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Abstract

The Wilson spool is a prescription for expressing one-loop determinants as topo-
logical line operators in three-dimensional gravity. We extend this program to de-
scribe massive spinning fields on all smooth, cusp-free, solutions of Euclidean gravity
with a negative cosmological constant. Our prescription makes use of the expression
of such solutions as a quotients of hyperbolic space. The result is a gauge-invariant
topological operator, which can be promoted to an off-shell operator in the grav-
itational path integral about a given saddle-point. When evaluated on-shell, the
Wilson spool reproduces and extends the known results of one-loop determinants
on hyperbolic quotients. We motivate our construction of the Wilson spool from
multiple perspectives: the Selberg trace formula, worldline quantum mechanics, and
the quasinormal mode method.
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1 Introduction

Quantum gauge theories display interesting interplays between local and non-local physics.
Their expression as fields interacting locally comes at the expense of introducing non-
physical redundancies. Two extreme examples of the tension between locality and gauge
invariance are topological field theories – in which all local degrees of freedom are re-
dundant and gauge invariant observables are extended and insensitive to geometry – and
general relativity – in which the redundancy lies in the local coordinate frame itself. In
two and three spacetime dimensions these examples intersect and gravity itself can be
described as a topological field theory [1–4].

Matter couples locally to the metric which potentially spoils the topological nature
of low dimensional gravity. However gauge invariance requires that local operators be
dressed to boundaries or fixed features of a state which turns them, effectively, into
extended operators. Remarkably, it was shown in [5–8] that the path-integration over
massive matter can result in an effective, topological line operator. More specifically the
one-loop determinant of a massive, minimally coupled, field is expressed as an integral of
a Wilson loop of the one-form connection(s) encoding the frame and the spin-connection
of the background metric. In the examples of [5–8] this Wilson loop wraps a single non-
contractible cycle of the background topology and its integration results in a winding
around this cycle arbitrarily many times. This operator was coined the Wilson spool
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apropos of its winding behavior. Specifically for three-dimensional gravity with a negative
cosmological constant the Wilson spool on the BTZ background winds around the black
hole horizon. For positive cosmological constant and the S3 topology, the spool winds
around a defect encoding the location of cosmological horizon after Wick rotation to the
static patch of de Sitter.

Due to the relatively simple topology of the above examples, the spool wraps a single
non-contractible cycle of the background manifold. However gravity is a theory of ge-
ometry and topology, and three-dimensional topology is rich; it includes manifolds with
larger and more intricate fundamental groups. This raises the question of how to treat
the Wilson spool on manifolds whose fundamental group is generated by more than one
element. The treatment of one-loop determinants through worldline quantum mechanics
instructs us to sum over all paths in the Euclidean geometry which strongly suggests
that the Wilson spool for a given topology should involve a sum over all elements of that
topology’s fundamental group. Making this physically intuitive notion precise (especially
given that a fundamental group will typically involving non-commuting elements with
intricate relations) is the primary aim of this paper.

More specifically we will consider all smooth cusp-free hyperbolic three-manifolds.
This includes hyperbolic manifolds asymptoting to higher genus surfaces whose Lorentzian
interpretations are the asymptotically AdS3 ‘multi-boundary wormholes’ [9–13], as well
compact hyperbolic manifolds obtained from surgery on link complements and which are
not (conventionally) holographic; see Figure 1 for examples.

(5, 1)

(5, 2)

Figure 1: Example Euclidean hyperbolic manifolds to which our prescrip-
tion applies. (Left) A solid handlebody whose asymptotic boundary is
the genus two Riemann surface. Depending on the detail of the quotient,
this handlebody arises as Euclidean rotation of the Lorentzian spacetime
whose time-symmetric slice has three asymptotic boundaries, as well as
a Lorentzian spacetime with a single asymptotic boundary and a torus
hidden ‘behind the horizon’ [11]. (Right) The Weeks manifold, the com-
pact hyperbolic manifold of smallest volume, obtained by the labeled Dehn
surgeries on the Whitehead link embedded in S3.

These are all smooth vacuum saddles of Euclidean Einstein-Hilbert gravity with a
negative cosmological constant. As we will explain in more detail below these manifolds
can be expressed as quotients of the hyperbolic three-ball H3 by the action of a class of
discrete subgroup, Γ, of PSL(2,C), the isometry group of H3:

M = H3/Γ . (1.1)
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We will refer to such three-manifolds as smooth hyperbolic quotients. The subgroup, Γ,
is identified in a natural way with the fundamental group of M and the conjugacy class,
[γ], of any γ ∈ Γ can be identified with a free loop in M . We will give a prescrip-
tion for coupling massive scalar and spinning fields to such backgrounds in a way that
makes the topological nature of three-dimensional gravity manifest and utilizes directly
the manifold’s fundamental group. To be specific, given the local path-integral, Z∆,s, of
a massive spin-s field (described by a transverse, traceless, and symmetric s-tensor along
with a tower of associated Stückelberg fields) minimally coupled to the metric, gµν , of a
manifold, M , that is diffeomorphic to the hyperbolic quotient H3/Γ, we express

logZ∆,s[gµν ] = WΓ[AL, AR] , (1.2)

where

WΓ =
∑
[γ]+

∑
RL/R

1

nγ

[
TrRL

P exp

(∮
γ

AL

)][
TrRR

P exp

(
−
∮
γ

AR

)]
. (1.3)

This is the Wilson spool generalized to smooth hyperbolic three-manifolds and is the
primary result of this paper. The body of this paper, Section 2, will establish and uphold
this result, however let us now point out some broad features of (1.2) and (1.3).

The geometry of the metric, gµν , is encoded in the one-form connections AL/R which
are linear combinations of the coframe and spin-connection of gµν . The details of this well-
known map are reviewed in Section 2.1. The representations RL/R encode the mass and
spin of field and (1.3) instructs us to sum over the representations possessing same sum

of quadratic Casimirs, c
sl(2,R)L
2 + c

sl(2,R)R
2 , which we explain in Section 2.3. The one-form

connections are integrated over an oriented free-loop, γ, of M which then corresponds
to a unique conjugacy class of Γ; above we choose the class [γ]+, resulting in a strictly
positive geodesic lengths. The spool then sums over all such non-trivial conjugacy classes
weighted by the inverse of their multiplicity, nγ. We will explain in Section 2.2 how this
factor algebraically accounts for the relations of the fundamental group of M . In Section
3.2.2 we will cast it in a much more intuitive role as a symmetry factor upon moving to the
H3 cover ofM and realizing the Wilson loops in (1.3) as worldline quantum mechanics. It
should be clear that in both contexts that [γ]+ and nγ are features of the topology of M
as opposed to its geometry. The properties of the fundamental group and the properties
of the holonomies of the geometric connections, AL/R, further allow us to express WΓ in
an integral representation as

WΓ =
i

2

∑
[γ0]+

∑
RL/R

∫
C

dα

α

cosα/2

sinα/2

[
TrRL

P exp

(
α

2π

∮
γ0

AL

)][
TrRR

P exp

(
− α

2π

∮
γ0

AR

)]
,

(1.4)
where C is a curve wrapping tightly clockwise the real α axis and the sum now ranges
over conjugacy classes of the primitive generators, γ0, of Γ with strictly positive geodesic
length. While this follows simply from counting residues, (1.4) makes clear that when Γ
possesses a single primitive generator our result reproduces the examples in [6, 7].
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We will show in Section 3.1 that (1.2) and (1.3) taken on-shell reproduce the one-loop
determinants of massive scalar and vector fields, established by [14]; for massive fields of
spin s ≥ 2, our result provides an expression for their one-loop determinant on any smooth
hyperbolic quotient, a result that, to our knowledge, has not appeared in the literature. In
Section 3.2, we will uphold (1.2) and (1.3) through three separate ‘derivations.’ The first
of these, in Section 3.2.1, will follow the Selberg trace formula which relates the spectrum
of hyperbolic Laplacians and the spectrum of closed geodesics. Secondly, we will relate the
one-loop determinant to line operators through worldline quantum mechanics in Section
3.2.2; two key outcomes of this section are that (i) the worldline path-integral is two-
loop exact and reproduces the representation characters that appear in (1.3), and (ii) a
topological and intuitive interpretation of the multiplicity, nγ, as the symmetry factor of a
worldline uplifted to the cover of M . Lastly we will give a quasinormal mode perspective
to (1.2) and (1.3), explaining how expWΓ reproduces the structure of poles of the one-loop
determinant, Z∆,s. This derivation more closely matches the original derivations of the
Wilson spool and we will lean heavily on the technology established in [7]. While these
derivations will technically be established for on-shell connections, the resulting operator
(1.3) will be expressed completely in terms of topological and gauge-invariant quantities
and we will posit that (1.2) holds off-shell in a weak sense, i.e. within expectation values
of diffeomorphism invariant operators inside the gravitational path-integral.

Finally we conclude this paper with a discussion of our result speculating on more
general hyperbolic quotients including orbifolds and cusps, and how the Wilson spool fits
into the context of recent progress in three-dimensional quantum gravity. Further details
on representation theory and hyperbolic quotients used in this paper can be found in the
Appendices.

NB: As this work neared completion we learned of upcoming work, [15], which has overlap
with our results. We have coordinated submissions with the authors of that work.

2 Background

In this section of the paper we will build up the necessary frameworks for our result
(1.3). We will establish the context in which it is situated by reviewing some basics of
the Chern-Simons formulation of three-dimensional gravity, linking topological features
of geodesics to holonomies of the Chern-Simons connections, and afterwards review the
representation theory of minimally coupled massive matter.

2.1 Chern-Simons gravity

We consider Euclidean three-dimensional gravity on locally asymptotically AdS3 mani-
folds. For our purposes, it will be useful to first arrive at this Euclidean theory from a
Wick rotation of the Lorentzian theory. As mentioned in the introduction, the Einstein-
Hilbert action in three dimensions can be expressed as a topological field theory and in
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Lorentzian signature this takes the form of a pair of Chern-Simons actions for connections
AL/R taking values in sl(2,R)L ⊕ sl(2,R)R:

SEH = k SCS[AL]− k SCS[AR] , SCS[A] =
1

2π

∫
M3

Tr

(
A ∧ dA+

2

3
A3

)
, (2.1)

where the Tr is taken in the fundamental representation. This rewriting is facilitated by
the identification

AL = (ωa + ea/ℓ)La , AR = (ωa − ea/ℓ)L̄a , (2.2)

where {La} and {L̄a} generate sl(2,R)L and sl(2,R)R, respectively,1 ea are the coframes,
ωa are the dual spin-connections, and ℓ is the AdS radius. The Chern-Simons level is
related to Newton’s constant via

k =
ℓ

4GN

. (2.3)

We now perform the Wick rotation to Euclidean signature through

e0 → −ie0 , L0 → iL0 , ω1,2 → iω1,2 , (2.4)

to write
AL = (iωa + ea/ℓ)La , AR = (iωa − ea/ℓ) L̄a . (2.5)

The Euclidean isometry algebra, so(1, 3), does not split, however when including matter,
we will be interested in classifying single-particle states with respect to the Lorentzian
isometry algebra. This is possible by regarding so(2, 2) ≃ sl(2,R)L ⊕ sl(2,R)R as a real
form of sl(2,C) which is the common complexification of so(1, 3) and so(2, 2). Corre-
spondingly, we can regard AL/R as components of a real form in sl(2,C). which is the
common complexification of so(1, 3) and so(2, 2).

While pure 3D gravity with negative cosmological constant is classically equivalent
to SL(2,R)L × SL(2,R)R Chern-Simons theory at the level of the action, it is important
to emphasize that they are not fully equivalent as quantum theories. The most obvious
reason for this is that in gravity one should only integrate over metrics which are invert-
ible, while no such restriction is imposed in Chern-Simons theory – indeed, the trivial
connection AL = AR = 0 is a perfectly valid gauge configuration corresponding to an
everywhere-vanishing metric. Another difference is that in gravity one in principle should
sum over all bulk geometries – including those of differing topologies – consistent with
the boundary conditions of the problem, whereas the path-integral of a topological gauge
theory is usually seen as an assignment of a complex number to a fixed topology. These
issues can be addressed by isolating the proper moduli space of Chern-Simons connec-
tions corresponding to invertible metrics [16, 17] and summing over topologies by hand.
However other issues (such as a continuous and sometimes negative density of states [18])
require more effort to address [19]. In this sense, the Chern-Simons description should

1Our algebra conventions are given in Appendix A.
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be seen as an effective (albeit UV finite) theory of pure three-dimensional gravity. In
this paper, we will be interested in computing one-loop determinants of matter fields
around fixed hyperbolic metrics in this effective description. Thus, while important, the
differences between pure 3D gravity and Chern-Simons theory do not play a role in our
work.

2.1.1 Linking geometry and holonomy

In constructing the Wilson spool it will be important to understand how to relate geo-
metric properties of closed curves to properties of gauge-invariant operators in the Chern-
Simons formulation. LetM be a smooth oriented three-manifold equipped with a fiducial
background metric gµν which may or may not be on-shell. Consider a closed geodesic, γ,
embedded within M , and parameterized as γ = {xµ(s)} for an arclength s. To γ we can
associate two natural coordinate invariant quantities: its geodesic length and its torsion,
which we define in the following way.

Denote the unit tangent vector to γ as t and its dual as dt.2 The geodesic length, lγ,
then is the integral

lγ =

∫
γ

dt . (2.7)

The torsion, θγ, arises in the following way. We first define the local extrinsic torsion as

ϑ =
1

2
ϵAB n

A
µ∇tn

µBdt , (2.8)

where {nA}A=1,2 is a basis of the normal bundle. ϑ behaves as a one-form along γ, however
transforms as a connection in the normal indices. That is, under rotations of the local
normal frame by an angle ψ(s), τ ϑ transforms as

ϑ→ ϑ+ ∂sψ ds . (2.9)

The integral of the local extrinsic torsion is the torsion

θγ =

∫
γ

ϑ . (2.10)

and measures the failure of the normal frame to return to itself under parallel transport
along γ.3 See [20] for a recent review.

2Explicitly, in terms of the local parameterization,

tµ =
(√

gµν ẋµẋν
)−1

ẋµ , dt =
√
gµν ẋµẋν ds . (2.6)

3Consider a closed curve in general dimension d. A normal vector n at some point on the curve, and
the same vector parallel transported once around the curve are related by an element of SO(d− 1), the
structure group of the normal bundle. This is the holonomy of the curve, which in d = 3 reduces to an
angle θ ∈ [0, 2π)
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Associated with γ is a set of Fermi normal coordinates which we construct in the
following way. Let {ẽa}a=0,1,2 be an orthonormal frame at γ(0) such that −ẽ0 = t.4

Parallel transporting this basis along γ extends this an orthonormal frame along the
whole geodesics such that ẽ0(s) remains tangent to the curve. At any given s, we can shoot
geodesics normal to γ with initial velocity given by v = −v1ẽ1 + v2ẽ2. This establishes
a coordinate chart, (s, v1, v2), in a tubular neighborhood of γ with vanishing Christoffel
symbols on γ itself. However, as we established above, under parallel transport {ẽa} may
fail to return to itself when traversing γ and θγ measures this failure. We can amend this
by building an alternative frame along γ, {ea(s)}, such that e0(s) = ẽ0(s), and with e1,2
gradually rotated with respect to ẽ1,2 such that they remain periodic along γ. See Figure
2 for a cartoon.

γ

θγ

ẽa(0)
ẽa(1)

γ

ea(s)

Figure 2: (Left) The frame ẽa(s) picks up a rotation of θγ under parallel
transport along γ. (Right) We define a new frame, ea(s), which is gradu-
ally rotated from ẽa(s) to undo this holonomy. While ea(s) is not parallel
transported, it does remain periodic along γ.

This frame maintains that −e0(s) = t(s),5 and satisfies the geodesic equation of mo-
tion:

eν0∇νe
µ
0 = 0 . (2.11)

Treating Tγ as a subspace of TM |γ, the coframe, e0, acts as the unit one-form along the
curve,

−γ∗e0 = dt , (2.12)

while
γ∗e1 = γ∗e2 = 0 . (2.13)

4The sign is obviously a convention and we choose this convention to ultimately align more closely
with previous constructions [5, 7] and standard literature [14].

5Note that keeping both the {ea(s)} and {t(s), nA(s)} frames right-handed also requires us to take
e1(s) = −n1(s), e2(s) = n2(s), a reversal of orientation within the 2d normal bundle.
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The associated dual spin connection

ωa
µ =

1

2
εabc e

b
ν∇µe

νc (2.14)

satisfies
−γ∗ω0 = −e1µeν0∇νe

µ2 e0 = ϑ , (2.15)

while (2.11) implies
γ∗ω1 = γ∗ω2 = 0 . (2.16)

Notice that this final statement is the only one which relies on γ to be geodesic. Because
we have not made any assumptions about the background metric being on-shell, we can
relax this assumption to any γ that is a smooth closed curve homotopic to a geodesic.
Then there exists a metric for which γ is geodesic and we can define lγ and θγ with respect
to that metric.6 It will be convenient to define a complex length which captures both the
length and the torsion as

l̂γ ≡ lγ + iθγ , (2.17)

and an associated nome, qγ, and modulus, τγ, as

qγ ≡ exp
(
−l̂γ
)
≡ exp (2πiτγ) . (2.18)

We now consider how the above is expressed in terms of Chern-Simons quantities. The
gauge invariant operators of Chern-Simons theory are Wilson loops. Given some repre-
sentation R of sl(2,R) and a closed oriented path γ : S1 →M we can construct

TrRP exp

∮
γ

γ∗AL/R , (2.19)

where γ∗AL/R is the pullback of the connections onto the curve,7 and P is the path
ordering consistent with the orientation of γ. These objects are gauge-invariant and we
are free to work in any gauge defined locally along the geodesic. In particular, the coframe
adapted to γ that we described above corresponds to a particular choice of gauge in the
Chern-Simons description of gravity. Within this gauge/coordinate frame we then write

TrRP exp

∮
γ

γ∗AL = TrRP exp

∮
γ

(iγ∗ωa + γ∗ea)La (2.20)

= TrRP exp

∮
γ

(−iϑ− dt)L0 (2.21)

= TrR exp
(
−l̂γ L0

)
. (2.22)

6Namely, if Φ(γ) is geodesic with respect to the metric gµν for some diffeomorphism, Φ, then γ is
geodesic for the metric (Φ−1)∗gµν .

7In the rest of this paper the pullback will be left implicit; we emphasize it here as it plays an important
role in the construction.
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Similar manipulations show

TrRP exp

∮
γ

γ∗AR = TrR exp
(
l̂∗γ L̄0

)
. (2.23)

These expressions are gauge/coordinate independent, and hence hold regardless of our
convenient choice of adapted coordinates. The upshot of the above that is we have shown
that the holonomies of the on-shell connections around a cycle, γ, are given precisely by
complex lengths of that cycle:

P exp

(∮
γ

γ∗AL

)
∼ qL0

γ , P exp

(
−
∮
γ

γ∗AR

)
∼ q̄L̄0

γ (2.24)

with ‘ ∼′ indicating equality up to conjugation and q̄γ = exp l̂∗γ.
At this point we must address the subtlety of orientation. As Wilson loops are ori-

ented observables, each curve γ comes with an assigned inherent orientation which, upon
embedding into M , induces a right-handed orientation in a tubular neighborhood con-
taining it. This orientation may match the ambient orientation of M (or equivalently
that of the fiducial coframes associated to gµν) or it may be opposite. However since
SL(2,R)L × SL(2,R)R gauge symmetry does not contain maps sending qγ → q−1

γ ,8 in
writing (2.24), we are taking, by convention, the coframes defining (2.12) and (2.15) to
match the ambient orientation of M . In particular, in this convention, we are allow-
ing lγ to be negative when the intrinsic orientation of γ is opposite that of the ambient
orientation. We can summarize this as

|qγ| < 1 , orientation of γ = orientation of M ,

|qγ| > 1 , orientation of γ = −orientation of M . (2.25)

2.2 Hyperbolic quotients

Now let us discuss on-shell contributions to the gravitational path integral which are
three-manifolds M admitting hyperbolic metrics. In this paper, we will only focus on
smooth, cusp-free, manifolds. As mentioned in Section 1, any hyperbolic three-manifold
can be expressed as a quotient

M = H3/Γ (2.26)

of global hyperbolic three-spaceH3 by a discrete subgroup Γ ⊂ PSL(2,C), where PSL(2,C)
acts as the group of isometries on H3. Such a discrete subgroup of PSL(2,C) is known
as a Kleinian group. In this way, the study of hyperbolic 3-manifolds is equivalent to the
study of Kleinian groups, and any quantity of interest that can be computed on M can
be related to the structure of Γ. We review this construction in more detail Appendix B,
highlighting the necessary features here.

8The group element doing so, iσ1 (in the basis diagonalizing qL0
γ and in the fundamental representa-

tion), is not an element of either SL(2,R) however is an element of PSL(2,C).
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F γ · F

p γ · p

Figure 3: Every element γ ∈ Γ induces a non-contractable loop γ ∈ π1(M,p) in
the quotient space M = H3/Γ.

In particular, since H3 is simply connected, the quotient structure (2.26) implies that
the fundamental group of M can be identified with the subgroup Γ:

π1(M, p) ∼= Γ . (2.27)

Concretely, this means that every element γ ∈ Γ can be associated with a nontrivial loop
in M which starts and ends at some fiducial base point p. If we do not care about the
base point, p, the conjugacy class, [γ], is associated to a free loop in M up to homotopy.
Equivalently, sinceM is hyperbolic, each conjugacy class [γ] is associated to the homotopy
class of a closed geodesic in M , where a geodesic is constructed with respect to the
hyperbolic metric on M .

Group elements of PSL(2,C) are of four different types depending on the value of their
trace in the fundamental representation. When γ is either hyperbolic or loxodromic then
it is conjugate to

γ ∼

(
q
1/2
γ 0

0 q
−1/2
γ

)
, (2.28)

for some qγ with |qγ| ≠ 1. Such elements act freely on H3 and fix a single geodesic (as a
set). The quotient M is smooth if and only if Γ only contains hyperbolic and loxodromic
elements. In this case we say that Γ is torsion-free and in this paper, by focusing on
smooth M we will only consider torsion-free Γ’s.

Within Γ there exists a set of primitive elements, {γ0}, that cannot be expressed
as γ0 = (γ′0)

n for any γ′0 ∈ Γ and n ≥ 1. Furthermore when Γ is comprised solely of
hyperbolic and loxodromic elements then any γ can be expressed as

γ = (γ0)
nγ , (2.29)

for a primitive element γ0 and a power nγ which we call the multiplicity. The primitive,
γ0, is unique up to conjugation and so nγ is an invariant of the conjugacy class of γ. See
Appendix B for further details.

One useful way of viewing the relation between elements of Γ and loops in M (which
we will use specifically in Section 3.2.2) is by choosing a fundamental domain F ⊂ H3

of the action of Γ. Given a point p in this fundamental domain, the point γ · p lives in
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another copy γ · F of the fundamental domain, and both p and γ · p represent the same
point in M . Thus, any path in H3 from p to γ · p represents a loop in M ; see Figure 3.

The covering space formalism described above will prove useful for calculations later in
this paper and in this context we can think of the gauge fields AL, AR onM as being gauge
fields on the covering space H3 with the restriction that they are periodic with respect to
Γ (so that they are single-valued on M).9 In this description, the gauge symmetries are

AL/R → U−1
L/RAL/R(p)UL/R + U−1

L/RdUL/R , (2.30)

where UL/R are local SL(2,R) matrices which are periodic with respect to Γ. Given a
fixed background connection, the natural set of gauge-invariant observables are the open
Wilson lines

TrRL
P exp

(∫
γ

AL

)
TrRR

P exp

(
−
∫
γ

AR

)
(2.31)

associated to an conjugacy class [γ] of Γ (equivalently, a free closed loop in M , up to
homotopy), and a pair, RL/R, of sl(2,R) representations.

A conjugacy class [γ] comes equipped with an inherent orientation that then defines
the path-ordering appearing in (2.31). In what follows it will also be useful to work with
unoriented free loops. To be explicit we define the following sets:

[Γ] ≡
{
[γ]
∣∣∣ γ ∈ Γ , γ ̸= 1

}
, [Γ]+ ≡ [Γ]/Z2 , (2.32)

where the Z2 action sends [γ] to [γ−1]. The set10 [Γ] is in correspondence with all non-
contractible oriented free loops in M , while [Γ]+ corresponds to non-contractible unori-
ented free loops. As described in the previous section, once we specify an ambient orien-
tation of M , the holonomies of background connections can be used to assign a complex
length to any [γ] ∈ [Γ] via (2.24):

[γ] 7−→ TrRL
P exp

(∮
γ

AL

)
TrRR

P exp

(
−
∮
γ

AR

)
= TrRL

(
qL0
γ

)
TrRR

(
q̄L̄0
γ

)
, (2.33)

with with either |qγ| < 1 or |qγ| > 1 (i.e. either positive or negative lγ, respectively)
depending on if its orientation aligns or anti-aligns, respectively, with the ambient orien-
tation of M . Once [γ] has been assigned a complex length, l̂γ, via (2.33), then [γ−1] is

assigned −l̂γ.
The association (2.33) induces a corresponding map on [Γ]+ in which we associate both

±l̂γ to each conjugacy class as well as its inverse class. Within this association we are free
to pick the representative and in what follows we will always pick the representative of
[γ]+ ∈ [Γ]+ to map to a holonomy with |qγ| < 1. In words, we will choose the association
of [Γ]+ to Wilson loop observables as the following: given a conjugacy class [γ], and an
ambient orientation of M , we compute Wilson loops à la (2.33), inputting either [γ] or
[γ−1] appropriate such that the geodesic length is positive.

9If π : H3 → M is the natural projection, then the gauge fields on H3 are just the pullbacks π∗AL/R.
10Note that [Γ] is a set instead of a group since it is composed of conjugacy classes as opposed to group

elements.
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2.3 Coupling in matter

We now consider the problem of coupling matter to the geometry. We will focus on the
theory of a minimally coupled massive spin-s field. This is described by a symmetric s-
tensor, Φµ1µ2...µs , and a tower of associated Stückelberg fields that enforce transverse and
traceless conditions [21]:

∇νΦνµ2...µs = Φν
νµ3...µs = 0 . (2.34)

The local path integral is then given by the functional determinant

ZM
∆,s = det

(
−∇2

(s) + m̄2
s ℓ

2
)−1/2

, (2.35)

where∇2
(s) is the Laplace-Beltrami operator ofM acting on symmetric-transverse-traceless

(STT) s-tensors, and m̄s is the effective mass [22]. We have labeled the path integral by
a conformal dimension, ∆, related to m̄s via [23]

m̄2
s ℓ

2 = ∆(∆− 2)− s , (2.36)

and is the conformal dimension of a dual conformal primary through the AdS/CFT dic-
tionary. We can relate this to sl(2,R) representation theory in the following way.

We can realize the Laplace-Beltrami operator as the Casimir of sl(2,R) vector fields
[23],

c
sl(2,R)L
2 + c

sl(2,R)R
2 =

1

2

(
∇2

(s) + s(s+ 1)
)
, (2.37)

and so on-shell states are states of a representation R∆,s of sl(2,R)L⊕ sl(2,R)R satisfying(
c
sl(2,R)L
2 + c

sl(2,R)R
2

)
|ψ⟩ = 1

2

(
∆(∆− 2) + s2

)
|ψ⟩ , ∀ |ψ⟩ ∈ R∆,s . (2.38)

The representations satisfying this ‘mass-shell condition’ are pairs (RL⊗RR) ∈ R∆,s with

RHW
∆,s = {RHW

j+
⊗ RHW

j− ,RHW
j− ⊗ RHW

j+
} ,

RLW
∆,s = {RLW

j+
⊗ RLW

j− ,R
LW
j− ⊗ RLW

j+
} ,

(2.39)

where R
HW/LW
j±

are highest/lowest-weight representations11 of sl(2,R) with highest/lowest
weight related to the mass and spin through

j± =
∆± s

2
. (2.40)

Note that for scalars, s = 0, j± collide and the set of representations is effectively halved:

RHW/LW
∆,0 = {RHW/LW

∆
2

⊗ R
HW/LW
∆
2

} . (2.41)

See Appendix A for details on this set of representations and how they are built.

11The relevance of highest/lowest weight representations will be further discussed in Section 3.2.3.
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One relevant aspect of these representations is that given a basis, {L±, L0}, of sl(2,R)
satisfying

[L±, L0] = ±L± , [L+, L−] = 2L0 , (2.42)

then their characters,

χ
HW/LW
j (τ) ≡ Tr

R
HW/LW
j

(
qL0
)
, q = ei2πτ , (2.43)

are given by

χHW
j (τ) =

q−j

1− q−1
=

e−iπ(2j−1)τ

2 sinh(iπτ)
, χLW

j (τ) =
qj

1− q
=

eiπ(2j−1)τ

2 sinh(−iπτ)
. (2.44)

Strictly speaking, the highest weight character converges for |q| > 1 (τ belonging to the
lower-half plane), while the lowest-weight character converges for |q| < 1 (τ belonging to
the upper-half plane).

3 The Wilson spool for smooth hyperbolic quotients

In this section we more concretely introduce our main result and evidences supporting it.
In [7], it was shown that the path integral of a massive spinning field on a BTZ background
could be expressed as a line operator that wraps the black hole horizon arbitrarily many
times. Here we extend this result to the any smooth hyperbolic quotient, showing that that
the one-loop determinant appearing in (2.35) takes the form of a line operator wrapping
cycles of the background topology. We will state the result first and then show that
it passes a non-trivial on-shell check. We will then give several physical derivations in
support of our result.

Let M be a smooth, cusp-free, hyperbolic three manifold which is diffeomorphic to
H3/Γ. Then

logZM
∆,s[gµν ] = WΓ[AL, AR] , (3.1)

where

WΓ =
∑
[Γ]+

∑
RLW

∆,s

1

nγ

[
TrRL

P exp

(∮
γ

AL

)][
TrRR

P exp

(
−
∮
γ

AR

)]
(3.2)

is the Wilson spool generalized to hyperbolic quotients. Per the discussion in the previous
section, the sum over [Γ]+ corresponds to a sum over unoriented non-contractible loops
in M which by convention have a positive geodesic length assigned to them. This sum is
weighted by that element’s multiplicity. In Section 3.2.2 we will give a geometric inter-
pretation to this factor. These Wilson loops are taken over lowest-weight representations
RL ⊗ RR ∈ RLW

∆,s appearing in (2.39). Per the previous section these representations have
convergent characters when γ has positive geodesic length.
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Because every γ can be written as γ = (γ0)
nγ for a unique (up to conjugation) primitive

γ0 we can alternatively express WΓ in the integral form

WΓ =
i

2

∑
[Γ0]+

∑
RLW

∆,s

∫
C

dα

α

cosα/2

sinα/2

[
TrRL

P exp

(
α

2π

∮
γ0

AL

)][
TrRR

P exp

(
− α

2π

∮
γ0

AR

)]
,

(3.3)
where now the sum is over [γ0]+ ∈ [Γ0]+ which, in complete analogy to (2.32), corresponds
to the set of unoriented primitive loops of M . The α integration contour C, depicted in
Figure 4, runs clockwise below and above the positive Re(α) axis, crossing just to right of
the origin. Note that by construction Γ only contains hyperbolic or loxodromic elements
and so |qγ| ≠ 1. Thus given the characters (2.44), on-shell Wilson loops contribute poles
sitting off the Re(α) axis and the contour only picks up the poles at α ∈ N coming from
the cotα/2.

Re(α)

Im(α)

C

Figure 4: The α integration contour wraps the poles of cotα/2 lying along
the real axis. Poles from the on-shell characters always appear off the real
axis owing to the loxodromic or hyperbolic structure of group element, γ.

While (3.3) seems to be a somewhat inconsequential rewriting of (3.2), it serves the
benefit of both uniformizing it with previous expressions of the Wilson spool appearing
in [5–8] (where the integral form plays a more key role) as well as emphasizing that there
is a Wilson spool for each primitive loop of M . In Section 4 we will discuss potential
scenarios where the pole structure makes the integral form (3.3) more natural.

3.1 Comparison to Giombi, Maloney, and Yin

Before deriving the expression (3.2), we will demonstrate that it produces known results
in the literature for the one-loop determinant of matter fields around an on-shell geometry
[14].

Let aL, aR correspond to the flat gauge connections which correspond to the on-shell
hyperbolic metric on M through the identification (2.5). Any flat SL(2,C) connection on
M is determined, up to gauge equivalence, by its holonomies around the closed loops on
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M . The on-shell gauge field aL is precisely the flat connection such that

P exp

(∮
γ

aL

)
= U(p)−1γU(p) , (3.4)

for some periodic element, U(p) ∈ SL(2,C), and by abuse of notation, we use γ to refer
both to a loop γ ∈ π1(M, p) with respect to a base point p, as well as an element γ ∈ Γ.
Since aR = −aL, we also have

P exp

(
−
∮
γ

aR

)
= U(p)†γ†(U(p)†)−1 . (3.5)

Now we use the assumption that γ is either hyperbolic or loxodromic, which is necessary
to ensure that the quotient H3/Γ is smooth (see Appendix B). This means that it can be
diagonalized into the form

γ =

(
q
1/2
γ 0

0 q
−1/2
γ

)
= e2πiτγL0 , (3.6)

with qγ = e2πiτγ . Together with (3.4), (3.5) this recovers the on-shell statement of the
length/holonomy relationship (2.24).

Knowing these holonomies is sufficient to compute the on-shell value of WΓ. Indeed,
the Wilson loop along γ now just computes the character of γ in the appropriate repre-
sentation: [

TrRL
P exp

(∮
γ

aL

)][
TrRR

P exp

(
−
∮
γ

aR

)]
= χRL

(τγ)χRR
(τγ) , (3.7)

for some τγ which, by choice of representative of [γ]+ in [Γ]+, we take to live in the upper-
half plane. The character of the representative of [γ]+ in the representations appearing
in RLW

∆,s are now readily computed from (2.44):∑
RLW

L/R

[
TrRL

P exp

(∮
γ

aL

)][
TrRR

P exp

(
−
∮
γ

aR

)]
=
qj+γ q̄

j−
γ + qj−γ q̄j+γ
|1− qγ|2

. (3.8)

We can now compute the on-shell value of the Wilson spool (1.3) by summing over all
representatives, [γ]+ of [Γ]+. As alluded to before we can decompose this into a sum over
representatives, [γ0]+, of primitive generators and integers nγ such that [γ]+ =

[
γ
nγ

0

]
+
.

Explicitly,∑
[Γ]+

∑
RLW

∆,s

1

nγ

[
TrRL

P exp

(∮
γ

aL

)][
TrRR

P exp

(
−
∮
γ

aR

)]

=
∑
[Γ0]+

∑
RLW

∆,s

∞∑
nγ=1

1

nγ

[
TrRL

P exp

(∮
γn
0

aL

)][
TrRR

P exp

(
−
∮
γn
0

aR

)]

=
∑

[γ0]+ ̸=1

∞∑
n=1

1

n

qnj+γ0
q̄nj−γ0

+ qnj−γ0
q̄nj+γ0

|1− qnγ0|2
.

(3.9)
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Expanding the denominator as a geometric series |1−qnγ0|
2 =

∑∞
ℓ,ℓ̄=0 q

nℓ
γ0
q̄nℓ̄γ0 , we can perform

the sum over n and we are left with the final result:

exp
(
WΓ

∣∣
on-shell

)
=

∏
[γ0]+ ̸=1

∏
±

∞∏
ℓ,ℓ̄=0

(
1− q

ℓ+∆±s
2

γ0 q̄
ℓ̄+∆∓s

2
γ0

)−1

. (3.10)

For the values s = 0, 1, this reproduces the known one-loop determinants of spinning
massive matter12 on H3/Γ computed by Giombi, Maloney, and Yin (GMY) [14]. To our
knowledge, up to now the corresponding one-loop determinants for massive s ≥ 2 fields
on H3/Γ have not been constructed; the on-shell spool (3.10) fills this gap.

3.2 Derivations of the main result

Having demonstrated the validity of the spool for massive scalars and vectors by com-
parison to [14], we now present a series of more general derivations. We firstly perform
a derivation of the one-loop determinant for minimally coupled fields of any spin s on a
cusp-free hyperbolic manifold via the Selberg trace formula. While this derivation osten-
sibly only holds for ‘on-shell’ metrics, it will nonetheless ultimately result in the gauge
invariant formulation of Wilson loops in the appropriate representations in agreement
with (1.3).

Our subsequent two derivations will provide further evidence for the interpretation
of (3.1) as an off-shell statement. Firstly we will express the one-loop determinant of a
scalar field in the worldline path integral formalism ultimately relating elements of this
calculation to the elements of the Wilson spool; we will perform this path integral on
a ‘perturbatively off-shell’ manifold, i.e. one that that is topologically H3/Γ but with
a potentially off-shell metric. We then demonstrate, in a similar manner to [14], that
this can be reduced into a sum over conjugacy classes of worldline path integrals of the
quotient space. One consequence of this analysis is the emphasis that decomposition of
loops into conjugacy classes and the multiplicity, nγ, is a topological statement and is
sensible off-shell.

Finally we revisit the quasinormal mode method [24] for constructing the one-loop
determinant on the torus [6, 7] and extend that analysis to smooth hyperbolic quotients.
While, even for simple geometries, explicit quasinormal modes are only known for on-
shell metrics, Appendix D of [5] illustrates how the scalar quasinormal spectra can be
organized into representation theory of the local isometries even for perturbatively off-
shell metrics. The assumption that this holds for the massive spinning spectra then gives
our construction an off-shell interpretation.

12While strictly speaking, from a physical perspective WΓ should only apply to massive fields, we
also note that (3.10) gives the one-loop determinant for a massless, STT spin-2 particle when setting
∆ = s = 2. The graviton one-loop determinant is obtained from this by the additional multiplication by
the massive spin-1 ghost determinant and the scalar determinant of the trace mode.
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3.2.1 The Selberg Trace

The Selberg Trace formula13 provides us with a relationship between two spectra on
hyperbolic manifolds:

• The spectrum of the Laplacian, which generically contains both discrete and con-
tinuous components. Knowledge of this spectrum is sufficient to reconstruct the
one-loop determinant on the quotient space.

• The complex length spectrum of closed geodesics. In Section 2.1.1 we showed how
such information can be interpreted in the language of Chern-Simons theory.

On the ‘spectral’ side of the trace formula we label the eigenvalues of the spin-s traceless,
transverse, divergence free Laplacian by λ

(s)
m which we write as λ

(s)
m = (t

(s)
m )2 + s + 1. We

will formulate this for compact quotients composed entirely of hyperbolic and loxodromic
elements so that this spectrum is rendered discrete. On the ‘geometric’ side, we have
conjugacy classes [γ] of elements γ ∈ Γ which, as discussed several times above, correspond
to a homotopy classes of free loops with associated complex lengths, l̂γ = lγ + iθγ.

Then given an even test function, H : R → R, the Selberg trace formula relates these
two spectra as [26]1415

(1 + δs,0)
∑
m

Ĥ(t(s)m ) =
vol(H3/Γ)

π

(
s2H(0)−H ′′(0)

)
+ 2

∑
[Γ]+

lγ
nγ

cos(s θγ)H(lγ)

cosh lγ − cos θγ
, (3.11)

where Ĥ is the Fourier transform of H,

Ĥ(t) =

∫ ∞

−∞
dxH(x)e−ixt . (3.12)

The clever choice of test function

H(x) =
1√
4πβ

e−
x2

4β , Ĥ(t) = e−βt2 , (3.13)

then reduces the Selberg trace formula to∑
m

e−βλ
(s)
m =

2− δs,0
2

e−β(1+s)

[
2
vol(H3/Γ)

(4πβ)
3
2

(1 + 2βs2)

+
∑
[Γ]+

lγ
nγ

exp
(
− l2γ

4β

)
√
4πβ

cos(sθγ)

sinh l̂γ
2
sinh

l̂∗γ
2

]
.

(3.14)

13For an introduction to the Selberg trace formula for the scalar Laplacian see [25].
14Within [26] both the scalar and spin-1 trace formulae include a contribution due to the trivial repre-

sentation of PSL(2,C) identified with constant functions on a compact manifold. We have absorbed all
such considerations into the sum over eigenvalues.

15This formula is usually stated as a sum over non-trivial conjugacy classes [γ] ̸= 1 implicitly assigning
a positive geodesic length to each [γ]. In our notation this is equivalent to twice the summation over
[Γ]+.
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This sum contains information about the full spectrum of the Laplacian and can be used
to reconstruct the one-loop determinant

log det
(
−∇2

(s) + m̄2
s ℓ

2
)
= −

∫ ∞

0

dβ

β
e−β m̄2

s ℓ
2
∑
m

e−βλ
(s)
m , (3.15)

Noting that lγ is strictly positive in the case of a cusp-free hyperbolic manifold this integral
can be exactly computed:

log det
(
−∇2

(s) + m̄2
s ℓ

2
)
= −(2− δs,0)vol(H3/Γ)

∫ ∞

0

dβ

β

e−ν2β

(4πβ)
3
2

[
1 + 2βs2

]
− 2− δs,0

4

∑
[Γ]+

1

nγ

exp (−νlγ)

sinh l̂γ
2
sinh

l̂∗γ
2

(
eisθγ + e−isθγ

)
, (3.16)

with ν2 = m̄2
s ℓ

2 + s+ 1.
The first line of (3.16) contains a UV divergent contribution to the one-loop deter-

minant coming from the β ∼ 0 behavior of the integral. Schematically we can view this
divergence as the contribution of identity class of Γ (i.e. loops contractible to a point)
and thus scaling like the volume of M . In order to make sense of this term we must
regulate the β integral near 0 and prescribe a renormalization condition for removing the
divergence. Regardless, this contribution is non-universal and dependent on the details
of renormalization. In what follows we will follow the simple prescription of subtracting
it off to define

logZ∆,s = −1

2
log det

(
−∇2

(s) + m̄2
s ℓ

2
)∣∣∣∣

ren.

≡ 2− δs,0
8

∑
[Γ]+

1

nγ

(
e−νlγ+isθγ + e−νlγ−isθγ

)
sinh l̂γ

2
sinh

l̂∗γ
2

.
(3.17)

Our final step in casting this as a Chern-Simons observable is to recall the relation between
complex lengths and holonomies as outlined in Section 2.1.1 and recognize the fraction as
a product of lowest-weight characters from Section 2.3. All-in-all we find

logZ∆,s =
∑
[Γ]+

∑
RLW

∆,s

1

nγ

[
TrRL

P exp

(∮
γ

AL

)][
TrRR

P exp

(
−
∮
γ

AR

)]
. (3.18)

Let us now make a couple of comments.
Firstly this result is consistent with the derivation in GMY [14] in the cases of scalar

and massive vector fields. In fact the GMY result holds more generally for non-compact
quotients without cusps, such as thermal AdS. While this is only demonstrated explicitly
for massive fields up to s = 1, our casting of the Selberg trace as (3.18) suggests it extends
to all spinning fields, even for non-compact quotients.
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Secondly, while the above derivation applies strictly to the on-shell complete hyperbolic
metric, the casting of it as Chern-Simons variables (and more specifically as their gauge-
invariant holonomies) is natural to take off-shell and to capture metric fluctuations within
the gravitational path-integral. In the following section we will give credence to this while
also emphasizing the topological origin of the multiplicity factor, nγ.

3.2.2 The worldline path integral

In this section we make more explicit the physical intuition for our result by demonstrating
how the scalar one-loop determinant can be recovered from a path integral calculation;
in doing so we will also make explicit that the decomposition into conjugacy classes and
the factor nγ are topological features. To be clear on scope, we will consider the worldline
path integral of a scalar field over free loops in H3/Γ treated simply as a smooth manifold,
with a potentially off-shell metric g. This can be divided into disjoint sectors of different
free homotopy classes, which are in one-to-one correspondence with the conjugacy classes
of Γ. We will then show that by lifting our calculation from H3/Γ to H3 the path integral
can be reorganized into a sum over conjugacy classes, each being simply an integral over
a torus topology. In practice, to perform a lift to H3 it is necessary to ‘break’ the loop at
a point, and this temporarily reintroduces a sum over all possible group elements within
each conjugacy class.

Finally we shall show how taking the metric on-shell to the hyperbolic metric on
H3/Γ reproduces exactly the previous results and allows a matching of terms to the on-
shell Wilson spool. This follows due to the two-loop exactness of this calculation within
perturbation theory.

Following [27, 28] we can write the scalar one-loop determinant as a worldline path
integral

log det
(
−∇2 +m2ℓ2

)−1/2
=

1

2

∫ ∞

0

dβ

β
e−βm2ℓ2 K(β) , (3.19)

with

K(β) ≡
∫

x(0)=x(β)

Dx exp

(
−1

4

∫ β

0

ds gabẋ
aẋb
)
. (3.20)

A couple of notes about this worldline path integral. Firstly, it is defined intrinsically
on the quotient manifold H3/Γ, and the measure Dx is the sum over closed loops with
initial point x(0).16 Secondly, so far within this path integral we are considering the
smooth manifold H3/Γ without necessarily choosing the hyperbolic metric upon it; this
potentially could be a perturbatively off-shell geometry within the gravitational path
integral.

We now lift our calculation onto the covering space H3 π−→ H3/Γ. Again we think of
H3 only as a smooth manifold, equipped with the potentially off-shell metric g̃ = π∗(g)
periodic under the action of Γ on H3. We additionally lift each path x in H3/Γ uniquely

16We can think of the factor of 1
β in this integral as accounting for the gauge redundancy of fixing the

initial point on a closed loop.

19



to an open curve x̃ in H3 with x̃(0) ∈ F , a fundamental domain of Γ in H3. Importantly,
closed loops in the same free homotopy class of H3/Γ may lift to open curves in H3 which
are not homotopic. Open curves may end at x̃(β) = γ̃x̃(0) for any γ̃ ∈ [γ]. In effect we
have divided each free conjugacy class into the based conjugacy classes comprising it. We
write for the non-identity sectors of the path integral:

K(β) =
∑
[γ] ̸=1

∑
γ̃∈[γ]

∫
x̃(0)∈F

x̃(β)=γ̃x̃(0)

Dx exp

(
−1

4

∫ β

0

ds g̃ab ˙̃x
a ˙̃xb
)
. (3.21)

We can now utilize a trick in [14] and note that summing over all conjugates of γ on fun-
damental domain F is equivalent to considering only the representative γ but integrating
over the fundamental domain FC(γ), the fundamental domain for the centralizer of γ in
Γ. That is, subgroups of Γ preserving the same sets of fixed points can be treated totally
independently.

Finally we can observe that when H3/Γ is a cusp-free smooth manifold, Γ is torsion-
free and C(γ) is simply an infinite cyclic group (see Appendix B). As such the fundamental
domain for the subgroup generated purely by γ, denoted F⟨γ⟩, is simply nγ copies of the
fundamental domain FC(γ):

K(β) =
∑
[γ] ̸=1

K[γ] ≡
∑
[γ] ̸=1

1

nγ

∫
x̃(0)∈F⟨γ⟩
x̃(β)=γx̃(0)

Dx̃ exp

(
−1

4

∫ β

0

ds g̃ab ˙̃x
a ˙̃xb
)
. (3.22)

This path integral is equivalent a saddle-point sum over path-integrals, K[γ], each of which
is the path integral over a torus with generator γ and an off-shell metric g̃. We see that any
off-shell one-loop determinant on H3/Γ can be reduced to a sum over conjugacy classes
and an off-shell one-loop determinant on the torus. In particular this sum and the factor
nγ need not be varied for off-shell geometries within a gravitational path integral; they
are properties of the topology of the quotient.

For completeness let us also now show that path integral methods can reproduce the
correct functional form when the metric g is taken to be the on-shell hyperbolic metric.
Any hyperbolic or loxodromic element can be put into the form (2.28) with qγ = exp l̂γ.
Considering the K[γ] contribution, without loss of generality we can thus take a choice of
coordinates on H3 such that

g̃abdx̃
adx̃b = (1 + r2) dt2 +

dr2

1 + r2
+ r2 dϕ2 , (3.23)

with t ∈ R, r ∈ [0,∞), ϕ ∈ [0, 2π). The transformation generated by γ maps

t→ t+ lγ ,

ϕ→ ϕ+ θγ ,
(3.24)
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and so a suitable fundamental domain F⟨γ⟩ is t ∈ [0, lγ), r ∈ [0,∞), ϕ ∈ [0, 2π). For
readability in this section we shall henceforth drop the explicit γ notation for complex
length parameters, restoring it at the end.

The minimal length geodesic for the transformation generated by γ runs along r = 0,
and as an extremum of the worldline path integral we would like to perform a saddle-
point approximation around it. It will be convenient to work in a Cartesian version of
this metric as in [27] with coordinates (t, q⃗) and q⃗ = (r cosϕ, r sinϕ):

g̃abdx̃
adx̃b = (1 + q2) dt2 + dq2 − (q · dq)2

1 + q2
. (3.25)

The worldline action, I[x̃] = 1
4

∫ β

0
ds g̃ab ˙̃x

a ˙̃xb, expanded around the geodesic saddle point
t(s) = l( s

β
+ u(s)) is

I[x̃] =
l2

4β
+

1

4

∫ β

0

ds

[
l2u̇2 + q̇2 +

l2

β2
q2 + 2

l2

β
u̇q2 + l2u̇2q2 − (q · q̇)2

1 + q2

]
. (3.26)

There is additionally a quantum counterterm which appears due to the Weyl-ordering of
the Hamiltonian. Such counterterms are well understood and following the time-slicing
prescription17 of [27, 28] we add

Ic.t.[x̃] = −ℓ
2

4

∫ β

0

ds(R̃ + g̃µνΓ̃ρ
µσΓ̃

σ
νρ) =

3

2
β . (3.27)

The worldline path integral K[γ] can be organized in a loop expansion as

Kγ =

∫
DuDq e−I−Ic.t. ≡ e−W , W =

l2

4β
+ w(1)

u + w(1)
q + w(2) + · · · (3.28)

Focussing on quadratic terms of I first, the u field is a free massless particle and (after
extracting the zero mode) has a propagator

Gu(s1, s2) =
(β − s1)s2

l2β
Θ(s1 − s2) + s1 ↔ s2 , (3.29)

with a one-loop contribution

w(1)
u (β) =

1

2
log

(
4πβ

l2

)
. (3.30)

The field q ∈ R2 is little more complicated. Due to the torsion the boundary conditions
on q imposed by (3.24) are twisted by a rotation Rθq(0) = q(β), Rθq

′(0) = q′(β), where

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
. (3.31)

17Additionally we note that within this prescription the products of distributions are defined by treating
δ(x) as a Kronecker delta and by taking Θ(0) = 1

2 .
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The Green’s function equation

1

2

(
−∂2s1 +

l2

β2

)
Gq(s1, s2) = δ(s1 − s2)1 , (3.32)

along with boundary conditions RθGq(0, s2) = Gq(β, s2), Rθ∂s1Gq(0, s2) = ∂s1Gq(β, s2),
are solved by

Gq(s1, s2) =
βΘ[s2 − s1]

l sinh l̂
2
sinh l̂∗

2

[
sinh

(
l

β
(s2 − s1)

)
R−1

θ + sinh

(
l

β
(s1 − s2 + β)

)
1

]
+

(
s1 ↔ s2
θ → −θ

)
. (3.33)

In order to calculate the one-loop factor for the field q we can take advantage of the
change of variables q = R θs

β
Q which imposes periodic boundary conditions on Q and thus

renders the path integral over the kinetic terms in Q equivalent to the thermal partition
function of a quantum system with Lagrangian18

LQ =
1

4
Q̇2 +

iθ

2β
QT

(
0 1
−1 0

)
Q̇− 1

4

l2 + θ2

β2
Q2 . (3.34)

The corresponding Hamiltonian is

HQ = P 2 − iθ

β
QT

(
0 1
−1 0

)
P +

1

4

l2

β2
Q2 , (3.35)

which after a canonical transformation

(
Q
P

)
=


0 0 −β

l
β
l

1 1 0 0
l
2β

− l
2β

0 0

0 0 1
2

1
2

(Q̃P̃
)

(3.36)

becomes the decoupled sum of harmonic oscillator Hamiltonians of mass l−1 and frequency
β−1:

HQ = (l + iθ)H̃1 + (l − iθ)H̃2 , H̃i =
1

2l
P̃ 2
i +

l

2β2
Q̃2

i . (3.37)

The thermal partition function of this system is then just

w(2)
q ≡ − log Tr e−βHQ = − log

∞∑
n1,n2=0

exp

(
−l̂
(
n1 +

1

2

)
− l̂∗

(
n2 +

1

2

))

= log

(
4 sinh

l̂

2
sinh

l̂∗

2

)
.

(3.38)

18Strictly to have a real Lagrangian θ must be imaginary. We thus analytically continue our solution
to real θ at the end of the calculation.
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Finally we need to calculate any higher loop corrections due to the interaction terms in
the action. Remarkably (due to the symmetry of the AdS3 background - see [27] for some
further comments) the loop expansion (3.28) is two-loop exact, with contributions

= 0 (3.39)

=
β sinh l − βl cosh l

l cos θ − l cosh l
(3.40)

= −
β2
(

1
β
− δ(0)

)
sinh l

l cos θ − l cosh l
(3.41)

=
β(cos θ + cosh l)

2(cos θ − cosh l)
− β2δ(0) sinh l

l cos θ − l cosh l
(3.42)

where the solid line indicates Gq and a dashed line indicates Gu. These diagrams sum sim-
ply to β

2
. Combining everything together the exact effective action for the [γ] contribution

to the worldline path integral is

W =
l2

4β
+

1

2
log

(
4πβ

l2

)
+ log

(
4 sinh

l̂

2
sinh

l̂∗

2

)
− β

2
+

3β

2
. (3.43)

Noting that the above assigns a positive geodesic length to each geodesic, we sum up the
non-identity sector of the path integral to find

log det
(
−∇2 +m2ℓ2

)−1/2
=

1

4

∫ ∞

0

dβ

β

∑
[Γ]+

lγ
nγ

e
−l2γ
4β

√
4πβ

e−βν2

sinh l̂
2
sinh l̂∗

2

=
1

4

∑
[Γ]+

1

nγ

e−ν lγ

sinh l̂
2
sinh l̂∗

2

, (3.44)

where we recall ν2 = 1 + m2ℓ2 (with s = 0). This worldline path integral precisely
reproduces the renormalized one-loop determinant derived from the Selberg trace formula,
(3.17), and the on-shell Wilson spool. Much like in the Selberg trace calculation, we have
ignored the contribution of contractible loops to the worldline path integral. This identity
contribution is subtle to recover from the approach: since C(1) = Γ we cannot use the
described decomposition of the fundamental domains to simplify the fundamental domain
of this sector of the worldline path integral. More importantly, this identity component is
a UV divergent contribution to the one-loop determinant and so we can view the Wilson
spool as computing a renormalized one-loop determinant.
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The above exercise now allows us to draw some analogies between features of the
Wilson spool and the worldline path integral. The Wilson spool neatly sums up the
contributions of all paths living in the same conjugacy class which is keeping with its
interpretation as a topological operator within the Chern-Simons path integral. Within
each conjugacy class, the exponential damping appearing in its on-shell value can be
identified with the (Laplace transform) of the corresponding saddle point contribution;
within the sl(2,R) characters this is the contribution of the lowest-weight state of RLW

j ⊗
RLW
j . The | sinh l̂

2
|−2 denominator comes entirely from one-loop effects in the worldline

picture; for the spool this is equivalently the resummation of all the descendant states
within the lowest-weight representation. Lastly the finite shift, m2ℓ2 → ν2 = 1+m2ℓ2, of
the saddle point is entirety of the two-loop effect and is γ independent; this is crucial as
the corresponding shift on the spool side is representation theoretic – an ordering effect
of the quadratic Casimir – as opposed to geometric.

3.2.3 The quasinormal mode method

In this final section we cast our Wilson spool construction in the language of quasinor-
mal modes, which was the original setting in which the spool was derived in [5, 6]. More
pertinent for the present paper, [5–7] constructed the spool for thermal AdS3 through
considering quasinormal modes.19 The quasinormal mode method applied to spools fol-
lows the broad philosophy laid out in the seminal paper Denef, Hartnoll, and Sachdev
(DHS) [24]; this has been thoroughly detailed in [5–7] and so we only coarsely summarize
the necessary points here. In brief, this construction consists of three observations:

• The poles of Z2
∆,s in the complex ∆ plane, via (2.35), must align with the spin-s

eigenvalues of the Laplacian under analytic continuation of the mass parameter.

• The corresponding eigenfunctions can be represented as weights of highest/lowest
weight sl(2,R) representations satisfying the Casimir equation, (2.38). In the BTZ
background, for example, these weights correspond to the ingoing and outgoing
Lorentzian quasinormal modes.

• The set of contributing eigenfunctions are further restricted by the imposition of
boundary conditions, single-valuedness, and regularity.

In [7] the above properties of these eigenfunctions are codified in a group theoretic manner
as a set of conditions to be satisfied by representations and their weights.

Condition 0: The Casimirs of the representations solve the spin-s mass shell condition
(2.38). In locally AdS3 spacetimes these are highest and lowest weight representations,

RL ⊗ RR ∈ RLW/HW
∆,s with lowest/highest weight given by (2.40). Further satisfying the

boundary conditions of normalizable fall-off specifies a particular root of (2.36) as is usual
in the AdS/CFT dictionary.

19Strictly speaking, the calculation of [6] was performed in the BTZ black hole background, but this is
related to thermal AdS3 by a modular S-transformation on the parameter τ .
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Condition I: Eigenfunctions are single-valued under parallel transport around a non-
trivial cycle, γ, of the geometry. It demands that a given weight in RL⊗RR has eigenvalue
1 under

RL

[
P exp

(∮
γ

AL

)]
RR

[
P exp

(
−
∮
γ

AL

)]
. (3.45)

Condition II: Eigenfunctions must be regular everywhere on the geometry. In group
theoretic terms we demand that our Lie algebra representations lift to representations of
the full Lie Group. In thermal AdS3 this imposes no additional restrictions on the reps
RLW/HW

∆,s .

These conditions were shown to reproduce the one-loop determinant of thermal AdS
in [6, 7]. Here we will take an alternative, slightly more schematic route to that result.
Denoting the only non-trivial cycle of thermal AdS3 as γ0, we can write a formal object
giving a pole for each weight satisfying Conditions 0, I, & II as20

ZTAdS3
∆,s =

∏
R∆,s

DetRL⊗RR

(
1− P exp

(∮
γ0

AL

)
P exp

(
−
∮
γ0

AR

))− 1
2

. (3.46)

The determinant over an infinite dimensional representation is somewhat formal; we can
more concretely define it through its logarithm: logDet = Tr log. At this point we
could represent the logarithm with a Schwinger parameterization (with an appropriate iϵ
prescription) to reproduce the integral form of the Wilson spool à la [7]. More simply, we
can Taylor expand about the identity to recover

logZTAdS3
∆,s =

∑
RLW

∆,s

∞∑
n=1

1

n
TrRL

[
P exp

(
n

∮
γ

AL

)]
TrRR

[
P exp

(
−n
∮
γ

AR

)]
. (3.47)

Here the representations RL ⊗RR are again taken to lie in RLW
∆,s when the geodesic length

is taken by convention to be positive.21 Upon observing that the conjugacy classes of
Thermal AdS are simply γn0 , n ∈ Z this restores (3.2).

We can now ask why this procedure might be more challenging to apply in non-
elementary quotients. The key is actually in Condition II. While thermal AdS3 is a
quotient of H3, the boundary of thermal AdS3 is not a quotient of ∂H3 ∼= CP1. There
are two limit points of the quotient, (without loss of generality) the points (0,∞) ∈ CP1,
which are not identified with any point on the boundary of thermal AdS3. As such,
eigenfunctions which are well behaved on the boundary of thermal AdS3 need not lift to

20Up to an unfixed holomorphic function of ∆.
21There is a slight sleight-of-hand in going from (3.46) to (3.47). Both highest- and lowest-weight

representations contribute poles to (3.46), however they contribute identical poles. Thus in (3.47) we

have chosen to double the lowest-weight contribution. Upon Schwinger parameterization RHW/LW
∆,s obtain

opposite iϵ prescriptions which cause RHW
∆,s to couple to negative length geodesics; see [7] for details.
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eigenfunctions on H3 which have a well defined limit approaching (0,∞). Indeed this is

the case for the eigenfunctions associated to representations RLW/HW
∆,s .

Once we turn to non-elementary quotients this story becomes more complicated; see
Appendix B. The limit set of Γ is typically a fractal subset, Λ, of the Riemann sphere,
and the boundary of H3/Γ is the quotient

∂(H3/Γ) = (∂H3 \ Λ)/Γ . (3.48)

Since boundary points contained in Λ do not descend to boundary points in the quotient,
the set of eigenfunctions which are regular on the quotient and its boundary is substan-
tially larger than on thermal AdS3. When viewed as eigenfunctions on H3, they are
allowed to be badly behaved near the boundary when approaching points in the limit set
Λ. It is thus not enough simply to consider the set of irreducible representations RLW/HW

∆,s

to describe them. Furthermore H3/Γ has multiple non-trivial cycles and thus we need to
impose holonomy conditions around multiple cycles simultaneously while maintaining the
correct multiplicity of poles in Z2

∆,s.
In fact our previous explorations into the worldline formalism provide the avenue for

addressing both of these issues: we can decompose Γ into centralizer subgroups, which
for loxodromic or hyperbolic elements contain two fixed points. Within each subgroup,
this reduces the DHS problem again to that on a torus with just one cycle. We can now
utilize the same set of representations, RLW/HW

∆,s for each centralizer subgroup. Thus when
Γ is purely loxodromic or hyperbolic we again write

Z
H3/Γ
∆,s =

∏
RLW

∆,s

∏
[Γ0]+

DetRL⊗RR

(
1− P exp

(∮
γ0

AL

)
P exp

(
−
∮
γ0

AR

))−1

. (3.49)

Taking the log and performing the Taylor expansion then leads our result for the Wilson
spool:

logZ
H3/Γ
∆,s =

∑
RLW

∆,s

∑
[Γ0]+

∞∑
n=1

1

n
TrRL

[
P exp

(
n

∮
γ0

AL

)]
TrRR

[
P exp

(
−n
∮
γ0

AR

)]
.

(3.50)
Note that in the above formula we are summing over primitive conjugacy classes with
positive geodesic length. Remarkably the determinant formula, (3.49), takes a form that
is very reminiscent to a Selberg zeta function. Indeed given the matching established
between holonomies of AL/R and conjugacy classes of γ0 as group elements, (3.49) takes
the form of a product of descendant weights under the action of primitive generators
of Γ; we encourage the reader to compare to equation (4.2) of [29] or, more modernly
(and suggestively), equation (3.2) of [30]. We will not make the connection between the
Wilson spool and the Selberg zeta function explicit in this paper, however we are aware
of upcoming work of other authors in this direction [15].
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4 Discussion

In this paper we have extended the ‘Wilson spool’ prescription for coupling massive fields
to three-dimensional gravity to any smooth cusp-free hyperbolic three-manifold. The re-
sult is the expression of the one-loop determinant as a topological line operator that wraps
all possible non-trivial cycles of the background topology. Our construction follows from
the realization of such manifolds as quotients of H3 by a discrete torsion-free subgroup
of isometries, Γ, and accommodating the structure of the quotient into the spool pre-
scription. We provided three separate constructions of the spool: from the Selberg trace
formula, from the physically intuitive worldline perspective, and from the quasinormal
mode method which puts in the context in which the original spool results were derived.
Our construction reproduces known results in the literature when available, and extends
them to any massive spinning field on a smooth cusp-free hyperbolic manifold. There are
several open question and future directions which we discuss below.

Orbifolds, cusps and Lens spaces Beyond the spaces considered in this paper it
would be interesting to understand how to construct the spool on a more general set of
hyperbolic geometries, such as orbifolds and cusped spaces. When constructable as a
quotient of H3 these arise if Γ contains elliptic or parabolic elements respectively. The
Selberg trace formula has been extended to finite volume quotients containing cusps and
orbifold singularities [25], however the result does not have such a clear breakdown into
characters of SL(2,R).

In the case of cusps the approach is very unclear; closed curves associated to a parabolic
element are not homotopic to any geodesic in the bulk geometry. While one can attempt
to consider a ‘geodesic at infinity’ as the curve is pushed towards the boundary, such a
geodesic has both zero length and torsion rendering the corresponding character divergent.
This is consistent with (3.4) and (3.5) from which we might consider directly the trace of
a parabolic element within the appropriate highest/lowest weight representations

Tr
R
HW/LW
j

ezL+ =
∞∑
p=0

⟨j, p|ezL+ |j, p⟩HW/LW → ∞ . (4.1)

We can understand some of the technical difficulties associated to elliptic elements
more clearly by considering the quasinormal mode approach. Following the procedure
of Section 3.2.2 the one-loop determinant on H3/Γ can still be reduced to a sum over
quotients of H3 along a single axis. However, when the centralizer also contains elliptic
elements as described in (B.11) this leads to a couple of extra subtleties. Firstly, we
now must consider two separate cycles in the geometry and as yet we do not have a
construction to deal with this; see Figure 5. Secondly, the geodesics associated to elliptic
elements are zero length, and as such the characters

χ
HW/LW
j (ατ) (4.2)

have poles on the real α-axis. The more rigorous derivation of the spool in the quasinormal
mode formalism [7] suggests that when this occurs the Wilson spool cannot be written as
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γ1

γ2

Figure 5: The simplest example of an elliptic element taken along the same
axis as a hyperbolic element resulting in a thermal AdS3 with a conical defect
(depicted as the dashed line) as its quotient. In this case there are two nontrivial
cycles in the geometry.

a discrete sum but must instead be taken as a contour integral which picks up residues
due to the poles of the character.

A greater understanding of these issues should also provide insight into the de Sit-
ter spool on Lens spaces. In this case also there are multiple holonomy conditions to
incorporate into the quasinormal mode method. Furthermore in de Sitter the associ-
ated characters which appear also involve poles on the real α-axis of a contour integral,
although the associated geodesics are not zero length.

On the integral form of the spool The above discussion point highlights the following
comment made in the Section 1: we have primarily presented the results in this paper
as a sum over windings on a set of primitive free-loops, (3.2). This makes manifest its
‘spooling’ nature and its connection to worldline quantum mechanics. Alternatively, a
simple rewriting casts this sum as contour integral, e.g. (3.3). This seems like mostly an
aesthetic choice in this work, however the trivial relation between sum and the integral
might be an artifact of the torsion-free quotients we have considered: every centralizer is
an infinite cyclic group and so has a natural structure of wrapping a primitive element
arbitrarily many times.

More generally we expect the integral form of the Wilson spool to be the more com-
prehensive description. This was already evident in the original works of [5,6] for one-loop
determinants in de Sitter spacetimes where the contour integral picks up additional poles
and reproduces the intricate meromorphic structure of the one-loop determinant. Addi-
tionally for the Wilson spool applied to JT gravity [8] the integral expression is unavoid-
able: the contour defining W is open and while certain scenarios allow portions of the
contour to wrap poles that give W a spooling interpretation, there will remain an open
segment. This segment is important for reproducing universal logarithmic divergences
that appear in two dimensions.

As emphasized in the previous point, a better understanding of the interplay between
integral contour prescriptions, the Selberg trace formula, and the incorporation of si-
multaneous conditions in quasinormal modes will likely be key to a more comprehensive

28



construction of W that includes torsion quotients of H3 and S3.

Holographic entanglement entropy and quantum corrections An interesting use
of our results lies in calculating holographic entanglement entropies. In the context of
AdS3/CFT2, the connection between CFT entanglement entropy and bulk Wilson lines
has been well understood at leading order in the Brown-Henneaux central charge, c = 3

2GN
,

with this leading term corresponding to a bulk classical Wilson line anchored on the
endpoints of a boundary interval [31,32], naturally generalizing the Ryu-Takayanagi (RT)
formula [33] to a metric-free formulation. As computed by Faulkner, Lewkowycz and
Maldacena (FLM) the subleading, O(c0), correction to the RT formula is given by the
entanglement of bulk fields reduced to a bulk region bounded by the RT surface [34].
Due to difficulty of evaluating bulk entanglement entropies, checks of the FLM formula
are sparse, however the FLM corrections were explicitly computed in AdS3 in [35]. One
alternative approach follows from realizing the vacuum Rényi entropy as a CFT partition
function on a branched Riemann surface. The classical bulk dual geometry is Euclidean
AdS3 quotiented by a Schottky group, Γ, comprised of loxodromic elements [36]. This
approach was advocated in [37] who used the quotient structure to compute one-loop
corrections to the RT formula.22 Because the quotients are loxodromic, such one-loop
corrections will have a Wilson spool representation per the results of this paper. It
would be interesting to explore this connection further to (i) provide a larger toolset for
systematically calculating FLM corrections beyond the CFT vacuum sector or in CFT
excited states and (ii) give a more holistic expression of CFT entanglement entropy in
terms of Wilson lines in the spirit of [31,32].

Adding matter to the Virasoro TQFT The primary results of the present work
rely on the classical equivalence between 3D gravity with negative cosmological constant
and two copies of SL(2,R) quantum gravity. While this is sufficient for the semi-classical
computations and perturbatively off-shell statement claims of this paper, a full quantum
treatment of 3D gravity coupled to matter requires a more careful treatment. As men-
tioned in the introduction, pure 3D gravity is not equivalent to Chern-Simons theory at
the quantum level, since not every flat connection corresponds to an invertible metric.
However, a careful treatment of the difference between gravity and Chern-Simons the-
ory allows one to define a topological field theory for the former, known as the Virasoro
TQFT [16,17]. Like Chern-Simons theory, the Virasoro TQFT admits extended operators
analogous to Wilson lines. A promising route, then, for a fully quantum treatment of 3D
gravity coupled to matter may be found in embedding the Wilson spool in the Virasoro
TQFT. This is currently under investigation by the present authors.

22We thank an anonymous referee for bringing this to our attention.
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A sl(2,R) conventions

The sl(2,R) algebra can be written in a ladder operator basis {L0, L±} satisfying

[L±, L0] = ±L± , [L+, L−] = 2L0 . (A.1)

The quadratic Casimir of sl(2,R) in this basis is given by

csl2 (2,R) = L2
0 −

1

2
(L−L+ + L+L−) , (A.2)

and is a constant on irreducible representations of sl(2,R). The representation theory
of sl(2,R) is rich23 however in this paper we will focus on lowest- and highest-weight

representations which we denote as R
LW/HW
j , respectively.

Lowest-weight representations are built from a lowest-weight state satisfying

L0|j, 0⟩LW = j|j, 0⟩LW , L+|j, 0⟩LW = 0 , (A.3)

and acting with powers of L− which raises the weight:

|j, p⟩LW = (L−)
p |j, 0⟩LW , L0|j, p⟩LW = (j + p)|j, p⟩LW . (A.4)

Similarly, highest-weight representations are built from a highest-weight state satisfying

L0|j, 0⟩HW = −j|j, 0⟩HW , L−|j, 0⟩HW = 0 , (A.5)

and acting with powers of L+ which lowers the weight:

|j, p⟩HW = (L+)
p |j, 0⟩HW , L0|j, p⟩HW = (j + p)|j, p⟩HW . (A.6)

Our conventions are such that for both representations the quadratic Casimir is given by

c
sl(2,R)
2 |j, 0⟩LW/HW = j(j − 1)|j, 0⟩LW/HW . (A.7)

The characters of highest- and lowest-weight representations are defined as

χ
LW/HW
j (τ) ≡ Tr

R
LW/HW
j

(
qL0
)
, q = e2πiτ . (A.8)

23See [38] for a comprehensive summary.
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Plugging in the L0 spectrum in the LW/HW representations, the characters are given by
simple geometric series:

χLW
j (τ) =

∞∑
p=0

qj+p =
qj

1− q
=

eiπτ(2j−1)

2 sinh(−iπτ)
,

χHW
j (τ) =

∞∑
p=0

q−j−p =
q−j

1− q−1
=

e−iπτ(2j−1)

2 sinh(iπτ)
, (A.9)

with the sums converging for |q| < 1 in the case of χLW
j (τ) and |q| > 1 in the case of

χHW
j (τ).

B Details on hyperbolic quotients

In this appendix we review some basic facts about hyperbolic three-manifolds used in the
main text.

The most basic hyperbolic three-manifold is global hyperbolic three-space, H3, which
can be modeled by the Poincaré ball embedded in R3 with metric

ds2H3 =
dxidx

i

(1− |x|2)2
. (B.1)

The conformal boundary of H3 is the two-sphere of points |x|2 = 1, which we will often
identify with the extended complex plane. The group of isometries of H3 is SO(3, 1) ∼=
PSL(2,C).

Locally, every hyperbolic three-manifold is isometric to H3, i.e. its metric tensor
can always be brought into the form (B.1) using an appropriate change of coordinates.
Globally, every hyperbolic three-manifold can be expressed as a quotient spaceH3/Γ where
Γ ⊂ PSL(2,C) is some discrete subgroups of the isometry group of H3. Discrete subgroups
of PSL(2,C) are known as Kleinian groups, and the study of hyperbolic three-manifolds
is equivalent to the study of Kleinian groups.

Elements γ ∈ PSL(2,C) come in four basic types, depending on the value of tr(γ) in
the fundamental representation:

• If tr(γ)2 = 4, then γ is parabolic. All parabolic elements are conjugate to(
1 1
0 1

)
. (B.2)

Parabolic elements of PSL(2,C) act freely on H3, but leave fixed a single point on
the boundary sphere.

• If 0 ≤ tr(γ)2 < 4, then γ is elliptic. All elliptic generators are conjugate to the
matrix (

eiθ 0
0 e−iθ

)
, (B.3)

for some real angle θ. The fixed-point set of an elliptic element is a geodesic in H3.

31



• If tr(γ)2 ≥ 4, then γ is hyperbolic. All hyperbolic elements are conjugate to(
λ 0
0 λ−1

)
(B.4)

for some real λ. Hyperbolic elements act freely on H3, and leave fixed (as a set) a
single geodesic.

• Finally, if tr(γ) is not real, then γ is said to be loxodromic. All loxodromic elements
are conjugate to (

q1/2 0
0 q−1/2

)
(B.5)

with q not real and |q| ≠ 1. Defining q = e2πiτ , then

tr(γ) = 2 cos(πτ) . (B.6)

Similarly to hyperbolic transformations, a loxodromic element of PSL(2,C) acts
freely on H3, but fixes a preferred geodesic.

In practice, it is useful to group together hyperbolic and loxodromic elements by allowing
q to be real (equivalently, allowing τ to be pure imaginary). The quotient space H3/Γ is
smooth if and only if Γ contains only hyperbolic and loxodromic elements. In this case
we say that Γ is ‘torsion-free.’ If Γ contains an elliptic generator, then the quotient H3/Γ
will have a conical singularity of deficit angle θ along the corresponding fixed geodesic. If
Γ contains a parabolic subgroup, then H3/Γ will have a ‘cusp’.

The geometry of the quotient: Let us now consider the case in which Γ contains
only hyperbolic and loxodromic elements, so that the quotient M = H3/Γ is smooth.
Since M is a smooth three-manifold whose universal covering space is H3, then there is a
natural isomorphism

π1(M, p) ∼= Γ , (B.7)

for each basepoint p. Essentially, each closed loop in M can be lifted to an open loop in
H3 which connects the point p and γ · p for some element γ ∈ Γ. Indeed, the topology of
M is completely dictated by the Kleinian group Γ.

The elements of Γ are also in one-to-one correspondence with closed geodesics in M ,
based at p. This essentially boils down to the fact that the hyperbolic metric on M
is induced by the hyperbolic metric on H3, and that on H3 there is a unique geodesic
connecting the points p and γ · p. If we do not care about the base point, then there
is a one-to-one correspondence between conjugacy classes of Γ and homotopy classes of
geodesics on M .

Finally, the boundary of M is determined by the action of Γ on the boundary CP1 ∼=
∂H3 of hyperbolic 3-space. However, there are some subtle points in this construction.
The group Γ acts on the boundary sphere via Möbius transformations, but the action of Γ
may contain limit points where Γ does not act properly discontinuously. The set of such
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limit points, usually denoted by Λ, is typically a very complicated fractal object, and must
be removed from the boundary in order to define a good quotient. With this in mind,
the boundary of M is the quotient of CP1 \ Λ by the action of Γ. This construction also
endows the boundary of M with a natural complex structure induced from the complex
structure on CP1.

Thermal AdS: As a simple example to make the above discussion more concrete, take
Γ ∼= Z to be generated by a single element

γ =

(
q1/2 0
0 q−1/2

)
, (B.8)

for some complex number q not on the unit circle. In this case, the quotient M = H3/Γ
is a solid torus, i.e. thermal AdS3. Since the solid torus has one non-contractible loop,
we clearly have

π1(M) ∼= Z ∼= Γ . (B.9)

Furthermore, homotopy classes of closed geodesics on M are labeled by their winding
number, and so are in one-to-one correspondence with elements of Γ.24

The action of Γ on the boundary is straightforward. Let z be an inhomogeneous
coordinate on CP1. Then γ acts on CP1 by sending z to qz. There are two points on the
sphere, z = 0 and z = ∞, which are completely fixed by Γ. These turn out to be the only
limit points, i.e. Λ = {0,∞}. By the discussion above, the asymptotic boundary of M is

∂M = (CP1 \ Λ)/Γ = (C \ {0})/(z ∼ qz) , (B.10)

which is a torus. This is most easily seen by setting q = e2πiτ and making the coordinate
transformation z = e2πiu, so that u ∼ u + 1 ∼ u + τ . The modular parameter τ then
labels the complex structure on ∂M .

Multiplicity of loxodromic elements: In the main text, we find it useful to introduce
the notion of the multiplicity of a loxodromic (or hyperbolic) element γ ∈ Γ. Given such
an element, we can construct C(γ), its centralizer in Γ, which must take the form [25]

C(γ) = ⟨γ0⟩ × E(γ) (B.11)

where ⟨γ0⟩ is an infinite cyclic group generated by an element γ0 ∈ C(γ) and E(γ) is
the subgroup of finite order elements within C(γ). We call γ0 a primitive element for γ
in Γ. Within this decomposition we can write γ = γn0 e for some e ∈ E(γ). While the
decomposition (B.11) is not unique, the ‘multiplicity’

nγ = |n| (B.12)

does not depend on the choice we make. Furthermore nγ is also an invariant of the
conjugacy class [γ] in Γ, independent of the choice of representative.

24Since Γ is Abelian, the set of conjugacy classes in Γ is just Γ itself.
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