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Abstract 

Quantum entanglement is commonly assumed to be fragile at ambient temperature and over macroscopic 

distances, where thermal noise and dissipation are expected to rapidly suppress nonclassical correlations. 

Here we show that this intuition fails for collective quantum modes whose dynamics is governed by 

reduced open-system channels rather than by microscopic thermal equilibrium. For two spatially 

separated collective modes, we derive an exact entanglement boundary based on the positivity of the 

partial transpose, valid in the symmetric resonant limit. From this result we obtain an explicit minimum 

collective fluctuation amplitude, expressed entirely in measurable noise, bandwidth, dissipation, and 

distance-dependent coupling parameters, required to sustain steady-state entanglement at finite 

temperature. We further show that large collective occupation suppresses but does not eliminate quantum 

phase diffusion, so the steady state remains phase symmetric and does not collapse to a classical mean-

field despite macroscopic signal amplitudes. Stochastic simulations of the reduced open-system 

dynamics, together with matched classical correlated-noise null models analyzed through an identical 

pipeline, confirm that entanglement witnesses are violated only in the quantum regime. Our results 

establish a minimal, platform-independent framework connecting collective-mode dynamics, noise 

injection, distance, and operational certification of macroscopic entanglement. 
 

1. INTRODUCTION 

Quantum entanglement is widely regarded as fragile at ambient temperature and over macroscopic 

distances, where thermal noise and environmental decoherence are expected to rapidly suppress 

nonclassical correlations. This intuition is well founded for microscopic degrees of freedom whose 

dynamics is directly governed by local dissipation and thermal equilibrium with a surrounding bath [1,2]. 

In such systems, increasing temperature or spatial separation typically leads to rapid loss of coherence and 

entanglement. 

However, a growing body of experimental and theoretical work has demonstrated that macroscopic 

quantum phenomena can persist when the relevant degrees of freedom are collective rather than 

microscopic [3–6]. In systems supporting macroscopic order parameters—such as Bose–Einstein 

condensates and related coherent many-body states—the physically relevant quantum variables are 

collective modes describing slow amplitude and phase fluctuations of the order parameter [3,7–9]. These 

modes can exhibit large occupation numbers and macroscopic signal amplitudes while retaining 

intrinsically quantum features, including phase diffusion and nonclassical correlations. Crucially, 

increasing ensemble size does not generically force a collective mode into a classical or mean-field 

description; instead, it suppresses relative fluctuations while leaving global quantum uncertainty intact 

[4,8–10]. 

Recent reports have described quantum signatures—including inseparability witnesses and long-range 

correlations—in systems operating at room temperature, with large measured signal amplitudes and 

spatial separations far exceeding typical microscopic coherence lengths [11–14]. At first sight, such 

observations appear to conflict with the conventional expectation that thermal energy 𝑘𝐵𝑇 necessarily 

destroys quantum coherence. This apparent contradiction arises from implicitly treating the relevant 



degrees of freedom as microscopic modes whose occupations are fixed by thermal equilibrium, rather 

than as collective modes governed by reduced dynamics. 

From an open-system perspective, collective modes couple to their environment through a restricted set of 

channels characterized by effective noise and dissipation parameters, rather than by the full thermal bath 

of microscopic constituents [5,15,16]. The quantum state of a collective mode is therefore governed by 

reduced open-system dynamics in which ambient temperature enters only indirectly, through effective 

noise injection into the collective subspace. As a consequence, the robustness of collective quantum 

correlations is controlled by the balance between coherent coupling and effective noise, not directly by 

the microscopic bath temperature. 

In parallel, the experimental certification of quantum correlations in macroscopic systems is 

fundamentally constrained by continuous measurement, finite detection bandwidth, and estimator 

statistics [17,18]. These operational limitations can obscure the presence of entanglement even when the 

underlying quantum state remains nonclassical, leading to experimentally inferred coherence or 

entanglement times that reflect measurement precision rather than physical decoherence. 

In this work, we develop a minimal, platform-independent framework for understanding entanglement of 

spatially separated collective quantum modes under realistic experimental conditions. Our approach does 

not introduce new entanglement criteria or measurement protocols. Instead, it establishes an operational 

description that connects collective-mode open-system dynamics, effective noise injection, coherent 

coupling over distance, and estimator-limited certification. This framework resolves the apparent tension 

between macroscopic signal strength, ambient temperature, and quantum inseparability, and identifies the 

precise conditions under which macroscopic entanglement can persist and be reliably certified. 

2. COLLECTIVE-MODE OPEN-SYSTEM THEORY 

2.1 Collective quantum degrees of freedom 

We consider an ensemble of 𝑁 microscopic excitations {𝑎̂𝑗} whose low-energy dynamics supports a 

macroscopically occupied collective mode. The relevant quantum degree of freedom is not any individual 

constituent, but the collective order-parameter mode 

Ψ̂ =
1

√𝑁
∑𝑎̂𝑗

𝑁

𝑗=1

, [Ψ̂, Ψ̂†] ≈ 1, 

where the commutation relation becomes exact in the large-𝑁 limit when fluctuations orthogonal to the 

collective subspace are neglected. This construction is standard in the theory of Bose–Einstein 

condensates, lasers, and driven–dissipative quantum fluids, where the collective mode captures the 

macroscopic phase and amplitude dynamics of the system. The collective mode remains quantum because 

its conjugate quadratures obey canonical commutation relations independently of ensemble size. 

Importantly, microscopic decoherence of the individual constituents does not directly imply decoherence 

of the collective mode. Local noise processes predominantly excite modes orthogonal to Ψ̂, while the 

collective degree of freedom couples to its environment through a reduced set of channels. As a result, the 

quantum state of Ψ̂ must be described by a reduced density operator 𝜌Ψ, whose dynamics is governed by 

the coupling of the collective mode itself to its effective environment. In what follows, we focus on two 



spatially separated ensembles, described by collective modes 𝑎̂ and 𝑏̂, which may be separated by 

macroscopic distances but are coupled through a shared coherent channel. 

2.2 Reduced open-system description 

At energies and bandwidths relevant to the observed narrowband collective fluctuations, the dynamics of 

the collective modes can be linearized about their steady-state amplitudes. The reduced dynamics is then 

well described by a Gaussian open quantum system governed by a quadratic Hamiltonian and linear 

dissipation channels. 

We adopt a Lindblad master equation for the reduced density operator 𝜌of the collective modes, 

𝜌̇ = −
𝑖

ℏ
[𝐻, 𝜌] + ∑ [

𝑗=𝑎,𝑏

𝜅𝑗(𝑛𝑗 + 1)𝒟[𝑗̂] 𝜌 + 𝜅𝑗𝑛𝑗𝒟[𝑗̂
†] 𝜌], 

where 𝜅𝑗 are the damping rates of the collective modes and 𝒟[𝑂̂]𝜌 = 𝑂̂𝜌𝑂̂† −
1

2
{𝑂̂†𝑂̂, 𝜌}. 

Crucially, the parameters 𝑛𝑗 appearing in this equation are effective noise occupancies of the collective 

modes, not microscopic thermal occupation numbers. They quantify the total noise injected into the 

collective subspace within the relevant bandwidth and are defined operationally through the measured 

quadrature noise spectra of the collective modes. In particular, 𝑛𝑗 can be extracted from the symmetrized 

noise spectral density 𝑆𝑋𝑋(𝜔) or 𝑆𝑃𝑃(𝜔) via standard input–output relations for linear open quantum 

systems. 

As a result, 𝑛𝑗 is not assumed to be equal to 𝑘𝐵𝑇/ℏ𝜔 and need not reflect the temperature of any 

microscopic bath. Ambient temperature enters the reduced description only insofar as it contributes to the 

effective noise injected into the collective degrees of freedom through specific coupling channels. This 

distinction is essential: while microscopic constituents may be strongly thermalized, the collective modes 

relevant for entanglement are characterized by their own effective noise parameters, which are directly 

measurable and independent of microscopic equilibrium assumptions. 

This reduced open-system description provides a closed, experimentally grounded parameterization of the 

collective-mode dynamics, forming the basis for the entanglement analysis that follows. 

2.3 Gaussian steady state and covariance matrix 

The linear dynamics generated by the Hamiltonian and Lindblad operators preserves Gaussianity. The 

steady state, when it exists, is therefore completely characterized by the covariance matrix of the 

quadrature operators. 

We define the quadrature vector 

𝐑̂ = (𝑋𝑎 , 𝑃𝑎 , 𝑋𝑏 , 𝑃𝑏)
𝖳, 𝑋 =

1

√2
(𝑎̂ + 𝑎̂†),  𝑃 =

1

𝑖√2
(𝑎̂ − 𝑎̂†), 

and the covariance matrix 



𝑉𝑖𝑗 =
1

2
⟨𝑅̂𝑖𝑅̂𝑗 + 𝑅̂𝑗𝑅̂𝑖⟩ − ⟨𝑅̂𝑖⟩⟨𝑅̂𝑗⟩. 

The time evolution of 𝑉 is governed by the Lyapunov equation 

𝑉̇ = 𝐴𝑉 + 𝑉𝐴𝖳 + 𝐷, 
 

where the drift matrix 𝐴 is determined by (𝐺, Δ𝑎,𝑏 , 𝜅𝑎,𝑏), and the diffusion matrix 𝐷 is determined by 

𝜅𝑎,𝑏𝑛𝑎,𝑏. When the stability condition is satisfied, the steady-state covariance matrix 𝑉 is the unique 

solution of 

𝐴𝑉 + 𝑉𝐴𝖳 + 𝐷 = 0. 

This establishes a deterministic mapping 

(𝐺, 𝜅𝑎 , 𝜅𝑏 , 𝑛𝑎 , 𝑛𝑏 , Δ𝑎 , Δ𝑏)   ⟶   𝑉, 
 

which forms the basis for the entanglement analysis below. The steady state exists whenever the drift 
matrix is Hurwitz, independent of ensemble size. 

2.4 Entanglement criterion for collective modes (PPT, explicit symmetric boundary) 

For bipartite Gaussian states, entanglement is fully characterized by the positivity of the partial transpose 

(PPT) implemented at the covariance-matrix level. Let 𝑉be the 4 × 4 covariance matrix of the quadrature 

vector 𝑅̂ = (𝑋𝑎 , 𝑃𝑎 , 𝑋𝑏 , 𝑃𝑏)
𝑇 . Partial transpose with respect to mode 𝑏corresponds to time reversal on that 

subsystem, which acts as a sign flip of one momentum quadrature, 𝑃𝑏 ↦ −𝑃𝑏. In covariance-matrix form 

this is implemented by the involution 

𝑉Γ   =   Λ 𝑉 Λ,Λ = diag(1,1,1, −1), 

and the state is entangled if and only if the smallest symplectic eigenvalue 𝜈− of 𝑉Γ violates the 

Heisenberg bound, 

𝜈− <
1

2
(2.4.1) 

 

(See Refs. [23,28,29] for the Gaussian PPT formalism.) 

To compute 𝜈− explicitly, write the covariance matrix in 2 × 2block form 

𝑉 = (
𝐴 𝐶
𝐶𝑇 𝐵

) 

with 𝐴,𝐵, 𝐶 ∈ ℝ2×2. The symplectic eigenvalues of 𝑉Γ are determined by the two symplectic invariants 

det 𝑉 and 

Δ̃   =   det⁡ 𝐴 + det⁡ 𝐵 − 2det⁡ 𝐶, 
 



where the minus sign (relative to the non-transposed Δ = det⁡ 𝐴 + det⁡ 𝐵 + 2det⁡ 𝐶) reflects the effect of 

Γ on inter-mode correlations. One then obtains 

 𝜈±
2 =

1

2
(Δ̃ ± √Δ̃2 − 4det⁡ 𝑉) (2.4.2) 

 

Symmetric resonant case. In the symmetric resonant limit Δ𝑎 = Δ𝑏 = 0, 𝜅𝑎 = 𝜅𝑏 = 𝜅, and 𝑛𝑎 = 𝑛𝑏 =
𝑛, the steady state is phase-symmetric and the Lyapunov solution takes the standard “two-mode squeezed 

thermal” covariance form 

𝐴 = 𝐵 = 𝑎 𝕀2, 𝐶 = diag(𝑐, −𝑐), 

with 𝑎 ≥
1

2
 and ∣ 𝑐 ∣≤ 𝑎. For this structure one has 

det⁡ 𝐴 = det⁡ 𝐵 = 𝑎2, det⁡ 𝐶 = −𝑐2, 

and the full determinant is 

det⁡ 𝑉 = (𝑎2 − 𝑐2)2. 

Under partial transpose, 𝐶 → 𝐶Γ = diag(𝑐,+𝑐) so that det⁡ 𝐶Γ = +𝑐2, which is captured by the invariant 

Δ̃ = det⁡ 𝐴 + det⁡ 𝐵 − 2det⁡ 𝐶 = 2(𝑎2 + 𝑐2). Substituting into Eq. (2.4.2), 

𝜈−
2 =

1

2
(2(𝑎2 + 𝑐2) − √4(𝑎2 + 𝑐2)2 − 4(𝑎2 − 𝑐2)2) = (𝑎−∣ 𝑐 ∣)2, 

hence 

 𝜈− = 𝑎−∣ 𝑐 ∣ (2.4.3) 

Therefore, the PPT condition (2.4.1) is equivalent to 

𝑎⁡−⁡∣ 𝑐 ∣<
1

2
. (2.4.4) 

It remains to express 𝑎 and 𝑐 in terms of the open-system parameters. Solving the symmetric Lyapunov 

equation for the model in Section 2.2 yields (in the stable regime 𝐺 < 𝜅/2) the closed form 

𝜈−(𝐺/𝜅, 𝑛) =
1

2
(2𝑛 + 1) 

𝜅 − 2𝐺

𝜅 + 2𝐺
(2.4.5) 

Equating 𝜈− =
1

2
 gives the analytic PPT boundary 

(2𝑛 + 1) 
𝜅 − 2𝐺

𝜅 + 2𝐺
= 1     ⟺⁡

𝐺

𝜅
>

𝑛

𝑛 + 1
(2.4.6) 

 



This expression makes explicit that steady-state collective-mode entanglement is controlled by the ratio 

𝐺/𝜅 and the effective noise occupancy 𝑛 defined operationally in Section 2.2, rather than by the ambient 

temperature through 𝑘𝐵𝑇/ℏ𝜔. 

2.5 Physical interpretation 

The entanglement criterion derived above admits a transparent physical interpretation once the distinction 

between mean-field order and quantum collective fluctuations is made explicit. In systems with large 

ensemble participation, the expectation value of the collective mode operator ⟨Ψ̂⟩ may acquire a large 

magnitude, corresponding to a macroscopic order parameter or coherent amplitude. This quantity behaves 

classically in the sense that relative fluctuations scale as 1/√𝑁, and its dynamics is well captured by 

mean-field equations. 

Crucially, however, the existence of a large mean-field amplitude does not imply that the collective mode 

itself becomes classical. The quantum state of the collective degree of freedom is encoded not in ⟨Ψ̂⟩, but 

in the fluctuations of its conjugate quadratures and their correlations. These quantum collective 

fluctuations remain governed by canonical commutation relations independently of ensemble size and are 

fully characterized by the covariance matrix of the reduced open system. 

Noise processes acting on individual constituents predominantly excite modes orthogonal to the collective 

subspace and therefore do not directly decohere the collective quantum fluctuations. As a result, 

increasing ensemble size suppresses relative amplitude noise and enhances signal-to-noise ratios of 

collective observables, while leaving the global phase subject to quantum diffusion rather than classical 

pinning. This behavior is well known from the theory of lasers and Bose–Einstein condensates, where 

macroscopic occupation coexists with intrinsically quantum phase dynamics. 

In this framework, steady-state entanglement arises from correlations between the quantum collective 

fluctuations of spatially separated modes, not from the mean-field order parameter itself. The persistence 

of entanglement at large ensemble size therefore does not represent a violation of decoherence intuition, 

but a direct consequence of the separation between mean-field behavior and quantum collective dynamics 

in open many-body systems. 

2.6 Analytical application: minimum collective amplitude for robust entanglement 

In this section we apply the general collective-mode theory developed above to a minimal analytical 

setting in order to determine the conditions under which steady-state entanglement can be sustained and 

certified in the presence of ambient noise. The purpose of this analysis is not to introduce new physical 

assumptions, but to connect the abstract open-system parameters (𝐺, 𝜅, 𝑛eff) to experimentally 

measurable quantities such as signal amplitude, bandwidth, and effective coupling over distance. 

2.6.1 Setup and assumptions 

We consider two spatially separated collective modes 𝑎̂ and 𝑏̂, each describing slow envelope fluctuations 

of a macroscopic order parameter and coupled through a coherent interaction of strength 𝐺(𝑑), which 

depends on the separation 𝑑. The microscopic origin of this coupling is not specified; it may arise from 

near-field, shared-mode, or mediated interactions. All distance dependence enters exclusively through 

𝐺(𝑑). 



Each collective mode is subject to dissipation at rate 𝜅and to noise injection from its environment. 

Importantly, the environment relevant to the collective modes is not the full microscopic thermal bath but 

an effective reduced bath characterized by a noise spectral density within a narrow bandwidth 𝐵around 

the collective mode frequency 𝜔col. 

The reduced dynamics is governed by the linear quantum Langevin equations corresponding to the 

Lindblad master equation introduced in Section 2.2. In the rotating frame, the collective quadratures obey 

𝐑̇(𝑡) = 𝐴 𝐑(𝑡) + 𝝃(𝑡), 

where 𝐑 = (𝑋𝑎 , 𝑃𝑎 , 𝑋𝑏 , 𝑃𝑏)
𝑇, 𝐴is the drift matrix determined by 𝐺and 𝜅, and 𝝃(𝑡) is a vector of Gaussian 

noise operators with correlations 

⟨𝜉𝑖(𝑡)𝜉𝑗(𝑡
′)⟩ = 𝛿(𝑡 − 𝑡′)𝐷𝑖𝑗 . 

 

2.6.2 Noise injection and effective occupancy 

The diffusion matrix 𝐷 encodes the rate at which environmental noise is injected into the collective 

quadratures. Rather than assuming thermal equilibrium at temperature 𝑇, we define the effective noise 

occupancy 𝑛effoperationally through the symmetrized quadrature noise spectrum, 

⟨𝑋2⟩noise = ∫  
∣𝜔−𝜔col∣<𝐵/2

𝑑𝜔

2𝜋
 𝑆𝑋𝑋
sym

(𝜔) ≡
2𝑛eff + 1

2
. 

This definition makes clear that 𝑛eff depends on in-band noise coupling and filtering, and is not 

generically equal to the thermal occupation 𝑘𝐵𝑇/ℏ𝜔col. 

In many experimental settings, the collective coordinate couples linearly to an effective impedance or 

admittance 𝑌eff(𝜔). By the fluctuation–dissipation theorem, the symmetrized noise spectral density is 

𝑆𝑋𝑋
sym

(𝜔) ∝ 𝑘𝐵𝑇 Re 𝑌eff(𝜔), 

so that the in-band variance scales as 

⟨𝑋2⟩noise ∼ 𝑘𝐵𝑇 𝐵 Re 𝑌eff(𝜔col). 

This relation provides the link between ambient temperature, bandwidth, and effective noise injection into 

the collective mode. 

2.6.3 Signal amplitude and quadrature variance 

The coherent collective fluctuation corresponds to a finite variance of the collective quadratures arising 

from correlated dynamics. For a voltage-like collective coordinate 𝑉, the corresponding quadrature 

variance scales as 

⟨𝑋2⟩sig ∼
𝑉col
2

2
. 



The precise normalization is unimportant for what follows; what matters is that increasing collective 

fluctuation amplitude increases the relative weight of coherent correlations compared to injected noise. 

2.6.4 Operational definition of 𝒏𝐞𝐟𝐟 from in-band injected energy (envelope mode) 

We now connect the effective occupancy 𝑛eff appearing in the Lindblad noise terms to measurable in-

band noise of the collective envelope quadratures. For a collective mode of angular frequency 𝜔col(the 

slow envelope/collective mode, not any microscopic carrier), the symmetrized energy per mode satisfies 

𝐸noise
(col) ≡

ℏ𝜔col

2
 (2𝑛eff + 1). (2.6.4) 

Operationally, 𝐸noise
(col)

 is the in-band energy injected into the collective mode over its relaxation time 

𝜏 = 1/𝜅, as inferred from the measured quadrature/voltage noise spectrum of the collective channel after 

demodulation into the envelope band. Equivalently, 

2𝑛eff + 1   ≡   
2

ℏ𝜔col
 𝐸noise

(col) ⁡⁡⁡⁡(envelope mode). (2.6.5) 

This definition makes explicit that 𝑛eff is not assumed thermal; it is an experimentally extractable 

parameter of the reduced collective subspace.  

We emphasize that the bandwidth 𝐵 entering the definition of 𝑛𝑒𝑓𝑓  does not correspond to post-

measurement filtering, but to the physical spectral selectivity of the collective mode itself. The reduced 

Lindblad description applies after tracing out all environmental modes outside the collective envelope 

band. The effective occupancy 𝑛𝑒𝑓𝑓  therefore characterizes noise injected into the collective subspace, 

not the full thermal bath. 

2.6.5 From PPT boundary to a measurable minimum voltage 𝑽𝐜𝐨𝐥
𝐦𝐢𝐧(𝒅) 

Step 1 (state-level entanglement condition). 

In the symmetric resonant case, the PPT boundary from Section 2.4 reads 

2𝐺(𝑑)

𝜅
>

𝑛eff
𝑛eff + 1

(2.6.6) 

(stability requires 2𝐺(𝑑) < 𝜅). This is the state-level condition and contains the only distance dependence 

through 𝐺(𝑑). 

At large effective occupancies 𝑛𝑒𝑓𝑓 ≫ 1, as is typical for collective modes coupled to ambient-

temperature environments, the right-hand side of Eq. (2.6.6) approaches unity. In this regime, steady-state 

entanglement requires the collective strong-coupling condition 𝐺(𝑑) > 𝜅, meaning that the coherent 

correlation rate must exceed the local dissipation rate of the collective mode. This requirement is 

experimentally demanding but unavoidable: it is the necessary condition for any driven–dissipative 

macroscopic system to sustain steady-state entanglement at high noise occupancy. The purpose of the 

operational analysis below is not to circumvent this constraint, but to express it in directly measurable 

quantities and to clarify how temperature, distance, and signal levels enter only through the reduced 

collective parameters 𝐺(𝑑), 𝜅, and 𝑛𝑒𝑓𝑓 . 



Step 2 (map 𝑛eff to measurable in-band noise). 

Let the measured in-band voltage noise spectral density referred to the collective node be 𝑆𝑉(𝜔) (after 

demodulation into the envelope band). Over an effective measurement bandwidth 𝐵, the in-band mean-

square noise is 

⟨𝑉2⟩noise ≃ ∫ 𝑆𝑉

𝐵/2

−𝐵/2

(Ω) 𝑑Ω   ≈   𝑆𝑉(0) 𝐵, (2.6.7) 

and the corresponding in-band energy stored in the effective collective capacitance 𝐶is 

𝐸noise
(col) ≃

1

2
𝐶 ⟨𝑉2⟩noise   ≈   

1

2
𝐶 𝑆𝑉(0) 𝐵. (2.6.8) 

Using the operational definition (2.6.5), 

2𝑛eff + 1 =
2

ℏ𝜔col
 𝐸noise

(col) ≈
𝐶 𝑆𝑉(0) 𝐵

ℏ𝜔col
. (2.6.9) 

 

Step 3 (minimum collective amplitude). 

Define the measurable collective fluctuation level 𝑉col as the rms envelope amplitude in the same band 𝐵.  

Requiring that coherent correlations dominate injected noise such that the PPT inequality (2.6.6) is 

satisfied yields a sufficient (conservative) threshold. This threshold is sufficient but not necessary; it 

ensures that coherent correlations exceed injected noise at the level required by the PPT criterion. 

 

𝑉col
min(𝑑) = √

𝑆𝑉(0) 𝐵

𝒞(𝑑)
(2.6.10) 

Here 𝒞(𝑑) is a dimensionless “correlation cooperativity” that depends only on the reduced parameters 

through 𝐺(𝑑)/𝜅 (and equals unity at the PPT boundary). Near the PPT boundary, 𝒞(𝑑) scales linearly 

with the reduced cooperativity 2𝐺(𝑑)/𝜅, with 𝒞 = 1 corresponding exactly to saturation of the inequality 

(2.6.6). In the common case where the injected noise is well approximated by an effective thermal voltage 

noise of a series resistance 𝑅eff over the analysis band, 𝑆𝑉(0) ≈ 4𝑘𝐵𝑇𝑅eff, and Eq. (2.6.10) reduces to the 

explicit measurable form 

𝑉col
min(𝑑) ≈ √

4𝑘𝐵𝑇 𝑅eff 𝐵

𝒞(𝑑)
, 𝒞(𝑑) is⁡a⁡ monotone⁡function in  𝐺(𝑑)/𝜅 (2.6.11) 

 

Note: Throughout this section, 𝑉𝑐𝑜𝑙 denotes the root-mean-square amplitude of collective fluctuations in 

the envelope quadratures, not a coherent mean-field displacement. Displacements do not affect the 

covariance matrix or symplectic spectrum and therefore do not generate entanglement. 

2.6.6 Collective phase dynamics and absence of mean-field collapse 

The collective operators 𝑎̂, 𝑏̂ describe slow envelope modes distinct from microscopic carrier phases. 

Writing 

𝑎̂(𝑡) = √𝑁col  𝑒
𝑖𝜙̂(𝑡) , 



the collective phase 𝜙̂ is a genuine quantum degree of freedom. In the absence of explicit phase pinning, 

its dynamics is governed by quantum phase diffusion, 

𝜎𝜙
2(𝑇int) = 2𝐷𝜙𝑇int, 𝐷𝜙 ∼

𝜅

4𝑁col
(2𝑛eff + 1). 

Large collective occupation slows phase diffusion but does not eliminate it. The collective phase therefore 

remains delocalized over long integration times, confirming that the system does not reduce to a classical 

mean-field state despite macroscopic ensemble size. 

Thus increasing 𝑁col slows phase diffusion but does not eliminate it; the steady state remains effectively 

U(1)-symmetric (phase-averaged) in the absence of an external phase reference, exactly as in lasers and 

finite-size condensates. 

2.7 Numerical evaluation at ambient temperature 

We now illustrate the analytical results of Section 2.6 using representative, platform-independent 

parameters corresponding to ambient conditions. The numerical example illustrates the scaling implied by 

the theory; it does not assert that the required coupling-to-dissipation ratio is generically achieved in all 

macroscopic systems. 

We consider a collective mode with effective bandwidth 𝐵 = 0.4 MHz, effective capacitance 𝐶 = 1 pF, 

and ringdown time 𝜏 = 15 𝜇s, corresponding to a collective damping rate 𝜅 ≈ 6.7 × 104 s−1. The 

ambient temperature is 𝑇 = 300 K. All dependence on spatial separation enters exclusively through the 

coherent coupling rate 𝐺(𝑑). 

Using the conservative bound 𝐺(𝑑) ∼ 𝜅, the minimum collective fluctuation amplitude required for 

steady-state entanglement follows from Eq. (2.6.6), 

𝑉col
min = √

2𝑘𝐵𝑇 𝐵

𝐶 𝜅
≈ 3 × 10−4 V. 

Thus, sub-millivolt collective fluctuations suffice to suppress noise injection into the collective subspace 

and sustain entanglement under room-temperature conditions. 

The corresponding collective energy scale, 

𝐸col =
1

2
𝐶𝑉col

2 , 

implies a large effective occupation of the collective harmonic mode. For 𝑉col = 0.1 mV and 𝜔col/2𝜋 =
1 GHz, where 𝜔col refers to the collective envelope mode used in the reduced model and extracted from 

the demodulated narrowband record, not the microscopic carrier frequency of any constituent. 

𝑁col =
𝐸col
ℏ𝜔col

≈ 7.5 × 103  

As discussed in Section 2.6.6, this large occupation does not classicalize the collective mode. Instead, it 

suppresses the phase diffusion rate while preserving intrinsic quantum uncertainty. The collective phase 



remains a diffusive quantum variable in the absence of explicit phase pinning, and entanglement resides 

in correlations of collective quadrature fluctuations rather than in a fixed mean-field phase. 

This numerical example demonstrates that, under realistic ambient conditions and macroscopic 

separation, collective-mode entanglement is compatible with modest signal levels and large ensemble 

participation, provided the reduced open-system parameters satisfy the analytically derived bounds. 

2.7.5 Conclusion of the analytical example 

This explicit calculation shows that, under realistic room-temperature conditions and macroscopic 

separation, collective-mode entanglement is compatible with modest signal levels. Distance enters only 

through the coherent coupling rate, while large ensemble participation enhances signal-to-noise without 

eliminating the quantum character of the collective degree of freedom. The collective phase remains a 

diffusive quantum variable, not a classical order parameter, confirming the robustness of collective-mode 

entanglement at ambient conditions. 

3. RESULTS: STOCHASTIC SIMULATIONS AND NULL-MODEL COMPARISON 

This section presents numerical results validating the analytical framework developed in Section 2 and 

establishing its distinguishability from classical correlated-noise explanations. All simulations implement 

the reduced collective-mode dynamics defined in Section 2, and all datasets—quantum and classical—are 

processed through an identical analysis pipeline. 

3.1 Quantum collective-mode simulations 

We simulate the stochastic dynamics of two collective modes governed by the Lindblad master equation 

introduced in Section 2. The simulations are performed using covariance-matrix evolution derived from 

the associated quantum Langevin equations, which is exact for the Gaussian dynamics considered here. 

No wavefunction collapse, postselection, or measurement backaction is included in the state evolution. 

The steady-state covariance matrix 𝑉 is obtained across a broad parameter range spanning the separable–

entangled transition. The primary control parameters are the normalized coherent coupling 𝐺/𝜅 and the 

effective noise occupancy 𝑛eff, while detunings are set to zero and stability conditions are enforced. For 

each parameter set, we compute the symplectic eigenvalues of the partially transposed covariance matrix 

and evaluate the Duan–Simon inseparability criterion. 



 

Figure 1: Entanglement phase diagram of the collective-mode model - Smallest symplectic eigenvalue 𝜈−of the 

partially transposed covariance matrix as a function of normalized coupling 𝐺/𝜅and effective noise occupancy 

𝑛𝑒𝑓𝑓. The entangled region (𝜈− < 1/2) agrees quantitatively with the analytical PPT boundary derived in Section 

2.4 

Figure 1 shows the resulting entanglement phase diagram in the (𝐺/𝜅, 𝑛eff) plane. The transition into the 

entangled steady state occurs sharply when the smallest symplectic eigenvalue 𝜈− drops below 1/2, in 

quantitative agreement with the analytical PPT boundary derived in Section 2.4, without any fitting 

parameters. 

3.2 Classical correlated-noise null models 

To assess whether the observed inseparability could arise from classical correlations rather than collective 

quantum dynamics, we construct three classes of classical null models designed to reproduce strong 

correlations under realistic conditions. The classical parametric amplifier null model is restricted to states 

admitting a positive Glauber–Sudarshan P-representation, ensuring classicality. 

The first null model consists of Gaussian classical stochastic processes with tunable cross-correlations. 

The two signals are generated from a shared noise source and independently filtered to match the power 

spectral density, bandwidth, and signal amplitude of the quantum simulations. 

The second null model is a classical phase-sensitive parametric amplifier described by coupled linear 

stochastic equations. This model reproduces gain, squeezing-like correlations, and phase-sensitive 

amplification, while remaining entirely classical. 

The third null model consists of optimally filtered and linearly mixed classical stochastic signals. The 

filtering and mixing coefficients are chosen to minimize the Duan–Simon witness under the constraint of 

linear classical processing. 



 

Figure 2 | Classical null models and analysis pipeline. – (a–c) Representative covariance matrices for the three 

classical null models: correlated Gaussian noise, classical parametric amplification, and optimally filtered linear 

mixtures. (d) Schematic of the common analysis pipeline applied to all quantum and classical datasets. 

Representative covariance structures generated by these classical null models are shown in Fig. 2a–c, 

alongside the corresponding quantum covariance for comparison. 

3.3 Identical analysis pipeline 

All simulated datasets—quantum and classical—are analyzed using an identical processing pipeline. 

Time-domain signals are band-limited to a specified bandwidth 𝐵, demodulated into the rotating frame, 

and segmented into effective samples determined by the integration time 𝑇. From these samples, second 

moments and cross-correlations of the collective quadratures are estimated, yielding an empirical 

covariance matrix. 

From the estimated covariance matrix, we compute both the Duan–Simon witness and the symplectic 

eigenvalues of the partially transposed state. Statistical uncertainties are evaluated from ensemble 

averaging over independent simulation runs. No model-dependent tuning, postselection, or adaptive 

filtering is applied at any stage. 

A schematic of the analysis pipeline common to all models is shown in Fig. 2d. 

3.4 Witness statistics and quantum–classical comparison 

Applying this pipeline to the quantum collective-mode simulations yields clear and statistically 

significant violations of the PPT and Duan–Simon bounds within the analytically predicted entangled 



regime. The witness distributions converge to values below the separability threshold as the integration 

time increases. 

 

Figure 3 | Quantum–classical comparison of entanglement witnesses – (a) Duan–Simon witness distribution for 

the quantum collective-mode simulation in the entangled regime. (b–d) Corresponding witness distributions for 

the three classical null models. Shaded regions indicate statistical uncertainty. The classical bound is never 

violated. 

Figure 3a shows the distribution of the Duan–Simon witness for the quantum model, demonstrating a 

clear separation from the classical bound. In contrast, Fig. 3b–d show the corresponding witness 

distributions for the three classical null models. None of the classical models violate the PPT condition or 

cross the Duan–Simon bound within statistical uncertainty, even when their signal amplitudes, 

bandwidths, and cross-correlations are matched to those of the quantum simulations. 

3.5 Bandwidth and estimator convergence 

To isolate estimator limitations from state-level entanglement, we fix the underlying quantum steady state 

and vary the measurement bandwidth 𝐵and integration time 𝑇. As expected for stationary Gaussian 

processes, the estimated witnesses converge toward their true steady-state values as the effective number 

of independent samples 𝑁eff ∼ 𝑇𝐵 increases. 

 



Figure 4 | Estimator convergence with bandwidth and integration time – Convergence of the estimated Duan–

Simon witness as a function of the effective number of independent samples 𝑁𝑒𝑓𝑓 = 𝑇𝐵. The asymptotic value 

corresponds to the steady-state entangled quantum state. 

This convergence behavior is shown in Fig. 4, where the Duan–Simon witness approaches its asymptotic 

value with increasing 𝑇𝐵. Importantly, the entanglement threshold itself is independent of 𝑇and 𝐵, 

confirming that these parameters affect only statistical confidence rather than the existence of 

entanglement. 

3.6 Summary of results 

Together, the results in Figs. 1–4 validate the analytical predictions of Section 2 and establish a clear 

operational distinction between collective quantum entanglement and classical correlated noise. The 

collective-mode Lindblad model exhibits steady-state entanglement precisely where predicted by the PPT 

criterion, while none of the classical null models reproduce the same inseparability under identical 

analysis conditions. These findings demonstrate that macroscopic, room-temperature entanglement of 

collective modes is a genuine consequence of reduced open-system quantum dynamics rather than a 

measurement or noise artifact. 

4. DISCUSSION 

The analysis presented in Sections 2 and 3 establishes a clear separation between the existence of 

entanglement as a property of the collective quantum state and the operational ability to certify that 

entanglement under realistic measurement constraints. This separation resolves several apparent 

paradoxes surrounding long-distance, room-temperature entanglement in macroscopic systems and 

clarifies the role of ensemble size, temperature, and signal amplitude. 

4.1 Collective modes and the absence of mean-field collapse 

A central result of this work is that large ensemble participation does not, by itself, force a collective 

quantum mode into a classical or mean-field description. As shown in Section 2, the relevant degrees of 

freedom are collective envelope modes whose reduced dynamics is governed by an open-system 

description. Microscopic decoherence processes predominantly populate modes orthogonal to this 

collective subspace, while the collective mode itself couples to its environment through a restricted set of 

channels characterized by effective parameters (𝐺, 𝜅, 𝑛eff). 

Importantly, the collective phase associated with this mode is not statically pinned. Instead, it undergoes 

quantum phase diffusion, with a diffusion constant that decreases with increasing collective occupation 

but remains finite. As a result, large ensemble size enhances signal amplitude and slows phase diffusion 

without eliminating quantum uncertainty. This behavior is fully consistent with standard quantum 

mechanics and mirrors the physics of lasers and condensates, where macroscopic occupation coexists 

with genuinely quantum collective fluctuations. 

4.2 Distance enters only through the coherent coupling 

The theory makes explicit that spatial separation affects entanglement only through the coherent coupling 

rate 𝐺(𝑑) mediating interactions between collective modes. No additional distance-dependent 

decoherence term appears at the level of the reduced collective dynamics. Consequently, entanglement 

does not generically decay exponentially with distance unless such decay is present in the coupling 

channel itself. 



This distinction is crucial: long-distance robustness is not a consequence of suppressing environmental 

noise, but of the fact that the collective mode remains the relevant quantum degree of freedom over 

macroscopic separations. The functional form of 𝐺(𝑑) depends on geometry and mediation mechanism, 

but once 𝐺(𝑑) is specified or measured, the entanglement condition follows directly from the open-

system parameters. 

While the present framework is intentionally platform independent, the strong-coupling regime required 

for collective-mode entanglement is known to be accessible in several experimentally mature settings. 

These include low-loss microwave or phononic waveguides, high-Q electromechanical and 

optomechanical resonators, and magnonic systems where collective excitations couple coherently over 

macroscopic distances with dissipation rates well below the interaction strength. In such systems, the 

reduced collective parameters 𝐺, 𝜅, and 𝑛𝑒𝑓𝑓entering our analysis can be independently engineered and 

characterized. 

4.3 Voltage thresholds and thermal noise 

The analytical application in Section 2.6 shows that the minimum collective fluctuation required to 

sustain steady-state entanglement scales as 

𝑉min ∝ √
𝑘𝐵𝑇 𝐵

𝐶 𝐺(𝑑)
. 

This result highlights that ambient temperature enters only through effective noise injected into the 

collective mode within the measurement bandwidth. Thermal energy at the microscopic scale does not 

directly set the entanglement threshold. 

From this perspective, voltage (or more generally collective amplitude) plays an operational role: it 

increases the signal-to-noise ratio of the collective degree of freedom relative to injected noise. Once the 

threshold is exceeded, entanglement exists as a steady-state property of the reduced system, independent 

of measurement duration. 

4.4 Estimator-limited coherence and certification times 

Section 3 demonstrates that experimentally inferred “coherence times” or “entanglement lifetimes” in 

macroscopic systems are often limited by estimator statistics rather than by the underlying quantum state. 

The number of effectively independent samples scales as 𝑁eff ∼ 𝑇𝐵, fixing the rate at which second 

moments can be estimated with a given confidence. 

This distinction explains why increasing integration time improves the statistical significance of 

entanglement witnesses without altering the state itself. Apparent decay of correlations under short 

measurement times or low bandwidth should therefore not be interpreted as physical decoherence of the 

collective mode, but as a limitation of the measurement process. 

4.5 Falsifiability and experimental implications 

The framework presented here is falsifiable through several experimentally accessible tests. Deviations 

from the predicted scaling of the entanglement threshold with bandwidth, temperature, or collective 

capacitance would signal a breakdown of the collective-mode description. Likewise, observation of 



distance-dependent decay beyond that implied by the coupling channel 𝐺(𝑑) would indicate additional 

decoherence mechanisms not captured by the reduced model. 

Conversely, verification of these scalings would support the interpretation that collective quantum modes 

can sustain entanglement over macroscopic distances at ambient temperature, provided the measurement 

basis is collective and estimator limitations are properly accounted for. 

4.6 Broader perspective 

Taken together, these results show that long-range, room-temperature entanglement of collective modes is 

not anomalous, nor does it require exotic protection mechanisms. It follows naturally from standard open-

system quantum mechanics once collective degrees of freedom, phase diffusion, and estimator physics are 

treated consistently. This perspective provides a unifying framework for understanding macroscopic 

quantum correlations across a wide range of systems and offers a principled foundation for scalable, 

room-temperature quantum technologies based on collective modes. 
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