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Abstract

Real ecosystems are characterized by sparse and asymmetric interactions, posing a ma-
jor challenge to theoretical analysis. We introduce a new method to study the general-
ized Lotka-Volterra model with stochastic dynamics on sparse graphs. By deriving local
Fokker-Planck equations and employing a mean-field closure, we can efficiently compute
stationary states for both symmetric and asymmetric interactions. We validate our ap-
proach by comparing the results with the direct integration of the dynamical equations
and by reproducing known results and, for the first time, we map the phase diagram
for sparse asymmetric networks. Our framework provides a versatile tool for exploring
stability in realistic ecological communities and can be generalized to applications in
different contexts, such as economics and evolutionary game theory.
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1 Introduction27

The stability of complex ecosystems and the rules governing species coexistence present a28

central puzzle in theoretical ecology. The generalized Lotka-Volterra (gLV) model has been a29

cornerstone of this inquiry, also related to models used in evolutionary game theory and in30

economic theory [1–3]. Recently, the random, symmetric, and dense version of the gLV model31

has been analyzed through the lens of equilibrium statistical mechanics. This approach has32

yielded profound insights, revealing how the phases of single equilibrium, unbounded growth,33

and multiple equilibria are dictated by a handful of macroscopic parameters: the mean µ and34

variance σ of inter-species interactions, and the intensity of demographic noise T . A key35

finding is that densely connected networks with random symmetric interactions can exhibit a36

phase of multiple equilibria at high interaction heterogeneity [4].37

However, real ecological networks are generally neither dense nor symmetric. In real38

ecosystems, the interactions between two species are almost always asymmetric, the existence39

of predator-prey couples of species being just an example. For this reason, some other works40

have tried to go beyond the assumption of symmetry [5–14]. Moreover, in real ecosystems, a41

species typically interacts only with a few others [15, 16]. In the last years, Random Matrix42

Theory (RMT) results [17, 18] have shown that the spectra of sparse random graphs exhibit43

qualitative differences from the dense case, suggesting that this may have implications for the44

stability of ecological models defined on sparse networks. Accordingly, it would be interesting45

to study the properties of the gLV model on graphs with finite connectivity. Unfortunately, in46

this case, the methods used for fully-connected systems [4,7] cannot be applied, in particular47

because no central-limit-type arguments hold.48

In a very recent paper, for the first time, the equilibrium properties of the symmetric gLV49

model on a sparse graph were analyzed [19] using the so-called Belief-Propagation (BP) cavity50

2



SciPost Physics Submission

method. This can, however, be used only when an equilibrium measure exists, preventing its51

implementation in the case of asymmetric interactions. In general, the description of out-of-52

equilibrium systems has been even more elusive, and the available techniques deal only with53

specific limits. When species interact through a fully-connected network [20], we can use54

Dynamical Mean-Field Theory (DMFT) to describe the temporal evolution of dynamic observ-55

ables, which has also been extended to non-Gaussian disorder in the interactions [21]. Other56

generalizations include the limit of very small connectivity [21], the limit of a large connec-57

tivity that grows sublinearly with the number of species in the graph [22], and the case of58

unidirectional interactions [23]. However, until now, there has been no way to systematically59

analyze gLV models with sparse asymmetric interactions.60

In this work, we bridge this gap by analyzing both symmetric and asymmetric, quenched-61

disordered sparse interactions. We go beyond equilibrium statistical mechanics, introducing62

a new method for the evaluation of the stationary probability distribution for the stochastic63

differential equations (SDE) that describe the evolution of the species abundance. We start64

from the usual formulation of the stochastic dynamics in terms of an SDE and derive the65

equivalent Fokker-Planck equation for the associated time-dependent probability densities.66

However, solving the full system of partial differential equations defined on the whole graph67

in a high-dimensional space is a cumbersome task. To overcome this difficulty, we derive local68

closures that allow us to obtain tractable relations for the stationary distributions.69

The main idea of a local closure is to propose an ansatz for the probability densities, in70

general involving some suitable factorizations that exploit the properties of the interaction71

graph. It has been used successfully in several contexts, such as the study of epidemics72

spreading on networks [24–27], algorithmic dynamics in hard combinatorial optimization73

problems [28, 29], spin-glass dynamics in random graphs [30], or the dynamics of the voter74

model [31]. As far as we know, this work constitutes the first application of local closures to75

Fokker-Planck equations in sparse graphs. The new approximate descriptions derived here are76

what we call local Fokker-Planck equations.77

We will validate our method by applying it to different situations, comparing its prediction78

with the results obtained from the direct numerical integration of the SDE and recovering79

known results from previous literature. We also show how, starting from the general equations80

in the asymmetric case, one can recover the BP equations when only symmetric couplings are81

considered.82

The rest of the manuscript is organized as follows. In Section 2 we introduce the gener-83

alized Lotka-Volterra equations and the underlying networks that we will analyze. In Section84

3, we present the Fokker-Planck equations that describe the evolution of the probability dis-85

tributions of the species abundances in time. These are complicated global equations, which86

in general are not solvable. For this reason, in Section 3.1 we introduce a new local closure,87

corresponding to a mean-field approximation for the dynamics, called Individual Based Mean88

Field (IBMF). Our procedure leads to the main local solvable Fokker-Planck equations that we89

discuss in this article. In Section 3.2 we go beyond IBMF, introducing a more refined closed90

local Fokker-Planck equation that we call Pair Based Mean Field (PBMF), showing that the91

BP equations introduced in Ref. [19] correspond to the stationary solution of PBMF in the92

symmetric case.93

We validate our new methods in Section 4, where we give details on the numerical im-94

plementation of IBMF both at null and finite temperatures. We compare the stationary abun-95

dances obtained with IBMF with those obtained from simulations in the presence of thermal96

noise for a single random graph. The results are a useful example to emphasize the strengths97

of IBMF, and to also point out its limitations. Then, we proceed to apply IBMF to three differ-98

ent scenarios. In Subsection 4.1, we study undirected graphs with asymmetric interactions at99

null temperature, obtaining the corresponding phase diagram in the plane (µ,σ) for the first100
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time, as far as we know. We thus generalize the results for the fully-connected asymmetric101

case in Ref. [5] and for the sparse case with symmetric interactions in Ref. [19]. In Subsection102

4.2, we apply the IBMF closure to directed graphs with null variance in the couplings and null103

temperature, confirming and extending the results of Ref. [32], which were obtained there104

with a completely different method. In Subsection 4.3 we move back to undirected graphs,105

but this time with symmetric couplings at finite T . This setting helps us study the performance106

of IBMF in the presence of thermal noise in a systematic way. We compare the results with107

Ref. [19], where the BP method is used to exactly solve the model. We identify the limitations108

of IBMF, which stops converging to a single equilibrium as soon as the exact species abun-109

dances found by BP start developing a non-Gaussian distribution tilted towards extinctions.110

Finally, in Section 5, we draw our conclusions.111

2 The model112

Let us introduce the generalized Lotka-Volterra (gLV) equations that we will study in the rest113

of this article. They describe the dynamics of an ecosystem with N interacting species. To114

each of them, we associate a positive real variable ni , interpreted as the abundance of the i-th115

species, with i = 1, . . . , N . In general, a single species will not interact with all the others, but116

instead with a subset of the species known as the neighborhood of i. The interactions occur117

in a graph G(V, E), where V is the set of vertices, each representing a species, and E is the set118

of edges.119

To keep the definitions as general as needed, for now the reader should think of G as a120

directed graph. If the presence of species i influences the growth of species j, we add the121

directed edge i → j. It is possible to have i → j in the graph without having the edge in the122

opposite direction ( j → i). We define the in-neighborhood ∂ i− of i as the set of in-neighbors123

j such that the edge j→ i exists in the graph. For simplicity, graphs G with self-loops will not124

be considered here125

The gLV equation for the abundance of the i-th species can be written as:126

dni

d t
=

ri

Ki
ni(Ki − ni −

∑

j∈∂ i−
αi jn j) + ξi(t) +λ , (1)

where ni ≥ 0 is the abundance of the i-th species, and the real parameters ri and Ki are known127

as the intrinsic growth rate and carrying capacity, respectively. To simplify the setting, we will128

take ri = Ki = 1 in what follows, but the reader will find no difficulties in generalizing our129

results to consider other values of these constants.130

The term ξi(t) in Eq. (1) is a noise term, which has average 〈ξi(t)〉 = 0 and second131

moments 〈ξi(t1)ξ j(t2)〉= 2 T ni δi, j δ(t1− t2), where T is known as temperature of the noise.132

This thermal noise is referred to as demographic [4, 33–36] and accounts for death and birth133

processes. The parameter λ, known as immigration rate, acts as a small source term that allows134

extinct species to come back should conditions become favorable to them [20, 37]. Its effect135

will be clarified later.136

The couplings αi j are real numbers that set the type and strength of the interactions. The137

value of αi j encodes the way that species j affects the evolution of species i, and therefore138

corresponds to the edge j → i on the graph. In the case where for all j ∈ ∂ i− we also have139

the edge i→ j, the graph is known as undirected. Having αi j and α ji simultaneously positive140

means that the two species i and j have a competitive interaction, where the presence of141

individuals of species j is prejudicial for the individuals of species i, and vice versa. When142

they are both negative, we have a mutualistic interaction, and the species are beneficial to143

each other. On the other hand, when the interaction is positive for one species and negative144
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for the other, we have a predator-prey or antagonistic interaction. Finally, in the presence of145

directed interactions, we can also have commensalism and amensalism, whereby one species146

benefits or is harmed by the interaction, while the other is unaffected.147

Given that the edge j→ i already exists in the graph, we can add noise to the interactions148

by drawing αi j at random from some probability distribution. Following many other works149

[19, 20, 38], we choose the Gaussian distribution αi j ∼ N (µ,σ), with mean µ and variance150

σ2. The reader should note that, as a particular case, we can set the interaction strengths αi j151

to be homogeneous by choosing σ = 0. In that case, we get αi j = µ for all the edges j→ i.152

Our methodology, derived below in Section 3, applies to graphs with directed and/or undi-153

rected interactions. We demonstrate this by including results for three different scenarios in154

Section 4. In Subsection 4.2 we study a case where, with high probability, the edges j→ i and155

i→ j are not simultaneously present. We follow the same model used in Ref. [39] to study the156

gLV dynamics with asymmetric interactions. To construct the network, for each species i we157

select the incoming edges by going over all possible j 6= i, and adding the edge j 6= i with prob-158

ability c/N , where c > 0. The in-neighbors of i are chosen independently of the in-neighbors159

of j, and in the limit when the number of species is large, it is highly improbable that we find160

i→ j and j→ i simultaneously in the graph. The result is a graph where the degree follows a161

Poisson distribution with mean c, and where most interactions are directed. Finally, for each162

edge j→ i we draw αi j from the Gaussian distribution N (µ,σ). In Subsection 4.2 below, we163

include results for different values of µ but only two values of σ (σ = 0 and σ = 0.15).164

In Fig. 1, and in Subsections 4.1 and 4.3, the species interact over an undirected random165

regular graph, whose edges are randomly selected such that each species (vertex) has the same166

number of neighbors, denoted by c and called connectivity. After the graph is built, we need167

to choose the interaction strengths αi j and α ji for each edge. In Subsection 4.1, we draw αi j168

independently of α ji using the Gaussian distribution N (µ,σ), for different values of µ and σ.169

Notice that this creates asymmetric interactions where, in general, we have αi j 6= α ji whenever170

σ 6= 0. In Subsection 4.3 we study the case σ = 0, where we always get αi j = α ji = µ and the171

interactions are symmetric.172

3 Local Fokker-Planck equations173

Given a graph of interactions, Eq. (1) gives the temporal evolution of the abundances in a174

stochastic process with thermal noise ξ(t). Sampling different realizations of the initial con-175

ditions and of ξ(t), one gets the probability distribution Pt(~n) of the vector ~n= (n1, . . . , nN ) at176

time t. This quantity obeys a Fokker-Planck equation that can be derived from Ito’s rule [38].177

However, contrary to the usual case where the variables are defined in the interval (−∞,+∞),178

each abundance ni is defined in the interval [0,+∞). As a natural consequence of this fact (see179

Appendix A for more details), one needs to impose the proper boundary conditions at ni = 0,180

guaranteeing that the current of probability density through the border is always zero [40].181

The resulting Fokker-Planck equation is:182

∂ Pt(~n)
∂ t

= T
N
∑

i=1

∂ 2

∂ n2
i

�

ni Pt(~n)
	

−
N
∑

i=1

∂

∂ ni

¦

�

ni(1− ni −
∑

j∈∂ i−
αi jn j) +λ

�

Pt(~n)
©

, (2)

The first and second terms on the right-hand side of Eq. (2) are the usual diffusion and183

drift terms of the Fokker-Planck equation, respectively. They encode the evolution of a species184

subject to Eq. (1). The deterministic growth ratio ni(1− ni −
∑

j∈∂ i− αi j n j) + λ experienced185

by species i goes into the drift term. The thermal noise with temperature T gives birth to the186

diffusion term.187
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In any case, solving Eq. (2) is a cumbersome task mainly because Pt(~n) is a highly dimen-188

sional object. The abundances are defined on the space (0,+∞)N and the time can be in189

general defined in the space (−∞,∞). Even when we consider a single species (N = 1),190

finding Pt(n) at any time t is not simple. However, we can obtain its stationary solution (see191

Appendix B), which will be useful for us later. It reads:192

P∞(n) =
1
Z

nβλ−1 exp
¦

−
β

2
(n− 1)2

©

, (3)

where Z is a normalization constant and β ≡ 1/T .193

Eq. (3) clarifies the role of the parameter λ in the model. The integral
∫∞

0 dn P∞(n) is194

finite if and only if λ > 0. Otherwise, the divergence at n = 0 dominates the integral, which195

would be divergent. In other words, the existence of λ > 0 allows the density P∞(n) to be196

normalizable. On the other hand, when λ= 0 and T > 0 the species are doomed to go extinct197

for large times.198

3.1 Individual Based Mean Field199

To find solvable equations, we need to simplify Eq. (2). In this subsection, we obtain the200

first local Fokker-Planck equation for the gLV model. Let us marginalize Eq. (2) over all the201

abundances except ni to obtain the differential equations for the local probabilities, which are202

defined as Pt(ni) =
∫∞

0 [
∏

k 6=i dnk]Pt(~n):203

∂ Pt(ni)
∂ t

= T
∂ 2

∂ n2
i

�

ni Pt(ni)
	

−
∂

∂ ni

¦

�

ni

�

1− ni −
∑

j∈∂ i−
αi j m j→i(ni , t)

�

+λ
�

Pt(ni)
©

, (4)

where m j→i(ni) is the conditional average204

m j→i(ni , t)≡
∫ ∞

0

dn j n j Pt(n j | ni). (5)

As in the Fokker-Planck equation for the whole system, the local version in Eq. (4) has205

two different contributions. The first line in the equation shows the diffusion term. On the206

other hand, after averaging over the rest of species, the single species i senses an effective207

drift ni

�

1− ni −
∑

j∈∂ i−αi j m j→i(ni , t)
�

+ λ, where n j is substituted by its conditional average208

m j→i(ni , t). For more details on the derivation of Eq. (4), the reader is referred to Section 1209

of the Supplemental Materials (SM).210

We have not introduced any approximation so far. To solve Eq. (4), one would also need211

to obtain all the functions m j→i(ni), but from its definition (Eq. (5)) it is evident that this212

is equivalent to getting the solution for the pair probabilities Pt(ni , n j). Indeed, to compute213

the conditional probability density Pt(n j | ni), we need the pair Pt(ni , n j) and the single-site214

Pt(ni) probabilities. As we will show in the next section, the local Fokker-Planck equation215

for Pt(ni , n j) depends, in turn, on probabilities Pt(ni , n j , nk) defined over three species. After216

iterating this process, we get a hierarchy of equations that never closes until we recover the217

full Eq. (2). Therefore, solving Eq. (4) has the same level of difficulty as solving Eq. (2).218

To overcome this problem, we need to introduce an approximation that allows us to get a219

closed system of differential equations for the Pt(ni), i.e, one that can be solved without going220

up in the hierarchy. The first step that one could take in that direction is to assume m j→i(ni , t)221

is independent of ni and write m j→i(ni , t)≈ m j(t), where222

m j(t)≡
∫ ∞

0

dn j n j Pt(n j). (6)
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Doing this is equivalent to assuming that the pair probabilities are all factorized such that223

Pt(ni , n j) ≈ Pt(ni)Pt(n j). Therefore, we are trivializing the correlations in the system. Never-224

theless, this approximation allows us to close the system of differential equations since all the225

information that we need is in the single-species distributions Pt(ni). We get:226

∂ Pt(ni)
∂ t

= T
∂ 2
�

ni Pt(ni)
	

∂ n2
i

−
∂

∂ ni

¦

�

ni

�

1− ni −
∑

j∈∂ i−
αi j m j(t)

�

+λ
�

Pt(ni)
©

. (7)

These local Fokker-Planck equations form a dynamic closure that can in principle be solved,227

and that we will call Individual Based Mean Field (IBMF) in what follows. This name has228

been used before in the literature, particularly in the study of epidemic spreading throughout a229

network [24,26], to identify an approximation that factorizes the pair probabilities distribution230

as explained above. Finding the stationary solution of Eq. (7) has the same level of difficulty231

as for an isolated variable (see Eq. (3) and Appendix B). The result is:232

P∞(ni) =
1
Zi

nβλ−1
i exp

¦

−
β

2
(ni −Mi)

2
©

, (8)

where233

Zi =

∫ ∞

0

dni nβλ−1
i exp

¦

−
β

2
(ni −Mi)

2
©

(9)

Mi = 1−
∑

j∈∂ i−
αi j m j(∞) . (10)

This is a mean-field solution to the problem derived for sparse graphs with any type of234

interactions. In fact, a similar probability density has been recently introduced in Ref. [41] for235

the case of fully-connected models, a scenario where mean-field assumptions like these are236

more commonly used. The presence of other species modifies the center Mi of the Gaussian237

in Eq. (8) to make ni align with the average effect of its neighbors. To evaluate the stationary238

solution of IBMF, we need to design an algorithm capable of computing the averages m j(∞),239

which we will denote by m j for simplicity. Exploiting Eq. (8), we can write:240

mi =
1
Zi

∫ ∞

0

dni nβλi exp
¦

−
β

2
(ni −Mi)

2
©

. (11)

As said above, Zi and Mi are functions of the averages m j , with j ∈ ∂ i−. After making an241

initial guess for the average abundances mi , with i = 1, . . . , N , we can use Eq. (11) to update242

their values. Then, we iterate until all mi converge to the IBMF’s prediction for the stationary243

average abundances. In practice, we employ numerical tricks, such as adding damping and244

using sequential updates, to aid this iterative process in reaching convergence (see Appendices245

E and C).246

In the process of obtaining the stationary solution of IBMF, we did not assume any partic-247

ular structure of the graph, nor any specific type of interaction. It is in principle applicable248

to any directed or undirected graph, with symmetric or asymmetric interactions. However,249

one should expect better results when correlations are weak enough for the factorization250

P∞(ni , n j) ≈ P∞(ni) P∞(n j) to approximately hold. The latter is intuitively more likely to251

happen in the case of asymmetric interactions.252
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3.2 Continuous Belief Propagation253

To go beyond IBMF, we need to include non-trivial correlations between pairs of interacting254

species. Therefore, it is reasonable to go up one level in the hierarchy and write the local255

Fokker-Planck equations for the pair probabilities Pt(ni , n j) =
∫∞

0 [
∏

k 6=i, j dnk]Pt(~n). After256

marginalizing Eq. (2) over the abundances of all the species (the details can be found in Section257

1 of the SM), except for i and j, we obtain a local equation that depends on the conditional258

averages:259

mk→i, j(ni , n j , t)≡
∫ ∞

0

dnk nk Pt(nk | ni , n j). (12)

Solving for mk→i, j(ni , n j , t) implies knowing the three-species probabilities Pt(ni , n j , nk),260

but we need to close the hierarchy at some point. However, if one focuses on random sparse261

graphs like random regular or Erdős-Rényi, the tree-like structure of the interactions makes262

it very unlikely that species k interacts with i and j simultaneously, provided that i and j263

interact. If k ∈ ∂ i−, we can assume that mk→i, j(ni , n j , t) strongly depends on ni and only264

weakly depends on n j . We then make the approximation mk→i, j(ni , n j , t) ≈ mk→i(ni , t). The265

result (see Section 1 of the SM) is a closed local Fokker-Planck equation that we call Pair Based266

Mean Field (PBMF), also using a name that is popular in the context of epidemics spreading267

on networks when the dynamics is described using pair probabilities [25,26].268

Although the PBMF is simpler than the full Eq. (2), it is still difficult to obtain a general269

solution, even when we focus only on the stationary point. Only in the case of symmetric inter-270

actions in undirected graphs (αi j = α ji), as we show in Subsection 2.1 of the SM, the proper271

solution to the local Fokker-Planck equation for pair probabilities in sparse random graphs is272

Belief Propagation (BP). This technique was already introduced in Ref. [19] for the gLV model.273

However, while in that case the abundances of the species are considered as discrete variables274

with states ni = 1, 2, . . ., here we use the continuous version of the model. We solve this issue275

by proposing a new continuous implementation of BP equations for our model, which have276

the same structure as the ones in Ref. [19], but include the proper adjustments to consider277

continuous ni ∈ [0,+∞). These are:278

ηi→ j(ni) =
nβλ−1

i

zi→ j
exp

¦

−
β

2
(n2

i − 2ni)
© ∏

k∈∂ i−\ j

∫ ∞

0

dnk ηk→i(nk) e
−βαikni nk , (13)

where ηi→ j(ni) is the cavity marginal, or message, that represents the marginal probability279

density of species i in a modified graph where the edge connecting i and j is removed. The280

constant zi→ j is a normalization factor.281

Here, we can identify that the local field hi , whose exponential e−β hi(ni) usually appears282

in front of BP equations, is simply hi = n2
i /2− ni + (T − λ) ln(ni). This expression properly283

considers the immigration rate and the continuous nature of ni . From it, we can obtain the284

stationary single-site and the pair probabilities as follows:285

PBP(ni) =
nβλ−1

i

Zi
exp

¦

−
β

2
(n2

i − 2ni)
© ∏

k∈∂ i−

∫ ∞

0

dnk ηk→i(nk) e
−βαikni nk (14)

PBP(ni , n j) =
1

Zi j
ηi→ j(ni) e

−βαi j ni n j η j→i(n j) , (15)

where Zi and Zi j are normalization factors and the messages ηi→ j(ni) are the fixed point286

solution of Eq. (13).287
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The reader could wonder what the relation is between BP and the local Fokker-Planck288

equations that we have been presenting here. Remarkably, it is possible to prove that the289

expression in Eq. (15) for the pair probabilities, together with BP equations (Eq. (13)), is a290

stationary solution of PBMF when the interactions are symmetric. The details of the proof are291

given in Subsection 2.1 of the SM. To obtain numerical results from BP, we use an iterative292

algorithm analogous to the one we introduced above for IBMF. Making an initial guess for the293

messages ηi→ j(ni), we can use Eq. (13) to update their values at each ni . This procedure294

is iterated until all ηi→ j(ni) converge, and the final messages are used to compute the true295

marginals PBP(ni) and PBP(ni , n j). For the interested reader, we include details about our296

specific implementation of BP in Section 4 of the SM.297

4 Numerical results298

As said above, to use IBMF to obtain the actual values of the averages mi , we need to numer-299

ically compute integrals of the form:300

Ik(β ,λ, M) =

∫ ∞

0

dn nβλ−1+k exp
¦

−
β

2
(n−M)2

©

, (16)

with the parameter k taking the value k = 0 in Eq. (9), and k = 1 in Eq. (11).301

Luckily, the integral in Eq. (16) can be expressed in terms of known special functions,302

called parabolic cylinder functions (see 9.241 in Ref. [42]). This is very convenient because303

we can write the parabolic cylinder functions in terms of the more practical Kummer’s conflu-304

ent hypergeometric function, which can be found already tabulated in different programming305

languages. The interested reader can find the details in Section 3 of the SM. The code is306

available at Ref. [43].307

When the temperature is zero or close to zero, the equations can be simplified even further.308

The exponential in Eq. (16) concentrates around its maximum, and provided that λ is small,309

IBMF equations reduce to:310

ni =max
¦

0, 1−
∑

j∈∂ i−
αi j n j

©

. (17)

At T = 0, we simply need to iterate Eq. (17) until convergence. It is important to note311

that this is not the same as running the zero-temperature simulations of the dynamics, which312

in turn implies integrating the system of differential equations:313

dni

d t
= ni(1− ni −

∑

j∈∂ i−
αi jn j) +λ . (18)

Such numerical integration of the gLV dynamical equations at T = 0 can be performed using314

the Cash-Karp adaptive Runge-Kutta method [44]. The code is available at Ref. [43].315

For small λ, the fixed points of Eq. (17) coincide with the stationary solutions of the exact316

dynamics in Eq. (18). Therefore, whenever IBMF converges, the fixed point represents an317

actual stationary configuration of the dynamics. On the other hand, the non-convergence318

of IBMF is not guaranteed to be reflected in the behavior of the simulated dynamics. One319

could think of them as two different algorithms trying to find the same fixed points. If one of320

the algorithms succeeds, the resulting abundances constitute a fixed point also for the other321

algorithm. If one of them does not succeed, the other still could.322

However, we show in Subsections 4.1 and 4.2 (see below) that IBMF can nevertheless323

be used to predict the relevant phase transitions observed in the simulations at T = 0. In324
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Figure 1: Comparing individual abundances from IBMF and simulations in a random
regular graph at finite temperature T = 0.015. The connectivity is c = 3, and the
immigration rate is λ = 10−6. Each αi j is independently drawn from the Gaussian
N (0,σ), with σ = 0.15 (the interactions are asymmetric). Each point in the main
graphic has coordinates (nSIM

i , nIBMF
i ), where nSIM

i is the average stationary abun-
dance of species i obtained from 100 simulations of the dynamics, and nIBMF

i is the
prediction of IBMF for the same species. The black dashed line is just the linear func-
tion f (x) = x . The system has N = 1024 species, thus there are 1024 points in the
main graphic. The inserted graphic in the top-left corner shows the temporal evolu-
tion of four species with small stationary abundances. The corresponding points are
marked with the same colors in the main graphic. The horizontal lines are the pre-
dictions of IBMF for the same species. The graphic is in semi-log scale. Analogously,
the inserted graphic in the bottom-right is done with four species whose abundances
are not small. Colored lines show the results of simulations, and the horizontal black
lines show the predictions made with IBMF.

Appendix C and for a random regular graph with homogeneous interactions, we show that325

the exact result for the transition from single-to-multiple equilibria [32] arises naturally from326

IBMF. Furthermore, in Section 2.2 of the SM, we recover the stationary solution of Dynamical327

Mean Field Theory [20] in the limit of large connectivity at zero temperature.328

In the presence of thermal noise (T > 0), we still have a fast implementation of IBMF.329

It is important to note that, for finite temperatures, IBMF is always a factorized ansatz for330

the probability density of the abundances. With its stationary solution, we can predict the331

final average abundance nIBMF
i for each of the species in a given graph. To illustrate how332

this works, Fig. 1 compares each nIBMF
i with the average stationary abundances nSIM

i obtained333

from simulations for a specific realisation of a random regular graph in the presence of thermal334

noise. The numerical integration of the SDE defining the gLV model in Eq. (1) are performed335

by means of the Milstein method [45,46]. As with the other algorithms, the code is provided336

in Ref. [43]. The interactions are asymmetric, i.e., we choose αi j independently of α ji , each337

from a Gaussian distribution N (0,σ). As far as we know, this is the first time a theoretical338

prediction of this kind has been made for sparse graphs.339

The main graphic of Fig. 1 shows that IBMF accurately predicts the abundances of the340

species that are dominant in the ecosystem. For ni > 0.6, the points (nSIM
i , nIBMF

i ) lie around341

the line f (x) = x of perfect agreement. Most species (∼ 91%) are in this group. In the342

bottom-right corner of Fig. 1, the inserted graphic shows the temporal evolution of four of343

those species observed in a single simulation. The corresponding points in the main graphic344
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are marked using the same colors. The stationary abundances of those species, which were345

selected at random, oscillate around the corresponding predictions from IBMF (presented in346

black dashed lines). We observe almost perfect agreement between them.347

On the other hand, IBMF consistently underestimates the stationary abundances obtained348

from simulations for species that are closer to extinction, with ni < 0.6. Very few (∼ 9%)349

species are in this group. The results become clearer after analyzing the inserted graphic in350

the top-left of Fig. 1. There, we show the temporal evolution of the abundances of four species351

that are very close to extinction according to IBMF, but whose average stationary abundance352

from simulations is not as small. The corresponding points in the main graphic are marked353

using the same colors.354

The inserted graphic shows that these species in the lower bottom corner of Fig. 1 continu-355

ously switch between two time-persistent states. After spending some time oscillating around356

a value of the abundance nhigh
i that is not small (from the figure we see that nhigh

i > 0.1),357

the species suddenly drop down and oscillate for a while around a very small abundance358

nlow
i ∼ 0.001. This small nlow

i corresponds well to the predictions of IBMF, marked with hor-359

izontal dashed lines in the graphic. The real stationary abundance measured in simulations360

by averaging ni for long times, however, is somewhere in between nlow
i and nhigh

i . Instead361

of mimicking this intermediate value without a clear physical meaning, IBMF gives only the362

smallest of the two true values nlow
i and nhigh

i . Although it is only partially right, it definitely363

allows identifying the species that are going to exhibit this type of dynamics. A similar be-364

havior has been recently found in fully-connected systems with asymmetric interactions and365

without thermal noise [47], where the species also switch between two time-persistent states,366

only one of which is close to extinction. Remarkably, while in Ref. [47] this is observed for367

every species, in our case we have only a few switching species. This species heterogeneity is368

probably related to the sparsity of interactions.369

Both with IBMF and with simulations, we verified that the corresponding stationary abun-370

dances were independent of the initial conditions (and of the realization of the noise in simu-371

lations). Remarkably, computing the stationary abundances with IBMF is two orders of magni-372

tude faster than running the simulations. By averaging over 100 different initial conditions, we373

get the average wall-clock times of 22.0±0.3 ms for IBMF, and of 1390±60 ms for simulations374

(ms stands for milliseconds).375

The results in Fig. 1 clarify the meaning of IBMF and its predictions for a single graph, while376

also raising new questions on the link between the structure of the interaction graph and the377

observed non-trivial dynamics. This phenomenon can also depend on the model’s parameters.378

Getting a clear picture will require further work, especially because of the difficulties involved379

in numerically analyzing the results from simulations in the presence of thermal noise.380

In this introductory work, we provide a general and clearer picture of how IBMF works in381

more controlled scenarios. First, Subsections 4.1 and 4.2 compare IBMF with simulations at382

zero temperature, where the results from the latter are easier to interpret. In Subsection 4.1,383

we study the phase diagram of the model in graphs with asymmetric interactions in undirected384

random regular graphs. In Subsection 4.2, we revisit a model discussed in Ref. [39] to predict385

the probability of observing persistent fluctuations in the dynamics for any given system size.386

Subsection 4.3 is devoted, instead, to a case where we include thermal noise. Although IBMF387

with T > 0 can be applied to symmetric or asymmetric interactions, we chose to study the388

model with symmetric and homogeneous interactions. The reason is that, in this case, we can389

compare the output of IBMF with the results of BP, thereby avoiding the numerical complica-390

tions associated with studying the phase transitions of the simulated dynamics in the presence391

of thermal noise. The latter is left for future work.392
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Figure 2: Transitions obtained simulating the gLV model for T = 0, asymmetric inter-
actions (αi j is chosen independently of α ji), and λ = 10−6. For several pairs (µ,σ),
we run the dynamics for 10000 different random regular graphs with connectivity
c = 3 and size N = 1024. The interaction strengths are drawn from the Gaussian
distribution: αi j ∼ N (µ,σ). By repeating the simulation 10 times with different
initial conditions for each graph, we identify one of three possible outcomes: i) all
realizations converge to the same fixed point, ii) all the realizations converge but the
fixed points are different, or iii) the abundances in at least one of the simulations
grow and diverge for long times. The blue points mark, for each µ, the maximum
value of σ at which more than 50% of the samples are of type i). The red points
mark, for each µ, the minimum value of σ at which more than 50% of the samples
are of type iii).

4.1 Undirected graphs with asymmetric interactions393

In this Subsection, we apply IBMF to undirected graphs with Gaussian noise in the interactions394

at zero temperature. We take a random regular graph with a given connectivity c, and draw395

every αi j from a Gaussian with mean µ and standard deviationσ (αi j ∼N (µ,σ)). This means396

that the coupling in the opposite direction, α ji , is independently drawn from the same distri-397

bution. Thus, the interactions are generally asymmetric. The larger the standard deviation σ,398

the bigger the average difference between αi j and α ji .399

Fig. 2 shows the phase diagram obtained by simulating the gLV dynamics at T = 0 and400

µ > 0, with λ = 10−6 (see Eq. (18)). We identify three distinct regions. When σ is small401

enough, the species reach a unique fixed point for long times, which corresponds to the single-402

fixed-point (SFP) phase. The first transition occurs at σSF P(µ), and is represented with blue403

points in Fig. 2. For σ > σSF P(µ), simulations with different initial conditions will not con-404

verge to the same fixed point in most interaction graphs. The unbounded growth (UG) tran-405

sition is located at σUG(µ) ≥ σSF P(µ), and is represented by the red points in Fig. 2. Above406

this line, the abundance of at least one species grows and diverges in most simulations.407

Note that the transition at σSF P(µ) is not purely between a single-fixed-point phase and a408

multiple-fixed-points phase. Although for large µ this is indeed the case, for µ≤ 0 the system409

goes directly from reaching a single fixed point to showing unbounded growth (see Appendix410

D). In between, we have a crossover between these two types of transitions.411

The crossover poses a problem in predicting them using IBMF. As said before, any fixed412

point of IBMF is also a stationary solution of the exact dynamics at T = 0. We need to design413

a procedure capable of detecting the presence of different fixed points if they exist. We then414
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Figure 3: Transitions of the gLV model for different system sizes at T = 0. The inter-
actions are asymmetric (αi j is chosen independently of α ji) and defined on random
regular graphs with connectivity c = 3. Points represent the results of simulations
with immigration rate λ= 10−6, and lines are the predictions made with IBMF for the
same sizes. Each transition was determined using 10000 graphs. Simulations are re-
peated for 10 different initial conditions. IBMF was run with damping (see Appendix
E) for 10 different random initial conditions. (a) For each system size N and average
strength µ, points (lines) mark the maximum value ofσ such that simulations (IBMF)
converged to the same fixed point in more than 50% of the interaction graphs. (b)
Points (lines) mark the minimum value of σ such that simulations (IBMF) displayed
unbounded growth (not converged) more than 50% of the interaction graphs.

compare the results when we choose different initial conditions for the average abundances415

of IBMF.416

In Fig. 3, we compare the results of the simulations with the predictions of IBMF. There417

are three possible outcomes of IBMF, and they are similar to those obtained from the simula-418

tions. For σ small enough, running IBMF in a specific graph many times with different initial419

conditions always gives the same fixed point. For σ large enough, two things can happen.420

Either IBMF converges to multiple fixed points for a given graph, provided that we change421

the initial conditions, or it does not converge at all. Interestingly, for IBMF we also observe422

a crossover between these behaviors. Fig. 3a shows the transitions between the single-fixed-423

point phase and the region where we either find multiple fixed points or no convergence. The424

lines, representing IBMF, accurately reproduce the results from the simulations.425

Although we know that if IBMF reaches a fixed point, this is also a fixed point of the426

exact dynamics, it does not necessarily stop converging when the simulations do. We used427

IBMF to reproduce the transition to unbounded growth. Fig. 3b shows a very good agreement428

between simulations and IBMF. This also extends to negative values of µ, which correspond to429

interactions that are mutualistic on average (see Appendix D).430

Our results indicate that IBMF is enough to independently describe both aspects of the431

crossover: the transition to the multiple-fixed-points phase and the transition to unbounded432

growth. Note that the finite-size effects are relevant in both panels of Fig. 3. The transi-433

tions obtained with the simulations and with the theory move downward when the number434

of species N increases. Nevertheless, IBMF is enough to capture these effects correctly, and its435

description is already accurate for finite systems.436

As mentioned above, to obtain Fig. 3 we drew αi j and α ji independently from Gaussian437

distributions for every pair of interacting species. It is important to mention, however, that438

the quantitative agreement between IBMF and simulations also holds when αi j and α ji are439

correlated, as we show in Appendix F.440
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4.2 Directed graphs441

As in Ref. [39], we study the emergence of fluctuating abundances ni in graphs where the442

degree follows a Poisson distribution with mean c, and where most interactions are directed.443

If the edge j → i is present, with high probability the edge in the opposite direction does not444

exist. The graph can be seen as representing a directed flow between the species. We say445

that species j is upstream with respect to species i ( j → i). Conversely, species i is said to be446

downstream with respect to species j. We then independently draw each associated αi j from447

the Gaussian distribution N (µ,σ).448

The authors of Ref. [39] carefully studied the case with homogeneous interactions (σ = 0),449

and demonstrated that the zero temperature dynamics in this toy model can have two distinct450

outcomes at long times. One possibility is that all abundances converge to a fixed stationary451

value, with the whole system reaching a fixed point. The second possibility is that not all452

species converge, resulting in a system with persistent fluctuations. The latter case can also be453

subdivided into two by taking into account the number of fluctuating species, with one regime454

with local fluctuations and another with global fluctuations.455

One of the main objects to measure is the probability that we obtain persistent fluctuations456

pfluc after running the dynamics in a graph extracted at random for some average connectivity457

c and interaction strength µ. Note that pfluc does not distinguish between local and global458

fluctuations.459

The system undergoes a transition around µ = 1 [39]. For c < e, where e is the Euler’s460

constant, and in the limit when the number of species is large (N →∞), one gets pfluc = 0461

for µ < µc = 1 and pfluc > 0 for µ > µc = 1. For c > e and also in the limit N →∞, the same462

transition occurs but is displaced to smaller µ, and the critical µc ® 1 slowly decreases when463

the connectivity increases.464

As in the case of asymmetric interactions in a random regular graph (Subsection 4.1), we465

numerically demonstrate that, for this toy model, the probability of having persistent fluc-466

tuations in the simulations can be well approximated by studying the probability that IBMF467

converges. Fig. 4a presents the results obtained in the toy model. In this case, we observe that468

adding damping to the iterations is particularly important (see Appendix G). For each graph of469

interactions generated with the rules described above, we also have two different outcomes.470

Either the abundances converge to a fixed point, or they continue to exhibit persistent fluctu-471

ations. As in simulations, the probability of convergence displays a qualitative change in its472

behavior around µ= 1.0.473

The probability Pnc that IBMF does not converge corresponds very well to the predictions474

made in Ref. [39] for the probability of having fluctuations, represented with dashed lines in475

the main graphic of Fig. 4a. When µ > 1, the authors of Ref. [39] conclude that, in a given476

graph, the only fluctuating species are located in short cycles of odd length. The species in any477

cycle of length n = 2k + 1 will fluctuate if two conditions are met: i) all the species that are478

upstream of the species in the cycle are extinct, and ii) the cycle is unstable, which happens for479

µ > 1/ cos(π/n). The value of µ thus determines the minimum length nmin of the fluctuating480

cycles. For details on the computation, see Appendix G in this article or directly read Ref. [39].481

From top to bottom in the figure, the dashed lines correspond to µ = 3.0 (nmin = 3),482

µ= 1.5 (nmin = 5), and µ= 1.1 (nmin = 9). When n is large, the values of µc(n) = 1/ cos(π/n)483

are close to each other and to µ = 1, and it is numerically harder to distinguish between two484

values of µ. However, in Fig. 4a, IBMF results for µ = 1.1 (orange points) are not far apart485

from the corresponding dashed line.486

Below µ = 1.0, the results in Fig. 4a are qualitatively different, also in agreement with487

Ref. [39]. For µ= 0.9, the probability that IBMF does not converge remains close to zero until488

it abruptly grows towards one around c ∼ 3.1. If we decrease µ just a bit more to µ = 0.8,489

we get Pnc ∼ 0 for all c < 4. In Appendix H, we study the dependence of the results on the490
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Figure 4: Probability that IBMF does not converge (Pnc) in directed graphs. IBMF
is run over different realizations of the interaction graph with a given average con-
nectivity c, size N , and interaction strength µ. There is no unique function for all
µ > 1, and dashed lines in the top panel are obtained exactly as in Ref. [39] (see the
text for clarification). (a) Toy model without noise in the interactions (σ = 0). The
colored lines in the main graphic represent the results of IBMF for N = 65536 and
different values of µ. In the inserted graphic, IBMF (lines) is run instead for systems
with N = 16384 species, and the points represent the results of simulations of the
dynamics for the same system size. The vertical line marks the value c = e. The
error bars for IBMF predictions are small and are not included in the graphics. (b)
The interaction strengths are drawn from the distribution N (µ,σ) with µ= 0.7 and
two values of σ. The values of Pnc for different values of c are represented using
points with their corresponding error bars. Lines are a guide to the eye.

system size to conclude that, effectively, the transition for µ < 1 is qualitatively different from491

the one for µ > 1.492

Even for a large system with N = 65536 species, we observe that the predictions of IBMF493

deviate from the theory of Ref. [39], which is derived in the infinite size limit. In the inserted494

graphic of the same Fig. 4a, we show that this is not a particular problem of IBMF. With points,495

we represent the results obtained after simulating the dynamics by integrating Eq. (18). They496

are in very good agreement with the predictions of IBMF (lines), also above the critical con-497

nectivity c = e, which is marked with a vertical dashed line. As in Section 4.1, IBMF allows us498

to capture the finite-size effects in simulations, which is an advantage with respect to previous499

theoretical predictions. It is important to note that, even when run in single graphs, obtaining500

results from IBMF is computationally much simpler than performing actual simulations. Re-501

markably, the average runtime of IBMF for different values of µ and c is consistently 10 times502

faster than the runtime of simulations, under equivalent conditions and for the same system503

size (see Appendix I).504

Moreover, our IBMF equations are not restricted to this toy model, and some variations can505

also be studied. The authors of Ref. [39] try a modification to include noise in the interaction506

strengths. They take αi j from the Gaussian distribution N (µ,σ), again with probability c/N ,507

and zero otherwise. According to the text of that article, for σ = 0 and µ= 0.7 the transition508

occurs around c ∼ 5.3, while for σ = 0.15 and µ= 0.7 they get c ∼ 4.9.509

Fig. 4b shows the probability that IBMF does not converge when the interactions are drawn510

using this modified toy model. We include results for µ = 0.7 and two values of σ. With511

σ = 0 (continuous lines), we recover the original toy model and use it as a reference. On the512

other hand, setting σ = 0.15 (dashed lines) adds noise to the interaction strengths, and the513

probability that IBMF does not converge increases.514
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In both cases, we run IBMF for different system sizes. The curves show crossing points at515

c ∼ 5.1 and c ∼ 4.95, for σ = 0 and σ = 0.15, respectively. When the number of species N516

increases, the probability Pnc has a sharper transition between Pnc ∼ 0 to the left and Pnc ∼ 1517

to the right of the crossing point. If this trend continues as expected when the number of518

species is large, the values c ∼ 5.1 and c ∼ 4.95 are reliable estimates of the location of the519

transition between a single equilibrium phase and the phase with global fluctuations. These520

results are indeed close to the ones mentioned in the text of Ref. [39]. The small discrepancies521

should be investigated further by performing the same analysis with data from simulations of522

the dynamics, which is technically more difficult because simulations take more computational523

time (see Appendix I)524

4.3 Including thermal noise525

Subsections 4.1 and 4.2 show that at T = 0 the results of IBMF are in good agreement with526

simulations. When thermal noise is present (T > 0), the fixed points of IBMF can still be527

efficiently retrieved using Eqs. (9), (10), and (11), and taking advantage of the fact that528

these integrals can be expressed in terms of Kummer’s confluent hypergeometric functions529

(see Section 3 in the SM). However, in this case, IBMF is an approximation that considers the530

probability distribution of the system to be factorized as P(~n) =
∏

i P(ni). Its predictions,531

accurate for low temperatures, are expected to fail when T is high enough.532

In this section, we study how the results of IBMF depend on the temperature in the gLV533

model defined over random regular graphs with symmetric interactions. This is a controlled534

scenario where we have a reliable theoretical technique to compare with, which is BP. We535

further simplify the setting by eliminating any noise in the interaction strength. Provided that536

(i, j) is an edge in the random regular graph, we set αi j = α ji = µ, which is equivalent to537

drawing all αi j from the trivial Gaussian N (µ, 0). A first version of the phase diagram T vs.538

µ is available in Ref. [19], where BP is run using discretized abundances. Interestingly, the539

authors of Ref. [19] note a re-entrant transition in their phase diagram: for low temperatures,540

the critical value of µ decreases when T increases, until it reaches a minimum. Then, it returns541

and starts increasing as the temperature continues to rise.542

To compare BP with IBMF, which works directly with continuous variables, we use our new543

implementation of BP with continuous variables. After obtaining the messages by iterating544

Eq. (13) until convergence, we use Eqs. (14) and (15) to get the true marginals. The reader545

can find details about our implementation in Section 4 of the SM. From Eq. (14), we see that546

the stationary distribution for a single species has the form PBP(ni) = nβλ−1
i P̃BP(ni)/Zi , where:547

P̃BP(ni) =
1

Z̃i
exp

¦

−
β

2
(n2

i − 2ni)
© ∏

k∈∂ i−

∫ ∞

0

dnk ηk→i(nk) e
−βαikni nk (19)

can be interpreted as an auxiliary probability distribution if Z̃i is taken as the proper normaliza-548

tion factor. The messages ηk→i(nk), necessary to compute P̃BP(ni), are the fixed point solution549

of Eq. (13).550

Since the abundance ni must be positive, the distribution in Eq. (19) is defined only for551

ni ≥ 0. Whenever interactions are absent (αik = µ = 0 for all i and k), P̃BP(ni) becomes a552

truncated Gaussian centered at ni = 1. Letting µ increase away from zero, one gets a distribu-553

tion P̃BP(ni) that is no longer strictly a truncated Gaussian. Moreover, when the interactions554

are homogeneous (all αik = µ), BP converges to the same P̃BP(ni) for all sites i. This index555

can be dropped, and the average distribution P̃BP(n) =
∑

i P̃BP(ni)/N is equal to P̃BP(ni) itself.556

Figs. 5a, 5b, and 5c show that, even with non-negligible thermal noise and non-zero values557

of µ, the distribution P̃BP(n) obtained with BP is not far from Gaussian. These three distribu-558

tions are obtained for the same temperature T = 0.03, using µ= 0.04, µ= 0.06, and µ= 0.12,559
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respectively. While P̃BP(n) is represented with colored points in the main graphics, the contin-560

uous black lines are the result of fitting truncated Gaussians P̃G(n) to the data. The inserted561

graphics show the relative deviation ∆BP−G of the points with respect to the fits:562

∆BP−G =
P̃BP(n)− P̃G(n)

P̃G(n)
. (20)

For µ= 0.04 and µ= 0.06 (Figs. 5a and 5b, respectively), the relative deviation is small for563

all the values of the abundance. In the corresponding main graphics, the points are indeed very564

close to the fits. The most significant difference occurs at the tails of the distribution. Close565

to n = 0, we get that P̃BP(n) is below the truncated Gaussian, while for n large it is above.566

In other words, the presence of thermal noise and interactions tilts the true distribution and567

gives slightly more weight to large abundances. The ecosystem is a bit more favorable for the568

species to thrive.569
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Figure 5: Predictions of IBMF and BP with T > 0 for symmetric and homogeneous
interactions (σ = 0) in random regular graphs with connectivity c = 3. The immi-
gration rate is λ = 10−6. (a), (b), and (c) Distributions P̃BP(n) obtained with BP
(see Eq. (19)) for µ = 0.04,0.06, 0.12, at temperature T = 0.03, and with system
size N = 128. Black continuous lines are fits to the points via truncated Gaussians.
The inserted graphics show the relative deviation ∆BP−G of the points with respect
to the fits (Eq. (20)). (d) For each temperature T , we mark the maximum value of µ
where BP converges (green points). We also run IBMF on 10000 graphs, each with
10 different initial conditions, and mark the maximum value of µ where it converges
to the same fixed point in at least 50% of the graphs (blue points). System sizes are
N = 128 and N = 1024 for BP and IBMF, respectively. (e) Average abundance as
a function of µ. The black dashed lines are obtained with BP where this algorithm
converges. The continuous colored lines are obtained with IBMF where it converges
to a single fixed point. The colored points represent the average over several IBMF’s
fixed points, sampled using 10000 distinct initial conditions. The inserted graphic
shows the skewness γ of the distribution P̂BP(n). We use colored lines in the region
where IBMF finds a single equilibrium point, and continuous black lines elsewhere.

17



SciPost Physics Submission

The difference with respect to a Gaussian increases with µ and is more evident at µ= 0.12570

(Fig. 5c). There, the scenario has been reversed. The main and inserted graphics show that571

now the true distribution is above the Gaussian for n ∼ 0, and is below for large n. The non-572

Gaussianity of the distribution gives more weight to species that are close to extinction. In573

terms of the model, this corresponds to an ecosystem that can support fewer species. Even-574

tually, the situation is no longer compatible with the existence of a fixed point of BP, and this575

algorithm stops converging around µ= 0.1405(5). In summary, we observe two distinct types576

of non-Gaussianity in BP at T = 0.03: one that is tilted towards larger abundances, which577

occurs at small values of µ, and another one tilted towards extinctions, which occurs close to578

the point where BP stops converging.579

In the phase diagram in Fig. 5d, the points where BP stops converging at each temper-580

ature are marked with green crosses. The results confirm the re-entrant transition detected581

in Ref. [19]. When the temperature goes to zero, one recovers the exact result µ ≈ 0.354 of582

Ref. [32] (see Appendix J) for the transition from the single equilibrium phase to the phase with583

multiple equilibria. The blue circles, on the other hand, represent the prediction made with584

IBMF for the same transition. We run this approximation for several random regular graphs,585

in each case using different initial conditions for the average abundances. To the left of the586

circles, different runs of IBMF converge to the same average abundances in at least 50% of the587

graphs. To the right, we find instead distinct stationary values of the average abundances just588

by changing the initial conditions in at least 50% of the graphs. IBMF reproduces very closely589

the results of BP for low temperatures and, as expected, deviates from it for high temperatures.590

However, it maintains qualitative agreement with BP, also displaying a re-entrant transition.591

It is also important to mention that the computational cost of running IBMF is considerably592

lower than the cost of BP. When an extensive use of computational resources is required, as593

in Fig. 5d, this advantage of IBMF plays an important role and one can use it to study larger594

systems. Nevertheless, we checked that the transition points presented in this figure do not595

change when the system size is increased, neither for IBMF nor for BP.596

Since IBMF is a factorized ansatz for the stationary distribution P∞(~n) =
∏

i P∞(ni), and597

each of the factors P∞(ni) is a Gaussian multiplied by the factor nβλ−1
i , it can be used to598

shed light on the discussion about the non-Gaussianity of BP’s solution. The latter, illustrated599

here in Figs. 5a, 5b, and 5c, has already been noticed in Ref. [19]. To study it in more detail,600

we computed the stationary average abundance 〈n〉 with both techniques, IBMF and BP, for601

different temperatures. The black dashed lines in Fig. 5e are obtained with BP in the range of602

values of µwhere this algorithm converges. In turn, the colored continuous lines represent the603

prediction of IBMF when it converges to a single fixed point. However, this is not the only way604

to estimate the average abundance with IBMF. Even in the region where the fixed point is not605

unique, we compute 〈n〉 by averaging over the different fixed points of IBMF (colored points606

in the figure). Interestingly, the predictions of IBMF closely follow the dashed lines of BP, also607

in the region where the fixed point of IBMF is not unique. In other words, this approximation608

describes the average abundance well at all temperatures under consideration.609

Furthermore, IBMF’s transition, marked with blue circles in Fig. 5d, is related to the type of610

non-Gaussianity displayed by BP. In the inserted graphic of Fig. 5e, we present the skewness γ of611

the distribution P̃BP(n) (see Eq. (19)) to quantify this non-Gaussianity. When the distribution612

is tilted towards large abundances, we get γ > 0. On the other hand, when P̃BP(n) is tilted613

towards extinctions, we get γ < 0.614

We use colored lines in the inserted graphic to represent the skewness of P̃BP(n) in the615

region where IBMF converges to a single fixed point. Black continuous lines are used, in turn,616

in the region where IBMF converges to different fixed points. The results indicate that around617

the same value of µ where BP starts developing a distribution P̃BP(n) that is tilted towards618

extinctions, IBMF stops converging to a single fixed point.619
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5 Conclusions620

In conclusion, our local closures for the global Fokker-Planck equations, and in particular621

the Individual Based Mean Field (IBMF) method, provide a powerful and versatile tool for622

analyzing the stationary states of the generalized Lotka-Volterra model on sparse graphs. We623

have demonstrated its efficacy across a range of scenarios, from asymmetric interactions on624

undirected graphs to directed networks and systems with thermal noise. IBMF faces its greatest625

challenge in the symmetric case, where its assumption of species independence breaks down626

due to correlations. These correlations are precisely what the Belief Propagation (BP) method627

captures, but BP is restricted to symmetric interactions. This highlights a key trade-off: BP628

offers higher accuracy for symmetric networks, while IBMF provides a versatile and effective629

solution for the more general and common case of asymmetric couplings.630

Our analysis reveals that the phase diagram for sparse, asymmetric interactions (Fig. 2) is631

qualitatively distinct from its symmetric counterpart; notably, we observe a transition towards632

a multiple-equilibria phase at a positive σ even for µ ¦ 0, whereas symmetric interactions633

always lead to a single fixed point at small µ [19]. This sparse topology also induces a different634

stability landscape compared to fully-connected systems [5], with a transition occurring at a635

positive µ for σ = 0, a phenomenon linked to the intrinsic instability of sparse competitive636

loops identified in [32].637

The observed finite-size effects in the transition lines are correctly captured by IBMF. No-638

tably, the transition lines to both multiple fixed points and unbounded growth progressively639

shift toward lower heterogeneity σ as the system size N increases. This suggests that the640

sparse ecological models under consideration may be intrinsically unstable in the infinite-641

species limit whenever heterogeneity is finite. This observation is consistent with previous642

RMT results [17, 18, 48], which show that, in general, sparse random matrices remain stable643

in the large size limit only if the interactions are purely antagonistic or unidirectional. How-644

ever, for finite sizes we do observe a region where there is a single stable fixed point, a fact645

that is accurately predicted by our new method.646

Looking forward to new applications, the computational efficiency and general applica-647

bility of IBMF make it a promising candidate for predicting stable states in real ecological648

networks, when direct data on interaction strengths is available [49–52] or, in its absence,649

when one has access to the relevant parameters from which the interaction strengths can be650

drawn [41, 53]. Furthermore, the methodological framework is not restricted to ecology and651

could be fruitfully generalized to analyze a wide class of models in economics, evolutionary652

game theory, and other fields defined on complex, sparse, and even asymmetric interaction653

networks.654
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A From Ito’s rule to the Fokker-Planck equation666

Let A(~n) be a generic observable that depends on the whole system ~n = (n1, . . . , nN ) at time667

t, but does not explicitly depend on time. For example, A(~n) could be the average abundance668

A(~n) =
∑

i ni(t)/N . Following Ito’s rule:669

d
d t
E[A(~n)] = E

�

N
∑

i=1

∂ A(~n)
∂ ni

dni

d t

�

+ T E
�

N
∑

i=1

∂ 2A(~n)
∂ n2

i

ni

�

, (21)

where E[ · ] is the average over the probability density Pt(~n) of having abundances ~n at time t,670

which is defined in a stochastic process where each trajectory is given by a specific realization671

of the thermal noise and a specific choice for the initial conditions. In other words, E[ · ] is an672

average over the thermal noise and the initial conditions. Using this definition and Eq. (1) for673

dni/d t, one gets:674

∫ ∞

0

d~nA(~n)
∂

∂ t
Pt(~n) =

N
∑

i=1

∫ ∞

0

d~n Pt(~n)
�

ni(1− ni −
∑

j∈∂ i−
αi jn j) +λ

�∂ A(~n)
∂ ni

+

+T
N
∑

i=1

∫ ∞

0

d~n Pt(~n)ni
∂ 2A(~n)
∂ n2

i

. (22)

To obtain Eq. (22) one needs to use the fact that 〈ξi(t)〉 = 0, where ξi(t) is the Gaussian675

noise that appears in Eq. (1). Integrating by parts and using that, to have finite moments,676

Pt(~n)→ 0 faster than n−2
i when ni →∞, leads to:677

∫ ∞

0

d~nA(~n)
∂

∂ t
Pt(~n) = −

N
∑

i=1

∫ ∞

0

d~nA(~n)
∂

∂ ni

¦

�

ni(1− ni −
∑

j∈∂ i−
αi jn j) +λ

�

Pt(~n)
©

+

+ T
N
∑

i=1

∫ ∞

0

d~nA(~n)
∂ 2

∂ n2
i

�

ni Pt(~n)
	

+
N
∑

i=1

(T −λ)
∫ ∞

0

�∏

k 6=i

dnk

�

lim
ni→0+

�

A(~n) Pt(~n)
�

. (23)

In the usual diffusion problems where one follows this procedure, the variables are defined678

in the whole open space x ∈ (−∞,∞). The property limx→±∞ P(x) = 0 kills all the terms679

that come from evaluating the integrands in x → ±∞. However, now one has a variable ni680

defined in [0,+∞), and limni→0+ Pt(~n) 6= 0 in general. The last term in Eq. (23) highlights the681

role of the conditions at the border ni = 0, and this is relevant to find the right local closures.682

To continue from here, however, we should impose the proper boundary conditions for683

this Fokker-Planck equation. To guarantee that Pt(~n) keeps properly normalized, the current684

of probability density must be zero at every border ni = 0, using what is called a reflecting685

boundary condition [40]. We must then enforce the relations (T−λ) limni→0+ Pt(ni) = 0 for all686

species i, where Pt(ni) =
∫∞

0 [
∏

k 6=i dnk]Pt(~n) is the single-site probability for the abundance687

of species i. Therefore, the last term in Eq. (23) vanishes. In other words, we can neglect the688

surface terms that arise after integrating by parts.689

Since A(~n) is a generic function, the only way to fulfill this relation is to have690

∂ Pt(~n)
∂ t

= T
N
∑

i=1

∂ 2

∂ n2
i

�

ni Pt(~n)
	

−
N
∑

i=1

∂

∂ ni

¦

�

ni(1− ni −
∑

j∈∂ i−
αi jn j) +λ

�

Pt(~n)
©

, (24)

which is the right Fokker-Planck equation, valid for any graph G(V, E).691
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B Solution for the isolated variable692

For the rest of this article, it will be useful to obtain the stationary solution of Eq. (2) in the693

particular case where there is only one variable n. The equation is then:694

∂

∂ t
Pt(n) = T

∂ 2

∂ n2

�

nPt(n)
	

−
∂

∂ n

¦

�

n(1− n) +λ
�

Pt(n)
©

. (25)

In the steady state:695

0= T
∂ 2
�

nP∞(n)
	

∂ n2
−
∂

∂ n

¦

�

n(1− n) +λ
�

P∞(n)
©

. (26)

Integrating over n and remembering that limn→∞ n2P∞(n) = 0, the integration constant696

goes away. We get:697

d
dn

P∞(n) =
1− n

T
P∞(n) +

�λ

T
− 1

� P∞(n)
n

. (27)

Solving this differential equation with separable variables is simple. The result is:698

P∞(n) =
1
Z

nβλ−1 exp
¦

−
β

2
(n− 1)2

©

, (28)

where Z is a normalization constant and β ≡ 1/T .699

Once one has the solution (Eq. (28)) to the Fokker-Planck equation for a single species700

(Eq. (25)), it is not hard to see what will be the solution for IBMF in the stationary regime. In701

the open space ni ∈ (0,+∞), the equation to fulfill is:702

0= −
∂

∂ ni

¦

�

ni(1− ni −
∑

j∈∂ i−
αi j m j(∞)) +λ

�

P∞(ni)
©

+ T
∂ 2

∂ n2
i

�

ni P∞(ni)
	

. (29)

This is essentially the same Eq. (26), where one substitutes 1 − ni by the mean-field ex-703

pression 1− ni −
∑

j∈∂ i− αi j m j(∞). Thus, if the solution to the single variable was Eq. (28),704

the solution to Eq. (29) is:705

P∞(ni) =
1
Zi

nβλ−1
i exp

¦

−
β

2
(ni −Mi)

2
©

, (30)

where Mi = 1−
∑

j∈∂ i− αi j m j(∞).706

The stationary solution in Eqs. (28) and (30) are normalizable functions for any λ > 0.707

Therefore, they give valid distributions P∞(ni) that solves the Fokker-Planck equation when708

t →∞ for any λ > 0. Nevertheless, we identify two distinct qualitative behaviors of P∞(ni),709

depending on the value of the immigration rate λ. When λ > T , we get that the probability710

density is zero at the border (limni→0+ P∞(ni) = 0), which is consistent with the boundary711

conditions imposed by us while deriving the Fokker-Planck equation. In this case, the immi-712

gration effectively counteracts the thermic noise and the species are strongly repelled from713

extinction (ni = 0). When 0 < λ < T , the stationary distribution P∞(ni) diverges at ni = 0.714

This contradicts the boundary condition (T −λ) limni→0+ Pt(ni) = 0.715

However, the mathematical inconsistency in the definition of the Fokker-Planck problem for716

0< λ < T does not impede P∞(ni) from being a valid solution of Eq. (26) also in this interval.717

21



SciPost Physics Submission

We can still give a physical interpretation to this case: when the effect of the immigration λ718

is small, a finite fraction of the species goes nearly extinct. Indeed, our simulations in Fig. 1,719

for a system of N interacting species in a random graph, remain stable even for λ � T . We720

observe, both from simulations and from IBMF, how a fraction of species spend long times721

close to extinction.722

C Limits of IBMF with parallel updates at zero temperature723

Eq. (17), which is the zero-temperature limit of IBMF, can be straightforwardly recast to matrix724

form as:725

~n= ~1− Ĵ · ~n , (31)

where ~n= (n1, . . . nN ) is the vector of species abundances, ~1 is a vector full of ones, and Ĵ is the726

interaction matrix, whose elements are Ji j = αi j . In the case with homogeneous interactions,727

we have that Ĵ can be expressed in a simple way in terms of the adjacency matrix Â associated728

with the interaction graph. By its definition, the element Ai j of this matrix is zero if αi j = 0,729

and is one otherwise. Thus, when all nonzero αi j are equal to the same number µ, Eq. (31)730

transforms into ~n= ~1−µ Â · ~n.731

Similarly to Ref. [32], we can use the properties of Â to derive the exact single-to-multiple-732

equilibria transition in the case of random regular graphs with homogeneous interactions. The733

same equation can be rewritten as (I+ µ Â) · ~n = ~1, where I is the identity matrix. Then, the734

solution is obtained after a matrix inversion by making ~n∗ = (I + µ Â)−1 · ~1. For the matrix735

I+µ Â to be invertible, all its eigenvalues must be nonzero. When A is the adjacency matrix of736

a large random regular graph, we can use the fact that its smallest eigenvalue must be close737

to λA
min = −2

p
c − 1 [54]. Then, the smallest eigenvalue of I + µ Â is λmin = 1 − 2µ

p
c − 1.738

To compute the fixed point ~n∗, or equivalently, for the matrix I + µ Â to be invertible, one739

should verify the relation λmin > 0. In other words, the interaction strength µmust satisfy the740

relation:741

µ < µ∗ ≡
1

2
p

c − 1
, (32)

which is the same result presented in Ref. [32]. Since the eigenvalues of Â cover the interval742

λA ∈ [−2
p

c − 1,2
p

c − 1], for µ ≥ µ∗ one could always find an eigenvalue in this bulk of743

the distribution such that 1 + λA
min = 0, and the matrix will not be invertible for µ ≥ µ∗.744

Furthermore, given the homogeneity of the interactions, Eq. (17) must admit the solution:745

n=
1

1+ cµ
, (33)

which is also presented in Ref. [32] as the unique fixed point for µ < µ∗.746

It is also interesting to understand what would happen if one uses Eq. (17) in an iterative747

way by setting ~nk+1 = ~1 − Ĵ · ~nk, choosing a given initial ~n0. This, simply put, is a parallel748

update that gives a full vector ~nk+1 using information about the previous vector ~nk. The result749

of iterating k times can be expressed as:750

~nk =
�

~1− Ĵ ·
�

~1− Ĵ · (~1− Ĵ · . . . · (1− Ĵ · ~n0))
�

�

(34)

~nk = (−Ĵ)k · ~n0 +
k−1
∑

i=0

(−Ĵ)i · ~1 . (35)
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In Eq. (35), the power (−Ĵ)i must be interpreted as the product of the matrix Ĵ with itself751

i times, which returns a matrix. Now, we can use the expression for the geometric sum of752

matrices to explicitly write the result of the sum on the right-hand side and get:753

~nk = (−Ĵ)k · ~n0 + (I+ Ĵ)−1 ·
�

(I− (−Ĵ)k) · ~1
�

~nk = (I+ Ĵ)−1 · ~1+ (−Ĵ)k ·
�

~n0 − (I+ Ĵ)−1 · ~1
�

. (36)

This expression will converge to the right solution if limk→∞(−Ĵ)k = 0̂, or, equivalently,754

if the eigenvalue of Ĵ with the maximum absolute value |λJ |max is smaller than one. At this755

point, it is important to note that this conclusion is independent on the specific interaction756

graph. The convergence of IBMF with parallel updates at zero temperature can be determined757

by computing the eigenvalue of Ĵ with the largest absolute value.758

Unfortunately, the maximum eigenvalue associated to the adjacency matrix of a random759

regular graph is not inside the bulk [−2
p

c − 1, 2
p

c − 1]. There is an eigenvalue outside of760

the bulk and its value is λÂ
max = c. Therefore, |λĴ |max = cµ and the iterations will not converge761

for any µ≥ µpar = 1/c. As µpar is smaller than µ∗ = 1/(2
p

c − 1) for any c > 2, in these cases762

there will be an interval µ ∈ [µpar,µ∗) where the parallel iterations will not converge to the763

right solution, even if that solution exists.764

To overcome this problem, the results in the main text are obtained using a sequential765

update. In practice, this means that each nk
i is updated to nk+1

i asynchronously. We choose a766

random order of the species, and one by one we apply Eq. (17). When ni is recomputed, the767

new value is ready to be used in the next update. It is important to mention that the problem768

with parallel updates is already known and has been solved using sequential updates in other769

contexts [55].770

D Unbounded growth for asymmetric mutualistic interactions771

Fig. 2 in Subsection 4.1 shows that, in random regular graphs with Gaussian asymmetric772

interactions, the phase with multiple equilibria exists only for positive values of the average773

interaction strength µ. A positive value of µ corresponds to ecosystems in which most species774

develop competitive interactions. On the other hand, when µ is negative the interactions775

are mostly mutualistic (species abundances grow together). In this case, we have only one776

transition line σc(µ) that separates two phases. For σ < σc(µ) the abundances converge to a777

single equilibrium state, while for σ > σc(µ) at least one abundance grows indefinitely and778

diverges for long times. The latter is called unbounded growth.779

The results in the right panel of Fig. 3 are easily extended to µ < 0. Fig. 6 shows that IBMF780

(lines) maintains a good agreement with the results of the simulations (points) for random781

regular graphs with connectivity c = 3. For µ < −1/c ≈ −0.333 the abundances diverge for782

any value of σ, and the transition line goes to σ(−1/3) = 0. This is consistent with the fact783

that at σ = 0 the interaction strengths αi j are homogeneous and all equal to µ. The solution784

in the single equilibria phase is then ni = 1/(1+ cµ) for all species (for i = 1, . . . , N). Given785

that ni must be non-negative, when µ < −1/c we do not have a feasible solution anymore and786

the abundances diverge in any simulation.787
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Figure 6: Transitions of the Generalized Lotka-Volterra model for different system
sizes at T = 0. The interactions are asymmetric (αi j is chosen independently of α ji)
and defined on random regular graphs with connectivity c = 3. Points represent the
results of simulations with immigration rate λ = 10−6, and lines are the predictions
made with IBMF for the same sizes. Each transition was determined using 10000
graphs. Simulations are repeated for 10 different initial conditions. IBMF was run
with sequential updates for 10 different random initial conditions. Points (lines)
mark the minimum value of σ such that simulations (IBMF) displayed unbounded
growth (not converged) in more than 50% of the interaction graphs. The vertical
line marks the limit value µ= −1/c ≈ −0.333

E Use of damping to improve convergence788

As usual in the scenario of iterating equations until the quantities reach a fixed point, some789

standard tricks can be used to help IBMF converge. Perhaps the most common mechanism is790

to add damping to the iterations. Given the update rule mi = fi({mk}k∈∂ i−), one chooses a791

parameter d ∈ [0, 1], and updates the vector {mk
i }i=1,...,N of the average abundances by doing:792

mk+1
i = d · f

�

{mk}k∈∂ i−
�

+ (1− d) ·mk
i . (37)

The value d = 1 corresponds to the original case, where IBMF is iterated without damping.793

When d = 0 nothing happens to mk
i . A quick study shows that, for IBMF, the probability of794

convergence is maximized for some intermediate d around d = 0.2. The results in Subsections795

4.1 and 4.2 are obtained using precisely this value (d = 0.2). In the latter case, the impact796

of damping is explained in detail in Appendix G. In the first case, achieving convergence with797

IBMF is an important issue due to the crossover between the phase of multiple fixed points798

and the phase of unbounded growth.799

For T = 0 any fixed point of IBMF is also a fixed point for simulations, and we can be800

sure that whenever we find different fixed points with IBMF this has implications also for801

simulations. However, the phase of unbounded growth is determined by the divergence of802

the abundances, and, as said in the main text, it could be that the iteration process of IBMF803

does not converge while the simulations do. Fig. 7a shows that the differences between IBMF804

without damping and simulations are indeed noticeable only for µ ≤ 0.2, where unbounded805

growth starts to dominate the crossover. Therefore, one needs to add damping to overcome the806

convergence problems that are not physical and are only related to the algorithmic dynamics807

of the iterations.808

On the other hand, the phase diagram of Fig. 5d is produced without damping (using809

d = 1). Here, we do not find any problems in achieving convergence with IBMF. In fact, in810

that phase diagram the unbounded growth phase is not present. The iteration process reaches811
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Figure 7: Effects of damping in the results of IBMF for the phase diagrams of the gLV
model. The equations are run on random regular graphs with size N = 1024 and
connectivity c = 3. Each transition was determined using 10000 graphs. In panel
(a) (panel (b)), we mark the maximum value of σ (resp. µ) such that simulations
or IBMF converged to the same fixed point in more than 50% of the interaction
graphs. IBMF was run on each graph with damping (d = 0.2) and without damping
(d = 1) for 10 different random initial conditions. (a) Phase diagram at T = 0. The
interactions are asymmetric (αi j is chosen independently of α ji). Points represent
the results of simulations with immigration rate λ = 10−6, and lines are obtained
with IBMF. Simulations are repeated for 10 different initial conditions. (b) Results of
IBMF in the presence of thermal noise for graphs with symmetric and homogeneous
interactions (drawn using σ = 0). The immigration rate is λ= 10−6.

a fixed point for any temperature T and average interaction strength µ. The only relevant812

question is, at a given temperature, what is the smallest value of µ where we can find two813

different fixed points. Fig. 7b shows that the answer is approximately the same in most of the814

phase diagram, except at very low temperatures. As expected, the effect of adding damping,815

if any, is to move the transition to larger values of µ. Intuitively, the damping could stabilize816

one fixed point more than the others, preventing the algorithm from sampling them with the817

right probability. When one wants to correctly locate the transition between the single and818

the multiple attractor phases, the correct physical results are obtained by using IBMF without819

damping (d = 1).820

F IBMF for graphs with correlated couplings821

In Subsection 4.1, we present the results of IBMF and simulations of the gLV model on random822

regular graphs with asymmetric interactions. In that case, the interaction graphs were built823

drawing αi j and α ji independently for every pair of interacting species. This choice automat-824

ically sets the connected correlation 〈αi jα ji〉 − 〈αi j〉〈α ji〉 to zero.825

It is important, however, to verify that the accuracy of IBMF’s predictions extends to cases826

where the connected correlation is not zero. Fortunately, we can use a simple procedure to827

build correlated couplings. For each pair i → j and j → i of interacting species (let i < j just828

to fix ideas), we do one of two things: i) with probability ε we choose αi j from the Gaussian829

N (µ,σ) and then we set α ji = αi j , or ii) with probability 1 − ε we independently draw αi j830

and α ji from the same Gaussian. Evidently, the setting used in Subsection 4.1 corresponds to831

ε= 0.832

Fig. 8 shows the results for ε= 0.5, chosen such that the interactions are still asymmetric,833
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Figure 8: Transitions of the gLV model for different system sizes at T = 0. The interac-
tions are asymmetric and defined on random regular graphs with connectivity c = 3.
The couplings are chosen such that with probability ε= 0.5 we have αi j = α ji . Points
represent the results of simulations with immigration rate λ= 10−6, and lines are the
predictions made with IBMF for the same sizes. Each transition was determined us-
ing 10000 graphs. Simulations are repeated for 10 different initial conditions. IBMF
was run with damping (see Appendix E) for 10 different random initial conditions.
(a) For each system size N and average strength µ, points (lines) mark the maximum
value of σ such that simulations (IBMF) converged to the same fixed point in more
than 50% of the interaction graphs. (b) Points (lines) mark the minimum value of σ
such that simulations (IBMF) displayed unbounded growth (not converged) in more
than 50% of the interaction graphs.

but correlated. As in Subsection 4.1, the predictions obtained with IBMF for the transitions834

of the gLV model are in very good agreement with simulations in this case. IBMF provides a835

precise description of the model’s fixed points at T = 0, valid for different values of ε.836

G Convergence of IBMF in directed graphs837

The convergence of IBMF is sensitive to the addition of damping. In the toy model described838

in Subsection 4.2, using no damping (d = 1 in Eq. (37)) has negative implications on the839

convergence, and the results no longer coincide with the predictions in Ref. [39].840

In Fig. 9a, we show the probability that IBMF, without damping, does not converge (Pnc)841

for large graphs with different average connectivities and interaction strengths. In this case,842

Pnc is independent of µ for all µ > 1. It follows a slowly increasing function that goes from843

zero at c = 0 to one at c = e. This function is represented with a dashed line in the figure, and844

we give its precise mathematical form below. This behavior is also nearly independent of the845

size N , as can be seen in Fig. 9b. Only close to Pnc ∼ 1, for c ∼ e, finite-size effects make IBMF846

have a small deviation from the dashed line. The empirical Pnc is not exactly equal to one at847

c = e for finite sizes, but the inserted graphic shows that Pnc increases when the number of848

species N increases.849

To compute the function followed by IBMF for d = 1 and µ > 1, we can do something850

analogous to what the authors of Ref. [39] did to predict the probability of fluctuations in851

simulations. Their results indicate that, for any µ > 1 and in the stationary state, all species852

in the graph are completely polarized, i.e., either they are extinct (ni = 0) or they reach their853

carrying capacity (ni = 1). First, we write the probability φ that a species is isolated and854

therefore can have ni = 1. In tree-like graphs, the neighbors belong to nearly independent855
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Figure 9: Probability that IBMF does not converge (Pnc) in instances of the toy model
(directed graphs with σ = 0). Each point is obtained by running IBMF for 10000
different realizations of the interaction graph with a given average connectivity c,
size N , and interaction strength µ. In both panels, IBMF is run without damping, and
for µ > 1 its results follow a unique function represented using a dashed line. This
function is the analytical result (see the computation in the text) for the probability
of having at least one isolated cycle in the graph formed by species with completely
polarized abundances (ni = 0 or ni = 1). It is close to zero for small c and goes
to one exactly at c = e. (a) IBMF convergence without damping for N = 65536
and different values of µ. (b) IBMF convergence without damping for two values of
the interaction strength around the transition (µ = 0.9 and µ = 1.1) obtained with
several system sizes. The inserted graphic shows an enlargement of the zone where
Pconv ∼ 1.

subgraphs, and we get φ =
∑∞

k=0 p(k)(1−φ)k, where k is the connectivity of the species and856

p(k) is its distribution. When p(k) is Poisson, the authors of Ref. [39] show that φ =W (c)/c,857

where c is the average connectivity and W (x) is the Lambert W function. Second, we compute858

the probability that a directed cycle of length n is isolated. Indeed, a species in a directed cycle859

has one incoming edge from another species inside the cycle. For the cycle to be isolated, we860

need all the other incoming edges to correspond to extinct species. Since in Poisson graphs861

the number of these other incoming edges is also distributed as Poisson with the same mean,862

and the neighbors of different species in the cycle are independent, the probability that the863

cycle of length n is isolated is simply φn.864

The number of directed cycles of length n in a Poisson graph with mean connectivity c is865

also Poisson distributed with mean cn/n [56]. Thus, the number of directed isolated cycles is866

Poisson distributed with mean (cφ)n/n = [W (c)]n/n. The probability of having at least one867

cycle is then:868

f (c) = 1− exp
¦

−
∞
∑

n=2

[W (c)]n

n

©

f (c) = 1−
c

W (c)

�

1−W (c)
�

, (38)

where we used that W (c) eW (c) = c. This function f (c) is the one represented with dashed869

lines in Fig. 9.870

On the other hand, forµ < 1, the probability that IBMF does not converge without damping871

is very close to zero for all c < e. In this regime, the results for different system sizes N have872

a nice crossing point at c > e, as can be seen in Fig. 9a for µ = 0.9. This is a familiar feature873
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of a first-order phase transition that happens exactly at that crossing point. To the left of the874

crossing, the probability that IBMF does not converge goes to zero when the number of species875

N goes to infinity. To the right, the probability approaches one as N →∞.876

Adding damping considerably helps IBMF to converge at any µ. For the interesting case877

µ > 1, setting d = 0.2 avoids the problems caused by a subset of the directed isolated cycles.878

Now, the probability Pnc does not follow a unique function f (c) for all µ > 0 (see Fig. 4). They879

coincide, instead, with the predictions made by the authors of Ref. [39]. Their computation is880

analogous, but with a key difference. They concluded that, for the simulations, the cycles with881

even length do not cause fluctuations. If we exclude the even values of n, Eq. (38) changes to:882

f3(c) = 1− exp
¦

−
∞
∑

k=1

[W (c)]2k+1

2k+ 1

©

f3(c) = 1−
c

W (c)

√

√1−W (c)
1+W (c)

. (39)

Eq. (39) gives the probability f3(c) of having at least one directed isolated cycle with odd883

length. Furthermore, a cycle of odd length n will be unstable, and thus will fluctuate, for all884

µ > µc(n) = 1/ cos(π/n) > 1 [39]. Therefore, Eq. (39) gives the probability of fluctuations885

for any µ > 1/ cos(π/3) = 2. When µ < 2 the cycles of length n = 3 are stable, but the ones886

with n = 5 are still unstable for any µ > 1/ cos(π/5) ≈ 1.24. Thus, to compute the line that887

corresponds to the blue points (done for µ = 1.5) in Fig. 4a, we simply need to subtract the888

number of cycles with length n= 3 from the sum in Eq. (39). We get the probability:889

f5(c) = 1− exp
¦

−
∞
∑

k=2

[W (c)]2k+1

2k+ 1

©

(40)

f5(c) = 1− exp
¦1

2
ln
� 1+W (c)

1−W (c)

�

+W (c) +
[W (c)]2

3

©

,

that we also plot using a dashed line in Fig. 4a, showing that it indeed coincides very well890

with the results of IBMF obtained at µ= 1.5.891

This is the procedure to follow for any µ. Fig. 4a indicates that, once we use damping, the892

convergence of IBMF stops being affected by the cycles of even length and coincides with the893

theoretical predictions for the probability of fluctuations as presented in Ref. [39].894

H Finite size effects of IBMF on directed graphs895

Fig. 10 shows the finite size effects for two values of µ around µ = 1.0 when we run IBMF896

for the toy model defined in Subsection 4.2. We observe two distinct types of transitions in897

the probability that IBMF does not converge (Pnc). As with the simulations in Ref. [39], when898

µ > 1 the results for finite systems do not reach Pnc = 1 exactly at c = e. We present numerical899

evidence that, for µ = 1.1, the probability Pnc increases with the system size and the points900

move to the left towards the line c = e.901

The curves for µ= 0.9, instead, have a clear crossing point at c ∼ 3.28. When the number902

of species N increases, the probability Pnc has a sharper transition between Pnc ∼ 0 to the903

left and Pnc ∼ 1 to the right of the crossing point. Therefore, the value c ∼ 3.28 is a good904

estimate for the location of the transition between the single equilibrium phase and the phase905

with global fluctuations. Indeed, it is compatible with the results in Fig. 1 of Ref. [39].906
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Figure 10: Probability that IBMF does not converge (Pnc) in instances of the modified
toy model (directed graphs with σ = 0). Each point is obtained by running IBMF for
10000 different realizations of the interaction graph with a given average connectiv-
ity c and several sizes N . IBMF is run with damping for two values of the interaction
strength around the transition (µ = 0.9 and µ = 1.1). The vertical line marks the
value c = e.

I Comparing runtimes of IBMF and simulations in directed graphs907

One of the advantages of IBMF is that it can be implemented efficiently (see Section 3 of the908

SM). Here, we show that running IBMF in single graphs is considerably faster than running909

simulations. Although we present data for the toy model on directed graphs of Subsection 4.2,910

this conclusion is generally applicable to all the scenarios discussed in this article.911

In Fig. 11, we compare the average wall-clock time required for IBMF to converge to a912

fixed point with the corresponding simulation wall-clock time. The average discards all the913

samples that lead to persistent fluctuations for long times. For all connectivities and for both914

values of µ in the figure, IBMF is consistently around 10 times faster to reach convergence.915

Both algorithms, available at Ref. [43], were run on a single CPU Intel Xeon Gold 6248 2.5G.916

It is important to note that the iterations required by IBMF to converge do not possess917

a physical meaning. The process is discrete, and at each step we update one of the average918

abundances mi using Eq. (17). On the other hand, the simulation involves integrating a differ-919

ential equation (see Eq. (18)) whose time t does have a physical meaning and is a continuous920

variable. Therefore, the wall-clock time is sensitive to the precision of the integration in time.921

In this case, we use an adaptive step size to optimize the number of steps needed to reach922

convergence.923

Our results indicate that, even at zero temperature, where the dynamics is simpler to sim-924

ulate, it is advantageous to run IBMF instead. It gives fast and accurate predictions, as can be925

seen in Subsections 4.1 and 4.2.926

J Zero-temperature limit of BP927

We discuss here the zero temperature limit of BP for random regular graphs with symmetric928

and homogeneous interactions (σ = 0, see Section 4.3). We show that the exact results for929

the single-to-multiple equilibria [32] can be easily retrieved after properly taking the limit930

T → 0. This has already been suggested by the numerical results in Ref. [19], obtained with931

the discretized version of BP, and by the results presented here in Fig. 5d.932

When the temperature is small, the probability densities concentrate around the mean933
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values. We can then assume that the message ηi→ j(ni) can be written as the multiplication of934

a Gaussian factor and a power-law factor nβλ−1
i as follows:935

ηi→ j(ni) =
1

zi→ j
nβλ−1

i exp
¦

−
β

2Q2
i→ j

�

ni −mi→ j

�2©
. (41)

This means that every message ηi→ j(ni) can be parameterized using the mean m j→i and936

the variance Q2
j→i . The update rule (Eq. (13)) becomes:937

ηi→ j(ni)∼ nβλ−1
i e−β(n

2
i −2ni)/2

∏

k∈∂ i−\ j

∫ ∞

0

dnk nβλ−1
k e−β αik ni nk−β(n2

k−2nkmk→i)/2Q2
k→i . (42)

When β →∞, with βλ finite, the integral is dominated by the value nk = n∗k such that the938

argument of the exponential is maximum. Finding this maximum is equivalent to compute the939

minimum of f (nk) = n2
k − 2 nk mk→i + 2αik ni nk Q2

k→i . The result is n∗k = mk→i −αik ni Q2
k→i .940

Therefore:941

ηi→ j(ni) ∼ nβλ−1
i e−β(n

2
i −2ni)/2

� ∏

k∈∂ i−\ j

�

mk→i −αik ni Q2
k→i

�βλ−1�×

×exp
¦ ∑

k∈∂ i−\ j

β

2Q2
k→i

�

mk→i −αik ni Q2
k→i

�2©
. (43)

Using again that, when β →∞ with βλ finite, the distribution ηi→ j(ni) will concentrate942

around ni = n∗i such that the argument of the exponential is maximum, we get:943

ηi→ j(ni) =
nβλ−1

i

zi→ j
exp

¦

−
β

2
n2

i

�

1−
∑

k∈∂ i−\ j

α2
ikQ2

k→i

�

+ β ni

�

1−
∑

k∈∂ i−\ j

αik mk→i

�

�©

. (44)

Comparing with Eq. (41), we can easily identify that:944
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Q2
i→ j =

1

1−
∑

k∈∂ i−\ j α
2
ikQ2

k→i

(45)

mi→ j =
1−

∑

k∈∂ i−\ j αik mk→i

1−
∑

k∈∂ i−\ j α
2
ikQ2

k→i

. (46)

These equations are known as relaxed Belief Propagation [57], and in this case correspond945

to the zero temperature expansion of BP. When we have a random regular graph with homo-946

geneous interactions (αi j ≡ µ for all edges in the graph), all sites become equivalent and947

Q2
→ =

1
1− (c − 1)µ2Q2

→
(47)

m→ =
1− (c − 1)µm→
1− (c − 1)µ2Q2

→
. (48)

From Eq. (47), we can obtain a closed expression for the variance Q2
→:948

Q2
→ =

1
2(c − 1)µ2

�

1±
Æ

1− 4(c − 1)µ2
�

. (49)

From where it follows that, in order to have Q2
→ ∈ R, the strength of the interactions must949

fulfill the relation950

µ≤ µ∗ ≡
1

2
p

c − 1
. (50)

This result, again, coincides with the exact relation obtained in Ref. [32] and we already951

presented it in Eq. (32). Finally, we can also use that952

mi =
1−

∑

k∈∂ i− αik mk→i

1−
∑

k∈∂ i− α
2
ikQ2

k→i

, (51)

In the case with homogeneous interactions we have α2
ik = µ

2 and α2
ik = µ

2 for all edges in953

the graph. Thus:954

m≡
1− cµm→
1− cµ2Q2

→
, (52)

together with Eqs. (47) and (48) to get another exact result:955

m=
1

1+ cµ
. (53)

With Eqs. (50) and (53), we recover two known results for the single-to-multiple-equilibria956

transition for β →∞ [32]. In terms of BP, this transition is simply a boundaryµ∗ = 1/(2
p

c − 1)957

such that, for µ > µ∗ and at low temperature (β � 1), it is impossible to have a “Gaussian"958

stationary point like the one in Eq. (41) (more precisely, a Gaussian multiplied by the power959

nβλ−1).960
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S1 Local closures
To write the local closures, one needs to marginalize Eq. 2 in the main text to obtain
the differential equations for the local probabilities. This will be done first with Pt(ni) =∫∞
0

[
∏

k 6=i dnk]Pt(~n). Marginalizing over all the abundances except ni, one gets:

S1
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Pt(ni) =− ∂

∂ni

{[
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]
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}
+ T
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∂n2
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}
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j∈∂i−

αij
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−
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0

dnk
∂

∂nk
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0
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}
+

+T
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∫ ∞
0

dnk
∂2

∂n2
k

{
nkPt(ni, nk)

}
. (S1)

Assuming that limnk→∞ n
2
k Pt(~n) = 0, this equation can be simplified to:

∂

∂t
Pt(ni) =− ∂

∂ni

{[
ni(1− ni) + λ

]
Pt(ni)

}
+ T

∂2

∂n2
i

{
niPt(ni)
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{
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αij
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0

dnj njPt(ni, nj)
}

+
∑
k 6=i

λ lim
nk→0+

Pt(ni, nk)− T
∑
k 6=i

lim
nk→0+

Pt(ni, nk) . (S2)

Now, the boundary conditions that we imposed on the Fokker-Planck equation become
useful. We should enforce that, for each species k, the relation (T −λ) limnk→0+ P∞(nk) = 0.
Because of this, the last two terms in Eq. (S2) cancel, leaving:

∂

∂t
Pt(ni) =− ∂

∂ni

{[
ni(1− ni) + λ

]
Pt(ni)

}
+ T

∂2
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i
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∂
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ni
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αij
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0

dnj njPt(ni, nj)
}
. (S3)

Defining the conditional average

mj→i(ni, t) ≡
∫ ∞
0

dnj njPt(nj | ni), (S4)

it is possible to write: ∫ ∞
0

dnj njPt(ni, nj) = mj→i(ni, t)Pt(ni) (S5)

and

∂
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]
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+ T
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∂n2
i
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niPt(ni)

}
. (S6)

S2



Since one does not know the shape of mj→i(ni, t), Eq. (S6) cannot be solved directly. Its
stationary solutions must fulfill the equation:

0 = − d

dni

{[
ni(1− ni −

∑
j∈∂i−

αijmj→i(ni)) + λ
]
P∞(ni)

}
+ T

d2

dn2
i

{
niP∞(ni)

}
, (S7)

where mj→i(ni) is the stationary value of the conditional average mj→i(ni, t) and P∞(ni) is
the stationary distribution of the i-th species abundance. Integrating once over ni, gives:

d

dni
P∞(ni) =

[
β(1− ni −

∑
j∈∂i−

αijmj→i(ni)) +
βλ− 1

ni

]
P∞(ni) , (S8)

where β = 1/T . This equation has the following formal solution:

P∞(ni) =
1

Zi
nβλ−1i exp

{
− β

2
(n2

i − 2ni)
}

exp
{
− β

∑
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∫ ni

0

dxmj→i(x)
}
. (S9)

Although Eq. (S9) gives a simple expression that will be useful in the future, it is not
a solution to the problem because we still do not have the functions mj→i(ni). But to
obtain mj→i(ni) one needs to compute the conditional probabilities, or equivalently, the pair
probabilities Pt(ni, nj). The corresponding differential equation can be obtained following a
similar procedure.
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Similarly as before, let us define the conditional averagemk→i,j(ni, nj, t) ≡
∫∞
0
dnkPt(nk, t |

ni, nj). Eq. (S10) reduces to:
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Again, one does not know the shape of mk→i,j(ni, nj, t), but to obtain it, one needs to
solve the differential equation for Pt(nk, ni, nj). This process builds a hierarchy of differential
equations that, in the end, goes back to the Fokker-Planck equation for the full system (Eq.
(2) in the main text). This is not surprising, since no approximations have been done, the
solution of these local Fokker-Planck equations must be as difficult as the solution of the
original Fokker-Planck equation for the whole system.

To close the hierarchy at some point, one can make some factorization of the joint prob-
ability densities so that they are expressed in terms of probability densities of a lower level
in the hierarchy. The first approximation one could do is known in the studies of epidemic
spreading as Individual Based Mean Field (IBMF) [1, 2] and it is simply:

Pt(ni, nj) ≈ Pt(ni)Pt(nj) , (S12)

which implies that:

mj→i(ni, t) =

∫ ∞
0

dnj njPt(nj | ni) =

∫ ∞
0

dnj nj
Pt(ni, nj)

Pt(ni)

mj→i(ni, t)≈
∫ ∞
0

dnj nj
Pt(ni)Pt(nj)

Pt(ni)
=

∫ ∞
0

dnj njPt(nj) ≡ mj(t) , (S13)

where mj(t) is the expected value of the abundance nj at time t.
The IBMF differential equation is then:

∂

∂t
Pt(ni) =− ∂

∂ni

{[
ni(1− ni −

∑
j∈∂i−

αijmj(t)) + λ
]
Pt(ni)

}
+ T

∂2

∂n2
i

{
niPt(ni)

}
, (S14)

which must be completed with the definition mj(t) ≡
∫∞
0
dnj nj Pt(nj).

The IBMF is the first local closure one can provide. However, it is possible to go ahead
and propose closures that stop at higher levels of the hierarchy. To express Pt(nk, ni, nj) in
terms of pair probability densities like Pt(ni, nj), one could use information about the actual
graph of interactions. In the third line of Eq. (S10), the probability density Pt(nk, ni, nj)
is actually defined in a graph G(V,E) that contains the edges k → i and i → j, but not
necessarily the edges k → j or j → k. In tree-like graphs, with high probability when the
number of species is large, given that the edges k → i and i → j are present, we will have
that k and j are not directly connected by any edge. Moreover, the length of the cycles
diverges with the system size N , so the only short path that connects k and j necessarily
passes through i. So, expecting that it works especially well in tree-like graphs, one could
propose:

Pt(nk, ni, nj) ≈
Pt(nk, ni)Pt(ni, nj)

Pt(ni)
≡ Pt(nk | ni)Pt(ni)Pt(nj | ni) , (S15)

This is known as Pair Based Mean Field (PBMF) in the above-mentioned context of
epidemic spreading [3, 4] and is a factorization of the conditional measure. Given ni at
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time t, one assumes nj and nk are independent. This is not strange for those who know the
replica symmetric cavity method, whose algorithmic counterpart is Belief Propagation (BP).
However, even in the cases where BP is the exact solution in equilibrium (provided also
that equilibrium exists), this approximation is not necessarily valid for the dynamics, since
temporal correlations can still forbid the factorization, and nj and nk are not independent
given only the value of ni at time t.

Anyways, one can assume Eq. (S15) to be valid and continue:

mk→i,j(ni, nj, t) =

∫ ∞
0

dnk nkPt(nk | ni, nj) =

∫ ∞
0

dnk nk
Pt(nk, ni, nj)

Pt(ni, nj)

mk→i,j(ni, nj, t)≈
∫ ∞
0

dnk nk
Pt(nk, ni)

Pt(ni)
≡ mk→i(ni, t) . (S16)

Thus, the PBMF differential equation is:

∂

∂t
Pt(ni, nj) =− ∂

∂ni

{[
ni(1− ni − αijnj −

∑
k∈∂i−\j

αikmk→i(ni, t)) + λ
]
Pt(ni, nj)

}
− ∂

∂nj

{[
nj(1− nj − αjini −

∑
l∈∂j−\i

αjlml→j(nj, t)) + λ
]
Pt(ni, nj)

}
+T

∂2

∂n2
i

{
niPt(ni, nj)

}
+ T

∂2

∂n2
j

{
njPt(ni, nj)

}
, (S17)

which must be completed with the definition mj→i(ni, t) ≡
∫∞
0
dnj njPt(nj | ni).

Both closures, IBMF and PBMF, are in principle solvable, at least numerically. However,
when the system is large this is a difficult task.

S2 Connections with known results

S2.1 Belief Propagation as stationary solution of Pair Based Mean
Field

As mentioned before, the approximation in Eq. (S15) is valid in equilibrium in all the cases
where BP is also valid, since BP respects this factorization of the conditional measure. It is no
surprise then that the BP equations, introduced in Ref. [5] for symmetric interactions (αij =
αji), are a stationary solution of PBMF equations for symmetric interactions. Nevertheless,
proving it could be a useful exercise for the future.

BP’s update rule, as presented in Ref. [5], is:

ηi→j(Ni) =
1

zi→j

1

Ni + ∆
exp

{
− β

2
(N2

i − 2Ni)
} ∏
k∈∂i−\j

∞∑
Nk=0

ηk→i(Nk) exp
{
− βαikNiNk

}
,

(S18)
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where the constants r andK are set to one for simplicity. The constant zi→j is a normalization
factor, ∆ > 0 is a small parameter and ηi→j(Ni) are BP’s messages. One must remember
that in this case αik = αki, so one could write one or the other and Eq. (S18) remains valid.

First of all, one must notice that Eq. (S18) is written in a discretized space, so Ni is
actually taking discrete values. That is the reason why in Eq. (S18) one sees a sum over Nk

and not an integral. It is always possible to recast this expression in terms of the continuous
variables ni. Besides substituting sums by integrals, one has to pay particular attention to
the factor (Ni+∆)−1. As λ in the continuous case, here ∆ ensures that the divergence when
Ni goes to zero is not so critical that it makes the probability distribution non-normalizable.
Any positive ∆ will remove this divergence at Ni = 0. Thus, in the continuous version, one
must simply substitute the factor (Ni + ∆)−1 by the analogous factor nβλ−1i , present in Eqs.
3 and 8 in the main text.

The resulting update rule is:

ηi→j(ni) =
1

zi→j
nβλ−1i exp

{
− β

2
(n2

i − 2ni)
} ∏
k∈∂i−\j

∫ ∞
0

dnk ηk→i(nk) exp
{
− βαikni nk

}
,

(S19)
It will be helpful to look closely at the integral

Zk→i(ni) =

∫ ∞
0

dnk ηk→i(nk) exp
{
− βαikni nk

}
. (S20)

In understanding its meaning, it is useful to write the stationary pair probability density
in terms of BP’s messages:

P∞(ni, nk) = ηi→k(ni) ηk→i(nk) e
−βαikni nk . (S21)

Then, the conditional probability density is

P∞(nk | ni) =
ηi→k(ni) ηk→i(nk) e

−βαikni nk∫∞
0
dnk ηi→k(ni) ηk→i(nk)e−βαikni nk

=
ηk→i(nk) e

−βαikni nk∫∞
0
dnk ηk→i(nk)e−βαikni nk

P∞(nk | ni) =
1

Zk→i(ni)
ηk→i(nk) e

−βαikni nk . (S22)

So Zk→i(ni) is the normalization factor of the conditional probability density. Further-
more, its derivative with respect to ni is:

∂

∂ni
Zk→i(ni) =−β αik

∫ ∞
0

dnk nk ηk→i(nk)e
−βαikni nk

∂

∂ni
Zk→i(ni) =−β αikZk→i(ni)

∫∞
0
dnk nk ηk→i(nk)e

−βαikni nk

Zk→i(ni)
. (S23)

Remembering the definition of mk→i(ni) and Eq. (S21), one gets
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∂

∂ni
Zk→i(ni) = −β αik Zk→i(ni)mk→i(ni) , (S24)

from where it is easy to see that

Zk→i(ni) ∝ exp
{
− β αik

∫ ni

0

dxmk→i(x)
}
. (S25)

Returning to Eq. (S19), the expression can be rewritten in a form that is very similar
to the formal solution for P∞(ni) in Eq. (S9), and that is connected with the differential
equation for PBMF (Eq. (S17)):

ηi→j(ni) =
1

zi→j
nβλ−1i exp

{
− β

2
(n2

i − 2ni)
}

exp
{
− β

∑
k∈∂i−\j

αik

∫ ni

0

dxmk→i(x)
}
. (S26)

Thus, the pair probability can be written as:

P∞(ni, nj) =
1

Zij
(ni nj)

βλ−1 e−
β
2
(n2
i−2ni) e−

β
2
(n2
j−2nj) e−βαijni nj ×

× exp
{
− β

∑
k∈∂i−\j

αik

∫ ni

0

dxmk→i(x)
}

exp
{
− β

∑
l∈∂j−\i

αjl

∫ nj

0

dxml→j(x)
}
.(S27)

Everything is now ready to use the update rule and obtain an expression for the derivative
of the probability density P∞(ni, nj) with respect to ni:

∂

∂ni
P∞(ni, nj) = P∞(ni, nj)

[βλ− 1

ni
− β(ni− 1)− β αij nj − β

∑
k∈∂i−\j

αikmk→i(ni)
]
. (S28)

Therefore

T
∂

∂ni

{
niPt(ni, nj)

}
−
[
ni(1− ni − αijnj −

∑
k∈∂i−\j

αikmk→i(ni)) + λ
]
Pt(ni, nj)

= Pt(ni, nj)
{
T + T ni

[βλ− 1

ni
− β(ni − 1)− β αij nj − β

∑
k∈∂i−\j

αikmk→i(ni)
]
−

−
[
ni(1− ni − αijnj −

∑
k∈∂i−\j

αikmk→i(ni)) + λ
]}

= 0 . (S29)

Something analogous happens with the derivative with respect to nj. This means that,
in the open region (ni, nj) ∈ (0,+∞) × (0,+∞), the right hand side of Eq. (S17) is equal
to zero. In other words, BP is a stationary solution for PBMF when the interactions are
symmetric.
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S2.2 Zero temperature and large connectivity limit of IBMF

So far, we have presented two stationary distributions that are approximate solutions to
the problem. First, IBMF, which is the simplest local closure one can do, but at the same
time is of a general purpose. Regardless of the degree of symmetry in the interactions, the
stationary solution of IBMF is:

P∞(ni) =
1

Zi
nβλ−1i exp

{
− β

2
(ni − hi)2

}
, (S30)

with hi = 1−
∑

j∈∂i− αijmj and mj =
∫∞
0
dnj nj P∞(nj).

When taking the zero temperature limit (equivalently β → ∞), it is crucial to know
how to treat the parameter λ. One must remember that λ has the role of ensuring that
the distribution is normalizable, by avoiding the extinction of all the species. It is usually
interpreted as an immigration rate that must be taken positive, but small, to study the
phenomenology of the model in its purest version possible. Therefore, one should take
β →∞ but keep βλ finite, since λ ∼ 0.

We will compare the final result of taking this limit with Eq. (13) in Ref. [6], which gives
an expression for the steady state abundance of the fully connected model at T = 0:

n = max
(

0,
1− µ̂m∞ − σ̂ ζ∞

1− ε σ̂2 χint

)
. (S31)

Remember that µ is the average value of the couplings αij, and σ2 is its variance. When
the system is fully connected, it is necessary to rescale these parameters and send them to
zero when N →∞, but keeping finite µ̂ = N µ and σ̂2 = N σ2. The number ε ∈ [−1, 1] is the
correlation between αij and αji, or, in other words, the level of symmetry in the couplings.
Besides these parameters, in Eq. (S31) one has: m∞, which is the expected value of n; ζ∞,
which is a random Gaussian variable; and χint, which is the integrated response of n to the
effect of a small external field.

To recover this result, one can start by taking the limit T → 0 in Eq. (S30). As we
discussed in Section IV of the main text, the probability density then concentrates at one
point:

ni = max
(

0, 1−
∑
j∈∂i−

αijmj

)
. (S32)

This way of writing it ensures that ni must always be non-negative. When the connectivity
is large, the sum θ =

∑
j∈∂i− αijmj is distributed as a Gaussian with the following first and

second moments:

〈θ〉=
∑
j∈∂i−
〈αijmj〉 (S33)

〈θ2〉=
∑
j∈∂i−

∑
k∈∂i−

〈αij αikmjmk〉 . (S34)
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The averages in Eqs. (S33) and (S34) are taken over the disorder in the interactions,
i.e., over the possible values of the whole matrix of couplings ←→α with elements αij. Then
we must realize that mj is actually a function of ←→α , and that it is not possible to compute
the averages in Eqs. (S33) and (S34) as if mj were independent of the specific realization of
the disorder ←→α . However, one can explicitly average Eqs. (S33) and (S34) over part of the
disorder since most of the elements of ←→α are indeed independent of αij:

〈θ〉=
∑
j∈∂i−
〈αijmj(

←→α )〉 =
∑
j∈∂i−
〈αijmj(αij, αji) 〉 (S35)

〈θ2〉=
∑
j∈∂i−

∑
k∈∂i−

〈αij αikmj(αij, αji, αik, αki)mk(αij, αji, αik, αki) 〉 . (S36)

The dependence of mj on the disorder has been reduced to the only elements that are
not independent of αij, which are αij itself and possibly αji (if ε > 0). The new mj(αij, αji)
is already an average over almost all the couplings, except for the ones associated with the
edges i → j and j → i. Therefore, the right-hand sides of Eqs. (S35) and (S36) are no
longer averages over all the couplings that appear in the arguments of the functions. More
specifically, the average 〈αijmj(αij, αji) 〉 in Eq. (S35) is taken over the values of αij and
αji, considering that they can be correlated. In the same way, the average in Eq. (S36) is
taken over the values of αij, αji, αik, and αki. To compute those averages, it will be useful
to write the couplings in terms of standardized Gaussians xij ∼ N (0, 1) as:

αij = µ+ σ xij, with
〈xij〉 = 0; 〈xijxkl〉 = δij,kl + εδij,lk . (S37)

Then mj(αij, αji) becomes a function of xij and xji. However, when the connectivity
is large, it is safe to assume that the dependence of mj(xij, xji) on each xij, associated to
only one of the many edges that contain the node j, is very weak. Taking an expansion of
mj(xij, xji) in powers of xij and xji up to the first order leads to:

mj(xij, xji) ≈ mj(0, 0) + xij

{ ∂

∂xij
mj(xij, 0)

}∣∣∣
xij=0

+ xji

{ ∂

∂xji
mj(0, xji)

}∣∣∣
xji=0

. (S38)

Remembering that xij actually does not appear in the equation for dnj/dt, but in the
equation for dni/dt, one realizes that its effect in mj(xij, xji) must be even weaker than the
effect of xji. Finally:

mj(xij, xji) ≈ mj(xji) ≈ mj(0) + xji

{ ∂

∂xji
mj(xji)

}∣∣∣
xji=0

. (S39)

Inserting Eqs. (S37) and (S39) back into Eq. (S35) gives:
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〈θ〉=
∑
j∈∂i−

〈
(µ+ σ xij)

(
mj(0) + xji

{ ∂

∂xji
mj(xji)

}∣∣∣
xji=0

)〉
〈θ〉=µ

∑
j∈∂i−
〈mj(0)〉+ σ

∑
j∈∂i−

〈
xijxji

{ ∂

∂xji
mj(xji)

}∣∣∣
xji=0

〉
. (S40)

Let the connectivity be equal to c. After identifying that 〈mj(0)〉 ≡ m∞, where m∞ is
the parameter in Eq. (S31) above, and by using the expression for the second moment in
Eq. (S37), one gets:

〈θ〉=µ cm∞ + σ c ε
〈{ ∂

∂xji
mj(xji)

}∣∣∣
xji=0

〉
. (S41)

The derivative in Eq. (S41) gives the average response of mj to a small perturbation in
the couplings. This will be related to the response to a small external field, and to see the
relation more explicitly, it is convenient to recast the differential equation for nj (see Eq. 1
in the main text) in terms of xji:

dnj
dt

= −nj(1− nj − µ
∑
l∈∂j−

nl − σ
∑
l∈∂j−

xjl nl) + ξj(t) + λ . (S42)

Taking i outside the sum over the neighbors:

dnj
dt

= −nj(1− nj − µ
∑
l∈∂j−

nl − σ
∑

l∈∂j−\i

xjl nl − σ xji ni) + ξj(t) + λ . (S43)

The effect of a small perturbation xji is the same as the one provoked by a small external
field with value hj(t) = −σ xji ni(t). The two responses must be related by:〈{ ∂

∂xji
mj(xji)

}∣∣∣
xji=0

〉
=
〈{ ∂hj

∂xji

∂

∂hj
mj(hj)

}∣∣∣
hj=0

〉
= −σ ni χint . (S44)

Inserting Eq. (S44) back into Eq. (S41), one finally obtains an expression for 〈θ〉 in terms
of m∞ and χint, which are two of the parameters in the known result from DMFT (see Eq.
(S31)):

〈θ〉=µ cm∞ − σ2 c ε ni χint . (S45)

The same needs to be done with the second moments:
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〈θ2〉=
∑
j∈∂i−

∑
k∈∂i−

〈
(µ+ σ xij) (µ+ σ xik) (m∞ − σ ni χint xji) (m∞ − σ ni χint xki)

〉
〈θ2〉=

∑
j∈∂i−

∑
k∈∂i−

〈 [
µ2 + µσ (xij + xik) + σ2 xij xik

]
×

×
[
m2
∞ −m∞σ ni χint (xji + xki) + σ2 n2

i χ
2
int xji xki

] 〉
〈θ2〉= c2 µ2m2

∞ + c σ2m2
∞ − µσ2m∞ ni χint

∑
j∈∂i−

∑
k∈∂i−

〈
(xij + xik) (xji + xki)

〉
+

+c µ2σ2 n2
iχ

2
int + σ4 n2

i χ
2
int

∑
j∈∂i−
〈x2ij x2ji〉+ σ4 n2

i χ
2
int

∑
j∈∂i−

∑
k∈∂i−\j

〈xij xji xik xki〉

〈θ2〉= c2 µ2m2
∞ + c σ2m2

∞ − µσ2m∞ ni ε χint
(
4c+ 2c(c− 1)

)
+

+c µ2σ2 n2
iχ

2
int + σ4 n2

i χ
2
int

(
c+ c(c− 1)ε2

)
〈θ2〉= c2 µ2m2

∞ + c σ2m2
∞ − 2µσ2m∞ ni ε χint c (c+ 1) +

+c µ2σ2 n2
iχ

2
int + σ4 n2

i χ
2
int

(
c+ c(c− 1)ε2

)
. (S46)

where we assumed that 〈x2ij x2ji〉 = 1 and that 〈xij xji xik xki〉 = ε2, if i 6= k.
Then, the variance of θ is:

s2θ = 〈θ2〉 − 〈θ〉2

s2θ = c σ2m2
∞ − 2µσ2m∞ ni ε χint c+ cµ2σ2n2

iχint + σ4 n2
i χ

2
int c (1− ε2) . (S47)

Now, to complete the procedure, one needs to rescale the average µ and the variance σ2

of the couplings for 〈θ〉 and 〈σ2〉 to remain finite. The natural choice is

µ̂ = c µ , σ̂2 = c σ2 . (S48)

After neglecting the terms that go to zero when c→∞, we finally obtain:

〈θ〉= µ̂m∞ − σ̂2 ε ni χint (S49)
s2θ = σ̂2m2

∞ . (S50)

Remembering Eq. (S32), the stationary abundance for large connectivity and at T = 0
was:

ni = max
(

0, 1−
∑
j∈∂i−

αijmj(∞)
)
≡ max(0, 1− θ) = max(0, 1− 〈θ〉 − sθ ν) . (S51)

where ν ∼ N (0, 1) is a standardized Gaussian. Substituting Eqs. (S49) and (S50) into this
expression, we get:

ni = max(0, 1− µ̂m∞ + σ̂2 ε ni χint − σ̂ m∞ ν) . (S52)
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Rearranging terms, we finally recover Eq. (13) of [6]:

ni = max
(

0,
1− µ̂m∞ − σ ζ∞

1− ε σ̂2 χint

)
, (S53)

where ζ∞ is a Gaussian with zero mean 〈ζ∞〉 = 0 and variance 〈ζ2∞〉 = m∞. The latter is
also consistent with the third line of Eq. (12) in Ref. [6].

S3 Efficient implementation of IBMF
To use IBMF to obtain the actual values of the averages mi, one needs to numerically
compute integrals of the form

Ik(β, λ,M) =

∫ ∞
0

dnnβλ−1+k exp
{
− β

2
(n−M)2

}
, (S54)

with the parameter k taking the value k = 0, 1 in our case.
Luckily, the integral (S54) can be expressed in terms of known special functions, called

parabolic cylinder functions. They have the integral representation (see 9.241 in Ref. [7]):

D−p(z) =
e−z

2/4

Γ(p)

∫ ∞
0

dx e−xz−x
2/2xp−1 , (S55)

which is valid for Re[p] > 0 and where Γ(−p) is the Euler’s Gamma function. Looking back
at Eq. (S54), we can change variables making x = n

√
β to get

Ik =
[ 1

β

]βλ+k
2
e−

βM2

2

∫ ∞
0

dx xβλ−1+k exp
{
− x2

2
+
√
βM2 xM

}
. (S56)

After comparing Eqs. (S55) and (S56), we identify p = βλ + k and z = −
√
βM2, and

we can write the integral Ik in terms of the parabolic cylinder functions as:

Ik(β, λ,M) =
[ 1

β

]βλ+k
2

exp
{
− βM2

4

}
Γ(βλ+ k)D−βλ−k

(
−
√
βM2

)
. (S57)

Eq. (S57) is very convenient since we can express the first moments of the distribution
P∞(nj) in terms of these integrals. Indeed, one has:

mj =
I1(β, λ,Mj)

I0(β, λ,Mj)
=
√
β λ

D−βλ−1
(
−
√
βM2

j

)
D−βλ

(
−
√
βM2

j

) , (S58)

where Mj = 1−
∑

k∈∂j− αjkmk.
Using again Ref. [7] (9.240), we can write the parabolic cylinder functions in terms of the

more practical Kummer’s confluent hypergeometric function Φ(a, b; z), which can be found
already tabulated in different programming languages. The relation is:
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D−βλ−k
(
−
√
βM2

)
=

2−(βλ+k)/2e−βM
2/4
√
π

Γ
(
βλ+1+k

2

)
Γ
(
βλ+k

2

) × (S59)

×
{

Γ
(βλ+ k

2

)
Φ
[βλ+ k

2
,
1

2
,
βM2

2

]
+
√

2βM2 Γ
(βλ+ 1 + k

2

)
Φ
[βλ+ 1 + k

2
,
3

2
,
βM2

2

]}
Then, the first moment can be written as:

mj =
Γ
(
βλ+1

2

)
Φ
[
βλ+1

2
, 1
2
,
βM2

j

2

]
+
√

β
2
Mj β λΓ

(
βλ
2

)
Φ
[
1 + βλ

2
, 3
2
,
βM2

j

2

]
√

β
2

Γ
(
βλ
2

)
Φ
[
βλ
2
, 1
2
,
βM2

j

2

]
+ βMj Γ

(
βλ+1

2

)
Φ
[
βλ+1

2
, 3
2
,
βM2

j

2

] (S60)

We can then set an initial condition for all the mi, with i = 1, . . . , N , and iterate Eq.
(S60). This is computationally fast, and the result of the iteration process depends on the
relevant parameters of the model (µ, σ, β) and on the interaction graph. The code is available
at Ref. [8].

S4 Continuous BP equations
The continuous BP equations for the Generalized Lotka-Volterra (gLV) model, as introduced
in Eq. (13) in the main text, read:

ηi→j(ni) =
1

zi→j
nβλ−1i exp

{
− β

2
(n2

i −2ni)
} ∏
k∈∂i−\j

(∫ ∞
0

dnk ηk→i(nk) exp
{
− βαikni nk

})
.

(S61)
Eq. (S61) is the update rule for the cavity marginals, or messages, ηi→j(ni), which are

the probability distributions for the abundance of species (node) i once we cut the edges
with species j. As usual, we call ηi→j(ni) node-to-link messages. What we immediately
notice from Eq. (S61) is that ηi→j(ni) contains the factor nβλ−1i , which diverges in ni = 0,
for βλ < 1. To avoid such divergence, we introduce the link-to-node cavity messages, which
we denote η̂i→j(nj) and which represent the distribution of the abundance of species j once
all its links, except the one with i, are cut. These cavity marginals are defined as:

η̂i→j(nj) ∝
∫ ∞
0

dni ηi→j(ni) exp
{
− βαijni nj

}
. (S62)

Inserting Eq. (S61) into Eq. (S62), we get:

η̂i→j(nj) ∝
∫ ∞
0

dni n
βλ−1
i exp

{
− β

2
(n2

i − 2ni)
}

exp
{
− βαijni nj

} ∏
k∈∂i−\j

η̂k→i(ni) , (S63)

which is now the update rule for the link-to-node cavity marginals η̂i→j(nj). Importantly,
once the messages η̂i→j(nj) are determined, the cavity marginals ηi→j(ni) follow directly, as
we can see by rewriting Eq. (S61) as:
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ηi→j(ni) ∝ nβλ−1i exp
{
− β

2
(n2

i − 2ni)
} ∏
k∈∂i−\j

η̂k→i(ni). (S64)

We can then analyze the BP convergence directly at the level of the link-to-node cavity
messages η̂i→j(nj). As said before, the advantage is that η̂i→j(nj) is a well-behaved function
that allows us to avoid the divergence of ηi→j(ni) at ni = 0.

If we initialize all the messages η̂i→j(nj) to the uniform distribution over nj, the update
rule (S63) in the first iteration step becomes:

η̂i→j(nj) ∝
∫ ∞
0

dni n
βλ−1
i exp

{
− β

2
(n2

i − 2ni)
}

exp
{
− βαijni nj

}
. (S65)

The advantage of this initialization is that we can rewrite Eq. (S65) as

η̂i→j(nj) ∝
∫ ∞
0

dnin
βλ−1
i exp

{
− β

2
n2
i + βni(1− αijnj)

}
(S66)

=
1

β
βλ
2

∫ ∞
0

dx x−p−1 exp
{
− x2

2
− zx

}
, (S67)

where in the last passage we introduced the change of variable x =
√
βni, with p = −βλ,

z =
√
β(αijnj − 1). The integral in Eq. (S67) can be exactly solved and expressed in terms

of parabolic cylinder functions Dp(z). In particular, as it is shown in Eq. 9.241 in Ref. [7],
the integral (I) is equivalent to:

I =
Γ(−p)
e−

z2

4

Dp(z), (S68)

where Γ(−p) is the Euler’s Gamma function. The first iteration step for the update of the
message η̂i→j(nj) then corresponds to

η̂i→j(nj) ∝ β−
βλ
2 Γ(βλ) e

β
4
(αijnj−1)2D−βλ

(√
β(αijnj − 1)

)
, (S69)

which then has to be normalized.
For the following iteration steps, instead, we go back to Eq. (S63), which we rewrite as

η̂i→j(nj) ∝ exp
{β

2
(1− αijnj)2

}∫ ∞
0

dni n
βλ−1
i exp

{
− β

2
(ni − 1 + αijnj)

2
} ∏
k∈∂i−\j

η̂k→i(ni).

(S70)

In order to analyze the integral part of Eq. (S70), which we will denote by Ii→j(nj), let
us split it at some δ > 0:

Ii→j(nj) =

∫ δ

0

dni n
βλ−1
i exp

{
− β

2
(ni − 1 + αijnj)

2
} ∏
k∈∂i−\j

η̂k→i(ni)+

+

∫ ∞
δ

dni n
βλ−1
i exp

{
− β

2
(ni − 1 + αijnj)

2
} ∏
k∈∂i−\j

η̂k→i(ni). (S71)
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For δ � 1, the first contribution, i.e. the integral between 0 and δ, can be approximated
as:

Iδi→j(nj) = exp
{
− β

2
(1− αijnj)2

} ∏
k∈∂i−\j

η̂k→i(0)
δβλ

βλ
, (S72)

where we performed the integration of the factor nβλ−1i over the interval [0, δ], while approx-
imating the remaining part of the integrand by its value at ni = 0.

Substituting Eqs. (S71) and (S72) into Eq. (S70), we obtain the following BP update rule
for the cavity messages η̂i→j:

η̂i→j(nj) =
1

ẑi→j

[δβλ
βλ

∏
k∈∂i−\j

η̂k→i(0)+

+

∫ ∞
δ

dni n
βλ−1
i exp

{
− β

2
(n2

i − 2ni)
}

exp
{
− βαijninj

} ∏
k∈∂i−\j

η̂k→i(ni)
]
. (S73)

After having initialized the messages following Eq. (S69), the update rule of the contin-
uous BP equations is given by Eq. (S73).

This approach is general, but we specifically used it in order to study the transition from
a single-equilibrium phase (where BP converges) to a multiple-equilibria one (where BP does
not converge) in the presence of homogeneous (σ = 0) and competitive interactions (µ > 0).
The results are in Subsection IV.C of the main text. In this case, the species abundances
will only rarely be larger than the carrying capacities, which in our case are all equal to 1.
Some thermal fluctuations could drive species to abundances slightly larger than 1, but we
can safely restrict the integral

∫∞
δ

in Eq. (S73) to the interval [δ, 2]. In our implementation,
we set δ = 10−4 and compute the integral numerically.

Let us specify that in our analysis we used a sequential update, meaning that at each
iteration step k, each η̂

(k)
i→j(nj) is updated to η̂(k+1)

i→j (nj) asynchronously. In particular, the
order of updates follows a random fixed sequence of directed edges i → j. This sequential
approach is essential to avoid convergence inconsistencies, ensuring that BP stops converg-
ing only once the multiple-equilibria phase is reached. These issues are also discussed in
Appendix C of the main text. As for IBMF and numerical integration, the code is available
at Ref. [8].
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