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Abstract

A recent construction of polylogarithms on Riemann surfaces of arbitrary genus
in arXiv:2306.08644 is based on a flat connection assembled from single-valued non-
holomorphic integration kernels that depend on two points on the Riemann surface.
In this work, we construct and prove infinite families of bilinear relations among these
integration kernels that are necessary for the closure of the space of higher-genus poly-
logarithms under integration over the points on the surface. Our bilinear relations
generalize the Fay identities among the genus-one Kronecker-Eisenstein kernels to ar-
bitrary genus. The multiple-valued meromorphic kernels in the flat connection of En-
riquez are conjectured to obey higher-genus Fay identities of exactly the same form as
their single-valued non-holomorphic counterparts. We initiate the applications of Fay
identities to derive functional relations among higher-genus polylogarithms involving
either single-valued or meromorphic integration kernels.
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1 Introduction

A variety of cutting-edge challenges in high-energy physics and different areas of mathemat-

ics evolve around the treatment of iterated integrals on increasingly complex geometries.

Different flavours of polylogarithm functions have become a common theme of Feynman-

integral computations in quantum field theory [1, 2, 3, 4] and the moduli-space integrals

over punctured Riemann surfaces in string amplitudes [5, 6, 7, 8]. At the same time, spe-

cial values, Hopf-algebra structures and related properties of such polylogarithms connect

deep questions in number theory and algebraic geometry with computational advances at

the interface of mathematics and physics [9, 10, 11, 12]. A central objective in this field of

research is to construct function spaces of polylogarithms that close under taking primitives

and to exhibit effective algorithms to determine these primitives.

The space of polylogarithms on a (compact) Riemann surface Σ strongly depends on

the genus of the surface Σ. On the sphere (genus zero), polylogarithms arise from iterated

integrals of rational functions [13, 14, 15]. Their closure under taking primitives can be

traced back to standard partial fraction identities [16].

On the torus, namely on a compact Riemann surface of genus one, elliptic polylogarithms

were introduced in [17, 18, 19], further developed in [20] and organized according to appli-

cations to superstring amplitudes and Feynman integrals [21] and [22], respectively. Elliptic

polylogarithms may be obtained as iterated integrals on the torus of Kronecker-Eisenstein

kernels. Essential to their closure under integration are certain identities among theta func-

tions [19, 20] that are closely related to the Fay trisecant identity of [23] and will be referred

to as Fay identities in the sequel. Fay identities at genus one play the role of partial fraction

decompositions at genus zero and rearrange bilinear combinations in Kronecker-Eisenstein

in a form that permits the evaluation of the primitives of all combinations of integration

kernels and elliptic polylogarithms in any number of variables [21, 24]. Fay identities also

underly the algebraic and differential relations that elliptic polylogarithms satisfy at special

values of their arguments [25, 26], known as elliptic multiple zeta values [27, 28] and, in the

real-analytic case, modular graph functions and forms [29, 30, 31].

The literature on integration kernels, associated flat connections and polylogarithms on

Riemann surfaces of higher genus h ≥ 2 goes back to the study of correlators in Wess-

Zumino-Witten models in [32] and more recently features a broad bandwidth of approaches

[33, 34, 35, 36, 37, 38]. In view of the growing relevance of higher-genus polylogarithms for

Feynman integrals [39, 40, 41, 42, 43] and string amplitudes [44, 45, 46, 5, 47], the quest for

conceptual and computational control of the functional identities they obey is clearly a timely

endeavor. Even so, while the Fay trisecant identity and its applications to bosonization are

well-known for arbitrary genus, the generalization of the Fay identities that is required to
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promote the space of higher genus polylogarithms into an algebra of functions that closes

under differentiation and integration has remained part of largely uncharted territory.

In this work, we close this gap by constructing and proving Fay identities for integration

kernels on compact Riemann surfaces Σ of arbitrary genus h. We will mostly follow the ex-

plicit approach to higher-genus polylogarithms in [37] where the integration kernels are given

by iterated convolutions of the Arakelov Green function [48, 49, 44] as well as holomorphic

Abelian differentials and their complex conjugates. As a consequence, the integration kernels

of [37] are single-valued but non-meromorphic functions of two points on Σ and transform

as tensors under the modular group Sp(2h,Z) [50, 51, 52].

Our main results include infinite families of tensor-valued Fay identities among bilin-

ears in the single-valued higher-genus integration kernels of [37] which are complete in the

following sense. The dependence of these bilinears on three points x, y, z ∈ Σ can always

be rearranged to avoid a repeated dependence on any of the points x, y or z in more than

one integration kernel factor. This rewriting of higher-genus integration kernels in terms of

products with at most one x, y or z-dependent factor is essential for integration over the

respective point in terms of the higher-genus polylogarithms of [37].

We also investigate the three-point Fay identities in the limit of two coincident points

and encounter modular tensors that solely depend on the moduli of Σ and generalize (al-

most) holomorphic Eisenstein series to higher genus. As a simple subclass of two-point Fay

identities, we recover the so-called interchange identities which were presented in[46, 52, 37]

relating integration kernels and Abelian differentials. The web of relations that is found to

descend from the Fay identities in this work paves the way for deriving functional identities

among higher-genus polylogarithms and proving their closure under taking primitives. In

sections 7 and 9.5, we illustrate the role played by the interchange and Fay identities in the

concrete construction of primitives involving different types of higher-genus polylogarithms.

At genus one, our understanding of elliptic polylogarithms and their special values ben-

efitted from the interplay between two types of Kronecker-Eisenstein integration kernels:

single-valued but non-meromorphic f (r) and meromorphic but multi-valued g(r) with r ≥ 0.1

Numerous main results of this paper are derived and proven through the properties of single-

valued but non-meromorphic modular tensors f I1···Ir
J(x, y) which generalize the f (r)(x−y) to

higher genus [37]. In particular, the ubiquitous integration-by-parts identities in our compu-

tations crucially rely on the single-valuedness of the f -tensors. Meromorphic but multiple-

1While the single-valued f (r) entered the Brown-Levin formulation of elliptic polylogarithms [19] as well
as their string-theory applications in [21, 53], the alternative formulation of elliptic polylogarithms [22] in
terms of the meromorphic g(r) is predominantly used in Feynman-integral applications [1].
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valued higher-genus generalization of the g(r)(x−y) kernels, to be denoted by gI1···IrJ(x, y),
2

were introduced by Enriquez through their functional properties [33].

Another main result of this work is a generalization of the interchange identities, which

we prove, and a generalization of the Fay identities, which we conjecture, to the case of

the meromorphic Enriquez kernels gI1···IrJ(x, y) at arbitrary genus and tensor rank. While

explicit representations for the Enriquez kernels are somewhat cumbersome to exhibit,3 their

defining properties provide sufficient guidance for anticipating and proving the conjectural

identities in this work. Finally, the coincident limits y → x of Enriquez kernels gI1···IrJ(x, y)

are conjectured to introduce meromorphic versions of the solely moduli-dependent modular

tensors encountered in the analogous coincident limits of f I1···Ir
J(x, y).

1.1 Outline

This work is organized as follows: We start by motivating the quest for higher-genus Fay

identities in section 2 by highlighting the significance of partial fractions and genus-one Fay

identities for iterated integrals on the sphere and the torus, respectively. In section 3, we

review the protagonists of the Fay identities of this work, namely, the single-valued but

non-meromorphic integration kernels of [37] and the associated higher-genus polylogarithms.

Section 4 introduces a simple subclass of Fay identities on compact Riemann surfaces of

arbitrary genus h that transform as scalars under the modular group Sp(2h,Z). We then

proceed to the general case of bilinear identities among higher-genus integration kernels with

tensorial transformation law under Sp(2h,Z): interchange identities involving two points in

section 5 and Fay identities involving three or more points in section 6. In section 7 we

illustrate the role of the interchange and the Fay identities in the closure under taking

primitives of multivariable higher-genus polylogarithms. The coincident limits of higher-

genus integration kernels and Fay identities featuring tensorial generalizations of (almost)

holomorphic Eisenstein series are discussed in section 8. Finally, in section 9, we gather

counterparts of the results obtained in earlier sections for the meromorphic but multiple-

valued integration kernels in the Enriquez connection [33], to prove a meromorphic version

of the interchange identities and conjecture a meromorphic version of the Fay identities.

The appendices complement the discussion in the main text with additional background

material on the prime form and the Arakelov Green function (Appendix A), an alternative

2We depart from the normalization conventions of the meromorphic integration kernels ωI1···Ir
J(x, y)

introduced in Enriquez’s work [33] by gI1···IrJ(x, y) = (−2πi)rωI1···Ir
J(x, y) to attain a smooth genus-one

limit gI1···IrJ(x, y)|h=1 = g(r)(x−y) and simple poles gIJ(x, y) = δIJ/(x−y) + reg with unit residue.

3See [38] for a recent proposal to express the Enriquez kernels ωI1···Ir
J(x, y) in terms of Poincaré series

and Schottky variables in the restricted subset of moduli space where the Poincaré series converges.
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approach to multi-variable Fay identities (Appendix B), proofs of the main lemmas and

theorems (Appendix C) and a construction of higher-weight Fay identities from convolutions

of lower-weight ones (Appendix D). Pointers to the main Theorems, and Conjectures of this

work are as follows.

• For the single-valued but non-meromorphic integration kernels of [37]:

– interchange identities in Theorem 5.2,

– three-point Fay identities in Theorems 6.2 and 6.3,

– their coincident limits in Theorems 8.3 and 8.4

• For the meromorphic but multiple-valued Enriquez kernels of [33]:

– interchange identities in Theorem 9.2,

– three-point Fay identities in Conjectures 9.6 and 9.7,

– their coincident limits in Conjectures 9.10 and 9.11.

1.2 Results obtained after the first archive version of this paper

Several questions and conjectures that were stated in the earlier versions of this paper have

since then been addressed or solved.

• A proof of the Conjectures 9.6 and 9.7 was advanced in [54];

• Relations between the single-valued f -kernels and the meromorphic g-kernels, and their

consequences for the associated classes of polylogarithms can be found in joint work

with Enriquez and Zerbini [55];

• An alternative proof of the Conjecture 9.6 is obtained in [56] by demonstrating the

equivalence between interchange and Fay identities and flatness of DHS or Enriquez

connections in multiple variables.
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2 Motivation: Fay identities at genus zero and one

The space of polynomials forms a ring under the operations of addition and multiplication

and closes under differentiation and integration, namely the derivative and the primitive of a

polynomial is again a polynomial. While rational functions also form a ring under addition

and multiplication (they actually form a field) and close under differentiation, the primitive

of a rational function is not necessarily again a rational function. Instead, the logarithm

arises as the primitive of a simple pole, and polylogarithms [13, 14, 15] arise from further

operations of multiplication by rational functions and integration. The resulting space that

combines rational functions and polylogarithms on the complex plane or on the Riemann

sphere is closed under addition, multiplication, differentiation and integration [16]. While

the study of polylogarithms has a long history [57, 58], their significance for perturbative

quantum field theory [59, 60, 61, 9] and string theory [62, 63, 64] has been recognized only

over the past few decades.

On the torus, elliptic functions again close under addition, multiplication and differentia-

tion, but integration again produces new functions, which are referred to as elliptic polyloga-

rithms. Double periodicity and meromorphicity are not always compatible with one another

on the torus and this conflict leads to different formulations of the function spaces of elliptic

polylogarithms. The standard choices are based on either single-valued but non-meromorphic

flat connections or alternatively meromorphic but multiple-valued ones [17, 18, 19, 22, 20].

Similar to their genus-zero counterparts, elliptic polylogarithms have become a common

theme of perturbative computations in quantum field theory [65, 66, 67, 68, 69] and string

theory [21, 30, 53, 70, 71].

Further generalization to polylogarithms to a higher-genus Riemann surface Σ have also

been introduced recently. The construction of polylogarithms is greatly facilitated by the

introduction of a flat connection whose associated path-ordered exponential integral, or

holonomy, between two points x, y ∈ Σ depends only on the homotopy class of paths between

the points x and y but not on the specific representative chosen to represent each class.

The conflict between meromorphicity and single-valuedness, that existed already on the

torus, persists for higher-genus Riemann surfaces Σ and again leads one to make choices.

Formulations in terms of meromorphic flat connections on a punctured Riemann surface of

arbitrary genus feature either multiple-valued integration kernels with simple poles [33, 38]

or single-valued ones with higher poles [34, 36]. Their disadvantages are that modular

invariance is obscured, and that the basic integration kernels are somewhat cumbersome to

exhibit explicitly (though the Schottky parametrization has recently been used to evaluate

genus-two polylogarithms numerically [38]).

In a recent paper [37] a construction of polylogarithms was developed based on a non-
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meromorphic but single-valued and modular invariant flat connection with at most simple

poles. More specifically, the Sp(2h,Z) invariance of the connection of [37] on a Riemann

surface Σ of arbitrary genus h is explicitly realized in terms of integration kernels that

transform as modular tensors.

Closure under integration of the function space of a certain class of meromorphic hy-

perlogarithms was proven recently in [36]. It has remained a challenge, however, to obtain

effective algorithms for the explicit determination of primitives from that approach and any

other. It is the purpose of this paper to investigate the closure under integration of the

polylogarithms introduced in [37] multiplied by the integration kernels in their underlying

flat connection. We shall prove bilinear identities among the higher-genus kernels that imple-

ment this closure as detailed in section 7 and generalize the genus-one Fay identities among

the Kronecker-Eisenstein kernels in [19]. We also propose concrete conjectures for certain

relations that are needed to show the existence and determine the explicit form of primitives

of the meromorphic polylogarithms derived from the kernels of [33, 38].

In this section, we present brief reviews of the polylogarithms at genus zero, namely on

the Riemann sphere, and for elliptic polylogarithms at genus one, namely on the torus. The

remainder of the paper will be devoted to higher genus.

2.1 Partial fraction decomposition at genus zero

On the Riemann sphere, any rational function of x may be expressed using partial fraction

decomposition. The primitive of every term in this decomposition, except for simple poles,

is again a rational function. Therefore, the extension beyond rational functions required to

obtain closure under integration is generated by differentials dx/(x−ai). The corresponding

polylogarithms G(a1, · · · , an; x) with ai, x ∈ C are defined recursively by G(∅; x) = 1 and,

G(a1, · · · , an; x) =
∫ x

0

dz

z−a1
G(a2, · · · , an; z) (2.1)

By the shuffle relations among iterated integrals, the product of two polylogarithmsG(· · · ;x)
with the same endpoints 0 and x of the path is a linear combination of the same type of

integrals. Hence, in the discussion of closure under integration over x, it is sufficient to

consider expressions with at most one factor of polylogarithms (2.1). In order to integrate

over the labels ai of G(a1, · · · , an; x), the differential equations of polylogarithms can be used

to move the integration variable into the endpoint of the path G(· · · ; ai) [16, 62, 72, 73]. As
detailed in section 7, these types of functional identities are known as a change of fibration

basis, and we will lay the ground for their generalizations to arbitrary genus.

The primitive of the product of a polylogarithm G(a1, · · · , an; z) and a rational func-

tion ϕ(z) may be decomposed into a sum of rational functions and polylogarithms. To
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show this, we decompose ϕ(z) into partial fractions. The primitive of any simple pole term

1/(z−b) in ϕ(z) clearly produces a new polylogarithm G(b, a1, · · · , an; x) while polynomial

and higher order poles may be integrated by parts and again recursively decomposed onto

the polylogarithms of (2.1). For example, choosing ϕ(z) = 1
(z−b1)(z−b2) with two linear fac-

tors in the denominator, the partial fraction decomposition needed to integrate the product

ϕ(z)G(a1, · · · , an; z) via (2.1) is given by,∫ x

0

dz
G(a1, · · · , an; z)
(z−b1)(z−b2)

=
1

b1−b2

∫ x

0

dz

(
G(a1, · · · , an; z)

z−b1
− G(a1, · · · , an; z)

z−b2

)
=

1

b1−b2

(
G(b1, a1, · · · , an; x)−G(b2, a1, · · · , an; x)

)
(2.2)

Partial fraction decomposition is a property of rational functions and will not be available,

as such, for genus one and beyond. Instead, what will be available at genus h ≥ 1 are

multi-periodic generalizations of the elementary partial fraction relation,

1

(z−x)(x−y)
+

1

(x−y)(y−z)
+

1

(y−z)(z−x)
= 0 (2.3)

among three points on the sphere which implies partial fraction decompositions involving an

arbitrary number of points. More specifically, recursive application of (2.3) to products of

several simple poles will lead to standard partial fraction decomposition, such as in,

r∏
j=1

1

z−xj

=
1

(z−x1)(x1−x2) · · · (xr−1−xr)
+ perm(x1, x2, · · · , xr) (2.4)

or in,
1

(x1−x2)(x2−x3) · · · (xr−1−xr)
+ cycl(x1, x2, · · · , xr) = 0 (2.5)

As will be motivated further below, the multi-periodic generalizations of the elementary

partial fraction relation (2.3) to genus h ≥ 1 will be referred to as Fay identities. Similar

to the situation on the sphere, elementary Fay identities among three points on a Riemann

surface of genus h will be sufficient to simplify functions of an arbitrary number of points.

The desired simplifications to be achieved via higher-genus Fay identities are set by the

closure of the genus-h polylogarithms of [37] under integration in the same way as partial

fraction enables the genus-zero integration in (2.2).

2.2 Kronecker-Eisenstein series at genus one

As mentioned in the introductory paragraphs to this section, function theory on the torus

reflects the conflict between meromorphicity and single-valuedness, and leads to two natu-

ral but different generalizations of rational functions on the sphere. They are referred to
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as the Kronecker-Eisenstein coefficients g(r)(x) and f (r)(x) and are given by the following

generating series,4

∞∑
r=0

αr−1g(r)(x) =
ϑ′1(0)ϑ1(x+α)

ϑ1(x)ϑ1(α)
(2.6)

∞∑
r=0

αr−1f (r)(x) =
ϑ′1(0)ϑ1(x+α)

ϑ1(x)ϑ1(α)
exp

(
2πiα

Im x

Im τ

)

where α ∈ C plays the role of a bookkeeping device, while the modulus τ of the torus

Σ = C/(Z+τZ) will be suppressed throughout. The functions g(r)(x) defined by (2.6) are

meromorphic in x ∈ Σ but multiple-valued, while the functions f (r)(x) are single-valued but

not meromorphic. One has g(0)(x) = f (0)(x) = 1 and the first non-trivial functions are,

g(1)(x) = ∂x lnϑ1(x) (2.7)

f (1)(x) = ∂x lnϑ1(x) + 2πi
Im x

Im τ

Both of g(1)(x) and f (1)(x) have simple poles for any x ∈ (Z+τZ). While all the single-

valued f (r)(x) are regular on Σ for r ̸= 1, the meromorphic functions g(r)(x) for r ≥ 2 on

the universal cover C of the torus have simple poles at x ∈ (Z+τZ) \ Z.

The single-valued functions f (r)(x−y) will generalize at higher genus to the modular

tensors f I1···Ir
J(x, y) introduced in [37] while the meromorphic functions g(r)(x−y) will

generalize to the differential forms gI1···IrJ(x, y) introduced in [33]. Translation invari-

ance on the torus admits the simple parity properties f (r)(x−y) = (−1)rf (r)(y−x) and

g(r)(x−y) = (−1)rg(r)(y−x) of the genus-one functions. However, their higher-genus gen-

eralizations obey more involved identities dubbed interchange identities, see section 5 and

section 9.2 below.

Recall that the scalar Green function G(x, y) on the torus is defined by [7],

G(x, y) = − log

∣∣∣∣ϑ1(x−y)
η

∣∣∣∣2 + 2π
Im (x−y)2

Im τ
(2.8)

where the Dedekind η function satisfies ϑ′1(0) = 2πη3. Note that G(x, y) is single-valued,

symmetric under swapping x and y, and depends only on the difference x−y in view of

translation invariance on the torus. The Kronecker-Eisenstein coefficients f (r)(x−y) can be

4The ϑ-function is given by ϑ1(x) = 2q1/8 sin(πx)
∏∞

n=1(1− qn)(1− e2πixqn)(1− e−2πixqn) for q = e2πiτ .
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naturally obtained from G via differentiation and convolutions, as follows, [74],

f (1)(x−y) = −∂xG(x, y) (2.9)

f (r)(x−y) =
∫
Σ

d2z ∂xG(x, z)f (r−1)(z−y) , r ≥ 2

The Kronecker-Eisenstein coefficients, either meromorphic or single-valued, play a role for

iterated integrals on the torus [19, 21, 22] that is analogous to the role played by the differen-

tials dx/(x−ai) for the polylogarithms (2.1) on the sphere. Accordingly, both of g(r)(x) and

f (r)(x) are referred to as integration kernels or Kronecker-Eisenstein kernels. Both g(r)(x)

and f (r)(x) are said to have weight r which in both cases equals the transcendental weight

of the Fourier coefficient and in the case of f (r)(x) equals the modular weight (though the

g(r)(x) do not transform as Jacobi forms under SL(2,Z) [75]).

2.3 Three-point Fay identities at genus one

In this subsection, we review the genus-one Fay identities in terms of both types of integration

kernels f (r) and g(r) and provide a definition of the term z-reduced for the genus-one case.

2.3.1 Three-point Fay identities in terms of f (r)

The genus-one analogue of the partial-fraction identity (2.3) on the sphere is readily formu-

lated in terms of the Kronecker-Eisenstein kernels f (1) in (2.7) and f (2), [19, 21]

f (1)(z−x)f (1)(x−y) + f (1)(x−y)f (1)(y−z) + f (1)(y−z)f (1)(z−x)
+ f (2)(x−y) + f (2)(y−z) + f (2)(z−x) = 0 (2.10)

The factors f (1) in (2.10) account for the pole terms in (2.7), while the non-singular f (2) terms

in the second line compensate for the non-holomorphicity of the first line. The relation in

(2.10) for f (1) and f (2) and its meromorphic counterpart for g(1) and g(2) are the simplest

examples of Fay identities [23] for the special case of genus one.

At genus one, the Fay trisecant identity relating the meromorphic functions g(1) and g(2)

may be derived via Riemann identities for ϑ-functions at arbitrary points in the Poincaré

upper half plane. Similarly, for arbitrary genus, the Riemann identities hold at arbitrary

points in the Siegel upper half space. By contrast, the Fay trisecant identity for arbitrary

genus [23] hold only on the subset of the Siegel upper half space that corresponds to the period

matrices of compact Riemann surfaces, referred to as Torelli space. The identities derived

here similarly hold only on Torelli space, whence we refer to them also as Fay identities.
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The Fay identity (2.10) plays a crucial role in reducing the integrals of elliptic polylog-

arithms against products of f (1)-functions to elliptic polylogarithms again, similarly to the

discussion following (2.1) for the sphere. For example, in an integral over the variable z,

the Fay identity (2.10) allows one to reduce the product f (1)(y−z)f (1)(z−x), both of whose

factors involve z, to a sum of terms in which only a single factor is z-dependent. We shall

refer to this process as z-reduction and the final expression thus obtained as z-reduced.

In this z-reduced form, the z-integral may now be carried out and produces again elliptic

polylogarithms, possibly multiplied by factors f (r)(x−y) with r ≥ 1.

Analogous manipulations are needed to z-reduce more general products f (r)(y−z)f (s)(z−x)
for arbitrary values of r, s ≥ 1, namely to express them in terms of a sum of products of

Kronecker-Eisenstein kernels with at most one z-dependent factor. This is accomplished by

the following generalization of the Fay identity (2.10) to arbitrary weight [21],5

f (s)(x−z)f (r)(y−z) = −(−1)sf (r+s)(y−x) +
s∑

ℓ=0

(
ℓ+r−1

ℓ

)
f (s−ℓ)(x−y)f (r+ℓ)(y−z)

+
r∑

ℓ=0

(
ℓ+s−1

ℓ

)
f (r−ℓ)(y−x)f (s+ℓ)(x−z) (2.11)

The z-reduction process, which was introduced and illustrated above for the case of genus

one, will play a central role throughout this paper and will be defined more generally and

more formally for arbitrary genus in section 3.6. Generalizations of the Fay identities (2.11)

which implement the z-reduction at arbitrary genus can be found in Theorems 6.2 and 6.3.

A generating series for the Fay identities (2.11) crucially enters the proof that the el-

liptic polylogarithms of Brown and Levin are closed under taking primitives [19]. The Fay

identity (2.11) drives integration algorithms for the variants of the Brown-Levin elliptic

polylogarithms used for genus-one string amplitudes [21, 53]. First, integrating products

of f (s)(x−z)f (r)(y−z) and elliptic polylogarithms over z necessitates a z-reduction of the

Kronecker-Eisenstein kernels via (2.11). Second, preparing these primitives with respect to

z for integration over x or y in a later step requires a change of fibration basis of the elliptic

polylogarithms which is performed through the differential equations they satisfy and the

Fay identities of their integration kernels [21]. A detailed discussion of changing fibration

bases and explicit results on its implementation at higher genus can be found in section 7

(also see section 9.5 for a formulation in terms of meromorphic polylogarithms).

5The generating series of (2.11) and its meromorphic counterpart follow from the Fay trisecant identity
for the odd ϑ1 function via (2.6). By a slight abuse of terminology, we shall also refer to the coefficient
identities (2.11) themselves, and their higher-genus generalizations below, as Fay identities.
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2.3.2 Three-point Fay identities in terms of g(r)

The Kronecker-Eisenstein kernels g(r) literally satisfy the same Fay identities (2.11) upon

replacing f (r) by g(r) in all terms. The definition of z-reduction straightforwardly car-

ries over from f (r) to g(r). Accordingly, the meromorphic versions of the Fay identities

(2.10) and (2.11) obtained from replacing f (r) by g(r) are said to z-reduce the product

g(s)(x−z)g(r)(y−z).
In fact, these algorithms carry over to the meromorphic formulation of elliptic polylog-

arithms [22, 24] (see [20] for recent work on their closure under taking primitives) upon

replacing the single-valued kernels f (r) by their meromorphic counterparts g(r) in (2.6).

2.4 Higher-point Fay identities at genus one

Similar to the identity (2.4) among rational functions of multiple points x1, · · · , xr on the

sphere, one can iterate the genus-one Fay identity (2.11) to rewrite products
∏r

j=1 f
(kj)(z−xj)

in terms of z-reduced combinations of f (r). The genus-one uplift of the cyclic identity (2.5)

among ((x1−x2)(x2−x3) · · · (xr−1−xr))
−1 may be expressed in terms of the following elliptic

(i.e. meromorphic and doubly-periodic) functions of n points on the torus [76, 77, 21],

Vw(1, · · · , n) =
∑

k1+k2+···+kn=w

f (k1)(x1−x2)f
(k2)(x2−x3) · · · f (kr−1)(xr−1−xr)f

(kr)(xr−x1) (2.12)

Their special cases with n = w+1 vanish,

Vw(1, 2, · · · , w+1) = 0 (2.13)

as one can conveniently check from their generating series [76] or the following inductive

argument: The elliptic functions Vw(1, 2, · · · , n) in (2.12) have simple poles in (xj−xj+1)

with residue Vw−1(1, · · · , j−1, j+1, · · ·n). Hence, the Vw(1, 2, · · · , w+1) in (2.13) are non-

singular if their lower-weight counterparts Vw−1(1, 2, · · · , w) vanish. With the base case

V1(1, 2) = f (1)(x1−x2) + f (1)(x2−x1) = 0 of (2.13) and the fact that all the Vw(1, 2, · · · , n)
with w < n vanish upon integrating x1, · · · , xn over the torus, this leads to an inductive

proof of (2.13).

The second non-trivial example V2(1, 2, 3) = 0 of (2.13) is literally the weight-two Fay

identity (2.10). At general w ≥ 3 in turn, (2.13) realizes multiple instances of higher-weight

Fay identities (2.11) applied to different triplets of points. From the contribution with w

factors of f (1)(xj−xj+1) to Vw(1, 2, · · · , w+1), the pole structure of (2.13) is identical to the

genus-zero identity (2.5), namely given by the cyclic orbit of ((x1−x2) · · · (xr−1−xr))
−1 under

xj → xj+1 with xw+1 = x1.

15



3 The Arakelov Green function and polylogarithms

In this section, we review some basic ingredients that will enter the formulation and proof

of interchange and Fay identities, including the homology of Riemann surfaces for arbi-

trary genus h, modular transformations, Abelian differentials, the Arakelov Green function,

integration kernels, and the construction of polylogarithms in [37] from flat connections.

Additional details on the construction of the Arakleov Green function via the prime form

may be found in Appendix A and in [7].

3.1 Homology, cohomology and Sp(2h,Z) basics

We follow the notation and conventions of [37] for the basic ingredients for integration on

compact Riemann surfaces Σ of arbitrary genus h. A canonical basis of H1(Σ,Z) ∼= Z2h

is spanned by homology cycles AI and BJ with I, J = 1, 2, · · · , h subject to a symplectic

intersection pairing I(AI ,BJ) = −I(BJ ,A
I) = δIJ and I(AI ,AJ) = I(BI ,BJ) = 0.

The h Abelian differentials ωI ∈ H1(Σ,Z) are normalized on the A-cycles while the

B-cycles give rise to the components ΩIJ = ΩJI of the period matrix Ω,∮
AI

ωJ = δIJ ,

∮
BI

ωJ = ΩIJ (3.1)

The positive definite imaginary part of ΩIJ and its matrix inverse will be denoted by,

YIJ = ImΩIJ , Y IJ =
(
(ImΩ)−1

)IJ
(3.2)

and used to raise and lower indices, for instance,6

ωI = Y IJωJ , ωI = YIJω
J (3.3)

In local complex coordinates z, z̄ on Σ, we will frequently peel the differential dz off the

Abelian differentials ωI and denote the component functions ωI(z) in normal font,

ωI = ωI(z)dz , ω̄I = ω̄I(z)dz̄ (3.4)

With the notation d2z = i
2
dz ∧ dz̄ for the coordinate volume form the Riemann bilinear

relations take the following form,

i

2

∫
Σ

ωI ∧ ω̄J =

∫
Σ

d2z ωI(z)ω̄
J(z) = δJI (3.5)

6Here and throughout this work, repeated indices are understood to be summed over unless indicated
otherwise, i.e. Y IJωJ =

∑h
J=1 Y

IJωJ and YIJω
J =

∑h
J=1 YIJω

J . Unless stated otherwise, the dependence
on the period matrix of the Abelian differentials, and other functions in the sequel, will be suppressed.
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Modular transformations M ∈ Sp(2h,Z) implement changes of canonical H1(Σ,Z) bases

that preserve the intersection pairing, i.e. M tIM = I as 2h× 2h matrices. In the notation

A = AI
J , B = BIJ , C = CIJ and D = DI

J for the h× h blocks of M = ( A B
C D ), the modular

transformation of the homology cycles is given by,

B̃I = AI
JBJ +BIJA

J

ÃI = CIJBJ +DI
JA

J (3.6)

The holomorphic Abelian differentials ω and their complex conjugates ω̄, the period matrix

Ω, its imaginary part Y , and the inverse of Y transform as follows under Sp(2h,Z),

ω̃I = ωJ R(Ω)J I Ω̃IJ = (AΩ +B)IKR(Ω)KJ

˜̄ωI = Q(Ω)IJω̄
J ỸIJ = YKLR(Ω)KI R(Ω)

L

J

Ỹ IJ = Y KLQ(Ω)IK Q(Ω)
J

L (3.7)

where we use the following shorthand for the ubiquitous combination CΩ+D and its inverse,

Q(Ω) = CΩ +D , R(Ω) = (CΩ +D)−1 (3.8)

By raising and/or lowering indices via contraction with Y IJ and/or YIJ , one can trade trans-

formations via anti-holomorphic factors Q(Ω) and R(Ω) for transformations via holomorphic

factors R(Ω) and Q(Ω), respectively. For instance, while the anti-holomorphic form ω̄I with

lower index transforms by a factor of R(Ω), its counterpart ω̄I transforms via a factor of

Q(R) as shown in the second line on the left of (3.7). It will be convenient to convert all

indices in such a way that their modular transformations are either under Q(Ω) or R(Ω), i.e.

not under their complex conjugates. A function T I1···Ir
J1···Js that depends on Ω and possibly on

a number of points on Σ and transforms as follows under Sp(2h,Z),

T̃ I1···Ir
J1···Js (Ω̃) = Q(Ω)I1K1 · · ·Q(Ω)IrKr T K1···Kr

L1···Ls
(Ω)R(Ω)L1

J1 · · ·R(Ω)Ls
Js (3.9)

is referred to as a modular tensor. A tensor of vanishing rank, namely with r = s = 0,

will be referred to as a modular scalar. Siegel modular forms constitute a special case of

(3.9) for which suitable anti-symmetrization of the indices reduces the transformation to

multiplication by a power of the determinant det (CΩ+D). Modular tensors may be viewed

as sections of holomorphic vector bundles on Torelli space Th, namely the moduli space of

Riemann surfaces with a specified canonical homology basis (see also Appendix A).

3.2 Higher-genus integration kernels

Polylogarithms on higher-genus Riemann surfaces were constructed in [37] in terms of complex-

valued integration kernels f I1···Ir
J(x, y) that depend on the period matrix Ω and on two points
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x, y ∈ Σ, and transform as modular tensors under Sp(2h,Z) in the sense of (3.9). Their ex-

plicit construction may be carried out in terms of convolutions of Abelian differentials and

the Arakelov Green function G(x, z) [37], and starts off with the following modular tensor,

introduced by Kawazumi in [51, 78], and exploited further in [52],

ΦI
J(x) =

∫
Σ

d2z G(x, z) ω̄I(z)ωJ(z) (3.10)

Modular tensors of higher rank are defined via the following iterated integrals,

ΦI1···Ir
J(x) =

∫
Σ

d2z G(x, z) ω̄I1(z) ∂zΦ
I2···Ir

J(z)

GI1···Ir(x, y) =
∫
Σ

d2z G(x, z) ω̄I1(z) ∂zGI2···Ir(z, y) (3.11)

where we define GI2···Ir(z, y) = G(z, y) for r = 1. Both are complex-valued scalar functions

of x, y ∈ Σ and obey the following trace and symmetry relations,

ΦI1···Ir−1J
J(x) = 0

GI1···Ir(x, y) = (−)rGIr···I1(y, x) (3.12)

where the former implies the vanishing of the genus-one restriction ΦI1···Ir
J(x)|h=1 and the

latter is established by successive integrations by parts. The integration kernels f I1···Ir
J(x, y)

are defined as follows,

f I1···Ir
J(x, y) = ∂xΦ

I1···Ir
J(x)− ∂xGI1···Ir−1(x, y) δIrJ (3.13)

They are (1, 0) forms in x and (0, 0) forms in y and transform as follows under Sp(2h,Z),

f̃ I1···Ir
J(x, y) = Q(Ω)I1K1 · · ·Q(Ω)IrKrf

K1···Kr
L(x, y)R

L
J(Ω) (3.14)

Combining the definition of (3.13) with the convolutions of (3.10) and (3.11), we get the

following formula directly for f I
J(x, y) and the convolution formulas for f I1···Ir

J(x, y) with

r ≥ 2,

f I
J(x, y) =

∫
Σ

d2z ∂xG(x, z)
(
ω̄I(z)ωJ(z)− δ(z, y)δIJ

)
f I1···Ir

J(x, y) =

∫
Σ

d2z ∂xG(x, z) ω̄I1(z) f I2···Ir
J(z, y) (3.15)

Note that the trace f I1···Ir−1J
J(x, y) gives −h∂xGI1···Ir−1(x, y) while the traceless part in the

two rightmost indices gives ∂xΦ
I1···Ir

J(x), i.e. no information is lost in taking the sum (3.13).
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While the Arakelov Green function G(x, y) is a conformal scalar in x, y, string theory cal-

culations often make use of the string Green function G(x, y) defined in (A.11) of Appendix A

which is not a proper conformal scalar in x, y but admits a simple representation in terms

of the prime form and Abelian integrals. Using the relation of (A.13), one readily verifies

that G(x, y) used in the iterative definition of f I
J(x, y) and f I1···Ir

J(x, y) may equivalently

be replaced by G(x, y), as all dependence on their difference cancels out.

Finally, we define the weight r of a modular tensor to be the minimal number of Green

functions G(x, y) required to define the tensor. Thus, by this counting, all of f I1···Ir
J(x, y),

∂xGI1···Ir−1(x, y) and ∂xΦ
I1···Ir

J(x) have weight r.

3.3 Anti-holomorphic derivatives

The proofs of the main results in this work will be based on the anti-holomorphic derivatives

of the integration kernels f I1···Ir
J(x, y) in (3.13) and (3.15). Their ∂x̄ and ∂ȳ derivatives can

be traced back to the Laplace equation of the Arakelov Green function and the Φ tensor,

∂x̄∂xG(x, y) = −π δ(x, y) + π κ(x)

∂ȳ∂xG(x, y) = π δ(x, y)− π ωI(x) ω̄
I(y)

∂x̄∂xΦ
I
J(x) = −π ω̄I(x)ωJ(x) + π δIJ κ(x) (3.16)

where κ(x) = ωI(x)ω̄
I(x)/h is the normalized modular and conformally invariant volume

form on Σ discussed more extensively in Appendix A. The above relations readily imply the

following formulas for the derivatives of f I
J(x, y),

∂x̄f
I
J(x, y) = −π ω̄I(x)ωJ(x) + π δIJ δ(x, y)

∂ȳf
I
J(x, y) = π δIJ ω̄

K(y)ωK(x)− π δIJ δ(x, y) (3.17)

The delta function is normalized by
∫
Σ
d2x δ(x, y) = 1 and reflects the singular behavior,

∂xG(x, y) = −
1

x−y
+ reg , f I

J(x, y) =
δIJ
x−y

+ reg (3.18)

The analogous anti-holomorphic derivatives at higher weight r ≥ 2 are given by,

∂x̄f
I1···Ir

J(x, y) = −πω̄I1(x)f I2···Ir
J(x, y)

∂ȳf
I1···Ir

J(x, y) = πδIrJ f I1···Ir−1
K(x, y)ω̄

K(y) (3.19)

or equivalently (s ≥ 1 and r ≥ 2),

∂x̄∂xGI1···Is(x, y) = −π ω̄I1(x)GI2···Is(x, y)
∂ȳ∂xGI1···Is(x, y) = π ∂xGI1···Is−1(x, y) ω̄Is(y)− π ∂xΦ

I1···Is
J(x) ω̄

J(y)

∂x̄∂xΦ
I1···Ir

J(x) = −π ω̄I1(x) ∂xΦ
I2···Ir

J(x) (3.20)
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At various intermediate stages in the sequel another family of modular functions, defined by

iterated convolutions, will occasionally enter,

Gn(x, y) =
∫
Σ

d2z G(x, z)κ(z)Gn−1(z, y) (3.21)

where we set G1(x, y) = G(x, y). One readily verifies that for n ≥ 2, they are symmetric

Gn(x, y) = Gn(y, x) and satisfy the following Laplace equation,

∂x̄∂xGn(x, y) = −π κ(x)Gn−1(x, y) (3.22)

As we will see in (5.6), the ∂x∂y derivatives of the G2(x, y) function are ultimately expressible

in terms of f -tensors and Abelian differentials of total weight 2 with all of their indices

contracted.

3.4 Polylogarithms via a flat connection

The modular tensors f I1···Ir
J(x, y) may be used to construct a flat connection and associated

polylogarithms on a compact Riemann surface Σ of arbitrary genus h ≥ 1, which generalize

the genus-one non-holomorphic polylogarithms of Brown and Levin in [19].

3.4.1 The flat connection JDHS

To do so, we introduce a Lie algebra g that is freely generated by 2h non-commutative

elements denoted by aI and bI for I = 1, · · · , h. In addition, we construct a g-valued

connection JDHS(x, p) on the punctured Riemann surface Σp = Σ \ {p}, given by [37],7

JDHS(x, p) = −π ω̄I(x)bI + ωJ(x)a
J +

∞∑
r=1

dx f I1···Ir
J(x, p)BI1 · · ·BIra

J (3.23)

where BI is a derivation in g that generates the adjoint action BIX = [bI , X] for any X ∈ g.

The connection JDHS(x, p) is a differential form of type (1, 0)⊕ (0, 1) in x and a scalar in p,

the (0, 1) part being generated solely by the first term in (3.23). Using the closure of the

forms ωJ and ω̄I , and the anti-holomorphic derivatives of f given in (3.17) and (3.19), one

readily shows that the connection JDHS(x, p) satisfies the Maurer-Cartan equation,

dxJDHS(x, p)− JDHS(x, p) ∧ JDHS(x, p) = π dx̄ ∧ dx δ(x, p) [bI , a
I ] (3.24)

7The generators denoted by aI below were denoted by âI = aI + πY IJbJ in [37].
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and is therefore a flat connection, away from the singular point p,

JDHS(x, p) =
dx

(x−p)
[bI , a

I ] + regular (3.25)

In view of the modular transformation laws under Sp(2h,Z) of ωI , ω̄
J given in (3.7), and

f I1···Ir
J(x, p) given in (3.14), the connection JDHS will be invariant under Sp(2h,Z) provided

the generators aI and bI transform as follows (see (3.8) for Q(Ω) and R(Ω)),

ãI = Q(Ω)IJ a
J , b̃I = bJ R(Ω)J I (3.26)

Restricting to genus one and redefining a → a + πb/Im τ produces the non-holomorphic

connection of [19] valued in a Lie algebra freely generated by two elements a, b.

3.4.2 Polylogarithms from the flat connection JDHS

Flatness of JDHS(x, p) guarantees that the differential equation,

dx Γ(x, y; p) = JDHS(x, p)Γ(x, y; p) (3.27)

is integrable. Its solution, subject to the initial condition Γ(y, y; p) = I, is valued in the Lie

group of g and may be represented by the path-ordered exponential,

Γ(x, y; p) = P exp

∫ x

y

JDHS(z, p) (3.28)

which satisfies the composition law,

Γ(x, y; p) = Γ(x, z; p)Γ(z, y; p) (3.29)

The multiplication on the right side is understood to be that of the Lie group of g. Flatness

of JDHS(x, p) also guarantees that Γ(x, y; p) is homotopy invariant, namely that its value only

depends on the homotopy class of paths used to integrate from y to x but is independent of

the representative path chosen within a given homotopy class.

Higher-genus polylogarithms are obtained by expanding Γ(x, y; p) in words w consisting

of a finite number of letters in the alphabet made up of the letters aJ and bI for I, J =

1, · · · , h. The setWab of all words in the alphabet of letters aI , bI closes under the associative

concatenation product, has the empty word ∅ as its neutral element, and is thereby a monoid.

This expansion requires working in the enveloping algebra of g and takes the form,

Γ(x, y; p) =
∑

w∈Wab

wΓ(w;x, y; p) (3.30)
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where the sum is over all different wordsw inWab, including the empty word with Γ(∅; x, y; p) =
1. For a given word w, the function Γ(w; x, y; p) is homotopy invariant and referred to as a

higher-genus polylogarithm. Since JDHS(x, p) is modular invariant, so is Γ(x, y; p), and the

polylogarithms Γ(w; x, y; p) are modular tensors. In section 3.5 below, we shall generalize

these polylogarithms to depend on an arbitrary number of variables.

The integral representation of their generating series (3.28) implies the following shuffle

product rule (see section 6.2 for properties of the shuffle product) on polylogarithms,

Γ(w1; x, y; p) Γ(w2; x, y; p) =
∑

w∈w1�w2

Γ(w; x, y; p) (3.31)

The polylogarithm Γ(w; x, y; p) for a word w of length ℓ, may be calculated by expanding

the path-ordered integral of (3.28) in powers of JDHS (with t0 = x in the n = 1 term),

Γ(x, y; p) = 1 +
∞∑
n=1

∫ x

y

JDHS(t1, p)

∫ t1

y

JDHS(t2, p) · · ·
∫ tn−1

y

JDHS(tn, p) (3.32)

retaining only the terms with n ≤ ℓ, and projecting onto the contributions for the word w.

Note that the polylogarithm Γ(w;x, y; p) for a word w of length ℓ will generically receive

contributions from all n ≤ ℓ.

3.4.3 Examples

The simplest examples correspond to words composed of the letters aJ only, or of the letters

bI only. They admit the following expressions,8

Γ(aJ1aJ2 · · · aJr ; x, y; p) =
∫ x

y

dt1 ωJ1(t1)

∫ t1

y

dt2 ωJ2(t2) · · ·
∫ tr−1

y

dtr ωJr(tr) (3.33)

Γ(bI1bI2 · · · bIr ; x, y; p) = (−π)r
∫ x

y

dt̄1 ω̄
I1(t1)

∫ t1

y

dt̄2 ω̄
I2(t2) · · ·

∫ tr−1

y

dt̄r ω̄
Ir(tr)

Both are homotopy-invariant, independent of p and multiple-valued in x, y. The first is

holomorphic in x, y while the second is anti-holomorphic in x, y.

Polylogarithms corresponding to words that involve both letters aJ and bI , however,

feature sums of iterated integrals, each of which generically fails to be homotopy-invariant

by itself. Thus, carrying out the expansion in (3.32) requires one to define all integrals to

be evaluated along the same path. Only when all contributions to the polylogarithm are

8In the conventions of (3.23) for JDHS(z, p), the coefficients Γ(w;x, y; p) of words in aJ and bI defined by
(3.30) were denoted by Γ̂(w;x, y; p) in [37].
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combined will the dependence on the choice of representative for a given homotopy class of

paths cancel out. We illustrate this mechanism for the simplest non-trivial case where the

word is w = bIa
J , and we obtain,

Γ(bIa
J ; x, y; p) =

∫ x

y

dt f I
J(t, p)− π

∫ x

y

dt̄ ω̄I(t)

∫ t

y

dt′ ωJ(t
′) (3.34)

Neither integral on the right side is homotopy-invariant, and their separate evaluation re-

quires specifying a path of integration from y to x along which the point t′ also takes values.

To see that Γ(bIa
J ; x, y; p) is path-independent within a given homotopy class of paths on

the punctured surface Σp
9 we recast the integral in the following form,

Γ(bIa
J ; x, y; p) =

∫ x

y

νI
J(t, p) (3.35)

where the (1, 0)⊕ (0, 1) form νI
J(t, p) is given by,

νI
J(t, p) = dt f I

J(t, p)− πdt̄ ω̄I(t)

∫ t

y

dt′ ωJ(t
′) (3.36)

The integral defining Γ(bIa
J ; x, y; p) is homotopy-invariant because the form νI

J(t, p) is closed

with respect to t and satisfies dtν
I
J(t, p) = 0 for t ̸= p in view of the first equation in (3.17).

Note that special values p = x or p = y give rise to endpoint divergence whose regularizations

can for instance be approached via tangential base points [79, 73, 2].

Similarly, polylogarithms Γ(w; x, y; p) for longer words containing both letters of type aJ

and bI may be obtained by expanding the path-ordered exponential of (3.28) to higher order,

and collecting all contributions with the same word w. Individual iterated integrals in the

expansion are of the form,∫ x

y

dt1 f
I1···Ir

J(t1, p)

∫ t1

y

dt2 f
K1···Ks

L(t2, p) · · ·
∫ tm−1

y

dtm fP1···Pu
Q(tm, p) (3.37)

multiplied by the coefficient,

[bI1 , [· · · , [bIr , aJ ] · · · ]] [bK1 , [· · · , [bKs , a
L] · · · ]] · · · [bP1 , [· · · , [bPu , a

Q] · · · ]] (3.38)

Each of these individual iterated integrals in (3.37) fails to be homotopy-invariant, but the

flatness of the connection (3.24) guarantees that (3.37) is always accompanied by a tail of

additional path-dependent integrals involving lower-weight f -tensors, that eventually render

a polylogarithm such as Γ(bI1 · · · bIraJbK1 · · · bKsa
L · · · bP1 · · · bPua

Q; x, y; p) and all the other

higher-genus polylogarithms homotopy invariant.

9The simple pole f I
J(t, p) = δIJ/(t−p)+reg causes Γ(bIa

J ;x, y; p) to change by integer multiples of 2πiδIJ
once the homotopy class of the path from x to y is modified by loops around the singular point p.
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3.5 Polylogarithms in multiple variables via a flat connection

Applications of polylogarithms to quantum field theory and string theory necessitate gener-

alizations of the polylogarithms discussed in the previous subsection to multiple variables,

namely dependent on several points pi ∈ Σ for i = 1, · · · , n. An explicit construction of

such polylogarithms at arbitrary genus as provided in [37] will now be reviewed. Their con-

struction requires enlarging the Lie algebra g to a Lie algebra gc which is freely generated

by aI , bI for I = 1, · · · , h and one extra generator ci for i = 1, · · · , n per additional point pi.

The corresponding multi-variable connection Jmv(x, p; p1, · · · , pn) introduced in [37] is,

Jmv(x, p; p1, · · · , pn) = JDHS(x, p) +
n∑

i=1

dx
(
H(x, p;B)−H(x, pi;B)

)
ci (3.39)

where H is given by,

H(x, y;B) = ∂xG(x, y) +
∞∑
r=1

∂xGI1···Ir(x, y)BI1 · · ·BIr (3.40)

or may alternatively be expressed solely in terms of the integration kernels f ,

H(x, y;B) = −1

h
fJ

J(x, y)−
1

h

∞∑
r=1

f I1···IrJ
J(x, y)BI1 · · ·BIr (3.41)

The connection Jmv(x, p; p1, · · · , pn) is flat away from the points p and pi, as may be verified

by evaluating its curvature form,

dxJmv − Jmv ∧ Jmv = πdx̄ ∧ dx

(
δ(x, p)[bI , a

I ] +
n∑

i=1

ci

(
δ(x, pi)− δ(x, p)

))
(3.42)

The connection Jmv is modular invariant under Sp(2h,Z), provided that ωI and ω̄J transform

as in (3.7), f I1···Ir
J(x, p) as in (3.14), the generators aI and bI as in (3.26), and the generators

ci as scalars. The connection Jmv reduces to the multi-variable Brown-Levin connection [19]

upon restricting to genus h = 1.

Higher-genus polylogarithms in multiple variables may now be defined in analogy with

the case of polylogarithms of a single variable, where the connection JDHS and the Lie algebra

g in the expansion of the path-ordered exponential in (3.28) and (3.30) are now adapted to

Jmv and gc, respectively,

Γ(x, y; p; p1, · · · , pn) = P exp

∫ x

y

Jmv(t, p; p1, · · · , pn)

=
∑

w∈Wabc

wΓ(w;x, y; p; p1, · · · , pn) (3.43)
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This expansion assigns a multi-variable polylogarithm Γ(w; x, y; p; p1, · · · , pn) to each w in

Wabc composed of all possible letters in the alphabet {a1, · · · , ah, b1, · · · bh, c1 · · · cn}. The

resulting multi-variable polylogarithms are homotopy-invariant upon complete assembly of

all contributions to a given word w and depend only on the homotopy class of the path

taken from x to y on the punctured surface Σ\{p, p1, · · · , pn}. Moreover, products of multi-

variable polylogarithms with the same endpoints x, y of their integration path satisfy the

same shuffle relations (3.31) noted in the single-variable case, implying their closure under

multiplication.

Simple examples of multi-variable polylogarithms which depend non-trivially on an extra

point p1 include,

Γ(c1; x, y; p; p1) =

∫ x

y

dt
(
∂tG(t, p)− ∂tG(t, p1)

)
(3.44)

Γ(aKc1; x, y; p; p1) =

∫ x

y

dt ωK(t)

∫ t

y

dt′
(
∂t′G(t′, p)− ∂t′G(t′, p1)

)
Γ(bIc1; x, y; p; p1) =

∫ x

y

dt
(
∂tGI(t, p)− ∂tGI(t, p1)

)
− π

∫ x

y

dt̄ ω̄I(t)

∫ t

y

dt′
(
∂t′G(t′, p)− ∂t′G(t′, p1)

)
where the homotopy invariance of the third example does not hold for the individual terms

and is tied to their special linear combination selected by the expansion of (3.43), also see

the discussion below (3.34) for a single-variable analogue.

3.6 Definition of z-reduced

Besides their intrinsic interest, the Fay identities will serve to carry out fundamental re-

ductions in the construction of polylogarithms that lead to their closure under addition,

multiplication, and taking primitives. To organize these reductions, we generalize the notion

of z-reduced, introduced informally for genus one in section 2.3, to arbitrary genus.

We shall present the definition here in the non-meromorphic context, and defer the minor

modifications needed for its adaptation to the meromorphic case to section 9. Informally, a

sum of products of tensors f is z-reduced if it can be expressed as a linear combination of

tensors f(z, y) or f(y, z) with coefficients that are independent of z.

More formally, the building blocks of the connection JDHS of section 3.4 and its general-
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ization Jmv to multiple points z1, · · · , zN are given by the differential forms,10

ωI(zi) , ω̄I(zi) , f I1···Ir
J(zi, zj) = f I1···Ir

J(zi, zj)dzi (3.45)

for i, j = 1, · · · , N and all possible values of r ≥ 0 and I, I1, · · · Ir, J = 1, · · · , h (setting

f ∅J(zi, zj) = ωJ(zi)). They generalize the forms dzi/(zi−zj) at genus zero and the forms

dzi, dz̄i, f
(r)(zi−zj)dzi at genus one. Here and below, we are assuming that the points are

non-coincident, namely zi ̸= zj for i ̸= j. The differential forms of (3.45), together with the

two-forms obtained by applying the total differential dj = dzj∂zj + dz̄j∂z̄j to f ,

djf
I1···Ir

J(zi, zj) = −∂zjf I1···Ir
J(zi, zj)dzi ∧ dzj − πδIrJ f I1···Ir−1

K(zi, zj) ∧ ω̄K(zj) (3.46)

generate an algebra AN of differential forms in N variables whose multiplication is the

exterior product of differential forms. By construction, the algebra AN is closed under

addition, under exterior product multiplication and under total differentiation by dj. This

is clear for ωI(zi) and ω̄I(zi) and holds true for the forms f and djf thanks to the relations

(3.17), which we recast here in terms of differentials,

dif
I1···Ir

J(zi, zj) = −πω̄I1(zi) ∧ f I2···Ir
J(zi, zj)

di
(
djf

I1···Ir
J(zi, zj)) = −πω̄I1(zi) ∧ djf

I2···Ir
J(zi, zj) (3.47)

Note that wedge products of the form f I1···Ir
J(zi, zj) ∧ fK1···Ks

L(zi, zk) that share their first

point zi vanish identically.

An arbitrary element ϕ(z1, · · · , zN) ∈ AN is defined to be zi-reduced, for a given value

of i ∈ {1, · · · , N}, if it is a linear combination of zi-independent terms and those gener-

ators of the algebra AN that depend on zi, with coefficients that are independent of zi.

More explicitly, ϕ(z1, · · · , zN) is zi-reduced if its zi-dependent parts are a linear combination

of the differential forms ωI(zi), ω̄
I(zi), f

I1···Ir
J(zi, zj), f

I1···Ir
J(zj, zi), djf

I1···Ir
J(zi, zj) and

dif
I1···Ir

J(zj, zi) with zi-independent coefficients, and arbitrary assignments of the indices

I, J, I1, · · · Ir. The process of obtaining the zi-reduced form of an element in AN will be

referred to as zi-reducing or zi-reduction.

The Fay identities in section 6 will perform the zi-reduction for coefficients f I1···Ir
J(zi, zj)

of the above differentials dzi. For instance, Theorem 6.2 provides the z-reduced form of

products fP1···PsM
J(y, z)f

I1···IrJ
K(x, z), written in terms of bilinears of the schematic form

f(y, z)f(x, y) and f(y, x)f(x, z) with no more than one z-dependent factor. Given that

the tensors ∂Φ and ∂G may be obtained from the trace and traceless part of the kernels

f I1···Ir
J(x, y) via (3.13), the definitions of z-reducing apply to the products involving ∂Φ and

∂G as well.

10In this subsection, we shall denote the points x, p and p1, · · · , pn involved in the connections JDHS and
Jmv by z1, · · · , zN with N = n+2 in order to stress the generality of the definition of z-reduction.
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4 Scalar prototypes of higher-genus Fay identities

The simplest higher-genus Fay identities involving three points x, y, z will be modeled on the

relation between rational functions in (2.3) and doubly periodic functions in (2.10) for genus

zero and genus one, respectively. In both cases, the points x, y, z enter on an equal footing, as

the relations may be viewed as scalars in x, y, z, and invariant under cyclic permutations of

x, y, z. On a Riemann surface of higher genus, however, it is the derivative of the Arakelov

Green function ∂xG(x, y) that exhibits a simple pole, as shown in (3.18). The fact that

∂xG(x, y) is a (1, 0) form in x and a (0, 0) form in y creates an asymmetry between the

dependences on x and y. It is not hard to see that the generalization of the Fay identity for

three points to higher genus cannot be cyclically symmetric in the points x, y, z, but rather

must be a (1, 0) form in two of the points and a (0, 0) form in the other point.

To exhibit this structure and its implications in the simplest possible setting first, we

begin with a discussion of the higher-genus Fay identity in three points for modular scalars.

An immediate extension to scalar Fay identities in an arbitrary number of points can be

found in section 4.4, and the more comprehensive generalizations to tensorial Fay identities

at arbitrary rank and weight are discussed in section 6.

4.1 The modular scalar Fay identity in three points

A natural Ansatz for a sum of products of the derivative of the Arakelov Green function

that contains the pole terms of (2.3) is provided by the following combination,

∂xG(x, y)∂yG(y, z) + ∂yG(y, x)∂xG(x, z)− ∂xG(x, z)∂yG(y, z) (4.1)

which we choose to be a (1, 0) form in x and y and a (0, 0) form in z. Applying the ∂̄ operator

to this combination in x, y, z using (3.16) reveals that it is not holomorphic and therefore

cannot vanish. This situation is familiar from the corresponding identity in (2.10) for doubly

periodic functions at genus one in which contributions from weight-two functions f (2) were

required. Similar contributions are required also here, and the result may be summarized by

the following theorem.

Theorem 4.1 The three-point Fay identity that is a scalar under modular transformations

states that the following combination, which is a (1, 0) for in x, y and a (0, 0) form in z,

F3(x, y, z) = ∂xG(x, y) ∂yG(y, z) + ∂yG(y, x) ∂xG(x, z)− ∂xG(x, z) ∂yG(y, z)
− ωI(x) ∂yGI(y, z)− ωI(y) ∂xGI(x, z) + ∂x∂yG2(x, y) (4.2)

vanishes identically on a Riemann surface Σ of arbitrary genus,

F3(x, y, z) = 0 (4.3)
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Recall that the ingredients of (4.2) were defined in section 3, and we will see in section 5

that the last term ∂x∂yG2(x, y) may equivalently be expressed solely in terms of f and Φ.

4.2 Method of proof

The proof of Theorem 4.1 follows the same method that will be used throughout this work

to demonstrate the vanishing of certain single-valued modular tensors. For this reason the

method of proof presented below is structured so that it applies to the proof of Theorem 4.1

as well as to the proofs of many results in the sequel. For simplicity, we consider the case

where the identity involves three points x, y, z on an arbitrary compact Riemann surface Σ,

the case of additional points being a straightforward generalization of the three-point case.

We consider a sequence of modular scalars or modular tensors T(n)(x, y; z) (tensor indices
will be suppressed throughout this subsection) labeled by a non-negative integer n indicating

their weight in the sense of section 3.2. The sequence may have a finite or an infinite number

of elements, and each element T(n)(x, y; z) is a polynomial in the integration kernels f , single-

valued in x, y, z, and assumed to be a (1, 0) form in x and y and a scalar in z. We shall assume

that the relation T(0)(x, y; z) = 0 has been established to hold. The proof of a sequence of

identities for n ≥ 1 of the form,

T(n)(x, y; z) = 0 (4.4)

proceeds via the following two steps.

1. First, one proves that the anti-holomorphic derivatives of T(n)(x, y; z) in x, y and z all

vanish when T(m)(x, y; z) = 0 for all m in the range 0 ≤ m < n,

∂x̄T(n)(x, y; z) ≡ 0
∂ȳT(n)(x, y; z) ≡ 0
∂z̄T(n)(x, y; z) ≡ 0

 mod
{
T(m) = 0, 0 ≤ m < n

}
(4.5)

using the differential equations in section 3.3. Holomorphicity in x, y, z implies that

T(n)(x, y; z) is independent of z (since it is a scalar in z) and can be expanded in a

basis of holomorphic (1, 0) forms in x and y as follows,

T(n)(x, y; z) = ωK(x)ωL(y)T
KL
(n) (4.6)

for an x, y independent modular tensor TKL
(n) .

2. Second, one proceeds to verify that T(n)(x, y; z) integrates to zero against a basis of

holomorphic (1, 0) forms in x and y,∫
Σ

d2x ω̄K(x)

∫
Σ

d2y ω̄L(y)T(n)(x, y; z) = TKL
(n) = 0 (4.7)

28



Establishing the vanishing of these integrals is greatly facilitated by the fact that many

terms in T(n)(x, y; z) are total derivatives of a single-valued function in x or y, or both.

Note in particular that, by virtue of (3.15), the tensors f I1···Ir
J(x, y) and therefore also

∂xΦ
I1···Ir

J(x) and ∂xGI1···Ir−1(x, y) are total derivatives in x at arbitrary rank r ≥ 1.

4.3 Proof of Theorem 4.1

Let us now apply the two steps of the previous section to prove the vanishing of F3 in (4.2).

1. One first verifies that the ∂x̄, ∂ȳ, ∂z̄ derivatives vanish. Holomorphicity in x, y follows

outright from (3.16), (3.20) and (3.22). However, the ∂z̄ derivative of F3,

∂z̄F3(x, y, z) = πω̄K(z)
(
ωI(x)∂yΦ

I
K(y)− ωK(x)∂yG(y, x) + (x↔ y)

)
(4.8)

gives rise to a particular weight-one combination in the parenthesis which vanishes by

the interchange identity of (5.1). The latter was already demonstrated in [46, 52] and is

reviewed in more detail in section 5. Therefore, F3(x, y, z) must be independent on z, a

holomorphic (1, 0) form in x, y, and admit an expansion F3(x, y, z) = ωK(x)ωL(y)F
KL
3

with a modular tensor FKL
3 independent on x, y.

2. Second, one verifies that F3 integrates to zero against
∫
Σ
d2x ω̄K(x)

∫
Σ
d2y ω̄L(y) to

show that FKL
3 = 0. The vanishing of the integral over x is manifest from the first,

third, fifth and sixth term on the right side of (4.2) since each one of these terms is a

total derivative of single-valued functions in x. Similarly, the second, third, fourth and

sixth terms in (4.2) are total derivatives of single-valued functions in y and integrate

to zero against
∫
Σ
d2y ω̄L(y).

4.3.1 Comments on Theorem 4.1

Although the Fay identity (4.2) is a (1, 0)-form in x, y and a scalar in z and thus fails to

be cyclically symmetric in x, y, z for higher genus, its restriction to genus one is cyclically

symmetric and reduces to (2.10) in view of the following restrictions to genus one,

ωI(x)
∣∣
h=1

= 1 , ∂xG(x, y)
∣∣
h=1

= −f (1)(x−y)
∂xGI(x, y)

∣∣
h=1

= −f (2)(x−y) , ∂x∂yG2(x, y)
∣∣
h=1

= f (2)(x−y) (4.9)

Similarly, the genus-zero counterpart (2.3) is also cyclically symmetric in x, y, z.
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4.3.2 Application of z-reduction to arbitrary genus

The scalar Fay identity in Theorem 4.1 provides a first example that motivates the general-

ization of the notion of z-reduction to arbitrary genus h given in section 3.6.

While the scalar Fay identity (4.2) is symmetric in x, y, it has no further symmetry

involving the variable z. As a result, (4.2) may be used in two inequivalent ways towards

the calculation of iterated integrals. As a (1, 0) form in x, y and a scalar in z, it may be

rearranged either in a z-reduced or in an x-reduced form. More explicitly,

• z-reduce the product ∂xG(x, z)∂yG(y, z) in the third term of (4.2), which is a (0, 0)

form in z, to a sum of terms in which at most one factor is z-dependent; or

• x-reduce the product ∂yG(y, x)∂xG(x, z) in the second term of (4.2), which is a (1, 0)

form in x, to a sum of terms in which one factor is x-dependent

In neither case will the terms in (4.2) yield homotopy-invariant integrals over x or z all by

themselves. Still, the generating-series construction of higher-genus polylogarithms in (3.28),

(3.30) and (3.43) provides a complete prescription for how to arrange individual iterated

integrals over f -tensors to produce homotopy invariant combinations in a fully constructive

manner. Our main results in later sections are tensorial Fay identities among (1, 0)-forms in

x, y and scalars in z which bring arbitrary products of ωI and higher-weight tensors f , ∂G,
∂Φ into either a z-reduced or a x-reduced form.

4.4 Higher-point modular scalar Fay identities

On the sphere, the identity (2.3) for three points suffices to carry out a partial fraction de-

composition for an arbitrary rational function of an arbitrary number of points, as exhibited

for the denominators in (2.4) and (2.5). We shall establish here that an analogous strat-

egy essentially also works for arbitrary genus. Here, we shall again focus on the simplest

higher-genus identities that share the pole structure of (2.5) and are modular scalars.

It will be convenient to denote the various points by xi and use the standard abbreviations

for the arguments of functions such as in G(i, j) = G(xi, xj), and derivatives ∂i = ∂xi
. In

particular, we introduce the following notation for the vanishing expression (4.2),

F3(1, 2, 3) = ∂1G(1, 2)∂2G(2, 3) + ∂2G(2, 1)∂1G(1, 3)− ∂1G(1, 3)∂2G(2, 3)
− ωI(1)∂2GI(2, 3)− ωI(2)∂1GI(1, 3) + ∂1∂2G2(1, 2) (4.10)

The combination F3(1, 2, 3) is a (1, 0) form in x1, x2 and a scalar in x3 with the manifest

symmetry F3(1, 2, 3) = F3(2, 1, 3).
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One readily engineers an expression with the pole structure of (2.5) for four points which

is a (1, 0) form in x1, x2, x3 and a (0, 0) form in x4, given by,

F4(1, 2, 3, 4) = ∂1G(1, 2)∂2G(2, 3)∂3G(3, 4)− ∂2G(2, 3)∂3G(3, 4)∂1G(1, 4) (4.11)

+ ∂3G(3, 4)∂1G(1, 4)∂2G(2, 1)− ∂1G(1, 4)∂2G(2, 1)∂3G(3, 2)
+
(
∂1∂2G2(1, 2)− ωI(2)∂1GI(1, 4)− ωI(1)∂2GI(2, 4)

)[
∂3G(3, 4)− ∂3G(3, 2)

]
+
(
∂2∂3G2(2, 3)− ωI(2)∂3GI(3, 4)− ωI(3)∂2GI(2, 4)

)[
∂1G(1, 2)− ∂1G(1, 4)

]
The first two lines on the right side capture the pole structure of the decomposition of (2.5)

in a minimal manner, namely with the smallest number of terms. The third and fourth lines

consist of terms required to make the full expression holomorphic in x1, · · · , x4. As a result,

F4 is independent of x4 and is a holomorphic (1, 0) form in x1, x2, x3. Finally, as in the case

of three points in Theorem 4.2, one readily shows that the integral of F4(1, 2, 3, 4) against

ω̄A(1)ω̄B(2)ω̄C(3) vanishes so that we must have F4(1, 2, 3, 4) = 0.

One may construct an analogous combination for five points,

F5(1, 2, · · · , 5) = ∂1G(1, 2)∂2G(2, 3)∂3G(3, 4)∂4G(4, 5)−∂2G(2, 3)∂3G(3, 4)∂4G(4, 5)∂1G(1, 5)
+∂3G(3, 4)∂4G(4, 5)∂1G(1, 5)∂2G(2, 1)−∂4G(4, 5)∂1G(1, 5)∂2G(2, 1)∂3G(3, 2)
+∂1G(1, 5)∂2G(2, 1)∂3G(3, 2)∂4G(4, 3) + · · · (4.12)

where the ellipses stand for another 45 terms that are required for F5(1, 2, 3, 4, 5) = 0. These

terms may be constructed as we did for the cases of three and four points.

Instead of the above expressions for F4 and F5 in terms of individual monomials in the

derivatives of the Green functions and related functions, one may re-organize their expres-

sions recursively, as given for the four and five points functions in the following Theorem.

Theorem 4.2 The modular scalar Fay identities for four and five points may be recursively

expressed in terms of,

F4(1, 2, 3, 4) =
(
∂1G(1, 2)− ∂1G(1, 4)

)
F3(2, 3, 4) +

(
∂3G(3, 4)− ∂3G(3, 2)

)
F3(1, 2, 4)

F5(1, 2, 3, 4, 5) =
(
∂1G(1, 2)− ∂1G(1, 5)

)
F4(2, 3, 4, 5) +

[
∂3G(3, 4)∂4G(4, 5)

−∂4G(4, 5)∂3G(3, 2) + ∂3G(3, 2)∂4G(4, 3)
]
F3(1, 2, 5) (4.13)

which both vanish identically on a Riemann surface Σ of arbitrary genus,

F4(1, 2, 3, 4) = 0

F5(1, 2, 3, 4, 5) = 0 (4.14)
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In the expression for F5 the function F4 may be eliminated in terms of F3 functions using

the first equation, so that both F4 and F5 are linear combinations of F3 functions only.

Theorem 4.2 may be proven in two different ways. Either one may algebraically rearrange

the explicit expressions for F4 found in (4.11) and for F5 found in (4.12) into the above forms.

Or one may show that the expressions for F4 and F5 given in Theorem 4.2 precisely contain

the corresponding minimal pole parts, and no other poles. In particular, one argues that all

poles between non-adjacent points, which arise from individual terms in (4.13), cancel in the

sums that make up F4 and F5. Specifically, the pole term ∂2G(2, 4) cancels in F4 while the

pole term ∂2G(2, 5) cancels in F5. All other pole terms are between adjacent points. Since

F3 was already shown to vanish, it then follows straightforwardly that also F4 and F5 vanish.

The generalization of Theorems 4.2 and 4.1 to the case of an arbitrary number of points

x1, · · · , xn is most easily provided by following the second argument above.

Theorem 4.3 The modular scalar Fay identity for an arbitrary number of points n, char-

acterized by the following minimal pole structure,

Fn(1, 2, · · · , n) = ∂1G(1, 2)∂2G(2, 3) · · · ∂n−1G(n−1, n) (4.15)

+∂1G(1, n)
n−1∑
j=1

(−1)j
( n−1∏

i=j+1

∂iG(i, i+1)

)( j∏
k=2

∂kG(k, k−1)
)
+ · · ·

may be recursively related to Fm for m < n as follows,

Fn(1, 2, · · · , n) =
(
∂1G(1, 2)− ∂1G(1, n)

)
Fn−1(2, · · · , n) (4.16)

+
n−1∑
j=2

(−1)j
( r−1∏

i=j+1

∂iG(i, i+1)

)( j∏
k=3

∂kG(k, k−1)
)
F3(1, 2, n)

and therefore vanishes on a Riemann surface Σ of arbitrary genus,

Fn(1, 2, · · · , n) = 0 (4.17)

The proof of this theorem may be carried out with the help of the second approach

followed above for F4 and F5. The contributions with n−1 factors of ∂iG(i, j) involving

adjacent points i, j, spelt out in (4.15) have exactly the pole structure of the genus-zero

identity (2.5). Some of the factors ∂iGI(i, j) in the ellipsis of (4.16) involve non-adjacent

points i, j. The cancellation of terms ∂iG(i, j) involving non-adjacent i, j, already established

for F4 and F5, can be recursively generalized to any number n of points. In fact, imposing

the cancellation of the poles ∂2G(2, n) in individual terms of Fn−1(2, · · · , n) fixes the form of

the second line in (4.16). Accordingly, the vanishing of Fn(1, · · · , n) given by (4.16) can be
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viewed as the higher-genus uplift of the identity (2.5) on the sphere. In the same way as the

higher-point identities (2.4) and (2.5) among rational functions boil down to iterations of

the three-point partial-fraction identity (2.3), the recursion (4.16) reduces n-point modular

scalar Fay identities at arbitrary genus to the elementary three-point identity F3(i, j, k) = 0.

4.4.1 Comments on Theorem 4.3

As a genus-one counterpart of the n-point identity (2.5) among rational functions, we re-

viewed the vanishing of elliptic functions Vn−1(1, · · · , n) in section 2.4. While the expression

(2.12) for arbitrary Vw functions only involves Kronecker-Eisenstein kernels f (r)(xi−xj) with

adjacent j = i±1modn, the recursion (4.16) for higher-genus Fn(1, · · · , n) at n ≥ 4 intro-

duces GI(i, j) with non-adjacent i, j , see for instance (4.11). In Appendix B, we present an

alternative construction of vanishing n-point combinations of f -tensors with the pole struc-

ture of (2.5) which furnish a more direct generalization of Vn−1(1, · · · , n) = 0 to arbitrary

genus.
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5 Interchange identities

The goal of this section is to formulate and prove interchange identities that relate prod-

ucts of the form ωM(x)f I1···Ir
J(y, x), with two x-dependent factors, to their counterparts

ωM(y)f I1···Ir
J(x, y) with x and y swapped plus a sum of products in which no more than one

factor depends on x.11 In the spirit of the definition x-reduction given in section 3.6 and

illustrated for scalar Fay identities in section 4.3.2 for arbitrary genus, interchange identities

will produce x-reductions of ωM(x)f I1···Ir
J(y, x) necessary to express their primitives with

respect to x in terms of the higher-genus polylogarithms reviewed in sections 3.4 and 3.5.

Lemma 5.1 The basic interchange identity [46, 52] for lowest weight reads as follows,

ωM(x)∂yΦ
M

J(y) + ωM(y)∂xΦ
M

J(x)− ωJ(x)∂yG(y, x)− ωJ(y)∂xG(x, y) = 0 (5.1)

or equivalently as follows in terms of f -tensors,

ωM(x)fM
J(y, x) + ωM(y)fM

J(x, y) = 0 (5.2)

The role of the tensor Φ, which was defined in (3.10), may be viewed as compensating for the

lack of translation invariance of the Arakelov Green function G(x, y) on a Riemann surface

of higher genus h ≥ 2. The equivalence between (5.1) and (5.2) is readily established using

the decomposition of (3.13). The proof of Lemma 5.1 in [46] follows the two steps explained

in detail for Theorem 4.1 in section 4.2: The left sides of (5.1) and (5.2)

1. are easily verified to be holomorphic in x, y via (3.16) and (3.17), respectively,

2. integrate to zero since all of ∂xΦ
M

J(x), ∂xG(x, y) and fM
J(x, y) are total derivatives of

single-valued functions in x (and the remaining terms are similarly total y-derivatives).

5.1 Interchange identities at higher weight

Convolutions of the basic interchange identity (5.1) or (5.2) with ∂zG(z, x) lead to higher-

weight analogues [37]. At weight two, the compact formulation in terms of f -tensors is,

ωM(x)f IM
J(y, x)− ωM(y)f IM

J(x, y) + f I
M(y, a)fM

J(x, b)− f I
M(x, b)fM

J(y, a) = 0 (5.3)

11One can view interchange identities as simpler versions of Fay identities that only involve two instead of
three points and trivialize at genus one by translation invariance on the torus and the parity f (r)(x−y) =
(−1)rf (r)(y−x) of Kronecker-Eisenstein kernels.
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This relation may be derived either from convolutions of the weight-one interchange identity

with ∂zG(z, x)ω̄I(x)12 or by following the steps in the proof of the basic interchange identity

in (5.2). The combination of the last two terms may be viewed as a matrix commutator

which is actually independent of the points a, b ∈ Σ, and may be re-expressed as follows,

f I
M(y, a)fM

J(x, b)− f I
M(x, b)fM

J(y, a)

= ∂yΦ
I
M(y)∂xΦ

M
J(x)− ∂xΦ

I
M(x)∂yΦ

M
J(y) (5.4)

The interchange identities (5.1) and (5.3) at weight one and two allow us to express deriva-

tives of the G2(x, y) function (3.21) entering the Fay identity of Theorem 4.1 in terms of

f -tensors: Integrating the weight-one lemma (5.1) against the product ∂xG(x, z)ωI(z) gives,∫
Σ

d2z ∂xG(x, z)ωI(z)ω̄
J(z)∂yG(y, z) = ωM(x)fJM

I(y, x) + ∂xΦ
M

I(x)∂yΦ
J
M(y) (5.5)

Then, upon contraction in I, J and using the contracted version of the weight-two identity

(5.3), ωM(x)f IM
I(y, x) = ωM(y)f IM

I(x, y), we arrive at the two equivalent representations,

h ∂x∂yG2(x, y) = ωM(x)f IM
I(y, x) + ∂xΦ

M
I(x)∂yΦ

I
M(y)

= ωM(y)f IM
I(x, y) + ∂xΦ

M
I(x)∂yΦ

I
M(y) (5.6)

One may further rewrite ∂xΦ
J
I(x) as the traceless part of f

J
I(x, a) for an arbitrary point a.

The generalization of (5.3) to arbitrary weight r+1 is provided by the following theorem.

Theorem 5.2 The modular tensors PI1···Ir
J(x, y) defined by,

PI1···Ir
J(x, y) = ωM(x)f I1···IrM

J(y, x) + (−1)rωM(y)f Ir···I1M
J(x, y) (5.7)

+
r∑

k=1

(−1)k+r
[
f I1···Ik

M(y, ak)f
Ir···Ik+1M

J(x, bk)− f I1···Ik−1M
J(y, ak)f

Ir···Ik
M(x, bk)

]
with arbitrary points a1, · · · , ar, b1, · · · , br ∈ Σ vanish for all r ≥ 0,

PI1···Ir
J(x, y) = 0 (5.8)

The proof of the theorem is carried out by repeating the two steps in section 4.2 just as we

did in the above proof of (5.2).

12The derivation of (5.3) by integrating (5.2) against d2x ∂zG(z, x)ω̄I(x) requires an additional application
of the weight-one interchange identity (5.1) to the term ∂zG(z, x)ω̄I(x)ωM (x)fM

J(y, x) in the integrand to
x-reduce the product ∂zG(z, x)ωM (x).
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1. Holomorphicity in x is most conveniently proven by induction in r by noting that,

∂x̄P
I1···Ir

J(x, y) = πω̄Ir(x)PI1···Ir−1
J(x, y) (5.9)

and that the base caseP∅J(x, y) = ωM(x)fM
J(y, x)+ωM(y)fM

J(x, y) at r = 0 vanishes

by (5.2). Holomorphicity in y follows from the previous result ∂x̄P
I1···Ir

J(x, y) = 0

through the symmetry property PI1···Ir
J(x, y) = (−)r PIr···I1

J(y, x) under simultaneous

exchange x↔ y and reversal I1 · · · Ir → Ir · · · I1 of the indices.

2. The integral
∫
Σ
d2x ω̄P (x)

∫
Σ
d2y ω̄Q(y)PI1···Ir

J(x, y) vanishes since each term in (5.7)

is a total derivative in x or y of a single-valued function on Σ× Σ.

Note that the second line of (5.7) can be alternatively rewritten as,

r∑
k=1

(−1)k+r
[
∂yΦ

I1···Ik
M(y)∂xΦ

Ir···Ik+1M
J(x)− ∂yΦ

I1···Ik−1M
J(y)∂xΦ

Ir···Ik
M(x)

]
(5.10)

in terms of the higher-weight Φ-tensors in (3.11) since the G-tensors in the decomposition

(3.13) cancel separately at each value of k. In this way, we recover the formulation of higher-

weight interchange identities in section 4.6.1 of [37] that manifests the independence on the

arbitrary points ai, bi of (5.7).

5.2 Uncontracted interchange identities

The interchange identities of Theorem 5.2 may be used to obtain the x-reduced form of the

specific contraction ωM(x)f I1···IrM
J(y, x) over M . In a more general situation, however, one

may wish to x-reduce a product ωJ(x)f
I1···IrL

K(y, x) with free indices I1, · · · , Ir, J, L and K

in preparation for integration over x in terms of the higher-genus polylogarithms of [37]. In

this section, the product ωJ(x)f
I1···IrL

K(y, x) with “uncontracted” indices will be x-reduced

by means of the “contracted” interchange identities of Theorem 5.2 at general weight and

the elementary identity,

ωJ(x)
[
f
−→
I L

K(y, x)− f
−→
I L

K(y, a)
]
= ωJ(x)δ

L
K

[
∂yG

−→
I (y, a)− ∂yG

−→
I (y, x)

]
(5.11)

= δLKωM(x)
[
f
−→
I M

J(y, x)− f
−→
I M

J(y, a)
]

valid for arbitrary a, x, y ∈ Σ. Here and below, we use multi-index notation
−→
I = I1I2 · · · Ir

for ordered sets of r ≥ 0 indices Ij and denote the reversal
←−
I = Ir · · · I2I1 through a flipped

arrow. The rearrangement (5.11) is a straightforward consequence of the decomposition

(3.13) since the ∂yΦ contributions to f
−→
I L

K(y, ·) and f
−→
I M

J(y, ·) clearly cancel from both

lines. This takes advantage of the fact that all the dependence of f I1···Ir
J(x, y) on the second
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point y is concentrated in the trace δIrJ with respect to the last two indices. In other words,

when f I1···Ir
J(x, y) is viewed as an h × h matrix indexed by Ir, J , the decomposition (3.13)

implies that each term is either proportional to the unit matrix or independent on y.

The rearrangement (5.11) paves the way for the following uncontracted version of the

interchange identities of Theorem 5.2:

Corollary 5.3 The modular tensor ωJ(x)f
−→
I L

K(y, x) with multi-index
−→
I = I1 · · · Ir and

weight r+1 may be x-reduced as follows,

ωJ(x)f
−→
I L

K(y, x) = −(−1)rωJ(y)f
←−
I L

K(x, y) + ωJ(x)f
−→
I L

K(y, a)− δLKωM(x)f
−→
I M

J(y, a)

+ (−1)rωJ(y)f
←−
I L

K(x, b)− (−1)rδLKωM(y)f
←−
I M

J(x, b)

+ δLK

r∑
ℓ=1

(−1)ℓ+r
[
f I1···Iℓ−1M

J(y, aℓ)f
Ir···Iℓ

M(x, bℓ)

− f I1···Iℓ
M(y, aℓ)f

Ir···Iℓ+1M
J(x, bℓ)

]
(5.12)

This corollary is readily proven by applying (5.11) to both terms on the left side of

ωJ(x)f
−→
I L

K(y, x) + (−1)rωJ(y)f
←−
I L

K(x, y) (5.13)

= ωJ(x)f
−→
I L

K(y, a)− δLKωM(x)f
−→
I M

J(y, a)

+ (−1)rωJ(y)f
←−
I L

K(x, b)− (−1)rδLKωM(y)f
←−
I M

J(x, b)

+ δLK
[
ωM(x)f

−→
I M

J(y, x) + (−1)rωM(y)f
←−
I M

J(x, y)
]

and eliminating the coefficient of δLK in the last line through the contracted interchange

identities of Theorem 5.2.
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6 Tensorial Fay identities

This section is dedicated to the systematic construction and proof of higher-genus Fay iden-

tities among bilinears in the tensors f I1···Ir
J(x, y) of section 3.2 involving three points. In

section 6.1 we shall extend the three-point identity in (4.2) among bilinears in the modular

scalar ∂iG(i, j) to a tensor-valued identity. Such an identity is needed already to obtain an

x-reduced form (in the spirit of the definition given in section 3.6 and its illustration in sec-

tion 4.3.2) of products ∂yG(y, x)∂xΦM
K(x) in the same way as (4.2) provides the x-reduced

form of the product ∂yG(y, x)∂xG(x, z).
The shuffle product will greatly facilitate and shorten the formulation and proof of tensor-

valued Fay identities of higher rank and higher weight, and will be briefly reviewed in section

6.2. The fundamental Lemma 6.1 of section 6.3 will underly many of the subsequent results

in this section. In section 6.4, we will construct explicit all-weight formulas for tensorial Fay

identities that z-reduce the expression f
−→
P M

J(x, z)f
−→
I J

K(y, z) which is a scalar in z and a

(1, 0)-form in both x and y and where we use the multi-index notation,

−→
I =

{
∅ : r = 0

I1 · · · Ir : r ≥ 1

−→
P =

{
∅ : s = 0

P1 · · ·Ps : s ≥ 1
(6.1)

introduced already informally in section 5.2. In section 6.5 we shall rearrange the Fay

identities of section 6.4 in order to obtain the x-reduced expression for a product of the type

f
−→
I
J(x, z)f

−→
P J

K(y, x), which is a (1, 0)-form in x.

The contraction of one index J in the Fay identities of sections 6.4 and 6.5 is convenient

to formulate compact expressions. In section 6.6, we deduce Fay identities for expressions of

the form f
−→
P Q

L(x, z)f
−→
I M

K(y, z) and f
−→
I
K(x, z)f

−→
P Q

L(y, x) from their counterparts with one

index contraction, using the same techniques that allowed us to deduce the uncontracted

interchange identities in section 5.2. Most importantly, iterative use of these uncontracted

Fay identities produces z-reduced expressions for higher products of f -tensors with an (N ≥
3)-fold appearance of a given point z.

6.1 Tensorial Fay identity at weight two

The simplest tensorial Fay identity has weight two and is given by

fM
J(x, y)f

J
K(y, z) + fM

J(y, x)f
J
K(x, z)− fM

J(x, z)f
J
K(y, z)

+ ωJ(x)f
MJ

K(y, x) + ωJ(y)f
JM

K(x, z) + ωJ(x)f
JM

K(y, z) = 0 (6.2)

It comprises h2 components from the values M,K = 1, 2, · · · , h of the free indices. The left

side of (6.2) is symmetric in x ↔ y which is manifest for the first two terms and the last
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two terms. Verifying the x ↔ y symmetry of the remaining two terms ωJ(x)f
MJ

K(y, x) −
fM

J(x, z)f
J
K(y, z) requires the weight-two interchange identity (5.3).

We shall discuss the following two alternative proofs of (6.2):

• Following the two-step procedure of section 4.2, one first verifies that the left side of

(6.2) has vanishing anti-holomorphic derivatives in x, y, z, which relies on the weight-

one interchange identity (5.2). The integral of the left side of (6.2) against
∫
Σ
ω̄I(x)

∫
Σ
ω̄J(y)

vanishes, since each term on the left side of (6.2) is a total derivative in x or in y of a

single-valued function.

• Alternatively, one applies the arguments of the previous paragraph to prove that,

V(2)
I (x, y, z) = ωJ(y)ωK(z)f

KJ
I(x, y) + ωJ(y)f

J
K(z, x)f

K
I(x, y) + cycl(x, y, z) (6.3)

vanishes, thereby generalizing the vanishing of the elliptic V2(1, 2, 3) function in (2.12)

to arbitrary genus. The identity V(2)
I (x, y, z) = 0 used in section 4.6.2 of [37] is a (1, 0)-

form in all of x, y, z as opposed to the left side of (6.2) which is a (1, 0)-form in x, y

and a scalar in z. Even though only three out of six terms in the cyclic sum (6.3) have

an exposed factor of ωM(z), one can apply (contracted and uncontracted) interchange

identities to rewrite V(2)
K (x, y, z) = ωM(z)ΞM

K(x, y, z). The tensor ΞM
K(x, y, z) turns

out to exactly reproduce the left side of (6.2).

In Appendix B, we conjecture a construction of identities V (w)
I (x1, · · · , xw+1) = 0

at arbitrary genus and arbitrary multiplicity which generalize the genus-one identity

Vw(1, 2, . . . , w+1) = 0 of section 2.4.

The scalar three-point identity in (4.2) may be recovered from (6.2), up to a factor of h, via

contraction with δKM which for instance reduces the last two terms to −ωI(x)∂yGI(y, z) −
ωI(y)∂xGI(x, z) by the tracelessness condition ∂xΦ

−→
I M

K(x)δ
K
M = 0. The remaining h2−1

components of (6.2) are captured by the traceless part in M,K,

∂yG(y, x)∂xΦM
K(x) = −∂xG(x, y)∂yΦM

K(y) + ωJ(x)∂yΦ
JM

K(y) + ωJ(y)∂xΦ
JM

K(x)

+ ωJ(x)f
MJ

K(y, x)− 1
h
δMK ωJ(x)f

LJ
L(y, x)

+ ∂yΦ
M

J(y)∂xΦ
J
K(x)− 1

h
δMK ∂yΦ

L
J(y)∂xΦ

J
L(x) (6.4)

which x-reduces the left side. Hence, the added value of the tensorial Fay identity (6.2)

beyond the trace component in (4.2) is an x-reduced expression for ∂yG(y, x)∂xΦM
K(x).

Note that the last two lines are, up to renaming of indices, the traceless projection of the

tensorial weight-two convolution in (5.5).
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6.2 The shuffle product

The shuffle product provides an efficient tool in terms of which to organize and prove various

tensor-valued Fay identities for higher rank and higher weight. Here, we review the essentials

of the shuffle product and shuffle algebra that will be needed in the subsequent developments

(for a standard reference see for example [80]).

The shuffle product
−→
X �

−→
Y is a binary operation on two words

−→
X and

−→
Y formed out

of a given alphabet of letters and is given by the sum of all possible ways of interlacing the

letters of
−→
X and

−→
Y such that the order of the letters in each word is preserved in

−→
X �

−→
Y .

The shuffle product has the following properties that make the set of words equipped with

addition and the shuffle product into a shuffle algebra:

1. associativity (
−→
X �

−→
Y )�

−→
Z =

−→
X � (

−→
Y �

−→
Z ) =

−→
X �

−→
Y �

−→
Z ;

2. commutativity
−→
X �

−→
Y =

−→
Y �

−→
X ;

3. neutral element provided by the empty set ∅ such that
−→
X � ∅ =

−→
X ;

4. recursive decomposition for non-empty words
−→
X = X1 · · ·Xr and

−→
Y = Y1 · · ·Ys,

−→
X �

−→
Y = X1(X2 · · ·Xr �

−→
Y ) + Y1(

−→
X � Y2 · · ·Ys)

= (X1 · · ·Xr−1�
−→
Y )Xr + (

−→
X � Y1 · · ·Ys−1)Ys (6.5)

The shuffle products considered here will be on words formed out of multi-indices denoted−→
I = I1 · · · Ir and

−→
P = P1 · · ·Ps containing letters in the alphabet {1, · · · , h}. The represen-

tations of the shuffle algebra on the tensors encountered here is obtained by implementing

the recursive decomposition of item 4. above on tensors as follows,

f ···(
−→
I �
−→
P )···

K(x, y) = f ···I1(I2···Ir�
−→
P )···

K(x, y) + f ···P1(
−→
I �P2···Ps)···

K(x, y) (6.6)

Accordingly, the anti-holomorphic derivatives (3.19) of f tensors generalize to shuffles via,

∂x̄f
(
−→
I �
−→
P )
−→
M

K(x, y) = −πω̄I1(x)f (I2···Ir�
−→
P )
−→
M

K(x, y)− πω̄P1(x)f (P2···Ps�
−→
I )
−→
M

K(x, y) (6.7)

∂ȳf
−→
M(
−→
I �
−→
P )

K(x, y) = π
[
δIrKf

−→
M(I1···Ir−1�

−→
P )

R(x, y) + δPs
K f

−→
M(P1···Ps−1�

−→
I )

R(x, y)
]
ω̄R(y)

for arbitrary
−→
M = M1 · · ·Mt with t ≥ 0 and

−→
I ,
−→
P ̸= ∅. Many of the subsequent formulas

simplify by writing f ∅J(x, y) = ωJ(x), in analogy with the kernel f (0) = 1 at genus one.

6.3 A fundamental lemma

In subsequent subsections, we shall derive two different types of Fay identities. Suppressing

all index structure, they may be schematically represented as follows:
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• in section 6.4 to z-reduce the product f(x, z)f(y, z), namely where the repeated point

z corresponds to the scalar on both factors;

• in section 6.5 to x-reduce the product f(x, z)f(y, x), namely where the repeated point

x corresponds to a (1, 0) form on one factor and a scalar on the other factor.

On a genus-one Riemann surface these two cases are equivalent to one another, but for genus

h ≥ 2 they are inequivalent and require separate treatments. Both cases will be built on a

single lemma, valid for arbitrary rank, weight and genus, which we now state.

Lemma 6.1 The following combination, defined for
−→
I = I1 · · · Ir and

−→
P = P1 · · ·Ps via,

S
−→
I |
−→
P

K(x, y, z) = f
−→
I
J(x, z)

(
f
−→
P J

K(y, x)− f
−→
P J

K(y, z)
)

+f
−→
P

J(y, z)
(
f
−→
I J

K(x, y)− f
−→
I J

K(x, z)
)

+
r∑

k=0

f I1···Ik
J(x, y)f

−→
P �JIk+1···Ir

K(y, z)

+
s∑

ℓ=0

fP1···Pℓ
J(y, x)f

−→
I �JPℓ+1···Ps

K(x, z) (6.8)

vanishes identically for arbitrary r, s ≥ 0,

S
−→
I |
−→
P

K(x, y, z) = 0 (6.9)

Here and throughout we use f ∅J(x, y) = ωJ(x).

The lemma is proven in Appendix C.1. The right side of (6.8) exposes the symmetry,

S
−→
I |
−→
P

K(x, y, z) = S
−→
P |
−→
I
K(y, x, z) (6.10)

under simultaneous exchange of
−→
I ↔

−→
P and x↔ y. For

−→
I =

−→
P = ∅, all dependence on z

cancels, and the remaining terms reduce to the basic interchange identity given in (5.2).

6.4 Eliminating repeated scalar points at all weights

In this section, we extend the tensorial weight-two identity (6.2) to arbitrary weight which is

one of the main results of this work. A first variant of all-weight Fay identities among three

points x, y, z ∈ Σ is stated in the following theorem.
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Theorem 6.2 The contracted product f
−→
P M

J(y, z)f
−→
I J

K(x, z), which is a scalar in the re-

peated point z, may be z-reduced as follows,

f
−→
P M

J(y, z)f
−→
I J

K(x, z) = (−1)s ωJ(y) f
−→
I M
←−
P J

K(x, y) (6.11)

+ f
−→
I M

J(x, y)f
−→
P J

K(y, z) +
r∑

k=0

f I1···Ik
J(x, y)f

(
−→
P �JIk+1···Ir)M

K(y, z)

+ f
−→
P M

J(y, x)f
−→
I J

K(x, z) +
s∑

ℓ=0

fP1···Pℓ
J(y, x)f

(
−→
I �JPℓ+1···Ps)M

K(x, z)

+
s∑

ℓ=1

(−1)s−ℓ
[
fP1···Pℓ

J(y, bℓ)f
−→
I MPs···Pℓ+1J

K(x, aℓ)− fP1···Pℓ−1J
K(y, bℓ)f

−→
I MPs···Pℓ

J(x, aℓ)
]

where
−→
I = I1 · · · Ir,

−→
P = P1 · · ·Ps and

←−
P = Ps · · ·P2P1. The points a1, · · · , as and b1, · · · , bs

in the last line are arbitrary and actually drop out of the combination on the last line.

The proof of Theorem 6.2 is given in Appendix C.2 and relies on Lemma 6.1. In view of

our convention f ∅J(x, y) = ωJ(x), the k = 0 and ℓ = 0 summands in the second and third line

of (6.11) are given by ωJ(x)f
(
−→
P �J

−→
I )M

K(y, z) and ωJ(y)f
(
−→
I �J

−→
P )M

K(x, z), respectively. The

trace component of (6.11) with respect to M,K expresses ∂yG
−→
P (y, z)∂xG

−→
I (x, z) for arbitrary

pairs
−→
P ,
−→
I of multi-indices in terms of G and Φ-tensors without any repeated appearance

of z. Inserting the decomposition (3.13) into the last line of (6.11) cancels all ∂G tensors and

one is left with manifestly ai, bi-independent bilinears of ∂xΦ and ∂yΦ tensors.

6.4.1 Comments on Theorem 6.2

Since the proof of Theorem 6.2 in Appendix C.2 is not constructive, we sketch two construc-

tive algorithms in Appendix D that may be used to generate higher-weight Fay identities

from convolutions of lower-weight ones. The examples at weight 3 ≤ w ≤ 6 obtained from

the methods of Appendix D led to anticipating (6.11), initially as a conjecture, which is now

underpinned by the proof in Appendix C.2.

In the specialization of (6.11) to genus one, the last line cancels, and the shuffle products

lead to Kronecker-Eisenstein kernels (2.6) multiplied by combinatorial factors according to

fC1···Cp(A1···Am�B1···Bn)D1···Dq
K(x, y)

∣∣
h=1

=

(
m+n

m

)
f (m+n+p+q)(x−y) (6.12)

In this way, one recovers the binomial coefficients in (2.11) and can readily verify consistency

with the genus-one Fay identities at arbitrary weight.
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6.4.2 Examples at weight three and four

The simplest example of (6.11) at
−→
I =

−→
P = ∅ is the weight-two identity (6.2). For choices

of
−→
I and

−→
P with a total of one and two letters, we obtain the following Fay identities at

weight three and four,

fM
J(y, z)f

IJ
K(x, z) = fM

J(y, x)f
IJ

K(x, z) + f I
J(x, y)f

JM
K(y, z)

+ f IM
J(x, y)f

J
K(y, z) + ωJ(x)f

JIM
K(y, z)

+ ωJ(y)f
IMJ

K(x, y) + ωJ(y)f
(J�I)M

K(x, z)

fM
J(y, z)f

I1I2J
K(x, z) = fM

J(y, x)f
I1I2J

K(x, z) + f I1I2
J(x, y)f

JM
K(y, z)

+ f I1
J(x, y)f

JI2M
K(y, z) + f I1I2M

J(x, y)f
J
K(y, z)

+ ωJ(x)f
JI1I2M

K(y, z) + ωJ(y)f
I1I2MJ

K(x, y)

+ ωJ(y)f
(J�I1I2)M

K(x, z)

fPM
J(y, z)f

IJ
K(x, z) = fPM

J(y, x)f
IJ

K(x, z) + fP
J(y, x)f

(I�J)M
K(x, z)

+ ωJ(y)f
(I�JP )M

K(x, z) + f IM
J(x, y)f

PJ
K(y, z)

+ f I
J(x, y)f

(P�J)M
K(y, z) + ωJ(x)f

(P�JI)M
K(y, z)

+ fP
J(y, b)f

IMJ
K(x, a)− fJ

K(y, b)f
IMP

J(x, a)

− ωJ(y)f
IMPJ

K(x, y) (6.13)

6.4.3 Examples involving weight-one factors

The all-weight family of Fay identities (6.11) with
−→
P = ∅ takes the simple form

fM
J(y, z)f

−→
I J

K(x, z) = fM
J(y, x)f

−→
I J

K(x, z) + f
−→
I M

J(x, y)f
J
K(y, z) (6.14)

+
r∑

k=0

f I1···Ik
J(x, y)f

JIk+1···IrM
K(y, z) + ωJ(y) f

−→
I MJ

K(x, y) + ωJ(y)f
(
−→
I �J)M

K(x, z)

where the bilinears of ∂xΦ and ∂yΦ tensors in the last line of (6.11) are absent. More

importantly, the right side of (6.14) features just a single repeatedly x-dependent term

fM
J(y, x)f

−→
I J

K(x, z) even though the Fay identities (6.11) are engineered to eliminate re-

peated points z rather than x. Hence, as exploited in Appendix D.4, the Fay identities (6.14)

can also be solved to x-reduce fM
J(y, x)f

−→
I J

K(x, z) on the right side instead of z-reducing

the left side. In other words, (6.14) intersects with the Fay identities of the next section

which are dedicated to the removal of repeated one-form points. This is a peculiarity of

having
−→
P = ∅ in (6.11) and will no longer be the case for non-empty

−→
P .
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6.5 Eliminating repeated one-form points at all weights

We shall now proceed to another main result of this work which may be summarized in the

following theorem.

Theorem 6.3 The contracted product f
−→
I
J(x, z)f

−→
P J

K(y, x), which is a (1, 0)-form in the

repeated point x, may be x-reduced as follows,

f
−→
I
J(x, z)f

−→
P J

K(y, x) = f
−→
I
J(x, z)f

−→
P J

K(y, z) (6.15)

−
s∑

ℓ=0

(−1)s−ℓ
r∑

k=0

fPs···Pℓ+1�I1···Ik
J(x, y)f

P1···PℓJIk+1···Ir
K(y, z)

−
s∑

ℓ=0

(−1)s−ℓfP1···Pℓ
J(y, z)

[
f (Ps···Pℓ+1�

−→
I )J

K(x, y) + f (Ps···Pℓ+1J�I1···Ir−1)Ir
K(x, z)

]
where

−→
I = I1 · · · Ir and

−→
P = P1 · · ·Ps with r ≥ 1 and s ≥ 0.

The proof is presented in Appendix C.3 and proceeds in two parts. In the first part

we prove Lemma 6.4 below. In the second part the result of Lemma 6.4 is used to prove

Theorem 6.3.

Lemma 6.4 The contracted product f
−→
I
J(x, z)f

−→
P J

K(y, x) may be expressed in terms of,

f
−→
I
J(x, z)f

−→
P J

K(y, x) =
s∑

ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

K(x, y, z) (6.16)

where the right side is built from the following x-reduced products,

Λ
−→
I |
−→
P

K(x, y, z) = f
−→
I
J(x, z)f

−→
P J

K(y, z)− f
−→
P

J(y, z)
(
f
−→
I J

K(x, y)− f
−→
I J

K(x, z)
)

(6.17)

− ωJ(y)f
−→
I �J

−→
P

K(x, z)−
r∑

ℓ=0

f I1···Iℓ
J(x, y)f

−→
P �JIℓ+1···Ir

K(y, z)

+
s∑

ℓ=1

[
f
−→
I �Pℓ···Ps

J(x, z)f
P1···Pℓ−1J

K(y, aℓ)− f
−→
I �JPℓ+1···Ps

K(x, z)f
P1···Pℓ

J(y, aℓ)
]

The points a1, · · · , as ∈ Σ in the last line are arbitrary. The specific choice by which they

are all identified with z produces various cancellations in (6.16) that lead to (6.15).

Given the non-constructive proofs of Theorems 6.2 and 6.3 in Appendices C.2 and C.3,

respectively, we sketch two constructive algorithms in Appendix D that were initially used

to generate examples and played an essential role in proposing (6.11) and (6.15).
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6.5.1 Examples

The simplest example of (6.15) with
−→
I = I and

−→
P = ∅ reproduces the weight-two identity

(6.2) after applying the interchange identity (5.3). Specializing
−→
I = I and

−→
P = P to single

letter words leads to the weight-three identity

f I
J(x, z)f

PJ
K(y, x) = −f I

J(x, y)f
PJ

K(y, z) + fP
J(x, y)f

JI
K(y, z)

−fP
J(y, z)f

IJ
K(x, y)+ fJ

K(y, z)f
(P�I)

J(x, y)

− fP
J(y, z)f

JI
K(x, z)+ f I

J(x, z)f
PJ

K(y, z)

−ωJ(x)f
PJI

K(y, z)+ωJ(y)f
PJI

K(x, z)

+ωJ(y)f
(I�P )J

K(x, y) (6.18)

One can derive all instances of Theorem 6.3 for arbitrary
−→
P and

−→
I ̸= ∅ from suitable

combinations of Theorem 6.2 with different choices of the multi-indices. The key idea is

to solve (6.11) for the term f
−→
P M

J(y, x)f
−→
I J

K(x, z) on the right side which has a repeated

appearance of the (1, 0)-form point x and where the factor of f
−→
P M

J(y, x) carries a maximum

number of indices.13 In this way, f
−→
I M

J(y, x)f
−→
P J

K(x, z) can be iteratively expressed via

terms fP1···Pℓ
J(y, x)f

(
−→
I �JPℓ+1···Ps)M

K(x, z) with fewer indices in the f ···J(y, x)-tensor and x-

reduced terms. This recursion terminates in the base case ωJ(y)f
(
−→
I �J

−→
P )M

K(x, z) where

f ∅J(y, x) = ωJ(y) only leaves a single x-dependent factor.

6.5.2 Comments on Theorem 6.3

In view of f ∅J(x, y) = ωJ(x), the summand with k = 0 and ℓ = s in the second line of (6.15)

is given by −ωJ(x)f
−→
P J
−→
I
K(y, z). Similarly, the ℓ = 0 term of the last line is (−1)s−1ωJ(y)

multiplying [f (
←−
P �
−→
I )J

K(x, y) + f (
←−
P J�I1···Ir−1)Ir

K(x, z)] with
←−
P = Ps · · ·P2P1.

The terms with a repeated appearance of x on the left side of (6.15) are

−∂yG
−→
P (y, x)f

−→
I
K(x, z) = ∂yG

−→
P (y, x)

(
δIrK∂xGI1···Ir−1(x, z)− ∂xΦ

−→
I
K(x)

)
(6.19)

Accordingly, the Fay identities needed to x-reduce the products ∂yG
−→
P (y, x)∂xGI1···Ir−1(x, z)

and ∂yG
−→
P (y, x)∂xΦ

−→
I
K(x) are obtained from the trace and the traceless part of (6.15) with

respect to Ir, K, respectively.

13The term f
−→
P M

J(y, x)f
−→
I J

K(x, z) in (6.11) can be lined up with the index structure of the left side

f
−→
I
J(x, z)f

−→
P J

K(y, x) of (6.15) by means of the matrix commutator identity (with arbitrary a, b ∈ Σ),

f
−→
P M

J(y, x)f
−→
I J

K(x, z) = f
−→
P J

K(y, x)f
−→
I M

J(x, z)− f
−→
P J

K(y, a)f
−→
I M

J(x, b) + f
−→
P M

J(y, a)f
−→
I J

K(x, b)
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6.6 Uncontracted and iterated Fay identities

Our main results for tensorial Fay identities at arbitrary weights in (6.11) and (6.15) feature

a contracted index J in f
−→
P M

J(y, z)f
−→
I J

K(x, z) and f
−→
I
J(x, z)f

−→
P J

K(y, x). In this section, we

describe simple manipulations that generalize the earlier Fay identities to situations where

all indices are free, leading to “uncontracted Fay identities”. In this form, Fay identities

can be iterated, and we provide an algorithm to z-reduce products
∏N

j=1 f
−→
Pj

Kj
(xj, z) with

arbitrary multi-indices
−→
Pj and possibly an extra factor of f

−→
R
M(z, y).

6.6.1 Uncontracted Fay identities for repeated scalar points

The driving force for the derivation of uncontracted Fay identities is the mild generalization

of (5.11)

f
−→
P M

K(y, z)
[
f
−→
I Q

L(x, z)− f
−→
I Q

L(x, a)
]
= f

−→
P M

K(y, z)δ
Q
L

[
∂xG

−→
I (x, a)− ∂xG

−→
I (x, z)

]
(6.20)

= δQL f
−→
P M

J(y, z)
[
f
−→
I J

K(x, z)− f
−→
I J

K(x, a)
]

valid for arbitrary x, y, z, a ∈ Σ which makes use of the fact that all the dependence of

f
−→
I Q

L(x, z) on the second point z is concentrated in the trace δQL with respect to its last two

indices. The same idea leads to the rearrangement[
f
−→
P Q

L(y, z)− f
−→
P Q

L(y, a)
]
f
−→
I M

K(x, z) = δQL
[
∂yG

−→
P (y, a)− ∂yG

−→
P (y, z)

]
f
−→
I M

K(x, z) (6.21)

= δQL
[
f
−→
P M

J(y, z)− f
−→
P M

J(y, a)
]
f
−→
I J

K(x, z)

As a result, we can enforce index contractions in an uncontracted Fay identity either via (6.20)

f
−→
P M

K(y, z)f
−→
I Q

L(x, z) = δQL f
−→
P M

J(y, z)f
−→
I J

K(x, z) (6.22)

+ f
−→
P M

K(y, z)f
−→
I Q

L(x, a)− δQL f
−→
P M

J(y, z)f
−→
I J

K(x, a)

or via (6.21)

f
−→
P Q

L(y, z)f
−→
I M

K(x, z) = δQL f
−→
P M

J(y, z)f
−→
I J

K(x, z) (6.23)

+ f
−→
P Q

L(y, a)f
−→
I M

K(x, z)− δQL f
−→
P M

J(y, a)f
−→
I J

K(x, z)

In both of (6.22) and (6.23), the only term with a repeated point z on the right side is

f
−→
P M

J(y, z)f
−→
I J

K(x, z). The latter has exactly the right index configuration (including the

contraction of J) to apply the contracted Fay identity (6.11), eliminating the repeated ap-

pearance of z. Hence, both of (6.22) and (6.23) can be viewed as uncontracted Fay identities
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that z-reduce the product f
−→
P M

K(y, z)f
−→
I Q

L(x, z) by applying (6.11) to f
−→
P M

J(y, z)f
−→
I J

K(x, z)

on the right side.

The arbitrary points a in (6.22) and (6.23) can be identified with x or y without alter-

ing the desired simplification of the z dependence. In presence of f -tensors depending on

additional points, however, different choices of a might turn out to be even more opportune.

6.6.2 Uncontracted Fay identities for repeated one-form points

The uncontracted version of the Fay identities (6.15) to eliminate the repeated (1, 0)-form

point x in f
−→
I
J(x, z)f

−→
P J

K(y, x) can be obtained from the same techniques. We shall only

spell out one of the two possible rearrangements analogous to (6.20) and (6.21)

f
−→
I
K(x, z)

[
f
−→
P Q

L(y, x)− f
−→
P Q

L(y, a)
]
= f

−→
I
K(x, z)δ

Q
L

[
∂yG

−→
P (y, a)− ∂yG

−→
P (y, x)

]
(6.24)

= δQL f
−→
I
J(x, z)

[
f
−→
P J

K(y, x)− f
−→
P J

K(y, a)
]

As a result, we are led to the uncontracted Fay identity

f
−→
I
K(x, z)f

−→
P Q

L(y, x) = δQL f
−→
I
J(x, z)f

−→
P J

K(y, x) (6.25)

+ f
−→
I
K(x, z)f

−→
P Q

L(y, a)− δQL f
−→
I
J(x, z)f

−→
P J

K(y, a)

where the only term f
−→
I
J(x, z)f

−→
P J

K(y, x) with a repeated appearance of x on the right side

can be x-reduced by means of the contracted Fay identity (6.15). The arbitrary point a ∈ Σ

can be identified with z without impairing the simplification of the x dependence, though

situations with additional marked points may suggest different choices.

6.6.3 Iterated Fay identities

The uncontracted Fay identities (6.22) and (6.25) allow for an iterative reduction of higher

products of f -tensors that share a given point z an arbitrary number of times. We shall

consider products of the form

N∏
j=1

f
−→
Pj

Kj
(xj, z) ←→ •z•

x1

•x2 •x3

•xN •xN−1 (6.26)
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which can be viewed as the higher-genus uplift of the product of (z−xj)
−1 in (2.4). The

visualization as a star graph is based on drawing a directed edge between vertices xj and z

for each factor of f
−→
Pj

Kj
(xj, z).

The following algorithm will eventually z-reduce the product (6.26). To see this, one

starts by applying the uncontracted Fay identity (6.22) to any two factors (6.26) – without

loss of generality the first two – resulting in a single z-dependent factor in each term with a

different index structure,

f
−→
P1

K1(x1, z)f
−→
P2

K2(x2, z) =
∑
−→
Q2

[
C
−→
P1
−→
P2L2

K1K2
−→
Q2
(x2, x1)f

−→
Q2

L2(x1, z) (6.27)

+D
−→
P1
−→
P2L2

K1K2
−→
Q2
(x1, x2)f

−→
Q2

L2(x2, z)
]

The modular tensors C
−→
P1
−→
P2L2

K1K2
−→
Q2
(x2, x1) and D

−→
P1
−→
P2L2

K1K2
−→
Q2
(x1, x2) are (1, 0)-forms in their first ar-

guments built from f -tensors and Kronecker-deltas which can be made fully explicit by

combining (6.22) with the contracted Fay identity (6.11).14 The sum over the multi-index−→
Q2 in (6.27) includes the case of

−→
Q2 = ∅ and is finite since it preserves the weight of both

sides. Upon multiplication with the remaining factors in (6.26) with j ≥ 3, the maximal

number of z-dependent factors is N−1.
In the next step, the factors of f

−→
Q2

L2(x1, z) and f
−→
Q2

L2(x2, z) on the right side of (6.27)

are combined with another factor from (6.26) – without loss of generality f
−→
P3

K3(x3, z) – and

one applies (6.27) again to these products of two z-dependent factors. The result involves

additional modular tensors C
−→
Q2
−→
P3L3

L2K3
−→
Q3

and D
−→
Q2
−→
P3L3

L2K3
−→
Q3

that depend on x1, x2, x3 but not on z.

Together with the j ≥ 4 contributions to (6.26), the maximal number of z-dependent factors

is now N−2.
By iteratively applying (6.27) to the product of the residual z-dependent factors of the

previous step and the next f
−→
Pj

Kj
(xj, z) from (6.26), the (N−1)th step eventually results in at

most one z-dependent factor per term, i.e. a z-reduced expression. These final z-dependent

f -tensors will be accompanied by up to N−1 tensors C and D in (6.27) (with various index

contractions among different factors) whose explicit form is fully determined by (6.22) and

(6.11). The number of terms upon expanding these contracted C- and D-tensors will grow

drastically with N and the length of the multi-indices
−→
Pj in (6.26).

The above algorithm can be straightforwardly extended to the products (6.26) multi-

plying an additional (1, 0)-form f
−→
R
M(z, y) in z: apply the uncontracted Fay identity (6.25)

14In view of the arbitrary points (aℓ, bℓ) in the last line of the contracted Fay identity (6.11), its individual
terms only take the form of (6.27) upon setting (aℓ, bℓ) to either (y, z) or (z, x). However, there is no need
to make this choice since all of aℓ, bℓ drop out separately for each value of ℓ in the last line of (6.11).
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followed by its contracted counterpart (6.15) to the product of f
−→
R
M(z, y) and the final

z-dependent factor from the N−1 iterations of (6.27).

With the above reduction of (6.26) and its extension to include additional factors of

f
−→
R
M(z, y) at hand, we have z-reduced the most general polynomial in f -tensors compatible

with the (1, 0)-form degree ≤ 1 (see section 3.6), and systematically eliminated a wide class

of obstructions to the z-integration of the higher-genus polylogarithms in [37]. The above

argument was carried out for products with star-graph topology in (6.26), but we will see in

section 8 that coincident limits xi → xj or y → xi (introducing loops into the star graphs) do

not alter the conclusion. The procedure of this section implies that Fay identities involving

three points x, y, z ∈ Σ are sufficient to eliminate the repeated appearance of any given point

in functions of an arbitrary number of points x1, · · · , xN , y, z that are built from f -tensors

and Abelian differentials.
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7 Fay identities and polylogarithms

In this section, we illustrate the role of the interchange and Fay identities of the previous

sections for the closure of the higher-genus polylogarithms of sections 3.4 and 3.5 under

integration over all points they depend on.

Primitives with respect to the endpoints x, y of the path that defines the polylogarithms

Γ(w; x, y; p) in (3.30) and their multi-variable generalization in (3.43) readily follow from

their construction as iterated integrals. More specifically, the differential equation,

dx Γ(x, y; p0; p1, · · · , pn) = Jmv(x, p0; p1, · · · , pn)Γ(x, y; p0; p1, · · · , pn) (7.1)

of the multi-variable path-ordered exponential (3.43) determines the primitives of any (1, 0)⊕
(0, 1)-form in x occurring in the expansion of the right side. This settles the closure under

integration over x for products of f I1···Ir
J(x, pi) with polylogarithms Γ(w; x, y; p0; p1, · · · , pn)

labeled by arbitrary words w in the letters aJ , bI and ci with i = 1, · · · , n. The x-reduction

performed by the Fay identities of the previous section furthermore determines the primitive

in x for Γ(w; x, y; p0; p1, · · · , pn) multiplied by arbitrary products,

f I1···Ir
J(x, zi)

N∏
j=1

f
−→
Pj

Kj
(xj, x) (7.2)

Recall that products of the type f I1···Ir
J(zi, zj)f

K1···Ks
L(zi, zk) which share their first point zi

never arise, since the corresponding wedge product f I1···Ir
J(zi, zj) ∧ fK1···Ks

L(zi, zk) of (1, 0)

forms in the algebra AN of section 3.6 vanishes identically.

While closure under integration in the variable x clearly holds true in view of the dis-

cussion above, we also claim closure under integration in all the other points pi of arbitrary

products of multi-variable polylogarithms Γ(w; x, y; p0; p1, · · · , pn) and f I1···Ir
J(pi, z). The

quest for primitives in the additional points pi (i = 0, 1, · · · , n) of the flat connection in (7.1)

is considerably more challenging since they enter the defining representation of higher-genus

polylogarithms through the second argument of ∂tGI1···Ir(t, pi). Our main strategy to prepare

for integration over pi is to rewrite all polylogarithms in the integrand such that their entire

dependence on pi is moved to the integration limit. These rewritings are said to change the

fibration basis.15 For a generic scalar or tensor-valued function Γ(pi) of the point pi to be

integrated, changes of fibration bases are implemented through the fundamental theorem of

15The terminology stems from the fact that singling out a particular point pi amongst the points
p0, p1, · · · , pn may be formalized in terms of a choice of fibration of moduli spaces Mh,n → Mh,n−1 for
genus h with n and n−1 punctures, respectively, as advocated, for example, in [16, 19].
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calculus,

Γ(pi) = Γ(q) +

∫ pi

q

dξΓ(ξ) (7.3)

as done for polylogarithms at genus zero [16, 62, 72, 73] and genus one [21, 24]. In the

cases of our interest, the placeholder Γ(pi) is identified with multi-variable higher-genus

polylogarithms Γ(w;x, y; p0; p1, · · · , pn). The central task is then to express the (1, 0)⊕(0, 1)-
form dξΓ(ξ) in terms of the expansion coefficients on the right side of (7.1) with ξ in the

place of x – without any additional dependence on pi in the integrand of (7.3). Whenever

this is accomplished, integrations of (7.3) over pi can be performed with the same ease as

the integral of Γ(w; x, y; p0; p1, · · · , pn) over x. In particular, the primitives with respect to

pi of arbitrary products Γ(w; x, y; p0; p1, · · · , pn) multiplying f(pi, ·) and possibly additional

f(·, pi)-tensors become available through algorithmic methods in this case.

Instead of attempting a general proof that the differentials dξΓ(ξ) can be brought into

the desired form, we shall present three non-trivial case studies in this section. The first one

in section 7.1 shows through the computation of dξΓ(bIa
J ; x, y; ξ) that the polylogarithms

generated from the connection JDHS(x, p) of (3.23) in two variables do not by themselves

close under integration over p. Instead, primitives with respect to p automatically introduce

the multi-variable polylogarithms of section 3.5. The second case study in section 7.2 neces-

sitates an interchange identity to attain the desired form of dξΓ(w; x, y; ξ) with w = aKaJbI
and exemplifies that changes of fibration bases of Γ(w; x, y; ξ; p1, · · · , pn) are performed re-

cursively in the length of the words w. The third case study in section 7.3 illustrates the

need for Fay identities to integrate generic Γ(w; x, y; p0; p1, · · · , pn) with words w of length

≥ 4 over pi. These three examples should incorporate the key features of a general integra-

tion algorithm for the higher-genus polylogarithms of [37], and it would be valuable to have

computer implementations similar to those for polylogarithms [72, 81, 82].

7.1 The need for multi-variable polylogarithms

The protagonist of the first case study is the polylogarithm,

ΓI
J(x, y; p) = Γ(bIa

J ; x, y; p) =

∫ x

y

dt f I
J(t, p)− π

∫ x

y

dt̄ ω̄I(t)

∫ t

y

dt′ ωJ(t
′) (7.4)

which was already discussed in (3.34). The opening line (7.3) towards integration over p = pi
then specializes to,

ΓI
J(x, y; p) = ΓI

J(x, y; q) +

∫ p

q

dξΓ
I
J(x, y; ξ) (7.5)
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where the p-independent term ΓI
J(x, y; q) on the right side is straightforward to integrate

over p (upon multiplication with one-forms in p). The actual challenge is a rewriting of the

integral over ξ in terms of polylogarithms Γ(w; p, q; xi) with p-independent coefficients. The

double integral in (7.4) and the ∂tΦ
I
J(t) part of f

I
J(t, p) do not depend on p and therefore

do not contribute to,∫ p

q

dξΓ
I
J(x, y; ξ) =

∫ x

y

dt

∫ p

q

dξf
I
J(t, ξ)

= −δIJ
∫ x

y

dt

∫ p

q

(
dξ ∂ξ∂tG(t, ξ) + dξ̄ ∂ξ̄∂tG(t, ξ)

)
= δIJ

∫ p

q

dξ

∫ x

y

(
−dt ∂ξG(t, ξ) + dt̄ ∂ξ∂t̄G(t, ξ)

)
+ πδIJ

∫ p

q

ω̄M

∫ x

y

ωM

= δIJ

{∫ p

q

dξ
(
∂ξG(ξ, y)− ∂ξG(ξ, x)

)
− π

∫ p

q

ωM

∫ x

y

ω̄M + π

∫ p

q

ω̄M

∫ x

y

ωM

}
= δIJ

(
Γ(cx; p, q; y;x)− πΓM(p, q)Γ̄M(x, y) + πΓM(x, y)Γ̄M(p, q)

)
(7.6)

In passing to the third and to the fourth line, we used ∂ξ̄∂tG(t, ξ) = −πωM(t)ω̄M(ξ) and

∂ξ∂t̄G(t, ξ) = −πωM(ξ)ω̄M(t) away from the support of the delta function in (3.16). In the

last line, we have identified combinations of the Abelian integrals (3.33)

ΓJ1···Jr(x, y) = Γ(aJ1 · · · aJr ; x, y; p) =
∫ x

y

ωJ1(t1)

∫ t1

y

ωJ2(t2) · · ·
∫ tr−1

y

ωJr(tr) (7.7)

Γ̄I1···Ir(x, y) =
1

(−π)r
Γ(bI1bI2 · · · bIr ; x, y; p) =

∫ x

y

ω̄I1(t1)

∫ t1

y

ω̄I2(t2) · · ·
∫ tr−1

y

ω̄Ir(tr)

and the simplest example (3.44) of multi-variable polylogarithms at higher genus.

The final form of (7.6) with all p-dependence as an integration limit of some Γ(w; p, q; · · · )
is tailored to facilitate integration over p. As an example, we compute the primitive of

dp ωK(p)(Γ
I
J(x, y; p)−πδIJΓM(x, y)Γ̄M(p, q)), where the subtraction of the anti-holomorphic

term ∼ Γ̄M(p, q) in p ensures closure under dp and homotopy invariance of∫ z

q

dp ωK(p)
(
ΓI

J(x, y; p)− πδIJΓM(x, y)Γ̄M(p, q)
)

(7.8)

=

∫ z

q

dp ωK(p)
(
ΓI

J(x, y; q) + δIJΓ(cx; p, q; y;x)− πδIJΓM(p, q)Γ̄M(x, y)
)

= ΓM(z, q)ΓI
J(x, y; q) + δIJ

(
Γ(aKcx; z, q; y; x)− πΓKM(z, q)Γ̄M(x, y)

)
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The term Γ(cx; p, q; y;x) in the last line of the rewriting (7.6) of ΓI
J(x, y; p) and its con-

tribution Γ(aKcx; z, q; y; x) to the primitive in (7.8) illustrate an important property of the

function spaces: Even though the polylogarithm ΓI
J(x, y; p) is generated by the path-ordered

exponential (3.28) of the connection JDHS(z, p) in two variables, its primitives with respect

to the last point p inevitably involve multi-variable polylogarithms such as Γ(aKcx; z, q; y; x)

in (3.44).

7.2 Primitives from interchange identities

While the p-integration of the example in the previous section did not require any func-

tional identities of the integration kernels other than ∂ξ∂tG(t, ξ) = ∂ξ∂tG(ξ, t), we will now

demonstrate the necessity of interchange identities by means of the example,

ΓKJ
I(x, y; p) = Γ(aKaJbI ; x, y; p) (7.9)

= −
∫ x

y

dt1 ωK(t1)

∫ t1

y

dt2 f
I
J(t2, p)

− π

∫ x

y

dt1 ωK(t1)

∫ t1

y

dt2 ωJ(t2)

∫ t2

y

dt̄3 ω̄
I(t3)

Similar to the previous section, we follow the integration strategy of (7.3), exposing that all

the p-dependence concentrates in the diagonal δIJ ,

ΓKJ
I(x, y; p)− ΓKJ

I(x, y; q) =

∫ p

q

dξΓKJ
I(x, y; ξ) (7.10)

= δIJ

∫ x

y

dt1 ωK(t1)

∫ t1

y

dt2

∫ p

q

(
dξ ∂ξ∂t2G(t2, ξ) + dξ̄ ∂ξ̄∂t2G(t2, ξ)

)
= δIJ

{∫ p

q

dξ

∫ x

y

dt1 ωK(t1)
(
∂ξG(ξ, t1)− ∂ξG(ξ, y)

)
+ ΓM(p, q)

∫ x

y

dt1 ωK(t1)

∫ t1

y

dt̄2 ω̄
M(t2)− πΓ̄M(p, q)ΓKM(x, y)

}
In passing to the last two lines, we have again used the Laplace equation of the Arakelov

Green function, rewrote dt2∂ξ∂t2G(t2, ξ) = dt2∂ξG(t2, ξ) − dt̄2∂ξ∂t̄2G(t2, ξ) and identified the

(anti)holomorphic polylogarithms via (7.7). Even though all the p-dependence on the right

side of (7.10) enters through an upper integration limit, the double integral in the first term∫ p

q
dξ

∫ x

y
dt1 ωK(t1)∂ξG(ξ, t1) is not yet of the right form to be identified with a polyloga-

rithm in the multi-variable path-ordered exponential (7.1). In order to show consistency of

ΓKJ
I(x, y; p) with the closure of higher-genus polylogarithms under integration over p, we

need to further simplify this double integral.
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The weight-one interchange identity (5.1) turns out to provide the desired rewriting∫ p

q

dξ

∫ x

y

dt1 ωK(t1)∂ξG(ξ, t1) (7.11)

=

∫ p

q

dξ

∫ x

y

dt1
(
ωM(t1)∂ξΦ

M
K(ξ) + ωM(ξ)∂t1Φ

M
K(t1)− ωK(ξ)∂t1G(t1, ξ)

)
= ΓM(x, y)

∫ p

q

dξ ∂ξΦ
M

K(ξ) + ΓM(p, q)

∫ x

y

dt ∂ξΦ
M

K(t)−
∫ p

q

dξ ωK(ξ)

∫ x

y

dt1 ∂t1G(t1, ξ)

The last integral in the third line has been brought into a suitable fibration basis in section

7.1, e.g. the trace components of (7.5) and (7.6) are equivalent to∫ x

y

dt1 ∂t1G(t1, ξ) =
∫ x

y

dt1 ∂t1G(t1, q)− Γ(cx; ξ, q; y; x) (7.12)

− πΓM(x, y)Γ̄M(ξ, q) + πΓM(ξ, q)Γ̄M(x, y)

Upon insertion into (7.11), the challenging double integral
∫ p

q
dξ

∫ x

y
dt1 ωK(t1)∂ξG(ξ, t1) is

expressed in terms of multi-variable polylogarithms generated by (7.1), and we can bring the

right side of (7.10) into the following final form,

ΓKJ
I(x, y; p)−ΓKJ

I(x, y; q) = δIJ

{
−ΓM(x, y)ΓK

M(p, q; y)− ΓM(p, q)ΓK
M(x, y; q) (7.13)

+ Γ(aKcx; z, q; y; x)− πΓKM(p, q)Γ̄M(x, y)− πΓKM(x, y)Γ̄M(p, q)
}

using the notation Γ(aKcx; z, q; y; x) for the multi-variable polylogarithm in (3.44) and the

following shorthand for the variant of the polylogarithm (7.4)

ΓK
M(x, y; q) = Γ(aKbM ; x, y; q) =

∫ x

y

dt fM
K(t, q) + π

∫ x

y

dt ωK(t)

∫ t

y

dt̄′ ω̄M(t′) (7.14)

In summary, the quest for primitives of ΓKJ
I(x, y; p) with respect to p necessitates both the

weight-one interchange identity (5.1) and the change of fibration basis performed for the sim-

pler polylogarithm ΓI
J(x, y; p) in section 7.1. This illustrates the more general phenomenon

that the changes of fibration bases for polylogarithms Γ(w;x, y; p0; p1, · · · , pn) needed for clo-

sure under integration over any pi are implemented recursively in the length of the word w.

7.3 Primitives from Fay identities

Our last case study is dedicated to the simplest double integral involving two non-trivial

kernels dt1f
L
K(t1, z)dt2f

I
J(t2, p) with two distinct points z ̸= p in their second arguments.
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A convenient homotopy-invariant realization via multi-variable polylogarithms of (7.1) is

given by,

Γ̂L
KJ

I(x, y; p, z) = Γ(bLa
KaJbI ; x, y; p) + δLKΓ(cza

JbI ; x, y; p; z) (7.15)

= −
∫ x

y

dt1 f
L
K(t1, z)

∫ t1

y

dt2 f
I
J(t2, p) + π2

∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ t2

y

ωJ(t3)

∫ t3

y

ω̄I(t4)

+ π

∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ t2

y

dt3 f
I
J(t3, p)− π

∫ x

y

dt1 f
L
K(t1, z)

∫ t1

y

ωJ(t2)

∫ t2

y

ω̄I(t3)

Our general strategy (7.3) then brings the p-dependence into the form of,

Γ̂L
KJ

I(x, y; p, z)− Γ̂L
KJ

I(x, y; q, z) (7.16)

= −
∫ x

y

dt1 f
L
K(t1, z)

∫ t1

y

dt2

∫ p

q

(
dξ ∂ξf

I
J(t2, ξ) + dξ̄ ∂ξ̄f

I
J(t2, ξ)

)
+ π

∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ t2

y

dt3

∫ p

q

(
dξ ∂ξf

I
J(t3, ξ) + dξ̄ ∂ξ̄f

I
J(t3, ξ)

)
= −πδIJ Γ̄M(p, q)ΓL

KM(x, y; z) + δIJ
(
IL1 K(x, y; p, q; z) + IL2 K(x, y; p, q; z)

)
where the first term in the last line reduces to a polylogarithm of section 3.4,

ΓL
KM(x, y; z) = Γ(bLa

KaM ; x, y; z) (7.17)

=

∫ x

y

dt1 f
L
K(t1, z)

∫ t1

y

ωM(t2)− π

∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ t2

y

ωM(t3)

However, the two additional integrals IL1 K , IL2 K in the last line of (7.16) require further

simplifications before they can be identified with multi-variable polylogarithms that occur

in (7.1),

IL1 K(x, y; p, q; z) =

∫ x

y

dt1 f
L
K(t1, z)

∫ t1

y

dt2

∫ p

q

dξ ∂ξ∂t2G(t2, ξ) (7.18)

=

∫ x

y

dt1 f
L
K(t1, z)

∫ p

q

dξ
(
∂ξG(ξ, t1)− ∂ξG(ξ, y)

)
+ πΓM(p, q)

∫ x

y

dt1 f
L
K(t1, z)

∫ t1

y

ω̄M(t2)

IL2 K(x, y; p, q; z) = −π
∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ t2

y

dt3

∫ p

q

dξ ∂ξ∂t3G(t3, ξ)

= −π
∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ p

q

dξ
(
∂ξG(ξ, t2)− ∂ξG(ξ, y)

)
− π2ΓM(p, q)

∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ t2

y

ω̄M(t3)
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Both cases necessitate the ti-reduction of a product fL
K(t1, z)∂ξG(ξ, t1) or ωK(t2)∂ξG(ξ, t2).

In case of IL2 K , this is resolved through the weight-one interchange identity (5.1)

− π

∫ x

y

ω̄L(t1)

∫ t1

y

ωK(t2)

∫ p

q

dξ ∂ξG(ξ, t2)

= π

∫ x

y

ω̄L(t1)

∫ p

q

dξ

∫ t1

y

{
ωK(ξ)∂t2G(t2, ξ)− ωM(ξ)∂t2Φ

M
K(t2)− ωM(t2)∂ξΦ

M
K(ξ)

}
= π

{
−ΓM(p, q)

∫ x

y

ω̄L(t1)

∫ t1

y

dt2 ∂t2Φ
M

K(t2)−
∫ p

q

dξ ∂ξΦ
M

K(ξ)

∫ x

y

ω̄L(t1)

∫ t1

y

ωM(t2)

+

∫ p

q

ωK(ξ)

∫ x

y

ω̄L(t1)

∫ t1

y

dt2 ∂t2G(t2, ξ)
}

(7.19)

The last term is still incompatible with the fibration bases occurring in the multi-variable

polylogarithms of section 3.5 and will be seen to cancel later on.

We shall proceed to simplifying the integral IL1 K where the tensorial Fay identity (6.2) is

needed to t1-reduce the bilinear fL
K(t1, z)∂ξG(ξ, t1) in the integrand of (7.18). In this way,

the most challenging contribution to IL1 K takes the form,∫ x

y

dt1 f
L
K(t1, z)

∫ p

q

dξ ∂ξG(ξ, t1) =
∫ x

y

dt

∫ p

q

dξ
{
∂ξΦ

L
M(ξ)fM

K(t, z) + fL
M(t, ξ)fM

K(ξ, z)

− fL
M(ξ, z)fM

K(t, z) + ωM(ξ)fLM
K(t, ξ) + ωM(t)fML

K(ξ, z) + ωM(ξ)fML
K(t, z)

}
=

∫ p

q

dξ ∂ξG(ξ, z)
∫ x

y

dt fL
K(t, z) + ΓM(x, y)

∫ p

q

dξ fML
K(ξ, z) + ΓM(p, q)

∫ x

y

dt fML
K(t, z)

+

∫ p

q

dξ fM
K(ξ, z)

∫ x

y

dt fL
M(t, ξ) +

∫ p

q

ωM(ξ)

∫ x

y

dt fLM
K(t, ξ) (7.20)

The last line features two terms
∫ x

y
dt fL

M(t, ξ) and
∫ x

y
dt fLM

K(t, ξ) which are not yet in

a suitable fibration basis for integration over ξ. The former has already been simplified in

(7.12), and the latter requires a separate computation along the lines of section 7.1,∫ x

y

dt fLM
K(t, ξ) =

∫ x

y

dt fLM
K(t, q)− δMK

∫ x

y

dt

∫ ξ

q

(
dη ∂η∂tGL(t, η) + dη̄ ∂η̄∂tGL(t, η)

)
=

∫ x

y

dt fLM
K(t, q) + δMK

∫ ξ

q

dη
(
∂ηGL(η, x)− ∂ηGL(η, y)

)
+ πδMK

{∫ ξ

q

ω̄R(η)

∫ x

y

dt fL
R(t, η) +

∫ x

y

ω̄R(t)

∫ ξ

q

dη fL
R(η, t)

}
(7.21)
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For both integrals
∫ x

y
dt fL

R(t, η) and
∫ ξ

q
dη fL

R(η, t) in the last line, we perform another

change of fibration basis via (7.12). The latter then produces a term −δLR
∫ t

y
ds ∂sG(s, ξ)

which – upon integration against
∫ x

y
ω̄R(t) and

∫ p

q
ωM(ξ) in the last lines of (7.21) and

(7.20) – cancels the term
∫ p

q
ωK(ξ)

∫ x

y
ω̄L(t1)

∫ t1
y

dt2 ∂t2G(t2, ξ) from the simplification of IL2 K

in (7.19).

As a result of the above manipulations, the sum over the integrals IL1 K and IL2 K in (7.18)

is expressible in terms of homotopy-invariant multi-variable polylogarithms in (7.1) with all

p-dependence in the upper integration limit:

IL1 K(x, y; p, q; z) + IL2 K(x, y; p, q; z) = Γ(aKbLcy; p, q; x; y) + πΓ̄L(x, y)Γ(aKcy; p, q; z; y)

+ πΓ̄M(x, y)Γ(aKbLa
M ; p, q; z)− π2ΓM(p, q)ΓK(x, y)Γ̄

LM(x, y) + π2ΓKM(p, q)Γ̄LM(x, y)

+ ΓM(x, y)Γ(aKbLbM ; p, q; z) + ΓM(p, q)Γ(aKbLbM ; x, y; z) + ΓM(p, q)Γ(bLbMaK ; x, y; q)

+ δLKΓ(cy; p, q; z; y)Γ(cz; x, y; q; z)− Γ(bLa
M ; x, y; q)Γ(aKbM ; p, q; y) (7.22)

Together with (7.16), this prepares the combination of multi-variable polylogarithms in (7.15)

for integration over p and illustrates the closure of Γ(w; x, y; p; p1, · · · , pn) under taking

primitives in p in a non-trivial case that relies on a tensorial Fay identity.
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8 Coincident limits of Fay identities

In this section, we shall investigate the coincident limits of the modular tensors ∂xGI1···Ir(x, y)
and f I1···Ir

J(x, y) as y → x, as well as the coincident limits of the Fay identities constructed

in section 6 for three points x, y, z, as z → x or z → y. In particular, we will show that the

coincident limit of the modular tensors ∂xGI1···Ir(x, y) produces constant modular tensors

N̂P1···Ps of various ranks s ≤ r+1 that restrict to (almost) holomorphic Eisenstein series

at genus one. We will also x-reduce products f
−→
I
J(x, y)f

−→
P J

K(y, x) of f -tensors which share

both points x and y. Hence, primitives with respect to the shared point x can be constructed

in the same function space of higher-genus polylogarithms [37] as in the case of products

(6.15) or (6.26) of f -tensors with a single point shared by an arbitrary number of factors.

8.1 Coincident limits of genus-one Fay identities

A crucial step in this section is to generalize the coincident limit of the Kronecker-Eisenstein

coefficients on the torus,

lim
y→x

f (r)(x−y) = −Gr , r ≥ 3 (8.1)

to arbitrary genus. Our normalization for the holomorphic Eisenstein series Gr is as follows,

Gr =
∑

m,n∈Z2
(m,n)̸=(0,0)

1

(mτ+n)r
, r ≥ 3 (8.2)

Recall that the restriction of both equations to r ≥ 3 is required by two types of subtleties.

First, the short-distance behavior of f (2)(z) features a contribution π(z−z̄)
zIm τ

whose limit as

z → 0 depends on the direction along which the limit is taken. Second, while the double sums

in (8.2) are absolutely convergent for r > 2 they are only conditionally convergent at smaller

values r ≤ 2. The holomorphic quasi modular Eisenstein series G2 may be defined using

the Eisenstein summation prescription and is related to the almost holomorphic modular

completion Ĝ2 by the second relation below (see for example [83] and [7]),

G2 = lim
M→∞

M∑
m=−M

lim
N→∞

N∑
n=−N

δ(m,n)̸=(0,0)

(mτ+n)2
, Ĝ2 = G2 −

π

Im τ
(8.3)

where the notation δ(m,n)̸=(0,0) instructs us to drop the summand with (m,n) = (0, 0). Al-

ternatively, the modular version Ĝ2 of weight-two Eisenstein series arises in the limit,

lim
y→x

(
f (2)(x−y) + π

Im τ

(x̄−ȳ)
x−y

)
= −Ĝ2 (8.4)
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which is well-defined by the subtraction of the problematic term ∼ z̄
z
of f (2)(z). We will

generalize the coincident limits (8.1) and (8.4) to arbitrary genus and encounter modular

tensors N̂P1···Ps with a higher-genus analogue of the integral representations of (almost)

holomorphic Eisenstein series [84],

Gr =

( r∏
j=1

∫
Σ

d2xj

Im τ

)
∂x1G(x1, x2)∂x2G(x2, x3) · · · ∂xr−1G(xr−1, xr)∂xrG(xr, x1) , r ≥ 3

Ĝ2 =

∫
Σ

d2x1

Im τ

∫
Σ

d2x2

Im τ

(
∂x1G(x1, x2)∂x2G(x2, x1)− ∂x1∂x2G(x1, x2)

)
(8.5)

in terms of the Arakelov Green function G(x, y) on the torus defined in (2.8). In contrast

to the vanishing of Eisenstein series G2ℓ+1 at odd weight, their higher-genus counterparts

N̂P1···Ps turn out to be non-trivial also at odd rank s ∈ 2N+1.

In view of the relations (8.1) and (8.4) between Kronecker-Eisenstein coefficients and

(almost) holomorphic Eisenstein series, the coincident limit y → x of the genus-one Fay

identity (2.11) takes the form (see Appendix A of [85] or section 6.3 of [26]),

f (r)(z)f (s)(z) =
(
r+s

r

)
f (r+s)(z)−

r∑
ℓ=4

(
r+s−1−ℓ

s−1

)
Gℓ f

(r+s−ℓ)(z)

+ (−1)sGr+s −
s∑

ℓ=4

(
r+s−1−ℓ

r−1

)
Gℓ f

(r+s−ℓ)(z)

−
(
r+s−2
r−1

)[
∂zf

(r+s−1)(z) + Ĝ2 f
(r+s−2)(z)

]
(8.6)

with at most one z-dependent factor in each term on the right side. For instance, the

coincident limit of the weight-two Fay identity (2.10) akin to partial fraction gives rise to

the following identity involving double poles,(
f (1)(z)

)2
= 2f (2)(z)− ∂zf

(1)(z)− Ĝ2 (8.7)

The main results of this section will be the generalizations of (8.6) to arbitrary genus in (8.39)

and (8.42) below which produces an x-reduced form for the product f
−→
I
J(x, y)f

−→
P J

K(y, x) in

terms of f -tensors, their derivatives in the second point and constant modular tensors N̂P1···Ps .

8.2 Higher-genus coincident limits at weight two

We start by generalizing the coincident limits of (8.4) and (8.7) of weight two and genus

one to arbitrary genus. This may be achieved by organizing the coincident limit z → y of
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the modular scalar three-point Fay identity (4.2) at higher genus by grouping together those

terms whose limit is immediate and those terms whose limit is not,

lim
z→y

[(
∂xG(x, y)− ∂xG(x, z)

)
∂yG(y, z)− ωI(x)∂yGI(y, z)

]
= ωI(y)∂xGI(x, y)− ∂x∂yG2(x, y)− ∂xG(x, y)∂yG(y, x) (8.8)

Here and below, the short-distance behavior ∂yG(y, z) ∼ (z−y)−1 introduces derivatives of

the accompanying functions of y and z. The difference of ∂xG(x, y) and ∂xG(x, z) inside the

limit of the first line can be converted to a derivative of a meromorphic function using the

relations (A.11) and (A.13) between the Arakelov Green function G(x, y) and the prime form

E(x, y), which in turn is defined in (A.5),

∂xG(x, y)− ∂xG(x, z) = −∂x ln
E(x, y)

E(x, z)
+ 2πiωI(x)

(
Im

∫ y

z

ωI

)
(8.9)

Grouping terms according to tensorial modular properties proves the following Lemma.

Lemma 8.1 The coincident limit of the modular scalar three-point Fay identity (4.2) at

arbitrary genus is given by,

ωI(x)CI(y) = ∂xG(x, y)∂yG(y, x)− ∂x∂yG(x, y) + ∂x∂yG2(x, y)− ωI(y)∂xGI(x, y) (8.10)

with the following well-defined limit,

CI(y) = lim
z→y

[
∂yGI(y, z) +

π

z − y

∫ y

z

ω̄I

]
(8.11)

Similar to the limit of the genus-one term (x̄−ȳ)/(x−y) in (8.4), the limit of the second

term inside the brackets of (8.11) by itself would depend on the direction in which the points

z and y approach one another. However, the combination with ∂yGI(y, z) leads to a well-

defined (1, 0)-form CI(y) limit. In order to see this, we note that the right side of (8.10) is

manifestly single-valued in x and y so that CI(y) must be single-valued in y. Furthermore,

one verifies that the right side is holomorphic in x, as the left side is. Integrating against

ω̄I(x) and discarding total derivatives of the non-singular and single-valued combination

∂yG2(x, y)− ωI(y)GI(x, y) gives the following integral representation,

CI(y) =
∫
Σ

d2x ω̄I(x)
(
∂xG(x, y)∂yG(y, x)− ∂x∂yG(x, y)

)
(8.12)

The double poles of the terms inside the parentheses on the right side cancel one another,

so that the integral is absolutely convergent and produces a well-defined (1, 0)-form in y. To
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obtain a more tractable expression, we evaluate the ∂ȳ using the Laplace equations (3.16)

for the Arakelov Green function, and express the result in terms of the Φ-tensor,

∂ȳCI(y) = −πω̄M(y)∂yΦ
I
M(y) = ∂ȳ∂yΦ

MI
M(y) (8.13)

Therefore, the combination CI(y)− ∂yΦ
MI

M(y) is holomorphic and single-valued in y, so it

can be expanded in terms of holomorphic Abelian differentials, i.e. we have,

CI(y) = ∂yΦ
MI

M(y) + ωM(y)N̂MI (8.14)

for a y-independent tensor N̂IJ . Upon insertion into (8.12), we obtain an integral represen-

tation for N̂IJ by integrating against ω̄J(y),

N̂IJ =

∫
Σ

d2y ω̄J(y)CI(y) (8.15)

=

∫
Σ

d2x

∫
Σ

d2y ω̄I(x) ω̄J(y)
(
∂xG(x, y)∂yG(y, x)− ∂x∂yG(x, y)

)
This integral is absolutely convergent as the double poles of the terms inside the parentheses

cancel one another. By the manifest symmetry of the second line in I, J , we deduce that

N̂IJ = N̂JI . Comparison with the integral representation (8.5) of the almost holomorphic

Eisenstein series Ĝ2 identifies the following restriction to genus one,

N̂IJ
∣∣
h=1

= Ĝ2 (8.16)

and shows that the coincident limit (8.14) at arbitrary genus restricts to the coincident limit

(8.4) of f (2) at genus one (we recall that ΦI1···Ir
J(y)|h=1 = 0 by their vanishing trace (3.12)).

8.2.1 Coincident limit of the tensorial weight-two Fay identity

Based on the simplified coincident limit (8.14), the higher-genus Fay identity in (8.10) may

be recast as follows,

0 = ∂xG(x, y)∂yG(y, x)− ∂x∂yG(x, y) + ∂x∂yG2(x, y) (8.17)

− N̂IJωI(x)ωJ(y)− ωI(y)∂xGI(x, y)− ωI(x)∂yΦ
MI

M(y)

The symmetry of the right side in x, y is manifest in the first four terms. The symmetry of

the remaining terms −ωI(y)∂xGI(x, y) − ωI(x)∂yΦ
MI

M(y) under I ↔ J can be established

from the corollary ωJ(y)f
MJ

M(x, y) − ωJ(x)f
MJ

M(y, x) = 0 of the weight-two interchange

identity in (5.3) whose last two terms cancel upon contraction with δJI .
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The coincident limit (8.17) of the scalar Fay identity at weight two can be unified with the

traceless component (6.4) of the tensorial weight-two Fay identity (6.2) to the compact form,

f I
J(x, y)f

J
K(y, x) = δIK∂x∂yG(x, y)− ωJ(y)f

I�J
K(x, y)− ωJ(x)FJI

K(y) (8.18)

where the last term is given by,

FJI
K(y) = lim

z→y

[
fJI

K(y, z) +
πδIK
z − y

∫ z

y

ω̄J

]
= ∂yΦ

JI
K(y)− δIKCJ(y)

= ∂yΦ
JI

K(y)− δIK∂yΦ
MJ

M(y)− δIKN̂
JMωM(y) (8.19)

One can view (8.17) and (8.18) as the simplest examples of x-reductions that involve deriva-

tives ∂yf
−→
I M

J(x, y) = −δMJ ∂x∂yG
−→
I (x, y) of f -tensors, or dyf

−→
I M

J(x, y) in the notation of sec-

tion 3.6. At genus h = 1, the Fay identity (8.18) reduces to (8.7) in view of f I1···Ir
J(x, y)→

f (r)(x−y) as well as FJI
K(y)→ −Ĝ2 and ∂x∂yG(x, y)→ ∂xf

(1)(x−y).

8.3 Coincident limits of higher-weight f-tensor

Starting from weight three, one can evaluate the coincident limits z → y of the modular

tensors f
−→
I
J(y, z) or ∂yGP1···Ps(y, z) in a more direct way. For rank s ≥ 2, we introduce the

shorthand,

CP1···Ps(y) = lim
z→y

∂yGP1···Ps(y, z) (8.20)

for the coincident limit at weight s+1 without the need for any addition of anti-holomorphic

Abelian integrals as in (8.11). The goal of this section is to establish both the well-definedness

and the explicit form of the limits (8.20) through a recursive strategy.

8.3.1 Coincident limit of weight-three tensors

We shall first illustrate the recursive computation of the limits (8.20) through the weight-

three example at rank s = 2. The first step is to combine the anti-holomorphic derivatives

(3.20) of the ∂yGIJ(y, z) tensors in both variables to obtain,

∂ȳ lim
z→y

∂yGIJ(y, z) = π lim
z→y

[
ω̄J(z)∂yGI(y, z)− ω̄I(y)∂yGJ(y, z)

]
− πω̄M(y)∂yΦ

IJ
M(y) (8.21)

The limits of the individual terms on the right side are ill-defined since they are lacking

the anti-holomorphic Abelian integrals of the expressions for CI(y) in (8.11). However, the
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combination in the square bracket of (8.21) conspires to yield a well-defined limit,

lim
z→y

[
ω̄J(z)∂yGI(y, z)− ω̄I(y)∂yGJ(y, z)

]
= ω̄J(z)CI(y)− ω̄I(y)CJ(y) + π lim

z→y

1

y−z

{
ω̄J(z)

∫ y

z

ω̄I − ω̄I(y)

∫ y

z

ω̄J

}
= ω̄J(z)CI(y)− ω̄I(y)CJ(y) (8.22)

since the curly bracket in second line of (8.22) vanishes with (ȳ−z̄)2. Hence, the anti-

holomorphic derivative (8.21) of the limit (8.20) at rank s = 2 is well-defined,

∂ȳCIJ(y) = π
[
ω̄J(z)CI(y)− ω̄I(y)CJ(y)

]
− πω̄M(y)∂yΦ

IJ
M(y) (8.23)

With the expression (8.14) for CI(y) in terms of Φ and rank-two N̂ tensors, one can readily

integrate (8.23),

CIJ(y) = ∂yΦ
IMJ

M(y)− ∂yΦ
JMI

M(y) + ∂yΦ
MIJ

M(y) (8.24)

+ ∂yΦ
I
M(y)N̂MJ − ∂yΦ

J
M(y)N̂MI + ωM(y)N̂MIJ

which introduces a rank-three tensor N̂MIJ independent on y. Upon integration against

ω̄M(y) and discarding the total derivatives of the single-valued Φ tensors, we arrive at the

following integral representation of the new tensor N̂MIJ in (8.24),

N̂MIJ =

∫
Σ

d2y ω̄M(y)CIJ(y) =
∫
Σ

d2y ω̄M(y) lim
z→y

∂yGIJ(y, z) (8.25)

=

∫
Σ

d2y ω̄M(y) lim
z→y

∫
Σ

d2x ∂yG(y, x)ω̄I(x)∂xGJ(x, z)

=

∫
Σ

d2y ω̄M(y)

∫
Σ

d2x ω̄I(x)

∫
Σ

d2w ω̄J(w) ∂yG(y, x)∂xG(x,w)∂wG(w, y)

In passing to the second and third line, we have inserted the recursive definitions of ∂yGIJ(y, z)
and ∂xGJ(x, z) as convolutions of lower-rank G-tensors. The third line of (8.25) manifests the

cyclic symmetry N̂MIJ = N̂IJM , and integration by parts with respect to all of x, y, w fur-

thermore reveals the reflection property N̂IJM = −N̂MJI . Moreover, the integrals in (8.25)

are absolutely convergent which establishes that not only the anti-holomorphic derivative

(8.21) but also the limit (8.20) defining CIJ(y) itself is well-defined.

8.3.2 Recursion for higher-weight coincident limits

The steps of section 8.3.1 in the rank-two case can be repeated to show that the limits

CP1···Ps(y) in (8.20) are well-defined at arbitrary rank s ≥ 2. The inductive step in showing
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this has two steps. In the first step, the anti-holomorphic derivatives (3.20) are used to

establish the relation,

∂ȳ lim
z→y

∂yGP1···Ps(y, z) = π lim
z→y

[
ω̄Ps(y)∂yGP1···Ps−1(y, z)− ω̄P1(y)∂yGP2···Ps(y, z)

]
− πω̄M(y)∂yΦ

P1···Ps
M(y) (8.26)

which amounts to the following recursion relation,

∂ȳCP1···Ps(y) = πω̄Ps(y)CP1···Ps−1(y)− πω̄P1(y)CP2···Ps(y)− πω̄M(y)∂yΦ
P1···Ps

M(y) (8.27)

since both C-tensors on the right side have lower rank s−1 than the one on the left side. If

we assume s ≥ 3 here (see section 8.3.1 for the s = 2 case), then the limits on the right side

are individually well-defined by the inductive hypothesis.

Each step of integrating (8.27) introduces a new modular rank-(s+1) tensor N̂MP1···Ps

CP1···Ps(y) =

∫
d2x ∂yG(y, x)

[
ω̄P1(y)CP2···Ps(y)− ω̄Ps(y)CP1···Ps−1(y)

]
+ ∂yΦ

MP1···Ps
M(y) + ωM(y)N̂MP1···Ps (8.28)

representing the holomorphic piece in the kernel of ∂ȳ. Upon integration against ω̄M(y) as

in (8.25), one arrives at integral representations

N̂MP1···Ps =

∫
Σ

d2y ω̄M(y)CP1···Ps(y) =

∫
Σ

d2y ω̄M(y) lim
z→y

∂yGP1···Ps(y, z) (8.29)

which can be simplified by the recursive definition of ∂yGP1···Ps(y, z) as an iterated convolution

as in (8.25) for r ≥ 3,

N̂I1I2···Ir =

( r∏
j=1

∫
Σ

d2xj ω̄
Ij(xj)

)
∂x1G(x1, x2)∂x2G(x2, x2) · · · ∂xr−1G(xr−1, xr)∂xrG(xr, x1)

(8.30)

These expressions for the tensors N̂I1···Ir imply their dihedral symmetry under permutations

of the indices Ij,

N̂I1I2···Ir = N̂I2···IrI1 , N̂I1I2···Ir = (−1)rN̂Ir···I2I1 (8.31)

where the alternating sign under the reflection I1I2 · · · Ir → Ir · · · I2I1 stems from the total

of r integrations by parts in the derivation via (8.30).

Finally, the absolute convergence of the integrals in (8.30) for any r ≥ 2 implies that not

only the anti-holomorphic derivatives (8.27) but also the limits CI1···Ir−1(y) themselves are

well-defined if their lower-rank counterparts are. This completes the inductive proof that

the limits (8.20) are well-defined, where the cancellation in (8.22) can be bypassed within

the inductive step once the well-defined limit (8.24) at s = 2 is taken as a base case.
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8.3.3 Explicit higher-weight coincident limits

The inductive proof of the previous subsection led to the integral representation (8.30) for

N̂-tensors of rank ≥ 3 (see (8.15) for the extra term in the integrand of the rank-two case) as

well as the recursion relation (8.28) that relates CP1···Ps(y) to convolutions of its lower-rank

analogues. An explicit solution of this recursion (8.28) is presented in the following theorem:

Theorem 8.2 The coincident limits CI1···Ir(y) = limz→y ∂yGI1···Ir(y, z) at rank r ≥ 2 are

given by,

CI1···Ir(y) = ωM(y)N̂MI1I2···Ir + ∂yΦ
MI1···Ir

M(y) (8.32)

+
r∑

1≤p≤q
(p,q)̸=(1,r)

(−1)r−q
[
∂yΦ

I1I2···Ip−1�IrIr−1···Iq+1
M(y)N̂MIpIp+1···Iq

+ ∂yΦ
(I1I2···Ip−1�IrIr−1···Iq+1)MIpIp+1···Iq

M(y)
]

The proof of the theorem proceeds in two steps. In a first step, we demonstrate by induction

in r that the expression (8.32) obeys the differential equation (8.27) relating C of different

rank. This is readily accomplished by means of the variant (p ̸= 1 and q ̸= r),

∂ȳ∂yΦ
(I1I2···Ip−1�IrIr−1···Iq+1)

−→
Q

M(y) = −πω̄I1(y)∂yΦ
(I2···Ip−1�IrIr−1···Iq+1)

−→
Q

M(y) (8.33)

− πω̄Ir(y)∂yΦ
(I1I2···Ip−1�Ir−1···Iq+1)

−→
Q

M(y)

of (6.7) for shuffle products of f -tensors which casts the ȳ derivative of (8.32) into the form,

∂ȳCI1···Ir(y) = −πω̄M(y)∂yΦ
I1···Ir

M(y) (8.34)

− π
r∑

1≤p≤q
(p,q)̸=(1,r)

(−1)r−q
[
δp̸=1ω̄

I1(y)∂yΦ
I2···Ip−1�IrIr−1···Iq+1

M(y)N̂MIpIp+1···Iq

+ δq ̸=rω̄
Ir(y)∂yΦ

I1I2···Ip−1�Ir−1···Iq+1
M(y)N̂MIpIp+1···Iq

+ δp̸=1ω̄
I1(y)∂yΦ

(I2···Ip−1�IrIr−1···Iq+1)MIpIp+1···Iq
M(y)

+ δq ̸=rω̄
Ir(y)∂yΦ

(I1I2···Ip−1�Ir−1···Iq+1)MIpIp+1···Iq
M(y)

]
The notation δp̸=1 and δq ̸=r indicates that the respective terms are absent for p = 1 and

q = r, and we set ∂yΦ
∅
M(y) = ωM(y) in the (p, q) = (2, r) contribution to the second line as

well as the (p, q) = (1, r−1) contribution to the third line. The first term on the right side of

(8.34) accounts for the last term in the aspired differential equation (8.27). The remaining

terms match the target expression since the coefficients of ω̄I1(y) in the second & fourth line
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and the coefficients of ω̄Ir(y) in the third & fifth line match −πCI2···Ir(y) and πCI1···Ir−1(y),

respectively, by the inductive hypothesis.

The second step of the proof is to show that the identity (8.32) is not off by a holomorphic

term in y. This can be verified by integration against ω̄J(y) where only the first term on the

right side of (8.32) contributes and yields N̂JI1···Ir . This matches the ω̄J(y) integral of the

left side by the first step of (8.29), completing the proof of (8.32).

With the decomposition (3.13) of the f -tensors, the expressions (8.32) for CI1···Ir(y) make

the coincident limit

f I1···IrJ
K(y, y) = ∂yΦ

I1···IrJ
K(y)− δJKCI1···Ir(y) , r ≥ 2 (8.35)

of f -tensors fully explicit, see (8.19) for the more subtle case with r = 1 where f I1J
K(y, z)

itself does not have a well-defined z → y limit. At genus one, comparison of the integral

representations (8.30) and (8.5) implies that the modular tensors N̂P1···Ps at rank s ≥ 3

reduce to holomorphic Eisenstein series,

N̂P1···Ps
∣∣
h=1

=

{
Gs : s ≥ 3

Ĝ2 : s = 2
(8.36)

where we have incorporated the earlier rank-two result (8.16) involving the almost holo-

morphic Eisenstein series Ĝ2. Together with the vanishing genus-one restrictions of the

Φ-tensors, this implies

CI1···Ir(y)
∣∣
h=1

= Gr+1 , f I1···IrJ
K(y, y)

∣∣
h=1

= −Gr+1 , r ≥ 2 (8.37)

whereas (8.14) and (8.16) identify CI1(y)
∣∣
h=1

= Ĝ2 in the weight-two case. In summary, the

coincident limits (8.35) of higher-genus f I1···IrJ
K(y, z)-tensors are considerably richer than

their genus-one counterparts in view of the hierarchy of modular tensors N̂P1···Ps of rank

2 ≤ s ≤ r+1 in the expansion (8.32) of CI1···Ir(y).

8.4 Coincident limit of Fay identities for arbitrary weight

We are now ready to state and prove the coincident limit as z → y of the three-point Fay

identity established in Theorem 6.3. The main result of this section is Theorem 8.3 for

arbitrary rank, the proof of which is relegated to Appendix C.5.

The starting point is formula (6.15) for the Fay identity for three points of Theorem 6.3.

As we take the limit z → y, the left side converges to f
−→
I
J(x, y) f

−→
P J

L(y, x), which is to be

x-reduced. On the right side, all terms admit regular limits as z → y, except for the following

two cases: terms with singularities f I
J(y, z) = δIJ(y−z)−1 + reg and terms that are affected

by the direction dependent z → y limit of f I1I2
J(y, z) discussed below (8.11).
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1. When s = 0, the term on the first line of (6.15), and the k = r, r−1 terms on the

second line have singular or direction-dependent limits.

2. When s = 1, the limits of the term on the first line of (6.15), the terms (k, ℓ) =

(r, 0), (r, 1), (r−1, 0) on the second line, and the ℓ = 1 term on the third line are

singular or direction dependent.

3. When s ≥ 2, the terms (k, ℓ) = (r, 0), (r, 1), (r−1, 0) on the second line of (6.15) and

the ℓ = 1, 2 terms on the third line have singular or direction-dependent limits.

As the z → y limit of the left side of (6.15) is convergent in all cases, so must the limit of the

combined right side be. Indeed, all the singularities tabulated above for each case, combine

and cancel one another to produce well-defined limits as z → y. The net result of these finite

limits may be expressed in terms of the following tensor functions of a single variable,

F I1···Ir
J(y) =


f I1···Ir

J(y, y) : r ≥ 3

∂yΦ
I1I2

J(y)− δI2J CI1(y) : r = 2

∂yΦ
I1

J(y) : r = 1

ωJ(y) : r = 0

(8.38)

where the tensor function CI(y) was defined in (8.11) and evaluated in (8.14). The coincident

limit of the three-point Fay identity (6.15) then results in the following theorem.

Theorem 8.3 The coincident limits of the three-point Fay identities allows us to x-reduce

the contracted product f
−→
I
J(x, y) f

−→
P J

K(y, x) with multi-indices
−→
I = I1 · · · Ir and

−→
P =

P1 · · ·Ps of length r ≥ 1 and s ≥ 0,

f
−→
I
J(x, y) f

−→
P J

K(y, x) = f
−→
I
J(x, y)F

−→
P J

K(y)− (−)s∂yf (
←−
P � I1···Ir−1)Ir

K(x, y)

−
r∑

k=0

s∑
ℓ=0

(−)ℓ−sfPs···Pℓ+1�I1···Ik
J(x, y)FP1···PℓJIk+1···Ir

K(y)

−
s∑

ℓ=0

(−)ℓ−sFP1···Pℓ
J(y) f

Ps···Pℓ+1J �
−→
I
K(x, y) (8.39)

Alternatively, the rightmost term of the first line may be re-expressed using,

∂yf
(
←−
P � I1···Ir−1)Ir

K(x, y) = −δIrK∂x∂yG
←−
P � I1···Ir−1(x, y) (8.40)

The proof of the theorem is relegated to Appendix C.5, and the adaptation of (8.39) to the

three cases s = 0, s = 1 and s ≥ 2 can be found in (C.66) to (C.68). The derivation of
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uncontracted Fay identities from contracted ones in section 6.6.2 straightforwardly carries

over to the coincident limit z → y, leading to,

f
−→
I
K(x, y)f

−→
P Q

L(y, x) = δQL f
−→
I
J(x, y)f

−→
P J

K(y, x) (8.41)

+f
−→
I
K(x, y)f

−→
P Q

L(y, a)− δQL f
−→
I
J(x, y)f

−→
P J

K(y, a)

with an arbitrary point a ∈ Σ. Moreover, the coincident Fay identities (8.39) can be used

to extend the reduction of products of f
−→
R
M(z, y) and an arbitrary number of f

−→
Pj

Kj
(xj, z) in

section 6.6.3 to situations with xj → y.

An alternative representation of the coincident Fay identity (8.39) is stated in the theorem

below, whose proof is given in Appendix C.6.

Theorem 8.4 The x-reduction (8.39) for the contracted product f
−→
I
J(x, y) f

−→
P J

K(y, x) is

equivalent to,

f
−→
I
J(x, y)f

−→
P J

K(y, x) = −(−1)sωJ(y)f
−→
I �
←−
P J

K(x, y) (8.42)

+ (−1)sδIrK∂x∂yGI1···Ir−1�
←−
P (x, y) + (−1)sf I1···Ir−1�

←−
P

J(x, y)
[
δIrKC

J(y)− ∂yΦ
JIr

K(y)
]

−
r−1∑
k=0

s∑
ℓ=0

δ(k,ℓ)̸=(r−1,0)(−1)s−ℓf I1···Ik�Ps···Pℓ+1
J(x, y)f

P1···PℓJIk+1···Ir
K(y, y)

−
s∑

ℓ=1

(−1)s−ℓ
[
fP1···Pℓ

J(y, aℓ)f
Ps···Pℓ+1J�

−→
I
K(x, y)− fP1···Pℓ−1J

K(y, aℓ)f
Ps···Pℓ�

−→
I
J(x, y)

]
with arbitrary points a1, · · · , as ∈ Σ.

8.4.1 Comments on Theorem 8.4

The alternative form (8.42) of the coincident Fay identity manifests the cancellation of

the first term f
−→
I
J(x, y)F

−→
P J

K(y) on the right side of (8.39) and the reduction of several

FP1···Pℓ
J(y) in its second and third line to their ∂yΦ

P1···Pℓ
J(y) parts. Moreover, (8.42) is a

more suitable starting point to make contact with the coincident Fay identity (8.6) at genus

one. The shuffle products of f -tensors reduce to multiples of f (r) with the binomial coeffi-

cients in (6.12) upon restriction to genus one.16 The first term on the right side of (8.42)

reproduces the first term ∼ f (r+s) on the right side of (8.6). The last term of (8.6) originates

from the second line of (8.42). The third line of (8.42) produces the term ∼ Gr+s in (8.6)

from the extremal term (k, ℓ) = (0, s) and the sums over ℓ in (8.6) from the remaining sum-

mands. The last line of (8.42) drops out at h = 1 since both of the aℓ-dependent f -tensors

reduce to their respective ∂Φ parts.

16One has to shift s → s+1 in (8.6) to account for the extra upper index J besides
−→
P = P1 · · ·Ps in the

factor f
−→
P J

K(y, x) on the left side of (8.42).
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9 Meromorphic Fay identities

In this section, we spell out counterparts of the identities of sections 5 to 8 among non-

meromorphic and single-valued f -tensors for meromorphic but multi-valued integration ker-

nels on surfaces of arbitrary genus. More specifically, we propose interchange identities that

we shall prove and Fay identities that we shall conjecture for the meromorphic expansion

coefficients gI1···IrJ(x, y). Remarkably, the expressions for both the interchange and Fay iden-

tities that we find in terms of the Enriquez kernels will match with the analogous identities

for DHS kernels f I1···Ir
J(x, y) as carbon copies of one another upon the formal substitution

f → g. We also investigate the coincident limits y → x of the Enriquez kernels which intro-

duce meromorphic analogues of the modular tensors N̂P1···Pr seen in the coincident limits of

f I1···Ir
J(x, y) in the previous section.

At genus one, the Fay identities of Kronecker-Eisenstein kernels f (k)(z) and g(k)(z) play

a two-fold crucial role for integration on the torus: first, for a general proof that elliptic

polylogarithms close under taking primitives [19, 20]; second, for an explicit derivation of

differential and algebraic identities among elliptic polylogarithms [19, 21, 22], elliptic multi-

ple zeta values [27, 25, 28, 70] and modular graph forms [85, 26, 86] (as a reformulation of the

holomorphic subgraph reduction developed earlier in [31, 87, 88]). By analogy with this im-

pact of genus-one Fay identities, the interchange and Fay identities of this work are expected

to crucially feed into derivations and classifications of relations among configuration-space

periods at arbitrary genus.

By extending the interchange and Fay identities among higher-genus f -tensors to their

meromorphic counterparts from the Enriquez connection, the results of this section pave

the way for the study of iterated integrals of gI1···IrJ(x, y) including the hyper-elliptic poly-

logarithms of [38]. In particular, the subsequent identities will be applied to change fi-

bration bases of the meromorphic polylogarithms of [38] similar to those in section 7 for

non-meromorphic polylogarithms.

9.1 Basics of the Enriquez coefficients

Enriquez introduced meromorphic flat connections, on the universal cover of an arbitrary

compact Riemann surface, which have at most simple poles at the marked points and pre-

scribed monodromies [33]. Expanding the two-variable case of the Enriquez connection in cer-

tain non-commutative generators gives rise to merormophic integration kernels gI1···IrJ(x, y)

which are uniquely defined through their functional identities [33].
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Theorem 9.1 (Enriquez [33]) There exists a unique family of differentials, denoted by

ωI1···Ir
J(x, y) in Enriquez’s work and normalized with additional powers of −2πi in this work,

gI1···IrJ(x, y) = (−2πi)rωI1···Ir
J(x, y) , r ≥ 0 (9.1)

depending on two points x, y in the universal covering space of a compact Riemann surface Σ

of genus h and its complex-structure moduli such that

1. gI1···IrJ(x, y) are (1, 0)-forms in x and scalars in y;

2. gI1···IrJ(x, y) are meromorphic in all variables;

3. the r = 0 instance is given by the Abelian differentials, g∅J(x, y) = ωJ(x);

4. the monodromies of gI1···IrJ(x, y) in x, y vanish around the AL-cycles and obey the

following recursion around the BL-cycles,
17

gI1···IrJ(x+BL, y) = gI1···IrJ(x, y) +
r∑

k=1

(−2πi)k

k!
δI1···IkL gIk+1···Ir

J(x, y) (9.2)

gI1···IrJ(x, y+BL) = gI1···IrJ(x, y) + δIrJ

r∑
k=1

(2πi)k

k!
gI1···Ir−k

L(x, y) δ
Ir−k+1···Ir−1

L

where the generalized Kronecker-deltas are given by δI1I2···IkL = δI1L δI2L · · · δ
Ik
L ;

5. given a (simply connected) fundamental domain Σf for the surface Σ with x, y ∈ Σf ,

all of gI1···IrJ(x, y) with r ̸= 1 are regular as y → x; the r = 1 instance, however,

exhibits a simple pole with the following residue,

gIJ(x, y) =
δIJ
x−y

+ reg (9.3)

6. at y ̸= x, the only poles of gI1···IrJ(x, y) at r ≥ 1 are those mandated by their monodromy

relations and the pole of gIJ(x, y).

As detailed in section 8 of the published version of [33], the Enriquez kernels for genus one

coincide with the meromorphic Kronecker-Eisenstein coefficients defined by (2.6),

gI1···IrJ(x, y)
∣∣
h=1

= g(r)(x−y) (9.4)

17The B monodromy in y in the second line of (9.2) is derived in part b) of Lemma 9 of [33].
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9.1.1 Decomposition into trace and traceless components

The gI1···IrJ(x, y) obey a direct analogue of the decomposition (3.13) of the f -tensors: Their

dependence on y is concentrated in the trace δIrJ with respect to the last two indices [33],

gI1···IrJ(x, y) = ϖI1···Ir
J(x)− δIrJ χI1···Ir−1(x, y)

ϖI1···IsJ
J(x) = 0 (9.5)

Therefore, the traceless part ϖI1···Ir
J(x) solely depends on the point x, and this dependence

is holomorphic on x in the universal covering space of Σ. Its B monodromies follow from

the traceless projection of the first line in (9.2) with respect to Ir, J ,

ϖI1···Ir
J(x+BL) = ϖI1···Ir

J(x) +
r−1∑
k=1

(−2πi)k

k!
δI1···IkL ϖIk+1···Ir

J(x)

+
(−2πi)r

r!

(
δI1···IrL ωJ(x)−

1

h
δIrJ δ

I1···Ir−1

L ωL(x)

)
(9.6)

By the tracelessness of ϖI1···Ir
J(x), their restrictions to genus one vanish, and the trace of

(9.4) relates the χI1···Ir−1(x, y) to the meromorphic Kronecker-Eisenstein kernels

ϖI1···Ir
J(x)

∣∣
h=1

= 0 , χI1···Is(x, y)
∣∣
h=1

= −g(s+1)(x−y) (9.7)

The pole structure of gI1···IrJ(x, y) in items 5. and 6. of Theorem 9.1 readily translates into

the y → x behavior,

χ(x, y) =
1

y−x
+ reg (9.8)

whereas all of χI1...Is(x, y) with s ≥ 1 are regular as y → x. Moreover, the only poles of

χI1...Is(x, y) with s ≥ 0 at y ̸= x are those mandated by (9.8) and the monodromies,

χI1···Is(x+BL, y) = χI1···Is(x, y) +
s∑

k=1

(−2πi)k

k!
δI1···IkL χIk+1···Is(x, y)− (−2πi)s+1

(s+1)!h
δI1···IsL ωL(x)

χI1···Is(x, y+BL) = χI1···Is(x, y)−
s∑

k=0

(2πi)s−k+1

(s−k+1)!
gI1···IkL(x, y)δ

Ik+1···Is
L (9.9)

Explicit expressions for gI1···IrJ(x, y) at h ≥ 2 remain somewhat cumbersome to exhibit ex-

plicitly at this time, though recent work [38] offers formulas in the local Schottky parametriza-

tion of moduli space that lend themselves to numerical evaluation for genus two.

71



9.2 Meromorphic interchange identities

In this section, we produce the meromorphic counterparts of the interchange identities for f -

tensors in section 5 which will allow us to x-reduce expressions of the type ωM(x)gI1···IrJ(y, x).

The definition of z-reduced in the meromorphic case is analogous to but simpler than the one

given for the non-meromorphic case in section 3.6. For mutually distinct points z1, · · · , zN ,
the exterior algebra generated by the differential forms,

ωI(zi), gI1···IrJ(zi, zj)dzi, ∂zjg
I1···Ir

J(zi, zj)dzi ∧ dzj (9.10)

will be denoted ÃN . It is manifestly closed under addition, the wedge product, and appli-

cation of the Dolbeault differentials ∂i = dzj∂zj and ∂̄j = dz̄j∂z̄j , the latter since the forms

are all meromorphic and the points zi are mutually distinct. An arbitrary element of ÃN is

defined to be zi-reduced, for a given value of i, if it is a linear combination of zi-independent

terms and those generators of ÃN that depend on zi with coefficients that are indepen-

dent of zi. In short, zi-reduced products of the generators (9.10) feature no more than one

zi-dependent factor besides dzi.

The simplest example occurs at rank r = 1 where the meromorphic analogue of the basic

interchange identity (5.2) with a contracted index reads,

ωM(x)gMJ(y, x) + ωM(y)gMJ(x, y) = 0 (9.11)

Through the decomposition (9.5) of the Enriquez kernels, this translates into the following

meromorphic counterpart of (5.1),

ωM(x)ϖM
J(y) + ωM(y)ϖM

J(x)− ωJ(x)χ(y, x)− ωJ(y)χ(x, y) = 0 (9.12)

and illustrates that the traceless component ϖM
J(x) of g

M
J(x, y) compensates for the lack

of translation invariance in the trace component χ(x, y) at genus h ≥ 2. For arbitrary rank

r ≥ 0, we obtain the meromorphic analogue of the non-meromorphic contracted interchange

identities of Theorem 5.2.

Theorem 9.2 The differentials QI1···Ir
J(x, y) defined by,

QI1···Ir
J(x, y) = ωM(x) gI1···IrMJ(y, x) + (−1)rωM(y) gIr···I1MJ(x, y) (9.13)

+
r∑

k=1

(−1)k+r
[
ϖI1···Ik

M(y)ϖIr···Ik+1M
J(x)−ϖIr···Ik

M(x)ϖI1···Ik−1M
J(y)

]
satisfy the following properties:
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1. they are (1, 0) forms in x, y and obey the symmetry QI1···Ir
J(x, y) = (−)r QIr···I1

J(y, x);

2. have vanishing A monodromy in x and y, and their B monodromy in y are given by,

QI1···Ir
J(x, y+BL) = QI1···Ir

J(x, y) +
r∑

k=1

(−2πi)k

k!
δI1···IkL QIk+1···Ir

J(x, y) (9.14)

3. they are holomorphic in x and y for all r ≥ 0;

4. as a consequence, they vanish identically for all r ≥ 0,

QI1···Ir
J(x, y) = 0 (9.15)

We note that the last line in (9.13) may alternatively be expressed solely in terms of the

differentials gI1···IrJ(x, y), leading to the following representation,

QI1···Ir
J(x, y) = ωM(x)gI1···IrMJ(y, x) + (−1)rωM(y)gIr···I1MJ(x, y)

+
r∑

k=1

(−1)k+r
[
gI1···IkM(y, ak)g

Ir···Ik+1M
J(x, bk)

−gI1···Ik−1M
J(y, ak)g

Ir···Ik
M(x, bk)

]
(9.16)

where a1, · · · , ar, b1, · · · , br are arbitrary points in the universal cover of Σ. Solving the

vanishing of QI1···Ir
J(x, y) in (9.13) for the first term on the right side provides the x-reduced

form of ωM(x)gI1···IrMJ(y, x). The proof of Theorem 9.2 is relegated to Appendix C.7.

9.2.1 Uncontracted interchange identities

Since the decompositions (5.11) literally carry over to f → g as well as ∂G → χ and

∂Φ→ ϖ, we obtain a meromorphic version of the uncontracted interchange identities (5.12)

that x-reduce ωJ(x)g
−→
I L

K(y, x) with free indices J,K,L and
−→
I = I1 · · · Ir.

Corollary 9.3 The meromorphic un-contracted interchange identities takes the form,

ωJ(x)g
−→
I L

K(y, x) = −(−1)rωJ(y)g
←−
I L

K(x, y) + ωJ(x)g
−→
I L

K(y, a)− δLKωM(x)g
−→
I M

J(y, a)

+ (−1)rωJ(y)g
←−
I L

K(x, b)− (−1)rδLKωM(y)g
←−
I M

J(x, b)

+ δLK

r∑
k=1

(−1)k+r
[
gI1···Ik−1M

J(y, ak)g
Ir···Ik

M(x, bk)

− gI1···IkM(y, ak)g
Ir···Ik+1M

J(x, bk)
]

(9.17)

with
−→
I = I1 · · · Ir and two additional arbitrary points a, b in the universal cover of Σ.
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9.2.2 Swapping identities

As another important two-point identity among Enriquez kernels, we shall here introduce

the meromorphic analogue of the symmetry property,

∂x∂yGI1···Ir(x, y) = (−)r∂x∂yGIr···I1(y, x) (9.18)

which straightforwardly follows from differentiating (3.12) with respect to x and y. In con-

trast to their single-valued counterparts ∂xGI1···Ir(x, y), the trace components χI1···Ir(x, y) of

the Enriquez kernels in (9.5) do not feature an exposed holomorphic derivative in x. Still, the

trace component ∂G → χ of the substitution rule f → g converts (9.18) to a valid identity

stated in the following theorem.

Theorem 9.4 The (1, 0) forms U I1···Ir(x, y) in x and y defined by,

U I1···Ir(x, y) = ∂yχ
I1···Ir(x, y)− (−)r∂xχIr···I1(y, x) (9.19)

vanish identically for any r ≥ 0

U I1···Ir(x, y) = 0 (9.20)

The proof of the theorem can be found in Appendix C.8. It relies on the B monodromies

in (9.9) as well as the cancellation of poles ∂yχ(x, y) = − 1
(x−y)2 + reg from U(x, y).

By the decomposition (9.5), the y derivatives of the Enriquez kernels gI1···IrKJ(x, y) are

concentrated in the trace with respect to K and J , i.e.

∂yg
I1···IrK

J(x, y) = −δKJ ∂yχ
I1···Ir(x, y) (9.21)

and one arrives at the following corollary of Theorem 9.4

Corollary 9.5 Derivatives of the Enriquez kernels obey the swapping identities for all r ≥ 0

∂yg
I1···IrK

J(x, y) = (−)r∂xgIr···I1KJ(y, x) (9.22)

The swapping identities will play a key role in the change of fibration bases for the mero-

morphic polylogarithms in section 9.5.

9.3 Meromorphic Fay identities

As a meromorphic analogue of the simplest tensorial Fay identity (6.2) of the f -tensors, the

Enriquez kernels gIJ and gI1I2J are proposed to obey

gMJ(x, y)g
J
K(y, z) + gMJ(y, x)g

J
K(x, z)− gMJ(x, z)g

J
K(y, z)

+ ωJ(x)g
MJ

K(y, x) + ωJ(y)g
JM

K(x, z) + ωJ(x)g
JM

K(y, z) = 0 (9.23)
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Through the decomposition (9.5) of the Enriquez kernels, the trace with respect to M,K

implies the following meromorphic counterpart of (4.2)

0 = χ(x, y)χ(y, z) + χ(y, x)χ(x, z)− χ(x, z)χ(y, z)

− ωI(x)χ
I(y, z)− ωI(y)χ

I(x, z) + χ2(x, y) (9.24)

where the symmetric function χ2(x, y) = χ2(y, x) can be viewed as the meromorphic analogue

of ∂x∂yG2(x, y) in (3.21) and can be rewritten in analogy with (5.6),

hχ2(x, y) = ωM(x)gIMI(y, x) +ϖJ
I(x)ϖ

I
J(y)

= ωM(y)gIMI(x, y) +ϖJ
I(x)ϖ

I
J(y) (9.25)

The traceless part of (9.23) in turn yields the meromorphic analogue of (6.4)

χ(y, x)ϖM
K(x) = −χ(x, y)ϖM

K(y) + ωJ(x)ϖ
JM

K(y) + ωJ(y)ϖ
JM

K(x)

+ ωJ(x)g
MJ

K(y, x)− 1
h
δMK ωJ(x)g

LJ
L(y, x)

+ϖM
J(y)ϖ

J
K(x)− 1

h
δMK ϖL

J(y)ϖ
J
L(x) (9.26)

The products gMJ(y, x)g
J
K(x, z), χ(y, x)χ(x, z) and χ(y, x)ϖM

K(x) may be x-reduced with

the help of equations (9.23), (9.24) and (9.26). Alternatively, (9.23) and (9.24) can be used

to z-reduce the products gMJ(x, z)g
J
K(y, z) and χ(x, z)χ(y, z).

9.3.1 Contracted meromorphic Fay identities

More generally, the contracted Fay identities (6.11) and (6.15) at arbitrary weight ≥ 2 are

proposed to carry over to the Enriquez kernels as follows:

Conjecture 9.6 The contracted product g
−→
P M

J(y, z)g
−→
I J

K(x, z) for multi-indices
−→
I = I1 · · · Ir

and
−→
P = P1 · · ·Ps, which is a (1, 0) form in x, y and a scalar in z, can be z-reduced in terms

of Enriquez integration kernels as follows,

g
−→
P M

J(y, z)g
−→
I J

K(x, z) = (−1)sωJ(y)g
−→
I M
←−
P J

K(x, y) (9.27)

+ g
−→
I M

J(x, y)g
−→
P J

K(y, z) +
r∑

k=0

gI1···IkJ(x, y)g
(
−→
P �JIk+1···Ir)M

K(y, z)

+ g
−→
P M

J(y, x)g
−→
I J

K(x, z) +
s∑

ℓ=0

gP1···Pℓ
J(y, x)g

(
−→
I �JPℓ+1···Ps)M

K(x, z)

+
s∑

ℓ=1

(−1)s−ℓ
(
gP1···Pℓ

J(y, aℓ)g
−→
I MPs···Pℓ+1J

K(x, bℓ)− gP1···Pℓ−1J
K(y, aℓ)g

−→
I MPs···Pℓ

J(x, bℓ)
)
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with arbitrary points a1, · · · , as, b1, · · · , bs in the universal cover of Σ.

In Appendix C, the analogous Fay identities in Theorem 6.2 on the z-reduction of

the scalar f
−→
P M

J(y, z)f
−→
I J

K(x, z) are shown to imply Theorem 6.3 for the x-reduction of

f
−→
I
J(x, z)f

−→
P J

K(y, x). This proof only relies on identities of f -tensors that apply in identical

form for the Enriquez kernels, for instance that the dependence of both f I1···Ir
J(x, y) and

gI1···IrJ(x, y) on y is concentrated in the trace δIrJ , see (3.13) and (9.5). Accordingly, the

following meromorphic version of Theorem 6.3 is a corollary of Conjecture 9.6:

Conjecture 9.7 The contracted product g
−→
I
J(x, z)g

−→
P J

K(y, x), which is a (1, 0)-form in the

repeated point x, may be x-reduced as follows in terms of Enriquez integration kernels,

g
−→
I
J(x, z)g

−→
P J

K(y, x) = g
−→
I
J(x, z)g

−→
P J

K(y, z) (9.28)

−
s∑

ℓ=0

(−1)ℓ−s
r∑

k=0

gPs···Pℓ+1�I1···Ik
J(x, y)g

P1···PℓJIk+1···Ir
K(y, z)

−
s∑

ℓ=0

(−1)ℓ−sgP1···Pℓ
J(y, z)

[
g(Ps···Pℓ+1�

−→
I )J

K(x, y) + g(Ps···Pℓ+1J�I1···Ir−1)Ir
L(x, z)

]
9.3.2 Uncontracted meromorphic Fay identities

The derivation of uncontracted Fay identities among f -tensors from contracted ones in sec-

tion 6.6 is solely based on the decomposition (3.13) into traces and traceless parts which

carries over to the Enriquez kernels as seen in (9.5). Accordingly, the uncontracted Fay

identities (6.22) hold in identical form for f → g,

g
−→
P M

K(y, z)g
−→
I Q

L(x, z) = δQL g
−→
P M

J(y, z)g
−→
I J

K(x, z) (9.29)

+ g
−→
P M

K(y, z)g
−→
I Q

L(x, a)− δQL g
−→
P M

J(y, z)g
−→
I J

K(x, a)

where Conjecture 9.6 may be used to z-reduce the first term on the right side. Similarly, the

uncontracted Fay identities (6.25) have the direct meromorphic analogue

g
−→
I
K(x, z)g

−→
P Q

L(y, x) = δQL g
−→
I
J(x, z)g

−→
P J

K(y, x) (9.30)

+ g
−→
I
K(x, z)g

−→
P Q

L(y, a)− δQL g
−→
I
J(x, z)g

−→
P J

K(y, a)

where Conjecture 9.7 may be used to x-reduce the first term on the right side.

In conclusion, the meromorphic uncontracted Fay identities (9.29) and (9.30) ensure that

the elimination of repeated points z and x in g
−→
P M

K(y, z)g
−→
I Q

L(x, z) and g
−→
I
K(x, z)g

−→
P Q

L(y, x)

does not rely on the contracted index J in (9.27) and (9.28), respectively.
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9.3.3 Iterated meromorphic Fay identities

We have seen in section 6.6.3 that iterative use of uncontracted Fay identities among f -

tensors z-reduces products of f
−→
R
M(z, y) and an arbitrary number of f

−→
Pj

Kj
(xj, z). The con-

jectures in this section imply that the meromorphic uncontracted Fay identities (9.29) and

(9.30) take the same form as those of the f -tensors in (6.22) and (6.25). As a consequence, the

reduction algorithm of section 6.6.3 should carry over to arbitrary products
∏N

j=1 g
−→
Pj

Kj
(xj, z)

of Enriquez kernels after applying the substitution rule f → g to the C- and D-tensors in

(6.27).

In conclusion, the above meromorphic Fay identities involving three points are sufficient

to z-reduce arbitrary products of Enriquez kernels of (1, 0)-form degree ≤ 1 in z. The

algorithmic reduction of such products will be important to derive identities among iterated

integrals of the Enriquez kernels.

9.4 Meromorphic coincident limits

This section is dedicated to the coincident limits z → y of Enriquez kernels gI1···IrJ(y, z)

and their corollaries for Fay identities. We provide evidence that the results of section 8 on

coincident limits of f -tensors – in particular the modular tensors N̂I1...Ir that do not depend

on any point – have a direct meromorphic counterpart.

9.4.1 Coincident limits of Enriquez kernels

While the coincident limits of f -tensors were studied based on anti-holomorphic derivatives,

our analysis of their meromorphic counterpart gI1···IrJ(y, z) at z → y relies on monodromies.

With the monodromies (9.9) of the trace components χI1···Ir(y, z) of the Enriquez kernels

at hand, it is straightforward to determine simultaneous monodromies as both of y, z are

moved around the cycle BL, e.g.

χI(y+BL, z+BL) = χI(y, z)− 2πiϖI
L(y) +

(2πi)2

2

(
1− 1

h

)
δILωL(y) (9.31)

χIJ(y+BL, z+BL) = χIJ(y, z) + 2πi
(
δJLχ

I(y, z)− δILχ
J(y, z)−ϖIJ

L(y)
)

+
(2πi)2

2

(
δILϖ

J
L(y)−

1

2
δJLϖ

I
L(y)

)
+

(2πi)3

3!

(
1

h
− 1

)
δIJL ωL(y)

Upon comparison with (9.6), the simultaneous B monodromy χI(y+BL, z+BL) − χI(y, z)

is found to be identical with that of ϖMI
M(y). In the coincident limit z → y, the difference

χI(y, y)−ϖMI
M(y) is therefore a single-valued and holomorphic (1, 0)-form in y which can
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thus be expanded in ωM(y),

χI(y, y) = ϖMI
M(y) + ωM(y)NMI (9.32)

for some y-independent NMI . The restriction of gI1···IrJ(x, y) to meromorphic Kronecker-

Eisenstein kernels at genus one, see (9.4), together with the coincident limits,

lim
y→x

g(r)(x−y) = −Gr , r ≥ 2 (9.33)

implies that the quantity NMI in (9.32) can be viewed as a higher-genus uplift of the quasi-

modular holomorphic Eisenstein series (8.3),

NIJ
∣∣
h=1

= G2 (9.34)

The right side of (9.32) is obtained from the non-meromorphic identity (8.14) through the

formal substitution rule ∂Φ→ ϖ and N̂MI → NMI . However, the coincident limit of χI(y, z)

leading to the left side of (9.32) does not necessitate any analogue of the subtraction in (8.11)

prior to the limit z → y of ∂yGI(y, z). It is tempting to apply the same substitution rules to

the limits z → y of ∂yGI1···Ir(y, z) at higher rank r ≥ 2 in section 8.3. Indeed, substituting

∂Φ → ϖ and N̂MI → NMI into the expression (8.24) for limz→y ∂yGIJ(y, z) completely

captures the monodromy (9.31) of χIJ(y+BL, z+BL) − χIJ(y, z) in the limit z → y: The

first five terms on the right side of

χIJ(y, y) = ϖIMJ
M(y)−ϖJMI

M(y) +ϖMIJ
M(y)

+ϖI
M(y)NMJ −ϖJ

M(y)NMI + ωM(y)NMIJ (9.35)

fully capture the monodromies of the left side in y, which introduces yet another y-independent

meromorphic function NMIJ in the last term. The matching of the monodromies on both

sides relies on the symmetry NIM = NMI of the meromorphic functions in (9.32) which we

shall justify in the discussion below (9.40).

More generally, we expect the following meromorphic analogue of the z → y limit (8.32)

of ∂yGI1···Ir(y, z):

Conjecture 9.8 The coincident limits of the δJK trace components χI1···Ir(y, z) of the En-

riquez kernels gI1···IrJK(y, z) in (9.5) with r ≥ 1 are given by,

χI1···Ir(y, y) = ωM(y)NMI1I2···Ir +ϖMI1···Ir
M(y) (9.36)

+
r∑

1≤p≤q
(p,q)̸=(1,r)

(−1)r−q
[
ϖI1I2···Ip−1�IrIr−1···Iq+1

M(y)NMIpIp+1···Iq

+ϖ(I1I2···Ip−1�IrIr−1···Iq+1)MIpIp+1···Iq
M(y)

]
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provided that the meromorphic y-independent quantities N obey cyclic symmetry,

NI1I2···Ir = NI2···IrI1 (9.37)

Assuming the cyclic symmetries (9.37) at lower rank, we have verified (9.36) by comparing

monodromies on both sides up to and including rank four. In case the cyclic symmetry in

(9.37) fails at some ranks r ≥ 3, then the right side of (9.36) needs to be augmented by

counterterms involving at least one factor of NI1I2···Is−NI2···IsI1 in each term to match the B

monodromies. By the restriction (9.7) of the components ϖ and χ of the Enriquez kernels

to genus one and their coincident limits (9.33), we recover holomorphic Eisenstein series of

modular weight r ≥ 3 from the genus-one instance of (9.35) and (9.36),

NI1I2···Ir
∣∣
h=1

= Gr (9.38)

We leave it as two important open problems to find A-cycle-integral or theta-function rep-

resentations for NI1I2···Ir and to determine their modular properties.

Note that the cyclic symmetry (9.37) of the meromorphic quantities NI1I2···Ir is expected

to extend to the full dihedral group:

Conjecture 9.9 The meromorphic quantities NI1I2···Ir with r ≥ 2 exhibit alternating parity

under reflection I1I2 · · · Ir → Ir · · · I2I1 of their indices:

NI1I2···Ir = (−1)rNIr···I2I1 (9.39)

9.4.2 Coincident limits of meromorphic Fay identities at weight two

With the above candidate expressions for the limits z → y of χI1···Ir(y, z), we shall now

spell out the coincident limits of the conjectural meromorphic Fay identities of section 9.3.

In the same way as the pole ∂xG(x, y) = (y−x)−1 + reg in non-meromorphic Fay identities

introduced y-derivatives of f I1···Ir
J(x, y) into their coincident limits of section 8.4, the simple

pole χ(x, y) = (y−x)−1 + reg gives rise to contributions ∂yg
I1···Ir

J(x, y) to the subsequent

formulas. As an additional simplifying feature of the meromorphic setting, one does not

encounter any analogues of the Abelian integrals in (8.9) or the terms ∼ (z̄−ȳ) in (C.56)

which compensate for the ill-defined z → y limit of ∂yGI(y, z).
The simplest example is the z → y limit of the meromorphic Fay identity (9.24). Using

the coincident limit (9.32) of χI(y, z), we obtain

0 = χ(x, y)χ(y, x)− ∂yχ(x, y) + χ2(x, y) (9.40)

−NIJωI(y)ωJ(x)− ωI(y)χ
I(x, y)− ωI(x)ϖ

MI
M(y)

as a meromorphic analogue of (8.17) with χ2 given by (9.25). By integrating x and y over

the AP and AQ cycles, one can deduce the symmetry property NIJ = NJI from (9.40):
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• χ(x, y)χ(y, x) and χ2(x, y) are symmetric under x ↔ y by inspection, and so is

∂yχ(x, y) = ∂xχ(y, x) by the swapping identity in Theorem 9.4 at rank r = 0; hence,

the respective A-periods
∮
AP dx

∮
AQ dy of χ2(x, y) and the non-singular combination

χ(x, y)χ(y, x)− ∂yχ(x, y) are symmetric under P ↔ Q;

• the last two terms −ωI(y)χ
I(x, y) − ωI(x)ϖ

MI
M(y) are also symmetric under x ↔ y

by the corollary ωM(x)gIMI(y, x) = ωM(y)gIMI(x, y) of the interchange identity (9.15)

and therefore have a P ↔ Q symmetric integral against
∮
AP dx

∮
AQ dy;

By virtue of these observations, the computation of NQP =
∮
AP dx

∮
AQ dyNIJωI(y)ωJ(x)

from (9.40) yields a symmetric function under P ↔ Q as was used in the matching of B

monodromies in (9.35).

The scalar coincident Fay identity (9.40) and the traceless two-tensor identity (9.26) can

be combined to the following meromorphic counterpart of (8.18)

gIJ(x, y)g
J
K(y, x) = δIK∂yχ(x, y)− ωJ(y)g

I�J
K(x, y)− ωJ(x)g

JI
K(y, y) (9.41)

which also follows from the z → y limit of (9.23).

9.4.3 Coincident limits of meromorphic Fay identities at arbitrary weight

At higher weight, we shall use the compact notation,

X I1···Ir
J(y) =


gI1···IrJ(y, y) : r ≥ 2

ϖI1
J(y) : r = 1

ωJ(y) : r = 0

(9.42)

analogous to (8.38). The trace part of gI1···IrJ(y, y) = ϖI1···Ir
J(y) − δIrJ χI1···Ir−1(y, y) is pro-

posed to admit the further decomposition via (9.36), though the conjectures in this section

would not be affected by tentative counterterms in (9.36) involving NI1I2···Is−NI2···IsI1 . In

the notation of (9.42), the meromorphic coincident Fay identity at arbitrary weight (which

is conjectural since the underlying three-point Fay identities (9.28) are) takes the form,

Conjecture 9.10 The contracted product g
−→
I
J(x, y) g

−→
P J

K(y, x) may be x-reduced as follows,

g
−→
I
J(x, y) g

−→
P J

K(y, x) = g
−→
I
J(x, y)X

−→
P J

K(y) + (−)sδIrK∂yχ
←−
P � I1···Ir−1(x, y)

−
r∑

k=0

s∑
ℓ=0

(−)ℓ−sgPs···Pℓ+1�I1···Ik
J(x, y)X P1···PℓJIk+1···Ir

K(y)

−
s∑

ℓ=0

(−)ℓ−sX P1···Pℓ
J(y) g

Ps···Pℓ+1J �
−→
I
K(x, y) (9.43)
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This contracted version of the meromorphic coincident Fay identity can be uplifted to an

uncontracted version through the meromorphic analogue of (8.41):

g
−→
I
K(x, y)g

−→
P Q

L(y, x) = δQL g
−→
I
J(x, y)g

−→
P J

K(y, x) (9.44)

+ g
−→
I
K(x, y)g

−→
P Q

L(y, a)− δQL g
−→
I
J(x, y)g

−→
P J

K(y, a)

with an arbitrary point a on the universal cover of Σ. For the single-valued analogue of

the coincident Fay identities (9.43) in Theorem 8.3, the steps in Appendix C.6 lead to the

reformulation in Theorem 8.4. By adapting the computations of Appendix C.6 to f I1···Ir
J →

gI1···IrJ , the meromorphic coincident Fay identities (9.43) can be shown to admit the following

alternative form:

Conjecture 9.11 The product g
−→
I
J(x, y) g

−→
P J

K(y, x) may be alternatively x-reduced via,

g
−→
I
J(x, y)g

−→
P J

K(y, x) = −(−1)sωJ(y)g
−→
I �
←−
P J

K(x, y) + (−1)sδIrK∂yχ
I1···Ir−1�

←−
P (x, y) (9.45)

−
r−1∑
k=0

s∑
ℓ=0

(−1)s−ℓgI1···Ik�Ps···Pℓ+1
J(x, y)g

P1···PℓJIk+1···Ir
K(y, y)

−
s∑

ℓ=1

(−1)s−ℓ
[
gP1···Pℓ

J(y, aℓ)g
Ps···Pℓ+1J�

−→
I
K(x, y)− gP1···Pℓ−1J

K(y, aℓ)g
Ps···Pℓ�

−→
I
J(x, y)

]
with arbitrary points a1, · · · , as on the universal cover of Σ.

In comparison to the non-meromorphic analogue (8.42) of (9.45), the coincident limit

gJIrK(y, y) in the (k, ℓ) = (r−1, 0) term of the second line is by itself well-defined and there

is no need to sidestep the ill-defined z → y limit of fJIr
K(y, z) via ∂yΦ

JIr
K(y)− δIrKCJ(y).

9.5 Change of fibration basis for meromorphic polylogarithms

This section aims to provide an introduction to the implications of our identities among

Enriquez kernels for the corresponding iterated integrals. We shall focus on the meromorphic

polylogarithms introduced in section 5.6 of [38] for hyperelliptic Σ and extended here to

arbitrary Riemann surfaces of genus h,

Γ̃
( −→

I1
−→
I2 ···

−→
Iℓ

J1 J2 ··· Jℓ
p1 p2 ··· pℓ

; x, y
)
=

∫ x

y

dt g
−→
I1

J1(t, p1) Γ̃
( −→

I2 ···
−→
Iℓ

J2 ··· Jℓ
p2 ··· pℓ

; t, y
)
, Γ̃

( ∅
∅
∅
; x, y

)
= 1 (9.46)

This relation provides a definition of the polylogarithms, recursively in the length ℓ ≥ 0,

and in the number of points p1, · · · , pℓ, as we shall now explain. For multi-indices
−→
I1,−→

I2, · · · ,
−→
I ℓ involving n1, n2, · · · , nℓ ≥ 0 letters, the specialization of (9.46) to genus one
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exactly matches18 the formulation of elliptic polylogarithms via g(ni)-kernels [22] once the

lower endpoint y of the integration path of is fixed to the origin of the universal cover of the

torus,

Γ̃
( −→

I1
−→
I2 ···

−→
Iℓ

J1 J2 ··· Jℓ
p1 p2 ··· pℓ

; x, y
) ∣∣∣

h=1
y=0

= Γ̃
(
n1 n2 ··· nℓ
p1 p2 ··· pℓ ; x

)
(9.47)

As is familiar from the elliptic polylogarithm Γ̃
(
1
a ; x

)
with a = 0 and a = x [21, 24], the

integral Γ̃
(

I
J
p
; x, y

)
over the singular integration kernel gIJ(t, p) =

δIJ
t−p+reg exhibits endpoint

divergences if p = x or p = y which require regularization, for instance via tangential base

points [79, 73, 2]. At higher length ℓ ≥ 2, the meromorphic higher-genus polylogarithms

(9.46) are taken to be shuffle-regularized such that the treatment of endpoint divergences is

determined by the regularization prescription for Γ̃
(

I
J
p
; x, y

)
.

Empty multi-indices
−→
Ik = ∅ in (9.46) refer to integration kernels ωJk(t) which do

not depend on pk, and we shall then omit the third row of the respective column as in

Γ̃
(
··· ∅ ···
··· Jk ······ ···

; x, y
)
. If all the multi-indices

−→
Ik are empty, the polylogarithms (9.46) reduce to

iterated Abelian integrals ΓJ1···Jr(x, y) obtained from the special case (7.7) of the generically

non-meromorphic polylogarithms Γ(w; x, y; p) of [37] for words w in letters aJk only,

Γ̃
(
∅ ∅ ··· ∅
J1 J2 ··· Jℓ···

; x, y
)
= Γ(aJ1aJ2 · · · aJℓ ; x, y; p) = ΓJ1···Jℓ(x, y) (9.48)

The dependence of (9.46) on the points pk is concentrated in the traces with respect to Jk
with the rightmost index of

−→
Ik, and the relation χI1···Is(t, p) = − 1

h
gI1···IsKK(t, p) propagates

as follows to the polylogarithms in (9.46),∫ x

y

dt χ
−→
I1(t, p1) Γ̃

( −→
I2 ···

−→
Iℓ

J2 ··· Jℓ
p2 ··· pℓ

; t, y
)
= −1

h
Γ̃
( −→

I1K
−→
I2 ···

−→
Iℓ

K J2 ··· Jℓ
p1 p2 ··· pℓ

; x, y
)

(9.49)

By the meromorphicity of the Enriquez kernels, the polylogarithms in (9.46) are meromor-

phic in all points x, y, p1, · · · , pℓ in the universal cover of Σ and in the moduli of the surface.

Accordingly, total differentials reduce to the components involving the holomorphic deriva-

tive, and one for instance simplifies dξ to dξ∂ξ in,

Γ̃
( −→

I1 ···
−→
Ik ···

−→
Iℓ

J1 ··· Jk ··· Jℓ
p1 ··· pk ··· pℓ

; x, y
)
= Γ̃

( −→
I1 ···

−→
Ik ···

−→
Iℓ

J1 ··· Jk ··· Jℓ
p1 ··· q ··· pℓ

; x, y
)
+

∫ pk

q

dξ ∂ξΓ̃
( −→

I1 ···
−→
Ik ···

−→
Iℓ

J1 ··· Jk ··· Jℓ
p1 ··· ξ ··· pℓ

; x, y
)

(9.50)

In the remainder of this section, we shall combine (9.50) with the meromorphic interchange

and Fay identities of sections 9.2 and 9.3 to perform changes of fibration bases for the

18We depart from the normalization conventions in section 5.6 of [38] by powers of −2πi due to the relative
factors in (9.1) between the integration kernels gI1···IrJ(x, y) in (9.46) and the ωI1···Ir

J(x, y) employed in the
hyperelliptic polylogarithms in the reference.
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meromorphic higher-genus polylogarithms of (9.46). The existence of the change-of-fibration-

basis identities is essential for the closure of (9.46) under integration as detailed in the

case of non-meromorphic higher-genus polylogarithms in early section 7. The explicit form

of these identities to be derived below from (9.50) at low length ℓ ≤ 2 is valuable for

applications to Feynman integrals, string amplitudes or other situations in physics. The key

ideas of the subsequent examples straightforwardly apply to higher length ℓ and allow us to

algorithmicially (in fact recursively in ℓ) relegate the dependence of (9.46) on an arbitrary

point pk solely to the endpoint of the integration path as seen in (9.50).

9.5.1 Length one

At length one, the opening line (9.50) leads us to the following change of fibration basis,

Γ̃
(

I1···Ir
J
p

; x, y
)
− Γ̃

(
I1···Ir

J
q

; x, y
)
=

∫ p

q

dξ

∫ x

y

dt ∂ξg
I1···Ir

J(t, ξ)

= −δIrJ
∫ p

q

dξ

∫ x

y

dt ∂ξχ
I1···Ir−1(t, ξ)

= (−)rδIrJ
∫ p

q

dξ

∫ x

y

dt ∂tχ
Ir−1···I1(ξ, t)

= (−)rδIrJ
∫ p

q

dξ
(
χIr−1···I1(ξ, x)− χIr−1···I1(ξ, y)

)
=

1

h
(−)rδIrJ

{
Γ̃
(

Ir−1···I1K
K
y

; p, q
)
− Γ̃

(
Ir−1···I1K

K
x

; p, q
)}

(9.51)

From the first line to the second, we have used the fact that ∂ξg
I1···Ir

J(t, ξ) is proportional

to δIrJ and in going to the third line we have applied the swapping identity in Theorem 9.4.

The integrals over ξ in the fourth line were lined up with the polylogarithms Γ̃ in the last

line by means of the integration identity (9.49) for the trace components χP1···Ps(x, y) of the

Enriquez kernels.

One could have also carried out the change of fibration basis without isolating the ξ-

dependence of ∂ξg
I1···Ir

J(t, ξ) through the trace decomposition (9.5). With the alternative

representation (9.22) of the swapping identity, one arrives at,

Γ̃
(

I1···Ir
J
p

; x, y
)
− Γ̃

(
I1···Ir

J
q

; x, y
)
= (−)r

{
Γ̃
(

Ir−1···I1Ir
J
y

; p, q
)
− Γ̃

(
Ir−1···I1Ir

J
x

; p, q
)}

(9.52)

Equivalence to the earlier form (9.51) of the change of fibration basis at length one follows

from the fact that the traceless part of Γ̃
(

Ir−1···I1Ir
J
y

; p, q
)
is independent on y. Note that the
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specialization of (9.52) to genus one and y = q = 0 reproduces the well-known identity among

elliptic polylogarithms (see section 2.2.2 of [21] for derivations of closely related identities),

Γ̃
(
r
p ; x

)
− Γ̃

(
r
0 ; x

)
= (−)r

{
Γ̃
(
r
0 ; p

)
− Γ̃

(
r
x ; p

)}
(9.53)

9.5.2 Length two

The key steps in the length-one computation of (9.51) generalize to carrying out the change of

fibration bases in higher-genus polylogarithms of arbitrary length ℓ ≥ 2. We shall explicitly

present the case of length ℓ = 2 with multi-indices
−→
I = I1 · · · Ir,

−→
P = P1 · · ·Ps and its

reflection
←−
P = Ps · · ·P1, again starting from (9.50),

Γ̃
( −→

I
←−
P M

K R
z p

; x, y
)
− Γ̃

( −→
I
←−
P M

K R
z q

; x, y
)
=

∫ p

q

dξ

∫ x

y

dt1 g
−→
I
K(t1, z)

∫ t1

y

dt2 ∂ξg
←−
P M

R(t2, ξ)

= (−)s
∫ p

q

dξ

∫ x

y

dt1 g
−→
I
K(t1, z)

(
g
−→
P M

R(ξ, t1)− g
−→
P M

R(ξ, y)
)

= (−)sδMR
∫ p

q

dξ

∫ x

y

dt1 g
−→
I
J(t1, z)

(
g
−→
P J

K(ξ, t1)− g
−→
P J

K(ξ, y)
)

= (−)sδMR
{∫ p

q

dξ

∫ x

y

dt g
−→
I
J(t, z)g

−→
P J

K(ξ, t)− Γ̃
( −→

I
J
z
; x, y

)
Γ̃
( −→

P J
K
y
; p, q

)}
(9.54)

We have applied the swapping identity ∂ξg
←−
P M

R(t2, ξ) = (−)s∂t2g
−→
P M

R(ξ, t2) in passing to the

second line and then used a relabeling of the trace-decomposition identity (9.30) to introduce

contracted indices J in the integrand. In this way, the bilinear g
−→
I
J(t, z)g

−→
P J

K(ξ, t) in the

last line is amenable to the uncontracted Fay identity in Conjecture 9.7.

Since the goal of this section is to arrive at a fibration basis with all the p-dependence in

the integration limit, it is essential to perform the integration over t prior to that over ξ. This

is accomplished by t-reducing the last line of (9.54) via (9.28) and expressing the t-integrals

in terms of polylogarithms,

Γ̃
( −→

I
←−
P M

K R
z p

; x, y
)
− Γ̃

( −→
I
←−
P M

K R
z q

; x, y
)
= δMR

{
(−)sΓ̃

( −→
I
J
z
; x, y

)[
Γ̃
( −→

P J
K
z
; p, q

)
− Γ̃

( −→
P J
K
y
; p, q

)]
−

s∑
ℓ=0

(−)ℓ
r∑

k=0

∫ p

q

dξ gP1···PℓJIk+1···Ir
K(ξ, z)Γ̃

( Ps···Pℓ+1�I1···Ik
J
ξ

; x, y
)

−
s∑

ℓ=0

(−)ℓ
[ ∫ p

q

dξ gP1···Pℓ
J(ξ, z)Γ̃

(
(Ps···Pℓ+1�

−→
I )J

K
ξ

; x, y
)

+ Γ̃
(

P1···Pℓ
J
z

; p, q
)
Γ̃
(

(Ps···Pℓ+1J�I1···Ir+1)Ir
K
z

; x, y
)]}

(9.55)
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In order to express the leftover integrals over ξ in terms of Γ̃(· · · ; p, q) in the aspired fibration

basis, it remains to apply the length-one identity (9.52) to rewrite both Γ̃
( Ps···Pℓ+1�I1···Ik

J
ξ

; x, y
)

and Γ̃
(

(Ps···Pℓ+1�
−→
I )J

K
ξ

; x, y
)
in the fibration basis of Γ̃(· · · ; ξ, q). With the recursion (6.5) for

the shuffle product, the leftover ξ-integrals take the form,∫ p

q

dξ gP1···PℓJIk+1···Ir
K(ξ, z)Γ̃

( Ps···Pℓ+1�I1···Ik
J
ξ

; x, y
)

(9.56)

= Γ̃
(

Ps···Pℓ+1�I1···Ik
J
q

; x, y
)
Γ̃
(

P1···PℓJIk+1···Ir
K
z

; p, q
)

+ (−)k+s−ℓ
{
Γ̃
(

P1···PℓJIk+1···Ir (Pℓ+2···Ps�Ik···I1)Pℓ+1

K J
z y

; p, q
)
− (x↔ y)

}
+ (−)k+s−ℓ

{
Γ̃
(

P1···PℓJIk+1···Ir (Pℓ+1···Ps�Ik−1···I1)Ik
K J
z y

; p, q
)
− (x↔ y)

}
as well as∫ p

q

dξ gP1···Pℓ
J(ξ, z)Γ̃

(
(Ps···Pℓ+1�

−→
I )J

K
ξ

; x, y
)
= Γ̃

(
(Ps···Pℓ+1�

−→
I )J

K
q

; x, y
)
Γ̃
(

P1···Pℓ
J
z

; p, q
)

+ (−)s−ℓ+r+1

{
Γ̃
(

P1···Pℓ (Pℓ+1···Ps�
←−
I )J

J K
z y

; p, q
)
− (x↔ y)

}
(9.57)

The above computations express a generic length-two polylogarithm Γ̃
( −→

I1
−→
I2

J1 J2
p1 p2

; x, y
)
in the

fibration basis of Γ̃(· · · ; p2, q). The alternative fibration basis of Γ̃(· · · ; p1, q) can be readily

attained by employing the shuffle product,

Γ̃
( −→

I1
−→
I2

J1 J2
p1 p2

; x, y
)
= Γ̃

( −→
I1
J1
p1
; x, y

)
Γ̃
( −→

I2
J2
p2
; x, y

)
− Γ̃

( −→
I2
−→
I1

J2 J1
p2 p1

; x, y
)

(9.58)

and applying relabelings of the changes of fibration bases (9.52) and (9.55) at length ℓ = 1

and ℓ = 2 to the p1-dependence on the right side.

9.5.3 Arbitrary length

Similar to the non-meromorphic change-of-fibration-basis identities in sections 7.2 and 7.3,

our method (9.50) to change fibration bases of meromorphic polylogarithms is recursive in

their length. The use of swapping identities and meromorphic Fay identities in the ℓ = 2

computations of (9.54) and (9.55) generalizes to arbitrary length ℓ and necessitates change-

of-fibration-basis identities at length ≤ ℓ−1 to perform the ξ-integral on the right side of

(9.50). For instance, Γ̃
( −→

I1 ···
−→
Iℓ

J1 ··· Jℓ
p1 ··· pℓ

; x, y
)
can be brought into the fibration basis of Γ̃(· · · ; pℓ, q)

as follows:
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• straightforwardly adapt the steps of (9.54) to perform the innermost integral, resulting

in contributions of the form g
−→
Iℓ−1

J(tℓ−1, pℓ−1)g
−→
P J

K(ξ, tℓ−1) to the leftover integrand;

• tℓ−1-reduce this bilinear and integrate the outcome of Fay identities over t1, · · · , tℓ−1 in

terms of Γ̃
( −→

I1 ···
−→
Iℓ−2

−→
K

J1 ··· Jℓ−2 L
p1 ··· pℓ−2 pℓ−1

; x, y
)
and Γ̃

( −→
I1 ···

−→
Iℓ−2

−→
K

J1 ··· Jℓ−2 L
p1 ··· pℓ−2 ξ

; x, y
)
of length ℓ−1 as in (9.55);

• assuming that change-of-fibration-basis identities at length ℓ−1 are available, express

all the Γ̃
( −→

I1 ···
−→
Iℓ−2

−→
K

J1 ··· Jℓ−2 L
p1 ··· pℓ−2 ξ

; x, y
)
of the previous step in the fibration basis of Γ̃(· · · ; ξ, q) to

perform the ξ-integral as in (9.56) and (9.57).

The rewriting of Γ̃
( −→

I1 ···
−→
Ik ···

−→
Iℓ

J1 ··· Jk ··· Jℓ
p1 ··· pk ··· pℓ

; x, y
)
at arbitrary k ≤ ℓ in the fibration basis of Γ̃(· · · ; pℓ, q)

can be reduced to the previous case of k = ℓ by moving the column of pk to the rightmost

position via shuffle identities similar to (9.58) and importing relations at lower length.
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10 Conclusions and further directions

As the main result of this work, we have generalized the Fay identities among the Kronecker-

Eisenstein integration kernels in the elliptic polylogarithms of Brown and Levin [19] to

compact Riemann surfaces of arbitrary genus. Our higher-genus Fay identities are bilin-

ear relations among the single-valued tensorial integration kernels f I1···Ir
J(x, y) that furnish

the backbone of the flat connection used to generate the polylogarithms in [37]. Bilinears

of the schematic form f(y, z)f(x, z) and f(x, z)f(y, x) with arbitrary collections of ten-

sor indices are rewritten in (6.11) and (6.15) without repeated appearance of the points z

and x, respectively. These Fay identities among single-valued but non-meromorphic kernels

f I1···Ir
J(x, y) are proposed to apply in identical form to the meromorphic but multi-valued

kernels gI1···IrJ(x, y) introduced by Enriquez [33].

Already at genus one, Fay identities among Kronecker-Eisenstein kernels are crucial to

demonstrate the closure of elliptic polylogarithms under taking primitives [19] and to develop

concrete integration algorithms [21]. Similarly, the higher-genus Fay identities in this work

are essential to change fibration bases and to determine primitives of the polylogarithms

in [37] when they are multiplied by more than one f -tensor, i.e. necessary conditions for

closure under integration. In fact, Fay identities involving three points on the surface suffice

to integrate products of f I1···Ir
J(x, y) kernels involving an arbitrary number of points (as

is familiar from genus one). By the meromorphic Fay identities in this work, the same

algorithms and arguments for closure under integration apply to iterated integrals of the

multi-valued Enriquez kernels gI1···IrJ(x, y) including the hyperelliptic polylogarithms of [38].

The coincident limit of the single-valued Fay identities introduces modular tensors N̂I1···Ir

of all ranks r ≥ 2 that do not depend on marked points and reduce to (almost) holomorphic

Eisenstein series upon specialization to genus one. By analogy with the role of coincident

Fay identities at genus one for the differential equations [85] of modular graph forms [30, 31],

the modular tensors N̂I1···Ir are expected to govern the differential relations among modular

graph tensors at arbitrary genus [52]. Our coincident Fay identities among Enriquez kernels

similarly relate the y → x limit of gI1···IrJ(x, y) to certain meromorphic functions on Torelli

space that should prominently feature in the differential structure of higher-genus analogues

of elliptic multiple zeta values [27].

In applications to string scattering amplitudes, the Fay identities in this work will be a

driving force for bootstrap approaches to their moduli-space integrand and the integrations

over the moduli in the low-energy expansion. This can for instance be anticipated from the

simplifications of fermionic correlation functions – cyclic products of so-called Szegö kernels

– in terms of f -tensors [47]. Our Fay identities will facilitate the identification of simplifying

amplitude structures from the conspiracy of these fermionic correlators with bosonic ones.
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A The prime form and the Arakelov Green function

The purpose of this appendix is to collect some basic results on ϑ-functions, the prime form,

the Arakelov Green function, and some aspects of their relation with string amplitudes. For

a more detailed and systematic exposition, we refer to [7, 89].

The Siegel upper half space of rank h is the set of h×h symmetric matrices with complex

entries and positive definite imaginary part,

Hh =
{
Ω ∈ Ch×h such that Ωt = Ω, Im (Ω) > 0

}
(A.1)

The space Hh may also be given as the Kähler coset Hh = Sp(2h,R)/U(h) where Sp(2h,R)
is the group of matrices M ∈ Sp(2h,R) defined by,

M =

(
A B
C D

)
, M tJM = J , J =

(
0 −I
I 0

)
(A.2)

and A,B,C,D are real h× h matrices. The space H1 is the Poincaré upper half plane.

Riemann ϑ-functions are holomorphic functions of (ζ,Ω) ∈ Ch × Hh that may be aug-

mented by characteristics δ = [δ′, δ′′] with δ′, δ′′ ∈ Ch, and are defined as follows,

ϑ[δ](ζ|Ω) =
∑
n∈Zh

exp
(
iπ(n+ δ′)tΩ(n+ δ′) + 2πi(n+ δ′)t(ζ + δ′′)

)
(A.3)

Half-integer characteristics δ′, δ′′ ∈ (Z/2Z)h are either even or odd depending on whether

the integer 4(δ′)tδ′′ is even or odd or, equivalently, whether ϑ[δ](ζ|Ω) is even or odd in ζ.

The homology group H1(Σ,Z) of a compact Riemann surface Σ (which is connected

by definition) of genus h is isomorphic to Z2h and may be generated by a canonical ho-

mology basis of cycles AI and BJ with intersection pairing J(AI ,AJ) = J(BI ,BJ) = 0

and J(AI ,BJ) = δIJ where I, J = 1, · · · , h. The dual cohomology group H1(Σ,Z) may be

generated by h holomorphic Abelian differentials ωJ which are canonically normalized on

AI-cycles as in (3.1). The modular group Sp(2h,Z) transforms a canonical homology basis

into a canonical homology basis. Its transformation laws were summarized in section 3.1.

The period matrix Ω of a Riemann surface Σ of genus h, defined in (3.1), is an element

of the corresponding Siegel upper half space Hh for all genera h. However, the converse does

not hold globally for genus h ≥ 2 and does not hold even locally for genus h ≥ 4 where it

gives rise to the Schottky problem. The subspace of Hh whose elements correspond to the

period matrix of a compact Riemann surface is referred to as Torelli space and denoted Th.
Equivalently, one may define Th as the moduli space of Riemann surfaces of genus h endowed

with a choice of canonical homology basis.
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A.1 The prime form

For any odd half-integer characteristics ν, one defines a holomorphic (1, 0) form,

ων(x) = ωI(x) ∂
Iϑ[ν](0|Ω) , ∂Iϑ[ν](0|Ω) = ∂

∂ζI
ϑ[ν](ζ|Ω)

∣∣∣
ζ=0

(A.4)

whose 2(h−1) zeros are all double zeros as a consequence of the Riemann vanishing theorem.

As a result, its square root hν(x) is a holomorphic (1
2
, 0) form on Σ, namely it is a spinor

with spin structure ν. The prime form is defined as follows,

E(x, y) =
ϑ[ν](ζ|Ω)
hν(x)hν(y)

, ζI =

∫ x

y

ωI (A.5)

The prime form E(x, y) is a holomorphic (−1
2
, 0) form in x and y, and is independent of

the choice of ν. While its A monodromy is given by a factor of ±1, its B monodromy is

non-trivial and renders E(x, y) multiple-valued on Σ. Meromorphic Abelian differentials of

the second and third kind, given by,

∂x∂y lnE(x, y) , ∂x ln
E(x, u)

E(x, v)
(A.6)

respectively, are single-valued (1, 0) forms in x and y, but the latter is multiple-valued in u, v.

For local complex coordinates x, y parametrizing nearby points, the prime form satisfies,

E(x, y) = x− y +O
(
(x− y)3

)
(A.7)

and vanishes nowhere else on Σ. Therefore E(x, y) plays the role of a local difference function

between points on a Riemann surface of arbitrary genus. As a result, we have,

∂x̄ ∂x ln
E(x, y)

E(x, z)
= πδ(x, y)− πδ(x, z) (A.8)

The Riemann-Roch theorem precludes the existence of a single-valued meromorphic (1, 0)

form with only a single simple pole on a compact Riemann surface Σ, a fact familiar from

electrostatics that one cannot place a single charge on a compact manifold.

A.2 The Arakelov Green function

The Arakelov Green function G(x, y) is a single-valued scalar Green function of x, y ∈ Σ,

which is symmetric G(y, x) = G(x, y) and is defined by the following equations,

∂x̄∂xG(x, y) = −πδ(x, y) + πκ(x) ,

∫
Σ

d2xκ(x)G(x, y) = 0 (A.9)
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Here, κ(x) is the pull-back to Σ of the translation-invariant Kähler form on the Jacobian

variety J(Σ) = Ch/(Zh + ΩZh), and is given in terms of the Abelian differentials ωI by,

κ(x) =
1

h
ωI(x)ω̄

I(x) ,

∫
Σ

d2xκ(x) = 1 (A.10)

As a result, κ is a modular invariant and conformally invariant volume form on Σ. Since the

defining equations for the Arakelov Green function in (A.9) are modular and conformally

invariant, so is their unique solution G(x, y).
An explicit construction of G(x, y) may be given in terms of the so-called string Green

function G(x, y) = G(y, x) defined by,

G(x, y) = − log |E(x, y)|2 + 2π

(
Im

∫ x

y

ωI

)(
Im

∫ x

y

ωI

)
(A.11)

While the second term on the right side transforms as a scalar in x, y, the first term does

not as it involves the logarithm of a differential form of non-zero weight. As a result, G(x, y)

transforms non-trivially under conformal transformations x→ x′, y → y′,

G′(x′, y′) = G(x, y) + u(x) + u(y) (A.12)

for some function u(x) which depends on x and the conformal transformation x → x′. To

properly define G(x, y) and relate it to G(x, y), we choose a (simply connected) fundamental

domain Σf for the Riemann surface Σ, in terms of which the Arakelov Green function may

be obtained by,

G(x, y) = G(x, y)− γ(x)− γ(y) + γ0 (A.13)

where γ(x) and γ0 are given by,

γ(x) =

∫
Σf

d2y κ(y)G(x, y) , γ0 =

∫
Σf

d2xκ(x)γ(x) (A.14)

The Arakelov Green function, so obtained, is properly modular and conformally invariant.

90



B Vanishing cyclic forms V (w)
I at arbitrary genus

In this appendix, we propose a recursive construction of single-valued and holomorphic (1, 0)-

forms V(w)
I in w+1 points x1, · · · , xw+1 on a higher-genus surface Σ which

1. are cyclically symmetric under xi → xi+1 with xw+2 = x1;

2. share the pole structure of the rational function (2.5) of r = w+1 points on the sphere;

3. generalize the vanishing elliptic Vw(1, · · · , w+1) functions of (2.12) to arbitrary genus;

4. generalize the vanishing V(2)
I (x1, x2, x3) function in (6.3) to higher multiplicity;

5. are solely expressed in terms of f -tensors and holomorphic Abelian differentials;

6. integrate to zero against
∏w+1

j=1

∫
Σ
d2xj ω̄

Kj(j) and thus vanish by the earlier properties.

By the cyclic invariance of V(w)
I (1, 2, · · · , w+1) = V(w)

I (x1, x2, · · · , xw+1), one can fully char-

acterize the subsequent construction of the aspired V(w)
I functions through those terms where

the free vector index I is carried by (1, 0)-forms f
−→
P

I(1, a) or ωI(1) in x1 as opposed to xj ̸=1.

Imposing the V(w)
I functions to reproduce the vanishing elliptic Vw(1, · · · , w+1) functions

(2.12) upon restriction to genus one admits the two choices a = 2 and a = w+1 for the

second point of the characterizing f
−→
P

I(1, a) factors.

B.1 Examples at low weights

In fact, the construction of vanishing V(w)
I functions for all values w ≤ 5 – and conjecturally

for all higher w ≥ 6 – succeeds with two additional simplifying features

• there are no factors of ωI(1) carrying the free vector index of V(w)
I (1, 2, . . . , w+1), so

that the free index I is always carried by a factor of f
−→
P

I(1, a) for
−→
P ̸= ∅;

• all factors of f
−→
P

I(1, a) in V(w)
I (1, 2, . . . , w+1) have a = 2 and not a = w+1

which are illustrated by the following examples:

V(1)
I (1, 2) = ωJ(2)f

J
I(1, 2) + cycl(1, 2) (B.1)

V(2)
I (1, 2, 3) = ωJ(2)ωK(3)f

KJ
I(1, 2) + ωJ(2)f

J
K(3, 1)f

K
I(1, 2) + cycl(1, 2, 3)

V(3)
I (1, 2, 3, 4) = ωJ(2)ωK(3)ωL(4)f

LKJ
I(1, 2) + ωJ(2)f

J
K(3, 4)ωL(4)f

LK
I(1, 2)

+ ωL(2)ωJ(3)f
J
K(4, 1)f

KL
I(1, 2) + ωJ(2)f

J
K(3, 4)f

K
L(4, 1)f

L
I(1, 2)

+ ωJ(2)ωK(3)f
KJ

L(4, 1)f
L
I(1, 2) + cycl(1, 2, 3, 4)
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Note that the vanishing of V(1)
I (1, 2) is equivalent to the weight-one interchange identity (5.2),

and that the vanishing of V(2)
I (1, 2, 3) can be verified through the tensorial Fay identity (6.2)

at weight two. One may suspect that the vanishing of the higher-weight V(w)
I in this section

can be deduced from a sequence of three-point Fay identities (6.11) or (6.15), and it would be

interesting to demonstrate this at generic multiplicity. In absence of a direct computation,

we have proven the vanishing of V(3)
I in (B.1) and V(4)

I ,V(5)
I below by checking

• integrating to zero: The expressions for V(w)
I involve no more than w factors of f

−→
P

J(a, b)

without any cycles among the pairs xa, xb. Hence, for each term in V(w)
I , at least one

of the points xc only enters through the (1, 0)-form leg xa = xc of a single f
−→
P

J(a, b)

without any instance of b = c. Such a term is a total derivative of a single-valued

function of xc and thus integrates to zero against
∫
Σ
d2xc ω̄

K(c).

• meromorphicity: The anti-holomorphic derivatives in all points vanish for xj ̸= xi as

has been tested by computer algebra up to and including w = 5.

• absence of poles: The residues of the poles (xj−xj+1)
−1 in V(w)

I are given by the lower-

weight function V(w−1)
I (1, · · · , j, j+2, · · · , w+1). Since the latter satisfies the earlier

vanishing conditions to the weights w ≤ 6 we tested, the absence of poles in V(w)
I is

established by induction in w.

The restriction of our expressions for V(w≤5)
I to genus one via f I1···Ir

J(x, y) → f (r)(x−y)
matches the expansion (2.12) of the vanishing Vw(1, 2, · · · , w+1) functions as one can easily

see from the unit coefficients on both sides.

The representation (B.1) of the cyclic seeds can be lined up with a recursively defined

family of modular tensors,

PI(1, 2) = ωI(1) (B.2)

PI(1, 2, 3) = ωK(1)f
K

I(2, 3) = PK(1, 2)f
K

I(2, 3)

PI(1, 2, 3, 4) = ωK(1)f
K

L(2, 3)f
L
I(3, 4) + ωK(1)ωL(2)f

LK
I(3, 4)

= PL(1, 2, 3)f
L
I(3, 4) + PK(1, 2)PL(2, 3)f

LK
I(3, 4)

PI(1, 2, 3, 4, 5) = PL(1, 2, 3, 4)f
L
I(4, 5) + PK(1, 2)PL(2, 3)PM(3, 4)fMLK

I(4, 5)

+
[
PK(1, 2, 3)PL(3, 4) + PK(1, 2)PL(2, 3, 4)

]
fLK

I(4, 5)

in the sense that,

V(1)
I (1, 2) = PI(2, 1, 2) + cycl(1, 2) (B.3)

V(2)
I (1, 2, 3) = PI(2, 3, 1, 2) + cycl(1, 2, 3)

V(3)
I (1, 2, 3, 4) = PI(2, 3, 4, 1, 2) + cycl(1, 2, 3, 4)
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In the first line of (B.2), we refer to an implicit adjacent leg in the notation ωI(1) = PI(1, 2)

to preserve the weight n−2 of the other PI(1, 2, · · · , n).

B.2 Higher-weight conjectures

We shall next present a conjectural higher-multiplicity generalization of the expressions (B.1)

or (B.3) for V(w≤3)
I by proposing a recursive construction of higher-point tensor functions

PI(a1, a2, · · · , ak) such that,

V(n−1)
I (1, 2, · · · , n) = PI(2, 3, · · · , n, 1, 2) + cycl(1, 2, · · · , n) (B.4)

obeys the properties in the preamble of this appendix. Our proposal for an all-multiplicity

family of PI – in particular the extension of the recursion (B.2) – is most conveniently stated

in the shorthand notation,

P̂I(1, 2, · · · , n) = PI(1, 2, · · · , n, n+1) (B.5)

where the last leg without (1, 0)-form degree is kept implicit.19 The recursion relations (B.2)

then take the more compact form,

P̂I(1) = ωI(1) (B.6)

P̂I(1, 2) = P̂K(1)f
K

I(2, 3)

P̂I(1, 2, 3) = P̂K(1, 2)f
K

I(3, 4) + P̂K(1)P̂L(2)f
LK

I(3, 4)

P̂I(1, 2, 3, 4) = P̂K(1, 2, 3)f
K

I(4, 5) +
[
P̂K(1, 2)P̂L(3) + P̂K(1)P̂L(2, 3)

]
fLK

I(4, 5)

+ P̂K(1)P̂L(2)P̂M(3)fMLK
I(4, 5)

and we shall also spell out the next instance relevant for V(4)
I (1, 2, 3, 4, 5):

P̂I(1, 2, 3, 4, 5) = P̂K(1, 2, 3, 4)f
K

I(5, 6) (B.7)

+
[
P̂K(1, 2, 3)P̂L(4) + P̂K(1, 2)P̂L(3, 4) + P̂K(1)P̂L(2, 3, 4)

]
fLK

I(5, 6)

+
[
P̂K(1, 2)P̂L(3)P̂M(4) + P̂K(1)P̂L(2, 3)P̂M(4) + P̂K(1)P̂L(2)P̂M(3, 4)

]
fMLK

I(5, 6)

+ P̂K(1)P̂L(2)P̂M(3)P̂N(4)f
NMLK

I(5, 6)

We have verified the validity of (B.7) and a similar 16-term expression for P̂I(1, 2, · · · , 6)
to reproduce the functions V(4)

I and V (5)
I with the desired properties via (B.4) and (B.5).

19Given that the last point n+1 in the f
−→
P

I(n, n+1)-tensors entering P̂I(1, 2, · · · , n) is excluded from the
notation on the left side, the P̂I can be thought of as being defined with respect to a cyclic reference ordering
1, 2, . . . , w. As an exceptional property of the n = 1 case, the notation P̂I(1) = ωI(1) reflects all the variables
of this tensor function.
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The pattern exhibited by these low-weight formulas leads us to the following conjecture at

arbitrary multiplicity.

Conjecture B.1 The recursion relation for the seeds P̂I of the cyclic forms V(n−1)
I in the

sense of (B.4) and (B.5) at arbitrary multiplicity is given by,

P̂I(1, 2, · · · , n) =
n−1∑
j=1

∑
A1A2···Aj=N

P̂K1(A1)P̂K2(A2) · · · P̂Kj
(Aj)f

Kj ···K2K1
I(n, n+1) (B.8)

where N stands for the sequence N = 12 · · · (n−1) and the sum over N = A1 · · ·Aj stands

for the sum over all deconcatenations of N into non-empty ordered sets A1, · · · , Aj (see below

for examples). Decomposing the sum over j into its individual terms gives the following more

explicit formula,

P̂I(1, · · · , n) =P̂K(1, · · · , n−1)fK
I(n, n+1) +

∑
AB=N

P̂K1(A)P̂K2(B)fK2K1
I(n, n+1)

+
∑

ABC=N

P̂K1(A)P̂K2(B)P̂K3(C)fK3K2K1
I(n, n+1)

+ · · ·
+ P̂K1(1)P̂K2(2) · · · P̂Kn−1(n−1)fKn−1···K2K1

I(n, n+1) (B.9)

For example, the sum
∑

AB=N runs over all deconcatenations of N = 12 · · · (n−1) into

two disjoint and non-empty ordered sequences A = 12 · · · i and B = (i+1) · · · (n−1) for

i = 1, · · · , n−2, while the sum
∑

ABC=N runs over A = 12 · · · i, B = (i+1) · · · j, and

C = (j+1) · · · (n−1) with 1 ≤ i < j ≤ n−2.

We have verified that the recursive construction (B.4), (B.5) and (B.8) yields vanishing

V(w)
I -functions up to and including w = 5 by the analysis of holomorphicity and vanishing

surface integrals as detailed in section B.1. The validity of the construction at arbitrary

weights w ≥ 6 is expected but conjectural.
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C Proofs of the main lemmas and theorems

In this appendix, we collect the proofs of Lemma 6.1, Lemma 6.4, and Theorems 6.2, 6.3,

8.3, 8.4, 9.2 and 9.4. The lemmas and theorems were stated in the main body of the paper,

but their proofs are too lengthy to be given there in any detail.

C.1 Proof of Lemma 6.1

To prove Lemma 6.1, we proceed as follows. The combination S
−→
I |
−→
P

K(x, y, z) defined in (6.8)

is a (1, 0) form in both x and y and a scalar in z. Following the two steps in section 4.2, we

shall first prove that it is holomorphic in x, y, z so that it must be independent of z, and a

linear combination of ωA(x)ωB(y) with coefficients that are independent of x and y. Then,

by showing that its integral against ω̄A(x)ω̄B(y) vanishes, we establish the Lemma.

To show that S
−→
I |
−→
P

K(x, y, z) is holomorphic in x, y, z, we begin by noticing its symmetry,

S
−→
I |
−→
P

K(x, y, z) = S
−→
P |
−→
I
K(y, x, z) (C.1)

and evaluate its ∂̄ derivatives with respect to x, y, z,

∂x̄S
−→
I |
−→
P

K(x, y, z) = −πω̄I1(x)SI2···Ir|
−→
P

K(x, y, z) r ≥ 1

∂ȳS
−→
I |
−→
P

K(x, y, z) = −πω̄P1(y)S
−→
I |P2···Ps

K(x, y, z) s ≥ 1

∂z̄S
−→
I |
−→
P

K(x, y, z) = π ω̄J(z)SI1···Ir−1|P
J(x, y, z) δ

Ir
K

+ π ω̄J(z)S
−→
I |P1···Ps−1

J(x, y, z) δ
Ps
K r, s ≥ 1 (C.2)

When r = 0, the corresponding equations become,

∂x̄S∅|
−→
P

K(x, y, z) = 0

∂ȳS∅|
−→
P

K(x, y, z) = −π ω̄P1(y)S∅|P2···Ps
K(x, y, z) s ≥ 1

∂z̄S∅|
−→
P

K(x, y, z) = π ω̄J(z)S∅|P1···Ps−1
J(x, y, z) δ

Ps
K s ≥ 1 (C.3)

while for s = 0 we have,

∂x̄S
−→
I |∅

K(x, y, z) = −π ω̄I1(x)SI2···Ir|∅
K(x, y, z) r ≥ 1

∂ȳS
−→
I |∅

K(x, y, z) = 0

∂z̄S
−→
I |∅

K(x, y, z) = π ω̄J(z)SI1···Ir−1|∅
J(x, y, z) δ

Ir
K r ≥ 1 (C.4)

Finally, for r = s = 0, all z-dependence cancels out and the function reduces to,

S∅|∅K(x, y, z) = ωJ(x)f
J
K(y, x) + ωJ(y)f

J
K(x, y) (C.5)
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which vanishes identically by the basic interchange identity given in (5.2).

We shall now proceed with a proof by induction on n = r+s for r, s ≥ 0. For given

n ≥ 1 we assume that S
−→
I

′
|
−→
P

′

K(x, y, z) vanishes for all pairs (r′, s′) such that r′+s′ ≤ n−1
and
−→
I
′
= I1 · · · Ir′ and

−→
P
′
= P1 · · ·Ps′ . From the structure of the differential equations in

(C.2), (C.3), and (C.4), it follows that the ∂̄ derivatives in x, y, z of all S
−→
I |
−→
P

K(x, y, z) with

r+s = n then vanish, so that S
−→
I |
−→
P

K(x, y, z) is independent of z and is a holomorphic (1, 0)

form in both x and y. Integrating against ω̄A(x) and ω̄B(y), we see by inspection of the

defining equation (6.8) that the integral in y of the first and third lines vanishes and that

the integral in x of the second and fourth lines vanishes (recall that the f -tensors are total

derivatives in their first argument of single-valued functions). Therefore, we have,∫
Σ

d2x ω̄A(x)

∫
Σ

d2y ω̄B(y)S
−→
I |
−→
P

K(x, y, z) = 0 (C.6)

Since S
−→
I |
−→
P

K(x, y, z) is a holomorphic (1, 0) form in x and y, which is independent of z, as

was already established earlier, it follows that S
−→
I |
−→
P

K(x, y, z) = 0 for all r+s = n. This

completes the proof by induction on n of Lemma 6.1.

C.2 Proof of Theorem 6.2

To prove Theorem 6.2, we begin by recasting the relation (6.11) in terms of the following

sum, in which the variables x and z occur only through a single factor in each term,

Y
−→
I |
−→
P |M

K(x, y, z) = f
−→
I M

J(x, y)f
−→
P J

K(y, z) +
r∑

k=0

f I1···Ik
J(x, y)f

(
−→
P �JIk+1···Ir)M

K(y, z) (C.7)

This sum is precisely the second line in (6.11). Inspection of (6.11) reveals that Theorem 6.2

may be expressed as the vanishing of the combination R
−→
I |
−→
P |M

K(x, y, z) defined as follows,

R
−→
I |
−→
P |M

K(x, y, z) = Y
−→
I |
−→
P |M

K(x, y, z) + Y
−→
P |
−→
I |M

K(y, x, z)

−f
−→
P M

J(y, z)f
−→
I J

K(x, z) + Z
−→
I |
−→
P |M

K(x, y) (C.8)

where Z
−→
I |
−→
P |M

K(x, y) is given by,

Z
−→
I |
−→
P |M

K(x, y) = (−)sωJ(y)f
−→
I M
←−
P J

K(x, y)

+
s∑

ℓ=1

(−)s−ℓ
(
fP1···Pℓ

J(y, bℓ)f
−→
I MPs···Pℓ+1J

K(x, aℓ)

−fP1···Pℓ−1J
K(y, bℓ)f

−→
I MPs···Pℓ

J(x, aℓ)
)

(C.9)
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To prove the vanishing of R
−→
I |
−→
P |M

K(x, y, z) we shall first show below that it is holomorphic

in x, y, z. Since R
−→
I |
−→
P |M

K(x, y, z) is a scalar in z it must then be independent of z, and since

it is a (1, 0) form in x and y, it must admit a decomposition into a linear combination of

ωA(x)ωB(y) with coefficients that are independent of x and y. Second, we shall show that

its integral against ω̄A(x)ω̄B(y) vanishes,∫
Σ

d2x ω̄A(x)

∫
Σ

d2y ω̄B(y)R
−→
I |
−→
P |M

K(x, y, z) = 0 (C.10)

The combination of these two results then implies the vanishing ofR
−→
I |
−→
P |M

K(x, y, z), thereby

completing the proof of Theorem 6.2.

To show holomorphicity of R, we begin by evaluating the ∂̄ derivatives of Y in (C.7),

∂x̄Y
−→
I |
−→
P |M

K(x, y, z) = −π ω̄I1(x)YI2···Ir|
−→
P |M

K(x, y, z) + πδ(x, y)f (
−→
P �
−→
I )M

K(y, z)

∂ȳY
−→
I |
−→
P |M

K(x, y, z) = −π ω̄P1(y)Y
−→
I |P2···Ps|M

K(x, y, z)− πδ(y, x)f (
−→
P �
−→
I )M

K(x, z)

∂z̄Y
−→
I |
−→
P |M

K(x, y, z) = π ω̄L(z)
(
f
−→
I M

K(x, y)f
−→
P

L(y, z) + ωJ(x)f
−→
P �J

−→
I
L(y, z) δ

M
K

)
+π δMK ω̄L(z)

r∑
ℓ=1

f I1···Iℓ
J(x, y)f

−→
P �JIℓ+1···Ir

L(y, z) (C.11)

and the ∂̄ derivatives of Z in (C.9),

∂x̄Z
−→
I |
−→
P |M

K(x, y) = −πω̄I1(x)ZI2···Ir|
−→
P |M

K(x, y)

∂ȳZ
−→
I |
−→
P |M

K(x, y) = −πω̄P1(y)Z
−→
I |P2···Ps|M

K(x, y) s ≥ 2

∂ȳZ
−→
I |P |M

K(x, y) = −πω̄P (y)ωJ(y) f
−→
I MJ

K(x, y) s = 1 (C.12)

Combining these results with the definition of R
−→
I |
−→
P |M

K(x, y, z), we obtain the following

formulas for its ∂̄ derivatives,

∂x̄R
−→
I |
−→
P |M

K(x, y, z) = −π ω̄I1(x)RI2···Ir|
−→
P |M

K(x, y, z)

∂ȳR
−→
I |
−→
P |M

K(x, y, z) = −π ω̄P1(y)R
−→
I |P2···Ps|M

K(x, y, z)

∂z̄R
−→
I |
−→
P |M

K(x, y, z) = π ω̄L(z)S
−→
I |
−→
P

L(x, y, z) δ
M
K (C.13)

where the combination S
−→
I |
−→
P

L(x, y, z) is the one defined in (6.8) of Lemma 6.1.

Since we have already proven S
−→
I |
−→
P

L(x, y, z) = 0 in Lemma 6.1, it follows from the third

line in (C.13) that R
−→
I |
−→
P |M

K(x, y, z) is a holomorphic scalar on Σ, and thus independent of z.

Next, we proceed by induction on the sum r+s as advocated in section 4.2. We have already
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established that the case r = s = 0 corresponds to the weight-two identity (6.2), which was

proven earlier. Now let us assume that we have established the vanishing ofR
−→
I |
−→
P |M

K(x, y, z)

for all r, s ≥ 0 such that r+s ≤ n. The first two equations in (C.13) then imply that the

combinations R
−→
I |
−→
P |M

K(x, y, z) are holomorphic (1, 0) forms in x and y for all r, s such that

r+s = n+1. To further establish that the combination vanishes, we show that its integral

against ω̄A(x)ω̄B(y) vanishes. To see this, note that the integral of Z
−→
I |
−→
P |M

K(x, y) against

ω̄A(x) vanishes term by term. Similarly, the first term on the second line in (C.8) integrates

to zero against ω̄A(x). Finally, Y
−→
I |
−→
P |M

K(x, y, z) integrates to zero against ω̄B(y), so that all

terms in (C.8) individually integrate to zero against the combined ω̄A(x)ω̄B(y). Therefore

Z
−→
I |
−→
P |M

K(x, y) = 0 for all r+s = n+1, thus completing our proof by induction on r+s.

C.3 Proof of Lemma 6.4

The starting point for the proof of Lemma 6.4 is again Lemma 6.1 which states the vanishing

of S
−→
I |
−→
P

K(x, y, z) in (6.8). This result implies that the contracted product f
−→
I
J(x, z)f

−→
P J

K(y, x),

which is a (1, 0) form in the repeated point x, may be expressed as follows,

f
−→
I
J(x, z)f

−→
P J

K(y, x) = f
−→
I
J(x, z)f

−→
P J

K(y, z)− f
−→
P

J(y, z)
(
f
−→
I J

K(x, y)− f
−→
I J

K(x, z)
)

−
r∑

k=0

f I1···Ik
J(x, y)f

−→
P �JIk+1···Ir

K(y, z)

−
s∑

ℓ=0

fP1···Pℓ
J(y, x)f

−→
I �JPℓ+1···Ps

K(x, z) (C.14)

Recall that the essence of Lemma 6.4 is to x-reduce the left side. Clearly the sum over ℓ

on the last line is not x-reduced, and the contracted index J enters the factors of f(y, x)

and f(x, z) in different positions as compared to the left side. But the position of J may be

rearranged to be of the same form as on the left side by using the following identity,

fP1···Pℓ
J(y, x)f

−→
I �JPℓ+1···Ps

K(x, z) = f
−→
I �Pℓ···Ps

J(x, z)f
P1···Pℓ−1J

K(y, x) (C.15)

−f
−→
I �Pℓ···Ps

J(x, z)∂yΦ
P1···Pℓ−1J

K(y)

+f
−→
I �JPℓ+1···Ps

K(x, z)∂yΦ
P1···Pℓ

J(y)

Note that all the extra terms that are produced by this rearrangement on the last two lines

of (C.15) are properly x-reduced. Using the above result, we may now write a new equivalent

version of (C.14) in which all terms with products of two x dependent f -tensors have the
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same tensorial structure,

f
−→
I
J(x, z)f

−→
P J

K(y, x) = Λ
−→
I |
−→
P

K(x, y, z)−
s∑

ℓ=1

f
−→
I �Pℓ···Ps

J(x, z)f
P1···Pℓ−1J

K(y, x) (C.16)

where Λ
−→
I |
−→
P

K(x, y, z) is x-reduced by construction and defined as follows,

Λ
−→
I |
−→
P

K(x, y, z) = f
−→
I
J(x, z)f

−→
P J

K(y, z)− f
−→
P

J(y, z)
(
f
−→
I J

K(x, y)− f
−→
I J

K(x, z)
)

− ωJ(y)f
−→
I �J

−→
P

K(x, z)−
r∑

k=0

f I1···Ik
J(x, y)f

−→
P �JIk+1···Ir

K(y, z)

+
s∑

ℓ=1

(
f
−→
I �Pℓ···Ps

J(x, z)∂yΦ
P1···Pℓ−1J

K(y)

− f
−→
I �JPℓ+1···Ps

K(x, z)∂yΦ
P1···Pℓ

J(y)
)

(C.17)

It is straightforward to rearrange the last line in (C.17) into the form presented in (6.17) of

Lemma 6.4 by using the following relations,

∂yΦ
P1···Pℓ−1J

K(y) = fP1···Pℓ−1J
K(y) + ∂yGP1···Pℓ−1(y, aℓ) δ

J
K

∂yΦ
P1···Pℓ

J(y) = fP1···Pℓ
J(y) + ∂yGP1···Pℓ−1(y, aℓ) δ

Pℓ
J (C.18)

and observing that the terms involving ∂yGP1···Pℓ−1(y, aℓ) cancel for arbitrary values of aℓ.

C.3.1 Inverting equation (C.16)

To prove the relation (6.16) of Lemma 6.4, it remains to invert the relation (C.16) and

express f
−→
I
J(x, z)f

−→
P J

K(y, x) solely in terms of Λ
−→
I

′
|
−→
P

′

K(x, y, z) for various combinations
−→
I
′

and
−→
P
′
of
−→
I and

−→
P . To do so, we recast (C.16) by moving the sum over ℓ from the right

side to the left side of the equation, and then including the term on the left as the ℓ = 0

contribution to the sum, so as to obtain,

Λ
−→
I |
−→
P

K(x, y, z) =
s∑

k=0

f
−→
I �Pk+1···Ps

J(x, z)f
P1···PkJ

K(y, x) (C.19)
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using the convention
−→
I � Pk+1 · · ·Ps =

−→
I for the case k = s. We now use this formula to

evaluate the right side of (6.16) as follows,
s∑

ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

K(x, y, z) (C.20)

=
s∑

ℓ=0

(−)s−ℓ
ℓ∑

k=0

f (
−→
I �Ps···Pℓ+1)�Pk+1···Pℓ

J(x, z)f
P1···PkJ

K(y, x)

=
s∑

k=0

fP1···PkJ
K(y, x)

s∑
ℓ=k

(−)s−ℓf (
−→
I �Ps···Pℓ+1)�Pk+1···Pℓ

J(x, z)

= f
−→
P J

K(y, x)f
−→
I
J(x, z) +

s−1∑
k=0

B
−→
I |Pk+1···Ps

k J(x, z)f
P1···PkJ

K(y, x)

where we denote the coefficients as follows for 0 ≤ k ≤ s− 1,

B
−→
I |Pk+1···Ps

k J(x, z) =
s∑

ℓ=k

(−)s−ℓf (
−→
I �Ps···Pℓ+1)�Pk+1···Pℓ

J(x, z) (C.21)

The first term on the right side of the last line of (C.20) is precisely the left side of (6.16).

Thus, to prove Lemma 6.4, it will suffice to prove that the sum over k on the last line of (C.20)

vanishes. Since all dependence on y is concentrated in the coefficients fP1···PkJ
K(y, x), and

these functions are linearly independent of one another for different values of k, the coefficient

functions B
−→
I |Pk+1···Ps

k J(x, z) should vanish for each value of k in the range 0 ≤ k ≤ s−1. This
is indeed the case as we shall now prove.

C.3.2 Vanishing of Bk in (C.21)

We begin by using the associativity of the shuffle product to rewrite (C.21) as follows,

B
−→
I |Pk+1···Ps

k J(x, z) =
s∑

ℓ=k

(−)s−ℓf
−→
I �(Ps···Pℓ+1�Pk+1···Pℓ)

J(x, z) (C.22)

Henceforth we shall drop the argument (x, z) which is common to all functions below. For

k = s−1 we clearly have B
−→
I |Ps

s−1 J = 0. Henceforth we set 0 ≤ k ≤ s−2. Next, we identify

all the contributions for which the last index in a given shuffle (Ps · · ·Pℓ+1 � Pk+1 · · ·Pℓ) is

Pm for m in the range k+1 ≤ m ≤ s. For each value of m only two “terms” in the sum

will contribute (of course, each “term” is really a sum of shuffles). To this end we use the

following decomposition formula,

f
−→
I �(Ps···Pℓ+1�Pk+1···Pℓ)

J = f
−→
I �((Ps···Pℓ+1�Pk+1···Pℓ−1)Pℓ)

J

+ f
−→
I �((Ps···Pℓ+2�Pk+1···Pℓ)Pℓ+1)

J (C.23)
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Substituting this decomposition into (C.22), and changing summation variables in the second

sum ℓ+1→ ℓ gives,

B
−→
I |Pk+1···Ps

k J = (−)s−kf
−→
I �Ps···Pk+1

J +
s−1∑

ℓ=k+1

(−)s−ℓf
−→
I �

{
(Ps···Pℓ+1�Pk+1···Pℓ−1)Pℓ

}
J

+ f
−→
I �Pk+1···Ps

J −
s∑

ℓ=k+2

(−)s−ℓf
−→
I �

{
(Ps···Pℓ+1�Pk+1···Pℓ−1)Pℓ

}
J (C.24)

Except for the contribution ℓ = k+1 in the first sum and ℓ = s in the second sum, all other

terms in the two sums cancel one another. The remaining contributions are readily seen to

cancel the first terms in the two lines on the right side of (C.24). This completes the proof

of Lemma 6.4.

C.4 Proof of Theorem 6.3

To prove equation (6.15) of Theorem 6.3, we start from the expression (6.16) of Lemma 6.4,

which we repeat here for convenience,

f
−→
I
J(x, z)f

−→
P J

K(y, x) =
s∑

ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

K(x, y, z) (C.25)

Our first step is a reorganization of the expression (6.17) for Λ
−→
I |
−→
P

K(x, y, z) where the first

terms f
−→
I
J(x, z)f

−→
P J

K(y, z) and −ωJ(y)f
−→
I �J

−→
P

K(x, z) in the first and second line are ab-

sorbed into extensions of the sums on the last line of (6.17) to ℓ = s+1 and ℓ = 0, respectively.

Upon setting the arbitrary points in (6.17) to aℓ = z, we arrive at the decomposition,

Λ
−→
I |
−→
P

K(x, y, z) =
5∑

j=1

Λ
−→
I |
−→
P

j K(x, y, z) (C.26)

in terms of the following shorthands,

Λ
−→
I |
−→
P

1 K(x, y, z) = −f
−→
P

J(y, z)f
−→
I J

K(x, y)

Λ
−→
I |
−→
P

2 K(x, y, z) = −
r∑

k=0

f I1···Ik
J(x, y)f

−→
P �JIk+1···Ir

K(y, z)

Λ
−→
I |
−→
P

3 K(x, y, z) =
s∑

m=0

f
−→
I �Pm+1···Ps

J(x, z)f
P1···PmJ

K(y, z)

Λ
−→
I |
−→
P

4 K(x, y, z) = f
−→
P

J(y, z) f
−→
I J

K(x, z)

Λ
−→
I |
−→
P

5 K(x, y, z) = −
s∑

m=0

fP1···Pm
J(y, z) f

−→
I �JPm+1···Ps

K(x, z) (C.27)
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The main task of this proof is to obtain the complete right side of (6.15) from the sums∑s
ℓ=0(−)s−ℓΛ

−→
I �Ps···Pℓ+1|P1···Pℓ

j K(x, y, z) in (6.16) over the individual contributions in (C.27)

with j = 1, 2, · · · , 5. However, before doing so in section C.4.2, we shall first establish several

combinatorial identities to rearrange the iterated shuffle products from the sums over ℓ.

C.4.1 Combinatorial lemmas

The following Lemma C.1 on alternating sums of shuffle products and its Corollaries C.2,

C.3 and C.4 will be instrumental in simplifying the sums in (C.26) and (C.27).

Lemma C.1 For multi-indices
−→
P = P1 · · ·Ps of length s, the alternating sum,

Υ(
−→
P ) =

s∑
ℓ=0

(−1)s−ℓP1 · · ·Pℓ� Ps . . . Pℓ+1 (C.28)

vanishes for any non-empty
−→
P and otherwise yields the neutral element ∅ of shuffle multi-

plication,

Υ(
−→
P ) =

{
0 for

−→
P ̸= ∅

∅ for
−→
P = ∅

(C.29)

The proof of Lemma C.1 proceeds by first evaluating the cases with s = 0 and s = 1,

Υ(∅) = ∅� ∅ = ∅ (C.30)

Υ(P1) = −∅� P1 + P1� ∅ = 0

The vanishing of Υ(P1 · · ·Ps) for arbitrary s ≥ 1 is then proven by induction on s, starting

with Υ(P1) for s = 1 in (C.30). Assuming that Υ(
−→
R ) = 0 for all multi-indices

−→
R of length

s−1, the recursive definition (6.5) of the shuffle product simplifies the length-s case to,

Υ(
−→
P ) = P1

( s∑
ℓ=1

(−1)s−ℓP2 · · ·Pℓ� Ps . . . Pℓ+1

)

+ Ps

( s−1∑
ℓ=0

(−1)s−ℓP1 · · ·Pℓ� Ps−1 . . . Pℓ+1

)
= P1Υ(P2 · · ·Ps)− PsΥ(P1 · · ·Ps−1) = 0 (C.31)

since both of Υ(P2 · · ·Ps) and Υ(P1 · · ·Ps−1) vanish by the inductive hypothesis. Together

with the case of
−→
P = ∅ in (C.30), this concludes the proof of Lemma C.1.
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Corollary C.2 Upon shuffle multiplication with an arbitrary multi-index
−→
Q = Q1 · · ·Qt of

length t, the combination

Υ(
−→
P ,
−→
Q) = Υ(

−→
P )�

−→
Q =

s∑
ℓ=0

(−1)s−ℓP1 · · ·Pℓ� Ps . . . Pℓ+1�
−→
Q (C.32)

simplifies to

Υ(
−→
P ,
−→
Q) =

{
0 for

−→
P ̸= ∅

−→
Q for

−→
P = ∅

(C.33)

Corollary C.2 is a simple consequence of (C.29) and ∅ being the neutral element of shuffle

multiplication.

Corollary C.3 The combination of shuffles,

Ξ(P1P2 · · ·Pm, J,
−→
Q) =

m∑
ℓ=0

(−)m−ℓP1 · · ·Pℓ � J
(
Pm · · ·Pℓ+1 �

−→
Q
)

(C.34)

admits the following simplified representation,

Ξ(P1P2 · · ·Pm, J,
−→
Q) = P1P2 · · ·PmJ

−→
Q (C.35)

The proof is again most conveniently performed via induction in the length m of the first

entry. In the base case at m = 0, we evidently have,

Ξ(∅, J,
−→
Q) = ∅� J(∅�

−→
Q) = J

−→
Q (C.36)

For m ≥ 1, we apply the recursion (6.5) for the shuffle product to (C.34),

Ξ(P1 · · ·Pm, J,
−→
Q) = P1

( m∑
ℓ=1

(−)m−ℓP2 · · ·Pℓ � J
(
Pm · · ·Pℓ+1 �

−→
Q
))

+ J

( m∑
ℓ=0

(−)m−ℓP1 · · ·Pℓ �

(
Pm · · ·Pℓ+1 �

−→
Q
))

= P1Ξ(P2 · · ·Pm, J,
−→
Q) + JΥ(P1 · · ·Pm,

−→
Q) (C.37)

The second term Υ(P1 · · ·Pm,
−→
Q) of the third line vanishes as a consequence of Corollary

C.2 (the first entry of Υ is non-empty for m ≥ 1). The first term of the third line may

be simplified on the basis of the inductive hypothesis Ξ(P2 · · ·Pm, J,
−→
Q) = P2 · · ·PmJ

−→
Q for

words of length m−1 in the first entry, which gives (C.35) and proves Corollary C.3.
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Corollary C.4 The combination of shuffles,

Θ(P1 · · ·Ps, J,
−→
I ) =

s∑
ℓ=0

(−)s−ℓPs · · ·Pℓ+1 � JP1 · · ·Pℓ �
−→
I (C.38)

admits the following simplified representation,

Θ(P1 · · ·Ps, J,
−→
I ) = (−)sPs · · ·P1J �

−→
I (C.39)

This time, the proof relies on induction in the combined length r+s of the multi-indices

P1 · · ·Ps and
−→
I = I1 · · · Ir: After checking the base case Θ(∅, J,

−→
I ) = ∅� J �

−→
I = J �

−→
I

at s = 0, we apply (6.5) in the inductive step at s ≥ 1 and arbitrary r:

Θ(P1 · · ·Ps, J,
−→
I ) = J

( s∑
ℓ=0

(−)s−ℓPs · · ·Pℓ+1 � P1 · · ·Pℓ �
−→
I

)
(C.40)

+ Ps

( s−1∑
ℓ=0

(−)s−ℓPs−1 · · ·Pℓ+1 � JP1 · · ·Pℓ �
−→
I

)
+ I1

( s∑
ℓ=0

(−)s−ℓPs · · ·Pℓ+1 � JP1 · · ·Pℓ � I2 · · · Ir
)

= JΥ(P1 · · ·Ps,
−→
I )− PsΘ(P1 · · ·Ps−1, J,

−→
I ) + I1Θ(P1 · · ·Ps, J, I2 · · · Ir)

= (−)sPs

(
Ps−1 · · ·P1J �

−→
I
)
+ (−)sI1

(
Ps · · ·P1J � I2 · · · Ir

)
In passing to the last line, we have used Corollary C.2 to set Υ(P1 · · ·Ps,

−→
I ) = 0 (using

s ≥ 1) and the inductive hypothesis Θ(P1 · · ·Ps−1, J,
−→
I ) = (−1)s−1Ps−1 · · ·P1J �

−→
I as well

as Θ(P1 · · ·Ps, J, I2 · · · Ir) = (−1)sPs · · ·P1J � I2 · · · Ir, both of which have reduced overall

length r+s−1 of the first and last entry. The result of (C.39) is obtained based on the

recursion (6.5) in reverse order.

C.4.2 Application to the proof of Theorem 6.3

Equipped with combinatorial identities of section C.4.1, we can now proceed to performing

the sums
∑s

ℓ=0(−)s−ℓΛ
−→
I �Ps···Pℓ+1|P1···Pℓ

j K(x, y, z) as in (6.16) over the Λj=1,2,··· ,5 in (C.27).

j = 1: The summation over the terms Λ
−→
I |
−→
P

1 K(x, y, z) in the first line of (C.27) straight-

forwardly produces the sum on the third line of (6.15) corresponding to the first term inside

the parentheses of the summand.
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j = 2: We begin with the summation of the terms Λ
−→
I |
−→
P

2 K(x, y, z) produced by the second

line of (C.27). To this end we write out this contribution more explicitly as follows,

Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

2 K(x, y, z) = −
r∑

k=0

s∑
m=ℓ

fPs···Pm+1�I1···Ik
J(x, y)f

P1···Pℓ�J(Pm···Pℓ+1�Îk)
K(y, z)

(C.41)

where we shall use the abbreviation Îk = Ik+1 · · · Ir throughout this appendix. Its contribu-
tion to the right side of (6.15) is given by the sum over ℓ,

s∑
ℓ=0

(−)s−ℓΛ
−→
I �Ps···Pℓ+1|P1···Pℓ

2 K(x, y, z) (C.42)

= −
r∑

k=0

s∑
m=0

(−)s−mfPs···Pm+1�I1···Ik
J(x, y)

m∑
ℓ=0

(−)m−ℓfP1···Pℓ�J(Pm···Pℓ+1�Îk)
K(y, z)

where we have swapped the summations over ℓ and m. The sum over ℓ realizes the combi-

nation Ξ in (C.34) at
−→
Q = Îk which we shall simplify via Corollary C.3,

m∑
ℓ=0

(−)m−ℓfP1···Pℓ�J(Pm···Pℓ+1�Îk)
K(y, z) = fΞ(P1···Pm,J,Îk)

K(y, z) (C.43)

= fP1···PmJÎk
K(y, z) = fP1···PmJIk+1...Ir

K(y, z)

As a consequence, (C.42) takes the more tractable form,

s∑
ℓ=0

(−)s−ℓΛ
−→
I �Ps···Pℓ+1|P1···Pℓ

2 K(x, y, z) (C.44)

= −
r∑

k=0

s∑
m=0

(−)s−mfPs···Pm+1�I1···Ik
J(x, y)f

P1···PmJIk+1···Ir
K(y, z)

Changing summation variables from m to ℓ in the above formula precisely produces the

double sum on the second line of (6.15).

j = 3: The summation of the terms Λ
−→
I |
−→
P

3 K(x, y, z) in the third line of (C.27) gives the

first term in (6.15). To show this, we collect the sum over ℓ as follows,

s∑
ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

3 K(x, y, z) (C.45)

=
s∑

m=0

fP1···PmJ
K(y, z)

s∑
ℓ=m

(−)s−ℓf (
−→
I �Ps···Pℓ+1)�Pm+1···Pℓ

J(x, z)
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Using associativity of the shuffle product, we may drop the parentheses in the superscript of

the second factor. For each value of m, the sum over ℓ can be lined up with the alternating

combination Υ defined in (C.32) with Pm+1 · · ·Ps in the place of P1 · · ·Ps,

s∑
ℓ=0

(−)s−ℓf (
−→
I �Ps···Pℓ+1)�Pm+1···Pℓ

J(x, z) = fΥ(Pm+1Pm+2···Ps,
−→
I )

J(x, z)

= δm,sf
−→
I
J(x, z) (C.46)

where we have used the vanishing of Υ with a non-empty first entry established in Corol-

lary C.2. Hence, the first sum in (C.45) collapses to the term m = s, resulting in

s∑
ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

3 K(x, y, z) = f
−→
P J

K(y, z)f
−→
I
J(x, z) (C.47)

which gives precisely the first term in (6.15).

j = 4, 5: The summation over ℓ of the last two terms Λ
−→
I |
−→
P

4 K(x, y, z) and Λ
−→
I |
−→
P

5 K(x, y, z)

in (C.27) produces the sum on the third line of (6.15) involving the second term inside the

parentheses of the summand. To show this, we begin with the summation of the last term,

s∑
ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

5 K(x, y, z) (C.48)

= −
s∑

ℓ=0

(−)s−ℓ
ℓ∑

m=0

fP1···Pm
J(y, z)f

(
−→
I �Ps···Pℓ+1)� JPm+1···Pℓ

K(x, z)

= −
s∑

m=0

fP1···Pm
J(y, z)

s∑
ℓ=m

(−)s−ℓf (
−→
I �Ps···Pℓ+1)� JPm+1···Pℓ

K(x, z)

The sum over ℓ realizes the combination Θ in (C.38) with Pm+1Pm+2 · · ·Ps in the place of

P1P2 · · ·Ps which we shall simplify via Corollary C.4:

s∑
ℓ=m

(−)s−ℓf (
−→
I �Ps···Pℓ+1)� JPm+1···Pℓ

K(x, z) = fΘ(Pm+1···Ps,J,
−→
I )

K(x, z) (C.49)

= (−1)s−mfPsPs−1···Pm+1�
−→
I
K(x, z)

Thus, (C.48) becomes,

s∑
ℓ=0

(−)s−ℓ Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

5 K(x, y, z) = −
s∑

m=0

(−)s−mfP1···Pm
J(y, z)f

−→
I �Ps···Pm+1J

K(x, z)

(C.50)
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Assembling this result with the summation of the terms Λ
−→
I |
−→
P

4 K(x, y, z) in (C.27) and re-

naming the summation variable m in (C.50) to ℓ, we have,

s∑
ℓ=0

(−)s−ℓ
[
Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

4 K(x, y, z) + Λ
−→
I �Ps···Pℓ+1|P1···Pℓ

5 K(x, y, z)
]

= −
s∑

ℓ=0

(−)s−ℓfP1···Pℓ
J(y, z)

(
f
−→
I �Ps···Pℓ+1J

K(x, z)− f (
−→
I �Ps···Pℓ+1)J

K(x, z)
)

= −
s∑

ℓ=0

(−)s−ℓfP1···Pℓ
J(y, z)f

(Ps···Pℓ+1J � I1···Ir−1)Ir
K(x, z) (C.51)

where the simplification in passing to the last line was carried out using the basic property

of the shuffle product,

f
−→
I �Ps···Pℓ+1J

K(x, z) = f (
−→
I �Ps···Pℓ+1)J

K(x, z) + f (I1···Ir−1�Ps···Pℓ+1J)Ir
K(x, z) (C.52)

followed by the commutativity I1 · · · Ir−1 � Ps · · ·Pℓ+1J = Ps · · ·Pℓ+1J � I1 · · · Ir−1. In this

form, the last line of (C.51) is readily seen to match the sum on the third line of (6.15)

corresponding to the second term inside the parentheses of the summand.

In summary, the combination of the five terms in (C.27) reproduces the complete right

side of (6.15) – its first line via Λ3, its second line via Λ2 and its third line via Λ1 (first term

inside the parenthesis) and Λ4,5 (second term inside the parenthesis).

C.5 Proof of Theorem 8.3

In the proof of Theorem 8.3, it is helpful to treat the cases s = 0, s = 1 and s ≥ 2 separately,

as the structure of the singularities and direction dependent limits that occur in these three

cases is significantly different. In slight abuse of terminology, we shall refer to both the

simple pole fJ
K(y, z) = δJK(y−z)−1 + reg and to the direction dependent z → y limit of

fJI
K(y, z) (see section 8.2) as “singular”.

C.5.1 Proof for the case s = 0

For s = 0 we have
−→
P = ∅ and the Fay identity in (6.15) simplifies as follows,

f
−→
I
J(x, z) f

J
K(y, x) = f

−→
I
J(x, z) f

J
K(y, z)−

r∑
k=0

f I1···Ik
J(x, y)f

JIk+1···Ir
K(y, z)

− ωJ(y)
(
f
−→
I J

K(x, y) + f (J�I1···Ir−1)Ir
K(x, z)

)
(C.53)
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The limit of any term involving f I1···Ir
J(y, z) with r ≥ 3 is regular and given by F I1···Ir

J(y)

defined in (8.38). The singular terms are as follows,

sings=0(x, y, z) =
(
f
−→
I
J(x, z)− f

−→
I
J(x, y)

)
fJ

K(y, z)− f I1···Ir−1
J(x, y)f

JIr
K(y, z) (C.54)

The calculation of their limit may be organized as follows, using the fact that the contribution

from the tensor Φ to f cancels in the first term,

lim
z→y

sings=0(x, y, z) = δIrK lim
z→y

[(
∂xGI1···Ir−1(x, z)− ∂xGI1···Ir−1(x, y)

)
∂yG(y, z) (C.55)

+ f I1···Ir−1
J(x, y)∂yGJ(y, z)

]
− f I1···Ir−1

J(x, y)∂yΦ
JIr

K(y)

Here, only the ∂yG(y, z) term in fJ
K(y, z) contributes to a non-vanishing limit. The last

term arises as the finite limit from decomposing fJIr
K(y, z). Expanding the difference inside

the parentheses on the first line of (C.55) to first order in z−y, we obtain,

∂xGI1···Ir−1(x, z)− ∂xGI1···Ir−1(x, y)

= (z − y)∂x∂yGI1···Ir−1(x, y) + (z̄ − ȳ)∂x∂ȳGI1···Ir−1(x, y)

= (z − y)∂x∂yGI1···Ir−1(x, y)− π(z̄ − ȳ)ω̄J(y)f I1···Ir−1
J(x, y) (C.56)

Upon identifying the Abelian integral (z̄−ȳ)ω̄J(y) =
∫ z

y
ω̄J + (z̄−ȳ)2, the last term on the

third line above combines with the ∂yGJ(y, z) on the second line of (C.55) to produce the

well-defined limit CJ(y) defined in (8.11). The latter combines with the last term of (C.55) to

produce the combination FJIr
K(y) defined in (8.38). Therefore, the limit in (C.55) becomes,

lim
z→y

sings=0(x, y, z) = δIrK ∂x∂yGI1···Ir−1(x, y)− f I1···Ir−1
J(x, y)FJIr

K(y) (C.57)

Combining this result with (8.40), we obtain the coincident limit for the case s = 0,

f
−→
I
J(x, y) f

J
K(y, x) = −∂yf

−→
I
K(x, y)− ωJ(y)f

J �
−→
I
K(x, y)

−
r−1∑
k=0

f I1···Ik
J(x, y)FJIk+1···Ir

K(y) (C.58)

Comparing with (8.39) for the case of s = 0, we find agreement upon using the fact that the

k = r term in (8.39) cancels the first term on the first line of the right side of (8.39). This

concludes the proof of Theorem 8.3 for the case s = 0.
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C.5.2 Proof for the case s = 1

The proof of Theorem 8.3 for the case s = 1 proceeds analogously to the s = 0 case. The

singular terms as z → y are as follows,

sings=1(x, y, z) = fJ
K(y, z)f

P �
−→
I
J(x, y) + fJIr

K(y, z)f
P � I1···Ir−1

J(x, y)

− fP
J(y, z)

(
f
−→
I J

K(x, y) + f (J � I1···Ir−1)Ir
K(x, z)

)
(C.59)

The calculation of their limit may be organized as follows,

lim
z→y

sings=1(x, y, z) = ∂yΦ
J
K(y)f

P �
−→
I
J(x, y) + ∂yΦ

JIr
K(y)f

P � I1···Ir−1
J(x, y)

− ∂yΦ
P
J(y)f

J �
−→
I
K(x, y)− δIrK lim

z→y

[
∂yGJ(y, z)fP � I1···Ir−1

J(x, y)

+ ∂yG(y, z)
(
∂xGP � I1···Ir−1(x, z)− ∂xGP � I1···Ir−1(x, y)

)]
(C.60)

Expanding the difference on the last line to first order in z−y, as in (C.56), produces a double

derivative term in x, y and a term that combines with ∂yGJ(y, z) to produce CJ(y) which

combines with ∂yΦ
JIr

K(y) to produce FJIr
K(y). Collecting all contributions, we obtain,

lim
z→y

sings=1(x, y, z) = FJ
K(y)f

P �
−→
I
J(x, y) + FJIr

K(y)f
P � I1···Ir−1

J(x, y)

−FP
J(y)f

J �
−→
I
K(x, y) + ∂yf

(P � I1···Ir−1)Ir
K(x, y) (C.61)

Combining the above limit of the singular terms with the limits of the regular terms then

produces (8.39) and proves Theorem 8.3 for the case s = 1.

C.5.3 Proof for the case s ≥ 2

For s ≥ 2, the term on the first line on the right side of (6.15) admits a regular limit. The

terms (k, ℓ) = (r, 0), (r, 1), (r−1, 0) on the second line of (6.15) and the terms ℓ = 1, 2 on

the third line of (6.15) are singular, and are given by,

(−)ssings≥2(x, y, z) = −f
←−
P �

−→
I
J(x, y)f

J
K(y, z)− f

←−
P � I1···Ir−1

J(x, y)f
JIr

K(y, z) (C.62)

+ fPs···P2�
−→
I
J(x, y)f

P1J
K(y, z)− fP1P2

J(y, z)f
Ps···P3J �

−→
I
K(x, y)

+ fP1
J(y, z)

(
f (Ps···P2�

−→
I )J

K(x, y) + f (Ps···P2J � I1···Ir−1)Ir
K(x, z)

)
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Decomposing each f(y, z)-tensor into its ∂yΦ(y) and ∂yG(y, z) parts, we obtain,

(−)ssings≥2(x, y, z) = −f
←−
P �

−→
I
J(x, y)∂yΦ

J
K(y)− f

←−
P � I1···Ir−1

J(x, y)∂yΦ
JIr

K(y)

+ fPs···P2�
−→
I
J(x, y)∂yΦ

P1J
K(y)− ∂yΦ

P1P2
J(y)f

Ps···P3J �
−→
I
K(x, y)

+ ∂yΦ
P1

J(y)
(
f (Ps···P2�

−→
I )J

K(x, y) + f (Ps···P2J � I1···Ir−1)Ir
K(x, z)

)
+ δIrK ∂yG(y, z)

(
∂xG

←−
P � I1···Ir−1(x, z)− ∂xG

←−
P � I1···Ir−1(x, y)

)
+ f

←−
P � I1···Ir−1

J(x, y)∂yGJ(y, z)δIrK (C.63)

Note that terms proportional to ∂yGP1(y, z), which arise at intermediate steps from the

second line of (C.62), cancel one another outright. Taking the limit, we obtain,

(−)s lim
z→y

sings≥2(x, y, z) = −f
←−
P �

−→
I
J(x, y)∂yΦ

J
K(y)− f

←−
P � I1···Ir−1

J(x, y)FJIr
K(y) (C.64)

+ fPs···P2�
−→
I
J(x, y)∂yΦ

P1J
K(y)− ∂yΦ

P1P2
J(y)f

Ps···P3J �
−→
I
K(x, y)

+ ∂yΦ
P1

J(y)f
Ps···P2J �

−→
I
K(x, y) + δIrK ∂x∂yG

←−
P � I1···Ir−1(x, y)

The ∂yΦ factors on the second line may be promoted into the corresponding F factors

because the differences cancel between the two terms. Thus, the final result for the limit

may be expressed as follows,

(−)s lim
z→y

sings≥2(x, y, z) = −f
←−
P �

−→
I
J(x, y)FJ

K(y)− f
←−
P � I1···Ir−1

J(x, y)FJIr
K(y) (C.65)

+ fPs···P2�
−→
I
J(x, y)FP1J

K(y)−FP1P2
J(y)f

Ps···P3J �
−→
I
K(x, y)

+ FP1
J(y)f

Ps···P2J �
−→
I
K(x, y) + δIrK ∂x∂yG

←−
P � I1···Ir−1(x, y)

While the terms corresponding to (k, ℓ) = (r, 0), (r, 1), (r−1, 0) on the second line of (6.15)

and the terms ℓ = 1, 2 on the third line of (6.15) were combined in the calculation of the

limit of the singular terms, we see that on the right side of (C.65), the first term provides the

term (k, ℓ) = (r, 0) in the double sum of (8.39), the second term provides its (k, ℓ) = (r−1, 0)
term, and the third term provides its (k, ℓ) = (r, 1) term. The fourth and fifth terms of

(C.65) provide the ℓ = 2 and ℓ = 1 terms in the single sum on the third line of (8.39).

Finally, the last term of (C.65) is identified as the second term on the right side of (8.39) via

(8.40). Thus all terms in (8.39) are properly produced in the limit for s ≥ 2. This concludes

the proof of Theorem 8.3 for the case s ≥ 2 and thus for all cases.

C.6 Proof of Theorem 8.4

We shall here prove the equivalence of the two representations (8.39) and (8.42) of the

coincident Fay identities at arbitrary rank, weight and genus. As a first step, we specialize
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the general identity (8.39) for f
−→
I
J(x, y) f

−→
P J

K(y, x) to the three cases of
−→
P = P1P2 · · ·Ps

with s = 0, s = 1 or s ≥ 2 and adapt the tensor functions F I1···Ir
J(y) in (8.38) to each term:

• s = 0: The first term f
−→
I
J(x, y)FJ

K(y) on the right side of (8.39) (with
−→
I = I1 · · · Ir)

readily cancels the (k, ℓ) = (r, 0) term in the second line, and we are left with,

f
−→
I
J(x, y) f

J
K(y, x) = δIrK∂x∂yGI1···Ir−1(x, y)− ωJ(y)f

−→
I �J

K(x, y) (C.66)

+ f I1···Ir−1
J(x, y)

[
δIrKC

J(y)− ∂yΦ
JIr

K(y)
]

−
r−2∑
k=0

f I1···Ik
J(x, y)f

JIk+1···Ir
K(y, y)

• s = 1: The first term f
−→
I
J(x, y)FPJ

K(y) on the right side of (8.39) readily cancels the

(k, ℓ) = (r, 1) term in the second line, resulting in,

f
−→
I
J(x, y) f

PJ
K(y, x) = −δIrK∂x∂yGP � I1···Ir−1(x, y) + ωJ(y)f

−→
I �PJ

K(x, y)

+
r−2∑
k=0

fP � I1···Ik
J(x, y)f

JIk+1···Ir
K(y, y)−

r−1∑
k=0

f I1···Ik
J(x, y)f

PJIk+1···Ir
K(y, y)

+ fP � I1···Ir−1
J(x, y)

[
∂yΦ

JIr
K(y)− δIrKC

J(y)
]

+ fP �
−→
I
J(x, y)∂yΦ

J
K(y)− ∂yΦ

P
J(y)f

J �
−→
I
K(x, y) (C.67)

• s ≥ 2: After isolating all cases of F I1···Ir
J(y) with r ≤ 2 which depart from the

expression f I1···Ir
J(y, y) at generic rank from the sums in (8.39), we have,

f
−→
I
J(x, y) f

−→
P J

K(y, x) = f
−→
I
J(x, y) f

−→
P J

K(y, y) + (−1)sδIrK∂x∂yGI1···Ir−1�
←−
P (x, y)

+ (−1)sf
←−
P �I1···Ir−1

J(x, y)
[
δIrKC

J(y)− ∂yΦ
JIr

K(y)
]

−
s∑

ℓ=0

(−1)ℓ−s
r∑

k=0

δk−ℓ≤r−2f
I1···Ik�Ps···Pℓ+1

J(x, y)f
P1···PℓJIk+1···Ir

K(y, y)

− (−1)sωJ(y)f
−→
I �
←−
P J

K(x, y)−
s∑

ℓ=3

(−)ℓ−sfP1···Pℓ
J(y, y)f

−→
I �Ps···Pℓ+1J

K(x, y)

− (−)s
(
fPs···P1�

−→
I
J(x, y)∂yΦ

J
K(y)− ∂yΦ

P1
J(y)f

Ps···P2J �
−→
I
K(x, y)

)
+ (−)s

(
fPs···P2�

−→
I
J(x, y)∂yΦ

P1J
K(y)− ∂yΦ

P1P2
J(y)f

Ps···P3J �
−→
I
K(x, y)

)
(C.68)

where the CI(y) from the (k, ℓ) = (r, 1) term in the second line and the ℓ = 2 term in

the third line of (8.39) have already been cancelled. The symbol δk−ℓ≤r−2 in the third

line of (C.68) excludes the terms (k, ℓ) ∈ {(r, 0), (r−1, 0), (r, 1)} from the double sum

over k and ℓ, ensuring that fP1···PℓJIk+1···Ir
K(y, y) has at least three upper indices.
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In the cases s = 0 and s = 1, the specializations (C.66) and (C.67) of (8.39) straightforwardly

line up with the corresponding s = 0 and s = 1 cases of (8.42). Hence, the leftover task is

to show agreement of (8.42) with the rewritten form (C.68) of (8.39) at s ≥ 2.

Several terms of (C.68) and (8.42) are easily seen to match:

• (−1)sδIrK∂x∂yGI1···Ir−1�
←−
P (x, y) and −(−1)sωJ(y)f

−→
I �
←−
P J

K(x, y)

as well as (−1)sf
←−
P �I1···Ir−1

J(x, y)
[
δIrKCJ(y)− ∂yΦ

JIr
K(y)

]
;

• the last two lines of (C.68) match the terms ℓ = 1, 2 in the last line of (8.42).

After taking these matches into account, it remains to verify that

f
−→
I
J(x, y) f

−→
P J

K(y, y)−
s∑

ℓ=3

(−)ℓ−sfP1···Pℓ
J(y, y)f

−→
I �Ps···Pℓ+1J

K(x, y) (C.69)

−
s∑

ℓ=0

(−1)ℓ−s
r∑

k=0

δk−ℓ≤r−2f
I1···Ik�Ps···Pℓ+1

J(x, y)f
P1···PℓJIk+1···Ir

K(y, y)

= −
r−1∑
k=0

s∑
ℓ=0

δ(k,ℓ)̸=(r−1,0)(−1)s−ℓf I1···Ik�Ps···Pℓ+1
J(x, y)f

P1···PℓJIk+1···Ir
K(y, y)

−
s∑

ℓ=3

(−1)s−ℓ
[
fP1···Pℓ

J(y, aℓ)f
Ps···Pℓ+1J�

−→
I
K(x, y)− fP1···Pℓ−1J

K(y, aℓ)f
Ps···Pℓ�

−→
I
J(x, y)

]
For this purpose, we rearrange the double sum in the second line of the left side according

to
∑s

ℓ=0

∑r
k=0 δk−ℓ≤r−2 =

∑s
ℓ=0

∑r−1
k=0 δk−ℓ̸=r−1 +

∑s
ℓ=2 δr=k, leading to

−
s∑

ℓ=0

(−1)ℓ−s
r∑

k=0

δk−ℓ≤r−2f
I1···Ik�Ps···Pℓ+1

J(x, y)f
P1···PℓJIk+1···Ir

K(y, y) (C.70)

= −
s∑

ℓ=0

(−1)ℓ−s
r−1∑
k=0

δk−ℓ̸=r−1f
I1···Ik�Ps···Pℓ+1

J(x, y)f
P1···PℓJIk+1···Ir

K(y, y)

−
s−1∑
ℓ=2

(−1)ℓ−sf
−→
I �Ps···Pℓ+1

J(x, y)f
P1···PℓJ

K(y, y)− f
−→
I
J(x, y)f

P1···PsJ
K(y, y)

In the last line, we have exposed the last term of the sum
∑s

ℓ=2 which cancels the first term

on the left side of (C.69). Since the middle line of (C.70) matches the first line on the right
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side of (C.69), the last step is to check that

s∑
ℓ=3

(−)ℓ−sfP1···Pℓ
J(y, y)f

−→
I �Ps···Pℓ+1J

K(x, y) +
s−1∑
ℓ=2

(−1)ℓ−sf
−→
I �Ps···Pℓ+1

J(x, y)f
P1···PℓJ

K(y, y)

=
s∑

ℓ=3

(−1)s−ℓ
[
fP1···Pℓ

J(y, aℓ)f
Ps···Pℓ+1J�

−→
I
K(x, y)− fP1···Pℓ−1J

K(y, aℓ)f
Ps···Pℓ�

−→
I
J(x, y)

]
(C.71)

This is the case since the ∂G terms of the f -tensors with y as their first argument separately

cancel on both sides, and the ∂Φ contributions are seen to match after shifting the summation

variable of the second term on the left side to ℓ+1 = m ∈ {3, 4, · · · , s}. We have thus

demonstrated (C.69) which concludes the proof of this appendix that (8.39) is equivalent

to (8.42).

C.7 Proof of Theorem 9.2

The subsequent proof of Theorem 9.2 is most conveniently performed in the original nor-

malization convention ωI1···Ir
J(x, y) of the Enriquez kernels [33] related to the gI1···IrJ(x, y)

in this work via (9.1). The decomposition (9.5) then takes the form

ωI1···Ir
J(x, y) = ϖ̃I1···Ir

J(x)− δIrJ χ̃I1···Ir−1(x, y) , ϖ̃I1···Ir−1J
J(x) = 0 (C.72)

with rescaled components

ϖ̃I1···Ir
J(x) = (−2πi)−rϖI1···Ir

J(x)

χ̃I1···Is(x, y) = (−2πi)−s−1χI1···Is(x, y) (C.73)

In this way, we can take advantage of the simplified monodromies of the Enriquez kernels

ωI1···Ir
J(x, y) in demonstrating the vanishing of,

QI1···Ir
J(x, y) = (−2πi)r

{
ωM(x)ωI1···IrM

J(y, x) + (−1)rωM(y)ωIr···I1M
J(x, y) (C.74)

+
r∑

k=1

(−1)k+r
[
ϖ̃I1···Ik

M(y) ϖ̃Ir···Ik+1M
J(x)− ϖ̃Ir···Ik

M(x) ϖ̃I1···Ik−1M
J(y)

]}
claimed in Theorem 9.2. To prove the theorem, we note that it is straightforward to verify

item 1.

To prove item 2 we note that the A monodromy of QI1···Ir
J(x, y) vanishes since the

A monodromy of ωI1···Ir
J(x, y) vanishes for all r ≥ 0, thus establishing the first part of
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item 2. The heart of the theorem is the proof of the B mondromy formula in (9.14). The

monodromies around B-cycles of ωI1···Ir
J(x, y), given in (9.2), may be expressed as follows,

ωI1···Ir
J(x+BL, y) = ωI1···Ir

J(x, y) + ∆
(x)
BL

ωI1···Ir
J(x, y)

ωI1···Ir
J(x, y+BL) = ωI1···Ir

J(x, y) + ∆
(y)
BL

ωI1···Ir
J(x, y) (C.75)

where the monodromy shifts are given by,

∆
(x)
BL

ωI1···Ir
J(x, y) =

r∑
k=1

1

k!
δI1···IkL ωIk+1···Ir

J(x, y)

∆
(y)
BL

ωI1···Ir
J(x, y) = δIrJ

r∑
k=1

(−)k

k!
ωI1···Ir−k

L(x, y) δ
Ir−k+1···Ir−1

L (C.76)

Throughout, we shall extend the definition to include ωI1···Ir
J(x, y)|r=0 = ωJ(x) which is a

single-valued holomorphic Abelian differential. We shall also need the B monodromy of the

traceless part ϖ̃I1···Ir
J(x) in (C.72), which may be readily deduced from the first equation in

(C.76) and can be found in (C.78) below.

In view of the symmetry stated in item 1, the monodromies in x and y are equivalent

to one another. The combinatorics of the calculation of the B monodromy of QI1···Ik
J(x, y)

will be simpler in the variable y than in x, and we begin by computing the monodromy in y

of the four contributions in (C.74). The first two terms on the right side of (C.74) involve,

∆
(y)
BL

ωI1···IrM
J(y, x) =

r∑
k=1

1

k!
δI1···IkL ωIk+1···IrM

J(y, x) +
δI1···IrML

(r+1)!
ωJ(y) (C.77)

∆
(y)
BL

ωIr···I1M
J(x, y) = δMJ

r∑
k=1

(−)k

k!
δ
I1···Ik−1

L ωIr···Ik
L(x, y)− (−)rδMJ

δI1···IrL

(r+1)!
ωL(x)

One verifies that the contributions from the terms with denominators (r+1)! cancel one

another in the sum of these two terms that enters into (C.74). The y-dependent parts of the

summands in (C.74) transform as follows,

∆
(y)
BL

ϖ̃I1···Iℓ−1M
J(y) =

ℓ−1∑
n=1

1

n!
δI1···InL ϖ̃In+1···Iℓ−1M

J(y) +
1

ℓ !
δ
I1···Iℓ−1

L

(
δML ωJ(y)−

1

h
δMJ ωL(y)

)
∆

(y)
BL

ϖ̃I1···Iℓ
M(y) =

ℓ−1∑
n=1

1

n!
δI1···InL ϖ̃In+1···Iℓ

M(y) +
1

ℓ!
δI1···IℓL ωM(y)− 1

h ℓ !
δ
I1···Iℓ−1

L δIℓM ωL(y)

(C.78)
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Adding the contributions from these two terms in (C.74), one verifies that the contributions

with denominators h cancel one another. As a result, the sum over k in (C.74) evaluates to,

∆
(y)
BL

r∑
k=1

(−)r+k
(
ϖ̃I1···Ik

M(y) ϖ̃Ir···Ik+1M
J(x)− ϖ̃Ir···Ik

M(x) ϖ̃I1···Ik−1M
J(y)

)
= −

r−1∑
n=1

1

n!
δI1···InL

r∑
k=n+1

(−)r+k ϖ̃Ir···Ik
M(x) ϖ̃In+1···Ik−1M

J(y)

−
r∑

k=1

(−)r+k

k!
ϖ̃Ir···Ik

M(x) δ
I1···Ik−1M
L ωJ(y)

+
r∑

n=1

1

n!
δI1···InL

r∑
k=n

(−)r+k ϖ̃Ir···Ik+1M
J(x) ϖ̃

In+1···Ik
M(y) (C.79)

The remaining terms are as follows,

∆
(y)
BL

QI1···Ir
J(x, y)

(−2πi)r
=

r∑
n=1

1

n!
δI1···InL

[
ωM(y)ωIn+1···IrM

J(x, y) (C.80)

−
r∑

k=n+1

(−)r+k ϖ̃Ir···Ik
M(y) ϖ̃In+1···Ik−1M

J(x)

+
r∑

k=n

(−)r+k ϖ̃Ir···Ik+1M
J(y) ϖ̃

In+1···Ik
M(x)

]
+(−)rωJ(x)

r∑
k=1

(−)k

k!
δ
I1···Ik−1

L

(
ωIr···Ik

L(y, x)− ϖ̃Ir···Ik
L(y)

)
The terms inside the square bracket almost make up QIn+1···Ir

J(x, y). Accounting for the

difference, we obtain after some simplifications,

∆
(y)
BL

QI1···Ir
J(x, y) =

r∑
n=1

(−2πi)n

n!
δI1···InL QIn+1···Ir

J(x, y) (C.81)

+(−2πi)r
r∑

n=1

(−)r+n

n!

[
ωJ(x)δ

I1···In−1

L

(
ωIr···In

L(y, x)− ϖ̃Ir···In
L(y)

)
−ωM(x)δI1···InL

(
ωIr···In+1M

J(y, x)− ϖ̃Ir···In+1M
J(y)

)]
Using the definition of the traces χ̃ and the traceless parts ϖ̃ in (C.72), the terms in the

parentheses may be simplified as follows,

ωIk···In
L(y, x)− ϖ̃Ik···In

L(y) = −δInL χ̃Ik···In+1(y, x)

ωIk···In+1M
J(y, x)− ϖ̃Ik···In+1M

J(y) = −δMJ χ̃Ik···In+1(y, x) (C.82)
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It is readily verified that the second and third lines in (C.81) precisely cancel one another,

thereby completing the proof of item 2 of Theorem 9.2.

To prove item 3, namely holomorphicity in x, we notice that the second line in (C.74)

is by itself holomorphic since ϖ̃(x) is. The first line is automatically holomorphic in x for

r ≥ 1 since its ingredients are individually holomorphic, while holomorphicity for r = 0

follows from the fact that the pole at x = y manifestly cancels between the two terms.

To prove item 4, we make use of the items 1, 2 and 3 established earlier. In particular, we

use the relations between the monodromy of Q and the fact that Q is holomorphic in x, y.

Cutting the Riemann surface Σ along a set of canonical homology cycles and decomposing

the boundary of the resulting fundamental domain as follows,

C =
h⋃

K=1

AK BK (AK)−1B−1K (C.83)

we use the holomorphicity of Q to conclude that, by Cauchy’s theorem in absence of poles,∮
C

dxQI1···Ir
J(x, y) = 0 (C.84)

The contributions from the integrals over BK and B−1K cancel one another in view of the

invariance of Q under the AK transformation that maps BK to B−1K , and we are left with,∑
K

∮
AK

dx
(
QI1···Ir

J(x+BK , y)−QI1···Ir
J(x, y)

)
= 0 (C.85)

Using the monodromy relation established in item 2, this becomes,

r∑
k=1

(−2πi)k

k!

∑
K

δI1···IkK

∮
AK

dxQIk+1···Ir
J(x, y) = 0 (C.86)

For r = 1, only the value k = 1 contributes and the relation becomes,∑
K

δI1K

∮
AK

dxQJ(x, y) =

∮
AI1

dxQJ(x, y) = 0 (C.87)

Since QJ(x, y) is a single-valued holomorphic (1, 0) form in x the above equation implies

that QJ(x, y) = 0. By induction on the value of r, the integrals over QI1···Ir
J(x, y) vanish at

arbitrary rank r ≥ 1, ∮
AK

dxQI1···Ir
J(x, y) = 0 (C.88)

Since QI1···Ir
J(x, y) is a single-valued holomorphic (1, 0) form in x, it must vanish identically.

This completes the proof of Theorem 9.2.
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C.8 Proof of Theorem 9.4

The first step in proving the vanishing of the combinations U I1···Ir(x, y) in (9.19) is to evaluate

their monodromies in x and y. The A monodromies in both points vanish since those of

χI1···Ir(x, y) do, and the B monodromies can be assembled from the following consequence

of the monodromies in (9.9),

∂yχ
I1···Ir(x+BL, y) = ∂yχ

I1···Ir(x, y) +
r∑

k=1

(−2πi)k

k!
δI1···IkL ∂yχ

Ik+1···Ir(x, y)

∂xχ
Ir···I1(y, x+BL) = ∂xχ

Ir···I1(y, x) +
r∑

k=1

(2πi)k

k!
δ
I1···Ik−1

L ∂xχ
Ir···Ik(y, x) (C.89)

The resulting expression for the B monodromy of U I1···Ir(x, y) in x allows us to recombine

the terms of schematic form ∂yχ(x, y) and ∂xχ(y, x) to lower-rank instances of (9.19),

U I1···Ir(x+BL, y) = U I1···Ir(x, y) +
r∑

k=1

(−2πi)k

k!
δI1···IkL U Ik+1···Ir(x, y) (C.90)

The swapping identity U I1···Ir(x, y) = −(−)rU Ir···I1(y, x) which is evident from (9.19) simi-

larly organizes the B monodromy of U I1···Ir(x, y) in y into lower-rank combinations U .

The second step in proving Theorem 9.4 is to demonstrate holomorphicity of U I1···Ir(x, y)

in x, y. According to the discussion around (9.8), the only poles as y → x occur in χI1···Ir(x, y)

at rank r = 0. Hence, all of ∂yχ
I1···Ir(x, y) and thus U I1···Ir(x, y) at r ≥ 1 are non-singular as

y → x. At rank r = 0 in turn, we have a double pole in,

∂yχ(x, y) = −
1

(x−y)2
+ reg (C.91)

where simple poles are absent since χ(x, y) does not exhibit any logarithmic terms log(x−y).
Nevertheless, these double poles cancel out from the combination,

U(x, y) = ∂yχ(x, y)− ∂xχ(y, x) (C.92)

in (9.19) and we have established holomorphicity of U I1···Ir(x, y) as y → x at any rank

r ≥ 0. The monodromies (C.90) then imply that U I1···Ir(x, y) are regular when x and y are

in distinct fundamental domains of Σ.

In order to conclude the proof of Theorem 9.4, we apply Cauchy’s theorem in the absence
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of poles (as established in the previous step),

0 =

∮
C

dxU I1···Ir(x, y) =
∑
K

∮
AK

dx
(
U I1···Ir(x+BK , y)− U I1···Ir(x, y)

)
=

r∑
k=1

(−2πi)k

k!
δI1···IkL

∑
K

∮
AK

dxU Ik+1···Ir(x, y) (C.93)

using the decomposition of the boundary C of the fundamental domain for Σ in (C.83) and

the B monodromies (C.90) in passing to the second and third line, respectively. At rank

r = 1, (C.93) specializes to
∮
AK U(x, y) = 0 which, together with holomorphicity and single-

valuedness of U(x, y), implies the vanishing U(x, y) = 0. By induction on the value on r,

one can then successively show that the analogous AK periods vanish at arbitrary rank,∮
AK

dxU I1···Ir(x, y) = 0 (C.94)

which, together with its holomorphicity and single-valuedness, implies the vanishing of the

respective U I1···Ir(x, y).
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D Recursive construction of Fay identities

This appendix introduces two constructive methods to derive Fay identities via iterated

convolutions of the tensorial weight-two identity (6.2). In this way, the non-constructive

proofs of Theorems 6.2 and 6.3 in Appendices C.2 and C.4 are complemented by a recursive

construction that was initially used to propose the general form of the Fay identities (6.11)

and (6.15) before they were rigorously established.

The first method, which is described in sections D.1 and D.2, is the more general one

but suffers from inefficiencies in certain cases specified below. The second method, which is

described in sections D.3 and D.4, is presented in less generality but offers a targeted fix for

the shortcoming of the first method.

D.1 A first method applied to weight three

In order to illustrate the first method to generate Fay identities at increasing weight, we

evaluate the auxiliary integral,

HIM
K(x, y, z) =

∫
Σ

d2u ω̄I(u)fM
J(x, u)f

J
L(y, u)f

L
K(u, z) (D.1)

in two different ways. In both cases, we will use the following convolution identities which

are straightforward consequences of (3.10), (3.11) and (3.15),∫
Σ

d2u ω̄I(u)f
−→
QR

K(x, u)f
−→
P

J(u, a) = −δRKf
−→
QI
−→
P

J(x, a) (D.2)∫
Σ

d2u ω̄I(u)f
−→
QR

K(x, u)ωJ(u) = δIJf
−→
QR

K(x, b)− δRKf
−→
QI

J(x, b)

where
−→
P ̸= ∅, and the second line involves an arbitrary point b ∈ Σ.

(i) bring the first two factors fM
J(x, u)f

J
L(y, u) in the integrand of (D.1) into a u-reduced

form (see section 3.6) using (6.2) and then integrate term by term via (D.2)

HIM
K(x, y, z) =

∫
Σ

d2u ω̄I(u)
(
fM

J(y, x)f
J
L(x, u) + fM

J(x, y)f
J
L(y, u) (D.3)

+ ωJ(x)f
JM

L(y, u) + ωJ(y)f
JM

L(x, u) + ωJ(x)f
MJ

L(y, x)
)
fL

K(u, z)

= −fM
J(y, x)f

IJ
K(x, z)− fM

J(x, y)f
IJ

K(y, z)

− ωJ(x)f
JIM

K(y, z)− ωJ(y)f
JIM

K(x, z)

119



(ii) bring the last two factors fJ
L(y, u)f

L
K(u, z) in the integrand of (D.1) into a u-reduced

form using (6.2) and then integrate term by term via (D.2)

HIM
K(x, y, z) =

∫
Σ

d2u ω̄I(u)fM
J(x, u)

(
fJ

L(y, z)f
L
K(u, z)− fJ

L(u, y)f
L
K(y, z)

− ωL(y)f
LJ

K(u, z)− ωL(y)f
JL

K(u, y)− ωL(u)f
LJ

K(y, z)
)

(D.4)

= −fM
J(y, z)f

IJ
K(x, z) + f IM

J(x, y)f
J
K(y, z) + ωJ(y)f

IMJ
K(x, y)

+ ωJ(y)f
IJM

K(x, z) + f I
J(x, b)f

JM
K(y, z)− fM

J(x, b)f
IJ

K(y, z)

Equating the two representations of HIM
K(x, y, z) obtained from (i) and (ii) yields a weight-

three Fay identity, based on the weight-two input (6.2). Setting the arbitrary point in (D.4)

to b = y cancels the second term in the third line of (D.3), and we arrive at

− fM
J(y, x)f

IJ
K(x, z)− ωJ(x)f

JIM
K(y, z)− ωJ(y)f

JIM
K(x, z)

= −fM
J(y, z)f

IJ
K(x, z) + f IM

J(x, y)f
J
K(y, z) + f I

J(x, y)f
JM

K(y, z)

+ ωJ(y)f
IMJ

K(x, y) + ωJ(y)f
IJM

K(x, z) (D.5)

Solving this identity for fM
J(y, z)f

IJ
K(x, z) then reproduces the first example in (6.13).

D.2 A first method applied to higher weight

The key idea in the above derivation carries over to arbitrary weight: Adapt the above

methods (i) and (ii) to the higher-weight generalization of the weight-three integral in (D.1)

HI,
−→
M,
−→
P ,
−→
Q

K(x, y, z) =

∫
Σ

d2u ω̄I(u)f
−→
M

J(x, u)f
−→
P J

L(y, u)f
−→
QL

K(u, z) (D.6)

For each choice of the multi-indices
−→
M,
−→
P and

−→
Q , one can derive a higher-weight Fay identity

from the auxiliary integral (D.6) by equating two methods of reducing the number of u-

dependent factors in the integrand:

(i) bring the first two factors f
−→
M

J(x, u)f
−→
P J

L(y, u) into a u-reduced form using lower-weight

identities for repeated scalar points, see section 6.4

(ii) bring the last two factors f
−→
P J

L(y, u)f
−→
QL

K(u, z) into a u-reduced form using lower-

weight identities for repeated one-form points, see section 6.5

In both cases, the integration over u can be performed term by term via (D.2) after applying

the Fay identities of (i) and (ii).
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We shall now illustrate to what extent the weight-three Fay identity (D.5) gives access

to weight-four Fay identities. While (D.1) is the only weight-three integral amenable to the

method of this section, there are three weight-four instances of (D.6):

HI,M,∅,Q
K(x, y, z) ↔ need Fay for fM

J(x, u)f
J
L(y, u) & fJ

L(y, u)f
QL

K(u, z)

HI,MN,∅,∅
K(x, y, z) ↔ need Fay for fMN

J(x, u)f
J
L(y, u) & fJ

L(y, u)f
L
K(u, z)

HI,M,P,∅
K(x, y, z) ↔ need Fay for fM

J(x, u)f
PJ

L(y, u) & fPJ
L(y, u)f

L
K(u, z)

Two of the required Fay identities (for fM
J(x, u)f

J
L(y, u) and for fJ

L(y, u)f
L
K(u, z)) are

of weight two and again boil down to relabelings of (6.2). The remaining four required Fay

identities have weight three,

(a) fJ
L(y, u)f

QL
K(u, z) (c) fM

J(x, u)f
PJ

L(y, u)

(b) fMN
J(x, u)f

J
L(y, u) (d) fPJ

L(y, u)f
L
K(u, z) (D.7)

Both of (a) and (c) are available from relabelings of (D.5), namely (a) by solving for the

unique term with two x-dependent factors and relabeling x → u and (c) by solving for the

unique term with two z-dependent factors and relabeling z → u. The Fay identity (b) can

also be extracted from (D.5) by applying the matrix commutator identity,

fM
J(y, z)f

IJ
K(x, z) = fJ

K(y, z)f
IM

J(x, z)

−fJ
K(y, a)f

IM
J(x, b) + fM

J(y, a)f
IJ

K(x, b) (D.8)

with arbitrary a, b ∈ Σ to the unique repeatedly z-dependent term and relabeling the first

term fJ
K(y, z)f

IM
J(x, z) on the right side of (D.8) to match the names of the indices and

variables of the target fMN
J(x, u)f

J
L(y, u) in (b).

Finally, the term fPJ
L(y, u)f

L
K(u, z) in (d) may share the form degrees with the term

fJ
L(y, u)f

QL
K(u, z) in (a) but crucially differs from its index structure. This can be seen

from the fact that the bilinear terms in G are given by δJK∂yGP (y, u)∂uG(u, z) for (d) and

δJK∂yG(y, u)∂uGQ(u, z) for (a), where the repeated point u enters the weight-two factors

∂yGP (y, u) and ∂uGQ(u, z) with a different form degree. In principle, this could be fixed by

inserting separate permutations of (D.5) under x↔ y into one another. However, we refrain

from spelling out this cumbersome workaround and take the complication in deriving the

Fay identity for (d) as a motivation to introduce a separate method in the next section.

The simplifications of auxiliary integrals (D.6) at various weights ≤ 6 benefitted from the

following method to modify the position of the upper contracted index J in the second factor

of f
−→
I
J(a, x)f

···J ···
K(b, c). Even though the techniques of section 6.6 allow us to reformulate

Fay identities without any index contractions, the identity (D.9) below offers convenient
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shortcuts in the recursive construction of Fay identities. The key realization which drives

the rerouting of contracted indices is that the antisymmetrized combination on the left

side of,

f
−→
I P

J(a, x)f
−→
AJ
−→
BQ
−→
C

K(b, c)− f
−→
I Q

J(a, x)f
−→
AP
−→
BJ
−→
C

K(b, c) (D.9)

= f
−→
I P

J(a, y)f
−→
AJ
−→
BQ
−→
C

K(b, c)− f
−→
I Q

J(a, y)f
−→
AP
−→
BJ
−→
C

K(b, c)

does not depend on the point x. That is why this expression is equated to its relabeling

x→ y in the second line. Applications to Fay identities arise if one of b or c coincides with

x on the left side, so the two terms on the right side no longer exhibit the repeated point

x. As a net effect of (D.9) in these cases, terms with the upper contracted index J in the

position of f
−→
AJ
−→
BQ
−→
C

K(b, c) are traded for others with J in an arbitrary different position

f
−→
AP
−→
BJ
−→
C

K(b, c) (where some of
−→
A ,
−→
B or

−→
C may be empty). For instance, (D.9) translates

the Fay identity for fM
J(y, z)f

IJ
K(x, z) in the first line of (6.13) into,

fM
J(y, z)f

JI
K(x, z) = fM

J(y, x)f
JI

K(x, z) + fM
J(x, y)f

JI
K(y, z) + fMI

J(x, y)f
J
K(y, z)

+ ωJ(x)f
JMI

K(y, z) + ωJ(y)f
(M�J)I

K(x, z) + ωJ(y)f
MIJ

K(x, y)
(D.10)

with J ↔ I swapped in the second factor. In this way, lower-weight Fay identities relevant

to the two evaluation strategies (i) and (ii) of the auxiliary integral (D.6) can be brought

into the most opportune form.

D.3 A second method applied to weight three

We shall next present an independent method to construct Fay identities from convolutions

of lower-weight instances which makes use of the auxiliary identity for
−→
P ̸= ∅,∫

Σ

d2x ω̄I(x)∂uG
−→
Q (u, x)f

−→
P

J(x, a) = f
−→
QI
−→
P

J(u, a)∫
Σ

d2x ω̄I(x)∂uG
−→
Q (u, x)ωJ(x) = ∂uΦ

−→
QI

J(u) (D.11)

derived from the trace of (D.2) in R,K. As a first example, we apply (D.11) to perform the

following integral in two different ways:

ĤIM
K(u, y, z) =

∫
Σ

d2x ω̄I(x)∂uG(u, x)fM
J(y, x)f

J
K(x, z) (D.12)
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(i) bring the last factors fM
J(y, x)f

J
K(x, z) into an x-reduced form using the x↔ y image

of the weight-two Fay identity (6.2),

ĤIM
K(u, y, z) =

∫
Σ

d2x ω̄I(x)∂uG(u, x)
(
fM

J(y, z)f
J
K(x, z)− fM

J(x, y)f
J
K(y, z)

− ωJ(y)f
MJ

K(x, y)− ωJ(y)f
JM

K(x, z)− ωJ(x)f
JM

K(y, z)
)

= fM
J(y, z)f

IJ
K(u, z)− f IM

J(u, y)f
J
K(y, z)− ωJ(y)f

IMJ
K(u, y)

− ωJ(y)f
IJM

K(u, z)− fJM
K(y, z)∂uΦ

I
J(u) (D.13)

(ii) bring the first and the last factor ∂uG(u, x)fJ
K(x, z) into an x-reduced form using (6.2)

when the middle term contributes fM
J(y, x)→ −δMJ ∂yG(y, x),

ĤIM
K(u, y, z) =

∫
Σ

d2x ω̄I(x)∂uG(u, x)
(
∂yΦ

M
J(y)f

J
K(x, z)− ∂yG(y, x)fM

K(x, z)
)

= ∂yΦ
M

J(y)f
IJ

K(u, z)

+

∫
Σ

d2x ω̄I(x)∂yG(y, x)
(
fM

J(u, x)f
J
K(x, z)− ∂uΦ

M
J(u)f

J
K(x, z)

)
= ∂yΦ

M
J(y)f

IJ
K(u, z)− ∂uΦ

M
J(u)f

IJ
K(y, z)+ ĤIM

K(y, u, z) (D.14)

In the first step, we have rewritten −∂uG(u, x)fM
K(x, z) as fM

J(u, x)f
J
K(x, z) −

∂uΦ
M

J(u)f
J
K(x, z). In passing to the last line, the y ↔ u image ĤIM

K(y, u, z) of

the integral (D.12) has been identified from the factors ∂yG(y, x)fM
J(u, x)f

J
K(x, z) in

the integrand.

When equating the two expressions for ĤIM
K(u, y, z) in (i) and (ii), the y ↔ u image

ĤIM
K(y, u, z) in (D.14) is understood to be evaluated through the five-term expressions on

the right side of (D.13) with y and u interchanged:

fM
J(y, z)f

IJ
K(u, z)− f IM

J(u, y)f
J
K(y, z)− ωJ(y)f

IMJ
K(u, y)

− ωJ(y)f
IJM

K(u, z)− fJM
K(y, z)∂uΦ

I
J(u)

= ∂yΦ
M

J(y)f
IJ

K(u, z)− ∂uΦ
M

J(u)f
IJ

K(y, z)

+ fM
J(u, z)f

IJ
K(y, z)− f IM

J(y, u)f
J
K(u, z)− ωJ(y)f

IMJ
K(y, u)

− ωJ(u)f
IJM

K(y, z)− fJM
K(u, z)∂yΦ

I
J(y) (D.15)

One can simultaneously uplift the ∂Φ-tensors on both sides to f -tensors ∂uΦ
I
J(u)→f I

J(u, a),

∂uΦ
M

J(u) → fM
J(u, a) and ∂yΦ

M
J(y) → fM

J(y, b), ∂yΦ
I
J(y) → f I

J(y, b) with arbitrary

a, b ∈ Σ since the corresponding ∂uG(u, a) and ∂yG(y, b) cancel. Setting a, b → z leads to
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cancellations of four terms, and one arrives at the following weight-three Fay identity with

manifest antisymmetry in x↔ y,

0 = ωJ(x)f
IJM

K(y, z)− ωJ(y)f
IJM

K(x, z)

+ ωJ(x)f
IMJ

K(y, x)− ωJ(y)f
IMJ

K(x, y)

+ f IM
J(y, x)f

J
K(x, z)− f IM

J(x, y)f
J
K(y, z)

+ f I
J(y, z)f

JM
K(x, z)− f I

J(x, z)f
JM

K(y, z) (D.16)

which is in fact equivalent to (6.18). Once the third term ωJ(x)f
IMJ

K(y, x) on the right

side is eliminated through the weight-three interchange identity of Theorem 5.2, the fifth one

f IM
J(y, x)f

J
K(x, z) is the only instance of the repeated point x. Upon solving for the fifth

term f IM
J(y, x)f

J
K(x, z) and relabeling points and indices, the Fay identity (D.16) provides

the missing u-reduced rewriting of the term (d) in (D.7). The trace component δKM of (D.16)

eliminates the repeated appearance of x in ∂yGI(y, x)∂xG(x, z) whereas the the previous

method provided the analogous elimination for ∂yG(y, x)∂xGI(x, z) via (D.5), which has a

different form degree of x in the weight-two function. This illustrates the synergy between

the method of section D.2 and the alternative method of the present section that we shall

next generalize to higher weight.

D.4 A second method applied to higher weight

The higher-weight generalization of the method in the previous section D.3 relies on the

following variant of the integral (D.12):

ĤI,
−→
QM

K(u, y, z) =

∫
Σ

d2x ω̄I(x)∂uG(u, x)f
−→
QM

J(y, x)f
J
K(x, z) (D.17)

We deliberately introduce less multi-indices than in the earlier family HI,
−→
M,
−→
P ,
−→
Q

K(x, y, z) of

auxiliary integrals in (D.6) to demonstrate that the present method is recursive in weight.

The mechanism to derive new Fay identities is again to equate the evaluations of the integral

(D.17) using two different lower-weight Fay identities

(i) bring the last two factors f
−→
QM

J(y, x)f
J
K(x, z) into an x-reduced form using Fay identi-

ties obtained from the same procedure at lower weight (see below why this is possible)

and integrate the resulting expression term by term via (D.11)

(ii) bring the product ∂uG(u, x)fJ
K(x, z) of the first and the last factor into an x-reduced

form when the middle term contributes f
−→
QM

J(y, x) → −δMJ ∂yG
−→
Q (y, x); regardless on
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the choice of
−→
Q , this solely requires the weight-two Fay identity (6.2):

ĤI,
−→
QM

K(u, y, z) =

∫
Σ

d2x ω̄I(x)∂uG(u, x)
(
∂yΦ

−→
QM

J(y)f
J
K(x, z)− ∂yG

−→
Q (y, x)fM

K(x, z)
)

= ∂yΦ
−→
QM

J(y)f
IJ

K(u, z) (D.18)

+

∫
Σ

d2x ω̄I(x)∂yG
−→
Q (y, x)

(
fM

J(u, x)f
J
K(x, z)− ∂uΦ

M
J(u)f

J
K(x, z)

)
= ∂yΦ

−→
QM

J(y)f
IJ

K(u, z)− ∂uΦ
M

J(u)f
−→
QIJ

K(y, z)

+

∫
Σ

d2x ω̄I(x)∂yG
−→
Q (y, x)

(
fM

J(u, z)f
J
K(x, z)− fM

J(x, u)f
J
K(u, z)

− ωJ(u)f
MJ

K(x, u)− ωJ(u)f
JM

K(x, z)− ωJ(x)f
JM

K(u, z)
)

The rewriting −∂uG(u, x)fM
K(x, z) = fM

J(u, x)f
J
K(x, z)−∂uΦ

M
J(u)f

J
K(x, z) in the

first step is identical to that in (D.14). In the last step, the weight-two Fay identity

(6.2) leads to an x-reduced parenthesis multiplying ∂yG
−→
Q (y, x), so we can perform the

x-integral for each term via (D.11):

ĤI,
−→
QM

K(u, y, z) = ∂yΦ
−→
QM

J(y)f
IJ

K(u, z)− ∂uΦ
M

J(u)f
−→
QIJ

K(y, z) (D.19)

+ fM
J(u, z)f

−→
QIJ

K(y, z)− f
−→
QIM

J(y, u)f
J
K(u, z)

− ωJ(u)f
−→
QIMJ

K(y, u)− ωJ(u)f
−→
QIJM

K(y, z)− ∂yΦ
−→
QI

J(y)f
JM

K(u, z)

For a given multi-index
−→
Q = Q1Q2 · · ·Qr of length r, the next step is to equate (D.19)

with the outcome of integrating the weight-(r+2) Fay identity for f
−→
QM

J(y, x)f
J
K(x, z)

in (i) against
∫
Σ
d2x ω̄I(x)∂uG(u, x). We shall argue in two steps why this is guaranteed

to yield a Fay identity of weight (r+3) that u-reduces f
−→
QIM

J(y, u)f
J
K(u, z) for arbitrary−→

Q : First, none of the terms in the expression for (D.17) due to (i) can involve a repeated

appearance of u by inspection of the right side of (D.11). Second, after applying the inter-

change identities of Theorem 5.2 to the term ωJ(u)f
−→
QIMJ

K(y, u) on the right side of (D.19),

the only repeatedly u-dependent term in (D.19) and hence the entire Fay identity due to

(i) = (ii) is f
−→
QIM

J(y, u)f
J
K(u, z). By repeating this derivation for different lengths r of−→

Q = Q1Q2 · · ·Qr, one arrives at an all-weight family of Fay identities that eliminate the

repeated point x in f
−→
I M

J(y, x)f
J
K(x, z) for arbitrary

−→
I .

The discussion below (D.7) identified the Fay identity (d) for f IJ
L(y, u)f

L
K(u, z) as a bot-

tleneck in applying the method of section D.2 to all weight-four cases. Also for higher-weight

instances of the auxiliary integral (D.6), the required Fay identities for f
−→
I J

L(y, u)f
L
K(u, z)

turn out to be most difficult to derive from the method of section D.2. Hence, the recursive
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generation of Fay identities for f
−→
I J

L(y, u)f
L
K(u, z) in the present section complements the

earlier method by resolving a major obstacle in its systematic higher-weight application.

Given a u-reduction of f
−→
P J

L(y, u)f
L
K(u, z) at fixed

−→
P , the method of section D.2 was

found to recursively generate higher-weight identities for f
−→
P J

L(y, u)f
Q1···QrL

K(u, z) in sev-

eral examples, adding indices to the second factor. The underlying auxiliary integrals take

the form of HI,M,
−→
P ,Q1···Qr

K(x, y, z) at fixed
−→
P and increasing length r of

−→
Q = Q1 · · ·Qr.

One can see from the following reasoning that the Fay identity for fM
J(x, u)f

−→
P J

L(y, u)

required in the rewriting (i) of HI,M,
−→
P ,Q1···Qr

K(x, y, z) integrals is readily available: First,

the sequence HI,M,∅,Q1···Qr
K(x, y, z) at empty

−→
P can be shown to generate Fay identities for

fJ
L(y, u)f

−→
QL

K(u, z) at all weights. Second, by the observation in section 6.4.3, these Fay

identities involving one f -tensor of weight one can be solved for the unique repeatedly z-

dependent term fJ
L(y, z)f

−→
QL

K(u, z), see (6.14). Third, relabelings of the indices and points

yield the desired Fay identities for fM
J(x, u)f

−→
P J

L(y, u).

In conclusion, the methods of section D.2 and the present one are found to be in

fruitful symbiosis: The latter method is known to generate all-weight Fay identities for

f
−→
P J

L(y, u)f
L
K(u, z), and the former method is believed to then deduce more general Fay

identities f
−→
P J

L(y, u)f
−→
QL

K(u, z) with additional multi-indices
−→
Q . From the combination of

both methods, we generated a selection of Fay identities at weight ≤ 6 with various choices

of
−→
P and

−→
Q which turned out to be sufficient to propose the general Fay identities (6.11) and

(6.15) as conjectures. In view of the proof of (6.11) and (6.15) in Appendices C.2 and C.4,

we did not attempt a rigorous investigation if the method of this appendix will eventually

construct the Fay identities for f
−→
P J

L(y, u)f
−→
QL

K(u, z) with arbitrary
−→
P and

−→
Q .
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[3] J. Blümlein and C. Schneider, “The SAGEX review on scattering amplitudes Chapter 4:

Multi-loop Feynman integrals,” J. Phys. A 55 (2022) no.44, 443005 [arXiv:2203.13015].

[4] S. Weinzierl, “Feynman Integrals, a Comprehensive Treatment for Students and Re-

searchers,” Springer Cham (2022), ISBN 978-3-030-99557-7.

[5] N. Berkovits, E. D’Hoker, M. B. Green, H. Johansson and O. Schlotterer, “Snowmass

White Paper: String Perturbation Theory,” [arXiv:2203.09099].

[6] D. Dorigoni, M. B. Green and C. Wen, “The SAGEX review on scattering ampli-

tudes Chapter 10: Selected topics on modular covariance of type IIB string amplitudes

and their supersymmetric Yang–Mills duals,” J. Phys. A 55 (2022) no.44, 443011

[arXiv:2203.13021].

[7] E. D’Hoker and J. Kaidi, “Lectures on modular forms and strings,” [arXiv:2208.07242].

[8] C. R. Mafra and O. Schlotterer, “Tree-level amplitudes from the pure spinor super-

string,” Phys. Rept. 1020 (2023), 1-162 [arXiv:2210.14241].

[9] C. Duhr, “Hopf algebras, coproducts and symbols: an application to Higgs boson am-

plitudes,” JHEP 08 (2012), 043 [arXiv:1203.0454].

[10] O. Schlotterer and S. Stieberger, “Motivic Multiple Zeta Values and Superstring Am-

plitudes,” J. Phys. A 46 (2013), 475401 [arXiv:1205.1516].

[11] O. Schnetz, “Graphical functions and single-valued multiple polylogarithms,” Commun.

Num. Theor. Phys. 08 (2014), 589-675 [arXiv:1302.6445].

[12] F. Brown, “Notes on Motivic Periods,” Commun. Num. Theor. Phys. 11 (2017), 557?655

[arXiv:1512.06410].

[13] A. B. Goncharov, “Geometry of Configurations, Polylogarithms, and Motivic Cohomol-

ogy,” Advances in Mathematics 114 (1995), 197-318.

[14] A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes,” Math.

Res. Lett. 5 (1998), 497-516 [arXiv:1105.2076].

[15] A. B. Goncharov, “Multiple polylogarithms and mixed Tate motives,” [arXiv:0103059].

127



[16] F. Brown, “Multiple zeta values and periods of moduli spaces M0,n(R),” Annales Sci.

Ecole Norm. Sup. 42 (2009), 371 [arXiv:math/0606419].

[17] A. Beilinson and A. Levin, “The Elliptic Polylogarithm,” in Proc. of Symp. in Pure

Math. 55 (1994), 123-190.

[18] A. Levin and G. Racinet, “Towards multiple elliptic polylogarithms,”

[arXiv:math/0703237].

[19] F. Brown and A. Levin, “Multiple Elliptic Polylogarithms,” [arXiv:1110.6917].

[20] B. Enriquez and F. Zerbini, “Elliptic hyperlogarithms,” Canad. J. Math. (2025), 1-36

[arXiv:2307.01833].

[21] J. Broedel, C. R. Mafra, N. Matthes and O. Schlotterer, “Elliptic multiple zeta values

and one-loop superstring amplitudes,” JHEP 07 (2015), 112 [arXiv:1412.5535].

[22] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, “Elliptic polylogarithms and iter-

ated integrals on elliptic curves. Part I: general formalism,” JHEP 05 (2018), 093

[arXiv:1712.07089].

[23] J. D. Fay, “Theta Functions on Riemann Surfaces,” Lecture Notes in Math. 352 (1973).

[24] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, “Elliptic symbol calculus:

from elliptic polylogarithms to iterated integrals of Eisenstein series,” JHEP 08 (2018),

014 [arXiv:1803.10256].

[25] J. Broedel, N. Matthes and O. Schlotterer, “Relations between elliptic multiple

zeta values and a special derivation algebra,” J. Phys. A 49 (2016) no.15, 155203

[arXiv:1507.02254].

[26] J. E. Gerken, “Basis Decompositions and a Mathematica Package for Modular Graph

Forms,” J. Phys. A 54 (2021) no.19, 195401 [arXiv:2007.05476].

[27] B. Enriquez, “Analogues elliptiques des nombres multizétas,” Bull. Soc. Math. France

144, (2016), 395–427, [arXiv:1301.3042].

[28] N. Matthes, “Elliptic multiple zeta values,” PhD thesis, Universität Hamburg, 2016.

[29] E. D’Hoker, M. B. Green and P. Vanhove, “On the modular structure of the genus-one

Type II superstring low energy expansion,” JHEP 08, 041 (2015) [arXiv:1502.06698].

[30] E. D’Hoker, M. B. Green, Ö. Gürdogan and P. Vanhove, “Modular Graph Functions,”

Commun. Num. Theor. Phys. 11 (2017), 165-218 [arXiv:1512.06779].

[31] E. D’Hoker and M. B. Green, “Identities between Modular Graph Forms,” J. Number

Theor. 189 (2018), 25-80 [arXiv:1603.00839].

[32] D. Bernard, “On the Wess-Zumino-Witten models on Riemann surfaces,” Nucl. Phys.

B 309 (1988), 145-174.

128



[33] B. Enriquez, “Flat connections on configuration spaces and braid groups of surfaces,”

Advances in Mathematics 252 (2014), 204–226 [arXiv:1112.0864].

[34] B. Enriquez and F. Zerbini, “Construction of Maurer-Cartan elements over configuration

spaces of curves,” [arXiv:2110.09341].

[35] T. Ichikawa, “Higher genus polylogarithms on families of Riemann surfaces,” Nucl.

Phys. B 1013 (2025), 116836 [arXiv:2209.05006].

[36] B. Enriquez and F. Zerbini, “Analogues of hyperlogarithm functions on affine complex

curves,” Publ. Res. Inst. Math. Sci. 61 (2025), no. 4 627-712 [arXiv:2212.03119].

[37] E. D’Hoker, M. Hidding and O. Schlotterer, “Constructing polylogarithms on higher-

genus Riemann surfaces” Commun. Num. Theor. Phys. 19, no.2, 355-413 (2025)

[arXiv:2306.08644].

[38] K. Baune, J. Broedel, E. Im, A. Lisitsyn and F. Zerbini, “Schottky-Kronecker forms and

hyperelliptic polylogarithms,” J. Phys. A 57 (2024) no.44, 445202 [arXiv:2406.10051].

[39] R. Huang and Y. Zhang, “On Genera of Curves from High-loop Generalized Unitarity

Cuts,” JHEP 04 (2013), 080 [arXiv:1302.1023].

[40] A. Georgoudis and Y. Zhang, “Two-loop Integral Reduction from Elliptic and Hyper-

elliptic Curves,” JHEP 12 (2015), 086 [arXiv:1507.06310].

[41] C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, “Motivic geometry of

two-loop Feynman integrals,” Quart. J. Math. Oxford Ser. 75 (2024) no.3, 901-967

[arXiv:2302.14840].

[42] R. Marzucca, A. J. McLeod, B. Page, S. Pögel and S. Weinzierl, “Genus drop in hyper-
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S. Weinzierl, “A Calabi-Yau-to-curve correspondence for Feynman integrals,” JHEP 01

(2025), 030 [arXiv:2404.05785].

[44] E. D’Hoker, M. B. Green and B. Pioline, “Higher genus modular graph functions, string

invariants, and their exact asymptotics,” Commun. Math. Phys. 366 (2019) 927-979

[arXiv:1712.06135].

[45] E. D’Hoker, M. B. Green and B. Pioline, “Asymptotics of the D8R4 genus-two string

invariant,” Commun. Num. Theor. Phys. 13 (2019), 351-462 [arXiv:1806.02691].

[46] E. D’Hoker, C. R. Mafra, B. Pioline and O. Schlotterer, “Two-loop superstring five-

point amplitudes. Part II. Low energy expansion and S-duality,” JHEP 02 (2021), 139

[arXiv:2008.08687].

129



[47] E. D’Hoker, M. Hidding and O. Schlotterer, “Cyclic Products of Higher-Genus Szegö
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