
Orbital Angular Momentum Control of Entanglement in Dual-Cavity Ring
Bose–Einstein Condensates

Muqaddar Abbas1, 2, ∗ and Ghaisud Din2, †

1Department of Basic Teaching and Research, Shenyang Urban Construction University, Shenyang, 110167, China
2Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,

Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices,
School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

(Dated: January 7, 2026)

We study quantum correlations in a system of two optically coupled cavities, each containing
a ring-shaped Bose–Einstein condensate confined in a toroidal potential. The condensates inter-
act with cavity fields through an angular optical lattice generated by degenerate modes carrying
opposite orbital angular momentum (OAM), while photon hopping mediates inter-cavity coupling.
Using a linearized quantum Langevin formalism, we analyze the steady-state covariance matrix and
quantify bipartite along with tripartite entanglement among collective atomic side modes and cavity
fields. We show that OAM and photon hopping provide efficient control over the strength and dis-
tribution of quantum correlations, enabling entanglement between spatially separated condensates.
The robustness of these correlations against thermal effects is examined, revealing enhanced stability
of atom–cavity entanglement compared to purely atomic correlations. Phase-space representations
based on Wigner functions are used to illustrate the steady-state fluctuation dynamics. Our results
establish coupled cavity systems with ring-shaped condensates as a tunable platform for controlled
matter–light correlations.

I. Introduction

Quantum entanglement [1] has become a cornerstone
of modern quantum science and emerging quantum tech-
nologies [2]. While early experimental realizations fo-
cused on microscopic entities such as single particles and
atoms [2, 3], it is now recognized that entanglement also
manifests in mesoscopic and even macroscopic systems.
Owing to its intrinsically nonclassical character, entan-
glement offers a powerful tool for exploring the funda-
mental structure of quantum theory and for experimen-
tally examining foundational principles of physics [4].

Significant progress toward these goals has been made
in the areas of cavity optomechanics and quantum infor-
mation science [5]. An important early theoretical result
was provided by Vitali et al., who showed that the radi-
ation field inside an optical cavity can become entangled
with the vibrational motion of a macroscopic mechanical
resonator [6]. Building on this work, subsequent inves-
tigations demonstrated the emergence of optomechani-
cal entanglement, as well as the generation of squeezed
mechanical states, underscoring the flexibility of optome-
chanical architectures [7]. As a result, extensive research
has been devoted to understanding the creation, manip-
ulation, and measurement of quantum correlations in op-
tomechanical systems [8–14].

Beyond their importance for fundamental physics, op-
tomechanical systems have attracted considerable inter-
est due to their potential technological impact. Notable
applications include the ultrasensitive detection of weak
forces [15, 16], gravitational-wave observatories [17], the
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design of high-performance mechanical resonators [18],
and detection protocols operating at the single-photon
level [5, 19]. Owing to these capabilities, optomechani-
cal platforms are regarded as strong contenders for next-
generation quantum technologies.

Alongside these advances, Bose–Einstein condensates
(BECs) realized in annular trapping configurations have
emerged as a powerful platform for investigating coher-
ent matter-wave behavior and quantum fluid dynam-
ics [20–23]. In such closed geometries, the requirement
that the condensate wavefunction be single valued im-
poses discrete phase winding numbers, which in turn
lead to the formation of persistent superfluid flows [24].
These circulating currents can exhibit remarkable long-
term stability [25–27], and under appropriate conditions
they give rise to states with larger circulation that are
protected by topology [28]. As a consequence of these
features, ring-shaped BECs have been widely employed
to explore superfluid hydrodynamics [29, 30], implement
matter-wave interferometric schemes [31], develop atom-
tronic circuits [32, 33], and study fermionic superfluid
phases [34–36].

One of the central experimental difficulties in these
platforms is the precise measurement of the conden-
sate’s circulation. The rotational configuration is quan-
tified by the integer phase winding number associated
with the macroscopic wavefunction, and reliable access to
this parameter is crucial for both fundamental investiga-
tions and practical implementations. Standard diagnos-
tic techniques are based on absorption imaging, which is
intrinsically destructive and therefore incompatible with
continuous observation [20]. In addition, characteristic
length scales of the system, including the vortex core and
the radial thickness of the ring, are frequently below the
optical wavelength, making direct detection challenging.
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Consequently, circulation is most often inferred after a
time of flight expansion that magnifies these features [37],
at the cost of losing real-time monitoring and feedback.

To address these challenges, a recently proposed
scheme [38] employs optomechanical interactions to de-
tect and regulate the circulation of a ring-shaped BEC
with minimal disturbance. This strategy allows for con-
tinuous, monitoring of the rotational state while main-
taining atomic confinement. The method is based on
dispersive coupling between atoms and a high-finesse op-
tical cavity mode, such that collective atomic dynam-
ics are encoded in observable properties of the intracav-
ity light field [5]. At the same time, cavity-mediated
radiation-pressure effects provide a route to coherently
influence the atomic motion, enabling feedback-based
control. Compared to previously used approaches, this
technique achieves an improvement in rotational sensitiv-
ity of roughly three orders of magnitude [38]. In addition
to its metrological advantages, the same light–matter in-
teraction supports the emergence of optomechanical en-
tanglement between optical and matter-wave degrees of
freedom, thereby opening new possibilities for manipu-
lating persistent superfluid currents [5, 38].

Building on these recent developments, we explore the
emergence of quantum correlations in a system of coupled
optical cavities incorporating ring-shaped BECs. The
setup consists of two cavities linked through photon tun-
neling, each hosting a condensate confined in a toroidal
potential and prepared in a persistent current state. One
of the cavities is coherently driven by two degenerate
optical modes with opposite orbital angular momentum
(OAM), giving rise to an effective angular optical lattice
that interacts with the condensate’s azimuthal degrees
of freedom. We derive the linearized equations govern-
ing the system dynamics and evaluate steady-state quan-
tum fluctuations using continuous-variable criteria. The
presence of both bipartite and multipartite entanglement
involving the cavity fields and collective atomic excita-
tions is systematically investigated as a function of key
experimental parameters, such as cavity detuning, inter-
cavity photon coupling, OAM, and thermal effects. Our
analysis reveals that OAM serves as an efficient control
knob for tailoring quantum correlations and mediating
entanglement between spatially separated condensates,
underscoring the promise of coupled cavity–BEC plat-
forms for the realization of scalable quantum network
architectures.

The structure of the paper is as follows. In Sec. II, we
describe the physical model and derive the corresponding
Hamiltonian. The main theoretical results are presented
and analyzed in Sec. III. Concluding remarks and per-
spectives for future work are provided in Sec. IV.

II. MODEL AND HAMILTONIAN

We consider the two-cavity configuration depicted in
Fig. 1. At the core of the setup is a BEC of alkali atoms,
such as sodium, confined within a ring-shaped trapping
potential. The toroidal trap is placed symmetrically at

the center of each optical cavity and can be realized using
well-established experimental methods [39–42].
For an individual atom of mass m, the confining po-

tential expressed in cylindrical coordinates (ρ, z) is given
by

U(ρ, z) =
1

2
mω2

ρ(ρ−R)2 +
1

2
mω2

zz
2, (1)

where R denotes the characteristic radius of the torus,
while ωρ and ωz represent the trapping frequencies in
the radial and axial directions, respectively.
This geometry effectively decouples the azimuthal an-

gle ϕ from the radial and axial motion. We further as-
sume that the condensate occupies the ground state asso-
ciated with the radial and axial confinements during the
entire dynamics, such that the system’s nontrivial evo-
lution is restricted to the azimuthal degree of freedom,
which experiences no external trapping.
For experimentally realistic parameters, the dynamics

along the azimuthal direction can be accurately described
within an effective one-dimensional framework [42]. This
approximation remains valid even in situations where
residual three-dimensional effects are present [20, 43, 44].
The one-dimensional regime is attained provided that the
total number of atoms n satisfies the condition [41]

n <
4
√
πR

3ana

(
ωρ

ωz

)1/2

, (2)

where ana denotes the s-wave scattering length of sodium
atoms.
Manipulation of the condensate is achieved by cou-

pling it to coherent optical fields supported by the cavity.
These fields originate from a common laser source and
are tuned to the same frequency, but possess opposite
OAM ±lℏ. Their superposition generates a periodically
modulated intensity profile along the azimuthal direction,
forming an angular optical lattice, as observed experi-
mentally [45]. By detuning the fields to the blue side of
the relevant atomic transition, dissipative processes such
as absorption and spontaneous emission are strongly sup-
pressed, leaving conservative dipole (AC Stark) interac-
tions as the primary coupling mechanism.
The kinetic energy associated with the rotational mo-

tion of the atoms is given by

HR,K = − ℏ
2Ia

∫ 2π

0

ψ†(ϕ)
d2

dϕ2
ψ(ϕ) dϕ, (3)

where Ia denotes the atomic moment of inertia about the
cavity axis.
To describe the atomic field, we adopt the mode ex-

pansion

ψ(ϕ) =
eiLpϕ

√
2
cp +

ei(Lp+2l)ϕ

√
2

c+ +
ei(Lp−2l)ϕ

√
2

c−, (4)

ψ†(ϕ) =
e−iLpϕ

√
2

c†p +
e−i(Lp+2l)ϕ

√
2

c†+ +
e−i(Lp−2l)ϕ

√
2

c†−.(5)
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TABLE I. Model parameters and symbols used in our numerical simulations.

Symbol Meaning Value used / definition

m atomic mass m = 23 amu

R ring radius R = 12 µm

ωρ radial trap frequency ωρ/2π = 42 Hz

ωz axial trap frequency ωz/2π = 42 Hz

U(ρ, z) trap potential U(ρ, z) = 1
2
mωρ(ρ−R)2 + 1

2
mωzz

2

n atom number n = 104

Lp winding number Lp = 1

Ia moment of inertia Ia = mR2

g 1D interaction strength g =
2ℏωρaNa

R
l OAM (topological charge) lattice term ∝ cos2(lϕ)

ωo cavity resonance frequency ωo/2π = 1015 Hz

γo cavity linewidth γo/2π = 2 MHz

Pin input drive power Pin = 12.4 fW

ηlc drive amplitude ηlc =
√

Pinγo/(ℏωo)

∆a atom-light detuning ∆a/2π = 4.7 GHz

U0 single-photon light shift u0 = g2a/∆a

∆̃ effective cavity detuning ∆̃ = ∆o − u0n/2

ωc upper side-mode frequency ωc =
ℏ(Lp + 2l)2

2I

ωd lower side-mode frequency ωd =
ℏ(Lp − 2l)2

2I

G linearized coupling constant G =
u0

√
n

2
√
2
; G/2π = 7.5 kHz

γm side-mode damping γm/2π = 0.8 Hz

∆0 radiation-pressure-shifted detuning -

T temperature T = 10 nK

Substituting this ansatz into the rotational kinetic
Hamiltonian yields

HR,K =
πℏ2

2Ia

[
L2
p c

†
pcp + (Lp + 2l)2 c†+c+

+(Lp − 2l)2 c†−c−

]
. (6)

Introducing collective excitation operators through

√
n c = c†pc+,

√
nd = c†pc−,

the kinetic Hamiltonian can be recast as

HR,K =
ℏ2(Lp + 2l)2

2Ia
c†c+

ℏ2(Lp − 2l)2

2Ia
d†d. (7)

We identify these excitations as particle-like modes of
the condensate with frequencies

ωc =
ℏ(Lp + 2l)2

2Ia
, ωd =

ℏ(Lp − 2l)2

2Ia
,

such that the kinetic energy takes the compact form

HR,K = ℏωcc
†c+ ℏωdd

†d. (8)

The interaction between the atoms and the cavity-
generated angular lattice is described by

HA,L =

∫ 2π

0

ψ†(ϕ) ℏu0 cos2(lϕ) a†aψ(ϕ) dϕ. (9)

Applying the same mode expansion leads to

HA,L =
ℏu0n
2

a†a+
ℏu0
4

a†a
(
c†pc+ + c†+cp

+c†pc− + c†−cp

)
. (10)

Expressing this Hamiltonian in terms of the collective
operators defined above, we obtain

HA,L =
ℏu0n
2

a†a+
ℏu0

√
2n

4
a†a xc

+
ℏu0

√
2n

4
a†a xd, (11)

where the position quadratures are defined as
√
2xc =

c† + c and
√
2xd = d† + d.

Atomic collisions are incorporated through the contact
interaction

HInt =
g

2

∫ 2π

0

ψ†(ϕ)ψ†(ϕ)ψ(ϕ)ψ(ϕ) dϕ, (12)
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with g characterizing the interaction strength.
Using the truncated mode expansion and collective op-

erators, this term reduces to

HInt = ℏg′
[
n2 − n+ c†cc†c− c†c+ d†dd†d− d†d

+4n(c†c+ d†d) + 2n(cd† + c†d)

+4c†cd†d
]
. (13)

Expressed in terms of the quadrature variables√
2Xj = j† + j and

√
2Yj = i(j† − j) with j = c, d,

the interaction Hamiltonian becomes

HInt = ℏg′
[
N(Xc + iYc)(Xd + iYd) + h.c.

+2N(X2
c + Y 2

c − 1) + (X2
d + Y 2

d − 1)

+(X2
c + Y 2

c − 1)(X2
d + Y 2

d − 1)

+
1

4
(X2

c + Y 2
c − 1)(X2

c + Y 2
c − 3)

+
1

4
(X2

d + Y 2
d − 1)(X2

d + Y 2
d − 3)

]
. (14)

The effective interaction strength is given by

g′ =
ωρanana
2πR

, (15)

where ωρ is the radial trapping frequency, R denotes the
torus radius, and ana is the s-wave scattering length for
sodium atoms.

In the frame co-rotating with the driving laser, the ef-
fective description of the azimuthal dynamics of the con-
densate reduces to a one-dimensional interacting many-
body Hamiltonian [46, 47]. The total Hamiltonian of the
system reads

H =

2∑
i=1

[
− ℏ

2Iai

∫ 2π

0

ψ†
i (ϕi)

d2

dϕ2i
ψi(ϕi) dϕi

+

∫ 2π

0

ψ†
i (ϕi) ℏu0i cos

2(lϕi) a
†
iai ψi(ϕi) dϕi

+
gi
2

∫ 2π

0

ψ†
i (ϕi)ψ

†
i (ϕi)ψi(ϕi)ψi(ϕi) dϕi − ℏ∆0ia

†
iai

]

+ℏJ(a†1a2 + a1a
†
2)− iℏηlc(ai − a†i ). (16)

As outlined earlier and illustrated schematically in
Fig. 1, the hybrid platform under consideration consists
of several mutually coupled components. Specifically,
photons confined in optical cavities interact with ring-
shaped BECs carrying quantized angular momentum and
trapped in toroidal potentials [38]. Each cavity is driven
by a pair of degenerate modes with opposite OAM ±lℏ,
whose interference produces an angular optical lattice
that couples directly to the azimuthal motion of the con-
densate.

FIG. 1. Schematic of the double-cavity system. Two optical
cavities are coupled via photon hopping with rate J . Each
cavity contains a Bose-Einstein condensate (BEC) confined in
a toroidal (ring) trap of radius R and prepared in a circulating
state with winding number Lp. The first cavity is driven
(probed) by two optical modes carrying opposite OAM ±lℏ.

To proceed, we introduce the canonical quadratures
for the collective atomic excitation modes appearing in
Eqs. (8) and (11),

xci =
c†i + ci√

2
, yci =

ci − c†i
i
√
2
, (17)

xdi =
d†i + di√

2
, ydi =

di − d†i
i
√
2
. (18)

Combining the rotational kinetic energy HR,K, the
atom–lattice interaction HA,L, and the collision-induced
interaction term HInt, the total effective Hamiltonian can
be written as

H =

2∑
i=1

[
ℏωci

2

(
x2ci + y2ci

)
+

ℏωdi

2

(
x2di + y2di

)
+ℏGxcia†iai + ℏGxdia†iai

+2ℏg′ini
(
x2ci + y2ci

)
+ 2ℏg′ini

(
x2di + y2di

)
+2ℏg′ini (xcixdi − yciydi)− ℏ∆̃ia

†
iai

]

+ℏJ(a†1a2 + a1a
†
2) + iℏηlc(a† − a). (19)

In Eq. (19), the driving amplitude is defined as

ηlc =

√
Pin γ0
ℏω0

, (20)
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FIG. 2. Re Eigenvalues of the drift matrix Z as a function of
the index Eigenvalues. The parameters are given in Table:1

where Pin denotes the input laser power and γ0 is the
cavity decay rate.

Within the Bogoliubov framework, the excitation fre-
quencies are renormalized due to two-body atomic inter-
actions, leading to the modified expressions

ω′
ci =

√
ωci

(
ωci + 4g′ini

)
, ω′

di =
√
ωdi

(
ωdi + 4g′ini

)
,

(21)
where the effective interaction parameter is given by

g′i =
gi
4πℏ

, gi =
2ℏωρana

R
. (22)

Here, ana is the s-wave scattering length of sodium atoms,
ωρ is the radial trapping frequency, and R denotes the
radius of the toroidal trap.

The interaction between the condensate side modes
and the cavity field originates from the angular optical
lattice and is characterized by the coupling strength

Gi =
u0i

√
ni

2
√
2
, u0i =

g2ai
∆ai

, (23)

where gai represents the single-atom–single-photon cou-
pling constant and ∆ai is the detuning between the cavity
field and the relevant atomic transition. The correspond-
ing quadrature operators for the side modes are defined
following Ref. [38].

In addition, the cavity detuning appearing in Eq. (16)
is defined as

∆0i = ωl − ω0i, (24)

with ωl and ω0i denoting the laser and cavity resonance

frequencies, respectively. The operators ai and a†i de-
scribe the annihilation and creation of photons in the ith
cavity mode.

To account for dissipation and quantum fluctuations,
we employ the Heisenberg–Langevin formalism [48].
Starting from the total Hamiltonian in Eq. (19), the equa-
tions of motion are linearized around the steady-state
solutions by expressing each operator as the sum of its

mean value and a small fluctuation, i.e.,

xc = x(s)c +∆xc, yc = y(s)c +∆yc,

xd = x
(s)
d +∆xd, yd = y

(s)
d +∆yd,

a = a(s) +∆a.

(25)

The resulting linearized fluctuation equations take the
form

ẋci =
(
ωci + 4g′ini

)
yci − 2g′iniydi, (26)

ẏci = −
(
ωci + 4g′ini

)
xci −Gia

†
iai − 2g′inixdi, (27)

ẋdi =
(
ωdi + 4g′ini

)
ydi − 2g′iniyci, (28)

ẏdi = −
(
ωdi + 4g′ini

)
xdi −Gia

†
iai − 2g′inixci, (29)

and for the cavity fields,

ȧ1 = −γ01
2
a1 + i

[
∆̃1 −G1(xc1 + xd1)

]
a1 − iJa2 + ηlc

+
√
µγ01 a

(in)
1 , (30)

ȧ2 = −γ02
2
a2 + i

[
∆̃2 −G2(xc2 + xd2)

]
a2 − iJa1

+
√
µγ02 a

(in)
2 . (31)

In Eqs. (20)–(25), the operators ϵc, ϵd, and a(in) rep-
resent the input noise terms associated with the atomic
side modes and the cavity fields, respectively. Finally, the
effective detuning for a cavity containing a condensate is
defined as

∆i = ∆̃ai −Gixcis −Gixdis. (32)

The mean thermal occupation numbers of the condensate
side modes at equilibrium are given by

Nci(ωci) =

[
exp

(
ℏωci

kBTai

)
− 1

]−1

, (33)

Ndi(ωdi) =

[
exp

(
ℏωdi

kBTai

)
− 1

]−1

, (34)

where kB denotes the Boltzmann constant and Tai rep-
resents the effective temperature of the atomic environ-
ment.
To describe the quantum fluctuations, we introduce the

cavity-field quadratures

√
2 δxa = δa+ δa†,

√
2 δya = i(δa† − δa). (35)

Substituting these definitions into Eqs. (20)–(25), the lin-
earized Langevin equations for the fluctuations can be
cast into the compact matrix form

u̇(t) = Zu(t) + v(t), (36)

where the individual components explicitly satisfy

δẋci = (ωci + 4g′ini)δyci − 2g′iniδydi, (37)
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FIG. 3. Bipartite entanglement EN as a function of the OAM l1 for different mode pairs: (a) atomic modes xc1 and xd1, (b)
atomic modes xc1 and xd2, (c) atomic mode xc1 and cavity mode xa1, and (d) atomic mode xc1 and cavity mode xa2. The
parameters are chosen as l2 = 10 (dimensionless), Lp1 = Lp2 = 1 (dimensionless), J = 0.2 γ01, atomic mass m = 3.82×10−26 kg,
cavity decay rates γ01 = γ02 = 2π × 106 Hz, radial trap frequency ωρ = 2π × 42Hz, input laser power Pin = 12.4 × 10−15 W,
and optomechanical coupling strengths G1 = G2 = 2π× 7.5× 103 Hz. All remaining parameters are identical to those listed in
Table I.

δẏci = −(ωci + 4g′ini)δxci +Griδyai − 2g′iniδxdi

−γmiδyci + ϵci, (38)

δẋdi = (ωdi + 4g′ini)δydi − 2g′iniδyci, (39)

δẏdi = −(ωdi + 4g′ini)δxdi +Griδyai − 2g′iniδxci

−γmiδydi + ϵdi, (40)

and for the cavity quadratures,

δẋa1 = −∆1δya1 −
γ01
2
δxa1 −Gr1(δxc1 + δxd1) + Jδya2

+
√
γ01 δx

in
a1, (41)

δẏa1 = ∆1δxa1 −
γ01
2
δya1 − Jδxa2 +

√
γ01 δy

in
a1, (42)

δẋa2 = −∆2δya2 −
γ02
2
δxa2 −Gr2(δxc2 + δxd2) + Jδya1

+
√
γ02 δx

in
a2, (43)

δẏa2 = ∆2δxa2 −
γ02
2
δya2 − Jδxa1 +

√
γ02 δy

in
a2. (44)

Here, the effective optomechanical coupling is defined
as

Gri = i
√
2Gais, (45)

with steady-state cavity amplitudes

a1s =
2(γ02 − 2i∆2)ηlc

4J2 + γ01γ02 − 2i(γ02∆1 + γ01∆2)− 4∆1∆2
,

(46)

a2s =
−4iJηlc

4J2 + γ01γ02 − 2i(γ02∆1 + γ01∆2)− 4∆1∆2
.

(47)
The fluctuation vector and noise vector in Eq. (29) are

defined as

u(t) = [δxci, δyci, δxdi, δydi, δxai, δyai]
T , (48)

v(t) = [0, ϵci, 0, ϵdi,
√
γ0iδx

in
ai,

√
γ0iδy

in
ai]

T . (49)

The drift matrix Z follows directly from the coefficients
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FIG. 4. Bipartite entanglement EN of different modes vs Photon hopping J (a) atomic mode xc1 and xd1 (b) atomic mode xc1

and xd2 (c) atomic mode xc1 and cavity mode xa1 (d) atomic mode xc1 and cavity mode xa2. With l1 = 100, l2 = 10. All the
parameters are same in Fig.3.

of the linearized equations and has the general structure

Z =


a11 a12 · · · a1,12
a21 a22 · · · a2,12
...

...
. . .

...

a12,1 a12,2 · · · a12,12

 .

System stability is ensured by choosing the steady-
state cavity amplitudes to be real and verifying that the
real parts of all eigenvalues of Z are negative. Assuming
Gaussian quantum noise with vanishing mean, the steady

state of the fluctuations corresponds to a continuous-
variable Gaussian state fully characterized by the covari-
ance matrix V , whose elements are defined as

Vij =
1

2
⟨ui(t)uj(t′) + uj(t

′)ui(t)⟩. (50)

For a stable system, V satisfies the Lyapunov equation

ZV + V ZT +D = 0, (51)

where the diffusion matrix D is diagonal and takes the
form

D = diag[0,−γm1(2Nc1 + 1), 0,−γm2(2Nd1 + 1), 0,−γm1(2Nc2 + 1), 0,−γm2(2Nd2 + 1),−γ01/2,−γ01/2,−γ02/2,−γ02/2] .
(52)

The Lyapunov equation is solved numerically; how-
ever, owing to the high dimensionality of the resulting
covariance matrix, its explicit analytical form is not re-
ported. To characterize quantum correlations between
different subsystems, we adopt the logarithmic negativ-
ity [49], a standard quantifier of bipartite entanglement.

This measure is defined as

En = max[0,− ln(2η′)] , (53)

where η′ denotes the smallest symplectic eigenvalue of
the partially transposed reduced covariance matrix as-
sociated with the two subsystems under consideration,

obtained as η′ = min eig
∣∣∣iΩ2Ṽ4

∣∣∣.
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FIG. 5. Tripartite entanglement Rτmin of different modes vs OAM l1 and photon hopping J . (a) atomic mode xc1,xd1, and xd2

(b) xc2, xd1, and xa1 with J = 0.2γ01 (c) atomic mode xc1,xd1, and xd2 (d) xc2, xd1, and xa1 with l1 = 100. All the parameters
are same in Fig.3.

In addition to bipartite correlations, our primary focus
is on the emergence of genuine tripartite entanglement.
To this end, we employ the residual contangle Rτ [50,
51], which provides a reliable quantifier of multipartite
entanglement in continuous-variable systems.

For Gaussian states, genuine three-mode entanglement
can be assessed using the minimum residual contangle,
as introduced in Ref. [52]. This approach relies on the
contangle, defined as the square of the logarithmic neg-
ativity, evaluated across all possible bipartitions of the
system.

Specifically, for a three-mode Gaussian state, the en-
tanglement between one mode and the remaining pair
is determined by performing partial transposition on
the corresponding covariance matrix and extracting the
smallest symplectic eigenvalue. The contangle is then
computed for each of the three inequivalent bipartitions.
The genuine tripartite contribution is identified by se-
lecting the minimum of these three bipartite contangles,
rather than subtracting pairwise correlations. For the
present system, this quantity can be written explicitly as

Rmin
τ (xci, xdi, ai) = min

[
Rxci|xdi,ai

τ , Rxdi|xci,ai
τ , Rai|xci,xdi

τ

]
.

(54)

III. Results and discussion

Using experimentally realistic parameters [38, 53–55],
we investigate the emergence and control of quantum cor-
relations in the proposed coupled cavity–BEC system.

A. Stability analysis: eigenvalues of the drift
matrix

The dynamical stability of the linearized system is ex-
amined by analyzing the real parts of the eigenvalues of
the drift matrix Z. Figure 2 shows the spectrum of these
eigenvalues as a function of their index for the parame-
ter set summarized in Table I. The eigenvalue distribu-
tion provides a direct criterion for assessing the stability
of the steady state governed by the quantum Langevin
equations.
The stability confirmed in Fig. 2 validates the lin-

earized Heisenberg–Langevin treatment and ensures that
the covariance matrix obtained from the Lyapunov equa-
tion is well defined. This provides a solid foundation for
the quantitative analysis of bipartite and multipartite en-
tanglement presented in the subsequent sections.

B. Bipartite entanglement versus OAM

Figure 3 shows the dependence of the bipartite entan-
glement EN on the OAM l1 for several combinations of
atomic and cavity modes. The four panels correspond to
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FIG. 6. Bipartite entanglement EN as a function of temperature T for different mode pairs: (a) atomic modes xc1 and xd1,
(b) atomic modes xc1 and xd2, (c) atomic mode xc1 and cavity mode xa1, and (d) atomic mode xc1 and cavity mode xa2. The
parameters are chosen as l2 = 10 (dimensionless), Lp1 = Lp2 = 1 (dimensionless), J = 0.2 γ01, atomic mass m = 3.82×10−26 kg,
cavity decay rates γ01 = γ02 = 2π×106 Hz, radial trapping frequency ωρ = 2π×42Hz, input laser power Pin = 12.4×10−15 W,
and optomechanical coupling strengths G1 = G2 = 2π × 7.5 × 103 Hz. All remaining parameters are the same as those listed
in Table I.
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FIG. 7. Tripartite entanglement Rτmin of different modes vs temperature T . (a) atomic mode xc1,xd1, and xd2 (b) xc2, xd1,
and xa1. All the parameters are same in Fig.3.

the entanglement between (a) the two atomic side modes
of the first ring, xc1 and xd1; (b) the atomic mode of the
first ring, xc1, and the side mode of the second ring, xd2,
belonging to different condensates; (c) the atomic mode
of the first ring, xc1, and the first cavity mode, xa1; and
(d) the atomic mode of the first ring, xc1, and the second

cavity mode, xa2.

As illustrated in Fig. 3(a), the entanglement between
the two side modes of the same condensate is maximal for
small values of l1 and decreases rapidly as l1 increases.
This trend can be attributed to the enhanced spatial
overlap and stronger interactions at low OAM, whereas
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FIG. 8. Wigner function of the different modes of the two cavities. All the parameters are same in Fig.3.

higher l1 values lead to reduced effective coupling due to
the increasing separation of rotational energy levels.

By contrast, Fig. 3(b) shows that entanglement be-
tween atomic modes associated with different conden-
sates appears only within a narrow range of intermediate
l1 values. This behavior reflects the indirect coupling
mechanism between the condensates, which is mediated
by photon hopping and cavity-induced correlations, mak-
ing the resulting entanglement weaker and more sensitive
to variations in OAM.

Figures 3(c) and 3(d) display a qualitatively differ-
ent dependence for the hybrid atomic–cavity entangle-
ment. In these cases, the logarithmic negativity initially
grows with increasing l1, reaches a maximum at mod-
erate OAM, and then slowly decreases at larger l1. The
existence of an optimal l1 indicates a balance between the
enhancement of optomechanical coupling provided by the
angular lattice and the suppression of coherent dynamics
caused by detuning effects at high OAM. Importantly,
the atomic–cavity entanglement is found to be more ro-
bust than purely atomic correlations, emphasizing the
essential role of the optical cavity field in mediating and
sustaining quantum entanglement.

C. Bipartite entanglement versus photon hopping

Figure 4 displays the variation of the bipartite entan-
glement EN with the photon-hopping amplitude J for the
same pairs of modes examined in Fig. 3, with the orbital
angular momenta fixed at l1 = 100 and l2 = 10. Since
photon hopping governs the transfer of photons between
the two cavities, it plays a crucial role in establishing and
modifying inter-cavity quantum correlations.

As shown in Fig. 4(a), the entanglement between the
atomic side modes of the first ring, xc1 and xd1, increases
steadily with |J | and eventually reaches a saturation
value. This behavior indicates that stronger photon tun-
neling amplifies the effective interaction between atomic
modes through enhanced cavity-mediated coupling. A
qualitatively similar dependence is observed in Fig. 4(b)
for the atomic modes xc1 and xd2 belonging to different
condensates, although the overall entanglement remains
weaker due to the spatial separation between the rings.

Figures 4(c) and 4(d) illustrate the dependence of the
entanglement between the atomic mode xc1 and the cav-
ity modes xa1 and xa2 on the photon-hopping strength.
In contrast to the purely atomic case, the entanglement in
these hybrid configurations decreases as |J | increases, at-
taining a minimum around J ≈ 0, and then shows a slight
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recovery at larger hopping amplitudes. This nonmono-
tonic behavior arises from the competition between local
atom–cavity interactions and nonlocal photon exchange
between the cavities. When photon hopping becomes
dominant, correlations tend to spread over the entire sys-
tem, thereby reducing local atomic–cavity entanglement
in favor of more delocalized correlations.

Overall, Fig. 4 emphasizes the dual role of photon hop-
ping as both a mechanism for strengthening and redis-
tributing quantum correlations. By adjusting J , it is pos-
sible to control whether entanglement is predominantly
localized within individual cavities or shared nonlocally
among distant atomic and optical modes.

Taken together, the results presented in Figs. 3 and 4
demonstrate that OAM and photon hopping act as com-
plementary control parameters for tailoring bipartite en-
tanglement in hybrid cavity–BEC platforms. This tun-
ability provides a versatile route toward the realization of
controllable quantum networks based on coupled matter–
light systems.

D. Tripartite entanglement versus OAM and
photon hopping

Figure 5 presents the behavior of the minimum resid-
ual contangle Rmin as a function of the OAM l1 and the
photon-hopping strength J for different combinations of
atomic and cavity modes. The residual contangle quan-
tifies genuine tripartite entanglement, capturing correla-
tions that cannot be reduced to pairwise contributions.

In Fig. 5(a), where the tripartite entanglement among
the first ring condensate atomic modes xc1 as well as
xd1, and second ring condensate atomic mode xd2 is
shown as a function of l1, a pronounced peak appears
at small OAM. As l1 increases, Rmin rapidly decreases
and eventually vanishes. This behavior indicates that
genuine tripartite correlations among atomic modes are
favored when the rotational states are closely spaced,
while increasing l1 suppresses collective coherence due
to enhanced energy mismatch.

Figure 5(b) illustrates the tripartite entanglement
shared between the second condensate atomic mode
xc2 and the hybrid pair of first atomic condensate
and cavity modes xd1 and xa1 for fixed photon hop-
ping J = 0.2γ01. In this case, Rmin initially in-
creases with l1, reaches a maximum at intermediate
values, and then slowly decreases. This nonmonotonic
behavior highlights the competition between orbital-
angular-momentum–induced coupling enhancement and
detuning-induced suppression of coherent interactions.

The dependence of tripartite entanglement on photon
hopping is shown in Figs. 5(c) and 5(d). In Fig. 5(c),
for first condensate atomic modes xc1 as well as xd1
along with second condensate atomic modes xd2, Rmin

decreases with increasing J , reaching a minimum near
intermediate coupling strengths before partially recover-
ing. This indicates that strong photon hopping redis-
tributes correlations away from purely atomic tripartite
configurations. Conversely, Fig. 5(d) demonstrates that
for hybrid atomic modes for first xd1 and second xc2 cav-

ity along with first cavity modes tripartite states, Rmin

increases with J up to an optimal value and then dimin-
ishes at larger hopping strengths, reflecting an optimal
balance between local atom–cavity coupling and inter-
cavity photon exchange.
In general, Fig. 5 establishes that both OAM and pho-

ton hopping act as powerful control parameters to engi-
neer genuine tripartite entanglement, allowing selective
enhancement or suppression of multipartite correlations.

E. Bipartite entanglement versus temperature

Figure 6 presents the variation of the bipartite entan-
glement EN with temperature for several pairs of atomic
and cavity modes. In all cases, the entanglement remains
almost unchanged in the ultracold regime and then de-
creases abruptly once the temperature exceeds a charac-
teristic critical value.
As shown in Figs. 6(a) and 6(b), the entanglement

shared between atomic modes survives up to tempera-
tures of the order of 10−7 K. Beyond this point, thermal
fluctuations become dominant and quickly suppress the
quantum correlations. This rapid degradation highlights
the strong susceptibility of purely atomic entanglement
to thermally induced excitations.
The temperature dependence of hybrid atomic–cavity

entanglement is depicted in Figs. 6(c) and 6(d). In con-
trast to the atomic–atomic case, these hybrid correla-
tions display a moderately improved tolerance to ther-
mal effects, retaining finite values over a wider tempera-
ture interval. This enhanced stability originates from the
presence of the cavity field, which mediates the interac-
tion and partially protects the atomic degrees of freedom
against thermal decoherence.
Altogether, these findings indicate that although in-

creasing temperature eventually eliminates all bipartite
entanglement, hybrid atom–photon correlations exhibit
greater robustness than their purely atomic counterparts.
This underscores the beneficial role of cavity-assisted in-
teractions in sustaining quantum correlations under re-
alistic finite-temperature conditions.

F. Tripartite entanglement versus temperature

Figure 7 depicts the influence of temperature on the
minimum residual contangle Rmin for two distinct tripar-
tite configurations. In both cases, the tripartite entan-
glement remains finite at very low temperatures and then
collapses abruptly beyond a critical temperature scale.
In Fig. 7(a), which corresponds to tripartite entangle-

ment among atomic modes xc1, xd1, and xd2, Rmin ex-
hibits a plateau at ultracold temperatures followed by a
sharp transition to zero near T ∼ 10−7 K. This sudden
disappearance highlights the extreme fragility of genuine
tripartite atomic entanglement with respect to thermal
fluctuations.
Figure 7(b) shows a similar trend for the hybrid tripar-

tite state involving atomic and cavity modes. Although
the initial magnitude of Rmin is larger than in the purely
atomic case, the tripartite entanglement is still destroyed
once thermal excitations exceed a critical threshold. The
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abrupt nature of this transition reflects the collective
character of multipartite correlations, which are more
sensitive to noise than bipartite entanglement.

Taken together, Figs. 6 and 7 demonstrate that while
both bipartite and tripartite entanglement can be gener-
ated and controlled in the coupled cavity–BEC system,
maintaining genuine multipartite quantum correlations
requires operation deep in the ultracold regime. These
findings underline the importance of temperature con-
trol in experiments aimed at realizing scalable quantum
networks based on hybrid atom–photon platforms.

G. Phase-space representation via Wigner
functions

To gain deeper insight into the steady-state properties
of the coupled cavity–BEC system, we investigate the
phase-space structure of selected modes by reconstruct-
ing their corresponding Wigner functions. The Wigner
function provides a convenient phase-space representa-
tion of quantum fluctuations and allows a direct visual-
ization of squeezing as well as correlations between dif-
ferent quadratures.

For a Gaussian steady state, the Wigner function asso-
ciated with a given set of fluctuation quadratures is given
by

W (ψ) =
exp

[
− 1

2ψV
−1ψT

]
π2

√
detV

, (55)

where ψ denotes the vector of selected quadrature fluc-
tuations and V is the corresponding reduced covariance
matrix obtained from the Lyapunov equation.

Figure 8 shows representative projections of the
Wigner functions for different modes of the two coupled
cavities. In Fig. 8(a), the phase-space distribution involv-
ing the collective atomic mode of the second condensate
xc2 and the cavity quadrature δya1 is displayed. Fig-
ure 8(b) presents the distribution associated with the
collective atomic quadrature δyc2 and the first cavity
quadrature δxa1. In both cases, the Wigner functions
exhibit elongated elliptical contours centered at the ori-
gin, indicating anisotropic quantum fluctuations induced
by the effective atom–cavity coupling. The symmetry of
these distributions confirms that the system reaches a
stable steady state without any mean-field displacement.

In Fig. 8(c), the Wigner function corresponding to the
atomic side mode of the second condensate xd2 and the
cavity quadrature δya1 is shown. Compared to panels
(a) and (b), the phase-space ellipse is more strongly dis-
torted, reflecting a redistribution of fluctuations due to
the combined effects of atom–atom interactions within
the ring-shaped condensate and cavity-mediated cou-
pling. This behavior highlights the sensitivity of the side
modes to OAM dependent interactions.

Figure 8(d) displays the Wigner distribution for the
atomic side mode of the first condensate xd1 coupled

to the first cavity quadrature δya1. Here, the phase-
space distribution is more localized with a higher peak
value, indicating a stronger suppression of fluctuations
along one quadrature direction. This observation is con-
sistent with the enhanced atom–cavity correlations dis-
cussed earlier and demonstrates the role of the optical
cavity in shaping the fluctuation dynamics of the con-
densate modes.

The Wigner function projections in Fig. 8 provide a
clear phase-space picture of the steady-state correlations
between atomic and cavity degrees of freedom. The ellip-
tical structures observed for different mode combinations
illustrate how OAM, atom–atom interactions, and cavity
coupling collectively redistribute fluctuations in the hy-
brid double-ring cavity–BEC system.

IV. Feasibility and Experimental Prospects

Our study holds strong practical relevance for ex-
perimental realization in next-generation quantum
hybrid systems, particularly in the emerging field of
BEC cavity optomagnomechanics. Each subsystem,
cavity-BEC coupling [38], cavity magneto-mechanical
systems [56], and BEC in toroidal traps [26] has already
been experimentally demonstrated with high precision.
Integrating these components into a single platform
is experimentally feasible using current technologies.
YIG coupled to superconducting microwave cavities at
cryogenic temperatures provides a mature setup for gen-
erating strong photon–magnon–phonon interactions. On
the atomic side, toroidally trapped BECs that interact
with light-carrying OAM have been implemented using
Laguerre–Gaussian modes.

V. Conclusion

We have analyzed quantum correlations in a dual-
cavity system containing ring-shaped BECs coupled
through photon hopping and angular optical lattices. By
employing a linearized quantum Langevin approach, we
characterized the steady-state bipartite and tripartite en-
tanglement between collective atomic side modes and
cavity fields. Our results demonstrate that OAM and
inter-cavity photon coupling provide effective and inde-
pendent control parameters for tuning both local and
nonlocal correlations. We further showed that atom–
cavity entanglement is more resilient to thermal effects
than purely atomic correlations, while genuine tripar-
tite entanglement survives only in the ultracold regime.
Phase-space analysis using Wigner functions corrobo-
rates the entanglement behavior and illustrates the re-
distribution of fluctuations among the coupled modes.
These findings identify coupled cavity–ring BEC systems
as a controllable platform for engineering steady-state
matter–light correlations.
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