minkowski modes in the process

of transitioning from Minkowski to the Milne (or more generally, any non-inertial) frame.

The detailed derivation of the global modes for the Milne worldsheet is not our primary

focus here. Nevertheless, we have outlined the essential steps in section A for readers inter-

ested in the intricacies of the process. The typical expressions presented in eqs. (A.2), (A.3),

(A.5) and (A.6) are unnormalized. To properly normalize these right- and left-moving

global Milne modes in the F and P wedges, we determine the appropriate normalization

constants to make them orthonormal. Without delving into intermediate technicalities, we

present the final normalized forms of the global Milne modes as follows

W̃(1)
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a ŨF n − e−

πΩn
2a UP ∗

n

)
, (3.28a)

W̃(2)
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a ŨP n − e−

πΩn
2a UF ∗

n

)
, (3.28b)
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W(1)
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a UF n − e−

πΩn
2a ŨP ∗

n

)
, (3.28c)

W(2)
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a UP n − e−

πΩn
2a ŨF ∗

n

)
. (3.28d)

To derive the normalized expressions above, we establish the following orthonormal rela-

tions for the local Milne worldsheet modes that form their global counterparts:(
ŨΛ m, ŨΛ n

)
=
(

UΛ m, UΛ n

)
= δm,n,(

ŨΛ ∗
m, ŨΛ ∗

n

)
=
(

UΛ ∗
m, UΛ ∗

n

)
= −δm,n, ∀ Λ = F,P(

ŨΛ m, ŨΛ ∗
n

)
=
(

UΛ m, UΛ ∗
n

)
= 0.

(3.29)

The related inner products in the F and P regions, which we have defined in the following

manner, are expressed as

(
ΦF 1, ΦF 2

)
= −i

∫
dη
[

ΦF 1c
−1∂ξ ΦF ∗

2 − ΦF ∗
2c

−1∂ξ ΦF 1

]
, (3.30)

(
ΦP 1, ΦP 2

)
= i

∫
dη
[

ΦP 1c
−1∂ξ ΦP ∗

2 − ΦP ∗
2c

−1∂ξ ΦP 1

]
, (3.31)

where ΦΛ 1 and ΦΛ 2 are arbitrary modes in the F and P regions of the Milne worldsheet.

Similarly, we can express the normalized conjugate counterparts of the global Milne world-

sheet modes as

W̃(1) ∗
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a ŨF ∗

n − e−
πΩn
2a UP n

)
, (3.32a)

W̃(2) ∗
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a ŨP ∗

n − e−
πΩn
2a UF n

)
, (3.32b)

W(1) ∗
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a UF ∗

n − e−
πΩn
2a ŨP n

)
, (3.32c)

W(2) ∗
n =

1√
2 sinh

(
πΩn
a

) (eπΩn
2a UP ∗

n − e−
πΩn
2a ŨF n

)
. (3.32d)

Given that the global mode functions (3.28) and their conjugates (3.32) are well-defined

across the entire closed string worldsheet, they can be considered as an independent basis

for expanding the Milne worldsheet X̄µ(ξ, η). This leads to the reexpression of (3.20) in

the following form:

X̄µ(ξ, η) = x̄µ + α′p̄µξ +
√
2πα′

∑
n>0;
i=1,2

[
γ̃(i) µ
n W̃(i)

n + γ(i) µ
n W(i)

n + γ̃
(i) µ

−n W̃(i) ∗
n + γ

(i) µ
−n W(i) ∗

n

]
,
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= x̄µ + α′p̄µξ +
√
2πα′

∑
n>0

[
γ̃(1) µ
n W̃(1)

n + γ̃(2) µ
n W̃(2)

n + γ(1) µ
n W(1)

n + γ(2) µ
n W(2)

n + h.c.
]
.

(3.33)

Here, the global mode or Unruh oscillators
{

γ̃
(1) µ

n , γ̃
(2) µ

n

}
and

{
γ

(1) µ
n , γ

(2) µ
n

}
are similar to

the creation operators (for n < 0) and annihilation operators (for n > 0) associated with the

right- and left-moving global Milne mode functions
{

W̃(1)
n, W̃(2)

n

}
and

{
W(1)
n, W(2)

n

}
.

Since the global Milne worldsheet modes satisfy the same analyticity property as the orig-

inal Minkowski modes (2.11), they must share a common worldsheet vacuum state |0M⟩,
defined to obey:

γ̃(1) µ
n |0M⟩ = γ̃(2) µ

n |0M⟩ = γ(1) µ
n |0M⟩ = γ(2) µ

n |0M⟩ = 0, ∀ n > 0. (3.34)

As a result, the global mode Milne operators γ are generally expressed as some specific

linear combinations of the Minkowski worldsheet operators α (and vice versa), defining the

same vacuum state as described in (2.13). Technically speaking, each right- or left-moving

component of the αn operator corresponds to an inter-mode mixing between γn and γ−n
operators associated with the same direction of propagation. Notably, the global mode

operators are related to their local counterparts β through the following inner products in

the expansion (3.20):

β̃Λ µ
n =

(
X̄µ, ŨΛ n

)
, βΛ µ

n =
(
X̄µ, UΛ n

)
, ∀ n > 0, Λ = F,P (3.35)

To evaluate the above inner products, we first expand the Milne worldsheet X̄µ(ξ, η) us-

ing equation (3.33). Subsequently, the associated global modes are decomposed into local

modes via the definitions (3.28), with the orthonormality identities (3.29) and (3.32) ap-

plied. This procedure leads to the following relationships between the non-inertial and

inertial annihilation operators:

β̃F µ
n =

(
W̃(1)
n, ŨF n

)
γ̃(1) µ
n +

(
W(2) ∗
n, ŨF n

)
γ

(2) µ
−n

=
1√

2 sinh
(
πΩn
a

) [eπΩn
2a γ̃(1) µ

n − e−
πΩn
2a γ

(2) µ
−n

]
, (3.36a)

β̃P µ
n =

(
W̃(2)
n, ŨP n

)
γ̃(2) µ
n +

(
W(1) ∗
n, ŨP n

)
γ

(1) µ
−n

=
1√

2 sinh
(
πΩn
a

) [eπΩn
2a γ̃(2) µ

n − e−
πΩn
2a γ

(1) µ
−n

]
, (3.36b)

βF µ
n =

(
W(1)
n, UF n

)
γ(1) µ
n +

(
W̃(2) ∗
n, UF n

)
γ̃

(2) µ
−n

=
1√

2 sinh
(
πΩn
a

) [eπΩn
2a γ(1) µ

n − e−
πΩn
2a γ̃

(2) µ
−n

]
, (3.36c)

βP µ
n =

(
W(2)
n, UP n

)
γ(2) µ
n +

(
W̃(1) ∗
n, UP n

)
γ̃

(1) µ
−n
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=
1√

2 sinh
(
πΩn
a

) [eπΩn
2a γ(2) µ

n − e−
πΩn
2a γ̃

(1) µ
−n

]
. (3.36d)

Next, for the associated creation operators, we apply the Hermitian conjugate of the above

relations, which successively yields

β̃F µ
−n =

(
β̃F µ
n

)†
=

1√
2 sinh

(
πΩn
a

) [eπΩn
2a γ̃

(1) µ
−n − e−

πΩn
2a γ(2) µ

n

]
, (3.36e)

β̃P µ
−n =

(
β̃P µ
n

)†
=

1√
2 sinh

(
πΩn
a

) [eπΩn
2a γ̃

(2) µ
−n − e−

πΩn
2a γ(1) µ

n

]
, (3.36f)

βF µ
−n =

(
βF µ
n

)†
=

1√
2 sinh

(
πΩn
a

) [eπΩn
2a γ

(1) µ
−n − e−

πΩn
2a γ̃(2) µ

n

]
, (3.36g)

βP µ
−n =

(
βP µ
n

)†
=

1√
2 sinh

(
πΩn
a

) [eπΩn
2a γ

(2) µ
−n − e−

πΩn
2a γ̃(1) µ

n

]
. (3.36h)

Thus, we have derived transformations expressing each right- or left-moving Milne world-

sheet operator βn as an inter-mixture of global mode operators γn (from the same direction)

and γ−n (from the opposite direction). Furthermore, these global γ operators are them-

selves related to the Minkowski worldsheet oscillators α in a manner determined by the

choice of Unruh basis. As a combined effect, it is possible to recombine the relations in

(3.36) such that they reproduce the Bogoliubov transformations between the Milne world-

sheet operators and their inertial counterparts in the Minkowski basis. To realize this,

we construct linear combinations of the right- and left-moving Milne worldsheet operators

within the same F or P wedge, denoted as β̃µn ∼ c1 βF µ
n + c2 β̃F µ

n and βµn ∼ c1 βP µ
n + c2 β̃P µ

n .

By suitably fixing the constants (c1, c2), we select a basis in which the inter-mixing of{
γ̃

(1) µ
n , γ̃

(2) µ
n , γ

(1) µ
n , γ

(2) µ
n

}
operators aligns exactly with the original Minkowski worldsheet

oscillators
{
α̃µn, α

µ
n

}
. This adjustment yields the desired Bogoliubov transformations be-

tween the Milne and Minkowski worldsheet operators, valid across the entire spacetime,

including both the F and P wedges, as follows:

β̃µn =
1√

2 sinh
(
πΩn
a

) [eπΩn
2a α̃µn − e−

πΩn
2a αµ−n

]
, (3.37a)

βµn =
1√

2 sinh
(
πΩn
a

) [eπΩn
2a αµn − e−

πΩn
2a α̃µ−n

]
, (3.37b)

β̃µ−n =
1√

2 sinh
(
πΩn
a

) [eπΩn
2a α̃µ−n − e−

πΩn
2a αµn

]
, (3.37c)

βµ−n =
1√

2 sinh
(
πΩn
a

) [eπΩn
2a αµ−n − e−

πΩn
2a α̃µn

]
. (3.37d)
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The above mappings are analogous to the Bogoliubov transformations between Minkowski

and Rindler worldsheet operators [11, 25]. This resemblance is expected, as the standard

time-like entanglement between Milne wedges in quantum field theory is argued to be

analogous to the entanglement between space-like Rindler wedges [33, 34, 39, 41]. Moreover,

both setups employ exactly the same methodology as Unruh [40]. These novel Bogoliubov

transformations, as expressed in (3.37), will be crucial in our exploration of the tensionless

limit on the Milne worldsheet from the viewpoint of an observer situated on the Minkowski

worldsheet (see section 4).

3.5 The evolving worldsheet vacua

Now we would like to explore the Milne worldsheet vacuum state |0K⟩, as defined by the β

operators in (3.22), and establish its mapping with the Minkowski worldsheet vacuum |0M⟩
of α operators. From the perspective of an observer on the Minkowski worldsheet, the β

operators are always connected to α operators via the Bogoliubov transformations (3.37).

This naturally introduces the notion of a vacuum state |0K(a)⟩ and associated operators{
β̃µn(a), β

µ
n(a)

}
for the Milne worldsheet that evolve continuously with the time-evolution

parameter a. This is defined by:

|0K(a)⟩ : β̃µn(a)|0K(a)⟩ = βµn(a)|0K(a)⟩ = 0, ∀ n > 0, (3.38)

followed by the Bogoliubov transformations (see eq. (3.37):

β̃µn(a) = β+(a) α̃
µ
n + β−(a)α

µ
−n,

βµn(a) = β+(a)α
µ
n + β−(a) α̃

µ
−n,

(3.39)

where the Bogoliubov coefficients are defined as

β+(a) =
e

πΩn
2a√

2 sinh
(
πΩn
a

) =
1√

1− e−
2πΩn

a

,

β−(a) = − e−
πΩn
2a√

2 sinh
(
πΩn
a

) = − e−
πΩn
a√

1− e−
2πΩn

a

.

(3.40)

We now aim to establish a mapping between the Minkowski worldsheet vacuum |0M⟩ and
the evolving vacuum states |0K(a)⟩. Following the standard procedure (e.g., see [49–51]),

we identify β+(a) = cosh θn and β−(a) = sinh θn, such that

tanh θn(a) =
β−(a)

β+(a)
= −e−πΩn

a . (3.41)

We then define a generator for the Bogoliubov transformations (3.39) in the typical form:

Q(θn) = −i
∞∑
n=1

θn(a)
[
α̃n · αn − α̃−n · α−n

]
, (3.42)
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followed by a unitary operator (also recognized as the squeezing operator) given by,

U(θn) = eiQ(θn). (3.43)

With the above setup, the relations (3.40) for the evolving operators can be recast into the

Bogoliubov–Valatin transformations:

β̃µn(a) = U(θn)
†α̃µn U(θn) = cosh θn α̃

µ
n + sinh θn α

µ
−n,

βµn(a) = U(θn)
†αµn U(θn) = sinh θn α̃

µ
−n + cosh θn α

µ
n.

(3.44)

These forms provide an alternative expression for the same Milne worldsheet operators

as derived in eq. (3.37). Consequently, the evolving vacuum states satisfy the following

condition for all n > 0,

β̃µn(a)|0K(a)⟩ =
(
α̃µn + tanh θn α

µ
−n
)
|0K(a)⟩ = 0,

βµn(a)|0K(a)⟩ =
(
αµn + tanh θn α̃

µ
−n
)
|0K(a)⟩ = 0.

(3.45)

The unitary operator U(θn) then connects the evolving vacua |0K(a)⟩ to the Minkowski

worldsheet vacuum |0M⟩ in the standard manner, which is given by:

|0K(a)⟩ = U(θn)|0M⟩ = exp

(
−

∞∑
n=1

θn(a)
[
α̃−n · α−n − α̃n · αn

])
|0M⟩

=
∞∏
n=1

1

cosh θn
exp

(
−tanh θn

n
α̃−n · α−n

)
|0M⟩, (3.46)

where the last step is obtained with the help of standard Gaussian decomposition treatment

and the α operator commutation relation (2.12). Notably, flipping the positions of the

holomorphic and anti-holomorphic oscillators does not alter the typical form of |0K(a)⟩.
Finally, substituting the relations (3.40) for the θn parameter in terms of a, we obtain:

|0K(a)⟩ =
∞∏
n=1

Cn exp
(
e−

πΩn
a

n
α̃−n · α−n

)
|0M⟩, (3.47)

where Cn =
√

1− e−2πΩn/a. Therefore, from the perspective of the observer on the

Minkowski worldsheet, the new vacua |0K(a)⟩ of the Milne worldsheet is obtained as a

‘coherent’ or ‘squeezed’ state in terms of the Minkowski worldsheet vacuum |0M⟩ and its

oscillators
{
α̃µn, α

µ
n

}
. This evolving vacua is hence a highly energized state with respect to

the inertial one |0M⟩. Notably, the relations (3.45) and (3.46) between
{
β̃µn(a), β

µ
n(a)

}
and{

α̃µn, α
µ
n

}
are also invertible, yielding:

α̃µn|0M⟩ =
(
β̃µn(a)− tanh θn β

µ
−n(a)

)
|0M⟩ = 0,

αµn|0M⟩ =
(
βµn(a)− tanh θn β̃

µ
−n(a)

)
|0M⟩ = 0.

(3.48)
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Consequently, we can express |0M⟩ as a squeezed state of |0K(a)⟩, given by:

|0M⟩ =
∞∏
n=1

Cn exp
(
−e

−πΩn
a

n
β̃−n(a) · β−n(a)

)
|0K(a)⟩, (3.49)

which is an inverted perspective of (3.47). This is precisely the worldsheet equivalent of

the Milne observer perceiving the Minkowski counterpart and its associated vacuum |0M⟩,
which is well-aligned with the timelike Unruh effect discussed in section 5.3.2.

4 Tensionless limit on Milne worldsheets

In this section, we aim to embed the exact notion of “tensionless-ness” on the closed

string Milne worldsheet evolving with a scaled time-evolution parameter a, as depicted

in section 3. To date, no intrinsic framework exists for tensionless Milne worldsheets,

similar to the framework available for the null or Carrollian Minkowski worldsheet in sec-

tion 2.3. Naively attempting to start from the inertial stage (2.15) and then applying

Unruh’s methodology (as employed in section 3.4) for structuring modes on the tensionless

Milne worldsheet would likely fail due to the null or degenerate structure of tensionless

strings. Therefore, we must consider a limiting approach to the tensile Milne worldsheet

setup. A successful example of such an approach has been developed in [11, 25] for ten-

sionless Rindler worldsheets. Adapting this idea, we will explore the limit where the Milne

worldsheet approaches its horizon, specifically the regime around a
c → ∞. This choice

of infinite time-evolution limit on Milne worldsheets is motivated by the role of infinite

boost or Carrollian limits in inducing tensionless physics on the Minkowski worldsheet

(see section 2.3). Specifically, we are ambitious about conducting a possible litmus test:

as the tensile Milne worldsheet approaches its horizon, the Bogoliubov transformations

(3.37) should truncate in a manner that precisely replicates the mapping (2.20) between

tensionless and tensile worldsheet oscillators.

We would like to mention that the set of Bogoliubov transformations (3.37) between

the β and α oscillators of Milne and Minkowski worldsheets are self-consistent in the sense

that their respective commutations never disrupt their typical mappings. By reading off

the Milne worldsheet parameters Ωn, Lφ and φ, as defined in section 3, we impose the limit
a
c → ∞ and systematically obtain:

Ωn
a

=
2πcn

ln
(
1± aℓ

c e
aψ
) → 2πcn[

ln
(
±aℓ

c

)
+ aψ

] ≈ 2πcn

aψ
. (4.1)

Evidently, the term on the right-hand side acquires a small value in the near-horizon (or

infinite Milne evolution) limit a
c → ∞, causing the transcendental functions within the

Bogoliubov coefficients to expand around a small phase factor πΩn
2a , followed by expressing:

e±
πΩn
2a√

2 sinh
(
πΩn
a

) ≈ 1

2

(√
2a

πΩn
±
√
πΩn
2a

)
+O

(
πΩn
2a

)3/2

. (4.2)
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By implementing these relations, the Bogoliubov transformations (3.37) are successively

expanded. At leading order (i.e., neglecting terms of O
(√

c3/a3
)
and higher), we obtain:

β̃∞ µ
n =

1

2

[(√
π2cn

aψ
+

√
aψ

π2cn

)
α̃µn +

(√
π2cn

aψ
−
√

aψ

π2cn

)
αµ−n

]
, (4.3a)

β∞ µ
n =

1

2

[(√
π2cn

aψ
+

√
aψ

π2cn

)
αµn +

(√
π2cn

aψ
−
√

aψ

π2cn

)
α̃µ−n

]
, (4.3b)

β̃∞ µ
−n =

1

2

[(√
π2cn

aψ
+

√
aψ

π2cn

)
α̃µ−n +

(√
π2cn

aψ
−
√

aψ

π2cn

)
αµn

]
, (4.3c)

β∞ µ
−n =

1

2

[(√
π2cn

aψ
+

√
aψ

π2cn

)
αµ−n +

(√
π2cn

aψ
−
√

aψ

π2cn

)
α̃µn

]
. (4.3d)

Evidently, the above mapping obtained in the near-horizon/light-cone limit of the Milne

worldsheet corresponds to the same as the Bogoliubov transformations (2.20) between

tensionless and tensile operators of an intrinsic worldsheet. Comparing (2.20) and (4.3)

leads us to the identification of the tensionless state of the Milne worldsheet,

c̃µn = β̃∞ µ
n , cµn = β∞ µ

n , c̃µ−n = β̃∞ µ
−n, cµ−n = β∞ µ

−n, (4.4)

followed by inferring:

ϵ =
π2nc

ψa
, ∀ n > 0. (4.5)

Interestingly, the above identifications allow us to estimate the same mode expansion (2.15)

for a Milne worldsheet in the tensionless limit.

4.1 Time evolution and Carrollian limit

Now, let us interpret the scenario above, specifically how the concept of ‘tensionless-ness’

enters within the framework of the Milne worldsheet. In other words, how reaching the

Milne worldsheet horizons replicates the same physics as a Minkowski worldsheet in the

infinite boost limit ϵ → 0 (refer to section 2.3). By examining the identification in (4.5),

we can argue that reaching the tensionless point or the horizon of the Milne worldsheets

can be achieved through two possible routes (up to constant factors n and ψ):12

Route I: c = constant, a→ ∞ =⇒ ϵ→ 0,

Route II: a = constant, c→ 0 =⇒ ϵ→ 0.
(4.6)

12Referring to fig. 2, the η = const. straight lines represent trajectories for a fixed Milne parameter a.

Route I analytically traces the constant ξ hyperbolas, which degenerate into the light-cone, achieved by

increasing a → ∞ while keeping c constant. In contrast, Route II follows the constant η straight lines,

ultimately collapsing onto the null horizons as c→ 0 with a held fixed.
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These two routes to reach the Milne worldsheet light-cone horizon represent distinct physi-

cal realizations of the ϵ-parametric evolution, culminating in the infinite boost limit ϵ→ 0,

as discussed in section 2.3. Route II, in particular, can be seen as achieving the infinite

boost state by directly applying the Carrollian limit (2.19) on the Milne worldsheet while

keeping the time-evolution parameter a constant. In terms of the closed Milne worldsheet

coordinates, this can be algebraically implemented by contracting the time coordinate ξ as

follows

η → η, ξ → ϵξ, ϵ→ 0. (4.7)

This setup effectively makes η very large, allowing one to reach the Milne worldsheet hori-

zon or light-cone. On the other hand, Route I involves an evolution of the Milne worldsheet

in parameter a, eventually reaching the infinite limit a→ ∞. The Bogoliubov transforma-

tions of the related evolving oscillators
{
β̃µn(a), β

µ
n(a), β̃

µ
−n(a), β

µ
−n(a)

}
have already been

demonstrated in (3.39). Consequently, there exists a ‘flow’ of decreasing worldsheet tension

throughout the range a ∈ [0,∞] as follows

a = 0 :
{
β̃µn , β

µ
n , β̃

µ
−n, β

µ
−n
}
−→

{
α̃µn, α

µ
n, α̃

µ
−n, α

µ
−n
}
,

0 < a <∞ :
{
β̃µn(a), β

µ
n(a), β̃

µ
−n(a), β

µ
−n(a)

}
,

a→ ∞ :
{
β̃µn , β

µ
n , β̃

µ
−n, β

µ
−n
}
−→ {c̃µn, cµn, c̃µ−n, cµ−n

}
.

(4.8)

Incorporating this flow into the analysis in section 3.5, the tensionless vacuum state |0c⟩
is obtained as a special limiting case of the relevant evolving vacua |0K(a)⟩, as defined in

(3.38), and can be expressed as a highly energized squeezed state in terms of the tensile

inertial vacuum |0M⟩:

|0c⟩ = lim
a→∞

|0K(a)⟩ = N
∞∏
n=1

exp

(
1

n
α̃−n · α−n

)
|0M⟩, (4.9)

where N is an (infinite) normalization constant arising after setting a → ∞ in (3.47).

Notably, the ϵ-parameter evolution also aligns with the framework of (3.41) and (3.46),

where tanh θn(ϵ) = ϵ−1
ϵ+1 , leading to the same tensionless vacuum in the analogous limit

ϵ→ 0. Similarly, using the representation (3.49), we can derive the tensile state |0M⟩ as a
coherent state of the tensionless vacuum |0c⟩, expressed as:

|0M⟩ = N̂
∞∏
n=1

exp

(
− 1

n
c̃−n · c−n

)
|0c⟩, (4.10)

where N̂ is a different normalization constant in the limit a → ∞. Both mappings (4.9)

and (4.10) suggest a contrasting yet intriguing picture, which we will further explore in the

subsequent section.

5 Discussions

This section concludes the work by summarizing key findings and discussing their future

outlook and potential implications.
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5.1 Summary of results

The implications of time-like entanglement within string worldsheet theory remain largely

unexplored. In this work, we addressed the crucial question of how a string propagating in

a Milne background evolves, with a particular focus on the emergence of a Carrollian limit

in the tensionless regime of this time-evolving, non-inertial worldsheet system. Previous

studies [33, 34, 39, 41] indicate that conventional (R-L) entanglement has a direct coun-

terpart in time-like (F-P) entanglement. This motivated us to develop a Milne worldsheet

framework in parallel with the well-established framework of accelerated Rindler world-

sheets [11, 25].‘

Beginning with the standard setup of a tensile closed-string worldsheet Xµ(τ, σ) prop-

agating in a D-dimensional Minkowski background, we constructed a new target spacetime

covering the F-P regions using the transformations (3.2), modulated by the Milne param-

eter a. This led to a reparametrization (3.5) of the worldsheet coordinates (τ, σ) into

(ξ(τ, σ), η(τ, σ)), culminating in the formulation of the Milne worldsheet X̄µ(ξ, η) with

novel features such as folding points and revised periodicity.

We found that the folding points, located at cτ = ±σ, emerge due to the non-inertial

nature of the Milne worldsheet, controlled by the characteristic time-evolution parameter

a. At these points, the induced metric degenerates, and the Milne worldsheet reaches

the infinite time-evolution limit a
c → ∞, corresponding to its null horizons. Originally,

the periodicity of the worldsheet diverges. However, through a systematic regularization

procedure, we derived a new form of periodicity (3.13) and related mappings (3.14), which

remained consistent throughout our analysis. The regularization parameter was carefully

tuned to coincide with the infinite time-evolution limit of the Milne worldsheet horizons.

Interestingly, the Milne worldsheet exhibits time-like periodicity, in stark contrast to

conventional worldsheet theories [44]. We interpreted this by demonstrating that the map-

ping Xµ(τ, σ) → X̄µ(ξ, η) induces a temporal shift, driven by the Milne parameter a, which

alters the spatial/temporal nature of the worldsheet and its coordinates. This leads to a

rapid shift in periodicity along ξ in the Milne framework, compared to the σ direction in

its inertial counterpart. In contrast, for a Rindler worldsheet, analogous mappings involve

a spatial boost, maintaining the space-like periodicity [11].

To explore the quantum regime, we performed a quantum mode expansion of the

tensile Milne worldsheet, promoting its modes to a global form in terms of the Minkowski

basis. This allowed us to link the oscillation operators to their inertial counterparts via

Bogoliubov transformations (see eq. (3.37)). The resulting Bogoliubov coefficients were

found to be exponential functions of the Milne parameter a, producing a time-evolving

vacuum state identified as a squeezed/coherent state relative to the Minkowski vacuum.

Finally, we investigated the transition to the tensionless regime of the Milne worldsheet

and identified two limiting routes: (i) taking the infinite time-evolution limit (a → ∞)

while keeping the speed of light c fixed, and (ii) sending the speed of light to zero (c→ 0)

while maintaining a fixed time-evolution frequency a. Both routes effectively truncate

the tensile Milne framework, collapsing the quantum modes, oscillators, and Bogoliubov

transformations into a Carrollian structure—with the first providing an indirect yet non-
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trivial transition, and the second enforcing a direct Carrollian limit. In both cases, the

emergent tensionless regime is governed by Carrollian symmetries, establishing a novel

ultra-relativistic limit in the dynamics of time-evolving strings.

5.2 Outcome and conclusions

Building on the detailed construction and quantization of the Milne worldsheet and its

tensionless limit, we now draw out the deeper implications of these results for non-inertial

string theory. At a conceptual level, this study extends the well-established Rindler world-

sheet paradigm [11, 25] to a fundamentally distinct yet causally inaccessible domain of

non-inertial string dynamics by constructing a time-evolving Milne worldsheet. A key out-

come of our analysis is the deep interplay between tensionless string dynamics and emergent

Carrollian structures, which becomes apparent upon reaching the null horizons of the Milne

worldsheet. This transition necessitates an ultra-high frequency limit in time evolution,

setting the Milne framework apart from its Rindler counterpart.

A fundamental distinction in the tensionless limit of the Milne worldsheet, compared

to the Rindler worldsheet, lies in the nature of its induced Carrollian structure. While

both worldsheets acquire Carrollian properties at their respective infinite limits, their un-

derlying mechanisms and geometric interpretations diverge significantly. The Rindler limit

is dictated by an infinite boost, producing an emergent Carrollian symmetry along spa-

tial directions and forming a Rindler horizon endowed with a Carrollian structure, where

entanglement between the left (L) and right (R) Rindler wedges encodes the tensionless

structure. In contrast, the Milne worldsheet undergoes an infinite rescaling of its temporal

coordinate, leading to a Milne horizon with Carrollian structure, governed by time-like en-

tanglement between past (P) and future (F) wedges. Another key distinction is that while

the Rindler limit preserves space-like periodicity, the Milne limit enforces an inherently

time-like periodicity, reshaping the structure of worldsheet evolution.

Consequently, the Milne framework broadens the Carrollian analysis of tensionless

strings to both dynamical and static non-inertial settings, where the frequency of time

evolution, rather than acceleration, governs the dynamics. This reveals a striking corre-

spondence: in non-inertial string theory, acceleration and time-evolution frequency serve

as structurally analogous parameters. As a result, an observer on the Milne worldsheet can

undergo non-inertial evolution toward the Carrollian point even while remaining static—a

scenario impossible for an observer on a Rindler worldsheet, who must be accelerating to

reach the same final state. These structural differences introduce an intrinsic rigidity that

prevents a direct mapping between the two frameworks, underscoring the novelty of this

work.

Our findings decisively establish that non-inertial string dynamics emerge in two

structurally distinct yet complementary ways—governed either by worldsheet accelera-

tion (Rindler) or the frequency of its time evolution (Milne). Even more remarkably, we

uncover a duality-like correspondence between Rindler and Milne worldsheets near their

respective null horizons, both exhibiting identical tensionless physics. This strongly sug-

gests the existence of a novel time-like counterpart to the ultra-relativistic (Carrollian) or

infinite-boost limit, offering a fresh perspective on non-inertial string theory and expanding
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its conceptual framework. Furthermore, while Rindler and Milne worldsheets attain their

tensionless limits through distinct physical mechanisms, they ultimately converge to an

equivalent emergent Carrollian structure. Most strikingly, despite their fundamentally dif-

ferent evolutions, the respective non-inertial string vacua collapse into identical open string

bound states at the tensionless limit, reinforcing the universality of the phenomenon.

These outcomes establish a key conclusion: time-like (F-P) entanglement in Milne

worldsheets is not merely analogous to but fundamentally equivalent to standard (R-L) en-

tanglement in Rindler worldsheets, both occurring in distinct pairs of causally disconnected

regions of the background spacetime. This correspondence provides a robust “time-like win-

dow” for probing the tensionless regime of fundamental strings. Thus, we have uncovered

a novel route to reaching the null horizons of non-inertial worldsheets, governed by an

equivalent degenerate metric structure.

More fundamentally, the complete characterization of non-inertial string physics fol-

lows a 1-to-2 correspondence between the observer on the Minkowski worldsheet and the

pair of observers on the Milne and Rindler worldsheets. This arises from the fact that the

Minkowski worldsheet’s target spacetime is precisely partitioned—half into the F and P

regions and half into the R and L regions—between the Milne and Rindler worldsheets,

thereby structuring their respective target backgrounds. In other words, the physics of

non-inertial strings, as perceived from the Minkowski worldsheet, emerges from an equal

reconstruction of information from both the Milne and Rindler counterparts. In this re-

gard, the present work establishes that the Milne branch of non-inertial worldsheets is not

merely a complementary extension but an indispensable missing component for achiev-

ing a more unified perspective on non-inertial string dynamics. Crucially, this scenario

undergoes a fundamental transformation upon reaching their Carrollian points via their

respective limiting processes. It is only at this stage that the two worldsheets effectively

align along a common null line or regime, despite originating from causally distinct routes,

ultimately converging onto an equivalent physical description. More precisely, the time-like

Carrollian limit reshapes the 1-to-2 correspondence into a 1-to-1 unification, wherein the

Minkowski worldsheet observer effectively perceives the Milne and Rindler worldsheet ob-

servers as gaining mutual access to each other’s tensionless physics—an interaction that was

previously forbidden in the entire tensile regime. This unification bridges the gap between

acceleration-driven and time-evolution-driven worldsheets at their tensionless limit.

Given these insights, we anticipate that the Milne worldsheet framework will play a

pivotal role in unveiling the fundamental significance of Carrollian structures in organizing

the quantum properties of tensionless strings. The emergence of a Carrollian limit in this

formulation not only provides a new approach to the tensionless regime but also suggests

deeper connections to the causal structure of spacetime, reinforcing the role of non-inertial

evolution in string theory. This framework naturally extends the well-established paradigm

of null Rindler worldsheets to a structurally distinct yet analogous setting, where time

evolution, rather than acceleration, governs non-inertial dynamics. As a result, our findings

offer a new perspective on the interplay between string theory, quantum field theory, and

the geometric aspects of Carrollian physics.
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5.3 Further discussions and implications

In this note, we extend the discussion by thoroughly analyzing the critical implications of

tensionless physics and exploring the limiting processes that shape the Milne worldsheet

framework. These investigations are essential, as they provide a fundamental litmus test

for establishing the Carrollian and tensionless nature of the time-evolving Milne worldsheet

formulated in this work.

5.3.1 Emergence of open string states

In string theory, open strings are often viewed as defects on the boundaries of closed string

worldsheets. The fundamental boundary conditions for open strings can be expressed in

terms of closed string boundary states as follows [52]

∂τX
µ(σ, τ)

∣∣
τ=0

|BN⟩ = 0 Neumann condition,

∂σX
µ(σ, τ)

∣∣
τ=0

|BD⟩ = 0 Dirichlet condition,
(5.1)

where |BN⟩ and |BD⟩ are regarded as Neumann and Dirichlet boundary states, respectively.

Using the Minkowski worldsheet mode expansion (2.11), the boundary conditions (5.1) can

be expressed in terms of the inertial α-oscillators as(
α̃µn + αµ−n

)
|BN⟩ =

(
αµn + α̃µ−n

)
|BN⟩ = 0,(

α̃µn − αµ−n
)
|BD⟩ =

(
αµn − α̃µ−n

)
|BD⟩ = 0,

(5.2)

for each n > 0. These conditions, which relate the right- and left-moving closed string

modes acting on the boundary states, are the so-called gluing conditions. In other words,

the conditions (5.2) effectively treat the two halves of the string as a pair of open strings

by gluing them together. The conditions (5.2) can be solved explicitly by following the

procedure used to obtain the squeezed state (3.46) respectively for tanh θn = ±1, yielding:

|BN⟩ = NN

∞∏
n=1

exp

(
− 1

n
α̃−n · α−n

)
|0M⟩,

|BD⟩ = ND

∞∏
n=1

exp

(
1

n
α̃−n · α−n

)
|0M⟩.

(5.3)

Interestingly, the tensionless worldsheet vacuum state representations in (4.9) and (4.10)

can be identified as the typical boundary states depicted in (5.3). If we elaborate further, it

becomes evident that the coherent representation (4.9) of the tensionless Milne vacuum |0c⟩,
expressed in terms of the usual inertial worldsheet vacuum |0M⟩ and its α-oscillators, forms

a Dirichlet boundary state in all spacetime directions. On the other hand, in terms of the

|0c⟩ vacuum and its c-oscillators, the coherent state form (4.10) of the inertial vacuum |0M⟩
corresponds to a Neumann boundary state. This observation indicates that, as the tension

vanishes, closed-string worldsheets transition to an open-string description. To validate

this phenomenon, we can verify whether these coherent vacuum states |0c⟩ and |0M⟩ satisfy
the gluing conditions in a form similar to (5.2), thereby confirming their identification as
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worldsheet boundary states. In terms of the inertial α-operators, the evolving Milne vacua

|0K(a)⟩ (as defined in (3.45)) can be expressed as(
α̃µn − e−

πΩn
a αµ−n

)
|0K(a)⟩ =

(
αµn − e−

πΩn
a α̃µ−n

)
|0K(a)⟩ = 0. (5.4)

Similarly, with respect to the evolving Milne operators β(a), the Minkowski vacuum |0M⟩
(as defined in (3.48)) reads,(

β̃µn(a) + e−
πΩn
a βµ−n(a)

)
|0M⟩ =

(
βµn(a) + e−

πΩn
a β̃µ−n(a)

)
|0M⟩ = 0. (5.5)

If we now take the typical tensionless limit a→ ∞ (keeping c constant), the evolving Milne

oscillators and associated vacua translate into tensionless c-operators and the vacuum state

|0c⟩ in (5.4) and (5.5), yielding:(
α̃µn − αµ−n

)
|0c⟩ =

(
αµn − α̃µ−n

)
|0c⟩ = 0,(

c̃µn + cµ−n
)
|0M⟩ =

(
cµn + c̃µ−n

)
|0M⟩ = 0.

(5.6)

These are clearly the gluing conditions that identify the tensionless Milne vacuum |0c⟩
and the tensile Minkowski vacuum |0M⟩ as Dirichlet and Neumann boundary states, re-

spectively. Thus, taking the tensionless limit on any closed string worldsheet results in

the emergence of open strings. This situation, where defect states appear on the closed

worldsheets, arises when all points collapse onto the null or horizon lines cτ = ±σ. To sum-

marize, from the perspective of an observer in the inertial worldsheet vacuum |0M⟩, the
evolving Milne vacuum at the tensionless limit |0c⟩ is interpreted as a Dirichlet boundary

state, representing a spacetime point known as a D-instanton [44]. Conversely, from the

viewpoint of the null Milne vacuum |0c⟩, the Minkowski vacuum |0M⟩ serves as a Neumann

boundary state, corresponding to a space-filling D-brane [21].

The above scenario of open string physics emerging from closed strings directly cor-

responds to the so-called null string complementarity, which has already been observed

for a Rindler worldsheet [11, 25]. Similarly, for the current case of the Milne worldsheet,

this idea can be physically interpreted as follows. From the perspective of an observer on

the tensile Minkowski worldsheet, the Milne worldsheet with increasing a evolves from a

cylinder to distorted hyperboloids (which are a natural generalizations of Milne particle

worldlines), finally transforming into a light-cone in the tensionless limit a → ∞. For the

Dirichlet boundary state (4.9), when zooming in on the τ = 0 cross-section, where the

boundary states (5.2) are defined, the evolution appears as a circle with decreasing radius,

eventually collapsing to a point, representing the emergence of a D-instanton (see fig. 3).

Conversely, an observer on the Milne worldsheet, as a → ∞, will perceive the Minkowski

worldsheet as becoming increasingly elongated as its tension decreases, ultimately becom-

ing infinitely stretchable. This interpretation views the Neumann boundary state (4.10)

as D-branes progressively filling all of spacetime. This latter viewpoint physically mani-

fests for different observers on the Milne worldsheet, positioned along constant η lines from

η = 0 to η → ±∞ along a fixed ξ hyperbola (e.g., see fig. 4), as they witness the complete

sequence of deformation from a tensile to a tensionless Minkowski worldsheet. Thus, as
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Figure 3: Illustration of a closed string Milne worldsheet deforming with increasing a

as seen from the Minkowski worldsheet. In the upper half, the cylindrical snapshot at

a = 0 shows the inertial state. As a increases (a2 ≫ a1) keeping c constant, the worldsheet

distorts into hyperboloids with growing eccentricity, eventually transforming into a light-

cone at a→ ∞. The lower half shows the τ = 0 cross-sectional snapshots of this evolution.

Figure 4: Illustration of a closed string on the Minkowski worldsheet deforming as ob-

served from the Milne worldsheet along changing constant η lines, as shown in fig. 2. The

circular snapshot on the left represents the pure tensile state. As the slope of the η lines

decreases or increases (η2 ≫ η1), the string distorts into an ellipse, ultimately aligning with

the light-cone at η → ±∞.

the closed string worldsheet becomes null or tensionless, both Milne and Minkowski ob-

servers gain complementary perspectives on the emergence of open string physics. This

entire phenomenon associated with the Milne worldsheet in the Carrollian limit serves as

a strong ‘time-like window’ into null strings. For consistency, readers may compare this

with the analogous observation by Bagchi et al. for the case of accelerated Rindler world-
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sheet in [25] (see, for instance, Fig. 2, Fig. 3, and the related discussions). Evidently,

both approaches to studying tensionless strings are complementary, ultimately leading to

equivalent physical insights and outcomes.

5.3.2 Time-like Unruh effect on tensionless Milne worldsheets

The observer on the Milne worldsheet will see particles defined by the β operators in the

Minkowski worldsheet vacuum |0M⟩. In this context, we can define the following number

operators for the β particles as

Ñn =
1

n
β̃−n · β̃n =


1
n β̃F −n · β̃F n = ÑF n : F

1
n β̃P −n · β̃P n = ÑP n : P

Nn =
1

n
β−n · βn =


1
n βF −n · βF n = NF n : F

1
n βP −n · βP n = NP n : P

(5.7)

where all spacetime indices are contracted. The expectation values of the above-listed

number operators in state |0M⟩ describe the average number of particles detected by the

Milne worldsheet observer in the Minkowski worldsheet vacuum. For an example, the

expected number of particles of frequency Ωn associated with Ñn operator is given by,

⟨0M|Ñn|0M⟩ =
∑

Λ,Λ′=F,P

1

2 sinh
(
πΩn
a

)⟨0M ∣∣∣∣ 1ne−πΩn
a γ̃Λ −n · γ̃Λ′

n

∣∣∣∣ 0M⟩

=
e−

πΩn
a

2 sinh
(
πΩn
a

) δ0,0 = 1

e
Ωn
a/2π − 1

δ0,0. (5.8)

Similarly, for the case of Nn operator, we can have

⟨0M|Nn|0M⟩ = 1

e
Ωn
a/2π − 1

δ0,0. (5.9)

Note that the infinite factor δ0,0 both in (5.8) and (5.9) arises from the commutator of γ

operators, [
γ̃Λ µ
n , γ̃Λ′ ν

m

]
=
[
γΛ µ
n , γΛ′ ν

m

]
= nηµνδΛ,Λ′δn+m,0, ∀ Λ,Λ′ = (F,P) (5.10)

It is important to notice that the right-hand side of (5.8) and (5.9) precisely represents a

spectrum of thermal radiation (i.e., Bose-Einstein distribution) with ℏ = kB = 1 and an

absolute temperature,

TU =
a

2π
. (5.11)

This phenomenon corresponds to the well-known timelike Unruh effect [39]. Thus, an

observer on the Milne worldsheet evolving with the time-evolution parameter a will detect
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particles in the vacuum state of the Minkowski worldsheet at the Unruh temperature

given by (5.11), while an observer on the Minkowski worldsheet will detect no particles

in its own vacuum state. In this context, we note that the intrinsic nature of the time-

evolution parameter a (as compared to the Rindler acceleration) makes the timelike Unruh

temperature (5.11) more feasible for detection [39], revealing a novel aspect of time-like

entanglement as a probe for tensionless non-inertial worldsheets.

5.3.3 Triggering Hagedorn physics through time-like Unruh temperature

It is well understood that the framework of tensionless strings is intimately connected to

string theory at the Hagedorn temperature TH. Arguably, TH defines an extreme and ab-

solute limiting temperature within the string theory framework, at which a novel phase

transition occurs, introducing new degrees of freedom [26]. Beyond this point, the canonical

partition function describing all single-particle states within the string framework diverges,

and the strings effectively become tensionless [27, 28]. For a string system continuously

evolving with temperature TS, the effective tension Teff is related to the Hagedorn temper-

ature TH via:

Teff = T
√
1−

(
TS
TH

)2

, (5.12)

where T is the intrinsic string tension as defined in (2.8). Clearly, Teff ≈ T as TS →
0, and Teff → 0 as the system temperature approaches TS → TH. In this context, the

analysis of tensionless worldsheets in sections 2.3 and 4 is found to be highly relevant and

useful. More precisely, the tensionless vacuum state |0c⟩ (which is entirely distinct from

the tensile vacuum states |0M⟩ and |0K⟩) is conjectured to be the worldsheet manifestation

of the emergent long string as the system approaches the TH limit [9]. This conjecture is

supported by the observation that |0c⟩ can be obtained as a squeezed or coherent state

(4.9) of the tensile worldsheet theory, representing a highly energized state analogous to

the string system near the Hagedorn temperature. The new degrees of freedom induced

by the Hagedorn phase transition in string theory can be interpreted as excitations of the

worldsheet vacuum |0c⟩ through the action of its creation operators {c̃µ−n, cµ−n}.
We now aim to explore how the timelike Unruh physics induced on the inertial world-

sheet from the perspective of the Milne observer is connected to Hagedorn physics. Specif-

ically, we investigate how the timelike Unruh temperature TU (as derived in (5.11)) at the

worldsheet tensionless limit triggers the same physics as that emerging from the Hagedorn

phase transition at TS → TH. In this analysis, we interpret the worldsheet evolving toward

its tensionless point in terms of ϵ-parameter flow approaching the ϵ→ 0 limit. Additionally,

we found that the ϵ-parameter flow can be manifested in terms of a-parameter evolution,

which is mapped via:

tanh θ =
ϵ− 1

ϵ+ 1
= −e−πΩn

a , (5.13)

where tanh θ represents the conventional ratio of Bogoliubov coefficients from the trans-

formations (3.39) and (2.20). From this stage, it is straightforward to translate everything
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into the language of a worldsheet evolving with increasing timelike Unruh temperature

TU. In this process, we observe that the Minkowski worldsheet follows a thermodynamic

relation analogous to (5.12) as seen by the Milne worldsheet observer, yielding:

Teff = T ϵ, ϵ = tanh

(
Ωn
4TU

)
. (5.14)

By comparing the typical effective tension forms (5.12) and (5.14), we identify

TS = TH

√
1− tanh2

(
Ωn
4TU

)
. (5.15)

Thus, the observer on the Milne worldsheet will see that as the timelike Unruh temperature

approaches infinity, the Minkowski worldsheet vacuum undergoes a transition from |0M⟩ to
|0c⟩ at ϵ→ 0, mirroring the Hagedorn phase transition TS → TH of tensionless strings, i.e.,

TU → ∞ =⇒ ϵ→ 0, TS ≈ TH. (5.16)

The above phenomenon of manifesting the Hagedorn phase transition on worldsheets sug-

gests a different form of the null string complementarity discussed in section 5.3.1. This

idea can be explained as follows. From the perspective of an observer on the Minkowski

worldsheet, the tensionless vacuum |0c⟩ is arguably experiencing Bose-Einstein conden-

sation (BEC) as a consequence of the Hagedorn phase transition [21].13 In contrast, an

observer on the Milne worldsheet would observe |0c⟩ undergoing the same Hagedorn phase

transition at a high temperature TU → ∞, resulting in the worldsheet vacuum bubbling

with high-energy particles uniformly spread across |0c⟩. This scenario is complementary to

one where BEC formation is suppressed. This complementarity picture reflects the same

ambiguity in interpreting the tensionless worldsheet vacuum as both a spacetime point

(i.e., space-filling D-instanton) and an infinitely long string filling the entire spacetime

(i.e., space-filling D-branes).

5.4 Future directions and questions

Given that the preceding sections have successfully addressed the key questions posed in

section 1, the findings of this paper might provide a foundation for deeper investigations into

non-inertial tensionless string dynamics, particularly in relation to holography, quantum

gravity, and early universe cosmology. A promising avenue for future study is the behavior

of time-evolving strings in the presence of black hole horizons, where Carrollian structures

may play a crucial role in near-horizon physics and the black hole information paradox.

Another crucial aspect is the impact of the Carrollian limit of the Milne worldsheet on its

symmetry structure—analyzing the transformation properties of worldsheet fields in this

13Readers may wonder how BEC, which typically occurs at extremely low (or absolute) temperatures,

corresponds to the Hagedorn phase transition, a high-energy phenomenon. To clarify, note that for funda-

mental strings, the Hagedorn temperature is given by TH = 1

2π
√
2α′ . Therefore, as the worldsheet approaches

the Hagedorn phase transition by dialing the tensionless limit α′ → ∞, this triggers a very low value for

TH, thereby connecting the worldsheet vacuum with BEC.
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limit may uncover novel aspects of tensionless string theory, including hidden symmetries

or modified representations of worldsheet algebras.

Moreover, the emergence of time-like entanglement in this framework hints at po-

tential connections between Carrollian physics and non-Lorentzian formulations of string

theory. These ideas might find relevance in early universe scenarios and cosmological

singularities, where conventional Lorentzian geometry may no longer provide an ade-

quate description. Understanding how such structures integrate with broader string-

theoretic models—including black hole interiors, Milne-type cosmologies, and anisotropic

backgrounds—remains an exciting and largely unexplored frontier. While the current work

lays the foundation, the following specific questions illustrate some promising directions:

• The Rindler worldsheet has already offered deep insight into near-horizon black hole

physics, where accelerated observers experience phenomena such as the Unruh ef-

fect and Hawking radiation [33]. In this context, the R and L Rindler wedges de-

scribe the exterior of black holes, while Carrollian and tensionless structures natu-

rally emerge near the horizon [11–13]. However, understanding the dynamics of the

black hole interior remain elusive. Interestingly, the structure of the F and P Milne

wedges—characterized by their time-like separation and strong anisotropic expan-

sion—bears striking similarities to the near-singularity behavior inside black holes,

where the classical Milne metric governs the interior evolution of spacetime [53].

Additionally, analytic solutions of certain black hole spacetimes indicate that their

interiors develop Milne-like structures with possible time-like singularities [54]. Fur-

thermore, the Kruskal extension of black hole spacetimes suggests that the white

hole region exhibits a structure closely related to the Milne sectors, reinforcing the

importance of Milne physics not only for probing black hole interiors but also for

understanding the evolution of white hole regions. This naturally raises several key

questions: Can the null Milne worldsheet framework serve as an intrinsic probe of

black hole interiors, just as the Rindler worldsheet in the Carrollian limit captures

the exterior near-horizon physics? If so, what is the precise role of the characteristic

time-evolution parameter in governing the non-inertial worldsheet dynamics inside a

black hole? Addressing these questions may offer a deeper examination of the Car-

rollian and tensionless limits of the Milne worldsheet and their possible implications

for singularity resolution, black hole interiors, and non-Lorentzian gravity.

• Beyond black hole physics, the tensionless Milne worldsheet hints at a natural bridge

to early universe cosmology. Near singularities, the early universe undergoes se-

quences of epochs, characterized by anisotropic expansion and contraction [55], mir-

roring the structure of the Milne worldsheet. This suggests a deeper connection

between non-inertial string dynamics and early universe physics. Moreover, Milne

universes—describing expanding open cosmologies—share structural similarities with

Kasner spacetimes in certain coordinate representations [36, 43], where their trans-

formations reveal deep connections to non-inertial worldsheet formulations. The

emergence of a Carrollian limit in the Milne worldsheet hints at new insights into

ultra-relativistic regimes of early universe cosmology, particularly in settings where
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Carrollian symmetries may govern extreme spacetime dynamics. This raises funda-

mental questions: Can the tensionless limit of time-evolving strings provide insights

into cosmic string behavior in an expanding Milne-like background? Could the inter-

play between non-inertial worldsheet evolution and Carrollian physics offer a novel

perspective on early universe models and the quantum origins of large-scale structure?

Pursuing these ideas may illuminate the role of tensionless string dynamics in shaping

the early universe and fundamental cosmological phenomena.

Together, these questions suggest that the Milne framework might have broad rele-

vance—from probing black hole interiors to exploring early-universe dynamics. While this

paper lays the foundational groundwork, the avenues outlined above highlight how future

work might further uncover the rich interplay between tensionless string theory, non-inertial

evolution, and Carrollian physics.
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Appendix

A Formulating the global modes for Milne worldsheet expansion

In this section, we outline the key steps to formulate the global (or Unruh-Minkowski)

modes for the Milne worldsheet quantum mode expansion (3.33). We begin by setting

up the right-moving sector of the positive-frequency global Milne modes. Utilizing the

coordinate mapping (3.26), we successively reexpress the local Milne modes ŨF n, UP ∗
n,

ŨP n, and UF ∗
n successively as follows:

√
4πn ŨF n = i

(
eη

−
F a/c

)−iΩn/a
= ie−iΩnψ

[
a
(
σ− − φ

)
/c
]−iΩn/a , (A.1a)

√
4πn UP ∗

n = −i
(
e−η

+
P a/c

)−iΩn/a
= −i (−1)−iΩn/a e−iΩnψ

[
a
(
σ− − φ

)
/c
]−iΩn/a , (A.1b)

√
4πn ŨP n = i

(
e−η

−
P a/c

)iΩn/a
= ieiΩnψ

[
a
(
−σ+ − φ

)
/c
]iΩn/a , (A.1c)

√
4πn UF ∗

n = −i
(
eη

+
F a/c

)iΩn/a
= −i (−1)iΩn/a eiΩnψ

[
a
(
−σ+ − φ

)
/c
]iΩn/a . (A.1d)

We then obtain the following mode combinations:

ŨF n − e−πΩn/a UP ∗
n =

i√
πn

(a/c)−iΩn/a e−iΩnψ (cτ − σ − φ)−iΩn/a , (A.2)

ŨP n − e−πΩn/a UF ∗
n =

i√
πn

(a/c)iΩn/a eiΩnψ (−cτ − σ − φ)iΩn/a , (A.3)

which are well-defined and analytically continued between the F and P wedges for the right-

moving global Milne modes in Minkowski coordinates. Note that in steps (A.1b) and (A.1d)
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(corresponding to the negative frequency left-moving modes in P and F, respectively), there

is an apparent ambiguity in the choice of (−1)∓iΩn/a : −1 = eiπ or −1 = e−iπ. However,

it is crucial to note that σ− > 0 (< 0) and σ+ > 0 (< 0) in F (P). Thus, to maintain

positive frequencies for the right-moving global mode combinations (A.2) and (A.3), we

must satisfy Im σ− > 0 in step (A.1b) (continuing from P to F) and Im σ− < 0 in step

(A.1d) (continuing from F to P). In other words, the global mode (A.2) is analytic in the

upper half of the complex σ− plane, allowing us to set −1 = eiπ in step (A.1b). Similarly,

we set −1 = e−iπ in step (A.1d), as the global mode (A.3) is analytic in the lower-half

complex σ− plane.

Next, we turn to the setup for left-moving sector of the positive-frequency global Milne

modes. Using the light-cone coordinate mapping (3.26), we can successively restructure

the local Milne modes UF n, ŨP ∗
n, UP n, and ŨF ∗

n as follows:

√
4πn UF n = i

(
eη

+
F a/c

)−iΩn/a
= ie−iΩnψ

[
a
(
σ+ + φ

)
/c
]−iΩn/a , (A.4a)

√
4πn ŨP ∗

n = −i
(
e−η

−
P a/c

)−iΩn/a
= −i (−1)−iΩn/a e−iΩnψ

[
a
(
σ+ + φ

)
/c
]−iΩn/a , (A.4b)

√
4πn UP n = i

(
e−η

+
P a/c

)iΩn/a
= ieiΩnψ

[
a
(
−σ− + φ

)
/c
]iΩn/a , (A.4c)

√
4πn ŨF ∗

n = −i
(
eη

+
F a/c

)iΩn/a
= −i (−1)iΩn/a eiΩnψ

[
a
(
−σ− + φ

)
/c
]iΩn/a . (A.4d)

In a similar manner, we derive the following mode combinations, analytically continued

between the F and P wedges (i.e., along the σ = 0 surface) to produce the left-moving

global Milne modes:

UF n − e−πΩn/a ŨP ∗
n =

i√
πn

(a/c)−iΩn/a e−iΩnψ (cτ + σ + φ)−iΩn/a , (A.5)

UP n − e−πΩn/a ŨF ∗
n =

i√
πn

(a/c)iΩn/a eiΩnψ (−cτ + σ + φ)iΩn/a . (A.6)

As before, we encounter the ambiguity in choosing (−1)∓iΩn/a in steps (A.4b) and (A.4d),

which involve the negative frequency right-moving modes in the P and F regions, respec-

tively. To ensure positive frequencies for the left-moving global mode combinations (A.5)

and (A.6), we require Im, σ+ > 0 in step (A.4b) (continuing from P to F) and Im, σ+ < 0

in step (A.4d) (continuing from F to P). Consequently, we set −1 = eiπ in step (A.4b) and

−1 = e−iπ in step (A.4d).

It is important to note that all the forms of the global Milne worldsheet modes derived

in eqs. (A.2), (A.3), (A.5) and (A.6) are unnormalized. To properly normalize these right-

and left-moving global Milne modes, we need to adjust them to become orthonormal by

determining the appropriate normalization constants. This process will yield the normal-

ized forms of the global modes and their Hermitian conjugates for the Milne worldsheet,

as presented in eqs. (3.28) and (3.32).
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