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Abstract

Accurate and efficient amplitude predictions are essential for precision studies of multi-
jet processes at the LHC. We introduce a novel neural network architecture that predicts
multi-jet amplitudes by leveraging the Catani–Seymour factorization scheme and related
lower-jet amplitudes, requiring the network to learn only a correction factor. This hybrid
approach combines theoretical factorization with a data-driven ansatz, enabling fast and
scalable amplitude predictions. Our networks also estimate the accuracy of each predic-
tion, allowing us to selectively use results that meet a predefined accuracy threshold. In
the context of leading-order event generation, this approach achieves speed-up factors
of up to 20 while maintaining all observables at the percent-level accuracy.
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1 Introduction

Accurate and efficient predictions of scattering amplitudes are essential for precision stud-
ies in high-energy physics, in particular for multi-jet processes at hadron colliders [1]. At
the LHC and its upcoming high-luminosity phase, increasingly differential measurements and
complex final states demand Monte-Carlo simulations that combine large event samples with
high perturbative accuracy. Multi-purpose event generators such as PYTHIA8 [2], SHERPA [3],
HERWIG [4], and MG5AMC [5] provide the backbone of this theoretical infrastructure by in-
terfacing fixed-order matrix elements with parton showers, hadronization, and detector sim-
ulation.

Despite many algorithmic advances, evaluating scattering amplitudes remains a signifi-
cant computational bottleneck in event generation. The cost of computing tree-level ampli-
tudes grows rapidly with final-state multiplicity, reflecting both the combinatorial growth of
Feynman diagrams and the increasing complexity of phase-space integration. While more
advanced techniques [6] substantially mitigate the naïve factorial scaling, high-multiplicity
matrix-element evaluations still account for a non-negligible fraction of the total runtime in
modern simulation workflows [7].

A broad range of strategies has been developed to address this challenge. On the one
hand, significant speed-ups have been achieved through hardware acceleration. In particular,
GPU based computation, pioneered with MadGraph4 [8] more than 10 years ago [9–11], are
now production ready [12–15]. Complementary developments, such as the PEPPER frame-
work [16], provide process specific GPU-accelerated event generation, including both fast am-
plitude evaluation and simplified integration routines.

In parallel, modern machine-learning techniques [17] have emerged as a powerful tool to
accelerate event generation [18]. Considerable progress has been made in improving phase-
space sampling through importance sampling, from early neural network approaches [19–21]
to normalizing flows [22–27] and dedicated frameworks such as MADNIS [28–30]. While these
methods can dramatically improve integration efficiency and unweighting, they typically leave
the matrix-element evaluation itself untouched.

A more radical direction is to replace expensive first-principles amplitude calculations by
fast machine-learning surrogates. Early work demonstrated the feasibility of learning scatter-
ing amplitudes or matrix-element weights directly from data using neural networks [31–36].
Since then, a wide range of increasingly structured approaches has been explored. These
include combinations with multi-stage unweighting strategies [37–40], Lorentz-equivariant
architectures [41–43], and the incorporation of learned uncertainty estimates [44–46]. An
important development in this context is the use of physics-informed surrogate targets, in
which neural networks learn ratios or correction factors with respect to analytically moti-
vated approximations rather than absolute amplitudes or weights. In particular, the works
of Ref. [34,35] already exploit factorization properties of QCD amplitudes to construct surro-
gates with reduced dynamic range, significantly simplifying the learning task.

In this work, we pursue a closely related but distinct strategy that embeds QCD factoriza-
tion more directly into the surrogate construction. Rather than correcting an analytic approxi-
mation at fixed multiplicity, we exploit the universal factorization structure of QCD amplitudes
to relate an n-parton configuration to an exact reduced (n− 1)-parton process. Our approach
is rooted in the Catani–Seymour dipole formalism [47,48], which provides an exact kinematic
mapping between resolved and unresolved configurations. Starting from amplitudes for re-
lated processes with fewer final-state partons, we construct a factorized approximation of the
full multi-jet amplitude and train a neural network to learn a correction factor that accounts
for the residual difference to the exact result. This hybrid approach combines the strengths
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of theory-driven factorization and data-driven learning. By construction, a large fraction of
the kinematic complexity is absorbed into the reduced-multiplicity amplitude. Therefore, the
neural network only needs to learn a smoother, lower-variance function that is free of explicit
singularities. This leads to improved accuracy and robustness, particularly for high-multiplicity
final states and in regions of phase space that are challenging for purely data-driven surrogates.

We apply this method to multi-jet production in association with a Z boson at leading order
(LO) and show that factorization-based surrogates achieve high per-event accuracy across the
full phase space. We further demonstrate how learned uncertainty estimates can be used to
deploy the surrogate selectively within event generation, ensuring controlled numerical pre-
cision while achieving substantial speed-ups relative to standard matrix-element evaluations.
Our approach complements advances in GPU acceleration and phase-space sampling and pro-
vides a viable path towards scalable event generation for high-multiplicity final states at future
collider experiments as well as for the success of the high-luminosity runs [7].

The paper is organized as follows: In Sec. 2, we introduce the factorization ansatz under-
lying our surrogate construction, based on the Catani–Seymour factorization formalism. In
Sec. 3, we describe the neural-network architecture and training strategy. In Sec. 4, we apply
the method to Z+multi-jet production at leading order and assess the surrogate accuracy. In
Sec. 5, we demonstrate its use within event generation and quantify the achievable speed-up.
We conclude in Sec. 6.

2 Splitting kernel factorization

In this section, we introduce the factorization ansatz used for our neural-network surrogates.
These formulas are based on the Catani–Seymour (CS) factorization, which accurately repro-
duces the expected behavior of QCD amplitudes in both the soft and collinear limits [47]. They
ensure exact momentum conservation by redefining the momenta of the emitter and specta-
tor particles, allowing the dipole terms to be applied even outside the strict soft or collinear
regimes without violating momentum conservation or producing off-shell emitters. This sec-
tion focuses on the conceptual aspects, with the full-fledged formulas provided in App. A.

2.1 Factorization ansatz

Given a scattering process with n final-state particles and at least one quark/gluon, we define
the ensemble of reduced processes as the set of all n− 1-particle final states obtained by ab-
sorbing one of the original quark/gluon into a pair of emitter and spectator particles. This is
schematically expressed as:

(pa, pb→ p1, . . . , pi , p j , pk, . . . , pn) =⇒
�

(pa, pb→ p1, . . . , p̃i j , p̃k, . . . , pn−1)
	

(i, j,k) (1)

Here, pi , p j , pk denote the four-momenta of the emitter, emitted parton (quark/gluon), and
spectator, respectively. The momenta p̃i j , p̃k are redefined according to the CS prescription
(See App. A, Eq.(31)). The notation (i, j, k) runs over all valid combinations of emitter, emit-
ted, and spectator particles.

We define the matrix-element squared, summed and/or averaged over colours and spins,
of a process with n final-state particles as

An ≡ 〈|M(pa, pb→ p1, . . . , pn)|2〉 . (2)

which we will simply refer to as the amplitude in the following. Inspired by the CS formalism,
we propose a general ansatz to approximate the amplitude of the full n-particle process, An,
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in terms of a corresponding reduced (n− 1)-particle amplitude, An−1. This factorized form is
given by

An ≈ An−1 · F r
i j,k . (3)

The reduced amplitude An−1 depends on the set of reduced momenta, as shown in Eq.(1),
for given particles i, j, k. The function F r

i j,k represents an approximate splitting kernel, which
depends on the kinematics of particles i, j, k, as well as the nature of the emitted radiation r.

The factorization ansatz introduced in Eq.(3) is derived from the Catani–Seymour dipole
formalism, subject to two simplifying assumptions. First, we neglect spin–helicity correlations
by replacing the spin-dependent dipole kernel with its spin-averaged counterpart. Second, we
adopt the leading-colour approximation, reducing the full colour-correlated structure to its
dominant contribution. Under these assumptions, the dipole factorization takes a simplified
scalar form, which serves as the foundation of our ansatz. In Appendix A, we present the
Catani–Seymour dipole formalism for both initial- and final-state radiation with a final-state
spectator, and we compare our factorization ansatz directly to the corresponding exact dipole
expressions.

The choice of the spectator particle in the dipole construction is, in principle, arbitrary.
For a fixed selection of emitter and emitted parton, different choices of the spectator lead to
distinct reduced kinematics, due to the momentum redefinition applied to both the emitter and
the spectator. In our study, we observed that restricting the choice of spectator to final-state
jets improves the performance of the neural network, leading to better accuracy. Therefore,
for both practical and methodological reasons, we restrict our analysis in this paper to cases
where the spectator is chosen as the most energetic final-state jet, in the laboratory frame, that
is neither the emitter nor the emitted parton.

2.2 Radiation type and rank

Usually, a process admits several reduced processes. Equation (3) requires only one reduced
process, implying that we must choose both the type of radiation and the specific emitter–jet
combination to use in our ansatz.

As the CS factorization accurately reproduces the QCD behavior in the soft and collinear
limits, Eq.(3) provides higher accuracy for events near these singular regions. To achieve
the best possible approximation, we rank all candidate reduced processes for a given event
according to the degree of singularity of their corresponding radiation, and select the most
singular ones.

For example, consider the process dd̄→ Zg1g2g3g4. If we look to the possible gluon split-
ting of the form g f → g f + g f , there are six distinct combinations where the emitted particles
pi , p j are

�

gi , g j

	

(i, j)=(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) (4)

excluding symmetric configurations. By computing the scalar product pi p j for each pair, we
can rank the radiations from the most singular (smallest pi p j) to the least singular (largest
pi p j). We define the rank of a radiation as its order in a scale of the most singular radiations of
the same type. The first rank corresponds to the most singular radiations of the corresponding
type, the second rank to the second most singular, and so on.

Additionally, a given process may contain several distinct radiation channels, determined
by the identities of the emitter and emitted particles. Since each radiation type is associated
with a different splitting kernel, we introduce the following radiation labels to distinguish
them
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Figure 1: Approximation quality comparison between FG1, FG2, and FG3 radiations
for dg→ Zdggg (left) and for dd̄→ Zgggg (right), obtained from unweighted sam-
ples.

• FG1: Final state gluon radiation (g f → g f + g f );
• FQ1: Final state quark radiation (q f → q f + g f );
• IG1: Initial state gluon radiation (gi → gi + g f );
• IQ1: Initial state quark radiation (qi → qi + g f ).

The presence of the index 1 inside the radiation labels is related to the radiation rank and can
be replaced by another digit accordingly. This means that FG2 corresponds to the second rank
radiation within the final state gluon radiation.

In Fig. 1, we illustrate the factorization quality (ratio between the target and the surrogate)
of the first three ranks for g f → g f + g f splittings for dg → Zdggg and dd̄ → Zgggg. Since,
in our ansatz, the surrogate output will eventually be rescaled by a neural-network correction
factor, the absolute value of the ratio is not particularly relevant. What matters instead is
the shape of this distribution. A narrower and less dispersed distribution implies that the
correction factor the network must learn is simpler and more stable, leading to a more efficient
and accurate training procedure.

As expected, the most singular radiation yields the highest quality, while radiations with
lower singularity exhibit broader distributions. Moreover, we notice that dd̄ → Zgggg have
better approximations than dg→ Zdggg. In fact, having 4 gluons in the final state, it has more
radiations of the same type (g f → g f + g f ) in respect to the other process, increasing the
probability of finding a more singular pair, and so, a better factorization for the event. This
behaviour confirms that the approximation quality is significantly higher for singular configu-
rations (soft and/or collinear emissions) compared to the rest of the phase space.

In Fig. 2, we evaluate the performance of the factorization ansatz as a function of radiation
type for the processes dg → Zdggg and dd̄ → Zgggg, including both initial- and final-state
radiation. We find that final-state gluon radiation exhibits higher approximation accuracy in
both cases. This trend can be attributed to combinatorial effects associated with the number
of gluons, which increases the probability of identifying a softer or more collinear pair.

2.3 Double factorization

Using the CS formalism, we can iteratively absorb jets from the final state, thereby reducing
the number of particles in the final configuration by one at each step. This procedure allows us
to transition from a final state with n-particles to one with (n−2)-particles through successive
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Figure 2: Approximation quality comparison between different radiation types: FG1,
FQ1, IG1 and IQ1 radiations for dg→ Zdggg (left), and FG1, and IQ1 radiations for
dd̄→ Zgggg (right), obtained from unweighted samples.

reductions.

In the first step, one radiation is absorbed from the n-particle final state, resulting in a
reduced process with (n − 1)-particles. Then, a second radiation is absorbed to arrive at a
(n− 2)-particle state. The second reduction involves a splitting that depends on the reduced
particle p̃i j produced during the first absorption. The approximated amplitude can thus be
expressed as

An ≈ An−1 · F r
i j,k ≈ An−2 · F r

ei jl,k′
· F r

i j,k , (5)

where F r
ei jl,k′

is the splitting kernel corresponding to the second reduction, and it depends on

the momenta of the particles p̃i j , pl , and pk′ . The kinematics of the second reduction are
therefore influenced by the first one, since one of the particles pl or pk′ may also serve as the
spectator in the initial reduction.

In principle, one could select a radiation for the second reduction that does not involve
the reduced particle p̃i j generated in the first step. However, in our study, we observed better
performance from networks in which both reductions share the same reduced particle. For this
reason, we restrict the radiation combinations to those that involve p̃i j in both steps. Similarly,
although it is possible to mix different radiation types between the first and second reduction,
we did not observe any significant benefit from doing so. Therefore, for simplicity, we limit
our analysis to double factorizations constructed from identical radiation types.

In Fig. 3, we compare the approximation accuracy of the double factorization with that of
the single factorization. To distinguish the notation, we denote the double factorization with
a superscript square, for example FG12. Overall, the double approximation tends to exhibit
reduced accuracy. While the central value of this approximation is of limited relevance – since
it can be corrected by the neural network – it is worth noting that the double factorization
estimate shows a noticeably broader spread. This implies that the neural network will need to
handle a wider range of values, which may lead to a decrease in performance. Nevertheless,
evaluating the double approximation is approximately ten times faster (see Tab. 1), which
could make it useful for specific applications (see Section 5).
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Figure 3: Approximation quality comparison between single and double factoriza-
tions for dg→ Zdggg (left) and for dd̄→ Zgggg (right).

3 Machine-learning surrogate

Our aim is to develop a fast and accurate neural surrogate that leverages the factorized struc-
ture of the amplitude to approximate the full result. The factorization ansatz introduced in
the previous section isolates the dominant singular behavior, leaving the network to learn a
smooth correction factor with reduced variance and without large variations associated with
on-shell resonances or explicit soft/collinear singularities.

All datasets used for training, validation, and testing in this work are generated with
MG5AMC, using its default event-generation settings. Unless stated otherwise, the phase-
space cuts are fixed to

pT, j > 20 GeV, ∆R j j > 0.4, |η j|< 5 . (6)

These cuts define the reference phase-space region used throughout our analysis and corre-
spond to a standard choice for LO event generation, needed to avoid infrared and collinear
singularities. Importantly, no fine-tuning of the cuts was performed to make the ML-based
surrogate more optimal or to artificially enhance its performance.

3.1 Preprocessing and heteroscedastic loss

Our training targets are exact theoretical amplitudes Atrue(x) for given phase-space points x , as
defined in Eq.(2). Rather than regressing directly on the amplitude itself, which can span many

Coefficient Evaluation time [s]

An 1.3 · 10−3

An−1 1.0 · 10−4

An−2 1.2 · 10−5

cθ 2.0 · 10−8

Table 1: Summary of the average evaluation time per event for the process
dd̄→ Zgggg and the corresponding reduced processes.
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orders of magnitude across phase space, we train the network on a logarithmic representation,

ℓtrue(x) =
logAtrue(x)−µtrain

strain

with µtrain =



log Atrue(x)
�

x∼Dtrain
s2
train =



(log Atrue(x)−µtrain)
2�

x∼Dtrain
,

(7)

including a linear standardization computed on the training data, where 〈·〉x∼Dtrain
denotes

an average over the training set. All network predictions are made in this standardized log-
amplitude space and are mapped back to amplitude level only when evaluating performance
or deploying the surrogate. This preprocessing stabilizes training and renders the learning
problem numerically well-conditioned.

In this setup, there is no intrinsic measurement noise or stochasticity in the training data.
Deviations between predictions and targets therefore arise purely from epistemic sources, re-
flecting our incomplete knowledge of the true amplitude function. These include (i) finite-data
and training-related effects due to insufficient coverage of phase space and variability in the op-
timization procedure, which vanish in the limit of infinite data and perfect training, as well as
(ii) a residual model bias originating from limitations of the factorization ansatz or the expres-
siveness of the neural network, which does not vanish even in the infinite-statistics limit.

We nevertheless employ a heteroscedastic-style objective to let the network predict, along-
side its mean log-amplitude prediction ℓθ (x), an input-dependent reliability proxy σθ (x),
where θ denotes the trainable network weights. The loss can then be written as

Lhet =

�

(ℓtrue(x)− ℓθ (x))2
2σ2
θ
(x)

+ logσθ (x)

�

x∼Dtrain

. (8)

Compared to a standard mean-squared-error loss, this objective allows the network to dynam-
ically downweight difficult regions of phase space during training. While Eq.(8) matches the
algebraic form of a Gaussian likelihood, σθ is not interpreted as data (aleatoric) noise. In-
stead, it serves as a learned weighting term during optimization, with the following practical
benefits:

1. Downweighting of rare or hard-to-learn configurations, leading to improved global accu-
racy and training stability.

2. Per-event confidence proxies that can be exploited in uncertainty-weighted combinations
of multiple models, yielding more robust ensemble predictions.

Importantly, σθ (x) is not a measure of epistemic uncertainty in the statistical sense. Since it
is learned jointly with the mean prediction ℓθ (x), it absorbs a mixture of finite-data effects,
optimization variability, and residual model bias.

More fundamentally, attempting to represent epistemic uncertainty by a point-wise quan-
tity such as σθ (x) would destroy correlations between different phase-space points. Such
correlations are essential for the consistent propagation of uncertainties to derived quantities,
for example integrated or differential cross sections. To retain them, epistemic uncertainty
must instead be extracted from between-model variability, for instance by using independently
trained ensembles or Bayesian neural networks (BNNs) [49–54], which approximate sampling
from the posterior p(θ |Dtrain) and thus yield coherent, correlated uncertainty estimates across
phase space.

We also tested BNNs, which are, in principle, well suited for estimating epistemic uncer-
tainties. In practice, however, they produce central predictions comparable to those of our
standard networks, while introducing increased training instability, higher model complex-
ity, and slower inference. Moreover, when training a BNN with the heteroscedastic loss, the
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σθ (x) term tends to absorb most epistemic variation, consistent with the expectation that
these contributions become entangled in the zero-noise limit. A proper disentangling of epis-
temic components would require a more structured training procedure, such as the multi-step
approach outlined in Ref. [55]. Since the focus of this work is on demonstrating a proof of
concept for factorization-based amplitude surrogates, we leave such developments to future
work.

Performance measure

For evaluation and physics validation, we quantify surrogate accuracy at the amplitude level
through the relative deviation

∆(x) =
Atrue(x)− Aθ (x)

Atrue(x)
, (9)

which will be the primary performance metric used in Sec. 4. For small deviations, training in
log-amplitude space is directly related to this quantity, since

Lhet∝ (ℓθ (x)− ℓtrue(x))
2 =

1

s2
train

log2(1−∆(x))≃ ∆
2(x)

s2
train

+O(∆3) . (10)

This means minimizing the mean-squared error in log space corresponds approximately to
minimizing the squared relative deviation∆2, while avoiding numerical instabilities associated
with large dynamic ranges in A(x). The heteroscedastic loss therefore acts as a stabilized and
uncertainty-weighted version of relative-error minimization.

3.2 Factorization network

Each factorization network uses a factorization approximation to reconstruct the full amplitude
starting from a reduced one. Specifically, the network outputs a correction factor cθ , which
rescales the factorized approximation to match the true value. For a single factorization model,
the predicted amplitude takes the form:

An,θ = cθ · An−1 · F r
i j,k (11)

where the radiation label r specifies the radiation type. For a double factorization model, the
predicted amplitude is:

An,θ = cθ · An−2 · F r
ei jl,k′
· F r

i j,k (12)

Figure 4: Representation of the single factorization neural network.
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NN hyper-parameters Value

Nodes per layer [128, 256, 256, 128, 128, 64]
Total model parameters 1.6 · 105

Activation function Gelu
Optimizer AdamW
Initial learning rate 10−3

Final learning rate 10−8

Learning rate scheduler CosineAnnealing
Max epochs 1000
Batch size 256
Training events 5 · 105

Validation events 1 · 105

Table 2: Summary of the hyper-parameters used in a factorization neural network.

As a baseline, we also consider a No Factorization (NoFa) model, which predicts the amplitude
directly without using any analytical factorization structure. In this case,

An,θ = cθ (13)

where cθ is obtained by de-processing the raw network output c′
θ

using the same transfor-
mation applied to the training target amplitudes cθ = exp

�

c′
θ
· strain +µtrain

�

, allowing the
network to effectively cover several orders of magnitude.

In our study, we also explored a multi-radiation factorization model, in which a single
network predicts the full amplitude as a linear combination of single-radiation approximations.
The ansatz for this model is

An,θ =
Nr
∑

r

cr
θ · Ar

n · F r
i j,k (14)

where the sum over r includes the Nr selected radiations. The reduced amplitude Ar
n differs

for each radiation and must be computed Nr times for each event. In our tests, this approach
did not show a clear improvement in accuracy compared to the single-radiation model. Given
its higher computational cost, we chose not to include this model in the final results.

The technical details of our neural-network architecture are summarized in two tables.
Table 2 lists the hyperparameters used for all networks in this work, while Table 3 specifies
the input features for a single-factorization network. The kinematic log-invariants and the
logarithmic factorization inputs are also standardised, in order to account for their disparate
orders of magnitude. To guide the model toward the most relevant configurations, we reorder
the momenta of all possible emitter and emitted particles for the corresponding radiation type

Input feature Variable

Kinematic log-invariants {log pl pm}l,m
Emitter and emitted four-momenta pi , p j
Radiation variables yi j,k, zi j,k

Log-factorization factors log
�

An−1 F r
i j,k

�

Table 3: Summary of input features used in a single factorization model.
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before computing the kinematic invariants. This rearrangement is based on the singularity
associated with each radiation and encodes the radiation rank into the particle ordering.

For the NoFa model, no reordering is applied, and no factorization information is provided
as input. In addition, for the double-factorization model, two additional outputs are included
to provide to the network the extra radiation variables.

Network ensembling

Ensemble neural network models combine the predictions of multiple individual networks to
improve robustness and accuracy. By aggregating diverse models, ensemble methods reduce
over-fitting and provide a broader, more reliable representation of the underlying physical
processes. In this work, we employ an ensemble of simple neural networks, each based on a
distinct factorization approximation. It differs from the multi-radiation single network, where
the same network predicts all the correction factors of the ansatz.

We define our ensemble model as a linear combination of factorization models. Given
a set of factorization models {1, . . . , nmod}, a model j predicts for a given event i an output
(Ai
θ j

,σi
θ j
), where Ai

θ j
is the predicted amplitude for the event i and σi

θ j
is the corresponding

predicted uncertainty. The predicted ensemble amplitude is given by

Ai
θe
=

nmod
∑

j=1

wi
j · Ai

θ j
, (15)

where the weights wi
j are computed from the inverse of the covariance matrix C−1

i of the model
predictions [56,57]

wi
j =

∑

k(C
−1
i ) jk
∑

j,k(C
−1
i ) jk

. (16)

To estimate Ci , we first determine the correlation matrix ρ between two different models. The
correlation ρab is defined as the average correlation between the per-point accuracies of mod-
els a and b over the entire validation dataset. This correlation is treated as a global quantity
and kept fixed across phase space. We also investigated a per-point, phase-space–dependent
correlation, but found neither improvement nor degradation in performance. Defining ρab in
terms of accuracy allows us to quantify whether two models tend to make similar prediction
errors. The covariance between models a and b for event i is then given by

Ciab
= ρab ·σi

θb
·σi
θb

(17)

from which we obtain the inverse matrix C−1
i . Finally, the predicted uncertainty for the en-

semble model is

σi
θe
=

1
q
∑

j,k(C
−1
i ) jk

. (18)
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4 Application to Z with multi-jet production

As previously noted, we benchmark our CS-based ansatz using Z+jet production. This choice
is mainly motivated by its use in previous surrogate studies [34, 42], which facilitates direct
comparison with existing approaches. Nonetheless, our method will exhibit even greater ad-
vantages for Beyond Standard Model processes accompanied by jets, or more generally for
scenarios involving multiple resonances and/or scales in conjunction with jets. Within the
Standard Model, particularly suitable candidates include vector-boson fusion with jets or fully
decayed top-quark production with jets. A comprehensive treatment of these processes, to-
gether with full automation of the proposed methodology, is deferred to future work.

4.1 Performance for quark-gluon initial state

We begin by comparing single factorization models applied to different types and ranks of
radiation within the same process. Specifically, we consider the process dg → Zdggg, and
evaluate the following radiation configurations: FG1, FQ1, IG1, IQ1, for the radiation types,
and FG1, FG2, FG3, for the radiation ranks.

Figure 5 compares the performance of the models introduced above. First, we observe
that all radiation-based models outperform the NoFa model, confirming the benefit of incor-
porating the factorization structure. In the left panel, the factorization models achieve similar
average accuracy despite originating from different underlying factorization qualities. The two
bests models are here FG1 and IG1 with very similar mean accuracy but quite different shape:
IG1 being more peak (i.e. consistent with the average) while FG1 has a broader shape, with
especially more event with better precision than 10−3. Both models have quite similar rate of
events with low accuracy (> 10−2).

The picture is simpler in the right panel, where we present the accuracy as a function of the
approximation rank. Selecting the most singular approximation yields a clear improvement
in accuracy, both in terms of the mean and the overall distribution. In contrast, there is no
noticeable difference between choosing the second or third rank, indicating that the critical
information lies primarily in the first-rank emission. This provides an a posteriori indication
that using only one reduction step – the most singular one – is a reasonable choice.

We now compare the performance of the double factorization models across different ra-
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Figure 5: Single factorization model accuracy comparison between different radia-
tion types (left), and different radiation ranks (right) for the process dg → Zdggg.
The values in parentheses are the mean accuracies over the whole test dataset.
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Figure 6: Double factorization model accuracy comparison between different radi-
ation types for the process dg → Zdggg. The values in parentheses are the mean
accuracies over the whole test dataset.

diation types: FG12, FQ12, IG12 and IQ12. In Fig. 6, we report the corresponding accuracy
distributions. The double factorization models exhibits reduced accuracy compared to their
single-factorization counterparts. This was obviously expected since the underlying approx-
imation was much less precise to start with. Additionally, one can also see a much weaker
dependence in the kernel used, which is also not very surprising given the distribution to learn
by the neural network (Fig. 3) which shows that all curves are indeed quite similar. It is note-
worthy that, for FG radiation, the double-factorization model FG12 exhibits performance that
is very close to that of the single-factorization model of second rank, FG2. Finally, when com-
paring the double-factorization model to the NoFa baseline for this process, the improvement
remains modest.

Ensemble factorization models

After evaluating the performance of individual radiation models, we now investigate how their
predictions can be combined through network ensembles to improve accuracy and robustness.
As previously discussed, each radiation model captures different aspects of the same under-
lying process, and even models with similar accuracy may encode different information due
to the type and rank of the radiation. While this motivates the use of ensemble methods to
leverage the diversity among models, a large part of that information is redundant and one
need to be careful about the correlations between the various predictions.

As described before, we define an network ensemble as a combination of independently
trained networks. In this context, how the individual predictions are recombined is crucial. A
naive recombination that is independent of the predicted uncertainty can lead to suboptimal
results. In our case, we observed that the uncertainty-weighted recombination described in
Eq.(15) consistently outperforms any of the individual single models. From Fig. 7, we confirm
that each ensemble achieves a better mean accuracy than its constituent individual models.

Interestingly, the overall accuracy of the ensemble does not depend solely on the accuracies
of the individual models, but also on the radiation types and ranks used to construct the ensem-
ble. Combining the most accurate individual models does not always yield the best ensemble
performance, as shown by the ensemble [FG1, FQ1] achieving a better accuracy than [FG1,
IG1], despite IG1 having better performance. This behavior highlights that networks trained
on different radiations tend to extract complementary information from the same dataset, and
that low error correlation, or model diversity, is a key factor for achieving strong ensemble re-
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sults. We also experimented with modifying the loss and the learning algorithm to encourage
such complementarity and improve accuracy, but without significant success.

On the right panel, we compare ensemble models of double factorization combined with
single factorization one. These ensembles, even if yielding a lower accuracy due to the ap-
proximation used, will actually have better speed-up factor due to faster evaluation time.

Similarly, we observe that ensembles composed of three models outperform those com-
posed of only two, although the performance gain is less significant than the improvement
obtained when moving from a single model to an ensemble of two.

4.2 Performance for quark-quark initial state

So far, we have evaluated the performance of single and ensemble models on the process
dg→ Zdggg to investigate how the accuracy depends on the chosen factorization model. In
this section, we extend the study to a different process: dd̄→ Zgggg with the main difference
compare to the previous section is that all the gluon are in the final state.

Single and double factorization models

We begin by examining the performance of the individual factorization models. The left panel
of Fig. 8 shows the single-factorization results. Comparing this plot with the corresponding
one for the previous process (Fig. 5), we observe that the NoFa model achieves nearly identical
accuracy in both cases. This is not the case for the factorization models: in particular, the
best-performing model, FG1, attains substantially higher accuracy. This improvement appears
to result from having all gluons—which dominate the radiation pattern—in the final state,
thereby enhancing the effectiveness of the factorization ansatz.

The right panel of Fig. 8 shows the accuracy of the double-factorization model. Here as
well, the performance remains significantly better than the NoFa baseline. Moreover, similarly
to the dg→ Zdggg case, we observe that the accuracy achieved by FG12 is nearly identical to
that of the single-factorization FG2 model.
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Figure 7: Ensemble factorization model accuracy comparison between single factor-
ization (left), and double and single factorization (right) for the process dg→ Zdggg.
The values in parentheses are the mean accuracies over the whole test dataset.
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Figure 8: Accuracies (left) and cumulative accuracy (right) of single radiation models
on dd̄→ Zgggg process. On the left, the values in parentheses are the mean of the
distribution.

Ensemble factorization models

Finally, we examine the accuracy of the ensemble models for the process dd̄→ Zgggg. As in the
previous process, we confirm that the ensemble models outperform the individual ones across
the entire test dataset. In the left panel of Fig. 9, we directly compare each ensemble with its
best corresponding individual model. We observe that the ensembles reduce the large-error
tail more significantly than the small-error tail, indicating that combining different models is
especially beneficial for events that are otherwise difficult to predict accurately.

The right panel of Fig. 9 shows ensembles that combine double- and single-factorization
models. In this case, the best-performing ensemble is [IG12, FG1]. This result suggests that
the most effective strategy is not to combine the two most accurate models, but rather those
that provide complementary information. Furthermore, this ensemble achieves an accuracy
comparable to the best ensembles composed exclusively of single-factorization models, while
offering faster evaluation times.

This process corresponds to the one used in [42], which employs a Lorentz-equivariant
network. A direct comparison of the achieved accuracy is therefore possible. In that work,
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Figure 9: Ensemble factorization model accuracy comparison between single factor-
ization (left), and double and single factorization (right) for the process dd̄→ Zgggg.
The values in parentheses are the mean accuracies over the whole test dataset.
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Neural network model Mse mean(|∆|)
FG1 1.5 · 10−5 3.69 · 10−3

FG12 1.8 · 10−5 4.67 · 10−3

[FG1, FG12] 8.7 · 10−6 2.88 · 10−3

L-GATr* ∼ 8.4 · 10−6

[FG1, FG2] 5.9 · 10−6 2.50 · 10−3

[FG1, IQ1] 5.5 · 10−6 2.42 · 10−3

Table 4: Comparison of the various network models in terms of logarithmically
standardized mean squared error (mse)on dd̄ → Zgggg process, including L-GATr
[42](trained on 4 · 105 samples). The last column reports, for our models, the mean
accuracy metric used in this paper. Model are ordered from less precise to the most
accurate one (according to the mse).

accuracy is not reported directly; instead, the authors use the mean squared error (MSE) on
the logarithmic standardized amplitude as a measure of network performance. For comparison
purposes, we report in Table 4 the corresponding values for several of our models. These
results indicate that the achieved accuracy is in the same ballpark as that of the L-GATr network,
which remains more performant under this metric than any of our single-factorization models.
However, our most accurate ensemble network surpasses it.

5 Achievable speed-up without double-unweighting

Having a fast and accurate surrogate is only useful if we can use is it practically. While we here
focus on how to make LO phase-space integration faster, the algorithm that we will describe
in this section can generally be applied to any computation relying on evaluating amplitudes.
In the literature [37, 39, 40] a common approach when using surrogates is to use it within
importance sampling, while relying on standard hit and miss to generate event following the
surrogate density function, which is conceptually equivalent to other importance sampling
algorithm (based on ML or not) [20, 22, 23, 26–30, 58–66]. In those methods, even in the
perfect scenario, one need to evaluate at least one amplitude (and typically much more) for
each unweighted event produced.

In this paper, we propose using the surrogate directly in place of the full computation when
its estimated error is sufficiently small. This approach, described in more detail below, can
significantly reduce the number of evaluations of the full amplitude—potentially eliminating
them entirely at the generation stage. The main drawback is that it introduces an additional
source of numerical uncertainty associated with the precision of the surrogate itself.

An often-cited concern with such a strategy is that the tails of distributions might be
severely misrepresented. In practice, however, most observables O correspond to cross sec-
tions integrated over restricted regions of phase space. For a binned (differential) observable
defined by a phase-space region Ω ⊂ Φ, for instance corresponding to a bin in a low-pT tail,
we can write

O ≡
∫

Ω

dx
dσ
dx
≈ 1

N

∑

i∈Ω
wi , (19)

where the sum runs over all Monte-Carlo events that fall within the phase-space region Ω, and
the weights wi denote the usual event weights, including the amplitude, the parton distribution
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functions, and the Jacobian associated with the phase-space measure. In the ideal case, the
errors on the individual weights wi are fully uncorrelated and thus

(∆O)2 = 1
N2

∑

i

(∆wi)
2 . (20)

In this case, the relative uncertainty on any observable O vanishes in the infinite–statistics
limit

(∆O)2

O2
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=
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�2 (21)

⇒ ∆O
O
≤ 1p

αN
max

i

�

∆wi

wi

�

, (22)

where we have introduced the Kish effective sample size [67]

Neff =

�∑

i wi

�2

∑

i w2
i

= αN with α ∈ [0, 1] . (23)

However, assuming full un-correlation is first unrealistic but also not fully general since one
can think that for some part of the phase-space and/or for specific observable those errors will
be fully correlated, i.e.

∆O = 1
N

∑

i

∆wi . (24)

In that case, the relative uncertainty does not vanish anymore but is bounded as

∆O
O
=

∑

i∆wi
∑

i wi
=≤
∑

i wi maxi(
∆wi
wi
)

∑

i wi
=max

i

�

∆wi

wi

�

. (25)

This means that even in the worst-case scenario, where all weights are biased in the same
direction by, say, X%, all observables would be biased. But, the relative uncertainty on all
observables would remain controlled and would correspond exactly to X%.

Consequently, the task at hand is to control the uncertainty of the surrogate across the
full fiducial phase space. Before introducing our algorithm, we first review other sources of
theoretical uncertainty to determine the required accuracy of the surrogate. For leading-order
event generation, the dominant source of uncertainty arises from scale variation, which is typ-
ically of the order of fifty percent for the normalization and at least ten percent for the shape.
A second source of uncertainty comes from the parton distribution functions, corresponding to
an error of about three percent (and likely larger in the tails of distributions). Therefore, any
numerical error below these scales across the full phase space can be considered acceptable.
As a standard benchmark for this paper, we target a one-sigma error (66% confidence level)
of approximately one percent.

As a matter of fact, none of our surrogates achieve this level of precision over the full
phase-space. Therefore, we propose a mixed approach: the surrogate prediction for an event
is going to be used only if its estimated relative predicted uncertainty, defined as σnn/Ann, is
smaller than a chosen uncertainty threshold Uthr. Events that do not satisfy this requirement
are instead evaluated using the exact amplitude, ensuring accuracy over the full phase-space.

In order to be effective, the method deeply relies on the fact that our estimator of σθ
behaves correctly. To assess that, we display in Fig. 10 and 11 (left panel) the correlation
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between the estimated error from the surrogate and the actual error. On one hand, we see a
clear tendency for σθ to be over-conservative, especially for very accurate prediction. On the
other, we see a quite good correlation between the two quantities. However, one still needs to
be careful since some under-estimation can still occur (with normal distribution and therefore
for rare event). This is why we only use σθ as a proxy of the accuracy and not as the real
measure. To quantify the additional uncertainty introduced by our approach, we introduce a
tolerance parameter τ(x), defined as the fraction of events in the final sample whose accuracy
is worse than x%, which means |∆|> x . The tolerance is therefore

τ(x) = εU · f (x)U , (26)

where εU is the fraction of events where σθ/Aθ < Uthr, and f (x)U is the fraction of those events
with accuracy larger than x .

While the choice of acceptable tolerance can vary from one application to another, we have
pick for the case of LO phase-space integration a value of τ(3%) = 10−3. which, if we assume
that everything is Gaussian (which is kind of reasonable) means a 1 sigma error of around 1
percent, our target for LO phase-space generation. Additionally, one should remember that
this 1 sigma error at one percent for any observable is reached in the case where all the error
are correlated, which is a very conservative upper-bound. This is confirmed by Fig. 10 and
11 (right panel) where we plot independently the events who over-estimate the amplitude
from those who under-estimated. For those plots, we have selected only the events passing
the respective thresholds, Uthr = 0.0102 and Uthr = 0.0111, such that we have τ(3%) = 10−3.
Both curves are almost perfectly aligned, suggesting that the error behaves more like in the
uncorrelated case than in the correlated one.

Once a tolerance is selected for a given application, we determine—via a simple scan—the
optimal value of Uthr required to achieve that tolerance. We then compute the speed-up factor

f ≡ tMG

ttot
=

tMG

tsurr + (1− εU) · tMG
, (27)

where tsurr is the time to evaluate the surrogate and tMG is the time to evaluate the true
amplitude within MG5AMC.
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Figure 10: Left: Absolute accuracy vs. relative predicted uncertainty for IG1-model
on the whole test dataset. The horizontal dashed line corresponds to Uthr for
τ(3%) = 10−3. The vertical dashed line corresponds to the target accuracy ∆ = 3%.
Right: Accuracy distribution for the events using the surrogates for τ(3%) = 10−3 split
into negative and positive contribution, for IG1-model on the dg→ Zdggg process.
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Figure 11: Left: Absolute accuracy vs. relative predicted uncertainty for FG1-model
on the whole test dataset. The horizontal dashed line corresponds to Uthr for
τ(3%) = 10−3. The vertical dashed line corresponds to the target accuracy ∆ = 3%.
Right: Accuracy distribution for the events using the surrogates for τ(3%) = 10−3 split
into negative and positive contribution, for FG1-model on the dd̄→ Zgggg process.

As usual when quoting any effective gain factor, one need to stress underline hypothesis
and context. The first hypothesis here is that the timing of the computation is highly dominat-
ing by the times needed to evaluate such amplitude, allowing us to not take into account the
time needed to train such network efficiently, which is likely only valid for the massive HL-LHC
simulation of CMS and ATLAS. The second one is that the application under consideration is
highly dominated by the time needed to evaluate the amplitude, otherwise one need to apply
Amdahl’s law [68] to rescale the speed-up factor down.

This algorithm can naturally be extended to test multiple surrogates sequentially, leverag-
ing the fact that some networks predict certain regions of phase space more accurately than
others. For efficiency, we order the surrogates by evaluation cost, and both the speed-up factor
and tolerance definition are updated accordingly. Combining two or more surrogates offers an
additional advantage: the ensemble can itself serve as a surrogate. In practice, we first eval-
uate the faster surrogate; if predicted uncertainty is above our threshold, we then evaluate
the second surrogate. The final decision is then based on the ensemble prediction rather than
solely on the second surrogate, since the ensemble is at least as accurate and both components
have already been computed, the additional cost is virtually zero.

Moreover, using two surrogates allows us to fine-tune the uncertainty thresholds, assigning
different thresholds to each step. In our study, we found that choosing a smaller threshold
for the first surrogate and a slightly larger threshold for the second surrogate (relative to a
uniform Uthr) improves performance while maintaining the same tolerance. This approach
lets us impose stricter constraints on the less accurate network and more relaxed constraints
on the more reliable one.

Speed-up for dg→ Zdggg

In Fig. 12, we present, in function of the internal threshold UT , both the value of the tolerance
for various target accuracy (left panel) and the achieved speed-up (right panel) for the process
dg→ Zdggg. For those particular plots, we choose to use the best performing model for this
process, but other factorization ansatz have similar behaviour. On the left panel, the interesting
point to note for our benchmark point, corresponding to τ(3%) = 10−3 (the green dashed line) is
the value of the tolerance for the other threshold. We see that τ(1%) ∼ 7 ·10−2 which is for the 1
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Figure 12: Tolerances (left) and Speed-up factor (right) vs. the uncertainty threshold
Uthr for the ensemble [IG12, FG1] factorization model for the process dg→ Zdggg.
The plots are obtained using different uncertainty thresholds for the first and second
surrogate, such that: U1 = Uthr and U2 = 1.4 · Uthr

percent is actually much better than one would expect given a pure normal distribution of error,
which we relate to the fact that our network tend to be over-conservative. The τ(5%) ∼ 4 ·10−5

being more consistent with the theoretical expectation. This comforts us on the decision to
use τ(3%) = 10−3 as a reasonable threshold. We will therefore only focus on τ3% afterwards.

In the right panel, we show the behaviour of the achieved speed-up. On the left side of
the plot we find the region with stringent tolerance constraints, which leads to the rejection
of most surrogate-evaluated events. As a consequence, the full amplitude must be computed
for the majority of events, and the speed-up remains close to 1. Conversely, the right side of
the plot corresponds to the region with looser constraints, where most events are accepted
during the first surrogate evaluation. In this regime, the speed-up reaches its maximum value,
approaching the ratio between the cost of evaluating the doubly reduced amplitude and that
of the full one.

In Figure 13, we present the final speed-up factor for a given value of the tolerance at
3%, enlightening the value of τ(3%) = 10−3 as our standard benchmark point. In this plot, we
compare the speed-up factors for our different surrogate networks. The results are split into
two panels: the left shows single-network configurations, while the right shows ensembles of
two surrogate networks (which therefore require two training). It can be seen that, although
the no-factorization network is the fastest to evaluate, its effective speed-up factor is quite
small due to its limited accuracy—both in predicting the amplitude and in estimating σNN ).
At the same time, the double-factorization model slightly outperforms the single-factorization
model, primarily because it is approximately ten times faster to evaluate while still providing
reasonably accurate results. Interestingly, this advantage disappears for stricter tolerances
(τ(3%) ≤ 3 · 10−4).

Looking now at the result when using two different surrogates, one can observe different
effect due to the subtle interplay between the speed and the accuracy of the surrogates. The
winning strategy is actually to use the most accurate ensemble of double and single factoriza-
tion, as shown in Fig. 7. Comparing the winning ensemble to the similar models, we find that
this network gains both from having the most accurate first surrogate (IG12), and from the
most accurate ensemble ([IG12, FG1]), and not just the most accurate second surrogate (IG1).
We can also build ensemble that use NoFa as a first surrogate. However, the performances of
those models are worse compared to ensembles of double and single factorization, thanks to
their higher accuracy and more meaningful ensemble prediction.
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As can be read on the graph, we reach for our benchmark point a speed-up factor of
6.5, that can be larger if one allows themselves to be less conservative than us on the al-
lowed threshold. On the other direction, if one wants to be even more conservative of either
τ(3%) = 10−4 or τ(3%) = 10−5, one still get speed-up of roughly 4 and 3 respectively.

Speed-up for dd̄→ Zgggg

Finally, we present the results for the second process, that is dd̄→ Zgggg. In Fig. 14, we show
the tolerance (left panel) and the achieved speed-up (right panel) as functions of the internal
threshold Uthr. Comparing the tolerance panel with that of the previous process (Fig. 12),
we observe a similar behaviour. However, in this case the threshold Uthr corresponding to a
given target tolerance is noticeably larger (Uthr = 0.0084 versus 0.0073), reflecting the higher
accuracy of the surrogate, which permits looser constraints.

For the same reason, in the right panel, we see that the speed-up increases more rapidly
as Uthr grows. Nevertheless, both processes reach the same maximum speed-up, since the
evaluation times are identical; the difference lies in the tolerance values at which this plateau
is achieved.

In Fig. 15, we present the final speed-up factor has a function of the tolerance (at 3 per-
cent), for both individual (left panel) and ensemble networks (right panel). A clear improve-
ment is observed when transitioning from the NoFa model to a single-factorization surrogate,
and subsequently to a double-factorization surrogate. In this case, the double-factorization
model is sufficiently accurate to provide nearly a factor-of-two improvement in speed-up com-
pared to the single-factorization model.

For the ensemble models, we find that they achieve similar speed-up factors. As in the other
process, the optimal strategy is to use the most accurate double-factorization network as the
first surrogate. However, unlike the previous case, we do not observe significant differences
between the most accurate ensemble model ([FG12, IQ1]) and the ensemble combining two
highly accurate surrogates ([FG12, FG1]). For our benchmark, we obtain a speed-up factor of
approximately 20. As for the previous process, this factor can be higher (and can reach 30)
if one allows himself to be less conservative (that speed-up is reached for a still reasonable
τ(3%) = 3 · 10−3). On the opposite direction, the more accurate network allows to still achieve
a sizable speed-up of 7, even in the very conservative limit (τ(3%) = 10−5).
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Figure 13: Speed-up factor comparison between different individual factorization
models (left), and ensemble factorization models (right) for the process dg→ Zdggg.
The values in parentheses are the speed-up factors corresponding for τ(3%) = 10−3.
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Figure 14: Tolerances (left) and Speed-up factor (right) for the ensemble [FG12, FG1]
factorization model for the process dd̄ → Zgggg. The plots are obtained using dif-
ferent uncertainty thresholds for the first and second surrogate, such that: U1 = Uthr
and U2 = 1.4 · Uthr

6 Conclusion and outlook

In this paper, we have compared various surrogates to speed-up the evaluation of the amplitude
(i.e. the matrix-element squared summed/averaged over spin and colour), focusing on the
case of LO event generation. For Z+jets processes, we have compared four types of ansatz:
starting from a physics agnostic network (dubbed NoFa), which is a simple fully connected
neural network, while the three others used a simplified Catani-Seymour approximation to
inject additional physics, simplify the function to learn, and ultimately make the prediction
more accurate.

Our study demonstrated that, for the non-optimal process we investigated, using physics-
based approximations (i.e. the Catani-Seymour approximation) led to improved predictions
compared to the NoFa network architecture, which directly predicted the logarithm of the am-
plitude. In contrast, applying the Catani–Seymour approximation twice recursively reduced
accuracy to a level comparable to that achieved when the most singular pair was not selected
for the splitting kernel. By training our network with a heteroscedastic loss, the network not
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IQ12, FG1 (18.434)

Figure 15: Speed-up factor comparison between different individual factorization
models (left), and ensemble factorization models (right) for the process dd̄→ Zgggg.
The values in parentheses are the speed-up factors corresponding for τ(3%) = 10−3.
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only predicted the amplitude but also provided an estimate of its confidence in the prediction.
We observed that this confidence was generally pessimistic: the network tended to overesti-
mate the error, predicting low precision even when achieving high precision. Notably, no bias
was observed, allowing us to use this estimate conservatively.

First, we leveraged both the error estimates and the correlation matrix to combine predic-
tions from different networks. Although the predictions were highly correlated, each network
learned different regions of phase space, yielding a tangible gain in precision. Second, we
used surrogates to replace amplitude evaluations when the (estimated) surrogate accuracy
was sufficiently precise. This mixed approach allowed full control over the induced error for
any observable computed from LO samples. Considering other sources of uncertainty (PDF
and scale variations), we deemed an additional error at the percent level acceptable for all
observables and proposed a simple, conservative algorithm to ensure surrogate usage does
not compromise predictions and remains below other sources of uncertainty.

Our results revealed a complex trade-off between approximation speed and accuracy. The
optimal strategy was neither the fastest (NoFa) nor the most accurate (FG1), but rather the
double-factorization network. This network, approximately 100 times faster than a full QFT
computation, offers a substantial speed-up that compensates for its sub-optimal accuracy. For
the conservative benchmark we selected (which correspond to an conservative additional sta-
tistical error of one percent), we achieved a speed-up factor of 6.5 for the least accurate process
(dg→ Zdggg) and an impressive factor 20 for the process (dd̄→ Zgggg).

Consequently, this work highlights the importance of predicting not only the amplitude
but also its associated error. This capability is essential for improving surrogate accuracy and
for practical applications, as it enables control over the additional numerical uncertainty intro-
duced by surrogates. Finally, we emphasize that the goal of surrogates should not be to achieve
maximal accuracy (which cannot exceed the exact computation), but to maximize speed-up
for a given target accuracy, determined by the problem at hand. Thus, network speed is as
critical as the prediction precision and the prediction of the error itself.

This work serves as a proof of concept. Future efforts will focus on refactoring the approach
to make these surrogates accessible to users, enabling them to assess the required sample size
to achieve effective gains, even when accounting for training time. Additionally, it will be
important to simplify network training, accelerate evaluation, and improve the reliability of
error estimation to achieve even higher speed-up factors.
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A Catani-Seymour factorization formulas

Catani-Seymour factorization formulas for final state radiation

Given a process with n particles in the final state, in the singular limit of a final state radiation
pi p j → 0, we can express the amplitudes as [47]

〈|Mn|2〉=
∑

k ̸=i, j

Di j,k +O(pi p j) (28)

where O(pi p j) represents non-singular terms in pi p j → 0, k is a final state spectator and Di j,k
represents a dipole contribution of the form

Di j,k = −
1

2pi p j

®

Mn−1

�

�

�

�

Tk · Ti j

T 2
i j

Vi j,k

�

�

�

�

Mn−1

¸

(29)

where the Mn−1 is the tree-level amplitude defined on the set of reduced momenta
�

(pa, pb→ p1, . . . , p̃i j , p̃k, . . . , pn−1)
	

. TK and Ti j are the colour charges of the emitter and
spectator, and Vi j,k are splitting matrices in the helicity space of the emitter. The splitting
matrices, and the reduced momenta, depend on the radiation variables

yi j,k =
pi p j

p j pi + p j pk + pi pk
and zi j,k =

pi pk

pi pk + p j pk
(30)

The momenta of the emitter p̃i j and the spectator p̃k of the reduced process are then given by

p̃i j = pi + p j −
yi j,k

1− yi j,k
pk and p̃k =

1
1− yi j,k

pk . (31)

For a quark (or anti-quark) splitting into a quark (or anti-quark) and a gluon, q f → q f + g f ,
we have

〈s|Vqi g j ,k)|s′〉= 8παCF

�

2
1− zi j,k (1− yi j,k)

− (1+ zi j,k)− ε(1− zi j,k)

�

δss′ (32)

where s, s′ are the spin indices of the fermion q̃i j , α is the strong coupling constant and CF =
4
3 ,

and ε is a dimensional regularization parameter such that d = 4 − 2ε. For a gluon splitting
into a pair of gluons, g f → g f + g f , we have

〈µ|Vgi g j ,k|ν〉= 16παCA

�

− gµν
�

1
1− zi j,k (1− yi j,k)

+
1

1− (1− zi j,k) (1− yi j,k)
− 2

�

+ (1− ε) 1
pi p j

�

zi j,kpµi − (1− zi j,k)p
µ
j

��

zi j,kpνi − (1− zi j,k)p
ν
j

�

�

,

(33)

where CA = 3. For a gluon splitting into a pair of quark and anti-quark, g f → q f + q̄ f , we have

〈µ|Vqi q̄ j ,k|ν〉= 8παTR

�

−gµν − 2
pi p j

�

zi j,kpµi − (1− zi j,k)p
µ
j

��

zi j,kpνi − (1− zi j,k)p
ν
j

�

�

, (34)

where TR =
1
2 .
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Catani-Seymour factorization formulae for initial state radiation

In the singular limit of an initial state radiation pa pi → 0, we can express the amplitude as
[47]

〈|Mn|2〉=
∑

k ̸=i

Dai,k +O(pa pi) (35)

where Dai,k represents a dipole contribution of the form

Di j,k = −
1

2pa pi

1
xai,k
〈Mn−1|

Tk · Tai

T 2
ai

Vai,k|Mn−1〉 (36)

In this case, the momenta are redefined as:

(pa, pb→ p1, . . . , pi , pk, . . . , pn+1) =⇒ {(p̃a, pb→ p1, . . . , p̃k, . . . , pn)}(a,i,k) (37)

The associated radiation variables are given by

xai,k =
pkpa + pi pa − pi pk

(pk + pi) pa
and uai,k =

pi pa

pi pa + pkpa
. (38)

The momenta of the emitter p̃a and the spectator p̃k in the reduced process are given by

p̃a = xai,k pa and p̃k = pk + pi − (1− xai,k) pa . (39)

For a quark (or anti-quark) splitting into a quark (or anti-quark) and a gluon, qi → qi+ g f , we
have

〈s|Vqa gi ,k|s′〉= 8παCF

�

2
1− xai,k + uai,k

− (1+ xai,k)− ε(1− xai,k)

�

δss′ (40)

For a gluon splitting into a pair of gluons, gi → gi + g f , the splitting function is

〈µ|Vga gi ,k|ν〉= 16παCA

�

− gµν
�

1
1− xai,k + uai,k

− 1+ xai,k (1− xai,k)
�

+ (1− ε)1− xai,k

xai,k

uai,k(1− uai,k)

pi p j

� pµi
uai,k
− pµk

1− uai,k

�� pνi
uai,k
− pνk

1− uai,k

�

�
(41)

Factorization ansatz for final-state radiation

In our factorization ansatz, we approximate the Catani–Seymour dipole by replacing the spin-
correlation tensor with its spin-contracted scalar analogue

− 1
2pi p j

〈µ|Vi j,k|ν〉 −→ Fi j,k (42)

thereby removing the explicit helicity structure. This eliminates off-diagonal spin correlations
and yields a purely scalar splitting kernel. The colour operator TkTi j is replaced by an effective
scalar colour factor Ci j,k, corresponding to the leading colour approximation.

After summing the colour–spin–correlated Born matrix element over spin and colour in-
dices, the dipole contribution reduces to the simplified form

Di j,k = 〈|Mn−1|2〉 · Ci j,k · Fi j,k (43)
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In our network we implement only a single dipole factorization and do not sum over all possible
spectators, avoiding the sum in Eq.(28). Furthermore, since the ansatz is ultimately multiplied
by a neural-network–predicted correction factor, we neglect the explicit colour factor Ci j,k
allowing the network to absorb this dependence. In this way, our approximation for the full
squared amplitude becomes:

〈|Mn|2〉 −→ 〈|Mn−1|2〉 · Fi j,k (44)

The splitting function F r
i j,k depends on the specific type of radiation. For a quark (or anti-

quark) splitting into a quark (or anti-quark) and a gluon, q f → q f g f , we have

F
q f→q f g f

i j,k =
4παCF

pi p j

�

2
1− zi j,k (1− yi j,k)

− 1+ zi j,k

�

(45)

where α is the strong coupling constant and CF =
4
3 . For a gluon splitting into a pair of gluons,

g f → g f g f , we have:

F
g f→g f g f

i j,k =
8παCA

pi p j

�

1
1− zi j,k (1− yi j,k)

+
1

1− (1− zi j,k) (1− yi j,k)
− 2

�

, (46)

where CA = 3. For a gluon splitting into a pair of quark and anti-quark, g f → q f q̄ f , we have

F
g f→q f q̄ f

i j,k =
4παTR

pi p j
, (47)

where TR =
1
2 .

Factorization ansatz for initial-state radiation

In the case of initial state radiation, the momenta are redefined as:

(pa, pb→ p1, . . . , pi , pk, . . . , pn+1) =⇒ {(p̃a, pb→ p1, . . . , p̃k, . . . , pn)}(a,k) (48)

The associated radiation variables are given by

xai,k =
pkpa + pi pa − pi pk

(pk + pi) pa
and uai,k =

pi pa

pi pa + pkpa
. (49)

The momenta of the emitter p̃a and the spectator p̃k in the reduced process are given by

p̃a = xai,k pa and p̃k = pk + pi − (1− xai,k) pa . (50)

For a quark (or anti-quark) splitting into a quark (or anti-quark) and a gluon, qi → qi g f , we
have

F
qi→qi g f

ai,k =
8παCF

xai,kpi pi

�

2
1− xai,k + uai,k

− 1− xai,k

�

(51)

For a gluon splitting into a pair of gluons, qi → qi g f , the splitting function is

F
qi→qi g f

ai,k =
8παCA

xai,kpi pi

�

1
1− xai,k + uai,k

− 1+ xai,k (1− xai,k)

�

(52)
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