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Abstract

Real ecosystems are characterized by sparse and asymmetric interactions, posing a ma-
jor challenge to theoretical analysis. We introduce a new method to study the general-
ized Lotka-Volterra model with stochastic dynamics on sparse graphs. By deriving local
Fokker-Planck equations and employing a mean-field closure, we can efficiently compute
stationary states for both symmetric and asymmetric interactions. We validate our ap-
proach by comparing the results with the direct integration of the dynamical equations
and by reproducing known results and, for the first time, we map the phase diagram
for sparse asymmetric networks. Our framework provides a versatile tool for exploring
stability in realistic ecological communities and can be generalized to applications in
different contexts, such as economics and evolutionary game theory.
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1 Introduction

The stability of complex ecosystems and the rules governing species coexistence present a
central puzzle in theoretical ecology. The generalized Lotka-Volterra (gIV) model has been a
cornerstone of this inquiry, also related to models used in evolutionary game theory and in
economic theory [1-3]. Recently, the random, symmetric, and dense version of the gIV model
has been analyzed through the lens of equilibrium statistical mechanics. This approach has
yielded profound insights, revealing how the phases of single equilibrium, unbounded growth,
and multiple equilibria are dictated by a handful of macroscopic parameters: the mean y and
variance o of inter-species interactions, and the intensity of demographic noise T. A key
finding is that densely connected networks with random symmetric interactions can exhibit a
phase of multiple equilibria at high interaction heterogeneity [4].

However, real ecological networks are generally neither dense nor symmetric. In real
ecosystems, the interactions between two species are almost always asymmetric, the existence
of predator-prey couples of species being just an example. For this reason, some other works
have tried to go beyond the assumption of symmetry [5-14]. Moreover, in real ecosystems, a
species typically interacts only with a few others [15,16]. In the last years, Random Matrix
Theory (RMT) results [17, 18] have shown that the spectra of sparse random graphs exhibit
qualitative differences from the dense case, suggesting that this may have implications for the
stability of ecological models defined on sparse networks. Accordingly, it would be interesting
to study the properties of the gIV model on graphs with finite connectivity. Unfortunately, in
this case, the methods used for fully-connected systems [4, 7] cannot be applied, in particular
because no central-limit-type arguments hold.

In a very recent paper, for the first time, the equilibrium properties of the symmetric gIV
model on a sparse graph were analyzed [19] using the so-called Belief-Propagation (BP) cavity
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method. This can, however, be used only when an equilibrium measure exists, preventing its
implementation in the case of asymmetric interactions. In general, the description of out-of-
equilibrium systems has been even more elusive, and the available techniques deal only with
specific limits. When species interact through a fully-connected network [20], we can use
Dynamical Mean-Field Theory (DMFT) to describe the temporal evolution of dynamic observ-
ables, which has also been extended to non-Gaussian disorder in the interactions [21]. Other
generalizations include the limit of very small connectivity [21], the limit of a large connec-
tivity that grows sublinearly with the number of species in the graph [22], and the case of
unidirectional interactions [23]. However, until now, there has been no way to systematically
analyze gI'V models with sparse asymmetric interactions.

In this work, we bridge this gap by analyzing both symmetric and asymmetric, quenched-
disordered sparse interactions. We go beyond equilibrium statistical mechanics, introducing
a new method for the evaluation of the stationary probability distribution for the stochastic
differential equations (SDE) that describe the evolution of the species abundance. We start
from the usual formulation of the stochastic dynamics in terms of an SDE and derive the
equivalent Fokker-Planck equation for the associated time-dependent probability densities.
However, solving the full system of partial differential equations defined on the whole graph
in a high-dimensional space is a cumbersome task. To overcome this difficulty, we derive local
closures that allow us to obtain tractable relations for the stationary distributions.

The main idea of a local closure is to propose an ansatz for the probability densities, in
general involving some suitable factorizations that exploit the properties of the interaction
graph. It has been used successfully in several contexts, such as the study of epidemics
spreading on networks [24-27], algorithmic dynamics in hard combinatorial optimization
problems [28, 29], spin-glass dynamics in random graphs [30], or the dynamics of the voter
model [31]. As far as we know, this work constitutes the first application of local closures to
Fokker-Planck equations in sparse graphs. The new approximate descriptions derived here are
what we call local Fokker-Planck equations.

We will validate our method by applying it to different situations, comparing its prediction
with the results obtained from the direct numerical integration of the SDE and recovering
known results from previous literature. We also show how, starting from the general equations
in the asymmetric case, one can recover the BP equations when only symmetric couplings are
considered.

The rest of the manuscript is organized as follows. In Section 2 we introduce the gener-
alized Lotka-Volterra equations and the underlying networks that we will analyze. In Section
3, we present the Fokker-Planck equations that describe the evolution of the probability dis-
tributions of the species abundances in time. These are complicated global equations, which
in general are not solvable. For this reason, in Section 3.1 we introduce a new local closure,
corresponding to a mean-field approximation for the dynamics, called Individual Based Mean
Field (IBMF). Our procedure leads to the main local solvable Fokker-Planck equations that we
discuss in this article. In Section 3.2 we go beyond IBME introducing a more refined closed
local Fokker-Planck equation that we call Pair Based Mean Field (PBMF), showing that the
BP equations introduced in Ref. [19] correspond to the stationary solution of PBMF in the
symmetric case.

We validate our new methods in Section 4, where we give details on the numerical im-
plementation of IBMF both at null and finite temperatures. We compare the stationary abun-
dances obtained with IBMF with those obtained from simulations in the presence of thermal
noise for a single random graph. The results are a useful example to emphasize the strengths
of IBME and to also point out its limitations. Then, we proceed to apply IBMF to three differ-
ent scenarios. In Subsection 4.1, we study undirected graphs with asymmetric interactions at
null temperature, obtaining the corresponding phase diagram in the plane (u, o) for the first
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time, as far as we know. We thus generalize the results for the fully-connected asymmetric
case in Ref. [5] and for the sparse case with symmetric interactions in Ref. [19]. In Subsection
4.2, we apply the IBMF closure to directed graphs with null variance in the couplings and null
temperature, confirming and extending the results of Ref. [32], which were obtained there
with a completely different method. In Subsection 4.3 we move back to undirected graphs,
but this time with symmetric couplings at finite T. This setting helps us study the performance
of IBMF in the presence of thermal noise in a systematic way. We compare the results with
Ref. [19], where the BP method is used to exactly solve the model. We identify the limitations
of IBME, which stops converging to a single equilibrium as soon as the exact species abun-
dances found by BP start developing a non-Gaussian distribution tilted towards extinctions.
Finally, in Section 5, we draw our conclusions.

2 The model

Let us introduce the generalized Lotka-Volterra (gLV) equations that we will study in the rest
of this article. They describe the dynamics of an ecosystem with N interacting species. To
each of them, we associate a positive real variable n;, interpreted as the abundance of the i-th
species, withi =1,...,N. In general, a single species will not interact with all the others, but
instead with a subset of the species known as the neighborhood of i. The interactions occur
in a graph G(V, E), where V is the set of vertices, each representing a species, and E is the set
of edges.

To keep the definitions as general as needed, for now the reader should think of G as a
directed graph. If the presence of species i influences the growth of species j, we add the
directed edge i — j. It is possible to have i — j in the graph without having the edge in the
opposite direction (j — i). We define the in-neighborhood di™ of i as the set of in-neighbors
j such that the edge j — i exists in the graph. For simplicity, graphs G with self-loops will not
be considered here

The gLV equation for the abundance of the i-th species can be written as:

dn: .
n; :ini(Ki_ni— Z aljn])+§l(t)+l, (1)
de Ki jeai~

where n; > 0 is the abundance of the i-th species, and the real parameters r; and K; are known
as the intrinsic growth rate and carrying capacity, respectively. To simplify the setting, we will
take r; = K; = 1 in what follows, but the reader will find no difficulties in generalizing our
results to consider other values of these constants.

The term &;(t) in Eq. (1) is a noise term, which has average (£;(t)) = 0 and second
moments (£;(t1)&;(t2)) =2Tn; 6; ; 6(t;—t,), where T is known as temperature of the noise.
This thermal noise is referred to as demographic [4,33-36] and accounts for death and birth
processes. The parameter A, known as immigration rate, acts as a small source term that allows
extinct species to come back should conditions become favorable to them [20,37]. Its effect
will be clarified later.

The couplings a;; are real numbers that set the type and strength of the interactions. The
value of a;; encodes the way that species j affects the evolution of species i, and therefore
corresponds to the edge j — i on the graph. In the case where for all j € di~ we also have
the edge i — j, the graph is known as undirected. Having a;; and a;; simultaneously positive
means that the two species i and j have a competitive interaction, where the presence of
individuals of species j is prejudicial for the individuals of species i, and vice versa. When
they are both negative, we have a mutualistic interaction, and the species are beneficial to
each other. On the other hand, when the interaction is positive for one species and negative
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for the other, we have a predator-prey or antagonistic interaction. Finally, in the presence of
directed interactions, we can also have commensalism and amensalism, whereby one species
benefits or is harmed by the interaction, while the other is unaffected.

Given that the edge j — i already exists in the graph, we can add noise to the interactions
by drawing a;; at random from some probability distribution. Following many other works
[19, 20, 38], we choose the Gaussian distribution a;; ~ N(u, o), with mean u and variance
o2. The reader should note that, as a particular case, we can set the interaction strengths a; j
to be homogeneous by choosing o = 0. In that case, we get a;; = u for all the edges j — 1.

Our methodology, derived below in Section 3, applies to graphs with directed and/or undi-
rected interactions. We demonstrate this by including results for three different scenarios in
Section 4. In Subsection 4.2 we study a case where, with high probability, the edges j — i and
i — j are not simultaneously present. We follow the same model used in Ref. [39] to study the
gLV dynamics with asymmetric interactions. To construct the network, for each species i we
select the incoming edges by going over all possible j # i, and adding the edge j # i with prob-
ability ¢/N, where ¢ > 0. The in-neighbors of i are chosen independently of the in-neighbors
of j, and in the limit when the number of species is large, it is highly improbable that we find
i — j and j — i simultaneously in the graph. The result is a graph where the degree follows a
Poisson distribution with mean ¢, and where most interactions are directed. Finally, for each
edge j — i we draw a;; from the Gaussian distribution A/(u, o). In Subsection 4.2 below, we
include results for different values of u but only two values of o (o =0 and o = 0.15).

In Fig. 1, and in Subsections 4.1 and 4.3, the species interact over an undirected random
regular graph, whose edges are randomly selected such that each species (vertex) has the same
number of neighbors, denoted by ¢ and called connectivity. After the graph is built, we need
to choose the interaction strengths a;; and aj; for each edge. In Subsection 4.1, we draw a;;
independently of a;; using the Gau551an dlstnbutlon N (u, o), for different values of u and o.
Notice that this creates asymmetric interactions where, in general, we have a;; # a;; whenever
o # 0. In Subsection 4.3 we study the case o = 0, where we always get a;; = a;; = 4 and the
interactions are symmetric.

3 Local Fokker-Planck equations

Given a graph of interactions, Eq. (1) gives the temporal evolution of the abundances in a
stochastic process with thermal noise £(t). Sampling different realizations of the initial con-
ditions and of £(t), one gets the probability distribution P, (i) of the vector ri = (ny,...,ny) at
time t. This quantity obeys a Fokker-Planck equation that can be derived from Ito’s rule [38].
However, contrary to the usual case where the variables are defined in the interval (—oo, +00),
each abundance n; is defined in the interval [0, +00). As a natural consequence of this fact (see
Appendix A for more details), one needs to impose the proper boundary conditions at n; =0,
guaranteeing that the current of probability density through the border is always zero [40].
The resulting Fokker-Planck equation is:

N

al;tgﬁ) :Tzaa—;{niﬂ(n) Zai{ [n(1—ni— > ayn)+2 p(n)} 2)

i=1 i i=1 jeai-

4

The first and second terms on the right-hand side of Eq. (2) are the usual diffusion and
drift terms of the Fokker-Planck equation, respectively. They encode the evolution of a species
subject to Eq. (1). The deterministic growth ratio n;(1 —n; — Zjeal ijnj) + A experienced
by species i goes into the drift term. The thermal noise with temperature T gives birth to the
diffusion term.
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In any case, solving Eq. (2) is a cumbersome task mainly because P,(i1) is a highly dimen-
sional object. The abundances are defined on the space (0,4+00)N and the time can be in
general defined in the space (—oo, c0). Even when we consider a single species (N = 1),
finding P,(n) at any time t is not simple. However, we can obtain its stationary solution (see
Appendix B), which will be useful for us later. It reads:

Peo(m) = 2 1P exp{~ (172}, @

where Z is a normalization constant and f =1/T.

Eq. (3) clarifies the role of the parameter A in the model. The integral fooo dnPs(n) is
finite if and only if A > 0. Otherwise, the divergence at n = 0 dominates the integral, which
would be divergent. In other words, the existence of A > 0 allows the density P.,(n) to be
normalizable. On the other hand, when A =0 and T > 0 the species are doomed to go extinct
for large times.

3.1 Individual Based Mean Field

To find solvable equations, we need to simplify Eq. (2). In this subsection, we obtain the
first local Fokker-Planck equation for the gI'V model. Let us marginalize Eq. (2) over all the
abundances except n; to obtain the differential equations for the local probabilities, which are

defined as P,(n;) = [ [ Tz dne P (7):

oP,(n;) 92 %,
at =T anlz {niPt(nl-)}— a_nl{[nl(]. —n; —]ezal_au mj_n'(ni, t)) + )L]Pt(ni)}, (4)
where m;_,;(n;) is the conditional average
oo
m;_i(n;, t) = J dn;n;P.(n; | n;). (5)
0

As in the Fokker-Planck equation for the whole system, the local version in Eq. (4) has
two different contributions. The first line in the equation shows the diffusion term. On the
other hand, after averaging over the rest of species, the single species i senses an effective
drift ni(l —n;—y. jeai-®ij m;_,i(n;, t)) + A, where n; is substituted by its conditional average
mj_,i(ni, t). For more details on the derivation of Eq. (4), the reader is referred to Section 1
of the Supplemental Materials (SM).

We have not introduced any approximation so far. To solve Eq. (4), one would also need
to obtain all the functions mj_”-(nl-), but from its definition (Eq. (5)) it is evident that this
is equivalent to getting the solution for the pair probabilities P;(n;,n;). Indeed, to compute
the conditional probability density P,(n; | n;), we need the pair P,(n;,n;) and the single-site
P,(n;) probabilities. As we will show in the next section, the local Fokker-Planck equation
for P.(n;,n;) depends, in turn, on probabilities P,(n;, n;, n;) defined over three species. After
iterating this process, we get a hierarchy of equations that never closes until we recover the
full Eq. (2). Therefore, solving Eq. (4) has the same level of difficulty as solving Eq. (2).

To overcome this problem, we need to introduce an approximation that allows us to get a
closed system of differential equations for the P,(n;), i.e, one that can be solved without going
up in the hierarchy. The first step that one could take in that direction is to assume m;_,;(n;, t)
is independent of n; and write m;_,;(n;, t) ~ m;(t), where

6
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Doing this is equivalent to assuming that the pair probabilities are all factorized such that
Pi(n;,n;) ~ Py(n;)P;(n;). Therefore, we are trivializing the correlations in the system. Never-
theless, this approximation allows us to close the system of differential equations since all the
information that we need is in the single-species distributions P,(n;). We get:

oP(n;) Taz{nipt(ni)} A
at an? on;

{[ni(l—ni—z aijmj(t))+l:|Pt(ni)}. 7

jeoi~

These local Fokker-Planck equations form a dynamic closure that can in principle be solved,
and that we will call Individual Based Mean Field (IBMF) in what follows. This name has
been used before in the literature, particularly in the study of epidemic spreading throughout a
network [24,26], to identify an approximation that factorizes the pair probabilities distribution
as explained above. Finding the stationary solution of Eq. (7) has the same level of difficulty
as for an isolated variable (see Eq. (3) and Appendix B). The result is:

1 paa B
Poo(n;) = Z_ni eXP{—E(ni—Mi)z}, (8)
where
2= | dnnp exp{—é(n-—M-)Z} ©)
i . i’y g Vi i

jeoi~

This is a mean-field solution to the problem derived for sparse graphs with any type of
interactions. In fact, a similar probability density has been recently introduced in Ref. [41] for
the case of fully-connected models, a scenario where mean-field assumptions like these are
more commonly used. The presence of other species modifies the center M; of the Gaussian
in Eq. (8) to make n; align with the average effect of its neighbors. To evaluate the stationary
solution of IBME we need to design an algorithm capable of computing the averages m;(o0),
which we will denote by m; for simplicity. Exploiting Eq. (8), we can write:

I O p 2
m= n;n; exp{—g(ni—Mi) } (11
iJo

As said above, Z; and M; are functions of the averages m;, with j € di”. After making an
initial guess for the average abundances m;, withi =1,...,N, we can use Eq. (11) to update
their values. Then, we iterate until all m; converge to the IBMF’s prediction for the stationary
average abundances. In practice, we employ numerical tricks, such as adding damping and
using sequential updates, to aid this iterative process in reaching convergence (see Appendices
E and Q).

In the process of obtaining the stationary solution of IBME we did not assume any partic-
ular structure of the graph, nor any specific type of interaction. It is in principle applicable
to any directed or undirected graph, with symmetric or asymmetric interactions. However,
one should expect better results when correlations are weak enough for the factorization
Peo(ni,nj) ~ Poo(n;) Poo(n;) to approximately hold. The latter is intuitively more likely to
happen in the case of asymmetric interactions.
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3.2 Continuous Belief Propagation

To go beyond IBME we need to include non-trivial correlations between pairs of interacting
species. Therefore, it is reasonable to go up one level in the h1erarchy and write the local
Fokker-Planck equations for the pair probabilities P;(n;,n;) = fo ]_[k#i’j dn; ]P, (7). After
marginalizing Eq. (2) over the abundances of all the species (the details can be found in Section
1 of the SM), except for i and j, we obtain a local equation that depends on the conditional
averages:

oo

My j(ng,nj, t) EJ dmny ny Pe(ny | ng, m;). (12)
0

Solving for my_,; ;(n;,n;, t) implies knowing the three-species probabilities P,(n;, n;,ny),
but we need to close the hierarchy at some point. However, if one focuses on random sparse
graphs like random regular or Erdés-Rényi, the tree-like structure of the interactions makes
it very unlikely that species k interacts with i and j simultaneously, provided that i and j
interact. If k € di~, we can assume that m_,; (n;,n;, t) strongly depends on n; and only
weakly depends on n;. We then make the approximation my_,; j(n;, n;, t) ~ mk_n(nl, t). The
result (see Section 1 of the SM) is a closed local Fokker-Planck equation that we call Pair Based
Mean Field (PBMF), also using a name that is popular in the context of epidemics spreading
on networks when the dynamics is described using pair probabilities [25, 26].

Although the PBMF is simpler than the full Eq. (2), it is still difficult to obtain a general
solution, even when we focus only on the stationary point. Only in the case of symmetric inter-
actions in undirected graphs (a;; = a;;), as we show in Subsection 2.1 of the SM, the proper
solution to the local Fokker-Planck equation for pair probabilities in sparse random graphs is
Belief Propagation (BP). This technique was already introduced in Ref. [19] for the gLV model.
However, while in that case the abundances of the species are considered as discrete variables
with states n; = 1,2,..., here we use the continuous version of the model. We solve this issue
by proposing a new continuous implementation of BP equations for our model, which have
the same structure as the ones in Ref. [19], but include the proper adjustments to consider
continuous n; € [0,+00). These are:

BA—1

n
”h—u(n ) = exp{— E(n —2n; ) l_[ J dnk nk—n(nk)e Bain; ne 5 (13)
0

Zioj kedi—\j

where n;_,;(n;) is the cavity marginal, or message, that represents the marginal probability
density of species i in a modified graph where the edge connecting i and j is removed. The
constant z;_,; is a normalization factor.

Here, we can identify that the local field h;, whose exponential e #"(") ysually appears
in front of BP equations, is simply h; = ”1’2 /2—n; + (T — A) In(n;). This expression properly
considers the immigration rate and the continuous nature of n;. From it, we can obtain the
stationary single-site and the pair probabilities as follows:

/3/1—1
Pgp(n;) = exp{—é(n —2n;) l—[ f dny () e Pewnmime (14)
kedi~
1 Y D
Pgp(n;,n;) = —nisj(ny)e Pomin, Nj-i(n;), (15)

Zij
where Z; and Z;; are normalization factors and the messages n;_,;(n;) are the fixed point
solution of Eq. (13).
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The reader could wonder what the relation is between BP and the local Fokker-Planck
equations that we have been presenting here. Remarkably, it is possible to prove that the
expression in Eq. (15) for the pair probabilities, together with BP equations (Eq. (13)), is a
stationary solution of PBMF when the interactions are symmetric. The details of the proof are
given in Subsection 2.1 of the SM. To obtain numerical results from BE we use an iterative
algorithm analogous to the one we introduced above for IBME Making an initial guess for the
messages 1);_,;(n;), we can use Eq. (13) to update their values at each n;. This procedure
is iterated until all n;_,;(n;) converge, and the final messages are used to compute the true
marginals Pgp(n;) and Pgp(n;,n;). For the interested reader, we include details about our
specific implementation of BP in Section 4 of the SM.

4 Numerical results

As said above, to use IBMF to obtain the actual values of the averages m;, we need to numer-
ically compute integrals of the form:

oo
L(B,A,M) = f dnnP* 17k exp { —
0
with the parameter k taking the value k = 0 in Eq. (9), and k =1 in Eq. (11).

Luckily, the integral in Eq. (16) can be expressed in terms of known special functions,
called parabolic cylinder functions (see 9.241 in Ref. [42]). This is very convenient because
we can write the parabolic cylinder functions in terms of the more practical Kummer’s conflu-
ent hypergeometric function, which can be found already tabulated in different programming
languages. The interested reader can find the details in Section 3 of the SM. The code is
available at Ref. [43].

When the temperature is zero or close to zero, the equations can be simplified even further.
The exponential in Eq. (16) concentrates around its maximum, and provided that A is small,
IBMF equations reduce to:

B

o (=M}, (16)

Tli:maX{O, 1— Z al-jnj}. (17)
jeoi~
At T = 0, we simply need to iterate Eq. (17) until convergence. It is important to note
that this is not the same as running the zero-temperature simulations of the dynamics, which
in turn implies integrating the system of differential equations:

dn;

d—tlzni(l—ni— Z al]n1)+l . (18)
jeai~

Such numerical integration of the gIV dynamical equations at T = 0 can be performed using
the Cash-Karp adaptive Runge-Kutta method [44]. The code is available at Ref. [43].

For small A, the fixed points of Eq. (17) coincide with the stationary solutions of the exact
dynamics in Eq. (18). Therefore, whenever IBMF converges, the fixed point represents an
actual stationary configuration of the dynamics. On the other hand, the non-convergence
of IBMF is not guaranteed to be reflected in the behavior of the simulated dynamics. One
could think of them as two different algorithms trying to find the same fixed points. If one of
the algorithms succeeds, the resulting abundances constitute a fixed point also for the other
algorithm. If one of them does not succeed, the other still could.

However, we show in Subsections 4.1 and 4.2 (see below) that IBMF can nevertheless
be used to predict the relevant phase transitions observed in the simulations at T = 0. In
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Figure 1: Comparing individual abundances from IBMF and simulations in a random
regular graph at finite temperature T = 0.015. The connectivity is ¢ = 3, and the
immigration rate is A = 107°. Each a; j is independently drawn from the Gaussian
N(0,0), with o = 0.15 (the interactions are asymmetric). Each point in the main
graphic has coordinates (nl.SIM,niBMF), where nl.SIM is the average stationary abun-
dance of species i obtained from 100 simulations of the dynamics, and n}>™" is the
prediction of IBMF for the same species. The black dashed line is just the linear func-
tion f(x) = x. The system has N = 1024 species, thus there are 1024 points in the
main graphic. The inserted graphic in the top-left corner shows the temporal evolu-
tion of four species with small stationary abundances. The corresponding points are
marked with the same colors in the main graphic. The horizontal lines are the pre-
dictions of IBMF for the same species. The graphic is in semi-log scale. Analogously,
the inserted graphic in the bottom-right is done with four species whose abundances
are not small. Colored lines show the results of simulations, and the horizontal black
lines show the predictions made with IBME

Appendix C and for a random regular graph with homogeneous interactions, we show that
the exact result for the transition from single-to-multiple equilibria [32] arises naturally from
IBME Furthermore, in Section 2.2 of the SM, we recover the stationary solution of Dynamical
Mean Field Theory [20] in the limit of large connectivity at zero temperature.

In the presence of thermal noise (T > 0), we still have a fast implementation of IBME
It is important to note that, for finite temperatures, IBMF is always a factorized ansatz for
the probability density of the abundances. With its stationary solution, we can predict the
final average abundance ni"™" for each of the species in a given graph. To illustrate how
this works, Fig. 1 compares each ngBMF with the average stationary abundances niSIM obtained
from simulations for a specific realisation of a random regular graph in the presence of thermal
noise. The numerical integration of the SDE defining the gIV model in Eq. (1) are performed
by means of the Milstein method [45,46]. As with the other algorithms, the code is provided
in Ref. [43]. The interactions are asymmetric, i.e., we choose a;; independently of a;;, each
from a Gaussian distribution N (0,c). As far as we know, this is the first time a theoretical
prediction of this kind has been made for sparse graphs.

The main graphic of Fig. 1 shows that IBMF accurately predicts the abundances of the
species that are dominant in the ecosystem. For n; > 0.6, the points (n¥™, n!®™F) lie around
the line f(x) = x of perfect agreement. Most species (~ 91%) are in this group. In the
bottom-right corner of Fig. 1, the inserted graphic shows the temporal evolution of four of
those species observed in a single simulation. The corresponding points in the main graphic
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are marked using the same colors. The stationary abundances of those species, which were
selected at random, oscillate around the corresponding predictions from IBMF (presented in
black dashed lines). We observe almost perfect agreement between them.

On the other hand, IBMF consistently underestimates the stationary abundances obtained
from simulations for species that are closer to extinction, with n; < 0.6. Very few (~ 9%)
species are in this group. The results become clearer after analyzing the inserted graphic in
the top-left of Fig. 1. There, we show the temporal evolution of the abundances of four species
that are very close to extinction according to IBME but whose average stationary abundance
from simulations is not as small. The corresponding points in the main graphic are marked
using the same colors.

The inserted graphic shows that these species in the lower bottom corner of Fig. 1 continu-
ously switch between two time-persistent states. After spending some time oscillating around
a value of the abundance n?igh that is not small (from the figure we see that n};igh > 0.1),
the species suddenly drop down and oscillate for a while around a very small abundance
n%"w ~ 0.001. This small n%"w corresponds well to the predictions of IBME marked with hor-
izontal dashed lines in the graphic. The real stationary abundance measured in simulations
by averaging n; for long times, however, is somewhere in between ni.ow and n?lgh Instead
of mimicking this intermediate value without a clear physical meaning, IBMF gives only the
smallest of the two true values n%ow and n?lgh. Although it is only partially right, it definitely
allows identifying the species that are going to exhibit this type of dynamics. A similar be-
havior has been recently found in fully-connected systems with asymmetric interactions and
without thermal noise [47], where the species also switch between two time-persistent states,
only one of which is close to extinction. Remarkably, while in Ref. [47] this is observed for
every species, in our case we have only a few switching species. This species heterogeneity is
probably related to the sparsity of interactions.

Both with IBMF and with simulations, we verified that the corresponding stationary abun-
dances were independent of the initial conditions (and of the realization of the noise in simu-
lations). Remarkably, computing the stationary abundances with IBMF is two orders of magni-
tude faster than running the simulations. By averaging over 100 different initial conditions, we
get the average wall-clock times of 22.0£0.3 ms for IBME and of 1390+ 60 ms for simulations
(ms stands for milliseconds).

The results in Fig. 1 clarify the meaning of IBMF and its predictions for a single graph, while
also raising new questions on the link between the structure of the interaction graph and the
observed non-trivial dynamics. This phenomenon can also depend on the model’s parameters.
Getting a clear picture will require further work, especially because of the difficulties involved
in numerically analyzing the results from simulations in the presence of thermal noise.

In this introductory work, we provide a general and clearer picture of how IBMF works in
more controlled scenarios. First, Subsections 4.1 and 4.2 compare IBMF with simulations at
zero temperature, where the results from the latter are easier to interpret. In Subsection 4.1,
we study the phase diagram of the model in graphs with asymmetric interactions in undirected
random regular graphs. In Subsection 4.2, we revisit a model discussed in Ref. [39] to predict
the probability of observing persistent fluctuations in the dynamics for any given system size.
Subsection 4.3 is devoted, instead, to a case where we include thermal noise. Although IBMF
with T > 0 can be applied to symmetric or asymmetric interactions, we chose to study the
model with symmetric and homogeneous interactions. The reason is that, in this case, we can
compare the output of IBMF with the results of BE thereby avoiding the numerical complica-
tions associated with studying the phase transitions of the simulated dynamics in the presence
of thermal noise. The latter is left for future work.
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Figure 2: Transitions obtained simulating the gIV model for T = 0, asymmetric inter-
actions (a;; is chosen independently of aj;), and A = 107°. For several pairs (i, o),
we run the dynamics for 10000 different random regular graphs with connectivity
¢ = 3 and size N = 1024. The interaction strengths are drawn from the Gaussian
distribution: a;; ~ N(u,0). By repeating the simulation 10 times with different
initial conditions for each graph, we identify one of three possible outcomes: i) all
realizations converge to the same fixed point, ii) all the realizations converge but the
fixed points are different, or iii) the abundances in at least one of the simulations
grow and diverge for long times. The blue points mark, for each u, the maximum
value of o at which more than 50% of the samples are of type i). The red points
mark, for each u, the minimum value of o at which more than 50% of the samples
are of type iii).

4.1 Undirected graphs with asymmetric interactions

In this Subsection, we apply IBMF to undirected graphs with Gaussian noise in the interactions
at zero temperature. We take a random regular graph with a given connectivity ¢, and draw
every a;; from a Gaussian with mean u and standard deviation o (a;; ~ N (u,o)). This means
that the coupling in the opposite direction, a;;, is independently drawn from the same distri-
bution. Thus, the interactions are generally asymmetric. The larger the standard deviation o,
the bigger the average difference between a;; and a;;.

Fig. 2 shows the phase diagram obtained by simulating the gIV dynamics at T = 0 and
u > 0, with A = 107 (see Eq. (18)). We identify three distinct regions. When ¢ is small
enough, the species reach a unique fixed point for long times, which corresponds to the single-
fixed-point (SFP) phase. The first transition occurs at ogpp(u), and is represented with blue
points in Fig. 2. For o > ogpp(u), simulations with different initial conditions will not con-
verge to the same fixed point in most interaction graphs. The unbounded growth (UG) tran-
sition is located at oyg(u) = ogpp(u), and is represented by the red points in Fig. 2. Above
this line, the abundance of at least one species grows and diverges in most simulations.

Note that the transition at ogpp(u) is not purely between a single-fixed-point phase and a
multiple-fixed-points phase. Although for large u this is indeed the case, for u < 0 the system
goes directly from reaching a single fixed point to showing unbounded growth (see Appendix
D). In between, we have a crossover between these two types of transitions.

The crossover poses a problem in predicting them using IBME As said before, any fixed
point of IBMF is also a stationary solution of the exact dynamics at T = 0. We need to design
a procedure capable of detecting the presence of different fixed points if they exist. We then
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Figure 3: Transitions of the gLV model for different system sizes at T = 0. The inter-
actions are asymmetric (a;; is chosen independently of aj;) and defined on random
regular graphs with connectivity ¢ = 3. Points represent the results of simulations
with immigration rate A = 107°, and lines are the predictions made with IBMF for the
same sizes. Each transition was determined using 10000 graphs. Simulations are re-
peated for 10 different initial conditions. IBMF was run with damping (see Appendix
E) for 10 different random initial conditions. (a) For each system size N and average
strength u, points (lines) mark the maximum value of o such that simulations (IBMF)
converged to the same fixed point in more than 50% of the interaction graphs. (b)
Points (lines) mark the minimum value of o such that simulations (IBMF) displayed
unbounded growth (not converged) more than 50% of the interaction graphs.

compare the results when we choose different initial conditions for the average abundances
of IBME

In Fig. 3, we compare the results of the simulations with the predictions of IBME There
are three possible outcomes of IBME and they are similar to those obtained from the simula-
tions. For o small enough, running IBMF in a specific graph many times with different initial
conditions always gives the same fixed point. For o large enough, two things can happen.
Either IBMF converges to multiple fixed points for a given graph, provided that we change
the initial conditions, or it does not converge at all. Interestingly, for IBMF we also observe
a crossover between these behaviors. Fig. 3a shows the transitions between the single-fixed-
point phase and the region where we either find multiple fixed points or no convergence. The
lines, representing IBME accurately reproduce the results from the simulations.

Although we know that if IBMF reaches a fixed point, this is also a fixed point of the
exact dynamics, it does not necessarily stop converging when the simulations do. We used
IBMF to reproduce the transition to unbounded growth. Fig. 3b shows a very good agreement
between simulations and IBME This also extends to negative values of u, which correspond to
interactions that are mutualistic on average (see Appendix D).

Our results indicate that IBMF is enough to independently describe both aspects of the
crossover: the transition to the multiple-fixed-points phase and the transition to unbounded
growth. Note that the finite-size effects are relevant in both panels of Fig. 3. The transi-
tions obtained with the simulations and with the theory move downward when the number
of species N increases. Nevertheless, IBMF is enough to capture these effects correctly, and its
description is already accurate for finite systems.

As mentioned above, to obtain Fig. 3 we drew a;; and aj; independently from Gaussian
distributions for every pair of interacting species. It is important to mention, however, that
the quantitative agreement between IBMF and simulations also holds when a;; and a;; are
correlated, as we show in Appendix F.

J
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4.2 Directed graphs

As in Ref. [39], we study the emergence of fluctuating abundances n; in graphs where the
degree follows a Poisson distribution with mean c, and where most interactions are directed.
If the edge j — i is present, with high probability the edge in the opposite direction does not
exist. The graph can be seen as representing a directed flow between the species. We say
that species j is upstream with respect to species i (j — i). Conversely, species i is said to be
downstream with respect to species j. We then independently draw each associated a;; from
the Gaussian distribution N (u, o).

The authors of Ref. [39] carefully studied the case with homogeneous interactions (o = 0),
and demonstrated that the zero temperature dynamics in this toy model can have two distinct
outcomes at long times. One possibility is that all abundances converge to a fixed stationary
value, with the whole system reaching a fixed point. The second possibility is that not all
species converge, resulting in a system with persistent fluctuations. The latter case can also be
subdivided into two by taking into account the number of fluctuating species, with one regime
with local fluctuations and another with global fluctuations.

One of the main objects to measure is the probability that we obtain persistent fluctuations
Diiuc after running the dynamics in a graph extracted at random for some average connectivity
¢ and interaction strength u. Note that pg,. does not distinguish between local and global
fluctuations.

The system undergoes a transition around y = 1 [39]. For ¢ < e, where e is the Euler’s
constant, and in the limit when the number of species is large (N — ©0), one gets pg,. = 0
for u < u. =1 and pgy. > O for u > u. = 1. For ¢ > e and also in the limit N — oo, the same
transition occurs but is displaced to smaller u, and the critical u, < 1 slowly decreases when
the connectivity increases.

As in the case of asymmetric interactions in a random regular graph (Subsection 4.1), we
numerically demonstrate that, for this toy model, the probability of having persistent fluc-
tuations in the simulations can be well approximated by studying the probability that IBMF
converges. Fig. 4a presents the results obtained in the toy model. In this case, we observe that
adding damping to the iterations is particularly important (see Appendix G). For each graph of
interactions generated with the rules described above, we also have two different outcomes.
Either the abundances converge to a fixed point, or they continue to exhibit persistent fluctu-
ations. As in simulations, the probability of convergence displays a qualitative change in its
behavior around u = 1.0.

The probability P,. that IBMF does not converge corresponds very well to the predictions
made in Ref. [39] for the probability of having fluctuations, represented with dashed lines in
the main graphic of Fig. 4a. When p > 1, the authors of Ref. [39] conclude that, in a given
graph, the only fluctuating species are located in short cycles of odd length. The species in any
cycle of length n = 2k 4+ 1 will fluctuate if two conditions are met: i) all the species that are
upstream of the species in the cycle are extinct, and ii) the cycle is unstable, which happens for
u > 1/cos(mt/n). The value of u thus determines the minimum length n;, of the fluctuating
cycles. For details on the computation, see Appendix G in this article or directly read Ref. [39].

From top to bottom in the figure, the dashed lines correspond to u = 3.0 (g, = 3),
u=1.5 M, =>5),and u = 1.1 (n,;, =9). When n is large, the values of u.(n) =1/ cos(m/n)
are close to each other and to u = 1, and it is numerically harder to distinguish between two
values of u. However, in Fig. 4a, IBMF results for u = 1.1 (orange points) are not far apart
from the corresponding dashed line.

Below u = 1.0, the results in Fig. 4a are qualitatively different, also in agreement with
Ref. [39]. For u = 0.9, the probability that IBMF does not converge remains close to zero until
it abruptly grows towards one around ¢ ~ 3.1. If we decrease u just a bit more to u = 0.8,
we get P,. ~ 0 for all ¢ < 4. In Appendix H, we study the dependence of the results on the

14



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

SciPost Physics Submission

1F T 1F —
1 —— =
08| N=16384 3/ f 1
08F 006 7 E 0.8 N=8192 —
04 /'R N=16384 — .
0.2 | N=32768
08F ol L / 067 N-65536 — ‘
s : SR
04 IBMFpu=08— 04} ’
L=09—
u = 11 7
0.2+ p=15— / 0.2}
w=30—-"
o =~ N=65536 o bt
0 05 1 15 2 25 3 35 4 46 ! i . 5.6

C

(a)

Figure 4: Probability that IBMF does not converge (P,.) in directed graphs. IBMF
is run over different realizations of the interaction graph with a given average con-
nectivity c, size N, and interaction strength u. There is no unique function for all
u > 1, and dashed lines in the top panel are obtained exactly as in Ref. [39] (see the
text for clarification). (a) Toy model without noise in the interactions (o = 0). The
colored lines in the main graphic represent the results of IBMF for N = 65536 and
different values of u. In the inserted graphic, IBMF (lines) is run instead for systems
with N = 16384 species, and the points represent the results of simulations of the
dynamics for the same system size. The vertical line marks the value ¢ = e. The
error bars for IBMF predictions are small and are not included in the graphics. (b)
The interaction strengths are drawn from the distribution NV (u, o) with u = 0.7 and
two values of o. The values of P, for different values of ¢ are represented using
points with their corresponding error bars. Lines are a guide to the eye.

system size to conclude that, effectively, the transition for y < 1 is qualitatively different from
the one for u > 1.

Even for a large system with N = 65536 species, we observe that the predictions of IBMF
deviate from the theory of Ref. [39], which is derived in the infinite size limit. In the inserted
graphic of the same Fig. 4a, we show that this is not a particular problem of IBME With points,
we represent the results obtained after simulating the dynamics by integrating Eq. (18). They
are in very good agreement with the predictions of IBMF (lines), also above the critical con-
nectivity ¢ = e, which is marked with a vertical dashed line. As in Section 4.1, IBMF allows us
to capture the finite-size effects in simulations, which is an advantage with respect to previous
theoretical predictions. It is important to note that, even when run in single graphs, obtaining
results from IBMF is computationally much simpler than performing actual simulations. Re-
markably, the average runtime of IBMF for different values of u and c is consistently 10 times
faster than the runtime of simulations, under equivalent conditions and for the same system
size (see Appendix I).

Moreover, our IBMF equations are not restricted to this toy model, and some variations can
also be studied. The authors of Ref. [39] try a modification to include noise in the interaction
strengths. They take a;; from the Gaussian distribution N'(u, o), again with probability ¢/N,
and zero otherwise. According to the text of that article, for 0 = 0 and u = 0.7 the transition
occurs around ¢ ~ 5.3, while for c = 0.15 and u = 0.7 they get ¢ ~ 4.9.

Fig. 4b shows the probability that IBMF does not converge when the interactions are drawn
using this modified toy model. We include results for u = 0.7 and two values of . With
o = 0 (continuous lines), we recover the original toy model and use it as a reference. On the
other hand, setting 0 = 0.15 (dashed lines) adds noise to the interaction strengths, and the
probability that IBMF does not converge increases.
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In both cases, we run IBMF for different system sizes. The curves show crossing points at
¢ ~5.1and c ~ 4.95, for 0 =0 and o = 0.15, respectively. When the number of species N
increases, the probability P, has a sharper transition between P,. ~ O to the left and P,. ~ 1
to the right of the crossing point. If this trend continues as expected when the number of
species is large, the values ¢ ~ 5.1 and ¢ ~ 4.95 are reliable estimates of the location of the
transition between a single equilibrium phase and the phase with global fluctuations. These
results are indeed close to the ones mentioned in the text of Ref. [39]. The small discrepancies
should be investigated further by performing the same analysis with data from simulations of
the dynamics, which is technically more difficult because simulations take more computational
time (see Appendix I)

4.3 Including thermal noise

Subsections 4.1 and 4.2 show that at T = 0 the results of IBMF are in good agreement with
simulations. When thermal noise is present (T > 0), the fixed points of IBMF can still be
efficiently retrieved using Egs. (9), (10), and (11), and taking advantage of the fact that
these integrals can be expressed in terms of Kummer’s confluent hypergeometric functions
(see Section 3 in the SM). However, in this case, IBMF is an approximation that considers the
probability distribution of the system to be factorized as P(ii) = [ [. P(n;). Its predictions,
accurate for low temperatures, are expected to fail when T is high enough.

In this section, we study how the results of IBMF depend on the temperature in the gIV
model defined over random regular graphs with symmetric interactions. This is a controlled
scenario where we have a reliable theoretical technique to compare with, which is BB We
further simplify the setting by eliminating any noise in the interaction strength. Provided that
(i,j) is an edge in the random regular graph, we set a;; = a;; = u, which is equivalent to
drawing all a;; from the trivial Gaussian N (u,0). A first version of the phase diagram T vs.
u is available in Ref. [19], where BP is run using discretized abundances. Interestingly, the
authors of Ref. [19] note a re-entrant transition in their phase diagram: for low temperatures,
the critical value of u decreases when T increases, until it reaches a minimum. Then, it returns
and starts increasing as the temperature continues to rise.

To compare BP with IBME which works directly with continuous variables, we use our new
implementation of BP with continuous variables. After obtaining the messages by iterating
Eq. (13) until convergence, we use Egs. (14) and (15) to get the true marginals. The reader
can find details about our implementation in Section 4 of the SM. From Eq. (14), we see that
the stationary distribution for a single species has the form Pgp(n;) = nlf.j A_1133 p(n;)/Z;, where:

Byp(ny) = exp {- ﬁ(n —2n)} T] J dny 1y (ng) e Pk (19)
keoi~

can be interpreted as an auxiliary probability distribution if Z; is taken as the proper normaliza-
tion factor. The messages 1;_,;(1;), necessary to compute Pp(n;), are the fixed point solution
of Eq. (13).

Since the abundance n; must be positive, the distribution in Eq. (19) is defined only for
n; > 0. Whenever interactions are absent (a;, = 4 = 0 for all i and k), Pzp(n;) becomes a
truncated Gaussian centered at n; = 1. Letting u increase away from zero, one gets a distribu-
tion Pyp(n;) that is no longer strictly a truncated Gaussian. Moreover, when the interactions
are homogeneous (all a;; = ), BP converges to the same Pgp(n;) for all sites i. This index
can be dropped, and the average distribution Pgp(n) = >, Pzp(n;)/N is equal to Pgp(n;) itself.

Figs. 5a, 5b, and 5c show that, even with non-negligible thermal noise and non-zero values
of u, the distribution Pyp(n) obtained with BP is not far from Gaussian. These three distribu-
tions are obtained for the same temperature T = 0.03, using y = 0.04, u = 0.06, and y = 0.12,
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respectively. While Pyp(n) is represented with colored points in the main graphics, the contin-
uous black lines are the result of fitting truncated Gaussians P;(n) to the data. The inserted
graphics show the relative deviation Agp_; of the points with respect to the fits:

_ Pyp(n) — ﬁG(n)
P ¢(n)

For u = 0.04 and u = 0.06 (Figs. 5a and 5b, respectively), the relative deviation is small for
all the values of the abundance. In the corresponding main graphics, the points are indeed very
close to the fits. The most significant difference occurs at the tails of the distribution. Close
to n = 0, we get that Pzp(n) is below the truncated Gaussian, while for n large it is above.
In other words, the presence of thermal noise and interactions tilts the true distribution and
gives slightly more weight to large abundances. The ecosystem is a bit more favorable for the
species to thrive.
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Figure 5: Predictions of IBMF and BP with T > 0 for symmetric and homogeneous
interactions (o = 0) in random regular graphs with connectivity ¢ = 3. The immi-
gration rate is A = 107°. (a), (b), and (c) Distributions ISBP(n) obtained with BP
(see Eq. (19)) for u = 0.04,0.06,0.12, at temperature T = 0.03, and with system
size N = 128. Black continuous lines are fits to the points via truncated Gaussians.
The inserted graphics show the relative deviation Agp_.; of the points with respect
to the fits (Eq. (20)). (d) For each temperature T, we mark the maximum value of u
where BP converges (green points). We also run IBMF on 10000 graphs, each with
10 different initial conditions, and mark the maximum value of u where it converges
to the same fixed point in at least 50% of the graphs (blue points). System sizes are
N = 128 and N = 1024 for BP and IBME respectively. (e) Average abundance as
a function of u. The black dashed lines are obtained with BP where this algorithm
converges. The continuous colored lines are obtained with IBMF where it converges
to a single fixed point. The colored points represent the average over several IBMF’s
fixed points, sampled using 10000 distinct initial conditions. The inserted graphic
shows the skewness y of the distribution Pgp(n). We use colored lines in the region
where IBMF finds a single equilibrium point, and continuous black lines elsewhere.
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The difference with respect to a Gaussian increases with u and is more evident at u = 0.12
(Fig. 5¢). There, the scenario has been reversed. The main and inserted graphics show that
now the true distribution is above the Gaussian for n ~ 0, and is below for large n. The non-
Gaussianity of the distribution gives more weight to species that are close to extinction. In
terms of the model, this corresponds to an ecosystem that can support fewer species. Even-
tually, the situation is no longer compatible with the existence of a fixed point of BB and this
algorithm stops converging around y = 0.1405(5). In summary, we observe two distinct types
of non-Gaussianity in BP at T = 0.03: one that is tilted towards larger abundances, which
occurs at small values of u, and another one tilted towards extinctions, which occurs close to
the point where BP stops converging.

In the phase diagram in Fig. 5d, the points where BP stops converging at each temper-
ature are marked with green crosses. The results confirm the re-entrant transition detected
in Ref. [19]. When the temperature goes to zero, one recovers the exact result u ~ 0.354 of
Ref. [32] (see Appendix J) for the transition from the single equilibrium phase to the phase with
multiple equilibria. The blue circles, on the other hand, represent the prediction made with
IBMF for the same transition. We run this approximation for several random regular graphs,
in each case using different initial conditions for the average abundances. To the left of the
circles, different runs of IBMF converge to the same average abundances in at least 50% of the
graphs. To the right, we find instead distinct stationary values of the average abundances just
by changing the initial conditions in at least 50% of the graphs. IBMF reproduces very closely
the results of BP for low temperatures and, as expected, deviates from it for high temperatures.
However, it maintains qualitative agreement with BB also displaying a re-entrant transition.

It is also important to mention that the computational cost of running IBMF is considerably
lower than the cost of BE When an extensive use of computational resources is required, as
in Fig. 5d, this advantage of IBMF plays an important role and one can use it to study larger
systems. Nevertheless, we checked that the transition points presented in this figure do not
change when the system size is increased, neither for IBMF nor for BP

Since IBMF is a factorized ansatz for the stationary distribution P, (i) = ]_[i Poo(n;), and
each of the factors Po,(n;) is a Gaussian multiplied by the factor nf /1_1, it can be used to
shed light on the discussion about the non-Gaussianity of BP’s solution. The latter, illustrated
here in Figs. 5a, 5b, and 5c, has already been noticed in Ref. [19]. To study it in more detail,
we computed the stationary average abundance (n) with both techniques, IBMF and BB for
different temperatures. The black dashed lines in Fig. 5e are obtained with BP in the range of
values of u where this algorithm converges. In turn, the colored continuous lines represent the
prediction of IBMF when it converges to a single fixed point. However, this is not the only way
to estimate the average abundance with IBME Even in the region where the fixed point is not
unique, we compute (n) by averaging over the different fixed points of IBMF (colored points
in the figure). Interestingly, the predictions of IBMF closely follow the dashed lines of BE also
in the region where the fixed point of IBMF is not unique. In other words, this approximation
describes the average abundance well at all temperatures under consideration.

Furthermore, IBMF’s transition, marked with blue circles in Fig. 5d, is related to the type of
non-Gaussianity displayed by BP, In the inserted graphic of Fig. 5e, we present the skewness y of
the distribution Pgp(n) (see Eq. (19)) to quantify this non-Gaussianity. When the distribution
is tilted towards large abundances, we get y > 0. On the other hand, when Pgp(n) is tilted
towards extinctions, we get y < 0.

We use colored lines in the inserted graphic to represent the skewness of Pzp(n) in the
region where IBMF converges to a single fixed point. Black continuous lines are used, in turn,
in the region where IBMF converges to different fixed points. The results indicate that around
the same value of u where BP starts developing a distribution Pgzp(n) that is tilted towards
extinctions, IBMF stops converging to a single fixed point.
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5 Conclusions

In conclusion, our local closures for the global Fokker-Planck equations, and in particular
the Individual Based Mean Field (IBMF) method, provide a powerful and versatile tool for
analyzing the stationary states of the generalized Lotka-Volterra model on sparse graphs. We
have demonstrated its efficacy across a range of scenarios, from asymmetric interactions on
undirected graphs to directed networks and systems with thermal noise. IBMF faces its greatest
challenge in the symmetric case, where its assumption of species independence breaks down
due to correlations. These correlations are precisely what the Belief Propagation (BP) method
captures, but BP is restricted to symmetric interactions. This highlights a key trade-off: BP
offers higher accuracy for symmetric networks, while IBMF provides a versatile and effective
solution for the more general and common case of asymmetric couplings.

Our analysis reveals that the phase diagram for sparse, asymmetric interactions (Fig. 2) is
qualitatively distinct from its symmetric counterpart; notably, we observe a transition towards
a multiple-equilibria phase at a positive o even for u 2 0, whereas symmetric interactions
always lead to a single fixed point at small u [19]. This sparse topology also induces a different
stability landscape compared to fully-connected systems [5], with a transition occurring at a
positive u for o = 0, a phenomenon linked to the intrinsic instability of sparse competitive
loops identified in [32].

The observed finite-size effects in the transition lines are correctly captured by IBME No-
tably, the transition lines to both multiple fixed points and unbounded growth progressively
shift toward lower heterogeneity o as the system size N increases. This suggests that the
sparse ecological models under consideration may be intrinsically unstable in the infinite-
species limit whenever heterogeneity is finite. This observation is consistent with previous
RMT results [17,18,48], which show that, in general, sparse random matrices remain stable
in the large size limit only if the interactions are purely antagonistic or unidirectional. How-
ever, for finite sizes we do observe a region where there is a single stable fixed point, a fact
that is accurately predicted by our new method.

Looking forward to new applications, the computational efficiency and general applica-
bility of IBMF make it a promising candidate for predicting stable states in real ecological
networks, when direct data on interaction strengths is available [49-52] or, in its absence,
when one has access to the relevant parameters from which the interaction strengths can be
drawn [41,53]. Furthermore, the methodological framework is not restricted to ecology and
could be fruitfully generalized to analyze a wide class of models in economics, evolutionary
game theory, and other fields defined on complex, sparse, and even asymmetric interaction
networks.

6 Acknowledgments

We thank Giacomo Gradenigo and Chiara Cammarota for early discussions on this problem.
Our special gratitude goes to Mattia Tarabolo, Roberto Mulet, and Luca Dall’Asta, with whom
we maintained a productive scientific dialogue throughout the writing process, and who gener-
ously contributed their own novel insights. This project has been supported by the FIS 1 fund-
ing scheme (SMacC - Statistical Mechanics and Complexity) from Italian MUR (Ministry of Uni-
versity and Research) and from the project MIUR-PRIN2022, “Emergent Dynamical Patterns of
Disordered Systems with Applications to Natural Communities”, code 2022WPHMXK, funded
by European Union — Next Generation EU, Mission 4 Component 1 CUP: B53D23005310001.
This study was conducted using the DARIAH HPC cluster at CNR-NANOTEC in Lecce, funded
by the "MUR PON Ricerca e Innovazione 2014-2020” project, code PIR01 00022.

19



666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

SciPost Physics Submission

A From Ito’s rule to the Fokker-Planck equation

Let A(7i) be a generic observable that depends on the whole system i = (ny,...,ny) at time
t, but does not explicitly depend on time. For example, A(ii) could be the average abundance
A(f) = Y. n;(t)/N. Following Ito’s rule:

d . . N, 0A(#) dn; N 82A(#
EE[A(n)]:E[;#d—ZhT]E[; 8n(i2n)ni]’ (21)

where E[ - ] is the average over the probability density P, (i) of having abundances 7 at time ¢,
which is defined in a stochastic process where each trajectory is given by a specific realization
of the thermal noise and a specific choice for the initial conditions. In other words, E[ - ] is an
average over the thermal noise and the initial conditions. Using this definition and Eq. (1) for
dn;/dt, one gets:

L dﬁA(ﬁ)%Pt(ﬁ) f di P [n(1—n— S ayn))+2] 8A(’f)

jeai~ nl
V.. O%A(R
+T ZJO ant(n)ni%. (22)
= 1

To obtain Eq. (22) one needs to use the fact that (&;(t)) = 0, where &;(t) is the Gaussian
noise that appears in Eq. (1). Integrating by parts and using that, to have finite moments,
P,(it) — O faster than n;* when n; — 00, leads to:

JO dﬁA(ﬁ)%Pt(ﬁ) = f diA(H )—{ n(1—n;— > ayn)+ AP} +
jeai~
N [ee)
+TZJ dﬁA(ﬁ):—zz{niPt(ﬁ)}+Z(T—A)J [] Jan] hm [am@pm@]. @3
i=1J0 n i=1 ki

In the usual diffusion problems where one follows this procedure, the variables are defined
in the whole open space x € (—o0, 00). The property lim,._,. o, P(x) = 0 kills all the terms
that come from evaluating the integrands in x — £00. However, now one has a variable n;
defined in [0, +00), and lim,, _,+ P,(7) # 0 in general. The last term in Eq. (23) highlights the
role of the conditions at the border n; = 0, and this is relevant to find the right local closures.

To continue from here, however, we should impose the proper boundary conditions for
this Fokker-Planck equation. To guarantee that P,(i) keeps properly normalized, the current
of probability density must be zero at every border n; = 0, using what is called a reflecting
boundary condition [40]. We must then enforce the relations (T —A)lim,, _,o+ P,(n;) = 0 for all
species i, where P,(n;) = fooo [ l_[k# dn; ]P,(71) is the single-site probability for the abundance
of species i. Therefore, the last term in Eq. (23) vanishes. In other words, we can neglect the
surface terms that arise after integrating by parts.

Since A(71) is a generic function, the only way to fulfill this relation is to have

—TZ 2{nP(n)

which is the right Fokker-Planck equation, valid for any graph G(V, E).

-

;ni{[ni(l—ni— Z al-jnj)—i-)L]pt(ﬁ)}’ (24)

jedi~
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B Solution for the isolated variable

For the rest of this article, it will be useful to obtain the stationary solution of Eq. (2) in the
particular case where there is only one variable n. The equation is then:

G 52 G
5P = Tﬁ{nPt(n)}—%{[n(l—n)ﬁ-l]Pt(n)}. (25)

In the steady state:

22 { nP., (n)} p]
OZTT—E{[n(l—n)+A]POO(n)}. (26)
Integrating over n and remembering that lim,,_, o, n?Ps,(n) = 0, the integration constant
goes away. We get:

d _ 1—n A Poo(n)
—Poo(n) = Poo(n)+(?—1) . 27)
Solving this differential equation with separable variables is simple. The result is:
L pa- B
_ = ,pA-1 _ M 132
P (n) = 7 n exp{ 2 (n—1) }, (28)

where Z is a normalization constant and f =1/T.

Once one has the solution (Eq. (28)) to the Fokker-Planck equation for a single species
(Eq. (25)), it is not hard to see what will be the solution for IBMF in the stationary regime. In
the open space n; € (0,+00), the equation to fulfill is:

0

0=—
3ni

2
{[ni(l —n;— Z aij m](OO))—i-X]Poo(nl)} + T%{anoo(nl)} . (29)

jeai~

This is essentially the same Eq. (26), where one substitutes 1 —n; by the mean-field ex-
pression 1 —n; — >, jeai- Aijm ;(00). Thus, if the solution to the single variable was Eq. (28),
the solution to Eq. (29) is:

. 1
4

Poo(n;) = Zlnm_1 exp{—g(ni—Ml-)z}, (30)
where M; =1— 35— a;jm;(00).

The stationary solution in Egs. (28) and (30) are normalizable functions for any A > 0.
Therefore, they give valid distributions P.,(n;) that solves the Fokker-Planck equation when
t — oo for any A > 0. Nevertheless, we identify two distinct qualitative behaviors of P, (n;),
depending on the value of the immigration rate A. When A > T, we get that the probability
density is zero at the border (lim,, o+ Poo(n;) = 0), which is consistent with the boundary
conditions imposed by us while deriving the Fokker-Planck equation. In this case, the immi-
gration effectively counteracts the thermic noise and the species are strongly repelled from
extinction (n; = 0). When 0 < A < T, the stationary distribution P, (n;) diverges at n; = 0.
This contradicts the boundary condition (T — A)lim,, _,+ P¢(n;) = 0.

However, the mathematical inconsistency in the definition of the Fokker-Planck problem for
0 < A < T does not impede P, (n;) from being a valid solution of Eq. (26) also in this interval.
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We can still give a physical interpretation to this case: when the effect of the immigration A
is small, a finite fraction of the species goes nearly extinct. Indeed, our simulations in Fig. 1,
for a system of N interacting species in a random graph, remain stable even for A < T. We
observe, both from simulations and from IBME how a fraction of species spend long times
close to extinction.

C Limits of IBMF with parallel updates at zero temperature

Eq. (17), which is the zero-temperature limit of IBME, can be straightforwardly recast to matrix
form as:

i=1-J-1, (31)
where 7i = (ny, ... ny) is the vector of species abundances, 1 is a vector full of ones, and J is the
interaction matrix, whose elements are J;; = ;;. In the case with homogeneous interactions,
we have that J can be expressed in a simple way in terms of the adjacency matrix A associated
with the interaction graph. By its definition, the element A;; of this matrix is zero if a;; = 0,
and is one otherwise. Thus, when all nonzero a;; are equal to the same number u, Eq. (31)
transforms into i=1—uA - .

Similarly to Ref. [32], we can use the properties of A to derive the exact single-to-multiple-
equilibria transition in the case of random regular graphs with homogeneous interactions. The
same equation can be rewritten as (I+ uA) - i = 1, where I is the identity matrix. Then, the
solution is obtained after a matrix inversion by making 7i* = (I + uA)~! - 1. For the matrix
I+ uA to be invertible, all its eigenvalues must be nonzero. When A is the adjacency matrix of
a large random regular graph, we can use the fact that its smallest eigenvalue must be close
to A% = —24/c—1 [54]. Then, the smallest eigenvalue of I+ pA is Ay, = 1 —2uvc—1.
To compute the fixed point 7i*, or equivalently, for the matrix I + uA to be invertible, one
should verify the relation A,,;; > 0. In other words, the interaction strength u must satisfy the
relation:

S 2vc—1’

which is the same result presented in Ref. [32]. Since the eigenvalues of A cover the interval
A e [—24/c—1,24/c—1], for u > u* one could always find an eigenvalue in this bulk of
the distribution such that 1 + Afn n = 0, and the matrix will not be invertible for u > u*.
Furthermore, given the homogeneity of the interactions, Eq. (17) must admit the solution:

1
n= R
I+cu

(33)

which is also presented in Ref. [32] as the unique fixed point for u < u*.

It is also interesting to understand what would happen if one uses Eq. (17) in an iterative
way by setting fig,; = 1 —J - i, choosing a given initial fi,. This, simply put, is a parallel
update that gives a full vector 7, using information about the previous vector 7i;. The result
of iterating k times can be expressed as:

=10 -(1-F-A=J-...-1=J-7))) (34)
-1

i = (=) dig+ D (=T (35)
i=0
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In Eq. (35), the power (—J)! must be interpreted as the product of the matrix J with itself
i times, which returns a matrix. Now, we can use the expression for the geometric sum of
matrices to explicitly write the result of the sum on the right-hand side and get:

i = (=) g+ @+ )7 - (T (=) 1)
=@+ T+ (D (Ro—@+ N 1) (36)

This expression will converge to the right solution if limy_, o (—J)* = 0, or, equivalently,
if the eigenvalue of J with the maximum absolute value |A’ |, is smaller than one. At this
point, it is important to note that this conclusion is independent on the specific interaction
graph. The convergence of IBMF with parallel updates at zero temperature can be determined
by computing the eigenvalue of J with the largest absolute value.

Unfortunately, the maximum eigenvalue associated to the adjacency matrix of a random
regular graph is not inside the bulk [—2+c—1, 2+/c —1]. There is an eigenvalue outside of
the bulk and its value is A’I“;ax = c. Therefore, Mj |max = ¢ and the iterations will not converge
for any u > uP* =1/c. As uP?" is smaller than u* = 1/(2v/c — 1) for any ¢ > 2, in these cases
there will be an interval u € [uP?, u*) where the parallel iterations will not converge to the
right solution, even if that solution exists.

To overcome this problem, the results in the main text are obtained using a sequential
update. In practice, this means that each ni.‘ is updated to nf“ asynchronously. We choose a
random order of the species, and one by one we apply Eq. (17). When n; is recomputed, the
new value is ready to be used in the next update. It is important to mention that the problem
with parallel updates is already known and has been solved using sequential updates in other
contexts [55].

D Unbounded growth for asymmetric mutualistic interactions

Fig. 2 in Subsection 4.1 shows that, in random regular graphs with Gaussian asymmetric
interactions, the phase with multiple equilibria exists only for positive values of the average
interaction strength u. A positive value of u corresponds to ecosystems in which most species
develop competitive interactions. On the other hand, when u is negative the interactions
are mostly mutualistic (species abundances grow together). In this case, we have only one
transition line o.(u) that separates two phases. For o < o.(u) the abundances converge to a
single equilibrium state, while for o > o.(u) at least one abundance grows indefinitely and
diverges for long times. The latter is called unbounded growth.

The results in the right panel of Fig. 3 are easily extended to u < 0. Fig. 6 shows that IBMF
(lines) maintains a good agreement with the results of the simulations (points) for random
regular graphs with connectivity ¢ = 3. For u < —1/c &~ —0.333 the abundances diverge for
any value of o, and the transition line goes to o(—1/3) = 0. This is consistent with the fact
that at 0 = 0 the interaction strengths a;; are homogeneous and all equal to u. The solution
in the single equilibria phase is then n; = 1/(1 + c u) for all species (fori = 1,...,N). Given
that n; must be non-negative, when u < —1/c we do not have a feasible solution anymore and
the abundances diverge in any simulation.
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Figure 6: Transitions of the Generalized Lotka-Volterra model for different system
sizes at T = 0. The interactions are asymmetric (a;; is chosen independently of a;;)
and defined on random regular graphs with connectivity ¢ = 3. Points represent the
results of simulations with immigration rate A = 107°, and lines are the predictions
made with IBMF for the same sizes. Each transition was determined using 10000
graphs. Simulations are repeated for 10 different initial conditions. IBMF was run
with sequential updates for 10 different random initial conditions. Points (lines)
mark the minimum value of o such that simulations (IBMF) displayed unbounded
growth (not converged) in more than 50% of the interaction graphs. The vertical
line marks the limit value u =—1/c ~ —0.333

E Use of damping to improve convergence

As usual in the scenario of iterating equations until the quantities reach a fixed point, some
standard tricks can be used to help IBMF converge. Perhaps the most common mechanism is
to add damping to the iterations. Given the update rule m; = f;({m}res;-), one chooses a

.....

mit =d - f({m}reai-) + (1—d)-mf . 37)

The value d = 1 corresponds to the original case, where IBMF is iterated without damping.
When d = 0 nothing happens to mi.‘. A quick study shows that, for IBMEF, the probability of
convergence is maximized for some intermediate d around d = 0.2. The results in Subsections
4.1 and 4.2 are obtained using precisely this value (d = 0.2). In the latter case, the impact
of damping is explained in detail in Appendix G. In the first case, achieving convergence with
IBMF is an important issue due to the crossover between the phase of multiple fixed points
and the phase of unbounded growth.

For T = 0 any fixed point of IBMF is also a fixed point for simulations, and we can be
sure that whenever we find different fixed points with IBMF this has implications also for
simulations. However, the phase of unbounded growth is determined by the divergence of
the abundances, and, as said in the main text, it could be that the iteration process of IBMF
does not converge while the simulations do. Fig. 7a shows that the differences between IBMF
without damping and simulations are indeed noticeable only for u < 0.2, where unbounded
growth starts to dominate the crossover. Therefore, one needs to add damping to overcome the
convergence problems that are not physical and are only related to the algorithmic dynamics
of the iterations.

On the other hand, the phase diagram of Fig. 5d is produced without damping (using
d = 1). Here, we do not find any problems in achieving convergence with IBME In fact, in
that phase diagram the unbounded growth phase is not present. The iteration process reaches
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Figure 7: Effects of damping in the results of IBMF for the phase diagrams of the gIV
model. The equations are run on random regular graphs with size N = 1024 and
connectivity ¢ = 3. Each transition was determined using 10000 graphs. In panel
(a) (panel (b)), we mark the maximum value of o (resp. u) such that simulations
or IBMF converged to the same fixed point in more than 50% of the interaction
graphs. IBMF was run on each graph with damping (d = 0.2) and without damping
(d = 1) for 10 different random initial conditions. (a) Phase diagram at T = 0. The
interactions are asymmetric (a;; is chosen independently of aj;). Points represent
the results of simulations with immigration rate A = 107°, and lines are obtained
with IBME Simulations are repeated for 10 different initial conditions. (b) Results of
IBMF in the presence of thermal noise for graphs with symmetric and homogeneous
interactions (drawn using o = 0). The immigration rate is A = 107°.

a fixed point for any temperature T and average interaction strength u. The only relevant
question is, at a given temperature, what is the smallest value of u where we can find two
different fixed points. Fig. 7b shows that the answer is approximately the same in most of the
phase diagram, except at very low temperatures. As expected, the effect of adding damping,
if any, is to move the transition to larger values of u. Intuitively, the damping could stabilize
one fixed point more than the others, preventing the algorithm from sampling them with the
right probability. When one wants to correctly locate the transition between the single and
the multiple attractor phases, the correct physical results are obtained by using IBMF without
damping (d = 1).

F IBMF for graphs with correlated couplings

In Subsection 4.1, we present the results of IBMF and simulations of the gIV model on random
regular graphs with asymmetric interactions. In that case, the interaction graphs were built
drawing a;; and a;; independently for every pair of interacting species. This choice automat-
ically sets the connected correlation {(a;;a;;) — (a;;){(a;;) to zero.

It is important, however, to verify that the accuracy of IBMF’s predictions extends to cases
where the connected correlation is not zero. Fortunately, we can use a simple procedure to
build correlated couplings. For each pair i — j and j — i of interacting species (let i < j just
to fix ideas), we do one of two things: i) with probability € we choose a;; from the Gaussian
N(u, o) and then we set aj; = a;j, or ii) with probability 1 — e we independently draw a;;
and a;; from the same Gaussian. Evidently, the setting used in Subsection 4.1 corresponds to
e=0.

Fig. 8 shows the results for € = 0.5, chosen such that the interactions are still asymmetric,
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Figure 8: Transitions of the gIV model for different system sizes at T = 0. The interac-
tions are asymmetric and defined on random regular graphs with connectivity ¢ = 3.
The couplings are chosen such that with probability e = 0.5 we have a;; = a;;. Points
represent the results of simulations with immigration rate A = 107°, and lines are the
predictions made with IBMF for the same sizes. Each transition was determined us-
ing 10000 graphs. Simulations are repeated for 10 different initial conditions. IBMF
was run with damping (see Appendix E) for 10 different random initial conditions.
(a) For each system size N and average strength u, points (lines) mark the maximum
value of o such that simulations (IBMF) converged to the same fixed point in more
than 50% of the interaction graphs. (b) Points (lines) mark the minimum value of o
such that simulations (IBMF) displayed unbounded growth (not converged) in more
than 50% of the interaction graphs.

but correlated. As in Subsection 4.1, the predictions obtained with IBMF for the transitions
of the gIV model are in very good agreement with simulations in this case. IBMF provides a
precise description of the model’s fixed points at T = 0, valid for different values of €.

G Convergence of IBMF in directed graphs

The convergence of IBMF is sensitive to the addition of damping. In the toy model described
in Subsection 4.2, using no damping (d = 1 in Eq. (37)) has negative implications on the
convergence, and the results no longer coincide with the predictions in Ref. [39].

In Fig. 9a, we show the probability that IBME without damping, does not converge (P,.)
for large graphs with different average connectivities and interaction strengths. In this case,
P, is independent of u for all u > 1. It follows a slowly increasing function that goes from
zero at ¢ = 0 to one at ¢ = e. This function is represented with a dashed line in the figure, and
we give its precise mathematical form below. This behavior is also nearly independent of the
size N, as can be seen in Fig. 9b. Only close to P,. ~ 1, for ¢ ~ e, finite-size effects make IBMF
have a small deviation from the dashed line. The empirical P,. is not exactly equal to one at
¢ = e for finite sizes, but the inserted graphic shows that P,. increases when the number of
species N increases.

To compute the function followed by IBMF for d = 1 and u > 1, we can do something
analogous to what the authors of Ref. [39] did to predict the probability of fluctuations in
simulations. Their results indicate that, for any u > 1 and in the stationary state, all species
in the graph are completely polarized, i.e., either they are extinct (n; = 0) or they reach their
carrying capacity (n; = 1). First, we write the probability ¢ that a species is isolated and
therefore can have n; = 1. In tree-like graphs, the neighbors belong to nearly independent
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Figure 9: Probability that IBMF does not converge (P,.) in instances of the toy model
(directed graphs with o = 0). Each point is obtained by running IBMF for 10000
different realizations of the interaction graph with a given average connectivity c,
size N, and interaction strength u. In both panels, IBMF is run without damping, and
for u > 1 its results follow a unique function represented using a dashed line. This
function is the analytical result (see the computation in the text) for the probability
of having at least one isolated cycle in the graph formed by species with completely
polarized abundances (n; = 0 or n; = 1). It is close to zero for small ¢ and goes
to one exactly at ¢ = e. (a) IBMF convergence without damping for N = 65536
and different values of u. (b) IBMF convergence without damping for two values of
the interaction strength around the transition (u = 0.9 and u = 1.1) obtained with
several system sizes. The inserted graphic shows an enlargement of the zone where

Peony ~ 1.

subgraphs, and we get ¢ = Z}Zo p(k)(1— ¢)¥, where k is the connectivity of the species and
p(k) is its distribution. When p(k) is Poisson, the authors of Ref. [39] show that ¢ = W (c)/c,
where c is the average connectivity and W (x) is the Lambert W function. Second, we compute
the probability that a directed cycle of length n is isolated. Indeed, a species in a directed cycle
has one incoming edge from another species inside the cycle. For the cycle to be isolated, we
need all the other incoming edges to correspond to extinct species. Since in Poisson graphs
the number of these other incoming edges is also distributed as Poisson with the same mean,
and the neighbors of different species in the cycle are independent, the probability that the
cycle of length n is isolated is simply ¢".

The number of directed cycles of length n in a Poisson graph with mean connectivity ¢ is
also Poisson distributed with mean ¢"/n [56]. Thus, the number of directed isolated cycles is
Poisson distributed with mean (c ¢)"/n = [W(c)]"/n. The probability of having at least one
cycle is then:

fle) = 1—exp{—ZM}

n=2 n

(1-w(0)), (38)

c

FO =1

where we used that W(c)e"(©) = ¢. This function f(c) is the one represented with dashed
lines in Fig. 9.

On the other hand, for u < 1, the probability that IBMF does not converge without damping
is very close to zero for all ¢ < e. In this regime, the results for different system sizes N have
a nice crossing point at ¢ > e, as can be seen in Fig. 9a for yu = 0.9. This is a familiar feature
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of a first-order phase transition that happens exactly at that crossing point. To the left of the
crossing, the probability that IBMF does not converge goes to zero when the number of species
N goes to infinity. To the right, the probability approaches one as N — oo.

Adding damping considerably helps IBMF to converge at any u. For the interesting case
u > 1, setting d = 0.2 avoids the problems caused by a subset of the directed isolated cycles.
Now, the probability P,. does not follow a unique function f (c) for all u > 0 (see Fig. 4). They
coincide, instead, with the predictions made by the authors of Ref. [39]. Their computation is
analogous, but with a key difference. They concluded that, for the simulations, the cycles with
even length do not cause fluctuations. If we exclude the even values of n, Eq. (38) changes to:

O W(C)]2k+1
foe) = 1-
3¢ exp{ = ; 2%+ 1 1)

. ¢ 1—-W(c)
Al =1=375 \Jl+W(c) ' (39

Eq. (39) gives the probability f5(c) of having at least one directed isolated cycle with odd
length. Furthermore, a cycle of odd length n will be unstable, and thus will fluctuate, for all
u > u.(n) =1/cos(mt/n) > 1 [39]. Therefore, Eq. (39) gives the probability of fluctuations
for any u > 1/ cos(7t/3) = 2. When u < 2 the cycles of length n = 3 are stable, but the ones
with n = 5 are still unstable for any u > 1/cos(nt/5) ~ 1.24. Thus, to compute the line that
corresponds to the blue points (done for u = 1.5) in Fig. 4a, we simply need to subtract the
number of cycles with length n = 3 from the sum in Eq. (39). We get the probability:

2k+1
fole) = 1-exp{— Z[Wz(;il J (40)
2
0= 1o {3 L) i L.

that we also plot using a dashed line in Fig. 4a, showing that it indeed coincides very well
with the results of IBMF obtained at u = 1.5.

This is the procedure to follow for any u. Fig. 4a indicates that, once we use damping, the
convergence of IBMF stops being affected by the cycles of even length and coincides with the
theoretical predictions for the probability of fluctuations as presented in Ref. [39].

H Finite size effects of IBMF on directed graphs

Fig. 10 shows the finite size effects for two values of u around y = 1.0 when we run IBMF
for the toy model defined in Subsection 4.2. We observe two distinct types of transitions in
the probability that IBMF does not converge (P,.). As with the simulations in Ref. [39], when
u > 1 the results for finite systems do not reach P,. = 1 exactly at ¢ = e. We present numerical
evidence that, for 4 = 1.1, the probability P,. increases with the system size and the points
move to the left towards the line c =e.

The curves for u = 0.9, instead, have a clear crossing point at ¢ ~ 3.28. When the number
of species N increases, the probability P,. has a sharper transition between P,. ~ 0 to the
left and P,. ~ 1 to the right of the crossing point. Therefore, the value ¢ ~ 3.28 is a good
estimate for the location of the transition between the single equilibrium phase and the phase
with global fluctuations. Indeed, it is compatible with the results in Fig. 1 of Ref. [39].
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Figure 10: Probability that IBMF does not converge (P,.) in instances of the modified
toy model (directed graphs with o = 0). Each point is obtained by running IBMF for
10000 different realizations of the interaction graph with a given average connectiv-
ity ¢ and several sizes N. IBMF is run with damping for two values of the interaction
strength around the transition (u = 0.9 and u = 1.1). The vertical line marks the
value c =e.

I Comparing runtimes of IBMF and simulations in directed graphs

One of the advantages of IBMF is that it can be implemented efficiently (see Section 3 of the
SM). Here, we show that running IBMF in single graphs is considerably faster than running
simulations. Although we present data for the toy model on directed graphs of Subsection 4.2,
this conclusion is generally applicable to all the scenarios discussed in this article.

In Fig. 11, we compare the average wall-clock time required for IBMF to converge to a
fixed point with the corresponding simulation wall-clock time. The average discards all the
samples that lead to persistent fluctuations for long times. For all connectivities and for both
values of u in the figure, IBMF is consistently around 10 times faster to reach convergence.
Both algorithms, available at Ref. [43], were run on a single CPU Intel Xeon Gold 6248 2.5G.

It is important to note that the iterations required by IBMF to converge do not possess
a physical meaning. The process is discrete, and at each step we update one of the average
abundances m; using Eq. (17). On the other hand, the simulation involves integrating a differ-
ential equation (see Eq. (18)) whose time t does have a physical meaning and is a continuous
variable. Therefore, the wall-clock time is sensitive to the precision of the integration in time.
In this case, we use an adaptive step size to optimize the number of steps needed to reach
convergence.

Our results indicate that, even at zero temperature, where the dynamics is simpler to sim-
ulate, it is advantageous to run IBMF instead. It gives fast and accurate predictions, as can be
seen in Subsections 4.1 and 4.2.

J Zero-temperature limit of BP

We discuss here the zero temperature limit of BP for random regular graphs with symmetric
and homogeneous interactions (o = 0, see Section 4.3). We show that the exact results for
the single-to-multiple equilibria [32] can be easily retrieved after properly taking the limit
T — 0. This has already been suggested by the numerical results in Ref. [19], obtained with
the discretized version of BB and by the results presented here in Fig. 5d.

When the temperature is small, the probability densities concentrate around the mean
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Figure 11: Average runtime (in seconds) required to obtain IBMF predictions and to
run simulations for the toy model (directed graphs with o = 0, see Subsection 4.2).
Runs that show persistent fluctuations are not included. System size is N = 8192 in
both cases. The points, with error bars, are averages over different graphs for which
IBMF and the simulations converge to a fixed point. We consider 10000 graphs in
total, and discarded the cases where fewer than 200 lead to convergence.

values. We can then assume that the message 7),_,;(n;) can be written as the multiplication of

BA-1 .

; as follows:

2Q2 (ni - mi_’j)z} .
i—j

This means that every message 7;_,;(n;) can be parameterized using the mean m;_,; and
the variance QJZ._) ;- The update rule (Eq. (13)) becomes:

a Gaussian factor and a power-law factor n

nP*! (41)

ni—>j(ni) = exp{—

i—j

o
T’i—>j(ni) ~ nl[il—l e—/&(n?—Zni)/Z l_[ f dny nf’l_le—ﬁ agen; me—p i —2memy_,;) /2Q7_, . (42)
kedi-\jJ O

When f§ — oo, with 2 finite, the integral is dominated by the value n; = ny such that the
argument of the exponential is maximum. Finding this maximum is equivalent to compute the
minimum of f(n;) = ni — 2 my_,; + 20 n; Ny Qi_}i. The result is nj = my_,; — a1 Qi_}i.
Therefore:

77i—>j(ni) ~ niﬁx_l e_/j(niz_zni)/z I: l_[ (mk—>i — Qe N; Qi_}i)ﬂl_l] X
kedi—\j

(misi — agen; Qi_d)z} :

B
(43)
X exp { ke;\j 2Q2

k—i

Using again that, when 8 — oo with A finite, the distribution 7),_,;(n;) will concentrate
around n; = n; such that the argument of the exponential is maximum, we get:

A—-1
n’

zl exP{_g”iz(l_ Z af Qi)+ B (1- Z aikmk—n')]}-

i—j kedi—\j kedi—\j

77i—>j(ni) = (44)

Comparing with Eq. (41), we can easily identify that:
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1
Q= (45)
T 1= Doy 2 Qi

1= Dlkeainj Fik Mo ;
kedi~\j “ik Ck—i

These equations are known as relaxed Belief Propagation [57], and in this case correspond
to the zero temperature expansion of BE When we have a random regular graph with homo-
geneous interactions (a;; = u for all edges in the graph), all sites become equivalent and

1
2 _
Qs = 1—(c— 2@ (47)
_1—=(c—Dum,,
T I e- ey, “®

From Eq. (47), we can obtain a closed expression for the variance Q2_> :

Q= 2;(1 +4/1—4(c— 1),uz) ) 49)

(c—T1u2
From where it follows that, in order to have QZ_) € R, the strength of the interactions must
fulfill the relation
_
2v/c—1
This result, again, coincides with the exact relation obtained in Ref. [32] and we already
presented it in Eq. (32). Finally, we can also use that

w< (50)

_ 1= Do Fik Mo
- 202
1— 2 keai- Q5
In the case with homogeneous interactions we have afk = u? and aizk = u? for all edges in
the graph. Thus:

1—cum_,
=— 52
", 2
together with Egs. (47) and (48) to get another exact result:

1
S l4cp

(53)

With Egs. (50) and (53), we recover two known results for the single-to-multiple-equilibria
transition for § — oo [32]. In terms of BB this transition is simply a boundary u* = 1/(2vc —1)
such that, for u > u* and at low temperature (8 > 1), it is impossible to have a “Gaussian"

stationary point like the one in Eq. (41) (more precisely, a Gaussian multiplied by the power
BA—1
n ).
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S1 Local closures

To write the local closures, one needs to marginalize Eq. 2 in the main text to obtain
the differential equations for the local probabilities. This will be done first with P;(n;) =
Jo T, i dng| P (7). Marginalizing over all the abundances except n;, one gets:

S1



gpt(n,) = —aii { [n,(l —n;) + )\}Pt(nz)} + T%{nlﬂ(nz)}

—l—ainz{n2 .628;_ Q;j /Ooo dn; ant(ni,nj)}
oo 9 0 )
;/0 d"’“ank{/o ( H dn,) [ni(1 = ny, Z amy) + Al Pt(n)} +

r#k,i 1€k~

o0 82
—i—TZ/ dnkm{nth(ni,nk)} . (S1)
PRl T

Assuming that lim,,, ., ni P,(7) = 0, this equation can be simplified to:

0 0
GiFm) =5 { [ni(1 = n) + A] Pt(ni)} n T {nZPt (n)}
a o0
+8_nz{nz ‘Zi Oéij/O dn]’ ant<ni;nj)}
+Zz\ni1_r>% P,(n;,ng) Tznll_r% P,(n;,ny) . (S2)

Now, the boundary conditions that we imposed on the Fokker-Planck equation become
useful. We should enforce that, for each species k, the relation (7' — \) lim,,, o+ Pso (1) = 0.
Because of this, the last two terms in Eq. (52) cancel, leaving:

0 9,

S Pi(ni) = _0_m{ [ni(1 = ;) + Al Pt(ni)} + Taa—n%{niPt(ni)}

a 00
+—an {TLZ E Oéz‘j /0 d?’Lj ant(ni, TL])} . (SS)
! jeoai—

Defining the conditional average

mimlst) = [ dngns Py | ), (54)
0
it is possible to write:
| g P ng) = ) P (55)
0
and
0 0 8
aPt(ni) = _ani{ n;(1 —mn; — Z i mj—i(ni, t)) + )\] Pt(nz)} o 2{n Pi(n; } . (S6)

52



Since one does not know the shape of m;_,;(n;,t), Eq. (S6) cannot be solved directly. Its
stationary solutions must fulfill the equation:

0= _dii{[ni(l —n; — Z o mjsi(ng)) + A P (m)} + Td 5 {niPs(ni)} (S7)

JEDI~

where m;_,;(n;) is the stationary value of the conditional average m,_;(n;,t) and P (n;) is
the stationary distribution of the i-th species abundance. Integrating once over n;, gives:

d
dniPoo(ni) = [ B(l —n; — Z Qg myi(ng)) +

jEeDi~

BA—1

n;

where = 1/T. This equation has the following formal solution:

Py (nz):Zinﬁ’\ lexp{—g(n —2nz)}exp{ B Z aw/ dxmj_n(x)}. (S9)

JEDI~

Although Eq. (59) gives a simple expression that will be useful in the future, it is not
a solution to the problem because we still do not have the functions m;_,;(n;). But to
obtain m;_,;(n;) one needs to compute the conditional probabilities, or equivalently, the pair
probabilities P;(n;,n;). The corresponding differential equation can be obtained following a
similar procedure.

0 9 52
apt(ni’nj) - O, { [m(l = = ) + )‘] Pt(”i’”j)} + Tﬁ_nf{nipt(m’ nj)}
0 52
_a—nj{ [nj(l —n; —azn;) + )\}Pt(ni, nj)} + Té_njz{njpt(n“ nj)}
anl Z o{“‘:/v dnk‘ nkpt nk?”l?RJ)}

keoi—\j
nj Z aﬂ/ dnyny Py( nl,nj,nl)} (S10)
ledj—\i

Similarly as before, let us define the conditional average my_,; ;(n;, n;, t) = fooo dng Py (ng, t |
ni,nj). Eq. (S10) reduces to:

0 0
apt(nw n;) = _a_n{[ni(l_ni_aijnj_ Z aikmkai,j(nianj))+>\]Pt(ni7nj)}

i

kedi—\j
0
_%{ [nj(l — N — QN — Z Qg ml_n~7j(ni, n])) + )\}Pt(n“ n])}
J 1€0j—\i
0? 02
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Again, one does not know the shape of my_,; j(n;,n;,t), but to obtain it, one needs to
solve the differential equation for P;(ny, n;,n;). This process builds a hierarchy of differential
equations that, in the end, goes back to the Fokker-Planck equation for the full system (Eq.
(2) in the main text). This is not surprising, since no approximations have been done, the
solution of these local Fokker-Planck equations must be as difficult as the solution of the
original Fokker-Planck equation for the whole system.

To close the hierarchy at some point, one can make some factorization of the joint prob-
ability densities so that they are expressed in terms of probability densities of a lower level
in the hierarchy. The first approximation one could do is known in the studies of epidemic
spreading as Individual Based Mean Field (IBMF) [1, 2| and it is simply:

Pt(ni,nj) =~ Pt(nl) Pt(n]) s (812)
which implies that:
0o 0o Pt(nz TL)
mii(ni,t) = dn;n;P,(n; | n; :/ dn;n;——-1~
i) = [ dngmy Py ) = [ dny e
miji(ni, t) %/ dnjn; M = / dnjnj Py(n;) = m;(t) , (513)
0 1 (1) 0

where m;(t) is the expected value of the abundance n; at time t.
The IBMF differential equation is then:

0 5
gl =5,

{[ni(l = S aymy(h) + )\}Pt(ni)} n Taa—;{mﬂ(ni)} , (S14)

jEdi—

which must be completed with the definition m;(t) = [~ dn;n; Py(n;).

The IBMF is the first local closure one can provide. However, it is possible to go ahead
and propose closures that stop at higher levels of the hierarchy. To express P;(ng,n;,n;) in
terms of pair probability densities like P;(n;,n;), one could use information about the actual
graph of interactions. In the third line of Eq. (S10), the probability density Pi(ng,n;,n;)
is actually defined in a graph G(V, E) that contains the edges k¥ — ¢ and i — j, but not
necessarily the edges k — j or j — k. In tree-like graphs, with high probability when the
number of species is large, given that the edges k — ¢ and i — j are present, we will have
that k£ and j are not directly connected by any edge. Moreover, the length of the cycles
diverges with the system size N, so the only short path that connects k£ and j necessarily
passes through . So, expecting that it works especially well in tree-like graphs, one could
propose:

Pt(nz)

This is known as Pair Based Mean Field (PBMF) in the above-mentioned context of
epidemic spreading [3, 4] and is a factorization of the conditional measure. Given n; at

Pt(nk,ni,nj) ~ = Pt(nk | nz) Pt(nz) Pt(nj ’ nz) ) (Sl5)
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time ¢, one assumes n; and ny are independent. This is not strange for those who know the
replica symmetric cavity method, whose algorithmic counterpart is Belief Propagation (BP).
However, even in the cases where BP is the exact solution in equilibrium (provided also
that equilibrium exists), this approximation is not necessarily valid for the dynamics, since
temporal correlations can still forbid the factorization, and n; and n; are not independent
given only the value of n; at time t.

Anyways, one can assume Eq. (S15) to be valid and continue:

> > Py(ng, ni, ny)
Mi—si (Mg, M, 1) = dny npPi(n ni,n»:/ dny nj———122
ois(mny )= [ dnenPne gy = [ dnn, St
mkﬁi,j(ni, nj,t) %/O dnk nkw = mkﬂ-(ni,t) . (SlG)
Thus, the PBMF differential equation is:
gl%(m,nj)z—i (na(1 = ni — ayymy — > awmai(ni, t) + A Pu(ni, ny)
ot on;
kedi—\j
0
_a_nj{[nj(l — in; — Z ajrmy_;(n;,t)) —i—)\]Pt(ni,nj)}
ledj—\i
o2
{mPt Niy M }+T8 2{ant(nZ-,nj)}, (S17)

which must be completed with the definition m;_;(n;, t) = [;° dnjn;Pi(n; | n;).
Both closures, IBMF and PBMF, are in principle solvable, at least numerically. However,
when the system is large this is a difficult task.

S2 Connections with known results

S2.1 Belief Propagation as stationary solution of Pair Based Mean
Field

As mentioned before, the approximation in Eq. (515) is valid in equilibrium in all the cases
where BP is also valid, since BP respects this factorization of the conditional measure. It is no
surprise then that the BP equations, introduced in Ref. [5] for symmetric interactions (o;; =
aj;), are a stationary solution of PBMF equations for symmetric interactions. Nevertheless,
proving it could be a useful exercise for the future.

BP’s update rule, as presented in Ref. [5], is:

1 1

eXP{ - g(Nf - 2Ni)} 11 i Mo—i(Nk) eXP{ — BairN; Nk} ;

kedi—\j Np=0

77i—>j(Ni) =
(S18)
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where the constants r and K are set to one for simplicity. The constant z;_,; is a normalization
factor, A > 0 is a small parameter and 7,_,;(V;) are BP’s messages. One must remember
that in this case a;p = ag;, so one could write one or the other and Eq. (S18) remains valid.

First of all, one must notice that Eq. (S18) is written in a discretized space, so N; is
actually taking discrete values. That is the reason why in Eq. (S18) one sees a sum over Ni
and not an integral. It is always possible to recast this expression in terms of the continuous
variables n;. Besides substituting sums by integrals, one has to pay particular attention to
the factor (N;+A)~'. As ) in the continuous case, here A ensures that the divergence when
N; goes to zero is not so critical that it makes the probability distribution non-normalizable.
Any positive A will remove this divergence at N; = 0. Thus, in the continuous version, one
must simply substitute the factor (N; + A)~! by the analogous factor nf ’\_1, present in Egs.
3 and 8 in the main text.

The resulting update rule is:

1 _ [e.e]
Moy (1) = nfA-1 exp{ — ﬁ(nZ2 - QnZ)} H / dng i (i) exp { — Bogen; ni }

=i 2 keoi—\; V0
(S19)
It will be helpful to look closely at the integral
Zisi(ng) = / dng me—i(ne) exp { — Baarn; ni § - (520)
0

In understanding its meaning, it is useful to write the stationary pair probability density
in terms of BP’s messages:

Poo(ni, ) = Nimyi(n) i () e Powmine (521)
Then, the conditional probability density is

Po(ng | mi) = Mook (103) Msi (M) € POk 7k ki) e~ Pk
= LT A misss (1) M (g e Peani s [ dny ey (ny ) e Bekna
1 — DO LM N
—1 (A

So Zj_,i(n;) is the normalization factor of the conditional probability density. Further-
more, its derivative with respect to n; is:

a > — DO LN N
a_Zk—n'(ni):_ﬁaik/ Ak g, My (Mg )Pk

T 0

0 5 drg, mug s (g ) e Pinna
——Zsi(ni) = =B airZpi(ng) = 823
o, 2 (ni) = =B i Zr—i(ni) Zi ) (S23)

Remembering the definition of my_,;(n;) and Eq. (521), one gets
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0
8711-
from where it is easy to see that

Zpi(ng) = =B g Zi—i(ng) mi—i(ns) (S24)

Zii(ng) o exp{ — B /Oni dx m;Hi(x)} : (S25)

Returning to Eq. (S19), the expression can be rewritten in a form that is very similar
to the formal solution for P, (n;) in Eq. (59), and that is connected with the differential
equation for PBMF (Eq. (517)):

niss (i) = 1 niﬁ/\fl exp{ g(n —Zm)}exp{ I6] Z azk/ dxmy_;i(z) ¢ . (S26)

Z, .
indd keoi—\j

Thus, the pair probability can be written as:

1
Py (nwnj) = Zi (nznj)

Xexp{ I6; Z alk/ dx my_y;(x exp{ o] Z aﬂ/ dzmy_j(x (827)

kedi—\j ledj—\i

- 6—§(n2—2m)6 g( 2 2”]) —Baijning

Everything is now ready to use the update rule and obtain an expression for the derivative
of the probability density Px(n;, n;) with respect to n;:

%Poo(nianj) - Poo(ni,nj) 5>‘nl_ 1 _ ﬁ(nz — 1) — ﬁaij n; — I} Z Qi mk_n(nz) . (828)

kedi—\j

Therefore

0
T%{nipt(ni, n])} - [nz(]- — Ny — QT — Z Qi Mg—i(ni)) + )\] Pi(n, nj)

kcdi—\j
A—1
= Py(ni,n;) {T +Tn; [ﬁ —B(n; —1) = Bagjn; — Z Qi mkm(m)] —
‘ kcdi—\j
—[ni(1 = n; — azjn; — Z g mii(ng)) + )\}} =0. (S29)
k€di—\j

Something analogous happens with the derivative with respect to n;. This means that,
in the open region (n;,n;) € (0,400) x (0,+00), the right hand side of Eq. (S517) is equal
to zero. In other words, BP is a stationary solution for PBMF when the interactions are
symmetric.
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S2.2 Zero temperature and large connectivity limit of IBMF

So far, we have presented two stationary distributions that are approximate solutions to
the problem. First, IBMF, which is the simplest local closure one can do, but at the same
time is of a general purpose. Regardless of the degree of symmetry in the interactions, the
stationary solution of IBMF is:

Pa () = —nf>! exp{ N W} , (S30)
with by =1 =37 o aiymy and my = [ dnjn; Pu(n;).

When taking the zero temperature limit (equivalently 5 — o), it is crucial to know
how to treat the parameter A\. One must remember that A has the role of ensuring that
the distribution is normalizable, by avoiding the extinction of all the species. It is usually
interpreted as an immigration rate that must be taken positive, but small, to study the
phenomenology of the model in its purest version possible. Therefore, one should take
£ — oo but keep S finite, since X ~ 0.

We will compare the final result of taking this limit with Eq. (13) in Ref. [6], which gives
an expression for the steady state abundance of the fully connected model at 7" = 0:

1"1m°°‘“°°). (S31)

nzm&x(O, [ —co2v.
€0° Xint

Remember that y is the average value of the couplings «;, and ¢? is its variance. When
the system is fully connected, it is necessary to rescale these parameters and send them to
zero when N — oo, but keeping finite i = N p and 6% = N 2. The number € € [—1, 1] is the
correlation between «;; and «j;, or, in other words, the level of symmetry in the couplings.
Besides these parameters, in Eq. (S31) one has: m.,, which is the expected value of n; (.,
which is a random Gaussian variable; and Yin, which is the integrated response of n to the
effect of a small external field.

To recover this result, one can start by taking the limit 77 — 0 in Eq. (S30). As we
discussed in Section IV of the main text, the probability density then concentrates at one
point:

n; = max (O, 1— Z Q;j mj) ) (S32)

jedi—
This way of writing it ensures that n; must always be non-negative. When the connectivity

is large, the sum 6 = ) a;; m; is distributed as a Gaussian with the following first and
second moments:

jEdi~

0y =" (aiymy) (S33)

jedi—
<92> = Z Z (Quj iy my) (S34)
j€di— kedi=
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The averages in Eqs. (533) and (534) are taken over the disorder in the interactions,
i.e., over the possible values of the whole matrix of couplings ‘@ with elements a;;. Then
we must realize that m; is actually a function of W, and that it is not possible to compute
the averages in Eqs. (533) and (534) as if m; were independent of the specific realization of
the disorder ‘@”. However, one can explicitly average Eqs. (533) and (S34) over part of the
disorder since most of the elements of ‘@ are indeed independent of «;;:

O) =D laym; (@) = > (g mylaij, a5)) (S35)

jedi- jedi-
(6%) = Z Z ( vij g mij (g, iy gy o) Mg (i, @iy Qs Qi) ) - (S36)
jedi~ kedi

The dependence of m; on the disorder has been reduced to the only elements that are
not independent of «;, which are o; itself and possibly «; (if € > 0). The new m;(aj, ;)
is already an average over almost all the couplings, except for the ones associated with the
edges i — j and j — i. Therefore, the right-hand sides of Egs. (535) and (S36) are no
longer averages over all the couplings that appear in the arguments of the functions. More
specifically, the average (a;;m;(a;j, @j;)) in Eq. (535) is taken over the values of a;; and
aj;, considering that they can be correlated. In the same way, the average in Eq. (S306) is
taken over the values of ayj, oj;, ik, and ag,;. To compute those averages, it will be useful
to write the couplings in terms of standardized Gaussians x;; ~ N(0,1) as:

Qi = [ + 0 Tyij, with
<~Tz'j> = 0; <~Tz'j~rkl> = 5ij,kl + E(Sij,lk . (SB?)
Then m;(a,j, aj;) becomes a function of z;; and z;;. However, when the connectivity
is large, it is safe to assume that the dependence of m;(x;;,z;;) on each x;;, associated to

only one of the many edges that contain the node j, is very weak. Taking an expansion of
m;(x;;, ;) in powers of x;; and xj;; up to the first order leads to:

(938)

0 0
m;(wij, xj5:) ~ m;(0,0) + xz‘j{%mj(l’z’j? 0)} + l‘jz‘{—gm -m;(0, l‘jz‘)}
ij ji

:Iti]':() :12]'1':0

Remembering that z;; actually does not appear in the equation for dn;/dt, but in the
equation for dn;/dt, one realizes that its effect in m;(z;;, z;;) must be even weaker than the
effect of xj;. Finally:

(939)
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0)=>" < (b + 0 xy) (mj(()) + xji{%mj(l’ji)}

o))

jedi-
0= Ym0+ 3 (msralgmi@a}], ) (540)

Let the connectivity be equal to c. After identifying that (m;(0)) = ms, where my is
the parameter in Eq. (S31) above, and by using the expression for the second moment in
Eq. (S37), one gets:

m; (i) }

(0) =pcme +Jc.s<{ai

ZEjZ'

I__:O> . (S41)

The derivative in Eq. (541) gives the average response of m; to a small perturbation in
the couplings. This will be related to the response to a small external field, and to see the
relation more explicitly, it is convenient to recast the differential equation for n; (see Eq. 1
in the main text) in terms of x;;:

dnj
E:—nj(l—nj—,u an—a Z zim) + &)+ X . (S42)

1€dj— 1€dj—

Taking ¢ outside the sum over the neighbors:

dny

0t = —n;(1—n; —p an—ff Z Tng — o xing) + () A (S43)

ledj— 1€8j—\i

The effect of a small perturbation z;; is the same as the one provoked by a small external
field with value h;(t) = —o xj; n;(t). The two responses must be related by:

(gt o) = et gy

Inserting Eq. (544) back into Eq. (S41), one finally obtains an expression for (¢) in terms
of My and ying, which are two of the parameters in the known result from DMFT (see Eq.

(S31)):

> = —0 N Xint - (S44)
h;=0

(0) = j1cmeog — 0% CENG Xing - (S45)

The same needs to be done with the second moments:
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(0%) = Z Z (40 2i;) (1 + 0 Tip) (Moo — 0 N Xint i) (Moo — 0 N Xint Thi) )

JEOI™ k€EDi™

(6?) = Z Z (WP + po (x4 ) + 0% @5 2] X

j€di— kedi~

X [mio — Moo0 M Xint (Tji + Thi) + 0203 Xoy Tji Tri) )

<92> :Cz ,LL2 mgo + CO’2 mgo - ILLO'2 Moo My Xint Z Z < (SE‘Z] + xzk) (.1:]1 + ]7]“) > +

jEBI— kedi—
2 2 92 2 4.2 2 2 2 4.2 2
TCUTOT N Xing + 0 1 Xing E <xij %‘i) + 01 Xing E § (Tij Tji Tak, Thi)
jEBI~ jEBI~ kedi—\j
(0% = > m2, + co?m> — [110% Mo N € Xing (4c + 2¢(c — 1)) +

e o X + 0" 1 X (¢ + (e = 1))
(0*)=c? P m2Z +co?m? — 20> Meni€ Xing e (c+ 1) +
ool ning, + ot nl xiy (c+clc—1)e?) . (S46)
where we assumed that (z7; 2%;) = 1 and that (2 2 T4 1) = €2, if i # k.
Then, the variance of 6 is:

s5=(0") — (0)”
st=co®m? — 2107 Moo N € Xint € + 2002 Xine + 0 02 xZ c(1—€2) . (547)

Now, to complete the procedure, one needs to rescale the average ;1 and the variance o2
of the couplings for (#) and (0?) to remain finite. The natural choice is

g=cu , 62 =co® . (548)

After neglecting the terms that go to zero when ¢ — oo, we finally obtain:

(0) = iMoo — 6% €7 Xint (S49)
sp=0>m?2 . (S50)

Remembering Eq. (S32), the stationary abundance for large connectivity and at 7= 0
was:

n; = max (O, 1- Z Q;j mj(oo)> = max(0, 1 —0) = max(0, 1 — (0) —spv) .  (S51)

JjEOiI™

where v ~ N(0,1) is a standardized Gaussian. Substituting Eqs. (S49) and (S50) into this
expression, we get:

n; = max(0, 1 — imue + 6% €N Xing — 0 Moo V) (S52)
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Rearranging terms, we finally recover Eq. (13) of [6]:

ni:max<0, 1—,&moo—0§00)7 (S53)

52
L —€0% Xint

where (,, is a Gaussian with zero mean ((.,) = 0 and variance ((2) = my. The latter is
also consistent with the third line of Eq. (12) in Ref. [6].

S3 Efficient implementation of IBMF

To use IBMF to obtain the actual values of the averages m;, one needs to numerically
compute integrals of the form

Ik(ﬁ,)\,M):/Ooo dn nPA—1TF exp{—%(n—MY} : (S54)

with the parameter k taking the value £ = 0,1 in our case.
Luckily, the integral (S54) can be expressed in terms of known special functions, called
parabolic cylinder functions. They have the integral representation (see 9.241 in Ref. [7]):

D (Z)*LQ/4 Oodxe_“_mg/%p_l (S55)
T T) Jo 7

which is valid for Re[p] > 0 and where I'(—p) is the Euler’'s Gamma function. Looking back
at Eq. (S54), we can change variables making x = n+/3 to get

14 Btk s oo 2
I, = [B] ’ e_M;/ da xPA1 TR exp{—%+\/6M2xM} . (S56)
0
After comparing Eqgs. (S55) and (S56), we identify p = A+ k and z = —/5 M?, and

we can write the integral I, in terms of the parabolic cylinder functions as:

BAtk 2

Ik(ﬁ,A,M):[%} 2 exp{—ﬁi\f

Eq. (S57) is very convenient since we can express the first moments of the distribution
P, (n;) in terms of these integrals. Indeed, one has:

BEAM) _ 5, Do OM) 9
[0(67/\7Mj) D—BA(_ 6Mj2) |

where M; =1 — Zke@j— Qg M.

Using again Ref. [7] (9.240), we can write the parabolic cylinder functions in terms of the
more practical Kummer’s confluent hypergeometric function ®(a, b; z), which can be found
already tabulated in different programming languages. The relation is:

} D(BA + k) D,BH( - 5M2> . (S57)

mj:
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2—(6>\+k)/26—,3M2/4ﬁ

Dfmfk( - \/W) - F(mgj) F(%)

e L R R e et S )

Then, the first moment can be written as:

X (S59)

m; =

(S60)

B8 BA 1 BM BA+1 BA+L 3 BM]
§F<7) @[7@ 2j] +5MJT< > )‘D[ ST
We can then set an initial condition for all the m;, with ¢« = 1,..., N, and iterate Eq.
(S60). This is computationally fast, and the result of the iteration process depends on the
relevant parameters of the model (u, o, #) and on the interaction graph. The code is available

at Ref. [8].

S4 Continuous BP equations

The continuous BP equations for the Generalized Lotka-Volterra (gL.V) model, as introduced
in Eq. (13) in the main text, read:

D (i) = A1 A nf)‘_l exp { — g(nf_an)} H (/ dny, nk%i(nk)exp{ — Ban; nk}) .
v keai—\j 0

(S61)

Eq. (S61) is the update rule for the cavity marginals, or messages, 7;_;(n;), which are
the probability distributions for the abundance of species (node) i once we cut the edges
with species j. As usual, we call 7;_,;(n;) node-to-link messages. What we immediately
notice from Eq. (S61) is that 7;_,;(n;) contains the factor /"', which diverges in n; = 0,
for SA < 1. To avoid such divergence, we introduce the link-to-node cavity messages, which
we denote 7;_,;(n;) and which represent the distribution of the abundance of species j once

all its links, except the one with ¢, are cut. These cavity marginals are defined as:
ﬁi%](nj) X / dnz Ni—j (TLZ) exp{ — ﬂozijni nj} . (SGQ)
0
Inserting Eq. (S61) into Eq. (562), we get:

ﬁi%j(nj) X /(; dnl nl’.B/\il eXp{ — g(nf — 2”1)} eXp{ — ﬁaijni nj} H ﬁkﬁl(nl) s (SGB)

kedi—\j

which is now the update rule for the link-to-node cavity marginals 7);_,;(n;). Importantly,
once the messages 7;_,;(n;) are determined, the cavity marginals n;,_,;(n;) follow directly, as
we can see by rewriting Eq. (S61) as:
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Nisj(N;) nf’\_l exp{ 6 (n? — 2n;) } H Mie—i (1) (S64)
2 kedi—\j
We can then analyze the BP convergence directly at the level of the link-to-node cavity
messages 7);—,;(n;). As said before, the advantage is that 7;_,;(n;) is a well-behaved function
that allows us to avoid the divergence of 7;_,;(n;) at n, = 0.
If we initialize all the messages 7;_,;(n;) to the uniform distribution over n;, the update
rule (S63) in the first iteration step becomes:

Nisi(n;) o / dn;n*! exp{ - g(n? - 2n1)} exp { — Bayn;n;}. (S65)
0
The advantage of this initialization is that we can rewrite Eq. (S65) as
Nisj(nj) o / dnn* ! exp{ — g n; + Bn;(1 Ozijnj)} (S66)
0

1 [* 72
_ dp x~ P! { _Z } S67
7= Jy rx exp 5 T (S67)

where in the last passage we introduced the change of variable x = v/Bn;, with p = =),
z = +/Blayn; — 1). The integral in Eq. (S67) can be exactly solved and expressed in terms
of parabolic cylinder functions D,(z). In particular, as it is shown in Eq. 9.241 in Ref. [7],
the integral (1) is equivalent to:
I(—
1="p,0, (568)

e 4

where ['(—p) is the Euler’s Gamma function. The first iteration step for the update of the
message 17;—,;(n;) then corresponds to

fig(ng) o 575 T(BX) €35m0 D_gy (VBlayn, — 1)) (S69)

which then has to be normalized.
For the following iteration steps, instead, we go back to Eq. (563), which we rewrite as

. B > - s .
Ni—s;(n;) o< exp {5(1 - aijnj)Q} / dn;n*! exp{ — §(nZ -1+ Oéijnj)2} H Tie—i (1)
0 kedi—\j
(S70)

In order to analyze the integral part of Eq. (S70), which we will denote by 1;_;(n;), let
us split it at some d > 0:

é
IHj(nj) = /O dn; 77/1.8)‘71 exp{ - g(nz -1+ aun] } H nkﬁz n’L

—{—/5 dn; n’f)‘_l exp{ - g(nl — 14 ayjn,) } H 77;HZ n;). (S71)



For § < 1, the first contribution, i.e. the integral between 0 and J, can be approximated
as:

5>
) = e { = S0 - aun?} T a0y, (572

where we performed the integration of the factor nf A1 over the interval 0, 6], while approx-

imating the remaining part of the integrand by its value at n;, = 0.
Substituting Eqgs. (S71) and (S72) into Eq. (S70), we obtain the following BP update rule
for the cavity messages 7);_;:

R 1 o .
Nimg () = =— [m ki (0)+
Ee kedi—\j
o0 B /8 R
+/6 dn;n*! exp{ - 5(7122 - 2774)} exp{ - Baijnmj} H nk%(nl)] (S73)

kedi—\j

After having initialized the messages following Eq. (569), the update rule of the contin-
uous BP equations is given by Eq. (S73).

This approach is general, but we specifically used it in order to study the transition from
a single-equilibrium phase (where BP converges) to a multiple-equilibria one (where BP does
not converge) in the presence of homogeneous (o = 0) and competitive interactions (x> 0).
The results are in Subsection IV.C of the main text. In this case, the species abundances
will only rarely be larger than the carrying capacities, which in our case are all equal to 1.
Some thermal fluctuations could drive species to abundances slightly larger than 1, but we
can safely restrict the integral [~ in Eq. (S73) to the interval [4,2]. In our implementation,
we set 6 = 107* and compute the integral numerically.

Let us specify that in our analysis we used a sequential update, meaning that at each
iteration step k, each ﬁf@](n]) is updated to ﬁff;l)(n]) asynchronously. In particular, the
order of updates follows a random fixed sequence of directed edges i — j. This sequential
approach is essential to avoid convergence inconsistencies, ensuring that BP stops converg-
ing only once the multiple-equilibria phase is reached. These issues are also discussed in
Appendix C of the main text. As for IBMF and numerical integration, the code is available

at Ref. [8].
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