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Abstract

On the example of the integrable hard rods model we study the quality of the (general-
ized) hydrodynamic approximation on a single coarse-grained sample. This is opposed
to the traditional approach which averages over an appropriate local equilibrium state.
While mathematically more ambiguous, a major advantage of the new approach is that
it allows us to disentangle intrinsic diffusion from ‘diffusion from convection’ effects.
For the hard rods we find intrinsic diffusion is absent, which agrees with and clarifies
recent findings. Interestingly, the results also apply to not locally thermal states, demon-
strating that hydrodynamics (in this model) does not require the assumption of local
equilibrium.
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1 Introduction

Effective descriptions are important tools to simplify and subsequently study otherwise in-
tractable many-body systems. The hydrodynamic approximation [1, 2] is particularly impor-
tant as it describes finite density system on large spatial and time scales, a regime often well
justified in real life systems. Hydrodynamics allows us to describe the state of a system by only
looking at the distribution qn(x) of its conserved quantities (here n labels the conserved quan-
tity)1, a drastic simplification compared to microscopic dynamics. The evolution equations are
then simply given by the continuity equations

∂tqn(t, x) + ∂x jn(t, x) = 0. (1)

Note that crucially these are not the microscopic continuity equations. Equation (1) holds
microscopically, however, the problem is that the microscopic currents jn(t, x) depend on the
precise microscopic state and thus cannot be computed from knowing qn(t, x) alone. One
overcomes this problem phenomenologically by assuming that the state is a slowly evolving
local equilibrium state

f ∼ e−
∫

dx
∑

n βn(t/ℓ,x/ℓ)qn(t,x), (2)

described by local Lagrange multipliers βn(t, x). Here ℓ≫ 1 is a large length scale, ensuring
that the system is locally in equilibrium, i.e. βn(t, x)≈ const. This local state is a Gibbs ensem-
ble in the context of a typical Galilei invariant system conserving particle number, momentum
and energy. In a system with more conservation laws (such as the hard rods model we study
later) it is given by a generalized Gibbs ensemble (GGE) instead. Assuming that (2) holds
at all times, we can compute the currents jn(t, x) from the local charge densities qn(t, x) as
expectation values in the GGE state whose βn(t, x) correspond to qn(t, x). This way the equa-
tions become closed set of PDE’s. When applied to fluids, this reasoning gives rise to the Euler
equation of fluid dynamics, hence the name hydrodynamics.

1In a typical Galilei invariant system there are three such conserved quantities: particle number, momentum
and energy.
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The Euler equation is generally well accepted (and also verified both experimentally and
numerically) to be a good description in the Euler scaling limit. In this scaling limit the length
and time scales of observation as well as the particle number ℓ∼ T ∼ N →∞ are send to in-
finity proportionally, meaning hydrodynamics describes finite density states and finite velocity
dynamics. Nonetheless, our theoretical understanding remains unsatisfactory. In particular,
why are we able to replace the true state of the system by local GGE states? The fundamental
problem is that thermalization does not truly drive the state of the system towards a local GGE
state, simply because this would increase entropy: in a classical system a single configura-
tion of particles has to remain a single configuration of particles and in a quantum system a
pure quantum state has to remain pure. It is by now understood that local observables indeed
appear to be close to their GGE expectation values after sufficiently long times, but global ob-
servables do not (they still retain all information about the initial state) [3–12]. Luckily, both
qn(t, x) and jn(t, x) are local observables, hence (1) is well justified in the (Euler) hydrody-
namic scaling limit.

However, hydrodynamic equations like (1) generically tend to break down after a finite
time by developing gradient catastrophes (shocks in 1D [13] and turbulence in higher D [14]).
The generic wisdom is that these should be healed by incorporating the diffusive correction
jn → jn +

∑

m Dnm∂xqm into hydrodynamics (in usual Galilei invariant systems this is the
Navier-Stokes equation) [1,2,13]

∂tqn(t, x) + ∂x jn(t, x) = 1
2ℓ∂x

�

∑

m

Dnm∂xqm

�

+O
�

1/ℓ2
�

. (3)

As it is proportional to ∂xqn it is negligible in the large scale limit. However, it becomes rel-
evant close to the development of gradient catastrophes and smoothens them out. Naturally,
the diffusion matrix can be computed from the local GGE correlation functions using the Kubo-
formula. At this point, however, the validity of the local equilibrium assumption is unclear:
we cannot necessarily infer it from the validity of the Euler equation, since correlations are
suppressed in the Euler scaling limit (i.e. even if the correlations would differ from GGE cor-
relations, the Euler equations would still emerge). Hence, there is no reason why the true
correlations should be described by the local GGE correlations. Note that even if one would
insist that correlations should be thermodynamic it would not be clear which thermodynamic
ensemble to use: for instance, the microcanonical and canonical ensembles have different
correlations.

Furthermore, hydrodynamics can also be applied to non-standard settings: for instance,
it has been proposed to be able to predict the evolution of (large scale averaged) correlation
functions using Ballistic Macroscopic Fluctuation Theory – BMFT [15, 16]. This predicts that
long range correlations will emerge in the system over time due to ballistic transport of initial
fluctuations, meaning that even if one starts with an (uncorrelated) state like (2), the system
cannot be in such a state at later times. It has been proposed under the name “diffusion from
convection” [17,18] that such correlations give rise to additional terms on the diffusive scale as
well (but these terms are not necessarily of the same form as terms due to intrinsic diffusion).

Therefore, it is not really clear that the artificially introduced randomness by considering a
state like (2) as initial state and by adhoc replacing the evolved local state by a local GGE state
Navier-Stokes indeed gives the correct diffusive correction. The same holds for adding explicit
randomness into the dynamics of the system (to model effective noise in the system), which
mathematically simpler to study as it explicitly drives the system towards local equilibrium (a
well known paradigmatic many body system with noise is for instance TASEP [19,20]).

To get rid of all of these artificial effects, we propose a radically new approach to under-
stand hydrodynamics called “Hydrodynamics without averaging”. The idea is to understand
the emergence of hydrodynamics fully deterministically: the initial state is a single deter-
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ministic configuration. From this initial state we obtain an initial state for the hydrodynamic
equation via coarse-graining. Then the prediction of the hydrodynamic equation is compared
to the deterministic microscopic dynamics of the system. The reason why (1) emerges is due
to self-averaging of the microscopic details. Conceptually, most of the ideas on which “Hydro-
dynamics without averaging” is based are well known in the literature and have been applied
as guiding principles (for instance, it is the work horse behind BMFT). What is radical about
this concept/work is that it has not been carried out in an actual model. It is also radical in
the sense that it is mathematically vague2. Nevertheless, we will obtain important insights:
one of the main insights we would like to put forward is that already the unavoidable initial
time coarse-graining introduces an error that will provide a hard bound for the precision of
the hydrodynamic approximation. This error will depend on the coarse-graining scheme, but
seems to be always bigger than O

�

1/ℓ2
�

. Hence, in principle, hydrodynamic theories should
be able to capture diffusive corrections, but likely no higher order effects.

Since we are far from being able to carry out such a procedure for an actual fluid, we
develop this approach on the example of the exactly solvable one-dimensional hard spheres
model [20, 21], also called hard rods model. A main motivation for this work was to under-
stand the leading order correction term to hydrodynamics: the diffusive 1/ℓ correction. Re-
cently it was discovered [18,22] that this is not given by the usual entropy increasing diffusive
term [23], but instead by complicated and unconventional entropy conserving terms. Judging
from the form of the equations they seem to be explained by “diffusion from convection”, but
a precise understanding is hindered by the fact that all statements are always averaged over
the initial state. Therefore, “hydrodynamics without averaging” is ideal to study this prob-
lem as all “diffusion from convection” contributions are absent. Only a true intrinsic diffusion
can affect the equations. In this work we find that there is no such intrinsic diffusion: Euler
hydrodynamics is valid even at the diffusive scale. This is both surprising (physically there
should be diffusion) as well as in perfect agreement with the newly found unconventional
correction [18, 22]: since there is no intrinsic diffusion all effects on the diffusive scale are
due to transport of the initial state randomness, i.e. “diffusion from convection”3. Such initial
state randomness can straight-forwardly taken into account in the “hydrodynamics without
averaging” picture. We perform this computation in section 8 and recover the equation found
in [18,22].

At this point we should point out that the hard rods model is an integrable model with an
infinite amount of conserved quantities. Therefore, the hydrodynamic equations are far from
the usual hydrodynamic equations of a Galilean fluid. They have first been derived in [25,26].
Later it was found that the hydrodynamic equation of integrable models in general are very
similar to those of hard rods. The framework of hydrodynamics in integrable models is nowa-
days called “Generalized hydrodynamics” (GHD) [27–29] (also see reviews [2, 21, 30–34]).
Despite (or even due to) the unusual hydrodynamic equations, GHD has been crucial in the
recent years to gain deeper understanding into the principles behind the emergence of hydro-
dynamics (for instance for the development of “diffusion from convection” or BMFT). GHD is
also special as it is linearly degenerate: it does not form shocks like generic 1D hydrodynam-
ics [2,35,36,36,37] and the next order correction scales indeed diffusively (unlike generic 1D
models which have KPZ-like fluctuations [38]). In both fields, integrability and hydrodynam-
icss, the hard rods model has always been fundamental, due to its simplicity and due to the
fact that its dynamics can be solved exactly. Therefore, it is still an actively studied model, see
for instance the recent developments in [23, 39–50]. In particular, its hydrodynamics (in the
sense of averaging over an initial state) is rigorously proven [26] (this is also the first proof of

2One important reason why one considers an ensemble of initial configurations is that one can (in principle)
clearly quantify the precision of the hydrodynamics approximation as function of ℓ.

3This can also be interpreted as the fact that hydrodynamic noise vanishes [24].
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emergence of hydrodynamics in any interacting Hamiltonian model). Therefore, this model is
an ideal starting point to understand the features of “hydrodynamics without averaging” and
compare to the usual “hydrodynamics with averaging”.

The paper is organized as follows. In section 2 we review the hard rods model and its hy-
drodynamics. In section 4 we then carry out “hydrodynamics without averaging” using fluid
cell coarse-graining and derive an analytic prediction of the scaling of the error of the hydro-
dynamic approximation. We repeat the same analysis on a different coarse-graining scheme
(smoothing) in section 5. In section 6 we then explain how the usual diffusive scale correction
to GHD can be obtained by averaging the GHD equation over a random initial state. Note that
the Euler hydrodynamic equations are time-reversible (due to the absence of shocks) [2], in
particular they conserve entropy. It was believed that diffusion would lead to entropy increase
and eventually thermalization (to a GGE). Since this paper shows that such intrinsic diffusion
is absent, we reinvestigate the question of entropy increase and thermalization in section 7.
We propose that it is due to coarse-graining. In particular the thermalization time scale is
observer dependent and should occur before the diffusive time scale.

2 The hard rods model

Hard rods are hard spheres in one dimension [20], with Hamiltonian given by

H( x⃗ , p⃗) = 1
2

∑

i

p2
i +

∑

i ̸= j

V (x i − x j), (4)

where V (x) =∞ if |x |< a and otherwise 0. Here a is the hard rod diameter. Particle trajecto-
ries are simple: they evolve like free particles d

dt x i = pi until they hit another particle. During
scattering both particles instantaneously exchange their momenta pi↔ p j (like billiard balls),
see Fig. 1 a). Thus, the number of particles with each momentum p is conserved.

Instead of a discrete index n we thus have a continuum p ∈ R index labeling the con-
served quantities. Instead of qn(t, x) one uses the quasi-particle density ρ(t, x , p), which is
interpreted as the density of quasi-particles with momentum p at position x at time t. These
quasi-particles are not the physical particles, which swap momenta during scattering. Instead
the quasi-particles (or tracer particles), keep their momenta and swap their positions, i.e. both
particle jump forward by a (this is merely a relabeling of particles during each scattering), see
Fig. 1 b). We will denote by x i(t) the location of the i’th tracer particle.

In order to obtain the hydrodynamics of this model we need to study a large scale initial
configurations. By this we mean that the particles are distributed over a large length scale
ℓ ≫ a with a finite density, i.e. a large number of particles N ∼ ℓ. We will also study the
system at times proportional to ℓ. To keep consistent notation throughout the paper, we will
use macroscopic variables from now on, i.e. quantify space and time in units of ℓ. This is
equivalent to replacing a→ a/ℓ.

The advantage of using tracer particles is that their dynamics can be explicitly computed:

x̂ i = x i −
a
ℓ

∑

j ̸=i

θ (x i − x j) (5)

x̂ i(t) = x̂ i + pi t (6)

x i(t) = x̂ i(t) +
a
ℓ

∑

j ̸=i

θ ( x̂ i(t)− x̂ j(t)). (7)

This solution is based on the “space contraction” (5), which maps the system onto non-interacting
particles [26], see Fig. 1 c). This space contraction removes the size of the hard rods, i.e. the
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Figure 1: Dynamics of hard rods: a) physical hard rods scatter by exchanging their
momenta p. b) Alternatively, particles exchange positions instead of momenta during
scattering. Therefore, particles effectively travel a larger distance in a given time
interval, which is observed as an effective velocity in GHD. c) Using the contraction
map (5) hard rods can be mapped to non-interacting particles. In these coordinates
evolution is trivial. To obtain the location of hard rods at a later time one simply has
to expand back to original coordinates.

first particle on the left is untouched, the second particle is moved by −a, the third by −2a and
so on. In contracted coordinates x̂ i the evolution is trivial. Thus one only has to re-expand
this configuration at final time. The existence of such a simple explicit solution is what makes
hard rods so unique among interacting many-body systems.

In the hydrodynamic limit ℓ→∞, we define the quasi-particle density as

ρ(t, x , p) = 1
ℓ

∑

i

δ(x − x i(t))δ(p− pi). (8)

Its Euler scale hydrodynamic equation is given by [26]

∂tρ(t, x , p) + ∂x(v
eff(t, x , p)ρ(t, x , p)) = 0, (9)

where the effective velocity

veff(t, x , p) =
p− a

∫

dq qρ(t, x , q)

1− a
∫

dqρ(t, x , q)
(10)

is interpreted as the effective velocity of the quasi-particle incorporating the jumps by scat-
tering to other particles, see Fig. 1 b). Note that by integrating (9) over x we find that
Q(p) =

∫

dx ρ(t, x , p) is conserved in time. These are the infinitely many conservation laws
present in this model.

Equation (9) has an explicit solution starting from initial density ρ(x , p) at t = 0: the
trajectory of the quasi-particle X (t, x , p) starting at x with momentum p is given by X (t, x , p)

X (t, x , p) = X̂ (x) + a

∫

dy dqρ(y, q)θ (X̂ (x) + pt − X̂ (y)− qt)− a
2ℓ , (11)

X̂ (x) = x − a

∫

dy

∫

dqρ(y, q)θ (x − y) + a
2ℓ , (12)

from which the solution can be obtained by the push-forward ρ(t, ·, p) = X (t, ·, p)∗ρ(·, p), i.e.
for any observable Υ (x , p) we have

〈ρ(t),Υ 〉 :=
∫

dx dpρ(t, x , p)Υ (x , p) =

∫

dx dpρ(x , p)Υ (X (t, x , p), p), (13)

6
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or more explicitly ρ(t, X (t, x , p), p) = ρ(x ,p)
∂x X (t,x ,p) from which ρ(t, x , p) can be obtained by in-

verting the monotone increasing function X (t, x , p) in x . Equations (12-11) are simply the
continuum versions of (5-7). Note that the additional constant a

2ℓ in (12) was chosen for later
convenience.

The fact that in hard rods we both have an explicit solution to their microscopic dynamics
and to their hydrodynamics made the hard rods model one of the most important models to
study the emergence of hydrodynamics.

3 Main results

On the example of the exactly solvable integrable hard rods model (see section 2), we predict
the asymptotic scaling of the error of the Euler hydrodynamic evolution of a single determinis-
tic sample. This requires to fix a coarse-graining scheme that allows us to obtain a continuous
distribution from a particle configuration. Here we discuss two different schemes:

1. Fluid cell coarse-graining, where space (and momentum) is divided into cells of size
∆x ,∆p ∼ ℓµ−1 with 0 < µ < 1 and the initial density is taken to be constant in each
cell. In this case the error of the Euler hydrodynamic approximation scales as

Error∼max(∆x2,∆x/
p

ℓ). (14)

This is derived in section 4.

2. Smoothening coarse-graining, where each particle is “smeared out” over a scale∆x ,∆p
∼ ℓµ−1 with 0< µ < 1. In this case the error of the Euler hydrodynamic approximation
scales as

Error∼max(∆x2,
p
∆x/ℓ). (15)

This is derived in section 5.

As can be seen from these expressions, the scaling of the error has a “phase-transition”: for
small µ the error is dominated by statistical fluctuations, while for large µ it is dominated by
systematic errors. Moreover, the error is always larger than O

�

1/ℓ2
�

.
To better understand the origin of such scaling we split the analysis into the error obtained

by coarse-graining the initial state (sections 4.1 and 5.1 resp.), the effect of the so-called con-
traction map (sections 4.2 and 5.2 resp.), the effect of non-interacting time evolution (sections
4.3 and 5.3 resp.) and finally the full time evolution (sections 4.4 and 5.4 resp.). The precise
scaling of the error changes, but qualitatively the picture remains the same: the error is dom-
inated by statistical fluctuations for small µ and by systematic errors for large µ. The error is
always larger than O

�

1/ℓ2
�

.
The fact that the error is always larger than O

�

1/ℓ2
�

is even present for initial time coarse-
graining shows that coarse-graining is the fundamental bottleneck for any hydrodynamic the-
ory and that any hydrodynamic theory based on coarse-graining cannot be more precise than
O
�

1/ℓ2
�

(there might be some loopholes, see discussion in section 8). This understanding
is also relevant for non-integrable models, where most of the other techniques used in this
paper cannot be applied to: in general the hydrodynamic approximation of any system cannot
become more precise than O

�

1/ℓ2
�

What is interesting about our result in hard rods is that for sufficiently small µ the error
of the Euler hydrodynamic approximation is less than O(1/ℓ), meaning that there cannot be
a Navier-Stokes like diffusive scale correction to hydrodynamics. However, the hydrodynamic
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evolution is nonlinear. Hence, averaging the hydrodynamic evolution over many samples
drawn from an initial ensemble of states (for instance, an ensemble like (2)), this introduces
an O(1/ℓ) correction for the averaged densities, which for the hard rods reads as (derived in
section 6):

∂t 〈ρ(x , p)〉+ ∂x(v
eff(x , p) 〈ρ(x , p)〉) = −1

ℓ∂x

�

a
1dr(x)

∫

dq dp′ dq′ (p− q)

×
�

δ(p− p′) + a 〈ρ(x ,p)〉
1dr(x)

��

δ(q− q′) + a 〈ρ(x ,q)〉
1dr(x)

�

CLR,sym(x , p′, x , q′)
�

+O
�

1/ℓ2
�

. (16)

Here 1dr(x) = 1 − a
∫

dq 〈ρ(x , q)〉 and CLR,sym(x , p′, x , q′) is the symmetric part of the long
range part of the connected two-point function

CLR,sym(x , p, x , q) := lim
ε→0

lim
ℓ→∞

ℓ

2

�

〈ρ(x + ε, p)ρ(x , q)〉c + 〈ρ(x − ε, p)ρ(x , q)〉c
�

. (17)

This result was also recently obtained using different methods [18,22]. Note that this equation
is not at all of the Navier-Stokes type (3), except for the special case of local equilibrium
states (2). In fact it is time-reversible and hence conserves entropy, as opposed to (3) which
monotonically increases entropy. In particular, (16) cannot explain thermalization.

We reinvestigate the question of thermalization and entropy increase in section 7, where
we show on the simple example of non-interacting particles that coarse-graining leads to ther-
malization on a coarse-graining dependent time scale

Tthermalization =O(1/∆p)≪O(ℓ) =: Tdiff, (18)

much before the diffusive time scale Tdiff as predicted by (3).

4 Coarse-graining 1: Fluid cell averaging

A crucial observation is that the hydrodynamic equation (9) does not make any sense when
applied to a microscopic ρ(t, x , p) as in (8), simply because it is spiky. To overcome this
problem, one usually averages the initial ρ(x , p) over some ensemble of states, for instance
given by (2), and obtains

〈ρ(x , p)〉=

®

1
ℓ

∑

i

δ(x − x i)δ(p− pi)

¸

, (19)

which is now a smooth function. Then (9), with the replacement ρ(t, x , p) → 〈ρ(t, x , p)〉,
makes sense. In this regard (9) was rigorously proven for a large family of states in [26].
However, as said in the introduction, this works on the Euler scale, but the randomness of
the initial state might affect higher order corrections. Therefore, we would like to avoid this
procedure.

Instead, the procedure proposed here is to take a fixed initial configuration. In order to
obtain any meaningful initial density ρ(x , p) for the hydrodynamic theory one has to coarse-
grain (8) over a mesoscopic scale∆x and∆p. While this is, at least in spirit, generally thought
to be the correct procedure to obtain hydrodynamics, it actually poses non-trivial conceptual
problems

• The precision of hydrodynamics depends on the arbitrarily chosen coarse-graining scales
∆x and∆p. In an experiment it is natural to consider them to be given by the precision of
the measurement device. Nevertheless, this procedure makes hydrodynamics observer
dependent.
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• The initial density ρ(x , p) after coarse-graining will be rough on the macroscopic scale4.
In particular, applying (9) does not make sense as ρ(t, x , p) will not be differentiable.
Luckily, the explicit solution (11) also makes sense for rough initial data. However, the
solution will in principle be only a weak solution to the hydrodynamic equation, i.e. a
function ρ(t, x , p) that satisfies

∫ x2

x1

dx ρ(t2, x , p)−ρ(t1, x , p) +

∫ t2

t1

dt j(t, x2, p)− j(t, x1, p) = 0, (20)

where j(t, x , p) = veff(t, x , p)ρ(t, x , p) for all t1, t2, x1, x2, t ∈ R. In integrable systems,
such as hard rods, weak solutions are unique5 [22, 35]. In non-integrable models they
do not have to be after developing gradient catastrophes, but schemes exists to identify
the physical solution.

From a practical perspective it is not a trivial task to quantify the quality of the hydrody-
namic approximation. We will do this by comparing the value of a (smooth) observable Υ (x , p)
in the microscopic theory to the one obtained by the hydrodynamic prediction. Intuitively, as
ℓ →∞ the difference should decay to 0. However, as we change ℓ, we also need to adjust
the number of particles accordingly. Therefore, for each ℓ we have a completely different con-
figuration, that somehow in the limit should approach a smooth distribution. Additionally,
it is clear that not all configurations are described by hydrodynamics. It will be possible to
come up with some fine-tuned configurations that violate hydrodynamics6. Hydrodynamics
will only work if locally the distribution of particles is sufficiently generic. Mathematically
speaking one would say that hydrodynamics will work for configurations almost surely with
respect to a measure like (2). While this idea is useful, also for numerical checks, it almost
surely can only be defined w.r.t. a probability measure: we want to achieve an even more
general statement, namely that hydrodynamics works for almost surely w.r.t any physical and
sufficiently generic measures.

Due to the many conceptual and practical problems, the derivations in this paper will be
far from rigorous. Nevertheless, we will be able to quantify the precision of the hydrodynamic
approximation in a meaningful manner (which will also agree with numerical simulations).
For future applications of similar ideas it would be fundamental to develop a better mathe-
matical framework in which these computations could be done more reliably. We leave this as
an open problem.

After this heuristic overview, we now move on to carrying out the procedure in hard rods.

4.1 Initial state coarse-graining

We will start by looking at a very basic, but already quite insightful problem: In order to
compare the microscopic dynamics with the hydrodynamic evolution ρ(t, x , p), we first need
to define what initial ρ(x , p) we associate to an initial configuration x i , pi .

A trivial guess would be to use the empirical density of (8), i.e.

ρMicro(x , p) = 1
ℓ

∑

i

δ(x − x i)δ(p− pi). (21)

4Of course, one can choose a smooth coarse-graining on scale ∆x . However, as ∆x → 0, this will still have
large gradients ∂xρ(x , p)∼ 1/∆x on the macroscopic scale.

5To be more precise: this is known in hard rods and the Lieb-Liniger model, but expected to be true more
generally.

6We are not aware of an explicit construction of such hydrodynamics violating states, but this is generally
expected.
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As mentioned above, the problem is that for finite N this will always be a ‘spiky’ function.
Instead, we need to find a continuous approximation to (21). In this paper we will investigate
two ways to do that.

The first coarse-graining scheme is fluid cell averaging. This is a natural concept in hy-
drodynamics: let us divide the x , p plane into boxes (aka fluid cells) of size ∆x ×∆p. To be
precise, we denote for integers α and β:

Aα = [xα −∆x/2, xα +∆x/2] (22)

Bβ =
�

pβ −∆p/2, pβ +∆p/2
�

(23)

Cα,β = Aα ×Bβ , (24)

where xα = α∆x and pβ = β∆p are the centers of the boxes. Now, let us denote by nα,β the
number of particles in box Cα,β (which scales like ℓ∆x∆p) and by

ρα,β =
nα,β

ℓ∆x∆p =
1

ℓ∆x∆p

∑

i

θ (x i ∈ Aα)θ (pi ∈ Bβ) (25)

the density of particles in this region. For abuse of notation we will write i ∈ Aα iff x i ∈ Aα,
i ∈ Bβ iff pi ∈ Bβ and i ∈ Cα,β iff (x i , pi) ∈ Cα,β .

The coarse-graining approximation is then given by a constant density ρα,β in each box:

ρFC(x , p) =
∑

α,β

θ ((x , p) ∈ Cα,β)ρα,β . (26)

We want to make these fluid cells sufficiently big, such that there are many particles in
them, but on the other hand they should also be much smaller than the macroscopic scale.
Therefore it is natural to assume 1/ℓ ≪ ∆x ,∆p ≪ 1, for instance ∆x ,∆p ∼ ℓµ−1, where
0 < µ < 1 (larger µ means larger fluid cells). For convenience, to simplify the following
discussion, we will assume that ∆x ≈∆p.

Let us now try to understand the quality of this approximation. For that let us fix an
observable Υ (x , p) and compare the expectation values before and after coarse graining:

ΥMicro =
1
ℓ

∑

i

Υ (x i , pi) (27)

ΥFC =
∑

α,β

ρα,β

∫ xα+∆x/2

xα−∆x/2
dx

∫ pβ+∆p/2

pβ−∆p/2
dpΥ (x , p) (28)

=
∑

α,β

ρα,β∆x∆p

∫ 1/2

−1/2

dy dqΥ (xα + y∆x , pβ + q∆p). (29)

We can write the positions of all the particles inside a fluid cell Cα,β as:

x i = xα + yi∆x pi = pβ + qi∆p, (30)

10
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where yi and qi are between −1/2 and 1/2.

ΥMicro =
1
ℓ

∑

α,β

∑

i∈Cα,β

Υ (xα + yi∆x , pβ + qi∆p) (31)

= 1
ℓ

∑

α,β

∑

i∈Cα,β

�

Υ (xα, pβ) + ∂xΥ (xα, pβ)yi∆x + ∂pΥ (xα, pβ)qi∆p

+ 1
2∂

2
x Υ (xα, pβ)y

2
i ∆x2 + ∂x∂pΥ (xα, pβ)yi pi∆x∆p+ 1

2∂
2
p Υ (xα, pβ)q

2
i∆p2 +O

�

∆x3
�

�

(32)

= 1
ℓ

∑

α,β

nα,β

�

Υ (xα, pβ) + ∂xΥ (xα, pβ)[y]α,β∆x + ∂pΥ (xα, pβ)[1]α,β∆p

+ 1
2∂

2
x Υ (xα, pβ)[y

2]α,β∆x2 + ∂x∂pΥ (xα, pβ)[yq]α,β∆x∆p

+ 1
2∂

2
p Υ (xα, pβ)[q

2]α,β∆p2 +O
�

∆x3
�

�

. (33)

Here, we introduced the notation to represent averages inside a fluid-cell:

[ f ]α,β =
1

nα,β

∑

i∈Cα,β

fi . (34)

On the other hand we can also derive using Taylor expansion:

ΥFC =
∑

α,β

ρα,β∆x∆p
�

Υ (xα, pβ) +
1
24∂

2
x Υ (xα, pβ)∆x2 + 1

24∂
2
p Υ (xα, pβ)∆p2 +O

�

∆x4
�

�

(35)

=∆x∆p
∑

α,β

ρα,βΥ (xα, pβ) +O
�

∆x2
�

. (36)

Therefore, the difference is:

ΥFC − ΥMicro =∆x∆p
∑

α,β

ρα,β

�

− ∂xΥ (xα, pβ)[y]α,β∆x − ∂pΥ (xα, pβ)[q]α,β∆p

+ 1
2(

1
12 − [y

2]α,β)∂
2
x Υ (xα, pβ)∆x2 + 1

2(
1
12 − [q

2]α,β)∂
2
p Υ (xα, pβ)∆p2

− ∂x∂pΥ (xα, pβ)[yq]α,β∆x∆p+O
�

∆x3
�

�

. (37)

Note that, since
�

�[y]α,β

�

�< 1/2 and
�

�[q]α,β

�

�< 1/2 in case |∂xΥ |< C and
�

�∂pΥ
�

�< C is bounded
the first order term is strictly bounded by 1

2 C(∆x +∆p)N/ℓ, hence we find:

ΥFC − ΥMicro =O(∆x). (38)

But this is only the worst case scenario, where [y]α,β and [q]α,β are of O(1). While it is of
course possible to arrange some configurations like that, in a sufficiently generic configurations
both [y]α,β ≈ [q]α,β ≈ 0 should average to almost 0 in each cell. Even if there is one cell,
where [y]α,β is a O(1) positive number, then there will be other cell, where it is a negative
O(1) positive number. Hence, it is natural to assume that generically the difference will be
much lower.

At this point we need to employ intuition about the self-averaging of terms like [y]α,β .
They are a sum of random numbers yi = O(1) of no clear sign. If there is no bias in the yi ,
from the central limit theorem we can estimate that the size of this term is

∑

i∈Cα,β
yi ∼ ±

p

nα,β

∼ ±
p

ℓ∆x∆p, where the ± represents the fact that we do not know the sign. Looking closely

11



SciPost Physics Submission

it makes sense to assume that the yi should have a small bias O(∆x) if ∂xρ(x , p) ̸= 0. Thus
we assume the following (and similar for [q]α,β)

[y]α,β =
∂xρ(xα, pβ)

ρ(xα, pβ)
∆x +

1
ℓ∆x∆p

ζα,β , (39)

where ζα,β = ±O(1) is a random number (say a Gaussian) with mean 0 and variance O(1).
Equation (39) should not be taken too literal: it only provides us with a reasonable estimate
of the size of terms. In particular, there will be non-trivial prefactors.

This kind of argument can be made more concrete by explicitly averaging over the internal
degrees of freedom yi , qi . For instance, we can assume that the yi in (α,β) are distributed
according to the following distribution

f (y) = 1+∆x
∂xρ(xα,pβ )
ρα,β

y, (40)

taking into account the linear gradient term. Under this probability measure we find

E[[y]α,β] =
∆x
12
∂xρ(xα,pβ )
ρα,β

∼∆x

Var[[y]2α,β] =
1

12nα,β
∼ 1
ℓ∆x∆p . (41)

The qi ’s coordinate can be treated similarly.

Remark 1 The scaling (39) does not require the central limit theorem, i.e. that all yi are iid.
They can be non-indentical and even be corrrelated. In this case prefactors will obviously change,
but the scalings will not be affected. The reason for this is large deviation theory: on an intuitive
level it predicts that as nα,β →∞ the probability distribution of [y]α,β can be approximated by
a Gaussian around the largest value of the probability distribution. And this Gaussian will have
expectation value and variance scaling as predicted by (39). Of course, there is no guarantee for
that, but it is a reasonable guess (and also justified a posteriori by the agreement with numerical
simulations). If in a particular case one expects a different scaling of [y]α,β one can easily adjust
the arguments.

Proceeding now with either (39) or (41) and assuming that all fluid cells are independent,
we find (we will use (41))

E[ΥFC − ΥMicro] =
∆x∆p

12

∑

α,β

�

− ∂xΥ (xα, pβ)∂xρ(xα, pβ)∆x2

− ∂pΥ (xα, pβ)∂pρ(xα, pβ)∆p2 +ρα,βO
�

∆x3
�

�

(42)

→− 1
12

∫

dx dp ∂xΥ (x , p)∂xρ(x , p)∆x2 + ∂pΥ (x , p)∂pρ(x , p)∆p2 +O
�

∆x3
�

(43)

and

Var[ΥFC − ΥMicro] =
1

12
∆x∆p
ℓ

∑

α,β

ρα,β

�

∂xΥ (xα, pβ)
2∆x2 + ∂pΥ (xα, pβ)

2∆p2 +O
�

∆x3
�

�

(44)

→ 1
12ℓ

∫

dx dpρ(x , p)
�

∂xΥ (x , p)2∆x2 + ∂pΥ (x , p)2∆p2
�

+O
�

∆x3/ℓ
�

,

(45)

where in the last steps we took the continuum limit.

12
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One way to think about this result is to introduce ξΥFC = ΥFC−ΥMicro, which we can interpret
as the emergent “noise” when describing the system via the coarse-grained ρFC(x , p). From
(43) and (45) we can read off that this noise has a mean and standard deviation scaling as

E[ξΥFC]∼∆x2 stddev[ξΥFC]∼∆x/
p

ℓ. (46)

It is natural to assume by that ξΥFC will be Gaussian and hence these two numbers are
sufficient to describe its distribution. However, we have not investigated this noise as this is
not the main point of our work.

Instead, we would like to point out the following interesting scaling behaviour (which we
will encounter throughout this section): recall, that we start with a single fixed sample and
coarse-grain it. Let us assume that ∆x ∼ ℓµ−1. Due to the above scalings we find that the
error will scale as

ΥFC − ΥMicro ∼max(∆x2,∆x/
p

ℓ) =

(

ℓ−
3
2+µ µ < 1/2

ℓ2µ−2 µ > 1/2
(47)

Hence, if we denote ΥFC − ΥMicro ∼ ℓ−ν we find:

ν=

¨

3
2 −µ µ < 1/2

2− 2µ µ > 1/2.
(48)

This result is the theoretical line plotted in Fig. 2, where we also compare it to numerical
simulations and find excellent agreement. Note that there is a “phase transition” in this scaling.
For large fluid cells µ > 1/2 the error is dominated by the systematic error of the Taylor
expansion inside a fluid-cell. For small fluid cells µ < 1/2 on the other hand the error is
dominated by random fluctuations inside the fluid cells, i.e. it is a statistical error.

Remark 2 We want to stress again that the aim of this paper is to coarse-grain a single sample
with large, but finite N. Hence there is no probability measure to actually take expectation values
and variances over as we did in (43) and (45). Furthermore, the proposed distribution (41) is
unphysical as it does not exclude hard rods from overlapping. Therefore, the use of a probability
distribution is only to justify the extracted scalings, prefactors will obviously be incorrect.

In this regard the more precise result of this section is that the error of coarse-graining a
single configuration is given by

ΥFC − ΥMicro =∆x∆p
∑

α,β

ρα,β

�

− ∂xΥ (xα, pβ)[y]α,β∆x − ∂pΥ (xα, pβ)[q]α,β∆p+ . . .], (49)

which for a sufficiently generic state scales as ∼max(∆x2,∆x/
p
ℓ)

Remark 3 Still, we believe that it should be possible to define a probability distribution on the yi ’s
(at least as nα,β →∞) as f (y) = 1

nα,β

∑

i∈Cα,β
δ(y− yi). This idea might be worth investigating,

as this might allow for much deeper understanding into the corrections to the present result.

Remark 4 We would like to remark that these results hinge on the fact that the observable Υ (x , p)
is smooth (or at least twice differentiable). If the observable is not smooth different scalings might
occur.

13
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4.2 Contraction/Expansion

Next, let us understand the effect of the important mapping to contracted coordinates (and
back to physical coordinates) in a similar fashion. Both maps behave similarly, and thus we
only discuss the contraction mapping (5) in detail.

The idea is to compare the value

Υ̂Micro =
1
ℓ

∑

i

Υ ( x̂ i , pi) (50)

of an observable Υ̂ ( x̂ , p) obtained from the microscopic configuration ( x̂ i , pi) given by (5) to
the value Υ̂FC obtained by first coarse-graining (x i , pi) as in section 4.1 and then contracting
using (12). In the latter case, the value of the observable Υ̂FC is given by

Υ̂FC =

∫

dx dpρ(x , p)Υ̂ (X̂FC(x), p), (51)

where X̂FC(x) is given by (12) with ρ(x , p) = ρFC(x , p) given by (26). Plugging (12) and (26)
into (51), we obtain

Υ̂FC =
∑

α,β

ρα,β

∫ xα+∆x/2

xα−∆x/2
dx

∫ pβ+∆p/2

pβ−∆p/2
dp Υ̂

 

x − a
∑

β

ρβ

∫ xβ+∆x/2

xβ−∆x/2
dx ′ θ (x − x ′) + a

2ℓ , p

!

(52)

=∆x∆p
∑

α,β

ρα,β

∫ 1/2

−1/2

dy dq Υ̂
�

xα + y∆x

− a∆x
∑

α′

ρ̄α′

∫ 1/2

−1/2

dy ′ θ (xα − xα′ + (y − y ′)∆x) + a
2ℓ , pβ + q∆p

�

(53)

=∆x∆p
∑

α

ρα,β Υ̂
�

x̂α, pβ
�

− a∆x2∆p
∑

α,β ,α′
ρα,β ρ̄α′∂ x̂ Υ̂

�

x̂α, pβ
�

×

�

∫ 1/2

−1/2

dy dy ′ θ (xα − xα′ + (y − y ′)∆x)− θ (xα − xα′)

�

+O
�

∆x2
�

(54)

=∆x∆p
∑

α

ρα,β Υ̂
�

x̂α, pβ
�

− a∆x2∆p
∑

α,β

ρα,β ρ̄α∂ x̂ Υ̂
�

x̂α, pβ
�

∫ 1/2

−1/2

dy dy ′ sgn(y − y ′)

︸ ︷︷ ︸

=0

+O
�

∆x2
�

(55)

=∆x∆p
∑

α

ρα,β Υ̂
�

x̂α, pβ
�

+O
�

∆x2
�

, (56)

where we denoted

ρ̄α =∆p
∑

β

ρα,β =
1
ℓ∆x

∑

β

nα,β =: 1
ℓ∆x n̄α (57)

x̂α = xα − a∆x
∑

α′

ρ̄α′θ (xα − xα′) +
a
2ℓ (58)

and we defined θ (0) = 1/2. In this computation we used that θ (xα−xα′+(y−y ′)∆x)−θ (xα−xα′)
is only non-zero if α= α′.
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On the other hand we have microscopically

Υ̂Micro =
1
ℓ

∑

i

Υ̂

 

x i −
a
ℓ

∑

j ̸=i

θ (x i − x j), pi

!

(59)

= 1
ℓ

∑

α,β

∑

i∈Cα,β

Υ̂
�

x̂α + yi∆x

− a
ℓ

∑

α′

∑

j∈Aα′

θ (xα − xα′ + (yi − y j)∆x)− θ (xα − xα′), pβ + qi∆p
�

(60)

= 1
ℓ

∑

α,β

∑

i∈Cα,β

Υ̂

 

x̂α + yi∆x − a
ℓ

∑

j∈Aα

sgn(yi − y j), pβ + qi∆p

!

(61)

and therefore

Υ̂FC − Υ̂Micro = −
1
ℓ

∑

α,β

∂ x̂ Υ̂
�

x̂α, pβ
�

∑

i∈Cα,β

 

yi∆x − a
ℓ

∑

j∈Aα

sgn(yi − y j)

!

(62)

− ∆p
ℓ

∑

α,β

∂pΥ̂
�

x̂α, pβ
�

∑

i∈Cα,β

qi +O
�

∆x2
�

. (63)

Note that using our convention we have sgn(0) = θ (0)− 1/2= 0.
Now we need to estimate the scaling of this expression. As in section 4.1 we will do this

by assuming a distribution as (39) or (39). It is easy to see that E[Υ̂FC − Υ̂Micro] = O
�

∆x2
�

.
Therefore, let us focus on the variance. Since we assume yi and qi to be independent, the
variance of (62-63) is just the variance of (62) plus the variance of (63). The latter scales, as
in section 4.1, as ∆x2/ℓ. Leveraging the independence of fluid cells, we have

E[(Υ̂FC − Υ̂Micro)
2] = 1

ℓ2

∑

α,β ,β ′
∂ x̂ Υ̂

�

x̂α, pβ
�

∂ x̂ Υ̂
�

x̂α, p′β
�

×
∑

i∈Cα,β

∑

i′∈Cα,β′

E





 

yi∆x − a
ℓ

∑

j∈Aα

sgn(yi − y j)

! 

yi′∆x − a
ℓ

∑

j′∈Aα

sgn(yi′ − y j′)

!





+O
�

∆x2/ℓ
�

(64)

= ∆x2

ℓ2

∑

α,β ,

∂ x̂ Υ̂
�

x̂α, pβ
�2
∑

i∈Cα,β

E[y2
i ]

− 2a∆x
ℓ3

∑

α,β ,β ′
∂ x̂ Υ̂

�

x̂α, pβ
�

∂ x̂ Υ̂
�

x̂α, p′β
� ∑

i∈Cα,β

∑

i′∈Cα,β′

∑

j′∈Aα

E
�

yi sgn(yi′ − y j′)
�

+ a2

ℓ4

∑

α,β ,β ′
∂ x̂ Υ̂

�

x̂α, pβ
�

∂ x̂ Υ̂
�

x̂α, p′β
� ∑

i∈Cα,β

∑

i′∈Cα,β′

∑

j, j′∈Aα

E
�

sgn(yi − y j) sgn(yi′ − y j′)
�

+O
�

∆x2/ℓ
�

. (65)

All of these expectation values are only non-vanishing if at least two indices coincide, i.e. either
i = i′, i = j′, etc. In this case each expectation value gives an O(1) contribution, hence we
can estimate:

E[(Υ̂FC − Υ̂Micro)
2] =O

�

∆x2/ℓ
�

. (66)

This estimate was obtain by simply counting the number of non-zero summands in (65) and
using

�

�Cα,β

�

� = nα,β ∼ ℓ∆x∆p, |Aα| ∼ ℓ∆x and that the sums over α run over ∼ 1/∆x
summands (and similarly sums over β run over ∼ 1/∆p summands).
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Hence, we conclude

E[Υ̂FC − Υ̂Micro]∼∆x2 (67)

Var[Υ̂FC − Υ̂Micro] =
∆x2

ℓ . (68)

These are the same scalings as in (47) and hence the error ΥFC −ΥMicro ∼ ℓ−ν scales again as:

ν=

¨

3
2 −µ µ < 1/2

2− 2µ µ > 1/2.
(69)

As in section 4.1, we find that the error induced by coarse-graining is dominated by statis-
tical fluctuations for µ < 1/2 and by a systematic error for µ > 1/2.

Remark 5 Note that the additional constant a
2ℓ from (12) cancels exactly with the extension of

the sum
∑

i ̸= j →
∑

j in the step going from (59) to (60). Hence, this choice of constant in crucial.

4.3 Non-interacting time evolution

Now we consider the case where we let the system evolve with the non-interacting time-
evolution, which in the hard rods happens in contracted coordinates.

For now let us study the simplified case of non-interacting particles a → 0, where the
evolution is simply given by:

x i → x i + pi t. (70)

This means that the value of an observable in the microscopic theory is given by

Υ (t)Micro =
1
ℓ

∑

i

Υ (x i + pi t, pi) (71)

and in the coarse-grained theory given by

Υ (t)FC =

∫

dx dpρ(x , p)Υ (x + pt, p), (72)

where ρ(x , p) = ρFC(x , p) is given by (26).
As in the previous sections we now want to compute the asymptotic scaling of the error

Υ (t)FC − Υ (t)Micro. Plugging (26) into (72) we find7

Υ (t)FC =
∑

α,β

ρα,β

∫ xα+∆x/2

xα−∆x/2
dx

∫ pβ+∆p/2

pβ−∆p/2
dpΥ (x + pt, p) (73)

=∆x∆p
∑

α,β

ρα,β

∫ 1/2

−1/2

dy dqΥ (xα + pβ t + y∆x + qt∆p, pβ + q∆p) (74)

=∆x∆p
∑

α,β

ρα,βΥ (xα + pβ t, pβ) +
1

24∆x∆p
∑

α,β

ρα,β

×
�

∂ 2
x Υ (xα + pβ t, pβ)(∆x2 + t2∆p2) + ∂ 2

p Υ (xα + pβ t, pβ)∆p2
�

+O
�

∆x3 + (t∆p)3
�

(75)

=∆x∆p
∑

α,β

ρα,βΥ (xα + pβ t, pβ) +O
�

∆x2 + (t∆p)2
�

. (76)

7Note that (for now) we will assume that we study Euler times, i.e. t = O(1) is a fixed number. However, we
will keep time explicit for later discussion.
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On the other hand we also have

Υ (t)Micro =
1
ℓ

∑

α,β

∑

i∈Cα,β

Υ (x i + pi t, pi) (77)

= 1
ℓ

∑

α,β

∑

i∈Cα,β

Υ (xα + pβ t + yi∆x + qi t∆p, pβ + qi∆p) (78)

=∆x∆p
∑

α,β

ρα,βΥ (xα + pβ t, pβ) +∆x∆p
∑

α,β

ρα,β

×
�

∂xΥ (xα + pβ t, pβ)([y]α,β∆x + [q]α,β t∆p) + ∂pΥ (xα + pβ t, pβ)[q]α,β∆p
�

+O
�

∆x2 + (t∆p)2
�

. (79)

Taking the difference and applying the same resaoning as in section 4.1, we find that

E[Υ (t)FC − Υ (t)Micro]∼∆x2 + t2∆p2 (80)

Var[Υ (t)FC − Υ (t)Micro]∼
∆x2

ℓ +
t2∆p2

ℓ (81)

which, for t =O(1), is again the same scaling as in (47), i.e. Υ (t)FC−Υ (t)Micro ∼ ℓ−ν with

ν=

¨

3
2 −µ µ < 1/2

2− 2µ µ > 1/2.
(82)

Again, the error induced by coarse-graining is dominated by statistical fluctuations for
µ < 1/2 and by a systematic error for µ > 1/2. However, note that the error increases with
time t. For t = O(1) this does not affect the asymptotic scaling, however, it indicates that
hydrodynamics will break down for long time t = O(1/∆p). We discuss the implications of
this in section 7.

4.4 The full evolution

Now, let us finally study the full hard rods time evolution: we want to compute the error
Υ (t)HR

FC − Υ (t)
HR
Micro between an observable Υ (x , p) at time t computed using the microscopic

particle positions

Υ (t)HR
Micro =

1
ℓ

∑

i

Υ (x i(t), pi) (83)

and computed starting from the coarse-grained density (26)

Υ (t)HR
FC =

∫

dx dpρFC(x , p)Υ (XFC(t, x , p), p), (84)

where XFC(t, x , p) is (11) with ρ(x , p) = ρFC(x , p). This can be written as:

XFC(t, x , p) = X̂FC(x) + pt + a

∫

dx ′ dp′ρFC(y, q)θ (X̂FC(x) + pt − X̂FC(x
′)− p′ t)− a

2ℓ (85)

X̂FC(x) = x − aΦFC(xα(x))− aρ̄α(x)(x − xα(x)) +
a
2ℓ (86)

ΦFC(xα) =∆x
∑

α′<α

ρ̄α′ + ρ̄α∆x/2, (87)

where α(x) is the fluid cell in which x is. Using similar arguments as before we find

Υ (t)HR
FC =∆x∆p

∑

α,β

ρα,βΥ (xα,β(t), pβ) +O
�

∆x2
�

, (88)
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where

xα,β(t) = x̂α + pβ t + a∆x∆p
∑

α′,β ′
ρα′,β ′θ ( x̂α + pβ t − x̂α′ − pβ ′ t)−

a
2ℓ (89)

Here, for simplicity we assume that t =O(1), s.t. ∆pt ∼∆x .
The microscopic evolution is given by

Υ (t)HR
Micro =

1
ℓ

∑

i

Υ (x i(t), pi) (90)

and thus

Υ (t)HR
FC − Υ (t)

HR
Micro = −

1
ℓ

∑

α,β

∂xΥ (xα,β(t), pβ)





∑

i∈Cα,β

x i(t)− xα,β(t)





− ∆p
ℓ

∑

α,β

∂pΥ (xα,β(t), pβ)





∑

i∈Cα,β

qi



+O
�

∆x2
�

. (91)

In the following denote by

ŷi =
x̂ i − X̂FC(xα)

∆x
(92)

and observe

x i(t)− xα,β(t) = ŷi∆x + qi∆pt

+ a
ℓ

∑

j

θ ( x̂ i + pi t − x̂ j − p j t)− θ ( x̂α + pβ t − x̂α(x j) − pβ(x j) t). (93)

Defining zα,β ,α′,β ′ = x̂α + pβ t − x̂α′ − pβ ′ t, this gives

x i(t)− xα,β(t) = ŷi∆x + qi∆pt + a
ℓ

∑

α′,β ′

∑

j∈Cα′ ,β′

× θ (zα,β ,α′,β ′ + ( ŷi − ŷ j)∆x + (qi − q j)∆pt)− θ (zα,β ,α′,β ′) (94)

= ŷi∆x + qi∆pt + a
ℓ

∑

α′,β ′

∑

j∈Cα′ ,β′

× θ (0< − sgn(yi j(t))zα,β ,α′,β ′ <
�

�yi j(t)
�

�) sgn(yi j(t). (95)

Here yi j(t) = ( ŷi − ŷ j)∆x + (qi − q j)∆pt and we used

θ (x + y)− θ (x) = θ (0< − sgn(y)x < |y|) sgn(y). (96)

Next, we need to estimate the scaling of this. Unfortunately, performing the averaging (39)
is significantly more complicated now. However, recall that the probability measure (39) is not
the actual microscopic randomness in the model. Instead, it is meant to guide us towards the
scaling of these terms. Therefore, let us use what we learned from previous sections to try to
estimate the size of (91): first, due to the θ (0 < − sgn(yi j(t))zα,β ,α′,β ′ <

�

�yi j(t)
�

� sgn(yi j(t))
the sum will only give a contribution if zα,β ,α′,β ′ =O(∆x). Therefore, for each α,β ,β ′, there
will be only a few α′ giving a contribution. Thus the sum has ∼ ℓ∆x2/∆x3 = ℓ/∆x terms.
On average, each one of these terms averages to 0, because the sign of the yi j should be fully
random. Thus, the expectation value of (91) is of order∆x2, as before. However, the variance
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of each sgn(yi j) is of O(1), implying that the variance of (95) is of order O
�

∆x2
�

. Therefore,
we expect that the expectation value and variance of (91) again scale as

E[Υ (t)HR
FC − Υ (t)

HR
Micro]∼∆x2 (97)

Var[Υ (t)HR
FC − Υ (t)

HR
Micro]∼

N
ℓ2

Var[x i(t)− xα,β(t)]∼∆x2/ℓ (98)

which means that, as in previous sections, the error scales as Υ (t)HR
FC −Υ (t)

HR
Micro ∼ ℓ

−ν with

ν=

¨

3
2 −µ µ < 1/2

2− 2µ µ > 1/2.
(99)

Note that this is the error of the Euler hydrodynamic approximation compared to the exact
microscopic evolution. Interestingly, this error scales exactly as the error due to the initial
time coarse-graining. In particular also the dominant type of error does not change: for small
fluid cells µ < 1/2, the error is dominated by statistical fluctuations, while for large fluid cells
µ > 1/2 it is dominated by a systematic error. This strongly suggests that the initial time
coarse-graining is the bottleneck for the precision of the hydrodynamic approximation. The
time evolution after initial coarse-graining does not introduce further errors.

Furthermore, note that the error for µ < 1/2 is smaller than O(1/ℓ), meaning that Euler
hydrodynamics is also precise on the diffusive scale. In particular, there cannot be any diffusive
correction to Euler hydrodynamics, as further discussed in section 6.

4.5 Numerical simulations

Verifying scalings such as (99) is not so trivial, because the error is only asymptotically: for a
given fixed configuration the error might be very large. To extract any meaningful scalings we
thus average the error over many samples drawn from appropriate probability distributions
E[. . .]. To be precise we compute

ξ=
Æ

E[(ΥFC − ΥMicro)2] (100)

=
Æ

(E[ΥFC − ΥMicro])2 + Var[ΥFC − ΥMicro] (101)

for different ℓ → ∞, with ∆x ,∆p ∼ ℓµ−1, and then extract its scaling ξ ∼ ℓ−ν using a
numerical fit of the form ξ = aℓ−ν. Here 0 < µ < 1 controls the coarse-graining scale. To be
more precise, we do the fit on the expectation value and the standard deviation separately and
then take the minimum of the obtained ν. This is to avoid transition effects around µ = 1/2,
where the behaviour shifts from variance dominated to expectation value dominated.

To demonstrate the universality of the scalings we use different measures E[. . .], described
in the following:

• Local equilibrium state (LES): This is the canonical initial state (2) considered in hydro-

dynamics. We choose a target density ρ(x , p) = A
2π e−

1
2 (x

2+p2). Note that such states can
be generated quite efficiently, see e.g. [18].

• Poisson point process (Poisson): We generate a Poisson point process in the contracted

coordinates x̂ with target density ρ̂( x̂ , p) = A
2π e−

1
2 ( x̂

2+p2) and then expand the config-
uration to physical coordinates x̂ → x to obtain a valid hard rods configuration. Note
that the resulting probability measure will have non-trivial long range correlations.

• Ginibre ensemble (Ginibre): We first draw the number of particles N ∼ Pois(Aℓ) and
then sample a random Ginibre matrix Z = (X+ iY)/

p
2N (here X,Y are matrices filled
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Figure 2: Numerically extracted scaling of the error ξ ∼ ℓ−ν as function of coarse-
graining scale∆x ,∆p ∼ ℓµ−1 for fluid cell coarse-graining. We dististinguish the four
approximations discussed in the text: a) coarse-graining of the initial configuration
(section 4.1), b) contracting map (section 4.2), c) non-interacting time evolution
(section 4.3) and d) the full hard rods time evolution (section 4.4). The points are
the numerical results for the three ensembles discussed in section 4.5. The errorbars
represent the fit error on ν (note that the error for the Ginibre states are larger, since
they had to be obtained on smaller system sizes). The numerical results agree well
with the analytical predictions obtained in this section. The dashed line at ν = 1
is diffusive scaling. If ν > 1, Euler hydrodynamics is accurate also on the diffusive
scale. Further details of the numerical simulations are explained in appendix B.

with iid standard Gaussians). Then, we compute the eigenvalues zi of this matrix and
identify it with a particle ( x̂ i , pi) in contracted space via x̂ i + ipi = f (|zi|)zi , where
f (r) = 1

r

p

−2 log(1− r2). Note that since the eigenvalues of the Ginibre ensemble are
distributed uniformly in the disc |z| < 1 [51], the rescaling factor f (r) makes ( x̂ i , pi)

distributed as ρ̂( x̂ , p) = A
2π e−

1
2 ( x̂

2+p2). We then expand this configuration to physical
coordinates.

In this section we choose the amplitude A= 5. Note that the first two ensembles were chosen
to be physical states of hard rods. The last one (Ginibre) was chosen on purpose to be as
unphysical as possible. The “eigenvalue repulsion” property of random matrices leads to local
correlations of the form 〈δρ̂( x̂ , p)δρ̂( ŷ , q)〉 ∼ (δ′′( x̂ − ŷ)δ(p− q) +δ( x̂ − ŷ)δ′′(p− q)) [52],
which is clearly fundamentally different from the usual Poisson process like correlations of
hard rod local GGE states in contracted coordinates 〈δρ̂( x̂ , p)δρ̂( ŷ , q)〉 ∼ δ( x̂ − ŷ)δ(p − q).
Note that because the evolution in contracted coordinates is trivial, it is easy to see that the
(singular parts of the) correlations of the (Ginibre) states will remain intact. Hence, they will
never become GGE like, or in other words: (Ginibre) states never thermalize to a GGE, not
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even locally(!). Therefore, the (Ginibre) states extremely unphysical states.
The numerically extracted scalings are found in Fig. 2, which all agree with the analytically

predicted scalings.

Remark 6 The fact that GHD also works for the unphysical (Ginibre) states clearly demonstrate
that the local equilibrium assumption of hydrodynamics is not at all required. Instead, GHD
emerges already if particles are sufficiently generically placed in fluid cells. Note that even if we
do not assume this, the correction term (91) is of order O(∆x) as long as the density is bounded.
Thus GHD should emerge even more generally (however, with worse scaling of the error). It would
be interesting to check in non-integrable models whether or not hydrodynamics applies to non-
physical states as well.

Remark 7 Again, we would like to emphasise that the use of probability measures as random
initial states is purely used to extract the scaling in a reliable way. Note that what we show here is
p

E[(ΥFC − ΥMicro)2]→ 0, which means that Euler GHD works almost surely for all states in the
ensemble E[. . .]. This is much stronger than showing GHD in the usual sense, which would mean
E[ΥFC]→ E[ΥMicro]. Unfortunately, as ℓ→∞ all of the ensembles E[. . .] only cover a very tiny
subset of all possible initial states. This is why our analytical analysis is so important: it predicts
that GHD should work almost surely for any (reasonable) ensemble of states.

5 Coarse-graining 2: Smoothing

We would like to present alternative common way to approximate a discrete probability dis-
tribution by a smooth one. The idea is to replace the δ peaks in (21) by smooth functions

δ(x)δ(p)→ 1
∆x∆pη(

x
∆x , p

∆p ). (102)

Here η(x , p) is a non-negative smooth function that is symmetric in x and p and integrates to
∫

dx dpη(x , p) = 1. For convenience, we will also assume
∫

dx dpη(x , p)x2 =

∫

dx dpη(x , p)p2 = 1. (103)

A simple example of this is a Gaussian

η(x , p) = 1
2π e−

x2+p2

2 , (104)

but many more functions are available. As before∆x and∆p control the width of the smoothen-
ing window. We therefore define

ρSmooth(x , p) = 1
ℓ

∑

i

1
∆x∆pη(

x−x i
∆x , p−pi

∆p ), (105)

which is also the convolution of ρMicro by (102).

5.1 Initial state coarse-graining

As for fluid cell coarse graining, let us first study the error obtained by coarse-graining the
initial state. This means that we want to compare the value of an observable Υ (x , p) computed
from the microscopic configuration

ΥMicro =
1
ℓ

∑

i

Υ (x i , pi) (106)
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to the one obtained by integrating against (105), given by

ΥSmooth =

∫

dx dpρSmooth(x , p)Υ (x , p) = 1
ℓ

∑

i

∫

dy dqη(y, q)Υ (x i + y∆x , pi + q∆p)

(107)

= 1
ℓ

∑

i

Υ (x i , pi) +
1
2ℓ

∑

i

∂ 2
x Υ (x i , pi)

�∫

dy dqη(y, q)y2

�

∆x2

+ 1
2ℓ

∑

i

∂ 2
p Υ (x i , pi)

�∫

dy dqη(y, q)q2

�

∆p2 +O
�

∆x3
�

. (108)

Hence, we find that the difference is given by

ΥSmooth − ΥMicro =
1
2ℓ

∑

i

∂ 2
x Υ (x i , pi)∆x2 + 1

2ℓ

∑

i

∂ 2
p Υ (x i , pi)∆p2 +O

�

∆x3
�

(109)

→ 1
2

∫

dx dpρ(x , p)(∂ 2
x Υ (x , p)∆x2 + ∂ 2

p Υ (x , p)∆p2). (110)

In the last step we took a continuum limit. The error of the approximation for ∆x ,∆p ∼ ℓµ−1

is ℓ−ν with

ν= 2− 2µ. (111)

For large µ > 1/2 this approximation is therefore as good as the fluid cell one, but for smaller
µ < 1/2 it is better. This is due to the smoothness of the approximation. Note that the error is
always dominated by a systematic one as opposed to fluid cell coarse-graining, section 4.1.

5.2 Contraction/Expansion

Next, we will study how error of the contraction map after the smoothing coarse-graining. We
want to compare the value

Υ̂Micro =
1
ℓ

∑

i

Υ ( x̂ i , pi) (112)

of an observable Υ̂ ( x̂ , p) obtained from the microscopic configuration ( x̂ i , pi) given by (5) to
the value Υ̂Smooth obtained by first coarse-graining (x i , pi) as in section 5.1 and then contracting
using (12). The latter is given by

Υ̂Smooth =

∫

dx dpρ(x , p)Υ̂ (X̂Smooth(x), p), (113)

where X̂Smooth(x) is given by (12) with ρ(x , p) = ρSmooth(x , p) given by (105):

X̂Smooth(x) = x − a
ℓ

∑

i

∫

dy η̄(y)θ (x − x i − y∆x) + a
2ℓ . (114)

Here we denote η̄(x) =
∫

dpη(x , p). Plugging this into (113), we obtain

Υ̂Smooth =
1
ℓ

∑

i

∫

dy dqη(y, q)

× Υ̂

 

x i + y∆x − a
ℓ

∑

j

∫

dy ′ η̄(y ′)θ (x i − x j + (y − y ′)∆x) + a
2ℓ , pi + q∆p

!

.

(115)
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We find that

Υ̂Smooth − Υ̂Micro =
1
ℓ

∑

i

∂ x̂ Υ̂ ( x̂ i , pi)
�

− a
ℓ

∑

j

∫

dy dy ′ η̄(y)η̄(y ′)

× θ (x i − x j + (y − y ′)∆x) + a
2ℓ +

a
ℓ

∑

j ̸=i

θ (x i − x j)
�

+O
�

∆x2
�

(116)

Let us define the function

f (x) =

∫

dy dy ′ η̄(y)η̄(y ′)θ (x + y − y ′)− θ (x). (117)

Note that this function is anti-symmetric and vanishes as x →±∞:

f (−x) = − f (x) lim
x→±∞

f (x) = 0. (118)

We can use this to write

Υ̂Smooth − Υ̂Micro =
1
ℓ

∑

i

∂ x̂ Υ̂ ( x̂ i , pi)
�

− a
ℓ

∑

j ̸=i

f (
x i−x j
∆x )

+ a
ℓ

�

1
2 −

∫

dy dy ′η(y)η(y)θ (η−η′)
�

�

+O
�

∆x2
�

(119)

= − a
ℓ2

∑

i ̸= j

∂ x̂ Υ̂ ( x̂ i , pi) f (
x i−x j
∆x ) +O

�

∆x2
�

. (120)

Note that terms in this sum will only contribute if x i − x j =O(∆x), meaning that for each i, j
runs over∼∆xℓ terms. Unlike in the case of fluid cell coarse-graining, we cannot average over
the microscopic randomness to analytically estimate the size of the error. We can still obtain a
sensible estimate based on the heuristic understanding we gained in section 4. First, note that
if x i− x j =O(∆x) then f ((x i− x j)/∆x) is an O(1) number with an arbitrary sign (recall that
f (x) is antisymmetric). As a crude estimate we can assume that all of these numbers are iid,
which means that the total sum averages to 0 and has variance ∼ N∆x

ℓ4 O(1) =O
�

∆x/ℓ2
�

.
Thus, we conclude that

Υ̂Smooth − Υ̂Micro ∼max

�

∆x2,

p
∆x
ℓ

�

, (121)

which scales as ℓ−ν, with

ν=

¨

2− 2µ µ > 1/3
3
2 −

µ
2 µ < 1/3.

(122)

Note that this, for µ < 1/3 decays slower than the error of coarse-graining alone given by
(111). This means that the application of the non-linear contraction map induces an additional
statistical error dominating the systematic one for µ < 1/3. As for fluid cell coarse-graining
(section 4) the error shows a “phase transition” behaviour, changing from a statistical error to
a systematic one. However, note that this transition point µ = 1/3 is different from µ = 1/2
obtained in section 4.

Remark 8 Note that also with the smoothing the additional constant a
2ℓ in (12) is needed to

cancel a term in the derivation (the second term in (119)).
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5.3 Non-interacting time evolution

Next we study the non-interacting time evolution. After time t the value of an observable
Υ (x , p) in the microscopic theory is given by

Υ (t)Micro =
1
ℓ

∑

i

Υ (x i + pi t, pi). (123)

We want to compare this to the value obtained after coarse-graining (105)

Υ (t)Smooth =

∫

dx dpρSmooth(x , p)Υ (x + pt, p). (124)

This can be written as

Υ (t)Smooth =
1
ℓ

∑

i

∫

dy dqη(y, q)Υ (x i + pi t + y∆x + qt∆p, pi + q∆p) (125)

= 1
ℓ

∑

i

Υ (x i + pi t + y∆x + qt∆p, pi + q∆p). (126)

Hence we find

Υ (t)Smooth − Υ (t)Micro =
1
2ℓ

∑

i

∂ 2
x Υ (x i + pi t, pi)

�

∆x2 + (t∆p)2
�

+ ∂ 2
p Υ (x i + pi t, pi)∆p2 +O

�

∆x3 + (t∆p)3
�

(127)

→ 1
2

∫

dx dpρ(x , p)
�

∂ 2
x Υ (x + pt, p)

�

∆x2 + (t∆p)2
�

+ ∂ 2
p Υ (x + pt, p)∆p2

�

+O
�

∆x3 + (t∆p)3
�

, (128)

from which we conclude

Υ (t)Smooth − Υ (t)Micro ∼∆x2 + (t∆p)2. (129)

For t = O(1), this is again the same scaling as in (111). Thus error of the approximation
scales as ℓ−ν with

ν= 2− 2µ. (130)

Since the non-interacting time evolution is a linear map, the main source of error is due
to the initial time coarse-graining (111), which is purely a systematic error. Note that as in
section 4.3 the error increases with time t. Therefore, hydrodynamics will break down on time
scales t ∼O(1/∆p) as discussed in section 7.

5.4 Full time evolution

Finally, we study the full hard rods time evolution. We want to compare the value of an
observable in the microscopic theory

Υ (t)HR
Micro =

1
ℓ

∑

i

Υ (x i(t), pi), (131)

given by (7), to the value we obtain from the coarse-grained initial density (105)

Υ (t)HR
Smooth =

∫

dx dpρSmooth(x , p)Υ (XSmooth(t, x , p)), (132)
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where XSmooth(t, x , p) is given by (11) withρ(x , p) = ρSmooth(x , p). We can write this explicitly
as

XSmooth(t, x , p) = X̂Smooth(x) + pt − a
2ℓ

+ a

∫

dx ′ dp′ρSmooth(y, q)θ (X̂Smooth(x) + pt − X̂Smooth(x
′)− p′ t), (133)

where

X̂Smooth(x) = x − a
ℓ

∑

k

∫

dy dqη(y, q)θ (x − xk − y∆x) + a
2ℓ . (134)

Inserting this into (132) we find

Υ (t)HR
Smooth =

∫

dx dpρSmooth(x , p)Υ (XSmooth(t, x , p), p) (135)

= 1
ℓ

∑

i

∫

dy dqη(y, q)Υ (X̂Smooth(x i + y∆x)

+ a
ℓ

∑

j

∫

dy ′ dq′η(y ′, q′)θ (X̂Smooth(x i + y∆x)− X̂Smooth(x j + y ′∆p)

+ (pi − p j)t + (q− q′)∆pt). (136)

Using similar arguments as before we find

Υ (t)HR
Smooth − Υ (t)

HR
Micro =

1
ℓ

∑

i

∂xΥ (x i(t), pi)
�

− a
ℓ

∑

j ̸=i

f (
x i−x j
∆x ) +

a
ℓ

∑

j ̸=i

g(x i , pi; x j , p j)
�

+O
�

∆x2
�

. (137)

Here we defined

f (x) =

∫

dy dy ′η(y)η(y ′)(θ (x + y − y ′)− θ (x)) (138)

g(x i , pi; x j , p j) =

∫

dy dq dy ′ dq′η(y, q)η(y ′, q′)
�

θ
�

X̂Smooth(x i + y∆x)− X̂Smooth(x j + y ′∆p)

+ (pi − p j)t + (q− q′)∆pt
�

− θ ( x̂ i − x̂ j + (pi − p j)t)
�

. (139)

Note that g(x i , pi; x j , p j) = −g(x j , p j; x i , pi) and g(x i , pi; x j , p j) is only non-negligible if
x̂ i + pi t − x̂ j − p j t = O(∆x +∆pt). Therefore, as in section 5.2, the terms in the bracket
in (137) will be of O(1) but with a fluctuating sign. Thus, following the same reasoning as in
section 5.2, we arrive at the same result

Υ (t)HR
Smooth − Υ (t)

HR
Micro ∼max(∆x2,

p
∆x
ℓ
), (140)

which scales as ℓ−ν, with

ν=

¨

2− 2µ µ > 1/3
3
2 −

µ
2 µ < 1/3.

(141)

This is the error of the hydrodynamic approximation using a smoothing coarse-graining
compared to the exact microscopic evolution. As for the contraction map (section 5.2), the
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error is dominated by an additional statistical error for µ < 1/3. This error occurs because
the hydrodynamic evolution is a non-linear map. We see that even though smooth coarse-
graining is more precise than fluid cell coarse-graining, the hydrodynamic evolution induces
an additional error. Nonetheless, the error for the smooth coarse-graining is smaller than for
fluid cell coarse-graining for µ < 1/2, otherwise it scales equally. Again, as for fluid cell coarse-
graining, for µ < 1/2 the error is smaller than O(1/ℓ), implying that Euler hydrodynamics is
also precise on the diffusive scale (further discussed in section 8).

5.5 Numerical simulations
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Figure 3: Numerically extracted scaling of the error ξ ∼ ℓ−ν as function of coarse-
graining scale ∆x ,∆p ∼ ℓµ−1 for smoothing coarse-graining. We dististinguish the
four approximations discussed in the text: a) coarse-graining of the initial configura-
tion (section 5.1), b) contracting map (section 5.2), c) non-interacting time evolution
(section 5.3). We were not able to compute numerical data for d) the full hard rods
time evolution (section 5.4) since it was too numerically demanding (see appendix
B), so we only plot our theoretical expectation of the exponents (black line). The
points are the numerical results for the three ensembles discussed in section 4.5.
The errorbars represent the fit error on ν (note that the error for the Ginibre states
are larger, since they had to be obtained on smaller system sizes). The numerical re-
sults agree well with the analytical predictions obtained in this section. The dashed
line at ν = 1 is diffusive scaling. If ν > 1, Euler hydrodynamics is accurate also
on the diffusive scale. Further details of the numerical simulations are explained in
appendix B.

As for the case of fluid cell averaging we also compare the results with numerical simula-
tions and find good agreement, see Fig. 3. Here we used the same initial state ensembles as in
section 4, only with A= 2 or A= 1, see appendix B. This is because computing the contraction
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is much more demanding compared to the fluid cell averaging case, hence we used smaller A
to speed up simulations. Note that we did not simulate the significantly more complicated full
time evolution, see appendix B.

6 Diffusive generalized hydrodynamics

The above results show that there is no diffusive scale 1/ℓ correction to generalized hydrody-
namics in hard rods (on the level of individual samples). However, one typically assumes that
the initial configuration is chosen from some ensemble of initial states, e.g. local equilibrium
states like (2). The quantity of interest is then the quasi-particle density 〈ρ(t, x , p)〉 averaged
over this initial ensemble. We will now show that the evolution equation of 〈ρ(t, x , p)〉 is not
given by the Euler GHD equation (9), but indeed obtains a 1/ℓ correction (which, however, is
different from a Navier-Stokes like diffusion term).

The appearance of such a term can easily be seen as follows: Since Euler GHD is accurate
beyond 1/ℓ, we can forget about the microscopic hard rods model and study Euler GHD with
random initial data. In hard rods the solution to the GHD equation is known explicitly and
given by (13). Thus, all we need to do is to average (13) over the initial data. To obtain a
systematic expansion, we will use that fluctuations are small along the following strategy.

Imagine the following toy example: given a deterministic map y = f (x), we want to
compute the average of y over a probability distribution of x . If this probability distribution is
peaked at 〈x〉 with a small fluctuations δx = x −〈x〉 ∼ ϵ≪ 1, we can compute this via Taylor
expansion

〈y〉= 〈 f (x)〉= 〈 f (〈x〉+δx)〉= f (〈x〉) + f ′(〈x〉) 〈δx〉
︸︷︷︸

=0

+1
2 f ′′(〈x〉)




δx2
�

+O
�

ϵ3
�

. (142)

In our case, x stands for ρ(x , p) and f should be seen as the GHD equation solution map (13).
The fluctuations of δρ(x , p) = ρ(x , p)− 〈ρ(x , p)〉 are typically of order ϵ = 1/

p
ℓ, hence the

correction term on the RHS will be of diffusive order 1/ℓ. This is what we will call diffusive
GHD.

6.1 Time evolved two-point correlation function in hard rods

From (142) it is clear that the diffusive scale correction is determined by 〈δρ(x , p)δρ(y, q)〉,
i.e. the two point correlation functions. Here we briefly summarize the current understand-
ing of the two-point function as derived from GHD [?, 22]. As mentioned above a natural
initial state for the GHD is a local equilibrium state. In these states the two-point function
〈δρ(x , p)δρ(y, q)〉 (also denoted 〈ρ(x , p)ρ(y, q)〉c) is uncorrelated in space and is locally
given by the local GGE correlations:

〈δρ(x , p)δρ(y, q)〉= 1
ℓδ(x − y)CGGE(x , p, q) +O

�

1/ℓ2
�

, (143)

where

CGGE(x , p, q) = ρ(x , p)δ(p− q) +ρ(x , p)ρ(x , q)

�

−2a+ a2

∫

dq′ρ(x , q′)

�

(144)

are the GGE correlation functions. During time evolution the form of this singular part is
preserved, however, additional long range correlations emerge. The time evolved two-point
correlation function is thus given by

C(x , p, y, q) = ℓ 〈δρ(x , p)δρ(y, q)〉= δ(x − y)CGGE(x , p, q) + CLR(x , p, y, q) +O(1/ℓ).
(145)
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One can find explicit formulas for the long range part [?, 22], however, they will not be im-
portant here. To derive diffusion only the local behaviour at x ≈ y will be important. It turns
out that the long range correlations (which are otherwise continuous) have a jump at x = y:

CLR(x , p, y, q)
�

�

y≈x =
a
2 1dr(x)

�

∂xρ(x , p)ρ(x , q)−

−ρ(x , p)∂xρ(x , q)
�

sgn(y − x) + (continuous). (146)

Here (continuous) stands for a continuous part and 1dr(x) = 1− a
∫

dqρ(x , q). We will see
that the contribution from the jump and from the δ(x − y) term will cancel, and thus only the
continuous part will affect the evolution.

6.2 The diffusive scale correction

In order to apply the above strategy outlined in (142) we start from (13) and proceed as
follows:

Υ (t) =

�∫

dx dpρ(x , p)Υ (X (t, x , p), p)

�

(147)

=

∫

dx dp 〈ρ(x , p)〉Υ (〈X (t, x , p)〉 , p) +

∫

dx dp ∂xΥ (〈X (t, x , p)〉 , p) 〈δρ(x , p)δX (t, x , p)〉

+ 1
2

∫

dx dp 〈ρ(x , p)〉∂ 2
x Υ (〈X (t, x , p)〉 , p)




δX (t, x , p)2
�

+O
�

1/ℓ2
�

. (148)

Here we defined δX (t, x , p) = X (t, x , p) − 〈X (t, x , p)〉. Since X (t, x , p) is also a non-linear
function of ρ(x , p), 〈X (t, x , p)〉 will also obtains a 1/ℓ correction. We will compute its value
later, but for now let us denote it by ∆X (t, x , p), i.e.

〈X (t, x , p)〉= XE(t, x , p) + 1
ℓ∆X (t, x , p) +O

�

1/ℓ2
�

. (149)

Here XE(t, x , p) is (11), but with ρ replaced by 〈ρ〉. Inserting this into (148) gives

Υ (t) =

∫

dx dp 〈ρ(x , p)〉Υ (XE(t, x , p), p)

+ 1
ℓ

∫

dx dp ∂xΥ (XE(t, x , p), p)[〈ρ(x , p)〉∆X (t, x , p) + ℓ 〈δρ(x , p)δX (t, x , p)〉]

+ 1
2ℓ

∫

dx dp 〈ρ(x , p)〉∂ 2
x Υ (XE(t, x , p), p)ℓ




δX (t, x , p)2
�

+O
�

1/ℓ2
�

. (150)

We will denote B(t, x , p) = 〈ρ(x , p)〉∆X (t, x , p) + ℓ 〈δρ(x , p)δX (t, x , p)〉.
As we are interested in finding the evolution equation for 〈ρt(x , p)〉, we need to study the

behavior of this as t → 0+. First, sending t → 0 in (11) it is clear that

lim
t→0+

XE(t, x , p) = x . (151)

Second, we show in appendix A that

lim
t→0+

B(t, x , p) = 0 (152)

lim
t→0+

ℓ



δX (t, x , p)2
�

= 0, (153)

hence as t → 0+ we have

lim
t→0+

Υ (t) =

∫

dx dpρ(x , p)Υ (x , p) (154)
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as expected. Next, let us take a time derivative of (150) at t = 0+. We find

d
dt
Υ (t)

�

�

�

�

t=0+
=

∫

dx dp 〈ρ(x , p)〉∂xΥ (x , p)veff(x , p)

+ 1
ℓ

∫

dx dp ∂xΥ (x , p)
d
dt

B(t, x , p)

�

�

�

�

t=0+

+ 1
2ℓ

∫

dx dp 〈ρ(x , p)〉∂ 2
x Υ (x , p)

d
dt

�

ℓ



δX (t, x , p)2
��

�

�

�

�

t=0+
+O

�

1/ℓ2
�

. (155)

Here we used that d
dt XE(t, x , p) = veff(x , p). Since (155) has to hold for any observable Υ , this

implies

∂t 〈ρt(x , p)〉
�

�

�

�

t=0+
= −∂x

�

veff(x , p) 〈ρ(x , p)〉
�

− 1
ℓ∂x

�

d
dt

B(t, x , p)

�

�

�

�

t=0+

�

+ 1
2ℓ∂

2
x

�

〈ρ(x , p)〉
d
dt

�

ℓ



δX (t, x , p)2
��

�

�

�

�

t=0+

�

+O
�

1/ℓ2
�

. (156)

This is the GHD equation including the 1/ℓ correction:

∂t 〈ρt(x , p)〉
�

�

�

�

t=0+
+ ∂x

�

veff(x , p) 〈ρ(x , p)〉
�

+ 1
ℓ∂x(∆ j(x , p)) = 0, (157)

where

∆ j(x , p) =
d
dt

B(t, x , p)

�

�

�

�

t=0+
− 1

2∂x

�

〈ρ(x , p)〉
d
dt

�

ℓ



δX (t, x , p)2
��

�

�

�

�

t=0+

�

(158)

is the correction to the current.
We still need to relate B(t, x , p) and ℓ




δX (t, x , p)2
�

to 〈δρ(x , p)δρ(y, q)〉. Let us start by
computing

〈X (t, x , p)〉=
�

X̂ (x) + pt + a

∫

dy dqρ(y, q)θ (X̂ (x) + pt − X̂ (y)− qt)− a
2ℓ

�

(159)

=



X̂ (x)
�

+ pt + a

∫

dy dq 〈ρ(y, q)〉θ (



X̂ (x)
�

+ pt −



X̂ (y)
�

− qt)− a
2ℓ

+ a

∫

dy dqδ(



X̂ (x)
�

+ pt −



X̂ (y)
�

− qt)



δρ(y, q)(δX̂ (x)−δX̂ (y))
�

+ a
2

∫

dy dq 〈ρ(y, q)〉δ′(



X̂ (x)
�

+ pt −



X̂ (y)
�

− qt)



(δX̂ (x)−δX̂ (y))2
�

+ . . . (160)

Here we denoted byδX̂ (x) = X̂ (x)−



X̂ (x)
�

= −a
∫

dy δρ̄(y)θ (x−y), with ρ̄(y) =
∫

dqρ(y, q).
Also observe 1dr(x) = 1−aρ̄(x) = ∂x X̂ (x) and X ( x̂) as to inverse function to X̂ (x). Comparing
(160) with (149) we can read off

∆X (t, x , p) = a

∫

dq 1
1dr(y)ℓ




δρ(y, q)(δX̂ (x)−δX̂ (y))
�

�

�

�

�

y=X (X̂ (x)+(p−q)t)

+ a
2

∫

dq 1
1dr(y)∂y

�

ρ(y,q)
1dr(y) ℓ




(δX̂ (x)−δX̂ (y))2
�

�

�

�

�

�

y=X (X̂ (x)+(p−q)t)
(161)

= a

∫

dq dq′ 1
1dr(y)

�

δ(q− q′) + aρ(y,q)
1dr(y)

�

ℓ



δρ(y, q′)(δX̂ (x)−δX̂ (y))
�

�

�

�

�

y=X (X̂ (x)+(p−q)t)

+ a
2

∫

dq
∂y
ρ(y,q)
1dr(y)

1dr(y) ℓ



(δX̂ (x)−δX̂ (y))2
�

�

�

�

�

y=X (X̂ (x)+(p−q)t)
. (162)
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Here and from now on, for lightness of notation, we decided to drop the 〈. . .〉 around one-point
functions. In terms of the initial fluctuations the expectation values are given by




δX̂ (x)δX̂ (y)
�

= a2

∫ x

−∞
dz1

∫ y

−∞
dz2 〈δρ̄(z1)δρ̄(z2)〉 (163)




δρ(y, q)δX̂ (x)
�

= −a

∫ x

−∞
dz1 〈δρ(y, q)δρ̄(z1)〉 (164)




δρ(y, q)δX̂ (y)
�

= −a

∫ y

−∞
dz1 〈δρ(y, q)δρ̄(z1)〉 . (165)

Furthermore, we can compute δX (t, x , p) as

δX (t, x , p) = δX̂ (x) + a

∫

dy dqδρ(y, q)θ (X̂ (x) + pt − X̂ (y)− qt)

+ a

∫

dy dqρ(y, q)δ(X̂ (x) + pt − X̂ (y)− qt)
�

δX̂ (x)−δX̂ (y)
�

(166)

= δX̂ (x) + a

∫

dy dqθ (X̂ (x) + pt − X̂ (y)− qt)δρ(y, q)

+ a

∫

dq ρ(y,q)
1dr(y)

�

δX̂ (x)−δX̂ (y)
�

�

�

�

�

y=X (X̂ (x)+(p−q)t)
. (167)

Hence,

〈δρ(x , p)δX (t, x , p)〉=



δρ(x , p)δX̂ (x)
�

+ a

∫

dy dqθ (X̂ (x) + pt − X̂ (y)− qt) 〈δρ(x , p)δρ(y, q)〉

+ a

∫

dq ρ(y,q)
1dr(y)




δρ(x , p)
�

δX̂ (x)−δX̂ (y)
��

�

�

�

�

y=X (X̂ (x)+(p−q)t)
(168)

and



δX (t, x , p)2
�

=



δX̂ (x)2
�

+ a2

∫

dy dq dy ′ dq′ θ (X̂ (x) + pt − X̂ (y)− qt)θ (X̂ (x) + pt − X̂ (y ′)− q′ t)

×



δρ(y, q)δρ(y ′, q′)
�

+ a2

∫

dq dq′ ρ(y,q)
1dr(y)

ρ(y ′,q′)
1dr(y ′)

×

�

δX̂ (x)−δX̂ (y)
��

δX̂ (x)−δX̂ (y ′)
��

�

�

�

�

y=X (X̂ (x)+(p−q)t),y ′=X (X̂ (x)+(p−q′)t)

+ 2a

∫

dy dqθ (X̂ (x) + pt − X̂ (y)− qt)



δX̂ (x)δρ(y, q)
�

+ 2a

∫

dq ρ(y,q)
1dr(y)




δX̂ (x)
�

δX̂ (x)−δX̂ (y)
��

�

�

�

�

y=X (X̂ (x)+(p−q)t)

+ 2a2

∫

dy dq dq′ θ (X̂ (x) + pt − X̂ (y)− qt)ρ(y
′,q′)

1dr(y ′)

×



δρ(y, q)
�

δX̂ (x)−δX̂ (y ′)
��

�

�

�

�

y ′=X (X̂ (x)+(p−q′)t)
. (169)
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At this point we have all necessary ingredients, i.e. ∆X (t, x , p), 〈δρ(x , p)δX (t, x , p)〉 and



δX (t, x , p)2
�

, to compute (158) in terms of the initial fluctuations. This is done in appendix A.
Since the formulas are linear in the correlations we can compute the effect of each contribution
individually.

The contribution from the singular part of the correlations is given by

∆ j(x , p)
singular
= −1

2 D̂∂xρ(x , p), (170)

where D̂ is the local “diffusion matrix”, i.e. a linear operator acting only on the momentum
degrees of freedom. Its kernel is explicitly given by [23]

D(p, q) =
a2

1dr

�

δ(p− q)

∫

dq′ρ(q′)
�

�p− q′
�

�−ρ(p)|p− q|
�

. (171)

The contribution by the long range part is given by

∆ j(x , p)
long range
= a

1dr(x)

∫

dq dp′ dq′ (p− q)
�

δ(p− p′) + aρ(x ,p)
1dr(x)

�

×
�

δ(q− q′) + aρ(x ,q)
1dr(x)

�

CLR(x − veff(x , p)0+, p′, x − veff(x , q)0+, q′). (172)

This is identical to the diffusive scale correction obtained in [22]. As noticed in [22], the
contribution from the singular and the jump of the long range correlations exactly cancel.
Thus the only contribution comes from the regular part of the long range correlations

CLR,sym(x , p, x , q) =
1
2

�

CLR(x + 0+, p, x , q) + CLR(x + 0−, p, x , q)
�

, (173)

i.e.:

∂tρ(x , p) + ∂x(v
eff(x , p)ρ(x , p)) = −1

ℓ∂x

�

a
1dr(x)

∫

dq dp′ dq′ (p− q)

×
�

δ(p− p′) + aρ(x ,p)
1dr(x)

��

δ(q− q′) + aρ(x ,q)
1dr(x)

�

CLR,sym(x , p′, x , q′)
�

. (174)

This is the diffusive scale correction to GHD in hard rods and it is discussed in more detail
in [18, 22]. Note that it is not given by a Navier-Stokes like diffusion term. In particular,
(174) combined with the linearized GHD equation describing the evolution of the correlation
functions (derived in [22,53])

∂t C(x , p, y, q)+∂x

�∫

dk
δ j(t, x , p)
δρ(k)

C(x , k, y, q)

�

−∂y

�∫

dk
δ j(t, x , q)
δρ(k)

C(x , p, y, q)

�

= 0,

(175)

where j(x , p) = veff(x , p)ρ(x , p), is invariant under time reversal symmetry. This is in stark
contrast to the Navier-Stokes like diffusion, which increases entropy (and thus cannot be time-
reversible). Also note that the diffusive scale correction purely is determined by the correla-
tions.

Remark 9 Even though (174) is called the diffusive GHD equation, its RHS is not at all of diffusive
type. This is because there is no intrinsic diffusion. All correction terms are due to transport
of initial fluctuations, i.e. “diffusion from convection”. Since this transport is time-reversible it
cannot give rise to an diffusive expression.
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At this point, we should clarify the difference between the two equations (9) and (174):
equation (9) describes the evolution before averaging over initial states, while (174) describes
the evolution after averaging over initial states. Which one to use depends on the type of
data one is observing. If in an experiment one specific configuration of hard rods is observed,
then the evolution will follow (9). However, if in an experiment one measures observables
averaged over many initial states, then their evolution will be described by (174) instead.
This kind of thinking is even more important for quantum systems: a quantum system can
either be prepared in a pure state (for instance on a quantum computer) or in a mixed state
(consider a cold atom experiment). In the latter case the quantum state of the particles is a
mixed state, even in theory.

Remark 10 Equation (174) coincides with the diffusive scale correction recently obtained in [22].
The derivation in [22] does not rely on coarse-graining of a deterministic initial condition, but
instead follows the more traditional approach of averaging over the initial state directly. Fur-
thermore, a generalization of (174) to any integrable model was proposed in [18], based on the
assumed absence of intrinsic diffusion, i.e. all diffusive effects come from “diffusion from convec-
tion” like in hard rods. The resulting equations reduce to the correct form in the special case of
local equilibrium states [54, 55], providing a strong indication that intrinsic diffusion is indeed
absent in general integrable models.

7 Entropy increase from the perspective of hydrodynamics with-
out averaging

Due to the absence of an intrinsic diffusive correction to the GHD of hard rods, entropy will
remain constant for all times8. In particular, there seems to be no thermalization towards a
GGE. Before the realization that the diffusive scale correction to GHD is not given by an entropy
increasing Navier-Stokes like equation, it was believed that this diffusive equation would lead
to thermalization. Since the Navier-Stokes term is suppressed by 1/ℓ, the expected time scale
of thermalization was T ∼ ℓ in macroscopic units (or T ∼ ℓ2 in microscopic units).

However, from the perspective of hydrodynamics without averaging it is impossible to
reach such long times. Already for non-interacting particles, we can see from (80) and (129)
if t ≫ 1, the error is controlled by∆pt. Therefore, the hydrodynamic approximation certainly
breaks down when t ∼ 1/∆p≪ ℓ. This makes sense since at this time, particles that initially
were in the same fluid cell are macroscopically apart.

On this time scale relaxation to a GGE state will occur, simply because the coarse-graining
is not able to capture all the details of the initial configuration anymore. In the following we
would like to explain this on the simple example of non-interacting particles, i.e. a→ 0. Due
to the mapping to non-interacting particles, the result should in spirit carry over to hard rods
(and any integrable model).

Remark 11 The ideas and derivation presented here are very close to another work published
in 2022 [56] (in particular the derivation via fluid cell coarse-graining). This section should
therefore not be seen as original work, but rather a reinterpretation of their result in the context
of this paper.

8The Euler scale hydrodynamic equations conserve entropy [2].
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Figure 4: Evolution of the coarse-grained (classical) entropy starting from
ρ0(x , p) = (10 − 9sin(x))e−p2/2/

p
2π (the system is a periodic box of size 2π) at

long times t =O(1/∆p)≫ 1 much beyond Euler scale. For fluid cell coarse-graining
we used ∆p = 0.08 and ∆x = 2π/100 and for smooth coarse-graining we used
∆p = 0.04 and ∆x = 2π/200. In both cases we observe thermalization, however,
the approach depends on the coarse-graining scheme. For smoothing it thermalizes
quickly and monotonously, while for fluid cell coarse-graining it thermalizes slowly
and in an oscillatory fashion. The transition is well described by the asymptotic ex-
pressions (dashed lines) derived in the text.

7.1 Fluid cell coarse-graining

To ensure a finite density even for long times we study a periodic box of size 2π9. We will
ignore the effect of the initial coarse-graining and start directly from a smooth initial quasi-
particle density ρ(x , p). The averaged density at time t in cell Cα,β is then

ρα,β(t) =

∫ 1/2

−1/2

dy dqρ0(xα − pβ t + y∆x − q∆pt, pβ + q∆p) =: EFC(t, xα − pβ t, pβ).

(176)

As ∆pt →∞ we have

EFC(t, x , p) =

∫ 1/2

−1/2

dy dqρ0(x + y∆x − q∆pt, p+ q∆p)≈
∫ 1/2

−1/2

dqρ0(x − q∆pt, p).

(177)

For convenience, we also send the subleading ∆x ∼∆p→ 0. Now expand

ρ(x , p) =
∞
∑

k=−∞
ρ̃k(p)e

ikx (178)

in Fourier components

EFC(t, x , p)≈
∑

k

∫ 1/2

−1/2

dq ρ̃k(p)e
ikx−ikq∆pt = ρ̃0(p) +

∑

k ̸=0

ρ̃k(p)
sin(k∆pt/2)

k∆pt/2
eikx . (179)

9If we study the problem on the real line, particles will become infinitely separated for t ≫ 1.
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For ∆pt →∞ the second term vanishes and (as expected) the density converges to the con-
stant value of the GGE ρ̃0(p) =

∫ 2π
0

dx
2πρ(x , p). We can study the approach to equilibrium

using the total coarse-grained entropy

SFC(t) = −∆x∆p
∑

α,β

γ(ρα,β(t)) = −∆x∆p
∑

α,β

γ(EFC(t, xα + pβ t, pβ)) (180)

→−
∫

dx dpγ(EFC(t, x , p)) = −
∫

dx dpγ

 

ρ̃0(p) +
∑

k ̸=0

ρ̃k(p)
sin(k∆pt/2)

k∆pt/2
eikx

!

(181)

= S(∞)− 2π
2

∫

dpγ′′(ρ̃0(p))
∑

k ̸=0

|ρ̃k(p)|
2
�

sin(k∆pt/2)
k∆pt/2

�2

+O
�

1/(∆pt)3
�

, (182)

where γ(ρ) depends on the particle statistics. For classical particles it is given by γ(ρ) = −ρ logρ+ρ.
The final value S(∞) = 2π

∫

dpγ(ρ̃0(p)) is the GGE entropy. Note that the entropy ap-
proaches the equilibrium non-monotonously(!) on the time-scale Tth ∼ 1/∆p, as expected
(see fig. 4).

7.2 Smoothing

Under smoothing we find that

ρSmooth(t, x , p) =

∫

dy dqη(y, q)ρ(x − pt + y∆x − q∆pt, p+ q∆p) (183)

=: ESmooth(t, x − pt, p). (184)

As ∆pt →∞ we have

ESmooth(t, x , p)≈
∫

dqηp(q)ρ(x − q∆pt, p), (185)

where we defined ηp(q) =
∫

dy η(y, q). Expanding again ρ(x , p) =
∑∞

k=−∞ ρ̃k(p)eikx in
Fourier components we get

ESmooth(t, x , p)≈
∞
∑

k=−∞
ρ̃k(p)e

ikx η̃p(k∆pt) (186)

= ρ̃0(p) +
∑

k ̸=0

ρ̃k(p)e
ikx η̃p(k∆pt), (187)

where η̃p(z) =
∫

dqηp(q)e−iqz . Inserting this into the coarse-grained entropy

SSmooth(t) = −
∫

dx dpγ(ρSmooth(t, x , p)) = −
∫

dx dpγ(ESmooth(t, x , p)) (188)

= S(∞)− 2π
2

∫

dpγ′′(ρ̃0(p))
∑

k ̸=0

|ρ̃k(p)|
2
�

�η̃p(k∆pt)
�

�

2
+ . . . (189)

= S(∞)− 2π

∫

dpγ′′(ρ̃0(p))|ρ̃1(p)|
2
�

�η̃p(∆pt)
�

�

2
+ . . . (190)

Note that here higher k Fourier components decay significantly faster than the k = ±1 mode.
This is different from (182), where all Fourier modes decay equally fast. Furthermore, the
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approach to the final value is much faster for a smooth ηp(p) than for the fluid cell coarse-

graining. We plot this entropy in fig. 4 with coarse-graining function ηp(p) =
1p
2π

e−
1
2 p2

. Since
the Fourier transform of this function is also a Gaussian, the resulting entropy is monotonically
increasing in time. However, choosing a different ηp(p) can lead to an oscillating approach to
the final value.

From these derivations it is clear that the approach to the thermal equilibrium depends
on the coarse-graining scheme. This is natural if the coarse-graining is interpreted as the
measurement imprecision of a measurement device: from the viewpoint of an experimentalist
the system seems thermal. However, from an abstract viewpoint this is very unsatisfactory:
thermalization should somehow be a universal phenomena, and not be due to insufficient
measurement devices.

We can imagine that this is an artifact of the non-existence of gradient catastrophes in in-
tegrable models: in non-integrable models, gradient catastrophes like shocks create entropy,
thereby leading to much quicker thermalization already at the Euler scale. Therefore, the spu-
rious coarse-graining dependent entropy increase will likely not be important in non-integrable
models. However, further studies would be necessary.

8 Discussion

We have presented a new paradigm to study hydrodynamic approximations in deterministic
systems. We dubbed it “hydrodynamics without averaging” and carried it out in hard rods, an
exactly solvable model. The idea of the paradigm is to abandon initial state randomness and to
consider a fixed deterministic initial configuration. This way, there is no explicit randomness,
neither in the initial state, nor in the evolution. In order to find a meaningful initial density
profile for the hydrodynamic evolution one has to coarse-grain the initial state. At least on
an intuitive level, this procedure is well established in hydrodynamics. However, it was not
carried out in practice. Instead, one usually considers random initial states, such as (2). They
have the advantage that many mathematical details are much simpler: for instance, no coarse-
graining is required and also the averaged densities are smooth. Also, one can clearly define
the Euler scaling limit by taking the spatial variation scale ℓ→∞ and scaling time and particle
number appropriately. This means that one can clearly identify the limiting values as well as
correction terms.

Compared to that, “hydrodynamics without averaging” is significantly more ambiguous:
First, there are many different coarse-graining strategies (here we discussed two: fluid cell
coarse-graining and smoothing) leading to potentially different results. Second, after coarse-
graining the density profile becomes rough (on the macroscopic scale), meaning that it is
important to understand how to evolve such rough solutions (i.e. for instance by means of
weak solutions). And third, it is not straight-forward to estimate the asymptotic scaling of the
error, because configurations for two different ℓ can be very different.

On the explicit example of hard rods we discussed these problems: we quantify the error
by comparing the value of a (smooth) observable in the hydrodynamic theory to the one in the
microscopic theory. We show that the scaling of the error can still be meaningfully predicted
by making assumptions of local self-averaging. This means that our derivations will apply
only to locally sufficiently generic states. That this is justified is demonstrated by comparing
to numerical simulations: these numerical simulations agree very well, not just for physical
initial states, but also for unphysical initial states. This shows that locally generic does not
require local equilibrium. In fact, the local equilibrium assumption of hydrodynamics is not
required to be able to apply hydrodynamics (at least in this model).

The scalings of the error show a “phase-transition”. For large coarse-graining scales ∆x
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the error is dominated by a systematic error scaling as O
�

∆x2
�

. For smaller ∆x the error is
instead dominated by a statistical error (depending on the coarse-graining procedure). Even
without time evolution this highlights an important limitation of hydrodynamics solely due
to coarse-graining: both the coarse-graining procedures discussed are only able to reproduce
the value of an observable up to an error at least O

�

∆x2
�

. This has strong limitations on
the validity of higher-order corrections: As ∆x ≫ 1/ℓ, this means that any hydrodynamic
theory based on these coarse-graining schemes will always have an error larger than O

�

1/ℓ2
�

.
Therefore, a hydrodynamic theory can in principle capture diffusive corrections O(1/ℓ), but
no higher order corrections such as a dispersive one O

�

1/ℓ2
�

. To be able to understand such
corrections one would need to know more information about the initial state (for instance
the average location of particles inside fluid cells). This strongly suggest that higher order
corrections to hydrodynamics are not just equations of the densities, but coupled to additional
equations describing these additional degrees of freedom, contradicting the current intuitive
expectation, see e.g. [24, Eq. (103)] and [57]. There are, however, potential alternatives. For
instance, it might be that there are coarse-graining schemes that are more accurate or it might
be required to use a different definition of the densities: densities are always only defined
up to a total derivative, meaning that there might be a more accurate density. It would be
interesting to search for better schemes or to show that no better schemes exist.

Gaining insights into questions like the above is a major advantage of “hydrodynamics
without averaging”. In the more traditional approach, where one averages over the initial
configuration, all order corrections to the expectation value at later times are in principle de-
fined. However, these higher order corrections might then fail to describe the actual physics
because these higher orders cannot self-average. In this regard there is also another major ad-
vantage: since “hydrodynamics without averaging” establishes the validity of hydrodynamics
for each deterministic configuration, randomness in the initial state can be taken into account
later, simply by averaging over the hydrodynamic evolution. This establishes also the validity
of BMFT (ballistic macroscopic fluctuation theory), which had been established previously as
a way to compute hydrodynamic correlation functions. Interestingly, we found that for suffi-
ciently small coarse-graining Euler hydrodynamics is more accurate than a diffusive correction
O(1/ℓ). This means that there is no (intrinsic) diffusive correction to hydrodynamics in hard
rods. However, if one averages over the initial configurations, then the expectation value at
later times has a 1/ℓ correction, stemming from the fact that the initial randomness is trans-
ported non-linearly along the hydrodynamic modes. We derive this correction and find that it
coincides with the recently establish diffusive scale correction in hard rods [18,22]. This dif-
fusive scale correction was surprising, because it does not have the form of the usual diffusion
term expected in hydrodynamics. From the perspective of “hydrodynamics without averag-
ing” the appearance of such an unconventional correction on the diffusive scale is clear: it is
only an artifact of initial state averaging (“diffusion from convection”). This is also reflected in
the fact that the diffusive scale correction depends only on the two-point correlation function.
To conclude, our work has clarified and justified recent developments in hydrodynamics of
integrable models, such as BMFT and “diffusion from convection”.

8.1 Implications for non-integrable models

The derivations done in this paper were based on the explicit evolution formula, which is
available for hard rods. In non-integrable systems such explicit formulas do not exist. Hence,
as of now, performing a similar analysis in a non-integrable model is out of reach. Furthermore,
integrable systems are not chaotic and thus it is unlikely that the hard rods results will carry
over to non-integrable systems. Nonetheless, there are some important insights that will also
apply to non-integrable systems. The most important of this is that coarse-graining introduces
an error depending on the coarse-graining scheme and the coarse-graining scale. This occurs
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already at initial time and thus limits the precision any hydrodynamic theory can achieve. For
instance, the analysis done here suggest that this error is at least O

�

∆x2
�

. If this is true, then
any hydrodynamic theory will never be able to describe dispersive corrections, i.e. corrections
of the order 1/ℓ2, accurately.

8.2 Open questions/problems

Since in hard rods we have not found any intrinsic diffusive correction, entropy is conserved for
all times t. We have explained on the simple case of non-interacting classical particles that the
hydrodynamic densities will eventually thermalize on a time scale dictated by coarse-graining
(similar to [56]). This is in stark contrast to avoiding coarse-graining by averaging over the
initial configuration: in this case, if hydrodynamics holds, the expectation value will follow
the Euler hydrodynamic equation until diffusive time scales t ∼ ℓ, where the small diffusive
effects become O(1). Interestingly, this means that hydrodynamics necessarily breaks down
even before reaching diffusive time scales. Clarifying these different behaviors for t ≫ 1 would
be important to understand the relationship between and the limitations of the traditional
approach to hydrodynamics and “hydrodynamics without averaging”.

We would like to finish this paper by summarizing open scientific questions/problems that
come out of this paper and that we believe will be useful to help to gain significantly deeper
understanding into the hydrodynamics of both integrable and non-integrable models

• Developing a mathematical framework to study “hydrodynamics without averaging” so
that one does not need to average over the initial state. For instance, it would be im-
portant to be able to quantify the precision of hydrodynamics using a proper norm.
Also, can one make the requirement that configurations are locally “sufficiently generic”
more precise. Note that such understanding could drastically simplify proving the emer-
gence of hydrodynamics: one would only need to prove that the time-evolution maps
“sufficiently generic” configurations onto “sufficiently generic” configurations and that
hydrodynamics holds for a short time window ∆t with some rigorous error bounds. By
iterating this argument T/∆t times, one would immediately obtain that hydrodynamics
applies for all times T .

• What happens if one applies “hydrodynamic without averaging” to non-integrable sys-
tems? Is Euler hydrodynamics still accurate on the diffusive scale or is there a true intrin-
sic diffusive correction? While, for now analytical treatments of non-integrable models
are out-of-sight, we believe that already numerical simulations would give interesting
insights.

• Does hydrodynamics apply to non-physical (i.e. not states with local equilibrium) also
in other integrable or even in non-integrable models?

• To improve the accuracy of coarse-graining: Are there better coarse-grainings? Are there
better choices of the densities? Also, what happens if one considers a non-smooth ob-
servable Υ (x , p)? Is there any benefit from additionally coarse-graining in time?

• Due to the dependence on the coarse-graining scheme: In an experimental setup, which
scheme should one use? Is there a natural scheme?

• Quantify the error of hydrodynamics: Can one predict the noise giving rise to the de-
viations of the microscopic dynamics from hydrodynamics? Is it Gaussian? How is it
related to initial state noise? Also does this noise has an intrinsic component (in the
sense of independent from coarse-graining and initial state noise)?
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• It would be interesting to explore “hydrodynamics without averaging” in quantum sys-
tems. There are two different interpretations of a non-random state. One option is to
consider pure states. While this does not have classical fluctuations, it still has quan-
tum fluctuations, i.e. charge densities will not be deterministic. To circumvent this, one
could further restrict to pure states, that are locally eigenvectors of (coarse-grained)
densities. These would then not fluctuate, neither classical nor quantum. Note, how-
ever that charge densities typically not commute, hence the best we can hope for are
approximate (asymptotic) eigenstates of coarse-grained charge densities.

• Thermalization and entropy increase: is thermalization (from the hydrodynamic per-
spective) purely due to coarse-graining? Or is there a physical observer-independent
process leading to it? For instance, we expect gradient catastrophes like shocks or tur-
bulence to increase entropy. Apart from those, are there other processes (like diffusion)
leading to entropy increase.

• Related to the above: It would be interesting to apply the ideas of “hydrodynamics with-
out averaging” to purely diffusive systems (for instance the chaotic Ising chain [58]).
Here, Euler hydrodynamics will be trivial (all currents vanish), hence there are no “diffu-
sion from convection” effects. Also, there must be a physical process leading to intrinsic
diffusion (otherwise the system would not be diffusive). Such systems would therefore
be ideal to understand the emergence of diffusion in non-noisy many-body systems.

• Extending “hydrodynamics without averaging” to include the effect of large scale ex-
ternal potentials. In integrable models this is particularly interesting since an external
potential breaks integrability and hence the system should thermalize. The Euler GHD
equation with external potential however still conserves entropy [59,60]. Therefore, is
thermalization again only observed due to coarse-graining or is an actual physical effect
(and on what time scale)? From this viewpoint, it would also be interesting to tackle
the open problem of the numerically observed absence of thermalization of hard rods in
an harmonic trap [41,42].
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A Details on the derivation of the diffusive GHD equation

Since the diffusive scale correction is linear in the two-point function, we can conveniently
treat each component of the correlations separately.

A.1 Singular part of the correlations

Let us start by considering the singular part of (145), i.e.

〈δρ(x , p)δρ(y, q)〉= 1
ℓδ(x − y)CGGE(x , p, q). (A.1)
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In this case we have the following identities

〈δρ(x , p)δρ̄(y)〉= ρ(x , p)δ(x − y)1dr(x)
2

(A.2)

ℓ 〈δρ̄(x)δρ̄(y)〉= 1dr2
ρ̄(x)δ(x − y) (A.3)

ℓ



δX̂ (x)δX̂ (y)
�

= a2

∫ x∧y

−∞
dz 1dr2

(z)ρ̄(z) =: a2Γ (x ∧ y) (A.4)

ℓ



δρ(y, q)δX̂ (x)
�

= −aρ(y, q)1dr(y)
2
θ (x − y). (A.5)

Here x ∧ y = min(x , y). We will need identity (A.5) evaluated at x = y where θ (x − y) is
singular. We will replace this by 1/2, not only because it is natural, but also because it agrees
with the coarse-graining procedure: since ρ(x , p) is a coarse-grained quantity it is a “smeared
out quantity” over the coarse-graining length scale ∆x . Hence,

∫ x
−∞ dy ρ(y, q) should be

correlated exactly to the half of the fluid cell over which ρ(x , p) is coarse-grained. Based on
this we will use

ℓ



δρ(x , q)δX̂ (x)
�

= −1
2 aρ(x , q)1dr(x)

2
. (A.6)

Inserting these identities into (162), (168) and (169) we find

∆X (t, x , p) = −a2

∫

dqρ(y, q)1dr(y)(θ (x − y)− 1
2)

�

�

�

�

y=X (X̂ (x)+(p−q)t)

+ a3

2

∫

dq 1
1dr(y)∂y

�

ρ(y,q)
1dr(y) (Γ (x ∨ y)− Γ (x ∧ y))

�

�

�

�

�

y=X (X̂ (x)+(p−q)t)
(A.7)

= a2

2

∫

dqρ(y, q)1dr(y) sgn(p− q)

�

�

�

�

y=X (X̂ (x)+(p−q)t)

+ a3

2

∫

dq 1
1dr(y)∂y

�

ρ(y,q)
1dr(y) (Γ (x ∨ y)− Γ (x ∧ y))

�

�

�

�

�

y=X (X̂ (x)+(p−q)t)
(A.8)

and

ℓ 〈δρ(x , p)δX (t, x , p)〉= −1
2 aρ(x , p)1dr(x)

2
+ a

∫

dqθ (p− q)CGGE(x , p, q)

− a2ρ(x , p)1dr(x)
2
∫

dq ρ(y,q)
1dr(y)

�1
2 − θ (y − x)

�

�

�

�

�

y=X (X̂ (x)+(p−q)t)
(A.9)

= a
2

∫

dq sgn(p− q)CGGE(x , p, q) + a2

2 ρ(x , p)1dr(x)
2
∫

dq ρ(y,q)
1dr(y) sgn(p− q)

�

�

�

�

y=X (X̂ (x)+(p−q)t)

(A.10)
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and

ℓ



δX t(x , p)2
�

= a2Γ (x)

+ a2

∫

dy dq dq′ θ (X̂ (x) + pt − X̂ (y)− qt)θ (X̂ (x) + pt − X̂ (y)− q′ t)CGGE(y, q, q′)

+ a4

∫

dq dq′ ρ(y,q)
1dr(y)

ρ(y ′,q′)
1dr(y ′)

�

Γ (x)− 2Γ (y) + Γ (y ∧ y ′)
�

�

�

�

�

y=X (X̂ (x)+(p−q)t),y ′=X (X̂ (x)+(p−q′)t)

− 2a2

∫

dy dqρ(y, q)1dr(y)2θ (X̂ (x) + pt − X̂ (y)− qt)θ (x − y)

+ 2a3

∫

dq ρ(y,q)
1dr(y) (Γ (x)− Γ (y))θ (x − y)

�

�

�

�

y=X (X̂ (x)+(p−q)t)

− 2a3

∫

dy dq dq′ρ(y, q)1dr(y)2θ (X̂ (x) + pt − X̂ (y)− qt)ρ(y
′,q′)

1dr(y ′)

×
�

θ (x − y)− θ (y ′ − y)
�

�

�

�

�

y ′=X (X̂ (x)+(p−q′)t)
. (A.11)

Now observe the following identities:

∂y(Γ (x ∨ y)− Γ (x ∧ y)) = Γ ′(x ∨ y)θ (y − x)− Γ ′(x ∧ y)θ (x − y) (A.12)

∂ 2
y (Γ (x ∨ y)− Γ (x ∧ y)) = Γ ′′(x ∨ y)θ (y − x) + Γ ′(x)δ(x − y)

− Γ ′′(x ∧ y)θ (x − y) + Γ ′(x)δ(x − y) (A.13)

= Γ ′′(x ∨ y)θ (y − x)− Γ ′′(x ∧ y)θ (x − y) + 2Γ ′(x)δ(x − y)
(A.14)

and

∂y(Γ (x ∨ y)− Γ (x ∧ y))

�

�

�

�

y→x
= Γ ′(x) sgn(y − x) (A.15)

∂ 2
y (Γ (x ∨ y)− Γ (x ∧ y))

�

�

�

�

y→x
= Γ ′′(x) sgn(y − x). (A.16)

Using them we can explicitly compute

lim
t→0+

∆X (t, x , p) = a2

2

∫

dqρ(x , q) sgn(p− q) (A.17)

and

lim
t→0+

ℓ 〈δρ(x , p)δX (t, x , p)〉= a
2

∫

dq sgn(p− q)
�

CGGE(x , p, q) + aρ(x , p)ρ(y, q)1dr(x)
�

(A.18)

= − a2

2 ρ(x , p)

∫

dqρ(y, q) sgn(p− q) (A.19)

and

lim
t→0+

ℓ



δX t(x , p)2
�

= a2Γ (x) + a2

∫

dy dq dq′ θ (x − y)CGGE(y, q, q′)

− 2a2

∫

dy dqρ(y, q)1dr(y)2θ (x − y) = 0. (A.20)
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From this we also get

lim
t→0+

B(t, x , p) = 0. (A.21)

Next, we can compute the time derivative

d
dt
∆X (t, x , p)

�

�

�

�

t=0+
= a2

2

∫

dq ∂x(ρ(x , q)1dr(x))
|p− q|
1dr(x)

+ a3

2

∫

dq ρ(y,q)
1dr(y)2 Γ

′′(x)
|p− q|
1dr(x)

+ a3

2

∫

dq
�

∂x

�

ρ(x ,q)
1dr(x)2

�

+ 1
1dr(x)∂x

ρ(x ,q)
1dr(x)

�

Γ ′(x)
|p− q|
1dr(x)

. (A.22)

Defining A(x , p) =
∫

dqρ(x , q)|p− q| this can be compactly written as

d
dt
∆X (t, x , p)

�

�

�

�

t=0+
= a2

2

�

1
1dr(x)∂xA(x , p) + aρ̄(x)∂x

A(x ,p)
1dr(x)

�

. (A.23)

Similarly, we find

d
dt
ℓ 〈δρ(x , p)δX (t, x , p)〉

�

�

�

�

t=0+
= a2

2 ρ(x , p)1dr(x)∂x
A(x ,p)
1dr(x) (A.24)

and

d
dt
ℓ



δX t(x , p)2
�

�

�

�

�

t=0+
=

a2

1dr(x)
A(x , p). (A.25)

Therefore,

∆ j(x , p) = a2

2 ρ(x , p)
∂xA(x , p)

1dr(x)
−

a2

21dr(x)
A(x , p)∂xρ(x , p) = −1

2 D̂∂xρ, (A.26)

which inserted into (158) gives (170).

A.2 Long range part

Now, let us study long range correlation. Ignoring the singular part, we assume that there
is only the long range part C(x , p, y, q) = CLR(x , p, y, q). In accordance with (146), we will
assume that C(x , p, y, q) is piecewise continuous but might have a jump at x = y . This in
particular means that




δρ(y, q)δX̂ (x)
�

is continuous and (weakly) differentiable. Let us write
C = C+1(x , p, y, q) if y > x and C = C−1(x , p, y, q) else. Then we have:

ℓ



δρ(y, q)(δX̂ (x)−δX̂ (y))
�

= −a

∫ x

y
dz ℓ 〈δρ(y, q)ρ̄(z)〉 (A.27)

= −a

∫ x

y
dz

∫

dp Csgn y−x(z, p, y, q) (A.28)

ℓ∂y




δρ(y, q)(δX̂ (x)−δX̂ (y))
�

= a

∫

dp Csgn y−x(y, p, y, q)

− a

∫ x

y
dz

∫

dp ∂x2
Csgn y−x(z, p, y, q) (A.29)

ℓ



(δX̂ (x)−δX̂ (y))2
�

= a2

∫ x

y
dz1 dq1 dz2 dq2 Csgn z2−z1

(z1, q1, z2, q2). (A.30)
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It follows easily from the fact that C(x , p, y, q) is a non-singular function that

lim
t→0+

∆X (t, x , p) = 0 (A.31)

lim
t→0+

ℓ 〈δρ(x , p)δX t(x , p)〉= 0 (A.32)

lim
t→0+

ℓ



δX t(x , p)2
�

= 0. (A.33)

Next, we need to compute the time derivatives, which are given by

d
dt
∆X (t, x , p)

�

�

�

�

t=0+
= a2

∫

dq dq′ 1
1dr(x)2

�

δ(q− q′) + aρ(x ,q)
1dr(x)

�

×
∫

dq′′ Csgn(p−q)(x , q′′, x , q′)(p− q) (A.34)

and

d
dt
ℓ 〈δρ(x , p)δX (t, x , p)〉

�

�

�

�

t=0+
= a

∫

dq dq′ 1
1dr(x)

�

δ(q− q′) + aρ(x ,q)
1dr(x)

�

× Csgn(p−q)(x , p, x , q′)(p− q) (A.35)

and

d
dt
ℓ



δX t(x , p)2
�

�

�

�

�

t=0+
= 0. (A.36)

Combining these we find

d
dt

B(t, x , p)

�

�

�

�

t=0+
= a

1dr(x)

∫

dq dp′ dq′ (p− q)
�

δ(p− p′) + aρ(x ,p)
1dr(x)

�

×
�

δ(q− q′) + aρ(x ,q)
1dr(x)

�

Csgn(p−q)(x , p′, x , q′). (A.37)

This gives rise to (172).

B Further details on the numerical simulations

For the simulations we used hard rods diameter a = 0.3 and the observable

Υ (x , p) = η(x , p) = 1
2π e−

1
2 (x

2+p2), (B.1)

which we also use for smoothing.
For each given 0 < µ < 1 and each ℓ we then average over NSamples simulation, see Table

1. The ℓ were chosen as 11 uniformly spaced values in the interval given in Table 1 (including
endpoints).

In the fluid cell case, for a given µ and ℓ, the number of fluid cells in x and p is given by

Ncell = ⌊(10µ)ℓ1−µ⌋. (B.2)

These cells are uniformly spaced between x = [−5, 5] and p = [−5,5]. For the smoothing we
set ∆x =∆p to the size of these fluid cells.

The reason why it was necessary to choose different parameters is because the simula-
tions were quite demanding (in particular diagonalizing large Ginibre matrices for the Ginibre
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Coarse-graining Ensemble A ℓ NSamples

Fluid cell
LES/Poisson 5 1000− 10000 10000

Ginibre 5 50− 500 1000

Smoothing
LES/Poisson 2 500− 5000 10000

Ginibre 1 200− 2000 1000

Table 1: Simulation parameters for the different cases

states). The microscopic evolution were always exactly simulated. To simplify the simulations
of the hydrodynamic evolution, we did not exactly simulate it, but used approximations. To be
precise for fluid cell coarse-graining we used (36), (56), (76) and (88) respectively to estimate
the value of the hydrodynamic approximation. We know that these approximations have an
error O

�

∆x2
�

and thus not larger than the extracted scalings.
Computing observables after smoothing is even more demanding. Unless for the initial

coarse-graining and the non-interacting time-evolution (where the smoothing can be seen
as convolution on the observable), we do not know how to compute the obsevables after
smoothing. For the contraction we therefore compute the difference formula (120) directly.
This case is also the one that is the most demanding to simulate: we observe that it requires
large system sizes to converge. This is why we reduced the amplitude A in this case, meaning
we simulate a less dense hard rods gas. For the contracting this turns out to be ok, but for the
full time-evolution, where the computations would be even more involved, we would need to
go to very small A. This would be a dilute hard rods gas, meaning that we would not probe
the correct regime for hard rods (hydrodynamics requires finite density). Furthermore, for the
full time-evolution we would need to find a way to compute (139) accurately and efficiently,
which we need for (137). We do not know how to do this. This is why we decided against
providing numerical data for the full evolution under smoothing.

References

[1] L. Landau and E. Lifshitz, Fluid Mechanics: Volume 6, v. 6. Pergamon, ISBN
9781483140506 (2013).

[2] B. Doyon, Lecture notes on Generalised Hydrodynamics, SciPost Phys. Lect. Notes p. 18
(2020), doi:10.21468/SciPostPhysLectNotes.18.

[3] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of statistical
mechanics in closed quantum systems, Reports on Progress in Physics 79(5), 056001
(2016), doi:10.1088/0034-4885/79/5/056001.

[4] J. Lux, J. Müller, A. Mitra and A. Rosch, Hydrodynamic long-time tails after a quantum
quench, Phys. Rev. A 89, 053608 (2014), doi:10.1103/PhysRevA.89.053608.

[5] P. Calabrese, F. H. L. Essler and G. Mussardo, Introduction to ‘quantum integrability in
out of equilibrium systems’, Journal of Statistical Mechanics: Theory and Experiment
2016(6), 064001 (2016), doi:10.1088/1742-5468/2016/06/064001.

[6] F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable
quantum spin chains, Journal of Statistical Mechanics: Theory and Experiment 2016(6),
064002 (2016), doi:10.1088/1742-5468/2016/06/064002.

43

https://doi.org/10.21468/SciPostPhysLectNotes.18
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1088/1742-5468/2016/06/064001
https://doi.org/10.1088/1742-5468/2016/06/064002


SciPost Physics Submission

[7] M. A. Cazalilla and M.-C. Chung, Quantum quenches in the luttinger model and its close
relatives, Journal of Statistical Mechanics: Theory and Experiment 2016(6), 064004
(2016), doi:10.1088/1742-5468/2016/06/064004.

[8] J.-S. Caux, The quench action, Journal of Statistical Mechanics: Theory and Experiment
2016(6), 064006 (2016), doi:10.1088/1742-5468/2016/06/064006.

[9] L. Vidmar and M. Rigol, Generalized gibbs ensemble in integrable lattice models,
Journal of Statistical Mechanics: Theory and Experiment 2016(6), 064007 (2016),
doi:10.1088/1742-5468/2016/06/064007.

[10] J. Eisert, M. Friesdorf and C. Gogolin, Quantum many-body systems out of equilibrium,
Nature Physics 11(2), 124 (2015), doi:10.1038/nphys3215.

[11] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. R. and, From quantum chaos and eigen-
state thermalization to statistical mechanics and thermodynamics, Advances in Physics
65(3), 239 (2016), doi:10.1080/00018732.2016.1198134, https://doi.org/10.1080/
00018732.2016.1198134.

[12] T. Mori, T. N. Ikeda, E. Kaminishi and M. Ueda, Thermalization and prethermalization in
isolated quantum systems: a theoretical overview, Journal of Physics B: Atomic, Molecular
and Optical Physics 51(11), 112001 (2018), doi:10.1088/1361-6455/aabcdf.

[13] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional
Cauchy Problem, Oxford University Press, ISBN 9780198507000,
doi:10.1093/oso/9780198507000.001.0001 (2000).

[14] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press
(1995).

[15] B. Doyon, G. Perfetto, T. Sasamoto and T. Yoshimura, Ballistic macroscopic fluctuation
theory, SciPost Phys. 15, 136 (2023), doi:10.21468/SciPostPhys.15.4.136.

[16] B. Doyon, G. Perfetto, T. Sasamoto and T. Yoshimura, Emergence of hydrodynamic spa-
tial long-range correlations in nonequilibrium many-body systems, Phys. Rev. Lett. 131,
027101 (2023), doi:10.1103/PhysRevLett.131.027101.

[17] M. Medenjak, J. D. Nardis and T. Yoshimura, Diffusion from convection, SciPost Phys. 9,
075 (2020), doi:10.21468/SciPostPhys.9.5.075.

[18] F. Hübner, L. Biagetti, J. De Nardis and B. Doyon, Diffusive hydrodynam-
ics from long-range correlations, Phys. Rev. Lett. 134, 187101 (2025),
doi:10.1103/PhysRevLett.134.187101.

[19] H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and local
equilibria, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 58(1), 41
(1981), doi:10.1007/BF00536194.

[20] H. Spohn, Large Scale Dynamics of Interacting Particles, Theoretical and Mathematical
Physics. Springer Berlin Heidelberg, ISBN 9783642843716 (2012).

[21] H. Spohn, Hydrodynamic Scales of Integrable Many-Body Systems, WORLD SCI-
ENTIFIC, doi:10.1142/13600 (2024), https://www.worldscientific.com/doi/pdf/10.
1142/13600.

44

https://doi.org/10.1088/1742-5468/2016/06/064004
https://doi.org/10.1088/1742-5468/2016/06/064006
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1038/nphys3215
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1093/oso/9780198507000.001.0001
https://doi.org/10.21468/SciPostPhys.15.4.136
https://doi.org/10.1103/PhysRevLett.131.027101
https://doi.org/10.21468/SciPostPhys.9.5.075
https://doi.org/10.1103/PhysRevLett.134.187101
https://doi.org/10.1007/BF00536194
https://doi.org/10.1142/13600
https://www.worldscientific.com/doi/pdf/10.1142/13600
https://www.worldscientific.com/doi/pdf/10.1142/13600


SciPost Physics Submission

[22] F. Hübner, L. Biagetti, J. D. Nardis and B. Doyon, Diffusive hydrodynamics of hard rods
from microscopics, doi:10.48550/arXiv.2503.07794 (2025), 2503.07794.

[23] C. Boldrighini and Y. M. Suhov, One-dimensional hard-rod caricature of hydrodynamics:
“navier–stokes correction” for local equilibrium initial states, Communications in Mathe-
matical Physics 189(2), 577 (1997), doi:10.1007/s002200050218.

[24] B. Doyon, Hydrodynamic noise in one dimension: projected kubo formula and its vanishing
in integrable models, doi:10.48550/arXiv.2506.05279 (2025), 2506.05279.

[25] J. K. Percus, Exact solution of kinetics of a model classical fluid, The Physics of Fluids 12(8),
1560 (1969), doi:10.1063/1.1692711, https://pubs.aip.org/aip/pfl/article-pdf/12/8/
1560/12708288/1560_1_online.pdf.

[26] C. Boldrighini, R. L. Dobrushin and Y. M. Sukhov, One-dimensional hard rod
caricature of hydrodynamics, Journal of Statistical Physics 31(3), 577 (1983),
doi:10.1007/BF01019499.

[27] G. El, The thermodynamic limit of the whitham equations, Physics Letters A 311(4), 374
(2003), doi:https://doi.org/10.1016/S0375-9601(03)00515-2.

[28] O. A. Castro-Alvaredo, B. Doyon and T. Yoshimura, Emergent hydrodynamics in
integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016),
doi:10.1103/PhysRevX.6.041065.

[29] B. Bertini, M. Collura, J. De Nardis and M. Fagotti, Transport in out-of-equilibrium x xz
chains: Exact profiles of charges and currents, Phys. Rev. Lett. 117, 207201 (2016),
doi:10.1103/PhysRevLett.117.207201.

[30] B. Doyon, S. Gopalakrishnan, F. Møller, J. Schmiedmayer and R. Vasseur, Gen-
eralized hydrodynamics: A perspective, Phys. Rev. X 15, 010501 (2025),
doi:10.1103/PhysRevX.15.010501.

[31] F. H. Essler, A short introduction to generalized hydrodynamics, Phys-
ica A: Statistical Mechanics and its Applications 631, 127572 (2023),
doi:https://doi.org/10.1016/j.physa.2022.127572, Lecture Notes of the 15th In-
ternational Summer School of Fundamental Problems in Statistical Physics.

[32] I. Bouchoule and J. Dubail, Generalized hydrodynamics in the one-dimensional bose
gas: theory and experiments, Journal of Statistical Mechanics: Theory and Experiment
2022(1), 014003 (2022), doi:10.1088/1742-5468/ac3659.

[33] A. Bastianello, B. Bertini, B. Doyon and R. Vasseur, Introduction to the special issue on
emergent hydrodynamics in integrable many-body systems, Journal of Statistical Mechan-
ics: Theory and Experiment 2022(1), 014001 (2022), doi:10.1088/1742-5468/ac3e6a.

[34] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg and M. Žnidariž,
Finite-temperature transport in one-dimensional quantum lattice models, Rev. Mod. Phys.
93, 025003 (2021), doi:10.1103/RevModPhys.93.025003.

[35] F. Hübner and B. Doyon, Existence and uniqueness of solutions to the generalized hydrody-
namics equation, doi:10.48550/arXiv.2411.04922 (2024), 2411.04922.

[36] B. Doyon, J. Dubail, R. Konik and T. Yoshimura, Large-scale description of interacting
one-dimensional bose gases: Generalized hydrodynamics supersedes conventional hydrody-
namics, Phys. Rev. Lett. 119, 195301 (2017), doi:10.1103/PhysRevLett.119.195301.

45

https://doi.org/10.48550/arXiv.2503.07794
2503.07794
https://doi.org/10.1007/s002200050218
https://doi.org/10.48550/arXiv.2506.05279
2506.05279
https://doi.org/10.1063/1.1692711
https://pubs.aip.org/aip/pfl/article-pdf/12/8/1560/12708288/1560_1_online.pdf
https://pubs.aip.org/aip/pfl/article-pdf/12/8/1560/12708288/1560_1_online.pdf
https://doi.org/10.1007/BF01019499
https://doi.org/https://doi.org/10.1016/S0375-9601(03)00515-2
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevX.15.010501
https://doi.org/https://doi.org/10.1016/j.physa.2022.127572
https://doi.org/10.1088/1742-5468/ac3659
https://doi.org/10.1088/1742-5468/ac3e6a
https://doi.org/10.1103/RevModPhys.93.025003
https://doi.org/10.48550/arXiv.2411.04922
2411.04922
https://doi.org/10.1103/PhysRevLett.119.195301


SciPost Physics Submission

[37] G. A. El, A. M. Kamchatnov, M. V. Pavlov and S. A. Zykov, Kinetic equation for a soliton
gas and its hydrodynamic reductions, Journal of Nonlinear Science 21(2), 151 (2011),
doi:10.1007/s00332-010-9080-z.

[38] H. Spohn, Nonlinear fluctuating hydrodynamics for anharmonic chains, Journal of Statis-
tical Physics 154(5), 1191 (2014), doi:10.1007/s10955-014-0933-y.

[39] P. A. Ferrari and S. Olla, Macroscopic diffusive fluctuations for generalized hard rods dy-
namics, doi:10.48550/arXiv.2305.13037 (2024), 2305.13037.

[40] P. A. Ferrari, C. Franceschini, D. G. E. Grevino and H. Spohn, Hard rod hydrodynamics
and the Lévy Chentsov field, In Probability and statistical mechanics—papers in honor of
Errico Presutti, vol. 38 of Ensaios Mat., pp. 185–222. Soc. Brasil. Mat., Rio de Janeiro,
ISBN 978-85-8337-215-8; 978-85-8337-214-1 (2023).

[41] X. Cao, V. B. Bulchandani and J. E. Moore, Incomplete thermalization from trap-induced
integrability breaking: Lessons from classical hard rods, Phys. Rev. Lett. 120, 164101
(2018), doi:10.1103/PhysRevLett.120.164101.

[42] D. Bagchi, J. Kethepalli, V. B. Bulchandani, A. Dhar, D. A. Huse, M. Kulkarni and A. Kundu,
Unusual ergodic and chaotic properties of trapped hard rods, Phys. Rev. E 108, 064130
(2023), doi:10.1103/PhysRevE.108.064130.

[43] L. Biagetti, G. Cecile and J. De Nardis, Three-stage thermalization of a quasi-integrable
system, Phys. Rev. Res. 6, 023083 (2024), doi:10.1103/PhysRevResearch.6.023083.

[44] L. Biagetti, M. Lebek, M. Panfil and J. D. Nardis, Generalised bbgky hierarchy for near-
integrable dynamics, doi:10.48550/arXiv.2408.00593 (2024), 2408.00593.

[45] M. J. Powdel and A. Kundu, Conserved densities of hard rods: microscopic to hydrodynamic
solutions, Journal of Statistical Mechanics: Theory and Experiment 2024(12), 123205
(2024), doi:10.1088/1742-5468/ad96ab.

[46] V. B. Bulchandani, Revised enskog equation for hard rods, Journal of Statistical Mechanics:
Theory and Experiment 2024(4), 043205 (2024), doi:10.1088/1742-5468/ad3ccd.

[47] A. Kundu, Macroscopic fluctuation theory of correlations in hard rod gas,
doi:10.48550/arXiv.2504.09201 (2025), 2504.09201.

[48] S. K. Singh, A. Dhar, H. Spohn and A. Kundu, Thermalization and hydrodynamics in an
interacting integrable system: The case of hard rods, Journal of Statistical Physics 191(6),
66 (2024), doi:10.1007/s10955-024-03282-z.

[49] B. Doyon and H. Spohn, Dynamics of hard rods with initial domain wall state,
Journal of Statistical Mechanics: Theory and Experiment 2017(7), 073210 (2017),
doi:10.1088/1742-5468/aa7abf.

[50] F. Hübner, Mesoscopic impurities in generalized hydrodynamics, Journal of Statisti-
cal Mechanics: Theory and Experiment 2024(3), 033102 (2024), doi:10.1088/1742-
5468/ad1f53.

[51] S. Byun and P. Forrester, Progress on the Study of the Ginibre Ensembles, KIAS Springer
Series in Mathematics. Springer Nature Singapore, ISBN 9789819751730 (2024).

46

https://doi.org/10.1007/s00332-010-9080-z
https://doi.org/10.1007/s10955-014-0933-y
https://doi.org/10.48550/arXiv.2305.13037
2305.13037
https://doi.org/10.1103/PhysRevLett.120.164101
https://doi.org/10.1103/PhysRevE.108.064130
https://doi.org/10.1103/PhysRevResearch.6.023083
https://doi.org/10.48550/arXiv.2408.00593
2408.00593
https://doi.org/10.1088/1742-5468/ad96ab
https://doi.org/10.1088/1742-5468/ad3ccd
https://doi.org/10.48550/arXiv.2504.09201
2504.09201
https://doi.org/10.1007/s10955-024-03282-z
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1088/1742-5468/ad1f53
https://doi.org/10.1088/1742-5468/ad1f53


SciPost Physics Submission

[52] B. Rider and B. Virág, The noise in the circular law and the gaussian free field, Interna-
tional Mathematics Research Notices 2007, rnm006 (2007), doi:10.1093/imrn/rnm006,
https://academic.oup.com/imrn/article-pdf/doi/10.1093/imrn/rnm006/1930590/
rnm006.pdf.

[53] B. Doyon, Exact large-scale correlations in integrable systems out of equilibrium, SciPost
Phys. 5, 054 (2018), doi:10.21468/SciPostPhys.5.5.054.

[54] J. D. Nardis, D. Bernard and B. Doyon, Diffusion in generalized hydrodynamics and quasi-
particle scattering, SciPost Phys. 6, 049 (2019), doi:10.21468/SciPostPhys.6.4.049.

[55] J. De Nardis, D. Bernard and B. Doyon, Hydrodynamic diffusion in integrable systems,
Phys. Rev. Lett. 121, 160603 (2018), doi:10.1103/PhysRevLett.121.160603.

[56] S. Chakraborti, A. Dhar, S. Goldstein, A. Kundu and J. L. Lebowitz, Entropy growth during
free expansion of an ideal gas, Journal of Physics A: Mathematical and Theoretical 55(39),
394002 (2022), doi:10.1088/1751-8121/ac8a7e.

[57] A. Urilyon, L. Biagetti, J. Kethepalli and J. D. Nardis, Simulating generalised fluids via
interacting wave packets evolution, doi:10.48550/arXiv.2505.21000 (2025), 2505.21000.

[58] X. Cao, A statistical mechanism for operator growth, Journal of Physics A: Mathematical
and Theoretical 54(14), 144001 (2021), doi:10.1088/1751-8121/abe77c.

[59] B. Doyon and T. Yoshimura, A note on generalized hydrodynamics: inhomogeneous fields
and other concepts, SciPost Phys. 2, 014 (2017), doi:10.21468/SciPostPhys.2.2.014.

[60] J.-S. Caux, B. Doyon, J. Dubail, R. Konik and T. Yoshimura, Hydrodynamics of the in-
teracting Bose gas in the Quantum Newton Cradle setup, SciPost Phys. 6, 070 (2019),
doi:10.21468/SciPostPhys.6.6.070.

[61] J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A fresh approach to numerical
computing, SIAM Review 59(1), 65 (2017), doi:10.1137/141000671.

[62] King’s College London. (2022). King’s Computational Research, Engineering and Technology
Environment (CREATE). Retrieved June 30, 2023, from https://doi.org/10.18742/rnvf-
m076.

47

https://doi.org/10.1093/imrn/rnm006
https://academic.oup.com/imrn/article-pdf/doi/10.1093/imrn/rnm006/1930590/rnm006.pdf
https://academic.oup.com/imrn/article-pdf/doi/10.1093/imrn/rnm006/1930590/rnm006.pdf
https://doi.org/10.21468/SciPostPhys.5.5.054
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1088/1751-8121/ac8a7e
https://doi.org/10.48550/arXiv.2505.21000
2505.21000
https://doi.org/10.1088/1751-8121/abe77c
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.21468/SciPostPhys.6.6.070
https://doi.org/10.1137/141000671

	Introduction
	The hard rods model
	Main results
	Coarse-graining 1: Fluid cell averaging
	Initial state coarse-graining
	Contraction/Expansion
	Non-interacting time evolution
	The full evolution
	Numerical simulations

	Coarse-graining 2: Smoothing
	Initial state coarse-graining
	Contraction/Expansion
	Non-interacting time evolution
	Full time evolution
	Numerical simulations

	Diffusive generalized hydrodynamics
	Time evolved two-point correlation function in hard rods
	The diffusive scale correction

	Entropy increase from the perspective of hydrodynamics without averaging
	Fluid cell coarse-graining
	Smoothing

	Discussion
	Implications for non-integrable models
	Open questions/problems

	Details on the derivation of the diffusive GHD equation
	Singular part of the correlations
	Long range part

	Further details on the numerical simulations
	References

