

Local equations for the generalized Lotka-Volterra model on sparse asymmetric graphs

D. Machado^{1, 2, 3, *}, P. Valigi¹, T. Tonolo^{4, 5} and M. C. Angelini^{1, 6, †}

1 Dipartimento di Fisica, Sapienza Università di Roma, Ple Aldo Moro 5, 00185 Rome, Italy

2 Group of Complex Systems and Statistical Physics and Department of Theoretical Physics.
Physics Faculty, University of Havana. CP10400, La Habana, Cuba

3 CNR - Nanotec, unità di Roma, Ple Aldo Moro 5, 00185 Rome, Italy **4** Gran Sasso Science
Institute, Viale F. Crispi 7, 67100 L'Aquila, Italy

5 INFN-Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi (AQ), Italy

6 Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Ple A. Moro 5, 00185 Rome, Italy

* david.machado@uniroma1.it, † mariachiara.angelini@uniroma1.it

Abstract

Real ecosystems are characterized by sparse and asymmetric interactions, posing a major challenge to theoretical analysis. We introduce a new method to study the generalized Lotka-Volterra model with stochastic dynamics on sparse graphs. By deriving local Fokker-Planck equations and employing a mean-field closure, we can efficiently compute stationary states for both symmetric and asymmetric interactions. We validate our approach by comparing the results with the direct integration of the dynamical equations and by reproducing known results and, for the first time, we map the phase diagram for sparse asymmetric networks. Our framework provides a versatile tool for exploring stability in realistic ecological communities and can be generalized to applications in different contexts, such as economics and evolutionary game theory.

Copyright attribution to authors.

This work is a submission to SciPost Physics.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

1

2 Contents

3	1 Introduction	2
4	2 The model	4
5	3 Local Fokker-Planck equations	5
6	3.1 Individual Based Mean Field	6
7	3.2 Continuous Belief Propagation	8
8	4 Numerical results	9
9	4.1 Undirected graphs with asymmetric interactions	12
10	4.2 Directed graphs	14
11	4.3 Including thermal noise	16
12	5 Conclusions	19

13	6 Acknowledgments	19
14	A From Ito's rule to the Fokker-Planck equation	20
15	B Solution for the isolated variable	21
16	C Limits of IBMF with parallel updates at zero temperature	22
17	D Unbounded growth for asymmetric mutualistic interactions	23
18	E Use of damping to improve convergence	24
19	F IBMF for graphs with correlated couplings	25
20	G Convergence of IBMF in directed graphs	26
21	H Finite size effects of IBMF on directed graphs	28
22	I Comparing runtimes of IBMF and simulations in directed graphs	29
23	J Zero-temperature limit of BP	29
24	References	32
25		
26		

27 1 Introduction

28 The stability of complex ecosystems and the rules governing species coexistence present a
29 central puzzle in theoretical ecology. The generalized Lotka-Volterra (gLV) model has been a
30 cornerstone of this inquiry, also related to models used in evolutionary game theory and in
31 economic theory [1–3]. Recently, the random, symmetric, and dense version of the gLV model
32 has been analyzed through the lens of equilibrium statistical mechanics. This approach has
33 yielded profound insights, revealing how the phases of single equilibrium, unbounded growth,
34 and multiple equilibria are dictated by a handful of macroscopic parameters: the mean μ and
35 variance σ of inter-species interactions, and the intensity of demographic noise T . A key
36 finding is that densely connected networks with random symmetric interactions can exhibit a
37 phase of multiple equilibria at high interaction heterogeneity [4].

38 However, real ecological networks are generally neither dense nor symmetric. In real
39 ecosystems, the interactions between two species are almost always asymmetric, the existence
40 of predator-prey couples of species being just an example. For this reason, some other works
41 have tried to go beyond the assumption of symmetry [5–14]. Moreover, in real ecosystems, a
42 species typically interacts only with a few others [15, 16]. In the last years, Random Matrix
43 Theory (RMT) results [17, 18] have shown that the spectra of sparse random graphs exhibit
44 qualitative differences from the dense case, suggesting that this may have implications for the
45 stability of ecological models defined on sparse networks. Accordingly, it would be interesting
46 to study the properties of the gLV model on graphs with finite connectivity. Unfortunately, in
47 this case, the methods used for fully-connected systems [4, 7] cannot be applied, in particular
48 because no central-limit-type arguments hold.

49 In a very recent paper, for the first time, the equilibrium properties of the symmetric gLV
50 model on a sparse graph were analyzed [19] using the so-called Belief-Propagation (BP) cavity

51 method. This can, however, be used only when an equilibrium measure exists, preventing its
52 implementation in the case of asymmetric interactions. In general, the description of out-of-
53 equilibrium systems has been even more elusive, and the available techniques deal only with
54 specific limits. When species interact through a fully-connected network [20], we can use
55 Dynamical Mean-Field Theory (DMFT) to describe the temporal evolution of dynamic observ-
56 ables, which has also been extended to non-Gaussian disorder in the interactions [21]. Other
57 generalizations include the limit of very small connectivity [21], the limit of a large connec-
58 tivity that grows sublinearly with the number of species in the graph [22], and the case of
59 unidirectional interactions [23]. However, until now, there has been no way to systematically
60 analyze gLV models with sparse asymmetric interactions.

61 In this work, we bridge this gap by analyzing both symmetric and asymmetric, quenched-
62 disordered sparse interactions. We go beyond equilibrium statistical mechanics, introducing
63 a new method for the evaluation of the stationary probability distribution for the stochastic
64 differential equations (SDE) that describe the evolution of the species abundance. We start
65 from the usual formulation of the stochastic dynamics in terms of an SDE and derive the
66 equivalent Fokker-Planck equation for the associated time-dependent probability densities.
67 However, solving the full system of partial differential equations defined on the whole graph
68 in a high-dimensional space is a cumbersome task. To overcome this difficulty, we derive local
69 closures that allow us to obtain tractable relations for the stationary distributions.

70 The main idea of a local closure is to propose an *ansatz* for the probability densities, in
71 general involving some suitable factorizations that exploit the properties of the interaction
72 graph. It has been used successfully in several contexts, such as the study of epidemics
73 spreading on networks [24–27], algorithmic dynamics in hard combinatorial optimization
74 problems [28, 29], spin-glass dynamics in random graphs [30], or the dynamics of the voter
75 model [31]. As far as we know, this work constitutes the first application of local closures to
76 Fokker-Planck equations in sparse graphs. The new approximate descriptions derived here are
77 what we call local Fokker-Planck equations.

78 We will validate our method by applying it to different situations, comparing its prediction
79 with the results obtained from the direct numerical integration of the SDE and recovering
80 known results from previous literature. We also show how, starting from the general equations
81 in the asymmetric case, one can recover the BP equations when only symmetric couplings are
82 considered.

83 The rest of the manuscript is organized as follows. In Section 2 we introduce the gener-
84 alized Lotka-Volterra equations and the underlying networks that we will analyze. In Section
85 3, we present the Fokker-Planck equations that describe the evolution of the probability dis-
86 tributions of the species abundances in time. These are complicated global equations, which
87 in general are not solvable. For this reason, in Section 3.1 we introduce a new local closure,
88 corresponding to a mean-field approximation for the dynamics, called Individual Based Mean
89 Field (IBMF). Our procedure leads to the main *local* solvable Fokker-Planck equations that we
90 discuss in this article. In Section 3.2 we go beyond IBMF introducing a more refined closed
91 local Fokker-Planck equation that we call Pair Based Mean Field (PBMF), showing that the
92 BP equations introduced in Ref. [19] correspond to the stationary solution of PBMF in the
93 symmetric case.

94 We validate our new methods in Section 4, where we give details on the numerical im-
95 plementation of IBMF both at null and finite temperatures. We compare the stationary abund-
96 ances obtained with IBMF with those obtained from simulations in the presence of thermal
97 noise for a single random graph. The results are a useful example to emphasize the strengths
98 of IBMF and to also point out its limitations. Then, we proceed to apply IBMF to three differ-
99 ent scenarios. In Subsection 4.1, we study undirected graphs with asymmetric interactions at
100 null temperature, obtaining the corresponding phase diagram in the plane (μ, σ) for the first

time, as far as we know. We thus generalize the results for the fully-connected asymmetric case in Ref. [5] and for the sparse case with symmetric interactions in Ref. [19]. In Subsection 4.2, we apply the IBMF closure to directed graphs with null variance in the couplings and null temperature, confirming and extending the results of Ref. [32], which were obtained there with a completely different method. In Subsection 4.3 we move back to undirected graphs, but this time with symmetric couplings at finite T . This setting helps us study the performance of IBMF in the presence of thermal noise in a systematic way. We compare the results with Ref. [19], where the BP method is used to exactly solve the model. We identify the limitations of IBMF, which stops converging to a single equilibrium as soon as the exact species abundances found by BP start developing a non-Gaussian distribution tilted towards extinctions. Finally, in Section 5, we draw our conclusions.

2 The model

Let us introduce the generalized Lotka-Volterra (gLV) equations that we will study in the rest of this article. They describe the dynamics of an ecosystem with N interacting species. To each of them, we associate a positive real variable n_i , interpreted as the abundance of the i -th species, with $i = 1, \dots, N$. In general, a single species will not interact with all the others, but instead with a subset of the species known as the neighborhood of i . The interactions occur in a graph $G(V, E)$, where V is the set of vertices, each representing a species, and E is the set of edges.

To keep the definitions as general as needed, for now the reader should think of G as a directed graph. If the presence of species i influences the growth of species j , we add the directed edge $i \rightarrow j$. It is possible to have $i \rightarrow j$ in the graph without having the edge in the opposite direction ($j \rightarrow i$). We define the in-neighborhood ∂i^- of i as the set of in-neighbors j such that the edge $j \rightarrow i$ exists in the graph. For simplicity, graphs G with self-loops will not be considered here.

The gLV equation for the abundance of the i -th species can be written as:

$$\frac{dn_i}{dt} = \frac{r_i}{K_i} n_i (K_i - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \xi_i(t) + \lambda, \quad (1)$$

where $n_i \geq 0$ is the abundance of the i -th species, and the real parameters r_i and K_i are known as the intrinsic growth rate and carrying capacity, respectively. To simplify the setting, we will take $r_i = K_i = 1$ in what follows, but the reader will find no difficulties in generalizing our results to consider other values of these constants.

The term $\xi_i(t)$ in Eq. (1) is a noise term, which has average $\langle \xi_i(t) \rangle = 0$ and second moments $\langle \xi_i(t_1) \xi_j(t_2) \rangle = 2 T n_i \delta_{i,j} \delta(t_1 - t_2)$, where T is known as temperature of the noise. This thermal noise is referred to as *demographic* [4, 33–36] and accounts for death and birth processes. The parameter λ , known as *immigration rate*, acts as a small source term that allows extinct species to come back should conditions become favorable to them [20, 37]. Its effect will be clarified later.

The couplings α_{ij} are real numbers that set the type and strength of the interactions. The value of α_{ij} encodes the way that species j affects the evolution of species i , and therefore corresponds to the edge $j \rightarrow i$ on the graph. In the case where for all $j \in \partial i^-$ we also have the edge $i \rightarrow j$, the graph is known as undirected. Having α_{ij} and α_{ji} simultaneously positive means that the two species i and j have a competitive interaction, where the presence of individuals of species j is prejudicial for the individuals of species i , and vice versa. When they are both negative, we have a mutualistic interaction, and the species are beneficial to each other. On the other hand, when the interaction is positive for one species and negative

145 for the other, we have a predator-prey or antagonistic interaction. Finally, in the presence of
 146 directed interactions, we can also have commensalism and amensalism, whereby one species
 147 benefits or is harmed by the interaction, while the other is unaffected.

148 Given that the edge $j \rightarrow i$ already exists in the graph, we can add noise to the interactions
 149 by drawing α_{ij} at random from some probability distribution. Following many other works
 150 [19, 20, 38], we choose the Gaussian distribution $\alpha_{ij} \sim \mathcal{N}(\mu, \sigma)$, with mean μ and variance
 151 σ^2 . The reader should note that, as a particular case, we can set the interaction strengths α_{ij}
 152 to be homogeneous by choosing $\sigma = 0$. In that case, we get $\alpha_{ij} = \mu$ for all the edges $j \rightarrow i$.

153 Our methodology, derived below in Section 3, applies to graphs with directed and/or undi-
 154 rected interactions. We demonstrate this by including results for three different scenarios in
 155 Section 4. In Subsection 4.2 we study a case where, with high probability, the edges $j \rightarrow i$ and
 156 $i \rightarrow j$ are not simultaneously present. We follow the same model used in Ref. [39] to study the
 157 gLV dynamics with asymmetric interactions. To construct the network, for each species i we
 158 select the incoming edges by going over all possible $j \neq i$, and adding the edge $j \neq i$ with prob-
 159 ability c/N , where $c > 0$. The in-neighbors of i are chosen independently of the in-neighbors
 160 of j , and in the limit when the number of species is large, it is highly improbable that we find
 161 $i \rightarrow j$ and $j \rightarrow i$ simultaneously in the graph. The result is a graph where the degree follows a
 162 Poisson distribution with mean c , and where most interactions are directed. Finally, for each
 163 edge $j \rightarrow i$ we draw α_{ij} from the Gaussian distribution $\mathcal{N}(\mu, \sigma)$. In Subsection 4.2 below, we
 164 include results for different values of μ but only two values of σ ($\sigma = 0$ and $\sigma = 0.15$).

165 In Fig. 1, and in Subsections 4.1 and 4.3, the species interact over an undirected random
 166 regular graph, whose edges are randomly selected such that each species (vertex) has the same
 167 number of neighbors, denoted by c and called connectivity. After the graph is built, we need
 168 to choose the interaction strengths α_{ij} and α_{ji} for each edge. In Subsection 4.1, we draw α_{ij}
 169 independently of α_{ji} using the Gaussian distribution $\mathcal{N}(\mu, \sigma)$, for different values of μ and σ .
 170 Notice that this creates asymmetric interactions where, in general, we have $\alpha_{ij} \neq \alpha_{ji}$ whenever
 171 $\sigma \neq 0$. In Subsection 4.3 we study the case $\sigma = 0$, where we always get $\alpha_{ij} = \alpha_{ji} = \mu$ and the
 172 interactions are symmetric.

173 3 Local Fokker-Planck equations

174 Given a graph of interactions, Eq. (1) gives the temporal evolution of the abundances in a
 175 stochastic process with thermal noise $\xi(t)$. Sampling different realizations of the initial con-
 176 ditions and of $\xi(t)$, one gets the probability distribution $P_t(\vec{n})$ of the vector $\vec{n} = (n_1, \dots, n_N)$ at
 177 time t . This quantity obeys a Fokker-Planck equation that can be derived from Ito's rule [38].
 178 However, contrary to the usual case where the variables are defined in the interval $(-\infty, +\infty)$,
 179 each abundance n_i is defined in the interval $[0, +\infty)$. As a natural consequence of this fact (see
 180 Appendix A for more details), one needs to impose the proper boundary conditions at $n_i = 0$,
 181 guaranteeing that the current of probability density through the border is always zero [40].
 182 The resulting Fokker-Planck equation is:

$$\frac{\partial P_t(\vec{n})}{\partial t} = T \sum_{i=1}^N \frac{\partial^2}{\partial n_i^2} \{n_i P_t(\vec{n})\} - \sum_{i=1}^N \frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \lambda] P_t(\vec{n}) \right\}, \quad (2)$$

183 The first and second terms on the right-hand side of Eq. (2) are the usual diffusion and
 184 drift terms of the Fokker-Planck equation, respectively. They encode the evolution of a species
 185 subject to Eq. (1). The deterministic growth ratio $n_i(1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \lambda$ experienced
 186 by species i goes into the drift term. The thermal noise with temperature T gives birth to the
 187 diffusion term.

188 In any case, solving Eq. (2) is a cumbersome task mainly because $P_t(\vec{n})$ is a highly dimensional object. The abundances are defined on the space $(0, +\infty)^N$ and the time can be in
 189 general defined in the space $(-\infty, \infty)$. Even when we consider a single species ($N = 1$),
 190 finding $P_t(n)$ at any time t is not simple. However, we can obtain its stationary solution (see
 191 Appendix B), which will be useful for us later. It reads:

$$P_\infty(n) = \frac{1}{Z} n^{\beta\lambda-1} \exp\left\{-\frac{\beta}{2}(n-1)^2\right\}, \quad (3)$$

193 where Z is a normalization constant and $\beta \equiv 1/T$.

194 Eq. (3) clarifies the role of the parameter λ in the model. The integral $\int_0^\infty dn P_\infty(n)$ is
 195 finite if and only if $\lambda > 0$. Otherwise, the divergence at $n = 0$ dominates the integral, which
 196 would be divergent. In other words, the existence of $\lambda > 0$ allows the density $P_\infty(n)$ to be
 197 normalizable. On the other hand, when $\lambda = 0$ and $T > 0$ the species are doomed to go extinct
 198 for large times.

199 3.1 Individual Based Mean Field

200 To find solvable equations, we need to simplify Eq. (2). In this subsection, we obtain the
 201 first local Fokker-Planck equation for the gLV model. Let us marginalize Eq. (2) over all the
 202 abundances except n_i to obtain the differential equations for the local probabilities, which are
 203 defined as $P_t(n_i) = \int_0^\infty [\prod_{k \neq i} dn_k] P_t(\vec{n})$:

$$\frac{\partial P_t(n_i)}{\partial t} = T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i)\} - \frac{\partial}{\partial n_i} \left\{ \left[n_i \left(1 - n_i - \sum_{j \in \partial i} \alpha_{ij} m_{j \rightarrow i}(n_i, t) \right) + \lambda \right] P_t(n_i) \right\}, \quad (4)$$

204 where $m_{j \rightarrow i}(n_i)$ is the conditional average

$$m_{j \rightarrow i}(n_i, t) \equiv \int_0^\infty dn_j n_j P_t(n_j | n_i). \quad (5)$$

205 As in the Fokker-Planck equation for the whole system, the local version in Eq. (4) has
 206 two different contributions. The first line in the equation shows the diffusion term. On the
 207 other hand, after averaging over the rest of species, the single species i senses an effective
 208 drift $n_i \left(1 - n_i - \sum_{j \in \partial i} \alpha_{ij} m_{j \rightarrow i}(n_i, t) \right) + \lambda$, where n_j is substituted by its conditional average
 209 $m_{j \rightarrow i}(n_i, t)$. For more details on the derivation of Eq. (4), the reader is referred to Section 1
 210 of the Supplemental Materials (SM).

211 We have not introduced any approximation so far. To solve Eq. (4), one would also need
 212 to obtain all the functions $m_{j \rightarrow i}(n_i)$, but from its definition (Eq. (5)) it is evident that this
 213 is equivalent to getting the solution for the pair probabilities $P_t(n_i, n_j)$. Indeed, to compute
 214 the conditional probability density $P_t(n_j | n_i)$, we need the pair $P_t(n_i, n_j)$ and the single-site
 215 $P_t(n_i)$ probabilities. As we will show in the next section, the local Fokker-Planck equation
 216 for $P_t(n_i, n_j)$ depends, in turn, on probabilities $P_t(n_i, n_j, n_k)$ defined over three species. After
 217 iterating this process, we get a hierarchy of equations that never closes until we recover the
 218 full Eq. (2). Therefore, solving Eq. (4) has the same level of difficulty as solving Eq. (2).

219 To overcome this problem, we need to introduce an approximation that allows us to get a
 220 closed system of differential equations for the $P_t(n_i)$, *i.e.*, one that can be solved without going
 221 up in the hierarchy. The first step that one could take in that direction is to assume $m_{j \rightarrow i}(n_i, t)$
 222 is independent of n_i and write $m_{j \rightarrow i}(n_i, t) \approx m_j(t)$, where

$$m_j(t) \equiv \int_0^\infty dn_j n_j P_t(n_j). \quad (6)$$

223 Doing this is equivalent to assuming that the pair probabilities are all factorized such that
 224 $P_t(n_i, n_j) \approx P_t(n_i)P_t(n_j)$. Therefore, we are trivializing the correlations in the system. Never-
 225 theless, this approximation allows us to close the system of differential equations since all the
 226 information that we need is in the single-species distributions $P_t(n_i)$. We get:

$$\frac{\partial P_t(n_i)}{\partial t} = T \frac{\partial^2 \{n_i P_t(n_i)\}}{\partial n_i^2} - \frac{\partial}{\partial n_i} \left\{ \left[n_i (1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} m_j(t)) + \lambda \right] P_t(n_i) \right\}. \quad (7)$$

227 These local Fokker-Planck equations form a dynamic closure that can in principle be solved,
 228 and that we will call Individual Based Mean Field (IBMF) in what follows. This name has
 229 been used before in the literature, particularly in the study of epidemic spreading throughout a
 230 network [24,26], to identify an approximation that factorizes the pair probabilities distribution
 231 as explained above. Finding the stationary solution of Eq. (7) has the same level of difficulty
 232 as for an isolated variable (see Eq. (3) and Appendix B). The result is:

$$P_\infty(n_i) = \frac{1}{Z_i} n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2} (n_i - M_i)^2 \right\}, \quad (8)$$

233 where

$$Z_i = \int_0^\infty dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2} (n_i - M_i)^2 \right\} \quad (9)$$

$$M_i = 1 - \sum_{j \in \partial i^-} \alpha_{ij} m_j(\infty). \quad (10)$$

234 This is a mean-field solution to the problem derived for sparse graphs with any type of
 235 interactions. In fact, a similar probability density has been recently introduced in Ref. [41] for
 236 the case of fully-connected models, a scenario where mean-field assumptions like these are
 237 more commonly used. The presence of other species modifies the center M_i of the Gaussian
 238 in Eq. (8) to make n_i align with the average effect of its neighbors. To evaluate the stationary
 239 solution of IBMF, we need to design an algorithm capable of computing the averages $m_j(\infty)$,
 240 which we will denote by m_j for simplicity. Exploiting Eq. (8), we can write:

$$m_i = \frac{1}{Z_i} \int_0^\infty dn_i n_i^{\beta\lambda} \exp \left\{ -\frac{\beta}{2} (n_i - M_i)^2 \right\}. \quad (11)$$

241 As said above, Z_i and M_i are functions of the averages m_j , with $j \in \partial i^-$. After making an
 242 initial guess for the average abundances m_i , with $i = 1, \dots, N$, we can use Eq. (11) to update
 243 their values. Then, we iterate until all m_i converge to the IBMF's prediction for the stationary
 244 average abundances. In practice, we employ numerical tricks, such as adding damping and
 245 using sequential updates, to aid this iterative process in reaching convergence (see Appendices
 246 E and C).

247 In the process of obtaining the stationary solution of IBMF, we did not assume any partic-
 248 ular structure of the graph, nor any specific type of interaction. It is in principle applicable
 249 to any directed or undirected graph, with symmetric or asymmetric interactions. However,
 250 one should expect better results when correlations are weak enough for the factorization
 251 $P_\infty(n_i, n_j) \approx P_\infty(n_i)P_\infty(n_j)$ to approximately hold. The latter is intuitively more likely to
 252 happen in the case of asymmetric interactions.

253 **3.2 Continuous Belief Propagation**

254 To go beyond IBMF, we need to include non-trivial correlations between pairs of interacting
 255 species. Therefore, it is reasonable to go up one level in the hierarchy and write the local
 256 Fokker-Planck equations for the pair probabilities $P_t(n_i, n_j) = \int_0^\infty [\prod_{k \neq i,j} dn_k] P_t(\vec{n})$. After
 257 marginalizing Eq. (2) over the abundances of all the species (the details can be found in Section
 258 1 of the SM), except for i and j , we obtain a local equation that depends on the conditional
 259 averages:

$$m_{k \rightarrow i,j}(n_i, n_j, t) \equiv \int_0^\infty dn_k n_k P_t(n_k | n_i, n_j). \quad (12)$$

260 Solving for $m_{k \rightarrow i,j}(n_i, n_j, t)$ implies knowing the three-species probabilities $P_t(n_i, n_j, n_k)$,
 261 but we need to close the hierarchy at some point. However, if one focuses on random sparse
 262 graphs like random regular or Erdős-Rényi, the tree-like structure of the interactions makes
 263 it very unlikely that species k interacts with i and j simultaneously, provided that i and j
 264 interact. If $k \in \partial i^-$, we can assume that $m_{k \rightarrow i,j}(n_i, n_j, t)$ strongly depends on n_i and only
 265 weakly depends on n_j . We then make the approximation $m_{k \rightarrow i,j}(n_i, n_j, t) \approx m_{k \rightarrow i}(n_i, t)$. The
 266 result (see Section 1 of the SM) is a closed local Fokker-Planck equation that we call Pair Based
 267 Mean Field (PBMF), also using a name that is popular in the context of epidemics spreading
 268 on networks when the dynamics is described using pair probabilities [25, 26].

269 Although the PBMF is simpler than the full Eq. (2), it is still difficult to obtain a general
 270 solution, even when we focus only on the stationary point. Only in the case of symmetric inter-
 271 actions in undirected graphs ($\alpha_{ij} = \alpha_{ji}$), as we show in Subsection 2.1 of the SM, the proper
 272 solution to the local Fokker-Planck equation for pair probabilities in sparse random graphs is
 273 Belief Propagation (BP). This technique was already introduced in Ref. [19] for the gLV model.
 274 However, while in that case the abundances of the species are considered as discrete variables
 275 with states $n_i = 1, 2, \dots$, here we use the continuous version of the model. We solve this issue
 276 by proposing a new continuous implementation of BP equations for our model, which have
 277 the same structure as the ones in Ref. [19], but include the proper adjustments to consider
 278 continuous $n_i \in [0, +\infty)$. These are:

$$\eta_{i \rightarrow j}(n_i) = \frac{n_i^{\beta\lambda-1}}{z_{i \rightarrow j}} \exp \left\{ -\frac{\beta}{2}(n_i^2 - 2n_i) \right\} \prod_{k \in \partial i^- \setminus j} \int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}, \quad (13)$$

279 where $\eta_{i \rightarrow j}(n_i)$ is the cavity marginal, or message, that represents the marginal probability
 280 density of species i in a modified graph where the edge connecting i and j is removed. The
 281 constant $z_{i \rightarrow j}$ is a normalization factor.

282 Here, we can identify that the local field h_i , whose exponential $e^{-\beta h_i(n_i)}$ usually appears
 283 in front of BP equations, is simply $h_i = n_i^2/2 - n_i + (T - \lambda) \ln(n_i)$. This expression properly
 284 considers the immigration rate and the continuous nature of n_i . From it, we can obtain the
 285 stationary single-site and the pair probabilities as follows:

$$P_{BP}(n_i) = \frac{n_i^{\beta\lambda-1}}{Z_i} \exp \left\{ -\frac{\beta}{2}(n_i^2 - 2n_i) \right\} \prod_{k \in \partial i^-} \int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k} \quad (14)$$

$$P_{BP}(n_i, n_j) = \frac{1}{Z_{ij}} \eta_{i \rightarrow j}(n_i) e^{-\beta \alpha_{ij} n_i n_j} \eta_{j \rightarrow i}(n_j), \quad (15)$$

286 where Z_i and Z_{ij} are normalization factors and the messages $\eta_{i \rightarrow j}(n_i)$ are the fixed point
 287 solution of Eq. (13).

288 The reader could wonder what the relation is between BP and the local Fokker-Planck
 289 equations that we have been presenting here. Remarkably, it is possible to prove that the
 290 expression in Eq. (15) for the pair probabilities, together with BP equations (Eq. (13)), is a
 291 stationary solution of PBMF when the interactions are symmetric. The details of the proof are
 292 given in Subsection 2.1 of the SM. To obtain numerical results from BP, we use an iterative
 293 algorithm analogous to the one we introduced above for IBMF. Making an initial guess for the
 294 messages $\eta_{i \rightarrow j}(n_i)$, we can use Eq. (13) to update their values at each n_i . This procedure
 295 is iterated until all $\eta_{i \rightarrow j}(n_i)$ converge, and the final messages are used to compute the true
 296 marginals $P_{BP}(n_i)$ and $P_{BP}(n_i, n_j)$. For the interested reader, we include details about our
 297 specific implementation of BP in Section 4 of the SM.

298 4 Numerical results

299 As said above, to use IBMF to obtain the actual values of the averages m_i , we need to numer-
 300 ically compute integrals of the form:

$$301 I_k(\beta, \lambda, M) = \int_0^\infty dn n^{\beta\lambda-1+k} \exp\left\{-\frac{\beta}{2}(n-M)^2\right\}, \quad (16)$$

301 with the parameter k taking the value $k = 0$ in Eq. (9), and $k = 1$ in Eq. (11).

302 Luckily, the integral in Eq. (16) can be expressed in terms of known special functions,
 303 called parabolic cylinder functions (see 9.241 in Ref. [42]). This is very convenient because
 304 we can write the parabolic cylinder functions in terms of the more practical Kummer's conflu-
 305 ent hypergeometric function, which can be found already tabulated in different programming
 306 languages. The interested reader can find the details in Section 3 of the SM. The code is
 307 available at Ref. [43].

308 When the temperature is zero or close to zero, the equations can be simplified even further.
 309 The exponential in Eq. (16) concentrates around its maximum, and provided that λ is small,
 310 IBMF equations reduce to:

$$311 n_i = \max\left\{0, 1 - \sum_{j \in \partial i^-} \alpha_{ij} n_j\right\}. \quad (17)$$

311 At $T = 0$, we simply need to iterate Eq. (17) until convergence. It is important to note
 312 that this is not the same as running the zero-temperature simulations of the dynamics, which
 313 in turn implies integrating the system of differential equations:

$$314 \frac{dn_i}{dt} = n_i(1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \lambda. \quad (18)$$

314 Such numerical integration of the gLV dynamical equations at $T = 0$ can be performed using
 315 the Cash-Karp adaptive Runge-Kutta method [44]. The code is available at Ref. [43].

316 For small λ , the fixed points of Eq. (17) coincide with the stationary solutions of the exact
 317 dynamics in Eq. (18). Therefore, whenever IBMF converges, the fixed point represents an
 318 actual stationary configuration of the dynamics. On the other hand, the non-convergence
 319 of IBMF is not guaranteed to be reflected in the behavior of the simulated dynamics. One
 320 could think of them as two different algorithms trying to find the same fixed points. If one of
 321 the algorithms succeeds, the resulting abundances constitute a fixed point also for the other
 322 algorithm. If one of them does not succeed, the other still could.

323 However, we show in Subsections 4.1 and 4.2 (see below) that IBMF can nevertheless
 324 be used to predict the relevant phase transitions observed in the simulations at $T = 0$. In

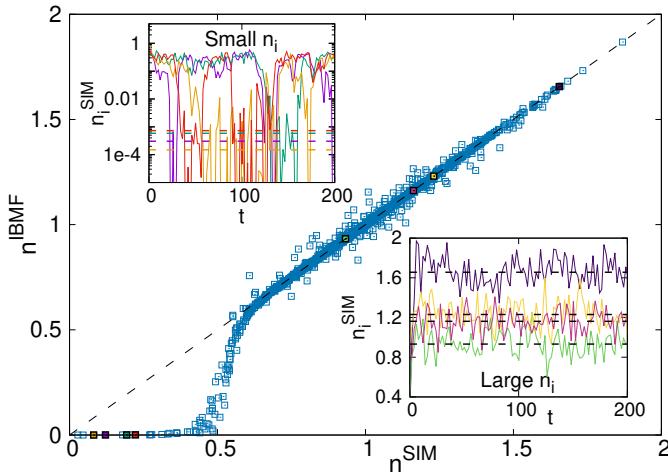


Figure 1: Comparing individual abundances from IBMF and simulations in a random regular graph at finite temperature $T = 0.015$. The connectivity is $c = 3$, and the immigration rate is $\lambda = 10^{-6}$. Each α_{ij} is independently drawn from the Gaussian $\mathcal{N}(0, \sigma)$, with $\sigma = 0.15$ (the interactions are asymmetric). Each point in the main graphic has coordinates $(n_i^{\text{SIM}}, n_i^{\text{IBMF}})$, where n_i^{SIM} is the average stationary abundance of species i obtained from 100 simulations of the dynamics, and n_i^{IBMF} is the prediction of IBMF for the same species. The black dashed line is just the linear function $f(x) = x$. The system has $N = 1024$ species, thus there are 1024 points in the main graphic. The inserted graphic in the top-left corner shows the temporal evolution of four species with small stationary abundances. The corresponding points are marked with the same colors in the main graphic. The horizontal lines are the predictions of IBMF for the same species. The graphic is in semi-log scale. Analogously, the inserted graphic in the bottom-right is done with four species whose abundances are not small. Colored lines show the results of simulations, and the horizontal black lines show the predictions made with IBMF.

325 Appendix C and for a random regular graph with homogeneous interactions, we show that
 326 the exact result for the transition from single-to-multiple equilibria [32] arises naturally from
 327 IBMF. Furthermore, in Section 2.2 of the SM, we recover the stationary solution of Dynamical
 328 Mean Field Theory [20] in the limit of large connectivity at zero temperature.

329 In the presence of thermal noise ($T > 0$), we still have a fast implementation of IBMF.
 330 It is important to note that, for finite temperatures, IBMF is always a factorized ansatz for
 331 the probability density of the abundances. With its stationary solution, we can predict the
 332 final average abundance n_i^{IBMF} for each of the species in a given graph. To illustrate how
 333 this works, Fig. 1 compares each n_i^{IBMF} with the average stationary abundances n_i^{SIM} obtained
 334 from simulations for a specific realisation of a random regular graph in the presence of thermal
 335 noise. The numerical integration of the SDE defining the gLV model in Eq. (1) are performed
 336 by means of the Milstein method [45, 46]. As with the other algorithms, the code is provided
 337 in Ref. [43]. The interactions are asymmetric, *i.e.*, we choose α_{ij} independently of α_{ji} , each
 338 from a Gaussian distribution $\mathcal{N}(0, \sigma)$. As far as we know, this is the first time a theoretical
 339 prediction of this kind has been made for sparse graphs.

340 The main graphic of Fig. 1 shows that IBMF accurately predicts the abundances of the
 341 species that are dominant in the ecosystem. For $n_i > 0.6$, the points $(n_i^{\text{SIM}}, n_i^{\text{IBMF}})$ lie around
 342 the line $f(x) = x$ of perfect agreement. Most species ($\sim 91\%$) are in this group. In the
 343 bottom-right corner of Fig. 1, the inserted graphic shows the temporal evolution of four of
 344 those species observed in a single simulation. The corresponding points in the main graphic

345 are marked using the same colors. The stationary abundances of those species, which were
346 selected at random, oscillate around the corresponding predictions from IBMF (presented in
347 black dashed lines). We observe almost perfect agreement between them.

348 On the other hand, IBMF consistently underestimates the stationary abundances obtained
349 from simulations for species that are closer to extinction, with $n_i < 0.6$. Very few ($\sim 9\%$)
350 species are in this group. The results become clearer after analyzing the inserted graphic in
351 the top-left of Fig. 1. There, we show the temporal evolution of the abundances of four species
352 that are very close to extinction according to IBMF, but whose average stationary abundance
353 from simulations is not as small. The corresponding points in the main graphic are marked
354 using the same colors.

355 The inserted graphic shows that these species in the lower bottom corner of Fig. 1 continu-
356 ously switch between two time-persistent states. After spending some time oscillating around
357 a value of the abundance n_i^{high} that is not small (from the figure we see that $n_i^{\text{high}} > 0.1$),
358 the species suddenly drop down and oscillate for a while around a very small abundance
359 $n_i^{\text{low}} \sim 0.001$. This small n_i^{low} corresponds well to the predictions of IBMF, marked with hor-
360 izontal dashed lines in the graphic. The real stationary abundance measured in simulations
361 by averaging n_i for long times, however, is somewhere in between n_i^{low} and n_i^{high} . Instead
362 of mimicking this intermediate value without a clear physical meaning, IBMF gives only the
363 smallest of the two true values n_i^{low} and n_i^{high} . Although it is only partially right, it definitely
364 allows identifying the species that are going to exhibit this type of dynamics. A similar be-
365 havior has been recently found in fully-connected systems with asymmetric interactions and
366 without thermal noise [47], where the species also switch between two time-persistent states,
367 only one of which is close to extinction. Remarkably, while in Ref. [47] this is observed for
368 every species, in our case we have only a few switching species. This species heterogeneity is
369 probably related to the sparsity of interactions.

370 Both with IBMF and with simulations, we verified that the corresponding stationary abun-
371 dances were independent of the initial conditions (and of the realization of the noise in simu-
372 lations). Remarkably, computing the stationary abundances with IBMF is two orders of magni-
373 tude faster than running the simulations. By averaging over 100 different initial conditions, we
374 get the average wall-clock times of 22.0 ± 0.3 ms for IBMF, and of 1390 ± 60 ms for simulations
375 (ms stands for milliseconds).

376 The results in Fig. 1 clarify the meaning of IBMF and its predictions for a single graph, while
377 also raising new questions on the link between the structure of the interaction graph and the
378 observed non-trivial dynamics. This phenomenon can also depend on the model's parameters.
379 Getting a clear picture will require further work, especially because of the difficulties involved
380 in numerically analyzing the results from simulations in the presence of thermal noise.

381 In this introductory work, we provide a general and clearer picture of how IBMF works in
382 more controlled scenarios. First, Subsections 4.1 and 4.2 compare IBMF with simulations at
383 zero temperature, where the results from the latter are easier to interpret. In Subsection 4.1,
384 we study the phase diagram of the model in graphs with asymmetric interactions in undirected
385 random regular graphs. In Subsection 4.2, we revisit a model discussed in Ref. [39] to predict
386 the probability of observing persistent fluctuations in the dynamics for any given system size.
387 Subsection 4.3 is devoted, instead, to a case where we include thermal noise. Although IBMF
388 with $T > 0$ can be applied to symmetric or asymmetric interactions, we chose to study the
389 model with symmetric and homogeneous interactions. The reason is that, in this case, we can
390 compare the output of IBMF with the results of BP, thereby avoiding the numerical complica-
391 tions associated with studying the phase transitions of the simulated dynamics in the presence
392 of thermal noise. The latter is left for future work.

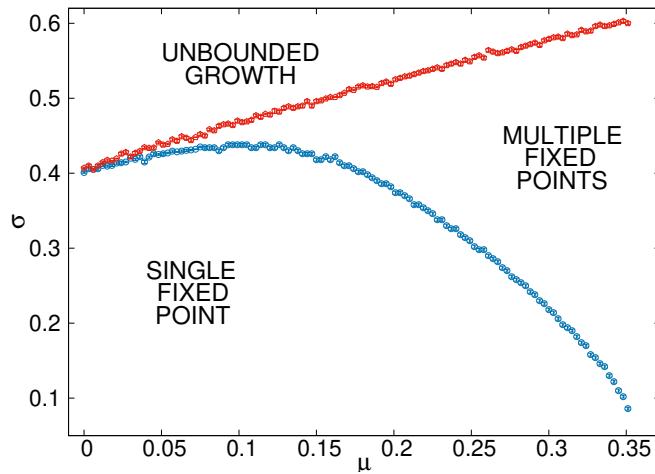


Figure 2: Transitions obtained simulating the gLV model for $T = 0$, asymmetric interactions (α_{ij} is chosen independently of α_{ji}), and $\lambda = 10^{-6}$. For several pairs (μ, σ) , we run the dynamics for 10000 different random regular graphs with connectivity $c = 3$ and size $N = 1024$. The interaction strengths are drawn from the Gaussian distribution: $\alpha_{ij} \sim \mathcal{N}(\mu, \sigma)$. By repeating the simulation 10 times with different initial conditions for each graph, we identify one of three possible outcomes: i) all realizations converge to the same fixed point, ii) all the realizations converge but the fixed points are different, or iii) the abundances in at least one of the simulations grow and diverge for long times. The blue points mark, for each μ , the maximum value of σ at which more than 50% of the samples are of type i). The red points mark, for each μ , the minimum value of σ at which more than 50% of the samples are of type iii).

393 4.1 Undirected graphs with asymmetric interactions

394 In this Subsection, we apply IBMF to undirected graphs with Gaussian noise in the interactions
 395 at zero temperature. We take a random regular graph with a given connectivity c , and draw
 396 every α_{ij} from a Gaussian with mean μ and standard deviation σ ($\alpha_{ij} \sim \mathcal{N}(\mu, \sigma)$). This means
 397 that the coupling in the opposite direction, α_{ji} , is independently drawn from the same distri-
 398 bution. Thus, the interactions are generally asymmetric. The larger the standard deviation σ ,
 399 the bigger the average difference between α_{ij} and α_{ji} .

400 Fig. 2 shows the phase diagram obtained by simulating the gLV dynamics at $T = 0$ and
 401 $\mu > 0$, with $\lambda = 10^{-6}$ (see Eq. (18)). We identify three distinct regions. When σ is small
 402 enough, the species reach a unique fixed point for long times, which corresponds to the single-
 403 fixed-point (SFP) phase. The first transition occurs at $\sigma_{SFP}(\mu)$, and is represented with blue
 404 points in Fig. 2. For $\sigma > \sigma_{SFP}(\mu)$, simulations with different initial conditions will not con-
 405 verge to the same fixed point in most interaction graphs. The unbounded growth (UG) trans-
 406 sition is located at $\sigma_{UG}(\mu) \geq \sigma_{SFP}(\mu)$, and is represented by the red points in Fig. 2. Above
 407 this line, the abundance of at least one species grows and diverges in most simulations.

408 Note that the transition at $\sigma_{SFP}(\mu)$ is not purely between a single-fixed-point phase and a
 409 multiple-fixed-points phase. Although for large μ this is indeed the case, for $\mu \leq 0$ the system
 410 goes directly from reaching a single fixed point to showing unbounded growth (see Appendix
 411 D). In between, we have a crossover between these two types of transitions.

412 The crossover poses a problem in predicting them using IBMF. As said before, any fixed
 413 point of IBMF is also a stationary solution of the exact dynamics at $T = 0$. We need to design
 414 a procedure capable of detecting the presence of different fixed points if they exist. We then

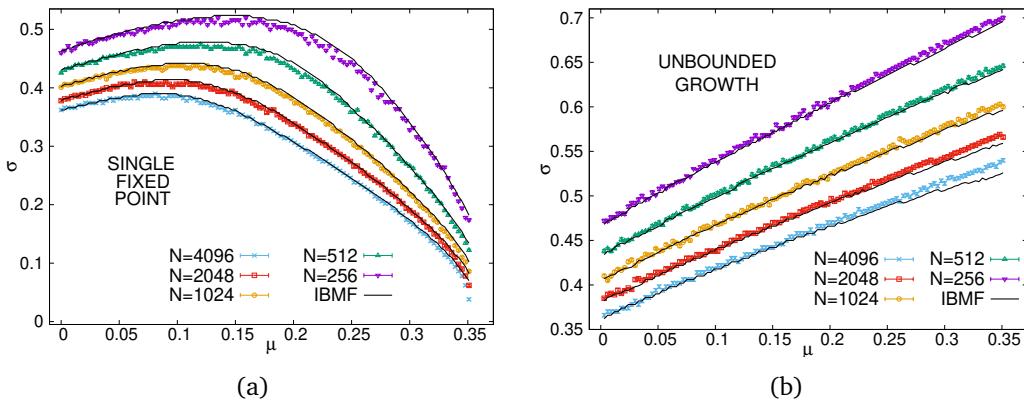


Figure 3: Transitions of the gLV model for different system sizes at $T = 0$. The interactions are asymmetric (α_{ij} is chosen independently of α_{ji}) and defined on random regular graphs with connectivity $c = 3$. Points represent the results of simulations with immigration rate $\lambda = 10^{-6}$, and lines are the predictions made with IBMF for the same sizes. Each transition was determined using 10000 graphs. Simulations are repeated for 10 different initial conditions. IBMF was run with damping (see Appendix E) for 10 different random initial conditions. (a) For each system size N and average strength μ , points (lines) mark the maximum value of σ such that simulations (IBMF) converged to the same fixed point in more than 50% of the interaction graphs. (b) Points (lines) mark the minimum value of σ such that simulations (IBMF) displayed unbounded growth (not converged) more than 50% of the interaction graphs.

415 compare the results when we choose different initial conditions for the average abundances
 416 of IBMF.

417 In Fig. 3, we compare the results of the simulations with the predictions of IBMF. There
 418 are three possible outcomes of IBMF, and they are similar to those obtained from the simula-
 419 tions. For σ small enough, running IBMF in a specific graph many times with different initial
 420 conditions always gives the same fixed point. For σ large enough, two things can happen.
 421 Either IBMF converges to multiple fixed points for a given graph, provided that we change
 422 the initial conditions, or it does not converge at all. Interestingly, for IBMF we also observe
 423 a crossover between these behaviors. Fig. 3a shows the transitions between the single-fixed-
 424 point phase and the region where we either find multiple fixed points or no convergence. The
 425 lines, representing IBMF, accurately reproduce the results from the simulations.

426 Although we know that if IBMF reaches a fixed point, this is also a fixed point of the
 427 exact dynamics, it does not necessarily stop converging when the simulations do. We used
 428 IBMF to reproduce the transition to unbounded growth. Fig. 3b shows a very good agreement
 429 between simulations and IBMF. This also extends to negative values of μ , which correspond to
 430 interactions that are mutualistic on average (see Appendix D).

431 Our results indicate that IBMF is enough to independently describe both aspects of the
 432 crossover: the transition to the multiple-fixed-points phase and the transition to unbounded
 433 growth. Note that the finite-size effects are relevant in both panels of Fig. 3. The transi-
 434 tions obtained with the simulations and with the theory move downward when the number
 435 of species N increases. Nevertheless, IBMF is enough to capture these effects correctly, and its
 436 description is already accurate for finite systems.

437 As mentioned above, to obtain Fig. 3 we drew α_{ij} and α_{ji} independently from Gaussian
 438 distributions for every pair of interacting species. It is important to mention, however, that
 439 the quantitative agreement between IBMF and simulations also holds when α_{ij} and α_{ji} are
 440 correlated, as we show in Appendix F.

441 4.2 Directed graphs

442 As in Ref. [39], we study the emergence of fluctuating abundances n_i in graphs where the
 443 degree follows a Poisson distribution with mean c , and where most interactions are directed.
 444 If the edge $j \rightarrow i$ is present, with high probability the edge in the opposite direction does not
 445 exist. The graph can be seen as representing a directed flow between the species. We say
 446 that species j is *upstream* with respect to species i ($j \rightarrow i$). Conversely, species i is said to be
 447 *downstream* with respect to species j . We then independently draw each associated α_{ij} from
 448 the Gaussian distribution $\mathcal{N}(\mu, \sigma)$.

449 The authors of Ref. [39] carefully studied the case with homogeneous interactions ($\sigma = 0$),
 450 and demonstrated that the zero temperature dynamics in this *toy model* can have two distinct
 451 outcomes at long times. One possibility is that all abundances converge to a fixed stationary
 452 value, with the whole system reaching a fixed point. The second possibility is that not all
 453 species converge, resulting in a system with persistent fluctuations. The latter case can also be
 454 subdivided into two by taking into account the number of fluctuating species, with one regime
 455 with local fluctuations and another with global fluctuations.

456 One of the main objects to measure is the probability that we obtain persistent fluctuations
 457 p_{fluc} after running the dynamics in a graph extracted at random for some average connectivity
 458 c and interaction strength μ . Note that p_{fluc} does not distinguish between local and global
 459 fluctuations.

460 The system undergoes a transition around $\mu = 1$ [39]. For $c < e$, where e is the Euler's
 461 constant, and in the limit when the number of species is large ($N \rightarrow \infty$), one gets $p_{\text{fluc}} = 0$
 462 for $\mu < \mu_c = 1$ and $p_{\text{fluc}} > 0$ for $\mu > \mu_c = 1$. For $c > e$ and also in the limit $N \rightarrow \infty$, the same
 463 transition occurs but is displaced to smaller μ , and the critical $\mu_c \lesssim 1$ slowly decreases when
 464 the connectivity increases.

465 As in the case of asymmetric interactions in a random regular graph (Subsection 4.1), we
 466 numerically demonstrate that, for this toy model, the probability of having persistent fluc-
 467 tuations in the simulations can be well approximated by studying the probability that IBMF
 468 converges. Fig. 4a presents the results obtained in the toy model. In this case, we observe that
 469 adding damping to the iterations is particularly important (see Appendix G). For each graph of
 470 interactions generated with the rules described above, we also have two different outcomes.
 471 Either the abundances converge to a fixed point, or they continue to exhibit persistent fluc-
 472 tuations. As in simulations, the probability of convergence displays a qualitative change in its
 473 behavior around $\mu = 1.0$.

474 The probability P_{nc} that IBMF does not converge corresponds very well to the predictions
 475 made in Ref. [39] for the probability of having fluctuations, represented with dashed lines in
 476 the main graphic of Fig. 4a. When $\mu > 1$, the authors of Ref. [39] conclude that, in a given
 477 graph, the only fluctuating species are located in short cycles of odd length. The species in any
 478 cycle of length $n = 2k + 1$ will fluctuate if two conditions are met: i) all the species that are
 479 upstream of the species in the cycle are extinct, and ii) the cycle is unstable, which happens for
 480 $\mu > 1/\cos(\pi/n)$. The value of μ thus determines the minimum length n_{\min} of the fluctuating
 481 cycles. For details on the computation, see Appendix G in this article or directly read Ref. [39].

482 From top to bottom in the figure, the dashed lines correspond to $\mu = 3.0$ ($n_{\min} = 3$),
 483 $\mu = 1.5$ ($n_{\min} = 5$), and $\mu = 1.1$ ($n_{\min} = 9$). When n is large, the values of $\mu_c(n) = 1/\cos(\pi/n)$
 484 are close to each other and to $\mu = 1$, and it is numerically harder to distinguish between two
 485 values of μ . However, in Fig. 4a, IBMF results for $\mu = 1.1$ (orange points) are not far apart
 486 from the corresponding dashed line.

487 Below $\mu = 1.0$, the results in Fig. 4a are qualitatively different, also in agreement with
 488 Ref. [39]. For $\mu = 0.9$, the probability that IBMF does not converge remains close to zero until
 489 it abruptly grows towards one around $c \sim 3.1$. If we decrease μ just a bit more to $\mu = 0.8$,
 490 we get $P_{\text{nc}} \sim 0$ for all $c < 4$. In Appendix H, we study the dependence of the results on the

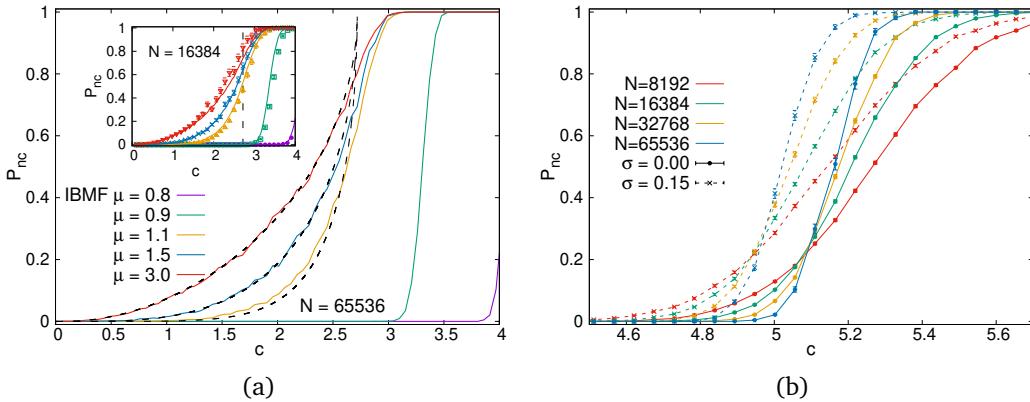


Figure 4: Probability that IBMF does not converge (P_{nc}) in directed graphs. IBMF is run over different realizations of the interaction graph with a given average connectivity c , size N , and interaction strength μ . There is no unique function for all $\mu > 1$, and dashed lines in the top panel are obtained exactly as in Ref. [39] (see the text for clarification). **(a)** Toy model without noise in the interactions ($\sigma = 0$). The colored lines in the main graphic represent the results of IBMF for $N = 65536$ and different values of μ . In the inserted graphic, IBMF (lines) is run instead for systems with $N = 16384$ species, and the points represent the results of simulations of the dynamics for the same system size. The vertical line marks the value $c = e$. The error bars for IBMF predictions are small and are not included in the graphics. **(b)** The interaction strengths are drawn from the distribution $\mathcal{N}(\mu, \sigma)$ with $\mu = 0.7$ and two values of σ . The values of P_{nc} for different values of c are represented using points with their corresponding error bars. Lines are a guide to the eye.

491 system size to conclude that, effectively, the transition for $\mu < 1$ is qualitatively different from
 492 the one for $\mu > 1$.

493 Even for a large system with $N = 65536$ species, we observe that the predictions of IBMF
 494 deviate from the theory of Ref. [39], which is derived in the infinite size limit. In the inserted
 495 graphic of the same Fig. 4a, we show that this is not a particular problem of IBMF. With points,
 496 we represent the results obtained after simulating the dynamics by integrating Eq. (18). They
 497 are in very good agreement with the predictions of IBMF (lines), also above the critical con-
 498 nectivity $c = e$, which is marked with a vertical dashed line. As in Section 4.1, IBMF allows us
 499 to capture the finite-size effects in simulations, which is an advantage with respect to previous
 500 theoretical predictions. It is important to note that, even when run in single graphs, obtaining
 501 results from IBMF is computationally much simpler than performing actual simulations. Re-
 502 markably, the average runtime of IBMF for different values of μ and c is consistently 10 times
 503 faster than the runtime of simulations, under equivalent conditions and for the same system
 504 size (see Appendix I).

505 Moreover, our IBMF equations are not restricted to this toy model, and some variations can
 506 also be studied. The authors of Ref. [39] try a modification to include noise in the interaction
 507 strengths. They take α_{ij} from the Gaussian distribution $\mathcal{N}(\mu, \sigma)$, again with probability c/N ,
 508 and zero otherwise. According to the text of that article, for $\sigma = 0$ and $\mu = 0.7$ the transition
 509 occurs around $c \sim 5.3$, while for $\sigma = 0.15$ and $\mu = 0.7$ they get $c \sim 4.9$.

510 Fig. 4b shows the probability that IBMF does not converge when the interactions are drawn
 511 using this modified toy model. We include results for $\mu = 0.7$ and two values of σ . With
 512 $\sigma = 0$ (continuous lines), we recover the original toy model and use it as a reference. On the
 513 other hand, setting $\sigma = 0.15$ (dashed lines) adds noise to the interaction strengths, and the
 514 probability that IBMF does not converge increases.

515 In both cases, we run IBMF for different system sizes. The curves show crossing points at
 516 $c \sim 5.1$ and $c \sim 4.95$, for $\sigma = 0$ and $\sigma = 0.15$, respectively. When the number of species N
 517 increases, the probability P_{nc} has a sharper transition between $P_{nc} \sim 0$ to the left and $P_{nc} \sim 1$
 518 to the right of the crossing point. If this trend continues as expected when the number of
 519 species is large, the values $c \sim 5.1$ and $c \sim 4.95$ are reliable estimates of the location of the
 520 transition between a single equilibrium phase and the phase with global fluctuations. These
 521 results are indeed close to the ones mentioned in the text of Ref. [39]. The small discrepancies
 522 should be investigated further by performing the same analysis with data from simulations of
 523 the dynamics, which is technically more difficult because simulations take more computational
 524 time (see Appendix I)

525 4.3 Including thermal noise

526 Subsections 4.1 and 4.2 show that at $T = 0$ the results of IBMF are in good agreement with
 527 simulations. When thermal noise is present ($T > 0$), the fixed points of IBMF can still be
 528 efficiently retrieved using Eqs. (9), (10), and (11), and taking advantage of the fact that
 529 these integrals can be expressed in terms of Kummer's confluent hypergeometric functions
 530 (see Section 3 in the SM). However, in this case, IBMF is an approximation that considers the
 531 probability distribution of the system to be factorized as $P(\vec{n}) = \prod_i P(n_i)$. Its predictions,
 532 accurate for low temperatures, are expected to fail when T is high enough.

533 In this section, we study how the results of IBMF depend on the temperature in the gLV
 534 model defined over random regular graphs with symmetric interactions. This is a controlled
 535 scenario where we have a reliable theoretical technique to compare with, which is BP. We
 536 further simplify the setting by eliminating any noise in the interaction strength. Provided that
 537 (i, j) is an edge in the random regular graph, we set $\alpha_{ij} = \alpha_{ji} = \mu$, which is equivalent to
 538 drawing all α_{ij} from the trivial Gaussian $\mathcal{N}(\mu, 0)$. A first version of the phase diagram T vs.
 539 μ is available in Ref. [19], where BP is run using discretized abundances. Interestingly, the
 540 authors of Ref. [19] note a re-entrant transition in their phase diagram: for low temperatures,
 541 the critical value of μ decreases when T increases, until it reaches a minimum. Then, it returns
 542 and starts increasing as the temperature continues to rise.

543 To compare BP with IBMF, which works directly with continuous variables, we use our new
 544 implementation of BP with continuous variables. After obtaining the messages by iterating
 545 Eq. (13) until convergence, we use Eqs. (14) and (15) to get the *true* marginals. The reader
 546 can find details about our implementation in Section 4 of the SM. From Eq. (14), we see that
 547 the stationary distribution for a single species has the form $P_{BP}(n_i) = n_i^{\beta\lambda-1} \tilde{P}_{BP}(n_i)/Z_i$, where:

$$\tilde{P}_{BP}(n_i) = \frac{1}{\tilde{Z}_i} \exp \left\{ -\frac{\beta}{2} (n_i^2 - 2n_i) \right\} \prod_{k \in \partial i^-} \int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k} \quad (19)$$

548 can be interpreted as an auxiliary probability distribution if \tilde{Z}_i is taken as the proper normalization
 549 factor. The messages $\eta_{k \rightarrow i}(n_k)$, necessary to compute $\tilde{P}_{BP}(n_i)$, are the fixed point solution
 550 of Eq. (13).

551 Since the abundance n_i must be positive, the distribution in Eq. (19) is defined only for
 552 $n_i \geq 0$. Whenever interactions are absent ($\alpha_{ik} = \mu = 0$ for all i and k), $\tilde{P}_{BP}(n_i)$ becomes a
 553 truncated Gaussian centered at $n_i = 1$. Letting μ increase away from zero, one gets a distribution
 554 $\tilde{P}_{BP}(n_i)$ that is no longer strictly a truncated Gaussian. Moreover, when the interactions
 555 are homogeneous (all $\alpha_{ik} = \mu$), BP converges to the same $\tilde{P}_{BP}(n_i)$ for all sites i . This index
 556 can be dropped, and the average distribution $\tilde{P}_{BP}(n) = \sum_i \tilde{P}_{BP}(n_i)/N$ is equal to $\tilde{P}_{BP}(n_i)$ itself.

557 Figs. 5a, 5b, and 5c show that, even with non-negligible thermal noise and non-zero values
 558 of μ , the distribution $\tilde{P}_{BP}(n)$ obtained with BP is not far from Gaussian. These three distribu-
 559 tions are obtained for the same temperature $T = 0.03$, using $\mu = 0.04$, $\mu = 0.06$, and $\mu = 0.12$,

560 respectively. While $\tilde{P}_{BP}(n)$ is represented with colored points in the main graphics, the continuous black lines are the result of fitting truncated Gaussians $\tilde{P}_G(n)$ to the data. The inserted 561 graphics show the relative deviation Δ_{BP-G} of the points with respect to the fits: 562

$$\Delta_{BP-G} = \frac{\tilde{P}_{BP}(n) - \tilde{P}_G(n)}{\tilde{P}_G(n)} . \quad (20)$$

563 For $\mu = 0.04$ and $\mu = 0.06$ (Figs. 5a and 5b, respectively), the relative deviation is small for 564 all the values of the abundance. In the corresponding main graphics, the points are indeed very 565 close to the fits. The most significant difference occurs at the tails of the distribution. Close 566 to $n = 0$, we get that $\tilde{P}_{BP}(n)$ is below the truncated Gaussian, while for n large it is above. 567 In other words, the presence of thermal noise and interactions tilts the true distribution and 568 gives slightly more weight to large abundances. The ecosystem is a bit more favorable for the 569 species to thrive.

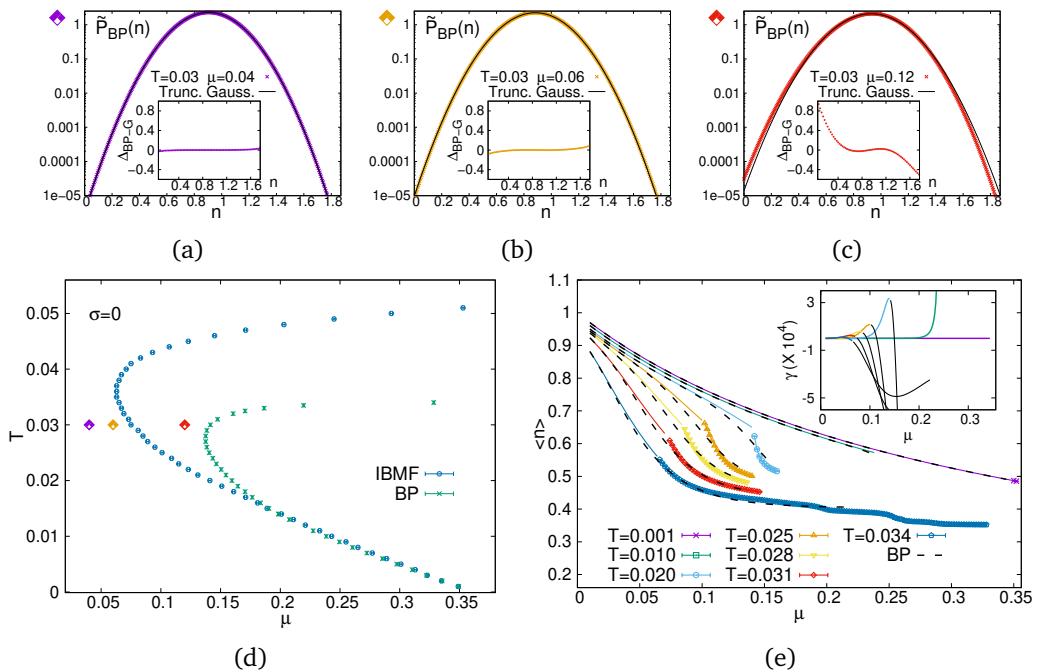


Figure 5: Predictions of IBMF and BP with $T > 0$ for symmetric and homogeneous interactions ($\sigma = 0$) in random regular graphs with connectivity $c = 3$. The immigration rate is $\lambda = 10^{-6}$. **(a), (b), and (c)** Distributions $\tilde{P}_{BP}(n)$ obtained with BP (see Eq. (19)) for $\mu = 0.04, 0.06, 0.12$, at temperature $T = 0.03$, and with system size $N = 128$. Black continuous lines are fits to the points via truncated Gaussians. The inserted graphics show the relative deviation Δ_{BP-G} of the points with respect to the fits (Eq. (20)). **(d)** For each temperature T , we mark the maximum value of μ where BP converges (green points). We also run IBMF on 10000 graphs, each with 10 different initial conditions, and mark the maximum value of μ where it converges to the same fixed point in at least 50% of the graphs (blue points). System sizes are $N = 128$ and $N = 1024$ for BP and IBMF, respectively. **(e)** Average abundance as a function of μ . The black dashed lines are obtained with BP where this algorithm converges. The continuous colored lines are obtained with IBMF where it converges to a single fixed point. The colored points represent the average over several IBMF's fixed points, sampled using 10000 distinct initial conditions. The inserted graphic shows the skewness γ of the distribution $\hat{P}_{BP}(n)$. We use colored lines in the region where IBMF finds a single equilibrium point, and continuous black lines elsewhere.

570 The difference with respect to a Gaussian increases with μ and is more evident at $\mu = 0.12$
 571 (Fig. 5c). There, the scenario has been reversed. The main and inserted graphics show that
 572 now the true distribution is above the Gaussian for $n \sim 0$, and is below for large n . The non-
 573 Gaussianity of the distribution gives more weight to species that are close to extinction. In
 574 terms of the model, this corresponds to an ecosystem that can support fewer species. Even-
 575 tually, the situation is no longer compatible with the existence of a fixed point of BP, and this
 576 algorithm stops converging around $\mu = 0.1405(5)$. In summary, we observe two distinct types
 577 of non-Gaussianity in BP at $T = 0.03$: one that is tilted towards larger abundances, which
 578 occurs at small values of μ , and another one tilted towards extinctions, which occurs close to
 579 the point where BP stops converging.

580 In the phase diagram in Fig. 5d, the points where BP stops converging at each temper-
 581 ature are marked with green crosses. The results confirm the re-entrant transition detected
 582 in Ref. [19]. When the temperature goes to zero, one recovers the exact result $\mu \approx 0.354$ of
 583 Ref. [32] (see Appendix J) for the transition from the single equilibrium phase to the phase with
 584 multiple equilibria. The blue circles, on the other hand, represent the prediction made with
 585 IBMF for the same transition. We run this approximation for several random regular graphs,
 586 in each case using different initial conditions for the average abundances. To the left of the
 587 circles, different runs of IBMF converge to the same average abundances in at least 50% of the
 588 graphs. To the right, we find instead distinct stationary values of the average abundances just
 589 by changing the initial conditions in at least 50% of the graphs. IBMF reproduces very closely
 590 the results of BP for low temperatures and, as expected, deviates from it for high temperatures.
 591 However, it maintains qualitative agreement with BP, also displaying a re-entrant transition.

592 It is also important to mention that the computational cost of running IBMF is considerably
 593 lower than the cost of BP. When an extensive use of computational resources is required, as
 594 in Fig. 5d, this advantage of IBMF plays an important role and one can use it to study larger
 595 systems. Nevertheless, we checked that the transition points presented in this figure do not
 596 change when the system size is increased, neither for IBMF nor for BP.

597 Since IBMF is a factorized *ansatz* for the stationary distribution $P_\infty(\vec{n}) = \prod_i P_\infty(n_i)$, and
 598 each of the factors $P_\infty(n_i)$ is a Gaussian multiplied by the factor $n_i^{\beta\lambda-1}$, it can be used to
 599 shed light on the discussion about the non-Gaussianity of BP's solution. The latter, illustrated
 600 here in Figs. 5a, 5b, and 5c, has already been noticed in Ref. [19]. To study it in more detail,
 601 we computed the stationary average abundance $\langle n \rangle$ with both techniques, IBMF and BP, for
 602 different temperatures. The black dashed lines in Fig. 5e are obtained with BP in the range of
 603 values of μ where this algorithm converges. In turn, the colored continuous lines represent the
 604 prediction of IBMF when it converges to a single fixed point. However, this is not the only way
 605 to estimate the average abundance with IBMF. Even in the region where the fixed point is not
 606 unique, we compute $\langle n \rangle$ by averaging over the different fixed points of IBMF (colored points
 607 in the figure). Interestingly, the predictions of IBMF closely follow the dashed lines of BP, also
 608 in the region where the fixed point of IBMF is not unique. In other words, this approximation
 609 describes the average abundance well at all temperatures under consideration.

610 Furthermore, IBMF's transition, marked with blue circles in Fig. 5d, is related to the type of
 611 non-Gaussianity displayed by BP. In the inserted graphic of Fig. 5e, we present the skewness γ of
 612 the distribution $\tilde{P}_{BP}(n)$ (see Eq. (19)) to quantify this non-Gaussianity. When the distribution
 613 is tilted towards large abundances, we get $\gamma > 0$. On the other hand, when $\tilde{P}_{BP}(n)$ is tilted
 614 towards extinctions, we get $\gamma < 0$.

615 We use colored lines in the inserted graphic to represent the skewness of $\tilde{P}_{BP}(n)$ in the
 616 region where IBMF converges to a single fixed point. Black continuous lines are used, in turn,
 617 in the region where IBMF converges to different fixed points. The results indicate that around
 618 the same value of μ where BP starts developing a distribution $\tilde{P}_{BP}(n)$ that is tilted towards
 619 extinctions, IBMF stops converging to a single fixed point.

620 5 Conclusions

621 In conclusion, our local closures for the global Fokker-Planck equations, and in particular
622 the Individual Based Mean Field (IBMF) method, provide a powerful and versatile tool for
623 analyzing the stationary states of the generalized Lotka-Volterra model on sparse graphs. We
624 have demonstrated its efficacy across a range of scenarios, from asymmetric interactions on
625 undirected graphs to directed networks and systems with thermal noise. IBMF faces its greatest
626 challenge in the symmetric case, where its assumption of species independence breaks down
627 due to correlations. These correlations are precisely what the Belief Propagation (BP) method
628 captures, but BP is restricted to symmetric interactions. This highlights a key trade-off: BP
629 offers higher accuracy for symmetric networks, while IBMF provides a versatile and effective
630 solution for the more general and common case of asymmetric couplings.

631 Our analysis reveals that the phase diagram for sparse, asymmetric interactions (Fig. 2) is
632 qualitatively distinct from its symmetric counterpart; notably, we observe a transition towards
633 a multiple-equilibria phase at a positive σ even for $\mu \gtrsim 0$, whereas symmetric interactions
634 always lead to a single fixed point at small μ [19]. This sparse topology also induces a different
635 stability landscape compared to fully-connected systems [5], with a transition occurring at a
636 positive μ for $\sigma = 0$, a phenomenon linked to the intrinsic instability of sparse competitive
637 loops identified in [32].

638 The observed finite-size effects in the transition lines are correctly captured by IBMF. Notably,
639 the transition lines to both multiple fixed points and unbounded growth progressively
640 shift toward lower heterogeneity σ as the system size N increases. This suggests that the
641 sparse ecological models under consideration may be intrinsically unstable in the infinite-
642 species limit whenever heterogeneity is finite. This observation is consistent with previous
643 RMT results [17, 18, 48], which show that, in general, sparse random matrices remain stable
644 in the large size limit only if the interactions are purely antagonistic or unidirectional. How-
645 ever, for finite sizes we do observe a region where there is a single stable fixed point, a fact
646 that is accurately predicted by our new method.

647 Looking forward to new applications, the computational efficiency and general applica-
648 bility of IBMF make it a promising candidate for predicting stable states in real ecological
649 networks, when direct data on interaction strengths is available [49–52] or, in its absence,
650 when one has access to the relevant parameters from which the interaction strengths can be
651 drawn [41, 53]. Furthermore, the methodological framework is not restricted to ecology and
652 could be fruitfully generalized to analyze a wide class of models in economics, evolutionary
653 game theory, and other fields defined on complex, sparse, and even asymmetric interaction
654 networks.

655 6 Acknowledgments

656 We thank Giacomo Gradenigo and Chiara Cammarota for early discussions on this problem.
657 Our special gratitude goes to Mattia Tarabolo, Roberto Mulet, and Luca Dall'Asta, with whom
658 we maintained a productive scientific dialogue throughout the writing process, and who gener-
659 ously contributed their own novel insights. This project has been supported by the FIS 1 fund-
660 ing scheme (SMaC - Statistical Mechanics and Complexity) from Italian MUR (Ministry of Uni-
661 versity and Research) and from the project MIUR-PRIN2022, “Emergent Dynamical Patterns of
662 Disordered Systems with Applications to Natural Communities”, code 2022WPHMXK, funded
663 by European Union — Next Generation EU, Mission 4 Component 1 CUP: B53D23005310001.
664 This study was conducted using the DARIOH HPC cluster at CNR-NANOTEC in Lecce, funded
665 by the “MUR PON Ricerca e Innovazione 2014-2020” project, code PIR01 00022.

666 A From Ito's rule to the Fokker-Planck equation

667 Let $A(\vec{n})$ be a generic observable that depends on the whole system $\vec{n} = (n_1, \dots, n_N)$ at time
 668 t , but does not explicitly depend on time. For example, $A(\vec{n})$ could be the average abundance
 669 $A(\vec{n}) = \sum_i n_i(t)/N$. Following Ito's rule:

$$\frac{d}{dt} \mathbb{E}[A(\vec{n})] = \mathbb{E} \left[\sum_{i=1}^N \frac{\partial A(\vec{n})}{\partial n_i} \frac{dn_i}{dt} \right] + T \mathbb{E} \left[\sum_{i=1}^N \frac{\partial^2 A(\vec{n})}{\partial n_i^2} n_i \right], \quad (21)$$

670 where $\mathbb{E}[\cdot]$ is the average over the probability density $P_t(\vec{n})$ of having abundances \vec{n} at time t ,
 671 which is defined in a stochastic process where each trajectory is given by a specific realization
 672 of the thermal noise and a specific choice for the initial conditions. In other words, $\mathbb{E}[\cdot]$ is an
 673 average over the thermal noise and the initial conditions. Using this definition and Eq. (1) for
 674 dn_i/dt , one gets:

$$\begin{aligned} \int_0^\infty d\vec{n} A(\vec{n}) \frac{\partial}{\partial t} P_t(\vec{n}) &= \sum_{i=1}^N \int_0^\infty d\vec{n} P_t(\vec{n}) \left[n_i (1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \lambda \right] \frac{\partial A(\vec{n})}{\partial n_i} + \\ &+ T \sum_{i=1}^N \int_0^\infty d\vec{n} P_t(\vec{n}) n_i \frac{\partial^2 A(\vec{n})}{\partial n_i^2}. \end{aligned} \quad (22)$$

675 To obtain Eq. (22) one needs to use the fact that $\langle \xi_i(t) \rangle = 0$, where $\xi_i(t)$ is the Gaussian
 676 noise that appears in Eq. (1). Integrating by parts and using that, to have finite moments,
 677 $P_t(\vec{n}) \rightarrow 0$ faster than n_i^{-2} when $n_i \rightarrow \infty$, leads to:

$$\begin{aligned} \int_0^\infty d\vec{n} A(\vec{n}) \frac{\partial}{\partial t} P_t(\vec{n}) &= - \sum_{i=1}^N \int_0^\infty d\vec{n} A(\vec{n}) \frac{\partial}{\partial n_i} \left\{ \left[n_i (1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \lambda \right] P_t(\vec{n}) \right\} + \\ &+ T \sum_{i=1}^N \int_0^\infty d\vec{n} A(\vec{n}) \frac{\partial^2}{\partial n_i^2} \left\{ n_i P_t(\vec{n}) \right\} + \sum_{i=1}^N (T - \lambda) \int_0^\infty \left[\prod_{k \neq i} dn_k \right] \lim_{n_i \rightarrow 0^+} [A(\vec{n}) P_t(\vec{n})]. \end{aligned} \quad (23)$$

678 In the usual diffusion problems where one follows this procedure, the variables are defined
 679 in the whole open space $x \in (-\infty, \infty)$. The property $\lim_{x \rightarrow \pm\infty} P(x) = 0$ kills all the terms
 680 that come from evaluating the integrands in $x \rightarrow \pm\infty$. However, now one has a variable n_i
 681 defined in $[0, +\infty)$, and $\lim_{n_i \rightarrow 0^+} P_t(\vec{n}) \neq 0$ in general. The last term in Eq. (23) highlights the
 682 role of the conditions at the border $n_i = 0$, and this is relevant to find the right local closures.

683 To continue from here, however, we should impose the proper boundary conditions for
 684 this Fokker-Planck equation. To guarantee that $P_t(\vec{n})$ keeps properly normalized, the current
 685 of probability density must be zero at every border $n_i = 0$, using what is called a reflecting
 686 boundary condition [40]. We must then enforce the relations $(T - \lambda) \lim_{n_i \rightarrow 0^+} P_t(n_i) = 0$ for all
 687 species i , where $P_t(n_i) = \int_0^\infty [\prod_{k \neq i} dn_k] P_t(\vec{n})$ is the single-site probability for the abundance
 688 of species i . Therefore, the last term in Eq. (23) vanishes. In other words, we can neglect the
 689 surface terms that arise after integrating by parts.

690 Since $A(\vec{n})$ is a generic function, the only way to fulfill this relation is to have

$$\frac{\partial P_t(\vec{n})}{\partial t} = T \sum_{i=1}^N \frac{\partial^2}{\partial n_i^2} \left\{ n_i P_t(\vec{n}) \right\} - \sum_{i=1}^N \frac{\partial}{\partial n_i} \left\{ \left[n_i (1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} n_j) + \lambda \right] P_t(\vec{n}) \right\}, \quad (24)$$

691 which is the right Fokker-Planck equation, valid for any graph $G(V, E)$.

692 B Solution for the isolated variable

693 For the rest of this article, it will be useful to obtain the stationary solution of Eq. (2) in the
 694 particular case where there is only one variable n . The equation is then:

$$\frac{\partial}{\partial t} P_t(n) = T \frac{\partial^2}{\partial n^2} \{nP_t(n)\} - \frac{\partial}{\partial n} \{[n(1-n) + \lambda]P_t(n)\}. \quad (25)$$

695 In the steady state:

$$0 = T \frac{\partial^2 \{nP_\infty(n)\}}{\partial n^2} - \frac{\partial}{\partial n} \{[n(1-n) + \lambda]P_\infty(n)\}. \quad (26)$$

696 Integrating over n and remembering that $\lim_{n \rightarrow \infty} n^2 P_\infty(n) = 0$, the integration constant
 697 goes away. We get:

$$\frac{d}{dn} P_\infty(n) = \frac{1-n}{T} P_\infty(n) + \left(\frac{\lambda}{T} - 1\right) \frac{P_\infty(n)}{n}. \quad (27)$$

698 Solving this differential equation with separable variables is simple. The result is:

$$P_\infty(n) = \frac{1}{Z} n^{\beta \lambda - 1} \exp \left\{ -\frac{\beta}{2} (n-1)^2 \right\}, \quad (28)$$

699 where Z is a normalization constant and $\beta \equiv 1/T$.

700 Once one has the solution (Eq. (28)) to the Fokker-Planck equation for a single species
 701 (Eq. (25)), it is not hard to see what will be the solution for IBMF in the stationary regime. In
 702 the open space $n_i \in (0, +\infty)$, the equation to fulfill is:

$$0 = -\frac{\partial}{\partial n_i} \left\{ [n_i(1-n_i) - \sum_{j \in \partial i^-} \alpha_{ij} m_j(\infty)] P_\infty(n_i) \right\} + T \frac{\partial^2}{\partial n_i^2} \{n_i P_\infty(n_i)\}. \quad (29)$$

703 This is essentially the same Eq. (26), where one substitutes $1-n_i$ by the mean-field ex-
 704 pression $1-n_i - \sum_{j \in \partial i^-} \alpha_{ij} m_j(\infty)$. Thus, if the solution to the single variable was Eq. (28),
 705 the solution to Eq. (29) is:

$$P_\infty(n_i) = \frac{1}{Z_i} n_i^{\beta \lambda - 1} \exp \left\{ -\frac{\beta}{2} (n_i - M_i)^2 \right\}, \quad (30)$$

706 where $M_i = 1 - \sum_{j \in \partial i^-} \alpha_{ij} m_j(\infty)$.

707 The stationary solution in Eqs. (28) and (30) are normalizable functions for any $\lambda > 0$.
 708 Therefore, they give valid distributions $P_\infty(n_i)$ that solves the Fokker-Planck equation when
 709 $t \rightarrow \infty$ for any $\lambda > 0$. Nevertheless, we identify two distinct qualitative behaviors of $P_\infty(n_i)$,
 710 depending on the value of the immigration rate λ . When $\lambda > T$, we get that the probability
 711 density is zero at the border ($\lim_{n_i \rightarrow 0^+} P_\infty(n_i) = 0$), which is consistent with the boundary
 712 conditions imposed by us while deriving the Fokker-Planck equation. In this case, the immi-
 713 gration effectively counteracts the thermic noise and the species are strongly repelled from
 714 extinction ($n_i = 0$). When $0 < \lambda < T$, the stationary distribution $P_\infty(n_i)$ diverges at $n_i = 0$.
 715 This contradicts the boundary condition $(T - \lambda) \lim_{n_i \rightarrow 0^+} P_t(n_i) = 0$.

716 However, the mathematical inconsistency in the definition of the Fokker-Planck problem for
 717 $0 < \lambda < T$ does not impede $P_\infty(n_i)$ from being a valid solution of Eq. (26) also in this interval.

718 We can still give a physical interpretation to this case: when the effect of the immigration λ
 719 is small, a finite fraction of the species goes nearly extinct. Indeed, our simulations in Fig. 1,
 720 for a system of N interacting species in a random graph, remain stable even for $\lambda \ll T$. We
 721 observe, both from simulations and from IBMF, how a fraction of species spend long times
 722 close to extinction.

723 C Limits of IBMF with parallel updates at zero temperature

724 Eq. (17), which is the zero-temperature limit of IBMF, can be straightforwardly recast to matrix
 725 form as:

$$\vec{n} = \vec{1} - \hat{J} \cdot \vec{n}, \quad (31)$$

726 where $\vec{n} = (n_1, \dots, n_N)$ is the vector of species abundances, $\vec{1}$ is a vector full of ones, and \hat{J} is the
 727 interaction matrix, whose elements are $J_{ij} = \alpha_{ij}$. In the case with homogeneous interactions,
 728 we have that \hat{J} can be expressed in a simple way in terms of the adjacency matrix \hat{A} associated
 729 with the interaction graph. By its definition, the element A_{ij} of this matrix is zero if $\alpha_{ij} = 0$,
 730 and is one otherwise. Thus, when all nonzero α_{ij} are equal to the same number μ , Eq. (31)
 731 transforms into $\vec{n} = \vec{1} - \mu \hat{A} \cdot \vec{n}$.

732 Similarly to Ref. [32], we can use the properties of \hat{A} to derive the exact single-to-multiple-
 733 equilibria transition in the case of random regular graphs with homogeneous interactions. The
 734 same equation can be rewritten as $(\mathbb{I} + \mu \hat{A}) \cdot \vec{n} = \vec{1}$, where \mathbb{I} is the identity matrix. Then, the
 735 solution is obtained after a matrix inversion by making $\vec{n}^* = (\mathbb{I} + \mu \hat{A})^{-1} \cdot \vec{1}$. For the matrix
 736 $\mathbb{I} + \mu \hat{A}$ to be invertible, all its eigenvalues must be nonzero. When A is the adjacency matrix of
 737 a large random regular graph, we can use the fact that its smallest eigenvalue must be close
 738 to $\lambda_{\min}^A = -2\sqrt{c-1}$ [54]. Then, the smallest eigenvalue of $\mathbb{I} + \mu \hat{A}$ is $\lambda_{\min} = 1 - 2\mu\sqrt{c-1}$.
 739 To compute the fixed point \vec{n}^* , or equivalently, for the matrix $\mathbb{I} + \mu \hat{A}$ to be invertible, one
 740 should verify the relation $\lambda_{\min} > 0$. In other words, the interaction strength μ must satisfy the
 741 relation:

$$\mu < \mu^* \equiv \frac{1}{2\sqrt{c-1}}, \quad (32)$$

742 which is the same result presented in Ref. [32]. Since the eigenvalues of \hat{A} cover the interval
 743 $\lambda^A \in [-2\sqrt{c-1}, 2\sqrt{c-1}]$, for $\mu \geq \mu^*$ one could always find an eigenvalue in this bulk of
 744 the distribution such that $1 + \lambda_{\min}^A = 0$, and the matrix will not be invertible for $\mu \geq \mu^*$.
 745 Furthermore, given the homogeneity of the interactions, Eq. (17) must admit the solution:

$$n = \frac{1}{1 + c \mu}, \quad (33)$$

746 which is also presented in Ref. [32] as the unique fixed point for $\mu < \mu^*$.

747 It is also interesting to understand what would happen if one uses Eq. (17) in an iterative
 748 way by setting $\vec{n}_{k+1} = \vec{1} - \hat{J} \cdot \vec{n}_k$, choosing a given initial \vec{n}_0 . This, simply put, is a parallel
 749 update that gives a full vector \vec{n}_{k+1} using information about the previous vector \vec{n}_k . The result
 750 of iterating k times can be expressed as:

$$\vec{n}_k = \left(\vec{1} - \hat{J} \cdot \left(\vec{1} - \hat{J} \cdot \left(\vec{1} - \hat{J} \cdot \dots \cdot \left(\vec{1} - \hat{J} \cdot \vec{n}_0 \right) \right) \right) \right) \quad (34)$$

$$\vec{n}_k = (-\hat{J})^k \cdot \vec{n}_0 + \sum_{i=0}^{k-1} (-\hat{J})^i \cdot \vec{1}. \quad (35)$$

751 In Eq. (35), the power $(-\hat{J})^i$ must be interpreted as the product of the matrix \hat{J} with itself
 752 i times, which returns a matrix. Now, we can use the expression for the geometric sum of
 753 matrices to explicitly write the result of the sum on the right-hand side and get:

$$\vec{n}_k = (-\hat{J})^k \cdot \vec{n}_0 + (\mathbb{I} + \hat{J})^{-1} \cdot ((\mathbb{I} - (-\hat{J})^k) \cdot \vec{1})$$

$$\vec{n}_k = (\mathbb{I} + \hat{J})^{-1} \cdot \vec{1} + (-\hat{J})^k \cdot (\vec{n}_0 - (\mathbb{I} + \hat{J})^{-1} \cdot \vec{1}). \quad (36)$$

754 This expression will converge to the right solution if $\lim_{k \rightarrow \infty} (-\hat{J})^k = \hat{0}$, or, equivalently,
 755 if the eigenvalue of \hat{J} with the maximum absolute value $|\lambda^J|_{\max}$ is smaller than one. At this
 756 point, it is important to note that this conclusion is independent on the specific interaction
 757 graph. The convergence of IBMF with parallel updates at zero temperature can be determined
 758 by computing the eigenvalue of \hat{J} with the largest absolute value.

759 Unfortunately, the maximum eigenvalue associated to the adjacency matrix of a random
 760 regular graph is not inside the bulk $[-2\sqrt{c-1}, 2\sqrt{c-1}]$. There is an eigenvalue outside of
 761 the bulk and its value is $\lambda_{\max}^{\hat{A}} = c$. Therefore, $|\lambda^J|_{\max} = c\mu$ and the iterations will not converge
 762 for any $\mu \geq \mu^{\text{par}} = 1/c$. As μ^{par} is smaller than $\mu^* = 1/(2\sqrt{c-1})$ for any $c > 2$, in these cases
 763 there will be an interval $\mu \in [\mu^{\text{par}}, \mu^*]$ where the parallel iterations will not converge to the
 764 right solution, even if that solution exists.

765 To overcome this problem, the results in the main text are obtained using a sequential
 766 update. In practice, this means that each n_i^k is updated to n_i^{k+1} asynchronously. We choose a
 767 random order of the species, and one by one we apply Eq. (17). When n_i is recomputed, the
 768 new value is ready to be used in the next update. It is important to mention that the problem
 769 with parallel updates is already known and has been solved using sequential updates in other
 770 contexts [55].

771 D Unbounded growth for asymmetric mutualistic interactions

772 Fig. 2 in Subsection 4.1 shows that, in random regular graphs with Gaussian asymmetric
 773 interactions, the phase with multiple equilibria exists only for positive values of the average
 774 interaction strength μ . A positive value of μ corresponds to ecosystems in which most species
 775 develop competitive interactions. On the other hand, when μ is negative the interactions
 776 are mostly mutualistic (species abundances grow together). In this case, we have only one
 777 transition line $\sigma_c(\mu)$ that separates two phases. For $\sigma < \sigma_c(\mu)$ the abundances converge to a
 778 single equilibrium state, while for $\sigma > \sigma_c(\mu)$ at least one abundance grows indefinitely and
 779 diverges for long times. The latter is called unbounded growth.

780 The results in the right panel of Fig. 3 are easily extended to $\mu < 0$. Fig. 6 shows that IBMF
 781 (lines) maintains a good agreement with the results of the simulations (points) for random
 782 regular graphs with connectivity $c = 3$. For $\mu < -1/c \approx -0.333$ the abundances diverge for
 783 any value of σ , and the transition line goes to $\sigma(-1/3) = 0$. This is consistent with the fact
 784 that at $\sigma = 0$ the interaction strengths α_{ij} are homogeneous and all equal to μ . The solution
 785 in the single equilibria phase is then $n_i = 1/(1 + c\mu)$ for all species (for $i = 1, \dots, N$). Given
 786 that n_i must be non-negative, when $\mu < -1/c$ we do not have a feasible solution anymore and
 787 the abundances diverge in any simulation.

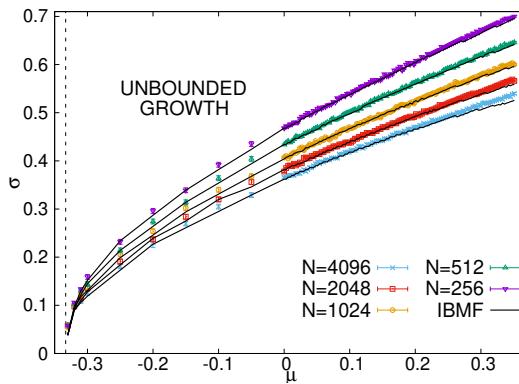


Figure 6: Transitions of the Generalized Lotka-Volterra model for different system sizes at $T = 0$. The interactions are asymmetric (α_{ij} is chosen independently of α_{ji}) and defined on random regular graphs with connectivity $c = 3$. Points represent the results of simulations with immigration rate $\lambda = 10^{-6}$, and lines are the predictions made with IBMF for the same sizes. Each transition was determined using 10000 graphs. Simulations are repeated for 10 different initial conditions. IBMF was run with sequential updates for 10 different random initial conditions. Points (lines) mark the minimum value of σ such that simulations (IBMF) displayed unbounded growth (not converged) in more than 50% of the interaction graphs. The vertical line marks the limit value $\mu = -1/c \approx -0.333$

788 E Use of damping to improve convergence

789 As usual in the scenario of iterating equations until the quantities reach a fixed point, some
 790 standard tricks can be used to help IBMF converge. Perhaps the most common mechanism is
 791 to add damping to the iterations. Given the update rule $m_i = f_i(\{m_k\}_{k \in \partial i^-})$, one chooses a
 792 parameter $d \in [0, 1]$, and updates the vector $\{m_i^k\}_{i=1, \dots, N}$ of the average abundances by doing:

$$m_i^{k+1} = d \cdot f(\{m_k\}_{k \in \partial i^-}) + (1 - d) \cdot m_i^k. \quad (37)$$

793 The value $d = 1$ corresponds to the original case, where IBMF is iterated without damping.
 794 When $d = 0$ nothing happens to m_i^k . A quick study shows that, for IBMF, the probability of
 795 convergence is maximized for some intermediate d around $d = 0.2$. The results in Subsections
 796 4.1 and 4.2 are obtained using precisely this value ($d = 0.2$). In the latter case, the impact
 797 of damping is explained in detail in Appendix G. In the first case, achieving convergence with
 798 IBMF is an important issue due to the crossover between the phase of multiple fixed points
 799 and the phase of unbounded growth.

800 For $T = 0$ any fixed point of IBMF is also a fixed point for simulations, and we can be
 801 sure that whenever we find different fixed points with IBMF this has implications also for
 802 simulations. However, the phase of unbounded growth is determined by the divergence of
 803 the abundances, and, as said in the main text, it could be that the iteration process of IBMF
 804 does not converge while the simulations do. Fig. 7a shows that the differences between IBMF
 805 without damping and simulations are indeed noticeable only for $\mu \leq 0.2$, where unbounded
 806 growth starts to dominate the crossover. Therefore, one needs to add damping to overcome the
 807 convergence problems that are not physical and are only related to the algorithmic dynamics
 808 of the iterations.

809 On the other hand, the phase diagram of Fig. 5d is produced without damping (using
 810 $d = 1$). Here, we do not find any problems in achieving convergence with IBMF. In fact, in
 811 that phase diagram the unbounded growth phase is not present. The iteration process reaches

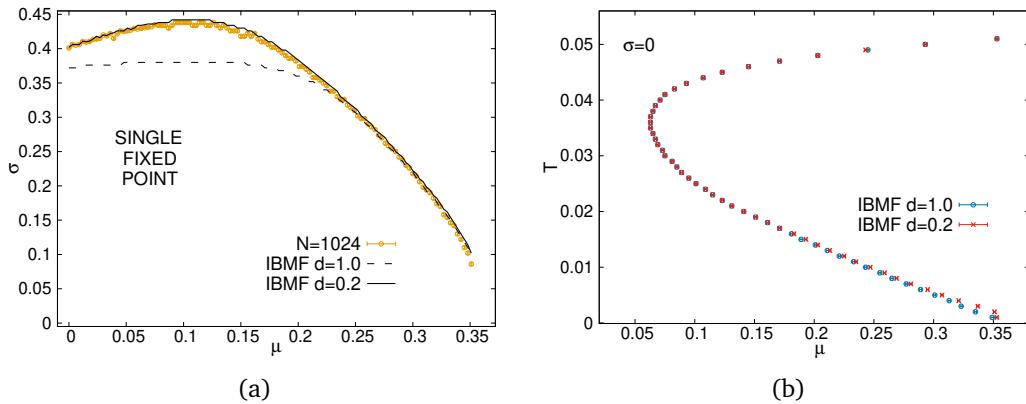


Figure 7: Effects of damping in the results of IBMF for the phase diagrams of the gLV model. The equations are run on random regular graphs with size $N = 1024$ and connectivity $c = 3$. Each transition was determined using 10000 graphs. In panel (a) (panel (b)), we mark the maximum value of σ (resp. μ) such that simulations or IBMF converged to the same fixed point in more than 50% of the interaction graphs. IBMF was run on each graph with damping ($d = 0.2$) and without damping ($d = 1$) for 10 different random initial conditions. (a) Phase diagram at $T = 0$. The interactions are asymmetric (α_{ij} is chosen independently of α_{ji}). Points represent the results of simulations with immigration rate $\lambda = 10^{-6}$, and lines are obtained with IBMF. Simulations are repeated for 10 different initial conditions. (b) Results of IBMF in the presence of thermal noise for graphs with symmetric and homogeneous interactions (drawn using $\sigma = 0$). The immigration rate is $\lambda = 10^{-6}$.

812 a fixed point for any temperature T and average interaction strength μ . The only relevant
 813 question is, at a given temperature, what is the smallest value of μ where we can find two
 814 different fixed points. Fig. 7b shows that the answer is approximately the same in most of the
 815 phase diagram, except at very low temperatures. As expected, the effect of adding damping,
 816 if any, is to move the transition to larger values of μ . Intuitively, the damping could stabilize
 817 one fixed point more than the others, preventing the algorithm from sampling them with the
 818 right probability. When one wants to correctly locate the transition between the single and
 819 the multiple attractor phases, the correct physical results are obtained by using IBMF without
 820 damping ($d = 1$).

821 F IBMF for graphs with correlated couplings

822 In Subsection 4.1, we present the results of IBMF and simulations of the gLV model on random
 823 regular graphs with asymmetric interactions. In that case, the interaction graphs were built
 824 drawing α_{ij} and α_{ji} independently for every pair of interacting species. This choice automatically
 825 sets the connected correlation $\langle \alpha_{ij} \alpha_{ji} \rangle - \langle \alpha_{ij} \rangle \langle \alpha_{ji} \rangle$ to zero.

826 It is important, however, to verify that the accuracy of IBMF's predictions extends to cases
 827 where the connected correlation is not zero. Fortunately, we can use a simple procedure to
 828 build correlated couplings. For each pair $i \rightarrow j$ and $j \rightarrow i$ of interacting species (let $i < j$ just
 829 to fix ideas), we do one of two things: i) with probability ϵ we choose α_{ij} from the Gaussian
 830 $\mathcal{N}(\mu, \sigma)$ and then we set $\alpha_{ji} = \alpha_{ij}$, or ii) with probability $1 - \epsilon$ we independently draw α_{ij}
 831 and α_{ji} from the same Gaussian. Evidently, the setting used in Subsection 4.1 corresponds to
 832 $\epsilon = 0$.

833 Fig. 8 shows the results for $\epsilon = 0.5$, chosen such that the interactions are still asymmetric,

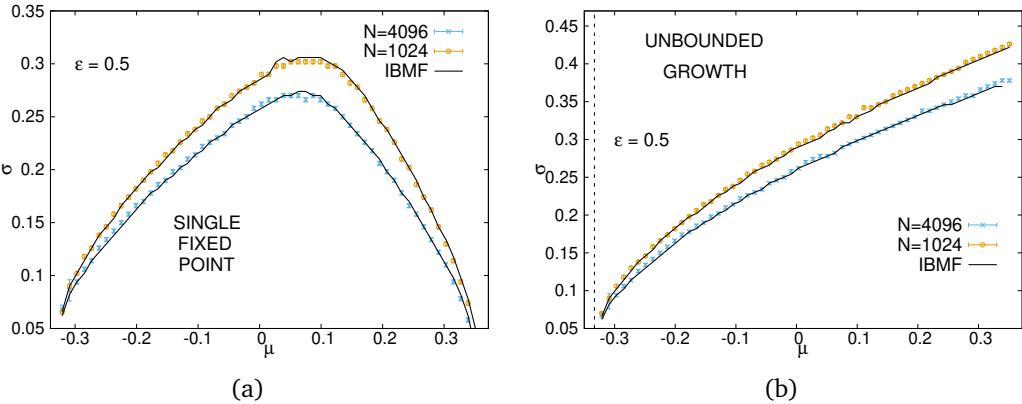


Figure 8: Transitions of the gLV model for different system sizes at $T = 0$. The interactions are asymmetric and defined on random regular graphs with connectivity $c = 3$. The couplings are chosen such that with probability $\epsilon = 0.5$ we have $\alpha_{ij} = \alpha_{ji}$. Points represent the results of simulations with immigration rate $\lambda = 10^{-6}$, and lines are the predictions made with IBMF for the same sizes. Each transition was determined using 10000 graphs. Simulations are repeated for 10 different initial conditions. IBMF was run with damping (see Appendix E) for 10 different random initial conditions. **(a)** For each system size N and average strength μ , points (lines) mark the maximum value of σ such that simulations (IBMF) converged to the same fixed point in more than 50% of the interaction graphs. **(b)** Points (lines) mark the minimum value of σ such that simulations (IBMF) displayed unbounded growth (not converged) in more than 50% of the interaction graphs.

834 but correlated. As in Subsection 4.1, the predictions obtained with IBMF for the transitions
 835 of the gLV model are in very good agreement with simulations in this case. IBMF provides a
 836 precise description of the model's fixed points at $T = 0$, valid for different values of ϵ .

837 G Convergence of IBMF in directed graphs

838 The convergence of IBMF is sensitive to the addition of damping. In the toy model described
 839 in Subsection 4.2, using no damping ($d = 1$ in Eq. (37)) has negative implications on the
 840 convergence, and the results no longer coincide with the predictions in Ref. [39].

841 In Fig. 9a, we show the probability that IBMF, without damping, does not converge (P_{nc})
 842 for large graphs with different average connectivities and interaction strengths. In this case,
 843 P_{nc} is independent of μ for all $\mu > 1$. It follows a slowly increasing function that goes from
 844 zero at $c = 0$ to one at $c = e$. This function is represented with a dashed line in the figure, and
 845 we give its precise mathematical form below. This behavior is also nearly independent of the
 846 size N , as can be seen in Fig. 9b. Only close to $P_{\text{nc}} \sim 1$, for $c \sim e$, finite-size effects make IBMF
 847 have a small deviation from the dashed line. The empirical P_{nc} is not exactly equal to one at
 848 $c = e$ for finite sizes, but the inserted graphic shows that P_{nc} increases when the number of
 849 species N increases.

850 To compute the function followed by IBMF for $d = 1$ and $\mu > 1$, we can do something
 851 analogous to what the authors of Ref. [39] did to predict the probability of fluctuations in
 852 simulations. Their results indicate that, for any $\mu > 1$ and in the stationary state, all species
 853 in the graph are completely polarized, *i.e.*, either they are extinct ($n_i = 0$) or they reach their
 854 carrying capacity ($n_i = 1$). First, we write the probability ϕ that a species is isolated and
 855 therefore can have $n_i = 1$. In tree-like graphs, the neighbors belong to nearly independent

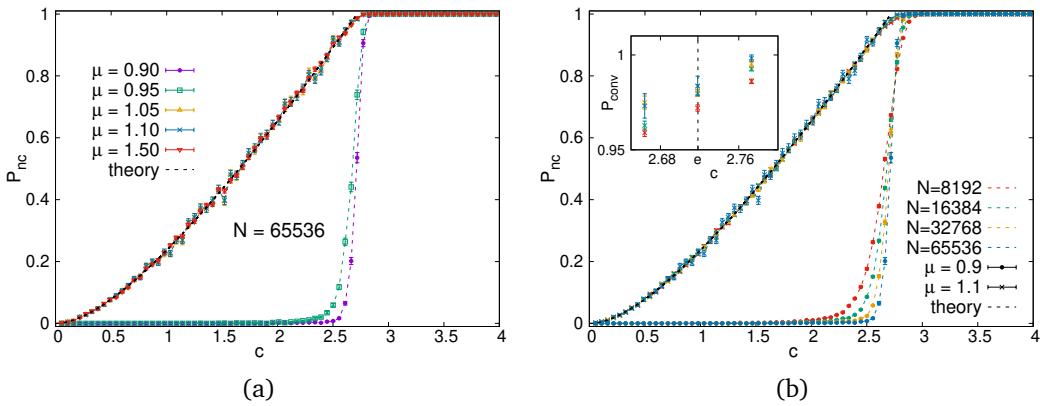


Figure 9: Probability that IBMF does not converge (P_{nc}) in instances of the toy model (directed graphs with $\sigma = 0$). Each point is obtained by running IBMF for 10000 different realizations of the interaction graph with a given average connectivity c , size N , and interaction strength μ . In both panels, IBMF is run without damping, and for $\mu > 1$ its results follow a unique function represented using a dashed line. This function is the analytical result (see the computation in the text) for the probability of having at least one isolated cycle in the graph formed by species with completely polarized abundances ($n_i = 0$ or $n_i = 1$). It is close to zero for small c and goes to one exactly at $c = e$. (a) IBMF convergence without damping for $N = 65536$ and different values of μ . (b) IBMF convergence without damping for two values of the interaction strength around the transition ($\mu = 0.9$ and $\mu = 1.1$) obtained with several system sizes. The inserted graphic shows an enlargement of the zone where $P_{conv} \sim 1$.

subgraphs, and we get $\phi = \sum_{k=0}^{\infty} p(k)(1-\phi)^k$, where k is the connectivity of the species and $p(k)$ is its distribution. When $p(k)$ is Poisson, the authors of Ref. [39] show that $\phi = W(c)/c$, where c is the average connectivity and $W(x)$ is the Lambert W function. Second, we compute the probability that a directed cycle of length n is isolated. Indeed, a species in a directed cycle has one incoming edge from another species inside the cycle. For the cycle to be isolated, we need all the other incoming edges to correspond to extinct species. Since in Poisson graphs the number of these other incoming edges is also distributed as Poisson with the same mean, and the neighbors of different species in the cycle are independent, the probability that the cycle of length n is isolated is simply ϕ^n .

The number of directed cycles of length n in a Poisson graph with mean connectivity c is also Poisson distributed with mean c^n/n [56]. Thus, the number of directed isolated cycles is Poisson distributed with mean $(c\phi)^n/n = [W(c)]^n/n$. The probability of having at least one cycle is then:

$$f(c) = 1 - \exp \left\{ - \sum_{n=2}^{\infty} \frac{[W(c)]^n}{n} \right\}$$

$$f(c) = 1 - \frac{c}{W(c)} (1 - W(c)), \quad (38)$$

where we used that $W(c)e^{W(c)} = c$. This function $f(c)$ is the one represented with dashed lines in Fig. 9.

On the other hand, for $\mu < 1$, the probability that IBMF does not converge without damping is very close to zero for all $c < e$. In this regime, the results for different system sizes N have a nice crossing point at $c > e$, as can be seen in Fig. 9a for $\mu = 0.9$. This is a familiar feature

874 of a first-order phase transition that happens exactly at that crossing point. To the left of the
 875 crossing, the probability that IBMF does not converge goes to zero when the number of species
 876 N goes to infinity. To the right, the probability approaches one as $N \rightarrow \infty$.

877 Adding damping considerably helps IBMF to converge at any μ . For the interesting case
 878 $\mu > 1$, setting $d = 0.2$ avoids the problems caused by a subset of the directed isolated cycles.
 879 Now, the probability P_{nc} does not follow a unique function $f(c)$ for all $\mu > 0$ (see Fig. 4). They
 880 coincide, instead, with the predictions made by the authors of Ref. [39]. Their computation is
 881 analogous, but with a key difference. They concluded that, for the simulations, the cycles with
 882 even length do not cause fluctuations. If we exclude the even values of n , Eq. (38) changes to:

$$f_3(c) = 1 - \exp \left\{ - \sum_{k=1}^{\infty} \frac{[W(c)]^{2k+1}}{2k+1} \right\}$$

$$f_3(c) = 1 - \frac{c}{W(c)} \sqrt{\frac{1-W(c)}{1+W(c)}}. \quad (39)$$

883 Eq. (39) gives the probability $f_3(c)$ of having at least one directed isolated cycle with odd
 884 length. Furthermore, a cycle of odd length n will be unstable, and thus will fluctuate, for all
 885 $\mu > \mu_c(n) = 1/\cos(\pi/n) > 1$ [39]. Therefore, Eq. (39) gives the probability of fluctuations
 886 for any $\mu > 1/\cos(\pi/3) = 2$. When $\mu < 2$ the cycles of length $n = 3$ are stable, but the ones
 887 with $n = 5$ are still unstable for any $\mu > 1/\cos(\pi/5) \approx 1.24$. Thus, to compute the line that
 888 corresponds to the blue points (done for $\mu = 1.5$) in Fig. 4a, we simply need to subtract the
 889 number of cycles with length $n = 3$ from the sum in Eq. (39). We get the probability:

$$f_5(c) = 1 - \exp \left\{ - \sum_{k=2}^{\infty} \frac{[W(c)]^{2k+1}}{2k+1} \right\} \quad (40)$$

$$f_5(c) = 1 - \exp \left\{ \frac{1}{2} \ln \left(\frac{1+W(c)}{1-W(c)} \right) + W(c) + \frac{[W(c)]^2}{3} \right\},$$

890 that we also plot using a dashed line in Fig. 4a, showing that it indeed coincides very well
 891 with the results of IBMF obtained at $\mu = 1.5$.

892 This is the procedure to follow for any μ . Fig. 4a indicates that, once we use damping, the
 893 convergence of IBMF stops being affected by the cycles of even length and coincides with the
 894 theoretical predictions for the probability of fluctuations as presented in Ref. [39].

895 H Finite size effects of IBMF on directed graphs

896 Fig. 10 shows the finite size effects for two values of μ around $\mu = 1.0$ when we run IBMF
 897 for the toy model defined in Subsection 4.2. We observe two distinct types of transitions in
 898 the probability that IBMF does not converge (P_{nc}). As with the simulations in Ref. [39], when
 899 $\mu > 1$ the results for finite systems do not reach $P_{nc} = 1$ exactly at $c = e$. We present numerical
 900 evidence that, for $\mu = 1.1$, the probability P_{nc} increases with the system size and the points
 901 move to the left towards the line $c = e$.

902 The curves for $\mu = 0.9$, instead, have a clear crossing point at $c \sim 3.28$. When the number
 903 of species N increases, the probability P_{nc} has a sharper transition between $P_{nc} \sim 0$ to the
 904 left and $P_{nc} \sim 1$ to the right of the crossing point. Therefore, the value $c \sim 3.28$ is a good
 905 estimate for the location of the transition between the single equilibrium phase and the phase
 906 with global fluctuations. Indeed, it is compatible with the results in Fig. 1 of Ref. [39].

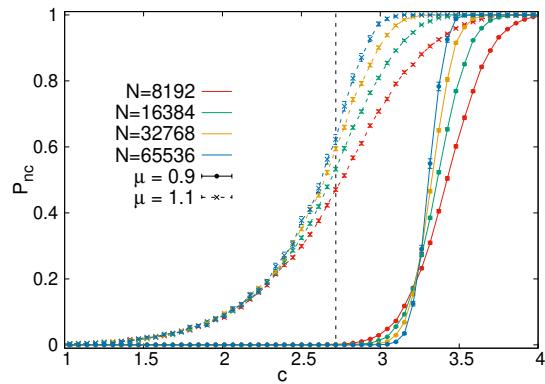


Figure 10: Probability that IBMF does not converge (P_{nc}) in instances of the modified toy model (directed graphs with $\sigma = 0$). Each point is obtained by running IBMF for 10000 different realizations of the interaction graph with a given average connectivity c and several sizes N . IBMF is run with damping for two values of the interaction strength around the transition ($\mu = 0.9$ and $\mu = 1.1$). The vertical line marks the value $c = e$.

907 I Comparing runtimes of IBMF and simulations in directed graphs

908 One of the advantages of IBMF is that it can be implemented efficiently (see Section 3 of the
 909 SM). Here, we show that running IBMF in single graphs is considerably faster than running
 910 simulations. Although we present data for the toy model on directed graphs of Subsection 4.2,
 911 this conclusion is generally applicable to all the scenarios discussed in this article.

912 In Fig. 11, we compare the average wall-clock time required for IBMF to converge to a
 913 fixed point with the corresponding simulation wall-clock time. The average discards all the
 914 samples that lead to persistent fluctuations for long times. For all connectivities and for both
 915 values of μ in the figure, IBMF is consistently around 10 times faster to reach convergence.
 916 Both algorithms, available at Ref. [43], were run on a single CPU Intel Xeon Gold 6248 2.5G.

917 It is important to note that the iterations required by IBMF to converge do not possess
 918 a physical meaning. The process is discrete, and at each step we update one of the average
 919 abundances m_i using Eq. (17). On the other hand, the simulation involves integrating a differ-
 920 ential equation (see Eq. (18)) whose time t does have a physical meaning and is a continuous
 921 variable. Therefore, the wall-clock time is sensitive to the precision of the integration in time.
 922 In this case, we use an adaptive step size to optimize the number of steps needed to reach
 923 convergence.

924 Our results indicate that, even at zero temperature, where the dynamics is simpler to sim-
 925 ulate, it is advantageous to run IBMF instead. It gives fast and accurate predictions, as can be
 926 seen in Subsections 4.1 and 4.2.

927 J Zero-temperature limit of BP

928 We discuss here the zero temperature limit of BP for random regular graphs with symmetric
 929 and homogeneous interactions ($\sigma = 0$, see Section 4.3). We show that the exact results for
 930 the single-to-multiple equilibria [32] can be easily retrieved after properly taking the limit
 931 $T \rightarrow 0$. This has already been suggested by the numerical results in Ref. [19], obtained with
 932 the discretized version of BP, and by the results presented here in Fig. 5d.

933 When the temperature is small, the probability densities concentrate around the mean

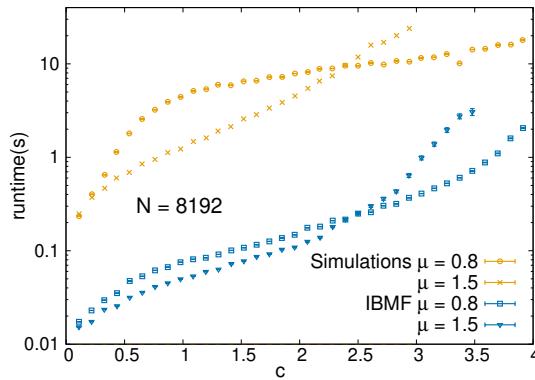


Figure 11: Average runtime (in seconds) required to obtain IBMF predictions and to run simulations for the toy model (directed graphs with $\sigma = 0$, see Subsection 4.2). Runs that show persistent fluctuations are not included. System size is $N = 8192$ in both cases. The points, with error bars, are averages over different graphs for which IBMF and the simulations converge to a fixed point. We consider 10000 graphs in total, and discarded the cases where fewer than 200 lead to convergence.

934 values. We can then assume that the message $\eta_{i \rightarrow j}(n_i)$ can be written as the multiplication of
 935 a Gaussian factor and a power-law factor $n_i^{\beta\lambda-1}$ as follows:

$$\eta_{i \rightarrow j}(n_i) = \frac{1}{z_{i \rightarrow j}} n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2Q_{i \rightarrow j}^2} (n_i - m_{i \rightarrow j})^2 \right\}. \quad (41)$$

936 This means that every message $\eta_{i \rightarrow j}(n_i)$ can be parameterized using the mean $m_{j \rightarrow i}$ and
 937 the variance $Q_{j \rightarrow i}^2$. The update rule (Eq. (13)) becomes:

$$\eta_{i \rightarrow j}(n_i) \sim n_i^{\beta\lambda-1} e^{-\beta(n_i^2 - 2n_i)/2} \prod_{k \in \partial i^- \setminus j} \int_0^\infty d n_k n_k^{\beta\lambda-1} e^{-\beta \alpha_{ik} n_i n_k - \beta(n_k^2 - 2n_k m_{k \rightarrow i})/2Q_{k \rightarrow i}^2}. \quad (42)$$

938 When $\beta \rightarrow \infty$, with $\beta\lambda$ finite, the integral is dominated by the value $n_k = n_k^*$ such that the
 939 argument of the exponential is maximum. Finding this maximum is equivalent to compute the
 940 minimum of $f(n_k) = n_k^2 - 2n_k m_{k \rightarrow i} + 2\alpha_{ik} n_i n_k Q_{k \rightarrow i}^2$. The result is $n_k^* = m_{k \rightarrow i} - \alpha_{ik} n_i Q_{k \rightarrow i}^2$.
 941 Therefore:

$$\begin{aligned} \eta_{i \rightarrow j}(n_i) &\sim n_i^{\beta\lambda-1} e^{-\beta(n_i^2 - 2n_i)/2} \left[\prod_{k \in \partial i^- \setminus j} (m_{k \rightarrow i} - \alpha_{ik} n_i Q_{k \rightarrow i}^2)^{\beta\lambda-1} \right] \times \\ &\times \exp \left\{ \sum_{k \in \partial i^- \setminus j} \frac{\beta}{2Q_{k \rightarrow i}^2} (m_{k \rightarrow i} - \alpha_{ik} n_i Q_{k \rightarrow i}^2)^2 \right\}. \end{aligned} \quad (43)$$

942 Using again that, when $\beta \rightarrow \infty$ with $\beta\lambda$ finite, the distribution $\eta_{i \rightarrow j}(n_i)$ will concentrate
 943 around $n_i = n_i^*$ such that the argument of the exponential is maximum, we get:

$$\eta_{i \rightarrow j}(n_i) = \frac{n_i^{\beta\lambda-1}}{z_{i \rightarrow j}} \exp \left\{ -\frac{\beta}{2} n_i^2 \left(1 - \sum_{k \in \partial i^- \setminus j} \alpha_{ik}^2 Q_{k \rightarrow i}^2 \right) + \beta n_i \left(1 - \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i} \right) \right\}. \quad (44)$$

944 Comparing with Eq. (41), we can easily identify that:

$$Q_{i \rightarrow j}^2 = \frac{1}{1 - \sum_{k \in \partial i - \setminus j} \alpha_{ik}^2 Q_{k \rightarrow i}^2} \quad (45)$$

$$m_{i \rightarrow j} = \frac{1 - \sum_{k \in \partial i - \setminus j} \alpha_{ik} m_{k \rightarrow i}}{1 - \sum_{k \in \partial i - \setminus j} \alpha_{ik}^2 Q_{k \rightarrow i}^2} \cdot \quad (46)$$

945 These equations are known as relaxed Belief Propagation [57], and in this case correspond
 946 to the zero temperature expansion of BP. When we have a random regular graph with homo-
 947 geneous interactions ($\alpha_{ij} \equiv \mu$ for all edges in the graph), all sites become equivalent and

$$Q_{\rightarrow}^2 = \frac{1}{1 - (c - 1)\mu^2 Q_{\rightarrow}^2} \quad (47)$$

$$m_{\rightarrow} = \frac{1 - (c - 1)\mu m_{\rightarrow}}{1 - (c - 1)\mu^2 Q_{\rightarrow}^2} \cdot \quad (48)$$

948 From Eq. (47), we can obtain a closed expression for the variance Q_{\rightarrow}^2 :

$$Q_{\rightarrow}^2 = \frac{1}{2(c - 1)\mu^2} \left(1 \pm \sqrt{1 - 4(c - 1)\mu^2} \right). \quad (49)$$

949 From where it follows that, in order to have $Q_{\rightarrow}^2 \in \mathbb{R}$, the strength of the interactions must
 950 fulfill the relation

$$\mu \leq \mu^* \equiv \frac{1}{2\sqrt{c - 1}} \cdot \quad (50)$$

951 This result, again, coincides with the exact relation obtained in Ref. [32] and we already
 952 presented it in Eq. (32). Finally, we can also use that

$$m_i = \frac{1 - \sum_{k \in \partial i -} \alpha_{ik} m_{k \rightarrow i}}{1 - \sum_{k \in \partial i -} \alpha_{ik}^2 Q_{k \rightarrow i}^2}, \quad (51)$$

953 In the case with homogeneous interactions we have $\alpha_{ik}^2 = \mu^2$ and $\alpha_{ik}^2 = \mu^2$ for all edges in
 954 the graph. Thus:

$$m \equiv \frac{1 - c\mu m_{\rightarrow}}{1 - c\mu^2 Q_{\rightarrow}^2}, \quad (52)$$

955 together with Eqs. (47) and (48) to get another exact result:

$$m = \frac{1}{1 + c\mu} \cdot \quad (53)$$

956 With Eqs. (50) and (53), we recover two known results for the single-to-multiple-equilibria
 957 transition for $\beta \rightarrow \infty$ [32]. In terms of BP this transition is simply a boundary $\mu^* = 1/(2\sqrt{c - 1})$
 958 such that, for $\mu > \mu^*$ and at low temperature ($\beta \gg 1$), it is impossible to have a “Gaussian”
 959 stationary point like the one in Eq. (41) (more precisely, a Gaussian multiplied by the power
 960 $n^{\beta\lambda-1}$).

961 **References**

962 [1] J. Moran and J.-P. Bouchaud, *May's instability in large economies*, Physical Review E
963 **100**(3), 032307 (2019), doi: [10.1103/PhysRevE.100.032307](https://doi.org/10.1103/PhysRevE.100.032307).

964 [2] T. Galla and J. D. Farmer, *Complex dynamics in learning complicated games*,
965 Proceedings of the National Academy of Sciences **110**(4), 1232 (2013), doi:
966 [10.1073/pnas.1109672110](https://doi.org/10.1073/pnas.1109672110).

967 [3] J. Garnier-Brun, M. Benzaquen, S. Ciliberti and J.-P. Bouchaud, *A new spin on optimal
968 portfolios and ecological equilibria*, Journal of Statistical Mechanics: Theory and Experi-
969 ment **2021**(9), 093408 (2021), doi: [10.1088/1742-5468/ac21d9](https://doi.org/10.1088/1742-5468/ac21d9).

970 [4] A. Altieri, F. Roy, C. Cammarota and G. Biroli, *Properties of equilibria and glassy phases
971 of the random lotka-volterra model with demographic noise*, Physical Review Letters
972 **126**(25), 258301 (2021), doi: [10.1103/PhysRevLett.126.258301](https://doi.org/10.1103/PhysRevLett.126.258301).

973 [5] G. Bunin, *Ecological communities with lotka-volterra dynamics*, Physical Review E **95**(4),
974 042414 (2017), doi: [10.1103/PhysRevE.95.042414](https://doi.org/10.1103/PhysRevE.95.042414).

975 [6] T. Galla, *Dynamically evolved community size and stability of random lotka-volterra
976 ecosystems (a)*, Europhysics Letters **123**(4), 48004 (2018), doi: [10.1209/0295-5075/123/48004](https://doi.org/10.1209/0295-5075/123/48004).

977 [7] V. Ros, F. Roy, G. Biroli, G. Bunin and A. M. Turner, *Generalized lotka-volterra equations
978 with random, nonreciprocal interactions: The typical number of equilibria*, Physical Review
979 Letters **130**(25), 257401 (2023), doi: [10.1103/PhysRevLett.130.257401](https://doi.org/10.1103/PhysRevLett.130.257401).

980 [8] V. Ros, F. Roy, G. Biroli and G. Bunin, *Quenched complexity of equilibria for asymmetric
981 generalized lotka-volterra equations*, Journal of Physics A: Mathematical and Theoretical
982 **56**(30), 305003 (2023), doi: [10.1088/1751-8121/ace00f](https://doi.org/10.1088/1751-8121/ace00f).

983 [9] L. Poley, J. W. Baron and T. Galla, *Generalized lotka-volterra model with hierarchical
984 interactions*, Physical Review E **107** (2023), doi: [10.1103/PhysRevE.107.024313](https://doi.org/10.1103/PhysRevE.107.024313).

985 [10] J. W. Baron, T. J. Jewell, C. Ryder and T. Galla, *Breakdown of random-matrix universal-
986 ality in persistent lotka-volterra communities*, Physical Review Letters **130** (2023), doi:
987 [10.1103/PhysRevLett.130.137401](https://doi.org/10.1103/PhysRevLett.130.137401).

988 [11] I. A. Hatton, O. Mazzarisi, A. Altieri and M. Smerlak, *Diversity begets stability: Sublinear
989 growth and competitive coexistence across ecosystems*, Science **383**(6688) (2024), doi:
990 [10.1126/science.adg8488](https://doi.org/10.1126/science.adg8488).

991 [12] M. Barbier, J.-F. Arnoldi, G. Bunin and M. Loreau, *Generic assembly patterns in complex
992 ecological communities*, Proceedings of the National Academy of Sciences **115**(9) (2018),
993 doi: [10.1073/pnas.1710352115](https://doi.org/10.1073/pnas.1710352115).

994 [13] J. Giral Martínez, M. Barbier and S. De Monte, *Interplay of structured and random
995 interactions in many-species ecological dynamics*, bioRxiv pp. 2024–11 (2024), doi:
996 [10.1101/2024.11.25.624858](https://doi.org/10.1101/2024.11.25.624858).

997 [14] M. T. Pearce, A. Agarwala and D. S. Fisher, *Stabilization of extensive fine-scale diversity by
998 ecologically driven spatiotemporal chaos*, Proceedings of the National Academy of Sciences
999 **117**(25), 14572 (2020), doi: [10.1073/pnas.1915313117](https://doi.org/10.1073/pnas.1915313117).

1001 [15] J. A. Dunne, R. J. Williams and N. D. Martinez, *Food-web structure and network theory: the role of connectance and size*, Proceedings of the National Academy of Sciences **99**(20), 12917 (2002), [doi: 10.1073/pnas.192407699](https://doi.org/10.1073/pnas.192407699).

1002

1003

1004 [16] D. M. Busiello, S. Suweis, J. Hidalgo and A. Maritan, *Explorability and the origin of network sparsity in living systems*, Scientific reports **7**(1), 12323 (2017), [doi: 10.1038/s41598-017-12521-1](https://doi.org/10.1038/s41598-017-12521-1).

1005

1006

1007 [17] A. M. Mambuca, C. Cammarota and I. Neri, *Dynamical systems on large networks with predator-prey interactions are stable and exhibit oscillations*, Physical Review E **105**(1), 014305 (2022), [doi: 10.1103/PhysRevE.105.014305](https://doi.org/10.1103/PhysRevE.105.014305).

1008

1009

1010 [18] P. Valigi, I. Neri and C. Cammarota, *Local sign stability and its implications for spectra of sparse random graphs and stability of ecosystems*, Journal of Physics: Complexity **5**(1), 015017 (2024), [doi: 10.1088/2632-072X/ad2698](https://doi.org/10.1088/2632-072X/ad2698).

1011

1012

1013 [19] T. Tonolo, M. C. Angelini, S. Azaele, A. Maritan and G. Gradenigo, *Generalized lotka-volterra model with sparse interactions: non-gaussian effects and topological multiple-equilibria phase* (2025), [2503.20887](https://arxiv.org/abs/2503.20887).

1014

1015

1016 [20] F. Roy, G. Biroli, G. Bunin and C. Cammarota, *Numerical implementation of dynamical mean field theory for disordered systems: application to the lotka-volterra model of ecosystems*, Journal of Physics A: Mathematical and Theoretical **52**(48), 484001 (2019), [doi: 10.1088/1751-8121/ab1f32](https://doi.org/10.1088/1751-8121/ab1f32).

1017

1018

1019

1020 [21] S. Azaele and A. Maritan, *Generalized dynamical mean field theory for non-gaussian interactions*, Phys. Rev. Lett. **133**, 127401 (2024), [doi: 10.1103/PhysRevLett.133.127401](https://doi.org/10.1103/PhysRevLett.133.127401).

1021

1022 [22] F. Aguirre-López, *Heterogeneous mean-field analysis of the generalized lotka-volterra model on a network*, Journal of Physics A: Mathematical and Theoretical **57**(34), 345002 (2024), [doi: 10.1088/1751-8121/ad6ab2](https://doi.org/10.1088/1751-8121/ad6ab2).

1023

1024

1025 [23] F. L. Metz, *Dynamical mean-field theory of complex systems on sparse directed networks*, Physical Review Letters **134**(3), 037401 (2025), [doi: 10.1103/PhysRevLett.134.037401](https://doi.org/10.1103/PhysRevLett.134.037401).

1026

1027

1028 [24] Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, *Epidemic spreading in real networks: an eigenvalue viewpoint*, In *22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings.*, pp. 25–34, [doi: 10.1109/RELDIS.2003.1238052](https://doi.org/10.1109/RELDIS.2003.1238052) (2003).

1029

1030

1031 [25] E. Cator and P. Van Mieghem, *Second-order mean-field susceptible-infected-susceptible epidemic threshold*, Physical review E **85**(5), 056111 (2012), [doi: 10.1103/PhysRevE.85.056111](https://doi.org/10.1103/PhysRevE.85.056111).

1032

1033

1034 [26] R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, *Epidemic processes in complex networks*, Reviews of Modern Physics **87**(3), 925 (2015), [doi: 10.1103/RevModPhys.87.925](https://doi.org/10.1103/RevModPhys.87.925).

1035

1036

1037 [27] E. Ortega, D. Machado and A. Lage-Castellanos, *Dynamics of epidemics from cavity master equations: Susceptible-infectious-susceptible models*, Physical Review E **105**, 024308 (2022), [doi: 10.1103/PhysRevE.105.024308](https://doi.org/10.1103/PhysRevE.105.024308).

1038

1039

1040 [28] E. Aurell, E. Domínguez, D. Machado and R. Mulet, *A theory of non-equilibrium local search on random satisfaction problems*, Physical Review Letters **123**, 230602 (2019), [doi: 10.1103/PhysRevLett.123.230602](https://doi.org/10.1103/PhysRevLett.123.230602).

1041

1042

1043 [29] D. Machado, J. González-García and R. Mulet, *Local equations describe unreasonably*
1044 *efficient stochastic algorithms in random k-sat* (2025), [2504.06757](https://arxiv.org/abs/2504.06757).

1045 [30] D. Machado, R. Mulet and F. Ricci-Tersenghi, *Improved mean-field dynamical equations*
1046 *are able to detect the two-step relaxation in glassy dynamics at low temperatures*, *Journal*
1047 *of Statistical Mechanics: Theory and Experiment* **2023**(12), 123301 (2023), [doi: 10.1088/1742-5468/ad0f90](https://doi.org/10.1088/1742-5468/ad0f90).

1049 [31] A. Jedrzejewski and K. Sznajd-Weron, *Pair approximation for the q-voter models with*
1050 *quenched disorder on networks*, *Phys. Rev. E* **105**, 064306 (2022), [doi: 10.1103/PhysRevE.105.064306](https://doi.org/10.1103/PhysRevE.105.064306).

1052 [32] S. Marcus, A. M. Turner and G. Bunin, *Local and collective transitions in sparsely-*
1053 *interacting ecological communities*, *PLoS Computational Biology* **18**(7), e1010274
1054 (2022), [doi: 10.1371/journal.pcbi.1010274](https://doi.org/10.1371/journal.pcbi.1010274).

1055 [33] M. Loreau and C. De Mazancourt, *Biodiversity and ecosystem stability: a synthesis of*
1056 *underlying mechanisms*, *Ecology letters* **16**, 106 (2013), [doi: 10.1111/ele.12073](https://doi.org/10.1111/ele.12073).

1057 [34] G. Biroli, G. Bunin and C. Cammarota, *Marginally stable equilibria in critical ecosystems*,
1058 *New Journal of Physics* **20** (2018), [doi: 10.1088/1367-2630/aada58](https://doi.org/10.1088/1367-2630/aada58).

1059 [35] F. Larroza and T. Galla, *Demographic noise in complex ecological communities*, *Journal of*
1060 *Physics: Complexity* **4**(2) (2023), [doi: 10.1088/2632-072X/acd21b](https://doi.org/10.1088/2632-072X/acd21b).

1061 [36] G. Garcia Lorenzana, A. Altieri and G. Biroli, *Interactions and migration rescuing ecological*
1062 *diversity*, *PRX Life* **2**(1) (2024), [doi: 10.1103/PRXLife.2.013014](https://doi.org/10.1103/PRXLife.2.013014).

1063 [37] T. Arnould de Pirey and G. Bunin, *Many-species ecological fluctuations as a jump pro-*
1064 *cess from the brink of extinction*, *Phys. Rev. X* **14**, 011037 (2024), [doi: 10.1103/PhysRevX.14.011037](https://doi.org/10.1103/PhysRevX.14.011037).

1066 [38] A. Altieri and G. Biroli, *Effects of intraspecific cooperative interactions in large ecosystems*,
1067 *SciPost Phys.* **12**, 013 (2022), [doi: 10.21468/SciPostPhys.12.1.013](https://doi.org/10.21468/SciPostPhys.12.1.013).

1068 [39] S. Marcus, A. M. Turner and G. Bunin, *Local and extensive fluctuations in sparsely inter-*
1069 *acting ecological communities*, *Phys. Rev. E* **109**, 064410 (2024), [doi: 10.1103/PhysRevE.109.064410](https://doi.org/10.1103/PhysRevE.109.064410).

1071 [40] C. Gardiner, *Stochastic Methods: A Handbook for the Natural and Social Sciences*, Springer
1072 Series in Synergetics. Springer Berlin, Heidelberg, Berlin, Heidelberg, 4 edn., ISBN 978-
1073 3-540-70712-7 (2009).

1074 [41] J. Pasqualini, A. Maritan, A. Rinaldo, S. Facchin, E. Savarino, A. Altieri and S. Suweis,
1075 *Microbiomes through the looking glass: Linking species interactions to dysbiosis through a*
1076 *disordered lotka-volterra framework*, *eLife* (2025), [doi: 10.7554/elife.105948.2](https://doi.org/10.7554/elife.105948.2).

1077 [42] I. Gradshteyn and I. Ryzhik, *Table of Integrals, Series, and Products*, Elsevier, 7th Edition,
1078 ISBN 9780123736376 (2007).

1079 [43] D. Machado, P. Valigi, T. Tonolo and M. C. Angelini, [GenLotkaVolterra_SparseGraphs](https://github.com/GenLotkaVolterra_SparseGraphs):
1080 *Github repository for this article*, [doi: 10.5281/zenodo.17612770](https://doi.org/10.5281/zenodo.17612770) (2025).

1081 [44] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, *Numerical Recipes in C*,
1082 Cambridge University Press, ISBN 978-0-521-88068-8 (2007).

1083 [45] G. N. Mil'shtejn, *Approximate integration of stochastic differential equations*, Theory
1084 of Probability & Its Applications **19**(3), 557 (1975), doi: [10.1137/1119062](https://doi.org/10.1137/1119062), <https://doi.org/10.1137/1119062>.

1086 [46] P. E. Kloeden and E. Platen, *Numerical Solution of Stochastic Differential Equations*,
1087 Stochastic Modelling and Applied Probability. Springer Berlin, Heidelberg, Berlin, Hei-
1088 delberg, 1 edn., ISBN 978-3-540-54062-5, doi: [10.1007/978-3-662-12616-5](https://doi.org/10.1007/978-3-662-12616-5) (1992).

1089 [47] T. A. de Pirey and G. Bunin, *Critical behavior of a phase transition in the dynamics of inter-
1090 acting populations*, SciPost Phys. **18**, 051 (2025), doi: [10.21468/SciPostPhys.18.2.051](https://doi.org/10.21468/SciPostPhys.18.2.051).

1091 [48] P. Valigi, J. W. Baron, I. Neri, G. Biroli and C. Cammarota, *Eigenvalue spectral tails and
1092 localisation properties of asymmetric networks*, Journal of Physics A: Mathematical and
1093 Theoretical **58**(45), 455002 (2025), doi: [10.1088/1751-8121/ae16ec](https://doi.org/10.1088/1751-8121/ae16ec).

1094 [49] P. C. de Ruiter, A.-M. Neutel and J. C. Moore, *Energetics, patterns of interaction
1095 strengths, and stability in real ecosystems*, Science **269**(5228), 1257 (1995), doi:
1096 [10.1126/science.269.5228.1257](https://doi.org/10.1126/science.269.5228.1257), <https://www.science.org/doi/pdf/10.1126/science.269.5228.1257>.

1097 [50] R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Rätsch, E. G. Pamer, C. Sander
1098 and J. B. Xavier, *Ecological modeling from time-series inference: Insight into dynamics and
1099 stability of intestinal microbiota*, PLoS Computational Biology **9**(12), e1003388 (2013),
1100 doi: [10.1371/journal.pcbi.1003388](https://doi.org/10.1371/journal.pcbi.1003388).

1102 [51] C. Jacquet, C. Moritz, L. Morissette, P. Legagneux, F. Massol, P. Archambault and
1103 D. Gravel, *No complexity–stability relationship in empirical ecosystems*, Nature Com-
1104 munications **7**, 12573 (2016), doi: [10.1038/ncomms12573](https://doi.org/10.1038/ncomms12573).

1105 [52] M. Barbier, C. de Mazancourt, M. Loreau and G. Bunin, *Fingerprints of high-dimensional
1106 coexistence in complex ecosystems*, Phys. Rev. X **11**, 011009 (2021), doi: [10.1103/Phys-](https://doi.org/10.1103/Phys-)
1107 [RevX.11.011009](https://doi.org/10.1103/PhysRevX.11.011009).

1108 [53] M. Barbier, G. Bunin and M. A. Leibold, *Getting more by asking for less: Linking species
1109 interactions to species co-distributions in metacommunities*, Peer Community Journal **5**,
1110 e1 (2025), doi: [10.24072/pcjournal.483](https://doi.org/10.24072/pcjournal.483).

1111 [54] B. D. McKay, *The expected eigenvalue distribution of a large regular graph*, Linear
1112 Algebra and its Applications **40**, 203 (1981), doi: <https://doi.org/10.1016/0024->
1113 [3795\(81\)90150-6](https://doi.org/10.1016/0024-3795(81)90150-6).

1114 [55] F. Caltagirone, F. Krzakala and L. Zdeborová, *On convergence of approximate message pass-
1115 ing*, In *ISIT 2014 - 2014 IEEE International Symposium on Information Theory*, vol. 2014,
1116 pp. 1812–1816. IEEE, IEEE, Honolulu, United States, doi: [10.1109/ISIT.2014.6875146](https://doi.org/10.1109/ISIT.2014.6875146),
1117 5 pages, 3 figures (2014).

1118 [56] B. Bollobas, *Random Graphs*, Cambridge Studies in Advanced Mathematics, 2nd Edition
1119 (2001).

1120 [57] Y. Kabashima, *A cdma multiuser detection algorithm on the basis of belief propaga-
1121 tion*, Journal of Physics A: Mathematical and General **36**(43), 11111 (2003), doi:
1122 [10.1088/0305-4470/36/43/030](https://doi.org/10.1088/0305-4470/36/43/030).

Supplemental Materials for the article
**Local Fokker-Planck equations for the
Generalized Lotka-Volterra model on sparse
random graphs**

D. Machado^{1,2,3,*}, P. Valigi¹, T. Tonolo^{5, 6}, and M. C. Angelini^{1, 4}

¹Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5,
00185 Rome, Italy

²Group of Complex Systems and Statistical Physics and Department of
Theoretical Physics. Physics Faculty, University of Havana. CP10400, La
Habana, Cuba

³CNR - Nanotec, unità di Roma, P.le Aldo Moro 5, 00185 Rome, Italy

⁴Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, P.le A. Moro 5,
00185 Rome, Italy

⁵Gran Sasso Science Institute, Viale F. Crispi 7, 67100 L'Aquila, Italy

⁶INFN-Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi
(AQ), Italy

*david.machado@uniroma1.it

January 14, 2026

S1 Local closures

To write the local closures, one needs to marginalize Eq. 2 in the main text to obtain the differential equations for the local probabilities. This will be done first with $P_t(n_i) = \int_0^\infty [\prod_{k \neq i} dn_k] P_t(\vec{n})$. Marginalizing over all the abundances except n_i , one gets:

$$\begin{aligned}
\frac{\partial}{\partial t} P_t(n_i) = & -\frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i) + \lambda] P_t(n_i) \right\} + T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i)\} \\
& + \frac{\partial}{\partial n_i} \left\{ n_i \sum_{j \in \partial i^-} \alpha_{ij} \int_0^\infty dn_j n_j P_t(n_i, n_j) \right\} \\
& - \sum_{k \neq i} \int_0^\infty dn_k \frac{\partial}{\partial n_k} \left\{ \int_0^\infty \left(\prod_{r \neq k, i} dn_r \right) [n_k(1 - n_k - \sum_{l \in \partial k^-} \alpha_{kl} n_l) + \lambda] P_t(\vec{n}) \right\} + \\
& + T \sum_{k \neq i} \int_0^\infty dn_k \frac{\partial^2}{\partial n_k^2} \{n_k P_t(n_i, n_k)\}. \tag{S1}
\end{aligned}$$

Assuming that $\lim_{n_k \rightarrow \infty} n_k^2 P_t(\vec{n}) = 0$, this equation can be simplified to:

$$\begin{aligned}
\frac{\partial}{\partial t} P_t(n_i) = & -\frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i) + \lambda] P_t(n_i) \right\} + T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i)\} \\
& + \frac{\partial}{\partial n_i} \left\{ n_i \sum_{j \in \partial i^-} \alpha_{ij} \int_0^\infty dn_j n_j P_t(n_i, n_j) \right\} \\
& + \sum_{k \neq i} \lambda \lim_{n_k \rightarrow 0^+} P_t(n_i, n_k) - T \sum_{k \neq i} \lim_{n_k \rightarrow 0^+} P_t(n_i, n_k). \tag{S2}
\end{aligned}$$

Now, the boundary conditions that we imposed on the Fokker-Planck equation become useful. We should enforce that, for each species k , the relation $(T - \lambda) \lim_{n_k \rightarrow 0^+} P_\infty(n_k) = 0$. Because of this, the last two terms in Eq. (S2) cancel, leaving:

$$\begin{aligned}
\frac{\partial}{\partial t} P_t(n_i) = & -\frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i) + \lambda] P_t(n_i) \right\} + T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i)\} \\
& + \frac{\partial}{\partial n_i} \left\{ n_i \sum_{j \in \partial i^-} \alpha_{ij} \int_0^\infty dn_j n_j P_t(n_i, n_j) \right\}. \tag{S3}
\end{aligned}$$

Defining the conditional average

$$m_{j \rightarrow i}(n_i, t) \equiv \int_0^\infty dn_j n_j P_t(n_j \mid n_i), \tag{S4}$$

it is possible to write:

$$\int_0^\infty dn_j n_j P_t(n_i, n_j) = m_{j \rightarrow i}(n_i, t) P_t(n_i) \tag{S5}$$

and

$$\frac{\partial}{\partial t} P_t(n_i) = -\frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} m_{j \rightarrow i}(n_i, t)) + \lambda] P_t(n_i) \right\} + T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i)\}. \tag{S6}$$

Since one does not know the shape of $m_{j \rightarrow i}(n_i, t)$, Eq. (S6) cannot be solved directly. Its stationary solutions must fulfill the equation:

$$0 = -\frac{d}{dn_i} \left\{ [n_i(1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} m_{j \rightarrow i}(n_i)) + \lambda] P_\infty(n_i) \right\} + T \frac{d^2}{dn_i^2} \{n_i P_\infty(n_i)\}, \quad (\text{S7})$$

where $m_{j \rightarrow i}(n_i)$ is the stationary value of the conditional average $m_{j \rightarrow i}(n_i, t)$ and $P_\infty(n_i)$ is the stationary distribution of the i -th species abundance. Integrating once over n_i , gives:

$$\frac{d}{dn_i} P_\infty(n_i) = \left[\beta(1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} m_{j \rightarrow i}(n_i)) + \frac{\beta \lambda - 1}{n_i} \right] P_\infty(n_i), \quad (\text{S8})$$

where $\beta = 1/T$. This equation has the following formal solution:

$$P_\infty(n_i) = \frac{1}{Z_i} n_i^{\beta \lambda - 1} \exp \left\{ -\frac{\beta}{2} (n_i^2 - 2n_i) \right\} \exp \left\{ -\beta \sum_{j \in \partial i^-} \alpha_{ij} \int_0^{n_i} dx m_{j \rightarrow i}(x) \right\}. \quad (\text{S9})$$

Although Eq. (S9) gives a simple expression that will be useful in the future, it is not a solution to the problem because we still do not have the functions $m_{j \rightarrow i}(n_i)$. But to obtain $m_{j \rightarrow i}(n_i)$ one needs to compute the conditional probabilities, or equivalently, the pair probabilities $P_t(n_i, n_j)$. The corresponding differential equation can be obtained following a similar procedure.

$$\begin{aligned} \frac{\partial}{\partial t} P_t(n_i, n_j) &= -\frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i - \alpha_{ij} n_j) + \lambda] P_t(n_i, n_j) \right\} + T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i, n_j)\} \\ &\quad -\frac{\partial}{\partial n_j} \left\{ [n_j(1 - n_j - \alpha_{ji} n_i) + \lambda] P_t(n_i, n_j) \right\} + T \frac{\partial^2}{\partial n_j^2} \{n_j P_t(n_i, n_j)\} \\ &\quad + \frac{\partial}{\partial n_i} \left\{ n_i \sum_{k \in \partial i^- \setminus j} \alpha_{ik} \int_0^\infty dn_k n_k P_t(n_k, n_i, n_j) \right\} \\ &\quad + \frac{\partial}{\partial n_j} \left\{ n_j \sum_{l \in \partial j^- \setminus i} \alpha_{jl} \int_0^\infty dn_l n_l P_t(n_i, n_j, n_l) \right\}. \end{aligned} \quad (\text{S10})$$

Similarly as before, let us define the conditional average $m_{k \rightarrow i, j}(n_i, n_j, t) \equiv \int_0^\infty dn_k P_t(n_k, t | n_i, n_j)$. Eq. (S10) reduces to:

$$\begin{aligned} \frac{\partial}{\partial t} P_t(n_i, n_j) &= -\frac{\partial}{\partial n_i} \left\{ [n_i(1 - n_i - \alpha_{ij} n_j - \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i, j}(n_i, n_j)) + \lambda] P_t(n_i, n_j) \right\} \\ &\quad -\frac{\partial}{\partial n_j} \left\{ [n_j(1 - n_j - \alpha_{ji} n_i - \sum_{l \in \partial j^- \setminus i} \alpha_{jl} m_{l \rightarrow i, j}(n_i, n_j)) + \lambda] P_t(n_i, n_j) \right\} \\ &\quad + T \frac{\partial^2}{\partial n_i^2} \{n_i P_t(n_i, n_j)\} + T \frac{\partial^2}{\partial n_j^2} \{n_j P_t(n_i, n_j)\}. \end{aligned} \quad (\text{S11})$$

Again, one does not know the shape of $m_{k \rightarrow i,j}(n_i, n_j, t)$, but to obtain it, one needs to solve the differential equation for $P_t(n_k, n_i, n_j)$. This process builds a hierarchy of differential equations that, in the end, goes back to the Fokker-Planck equation for the full system (Eq. (2) in the main text). This is not surprising, since no approximations have been done, the solution of these local Fokker-Planck equations must be as difficult as the solution of the original Fokker-Planck equation for the whole system.

To close the hierarchy at some point, one can make some factorization of the joint probability densities so that they are expressed in terms of probability densities of a lower level in the hierarchy. The first approximation one could do is known in the studies of epidemic spreading as Individual Based Mean Field (IBMF) [1, 2] and it is simply:

$$P_t(n_i, n_j) \approx P_t(n_i) P_t(n_j) , \quad (\text{S12})$$

which implies that:

$$\begin{aligned} m_{j \rightarrow i}(n_i, t) &= \int_0^\infty dn_j n_j P_t(n_j | n_i) = \int_0^\infty dn_j n_j \frac{P_t(n_i, n_j)}{P_t(n_i)} \\ m_{j \rightarrow i}(n_i, t) &\approx \int_0^\infty dn_j n_j \frac{P_t(n_i) P_t(n_j)}{P_t(n_i)} = \int_0^\infty dn_j n_j P_t(n_j) \equiv m_j(t) , \end{aligned} \quad (\text{S13})$$

where $m_j(t)$ is the expected value of the abundance n_j at time t .

The IBMF differential equation is then:

$$\frac{\partial}{\partial t} P_t(n_i) = -\frac{\partial}{\partial n_i} \left\{ \left[n_i (1 - n_i - \sum_{j \in \partial i^-} \alpha_{ij} m_j(t)) + \lambda \right] P_t(n_i) \right\} + T \frac{\partial^2}{\partial n_i^2} \{ n_i P_t(n_i) \} , \quad (\text{S14})$$

which must be completed with the definition $m_j(t) \equiv \int_0^\infty dn_j n_j P_t(n_j)$.

The IBMF is the first local closure one can provide. However, it is possible to go ahead and propose closures that stop at higher levels of the hierarchy. To express $P_t(n_k, n_i, n_j)$ in terms of pair probability densities like $P_t(n_i, n_j)$, one could use information about the actual graph of interactions. In the third line of Eq. (S10), the probability density $P_t(n_k, n_i, n_j)$ is actually defined in a graph $G(V, E)$ that contains the edges $k \rightarrow i$ and $i \rightarrow j$, but not necessarily the edges $k \rightarrow j$ or $j \rightarrow k$. In tree-like graphs, with high probability when the number of species is large, given that the edges $k \rightarrow i$ and $i \rightarrow j$ are present, we will have that k and j are not directly connected by any edge. Moreover, the length of the cycles diverges with the system size N , so the only short path that connects k and j necessarily passes through i . So, expecting that it works especially well in tree-like graphs, one could propose:

$$P_t(n_k, n_i, n_j) \approx \frac{P_t(n_k, n_i) P_t(n_i, n_j)}{P_t(n_i)} \equiv P_t(n_k | n_i) P_t(n_i) P_t(n_j | n_i) , \quad (\text{S15})$$

This is known as Pair Based Mean Field (PBMF) in the above-mentioned context of epidemic spreading [3, 4] and is a factorization of the conditional measure. Given n_i at

time t , one assumes n_j and n_k are independent. This is not strange for those who know the replica symmetric cavity method, whose algorithmic counterpart is Belief Propagation (BP). However, even in the cases where BP is the exact solution in equilibrium (provided also that equilibrium exists), this approximation is not necessarily valid for the dynamics, since temporal correlations can still forbid the factorization, and n_j and n_k are not independent given only the value of n_i at time t .

Anyways, one can assume Eq. (S15) to be valid and continue:

$$\begin{aligned} m_{k \rightarrow i,j}(n_i, n_j, t) &= \int_0^\infty dn_k n_k P_t(n_k | n_i, n_j) = \int_0^\infty dn_k n_k \frac{P_t(n_k, n_i, n_j)}{P_t(n_i, n_j)} \\ m_{k \rightarrow i,j}(n_i, n_j, t) &\approx \int_0^\infty dn_k n_k \frac{P_t(n_k, n_i)}{P_t(n_i)} \equiv m_{k \rightarrow i}(n_i, t). \end{aligned} \quad (\text{S16})$$

Thus, the PBMF differential equation is:

$$\begin{aligned} \frac{\partial}{\partial t} P_t(n_i, n_j) &= -\frac{\partial}{\partial n_i} \left\{ \left[n_i (1 - n_i - \alpha_{ij} n_j - \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i}(n_i, t)) + \lambda \right] P_t(n_i, n_j) \right\} \\ &\quad -\frac{\partial}{\partial n_j} \left\{ \left[n_j (1 - n_j - \alpha_{ji} n_i - \sum_{l \in \partial j^- \setminus i} \alpha_{jl} m_{l \rightarrow j}(n_j, t)) + \lambda \right] P_t(n_i, n_j) \right\} \\ &\quad + T \frac{\partial^2}{\partial n_i^2} \{ n_i P_t(n_i, n_j) \} + T \frac{\partial^2}{\partial n_j^2} \{ n_j P_t(n_i, n_j) \}, \end{aligned} \quad (\text{S17})$$

which must be completed with the definition $m_{j \rightarrow i}(n_i, t) \equiv \int_0^\infty dn_j n_j P_t(n_j | n_i)$.

Both closures, IBMF and PBMF, are in principle solvable, at least numerically. However, when the system is large this is a difficult task.

S2 Connections with known results

S2.1 Belief Propagation as stationary solution of Pair Based Mean Field

As mentioned before, the approximation in Eq. (S15) is valid in equilibrium in all the cases where BP is also valid, since BP respects this factorization of the conditional measure. It is no surprise then that the BP equations, introduced in Ref. [5] for symmetric interactions ($\alpha_{ij} = \alpha_{ji}$), are a stationary solution of PBMF equations for symmetric interactions. Nevertheless, proving it could be a useful exercise for the future.

BP's update rule, as presented in Ref. [5], is:

$$\eta_{i \rightarrow j}(N_i) = \frac{1}{z_{i \rightarrow j}} \frac{1}{N_i + \Delta} \exp \left\{ -\frac{\beta}{2} (N_i^2 - 2N_i) \right\} \prod_{k \in \partial i^- \setminus j} \sum_{N_k=0}^{\infty} \eta_{k \rightarrow i}(N_k) \exp \left\{ -\beta \alpha_{ik} N_i N_k \right\}, \quad (\text{S18})$$

where the constants r and K are set to one for simplicity. The constant $z_{i \rightarrow j}$ is a normalization factor, $\Delta > 0$ is a small parameter and $\eta_{i \rightarrow j}(N_i)$ are BP's messages. One must remember that in this case $\alpha_{ik} = \alpha_{ki}$, so one could write one or the other and Eq. (S18) remains valid.

First of all, one must notice that Eq. (S18) is written in a discretized space, so N_i is actually taking discrete values. That is the reason why in Eq. (S18) one sees a sum over N_k and not an integral. It is always possible to recast this expression in terms of the continuous variables n_i . Besides substituting sums by integrals, one has to pay particular attention to the factor $(N_i + \Delta)^{-1}$. As λ in the continuous case, here Δ ensures that the divergence when N_i goes to zero is not so critical that it makes the probability distribution non-normalizable. Any positive Δ will remove this divergence at $N_i = 0$. Thus, in the continuous version, one must simply substitute the factor $(N_i + \Delta)^{-1}$ by the analogous factor $n_i^{\beta\lambda-1}$, present in Eqs. 3 and 8 in the main text.

The resulting update rule is:

$$\eta_{i \rightarrow j}(n_i) = \frac{1}{z_{i \rightarrow j}} n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i^2 - 2n_i) \right\} \prod_{k \in \partial i^- \setminus j} \int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) \exp \left\{ -\beta \alpha_{ik} n_i n_k \right\}, \quad (\text{S19})$$

It will be helpful to look closely at the integral

$$\mathcal{Z}_{k \rightarrow i}(n_i) = \int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) \exp \left\{ -\beta \alpha_{ik} n_i n_k \right\}. \quad (\text{S20})$$

In understanding its meaning, it is useful to write the stationary pair probability density in terms of BP's messages:

$$P_\infty(n_i, n_k) = \eta_{i \rightarrow k}(n_i) \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}. \quad (\text{S21})$$

Then, the conditional probability density is

$$\begin{aligned} P_\infty(n_k | n_i) &= \frac{\eta_{i \rightarrow k}(n_i) \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}}{\int_0^\infty dn_k \eta_{i \rightarrow k}(n_i) \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}} = \frac{\eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}}{\int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}} \\ P_\infty(n_k | n_i) &= \frac{1}{\mathcal{Z}_{k \rightarrow i}(n_i)} \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}. \end{aligned} \quad (\text{S22})$$

So $\mathcal{Z}_{k \rightarrow i}(n_i)$ is the normalization factor of the conditional probability density. Furthermore, its derivative with respect to n_i is:

$$\begin{aligned} \frac{\partial}{\partial n_i} \mathcal{Z}_{k \rightarrow i}(n_i) &= -\beta \alpha_{ik} \int_0^\infty dn_k n_k \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k} \\ \frac{\partial}{\partial n_i} \mathcal{Z}_{k \rightarrow i}(n_i) &= -\beta \alpha_{ik} \mathcal{Z}_{k \rightarrow i}(n_i) \frac{\int_0^\infty dn_k n_k \eta_{k \rightarrow i}(n_k) e^{-\beta \alpha_{ik} n_i n_k}}{\mathcal{Z}_{k \rightarrow i}(n_i)}. \end{aligned} \quad (\text{S23})$$

Remembering the definition of $m_{k \rightarrow i}(n_i)$ and Eq. (S21), one gets

$$\frac{\partial}{\partial n_i} \mathcal{Z}_{k \rightarrow i}(n_i) = -\beta \alpha_{ik} \mathcal{Z}_{k \rightarrow i}(n_i) m_{k \rightarrow i}(n_i), \quad (\text{S24})$$

from where it is easy to see that

$$\mathcal{Z}_{k \rightarrow i}(n_i) \propto \exp \left\{ -\beta \alpha_{ik} \int_0^{n_i} dx m_{k \rightarrow i}(x) \right\}. \quad (\text{S25})$$

Returning to Eq. (S19), the expression can be rewritten in a form that is very similar to the formal solution for $P_\infty(n_i)$ in Eq. (S9), and that is connected with the differential equation for PBMF (Eq. (S17)):

$$\eta_{i \rightarrow j}(n_i) = \frac{1}{z_{i \rightarrow j}} n_i^{\beta \lambda - 1} \exp \left\{ -\frac{\beta}{2} (n_i^2 - 2n_i) \right\} \exp \left\{ -\beta \sum_{k \in \partial i^- \setminus j} \alpha_{ik} \int_0^{n_i} dx m_{k \rightarrow i}(x) \right\}. \quad (\text{S26})$$

Thus, the pair probability can be written as:

$$P_\infty(n_i, n_j) = \frac{1}{Z_{ij}} (n_i n_j)^{\beta \lambda - 1} e^{-\frac{\beta}{2} (n_i^2 - 2n_i)} e^{-\frac{\beta}{2} (n_j^2 - 2n_j)} e^{-\beta \alpha_{ij} n_i n_j} \times \\ \times \exp \left\{ -\beta \sum_{k \in \partial i^- \setminus j} \alpha_{ik} \int_0^{n_i} dx m_{k \rightarrow i}(x) \right\} \exp \left\{ -\beta \sum_{l \in \partial j^- \setminus i} \alpha_{jl} \int_0^{n_j} dx m_{l \rightarrow j}(x) \right\}. \quad (\text{S27})$$

Everything is now ready to use the update rule and obtain an expression for the derivative of the probability density $P_\infty(n_i, n_j)$ with respect to n_i :

$$\frac{\partial}{\partial n_i} P_\infty(n_i, n_j) = P_\infty(n_i, n_j) \left[\frac{\beta \lambda - 1}{n_i} - \beta(n_i - 1) - \beta \alpha_{ij} n_j - \beta \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i}(n_i) \right]. \quad (\text{S28})$$

Therefore

$$T \frac{\partial}{\partial n_i} \{ n_i P_t(n_i, n_j) \} - [n_i(1 - n_i - \alpha_{ij} n_j - \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i}(n_i)) + \lambda] P_t(n_i, n_j) \\ = P_t(n_i, n_j) \left\{ T + T n_i \left[\frac{\beta \lambda - 1}{n_i} - \beta(n_i - 1) - \beta \alpha_{ij} n_j - \beta \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i}(n_i) \right] - \right. \\ \left. - [n_i(1 - n_i - \alpha_{ij} n_j - \sum_{k \in \partial i^- \setminus j} \alpha_{ik} m_{k \rightarrow i}(n_i)) + \lambda] \right\} = \mathbf{0}. \quad (\text{S29})$$

Something analogous happens with the derivative with respect to n_j . This means that, in the open region $(n_i, n_j) \in (0, +\infty) \times (0, +\infty)$, the right hand side of Eq. (S17) is equal to zero. In other words, BP is a stationary solution for PBMF when the interactions are symmetric.

S2.2 Zero temperature and large connectivity limit of IBMF

So far, we have presented two stationary distributions that are approximate solutions to the problem. First, IBMF, which is the simplest local closure one can do, but at the same time is of a general purpose. Regardless of the degree of symmetry in the interactions, the stationary solution of IBMF is:

$$P_\infty(n_i) = \frac{1}{Z_i} n_i^{\beta\lambda-1} \exp\left\{-\frac{\beta}{2}(n_i - h_i)^2\right\}, \quad (\text{S30})$$

with $h_i = 1 - \sum_{j \in \partial i^-} \alpha_{ij} m_j$ and $m_j = \int_0^\infty dn_j n_j P_\infty(n_j)$.

When taking the zero temperature limit (equivalently $\beta \rightarrow \infty$), it is crucial to know how to treat the parameter λ . One must remember that λ has the role of ensuring that the distribution is normalizable, by avoiding the extinction of all the species. It is usually interpreted as an immigration rate that must be taken positive, but small, to study the phenomenology of the model in its purest version possible. Therefore, one should take $\beta \rightarrow \infty$ but keep $\beta\lambda$ finite, since $\lambda \sim 0$.

We will compare the final result of taking this limit with Eq. (13) in Ref. [6], which gives an expression for the steady state abundance of the fully connected model at $T = 0$:

$$n = \max\left(0, \frac{1 - \hat{\mu} m_\infty - \hat{\sigma} \zeta_\infty}{1 - \epsilon \hat{\sigma}^2 \chi_{\text{int}}}\right). \quad (\text{S31})$$

Remember that μ is the average value of the couplings α_{ij} , and σ^2 is its variance. When the system is fully connected, it is necessary to rescale these parameters and send them to zero when $N \rightarrow \infty$, but keeping finite $\hat{\mu} = N\mu$ and $\hat{\sigma}^2 = N\sigma^2$. The number $\epsilon \in [-1, 1]$ is the correlation between α_{ij} and α_{ji} , or, in other words, the level of symmetry in the couplings. Besides these parameters, in Eq. (S31) one has: m_∞ , which is the expected value of n ; ζ_∞ , which is a random Gaussian variable; and χ_{int} , which is the integrated response of n to the effect of a small external field.

To recover this result, one can start by taking the limit $T \rightarrow 0$ in Eq. (S30). As we discussed in Section IV of the main text, the probability density then concentrates at one point:

$$n_i = \max\left(0, 1 - \sum_{j \in \partial i^-} \alpha_{ij} m_j\right). \quad (\text{S32})$$

This way of writing it ensures that n_i must always be non-negative. When the connectivity is large, the sum $\theta = \sum_{j \in \partial i^-} \alpha_{ij} m_j$ is distributed as a Gaussian with the following first and second moments:

$$\langle \theta \rangle = \sum_{j \in \partial i^-} \langle \alpha_{ij} m_j \rangle \quad (\text{S33})$$

$$\langle \theta^2 \rangle = \sum_{j \in \partial i^-} \sum_{k \in \partial i^-} \langle \alpha_{ij} \alpha_{ik} m_j m_k \rangle. \quad (\text{S34})$$

The averages in Eqs. (S33) and (S34) are taken over the disorder in the interactions, *i.e.*, over the possible values of the whole matrix of couplings $\overleftrightarrow{\alpha}$ with elements α_{ij} . Then we must realize that m_j is actually a function of $\overleftrightarrow{\alpha}$, and that it is not possible to compute the averages in Eqs. (S33) and (S34) as if m_j were independent of the specific realization of the disorder $\overleftrightarrow{\alpha}$. However, one can explicitly average Eqs. (S33) and (S34) over part of the disorder since most of the elements of $\overleftrightarrow{\alpha}$ are indeed independent of α_{ij} :

$$\langle \theta \rangle = \sum_{j \in \partial i^-} \langle \alpha_{ij} m_j(\overleftrightarrow{\alpha}) \rangle = \sum_{j \in \partial i^-} \langle \alpha_{ij} m_j(\alpha_{ij}, \alpha_{ji}) \rangle \quad (\text{S35})$$

$$\langle \theta^2 \rangle = \sum_{j \in \partial i^-} \sum_{k \in \partial i^-} \langle \alpha_{ij} \alpha_{ik} m_j(\alpha_{ij}, \alpha_{ji}, \alpha_{ik}, \alpha_{ki}) m_k(\alpha_{ij}, \alpha_{ji}, \alpha_{ik}, \alpha_{ki}) \rangle. \quad (\text{S36})$$

The dependence of m_j on the disorder has been reduced to the only elements that are not independent of α_{ij} , which are α_{ij} itself and possibly α_{ji} (if $\epsilon > 0$). The new $m_j(\alpha_{ij}, \alpha_{ji})$ is already an average over almost all the couplings, except for the ones associated with the edges $i \rightarrow j$ and $j \rightarrow i$. Therefore, the right-hand sides of Eqs. (S35) and (S36) are no longer averages over all the couplings that appear in the arguments of the functions. More specifically, the average $\langle \alpha_{ij} m_j(\alpha_{ij}, \alpha_{ji}) \rangle$ in Eq. (S35) is taken over the values of α_{ij} and α_{ji} , considering that they can be correlated. In the same way, the average in Eq. (S36) is taken over the values of α_{ij} , α_{ji} , α_{ik} , and α_{ki} . To compute those averages, it will be useful to write the couplings in terms of standardized Gaussians $x_{ij} \sim \mathcal{N}(0, 1)$ as:

$$\begin{aligned} \alpha_{ij} &= \mu + \sigma x_{ij}, \quad \text{with} \\ \langle x_{ij} \rangle &= 0; \quad \langle x_{ij} x_{kl} \rangle = \delta_{ij,kl} + \epsilon \delta_{ij,lk} \quad . \end{aligned} \quad (\text{S37})$$

Then $m_j(\alpha_{ij}, \alpha_{ji})$ becomes a function of x_{ij} and x_{ji} . However, when the connectivity is large, it is safe to assume that the dependence of $m_j(x_{ij}, x_{ji})$ on each x_{ij} , associated to only one of the many edges that contain the node j , is very weak. Taking an expansion of $m_j(x_{ij}, x_{ji})$ in powers of x_{ij} and x_{ji} up to the first order leads to:

$$m_j(x_{ij}, x_{ji}) \approx m_j(0, 0) + x_{ij} \left\{ \frac{\partial}{\partial x_{ij}} m_j(x_{ij}, 0) \right\} \Big|_{x_{ij}=0} + x_{ji} \left\{ \frac{\partial}{\partial x_{ji}} m_j(0, x_{ji}) \right\} \Big|_{x_{ji}=0}. \quad (\text{S38})$$

Remembering that x_{ij} actually does not appear in the equation for dn_j/dt , but in the equation for dn_i/dt , one realizes that its effect in $m_j(x_{ij}, x_{ji})$ must be even weaker than the effect of x_{ji} . Finally:

$$m_j(x_{ij}, x_{ji}) \approx m_j(x_{ji}) \approx m_j(0) + x_{ji} \left\{ \frac{\partial}{\partial x_{ji}} m_j(x_{ji}) \right\} \Big|_{x_{ji}=0}. \quad (\text{S39})$$

Inserting Eqs. (S37) and (S39) back into Eq. (S35) gives:

$$\begin{aligned}\langle \theta \rangle &= \sum_{j \in \partial i^-} \left\langle (\mu + \sigma x_{ij}) \left(m_j(0) + x_{ji} \left\{ \frac{\partial}{\partial x_{ji}} m_j(x_{ji}) \right\} \Big|_{x_{ji}=0} \right) \right\rangle \\ \langle \theta \rangle &= \mu \sum_{j \in \partial i^-} \langle m_j(0) \rangle + \sigma \sum_{j \in \partial i^-} \left\langle x_{ij} x_{ji} \left\{ \frac{\partial}{\partial x_{ji}} m_j(x_{ji}) \right\} \Big|_{x_{ji}=0} \right\rangle .\end{aligned}\quad (\text{S40})$$

Let the connectivity be equal to c . After identifying that $\langle m_j(0) \rangle \equiv m_\infty$, where m_∞ is the parameter in Eq. (S31) above, and by using the expression for the second moment in Eq. (S37), one gets:

$$\langle \theta \rangle = \mu c m_\infty + \sigma c \epsilon \left\langle \left\{ \frac{\partial}{\partial x_{ji}} m_j(x_{ji}) \right\} \Big|_{x_{ji}=0} \right\rangle . \quad (\text{S41})$$

The derivative in Eq. (S41) gives the average response of m_j to a small perturbation in the couplings. This will be related to the response to a small external field, and to see the relation more explicitly, it is convenient to recast the differential equation for n_j (see Eq. 1 in the main text) in terms of x_{ji} :

$$\frac{dn_j}{dt} = -n_j(1 - n_j - \mu \sum_{l \in \partial j^-} n_l - \sigma \sum_{l \in \partial j^-} x_{jl} n_l) + \xi_j(t) + \lambda . \quad (\text{S42})$$

Taking i outside the sum over the neighbors:

$$\frac{dn_j}{dt} = -n_j(1 - n_j - \mu \sum_{l \in \partial j^-} n_l - \sigma \sum_{l \in \partial j^- \setminus i} x_{jl} n_l - \sigma x_{ji} n_i) + \xi_j(t) + \lambda . \quad (\text{S43})$$

The effect of a small perturbation x_{ji} is the same as the one provoked by a small external field with value $h_j(t) = -\sigma x_{ji} n_i(t)$. The two responses must be related by:

$$\left\langle \left\{ \frac{\partial}{\partial x_{ji}} m_j(x_{ji}) \right\} \Big|_{x_{ji}=0} \right\rangle = \left\langle \left\{ \frac{\partial h_j}{\partial x_{ji}} \frac{\partial}{\partial h_j} m_j(h_j) \right\} \Big|_{h_j=0} \right\rangle = -\sigma n_i \chi_{\text{int}} . \quad (\text{S44})$$

Inserting Eq. (S44) back into Eq. (S41), one finally obtains an expression for $\langle \theta \rangle$ in terms of m_∞ and χ_{int} , which are two of the parameters in the known result from DMFT (see Eq. (S31)):

$$\langle \theta \rangle = \mu c m_\infty - \sigma^2 c \epsilon n_i \chi_{\text{int}} . \quad (\text{S45})$$

The same needs to be done with the second moments:

$$\begin{aligned}
\langle \theta^2 \rangle &= \sum_{j \in \partial i^-} \sum_{k \in \partial i^-} \langle (\mu + \sigma x_{ij}) (\mu + \sigma x_{ik}) (m_\infty - \sigma n_i \chi_{\text{int}} x_{ji}) (m_\infty - \sigma n_i \chi_{\text{int}} x_{ki}) \rangle \\
\langle \theta^2 \rangle &= \sum_{j \in \partial i^-} \sum_{k \in \partial i^-} \langle [\mu^2 + \mu \sigma (x_{ij} + x_{ik}) + \sigma^2 x_{ij} x_{ik}] \times \\
&\quad \times [m_\infty^2 - m_\infty \sigma n_i \chi_{\text{int}} (x_{ji} + x_{ki}) + \sigma^2 n_i^2 \chi_{\text{int}}^2 x_{ji} x_{ki}] \rangle \\
\langle \theta^2 \rangle &= c^2 \mu^2 m_\infty^2 + c \sigma^2 m_\infty^2 - \mu \sigma^2 m_\infty n_i \chi_{\text{int}} \sum_{j \in \partial i^-} \sum_{k \in \partial i^-} \langle (x_{ij} + x_{ik}) (x_{ji} + x_{ki}) \rangle + \\
&\quad + c \mu^2 \sigma^2 n_i^2 \chi_{\text{int}}^2 + \sigma^4 n_i^2 \chi_{\text{int}}^2 \sum_{j \in \partial i^-} \langle x_{ij}^2 x_{ji}^2 \rangle + \sigma^4 n_i^2 \chi_{\text{int}}^2 \sum_{j \in \partial i^-} \sum_{k \in \partial i^- \setminus j} \langle x_{ij} x_{ji} x_{ik} x_{ki} \rangle \\
\langle \theta^2 \rangle &= c^2 \mu^2 m_\infty^2 + c \sigma^2 m_\infty^2 - \mu \sigma^2 m_\infty n_i \epsilon \chi_{\text{int}} (4c + 2c(c-1)) + \\
&\quad + c \mu^2 \sigma^2 n_i^2 \chi_{\text{int}}^2 + \sigma^4 n_i^2 \chi_{\text{int}}^2 (c + c(c-1)\epsilon^2) \\
\langle \theta^2 \rangle &= c^2 \mu^2 m_\infty^2 + c \sigma^2 m_\infty^2 - 2 \mu \sigma^2 m_\infty n_i \epsilon \chi_{\text{int}} c (c+1) + \\
&\quad + c \mu^2 \sigma^2 n_i^2 \chi_{\text{int}}^2 + \sigma^4 n_i^2 \chi_{\text{int}}^2 (c + c(c-1)\epsilon^2) . \tag{S46}
\end{aligned}$$

where we assumed that $\langle x_{ij}^2 x_{ji}^2 \rangle = 1$ and that $\langle x_{ij} x_{ji} x_{ik} x_{ki} \rangle = \epsilon^2$, if $i \neq k$.

Then, the variance of θ is:

$$\begin{aligned}
s_\theta^2 &= \langle \theta^2 \rangle - \langle \theta \rangle^2 \\
s_\theta^2 &= c \sigma^2 m_\infty^2 - 2 \mu \sigma^2 m_\infty n_i \epsilon \chi_{\text{int}} c + c \mu^2 \sigma^2 n_i^2 \chi_{\text{int}}^2 + \sigma^4 n_i^2 \chi_{\text{int}}^2 c (1 - \epsilon^2) . \tag{S47}
\end{aligned}$$

Now, to complete the procedure, one needs to rescale the average μ and the variance σ^2 of the couplings for $\langle \theta \rangle$ and $\langle \sigma^2 \rangle$ to remain finite. The natural choice is

$$\hat{\mu} = c \mu \quad , \quad \hat{\sigma}^2 = c \sigma^2 . \tag{S48}$$

After neglecting the terms that go to zero when $c \rightarrow \infty$, we finally obtain:

$$\langle \theta \rangle = \hat{\mu} m_\infty - \hat{\sigma}^2 \epsilon n_i \chi_{\text{int}} \tag{S49}$$

$$s_\theta^2 = \hat{\sigma}^2 m_\infty^2 . \tag{S50}$$

Remembering Eq. (S32), the stationary abundance for large connectivity and at $T = 0$ was:

$$n_i = \max \left(0, 1 - \sum_{j \in \partial i^-} \alpha_{ij} m_j(\infty) \right) \equiv \max(0, 1 - \theta) = \max(0, 1 - \langle \theta \rangle - s_\theta \nu) . \tag{S51}$$

where $\nu \sim \mathcal{N}(0, 1)$ is a standardized Gaussian. Substituting Eqs. (S49) and (S50) into this expression, we get:

$$n_i = \max(0, 1 - \hat{\mu} m_\infty + \hat{\sigma}^2 \epsilon n_i \chi_{\text{int}} - \hat{\sigma} m_\infty \nu) . \tag{S52}$$

Rearranging terms, we finally recover Eq. (13) of [6]:

$$n_i = \max \left(0, \frac{1 - \hat{\mu} m_\infty - \sigma \zeta_\infty}{1 - \epsilon \hat{\sigma}^2 \chi_{\text{int}}} \right), \quad (\text{S53})$$

where ζ_∞ is a Gaussian with zero mean $\langle \zeta_\infty \rangle = 0$ and variance $\langle \zeta_\infty^2 \rangle = m_\infty$. The latter is also consistent with the third line of Eq. (12) in Ref. [6].

S3 Efficient implementation of IBMF

To use IBMF to obtain the actual values of the averages m_i , one needs to numerically compute integrals of the form

$$I_k(\beta, \lambda, M) = \int_0^\infty dn n^{\beta\lambda-1+k} \exp \left\{ -\frac{\beta}{2} (n - M)^2 \right\}, \quad (\text{S54})$$

with the parameter k taking the value $k = 0, 1$ in our case.

Luckily, the integral (S54) can be expressed in terms of known special functions, called parabolic cylinder functions. They have the integral representation (see 9.241 in Ref. [7]):

$$D_{-p}(z) = \frac{e^{-z^2/4}}{\Gamma(p)} \int_0^\infty dx e^{-xz-x^2/2} x^{p-1}, \quad (\text{S55})$$

which is valid for $\text{Re}[p] > 0$ and where $\Gamma(-p)$ is the Euler's Gamma function. Looking back at Eq. (S54), we can change variables making $x = n\sqrt{\beta}$ to get

$$I_k = \left[\frac{1}{\beta} \right]^{\frac{\beta\lambda+k}{2}} e^{-\frac{\beta M^2}{2}} \int_0^\infty dx x^{\beta\lambda-1+k} \exp \left\{ -\frac{x^2}{2} + \sqrt{\beta M^2} x M \right\}. \quad (\text{S56})$$

After comparing Eqs. (S55) and (S56), we identify $p = \beta\lambda + k$ and $z = -\sqrt{\beta M^2}$, and we can write the integral I_k in terms of the parabolic cylinder functions as:

$$I_k(\beta, \lambda, M) = \left[\frac{1}{\beta} \right]^{\frac{\beta\lambda+k}{2}} \exp \left\{ -\frac{\beta M^2}{4} \right\} \Gamma(\beta\lambda + k) D_{-\beta\lambda-k} \left(-\sqrt{\beta M^2} \right). \quad (\text{S57})$$

Eq. (S57) is very convenient since we can express the first moments of the distribution $P_\infty(n_j)$ in terms of these integrals. Indeed, one has:

$$m_j = \frac{I_1(\beta, \lambda, M_j)}{I_0(\beta, \lambda, M_j)} = \sqrt{\beta} \lambda \frac{D_{-\beta\lambda-1} \left(-\sqrt{\beta M_j^2} \right)}{D_{-\beta\lambda} \left(-\sqrt{\beta M_j^2} \right)}, \quad (\text{S58})$$

where $M_j = 1 - \sum_{k \in \partial j^-} \alpha_{jk} m_k$.

Using again Ref. [7] (9.240), we can write the parabolic cylinder functions in terms of the more practical Kummer's confluent hypergeometric function $\Phi(a, b; z)$, which can be found already tabulated in different programming languages. The relation is:

$$D_{-\beta\lambda-k}(-\sqrt{\beta M^2}) = \frac{2^{-(\beta\lambda+k)/2} e^{-\beta M^2/4} \sqrt{\pi}}{\Gamma\left(\frac{\beta\lambda+1+k}{2}\right) \Gamma\left(\frac{\beta\lambda+k}{2}\right)} \times \times \left\{ \Gamma\left(\frac{\beta\lambda+k}{2}\right) \Phi\left[\frac{\beta\lambda+k}{2}, \frac{1}{2}, \frac{\beta M^2}{2}\right] + \sqrt{2\beta M^2} \Gamma\left(\frac{\beta\lambda+1+k}{2}\right) \Phi\left[\frac{\beta\lambda+1+k}{2}, \frac{3}{2}, \frac{\beta M^2}{2}\right] \right\} \quad (\text{S59})$$

Then, the first moment can be written as:

$$m_j = \frac{\Gamma\left(\frac{\beta\lambda+1}{2}\right) \Phi\left[\frac{\beta\lambda+1}{2}, \frac{1}{2}, \frac{\beta M_j^2}{2}\right] + \sqrt{\frac{\beta}{2}} M_j \beta \lambda \Gamma\left(\frac{\beta\lambda}{2}\right) \Phi\left[1 + \frac{\beta\lambda}{2}, \frac{3}{2}, \frac{\beta M_j^2}{2}\right]}{\sqrt{\frac{\beta}{2}} \Gamma\left(\frac{\beta\lambda}{2}\right) \Phi\left[\frac{\beta\lambda}{2}, \frac{1}{2}, \frac{\beta M_j^2}{2}\right] + \beta M_j \Gamma\left(\frac{\beta\lambda+1}{2}\right) \Phi\left[\frac{\beta\lambda+1}{2}, \frac{3}{2}, \frac{\beta M_j^2}{2}\right]} \quad (\text{S60})$$

We can then set an initial condition for all the m_i , with $i = 1, \dots, N$, and iterate Eq. (S60). This is computationally fast, and the result of the iteration process depends on the relevant parameters of the model (μ, σ, β) and on the interaction graph. The code is available at Ref. [8].

S4 Continuous BP equations

The continuous BP equations for the Generalized Lotka-Volterra (gLV) model, as introduced in Eq. (13) in the main text, read:

$$\eta_{i \rightarrow j}(n_i) = \frac{1}{z_{i \rightarrow j}} n_i^{\beta\lambda-1} \exp\left\{-\frac{\beta}{2}(n_i^2 - 2n_i)\right\} \prod_{k \in \partial i^- \setminus j} \left(\int_0^\infty dn_k \eta_{k \rightarrow i}(n_k) \exp\left\{-\beta\alpha_{ik} n_i n_k\right\} \right). \quad (\text{S61})$$

Eq. (S61) is the update rule for the cavity marginals, or messages, $\eta_{i \rightarrow j}(n_i)$, which are the probability distributions for the abundance of species (node) i once we cut the edges with species j . As usual, we call $\eta_{i \rightarrow j}(n_i)$ *node-to-link* messages. What we immediately notice from Eq. (S61) is that $\eta_{i \rightarrow j}(n_i)$ contains the factor $n_i^{\beta\lambda-1}$, which diverges in $n_i = 0$, for $\beta\lambda < 1$. To avoid such divergence, we introduce the *link-to-node* cavity messages, which we denote $\hat{\eta}_{i \rightarrow j}(n_j)$ and which represent the distribution of the abundance of species j once all its links, except the one with i , are cut. These cavity marginals are defined as:

$$\hat{\eta}_{i \rightarrow j}(n_j) \propto \int_0^\infty dn_i \eta_{i \rightarrow j}(n_i) \exp\left\{-\beta\alpha_{ij} n_i n_j\right\}. \quad (\text{S62})$$

Inserting Eq. (S61) into Eq. (S62), we get:

$$\hat{\eta}_{i \rightarrow j}(n_j) \propto \int_0^\infty dn_i n_i^{\beta\lambda-1} \exp\left\{-\frac{\beta}{2}(n_i^2 - 2n_i)\right\} \exp\left\{-\beta\alpha_{ij} n_i n_j\right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(n_i), \quad (\text{S63})$$

which is now the update rule for the link-to-node cavity marginals $\hat{\eta}_{i \rightarrow j}(n_j)$. Importantly, once the messages $\hat{\eta}_{i \rightarrow j}(n_j)$ are determined, the cavity marginals $\eta_{i \rightarrow j}(n_i)$ follow directly, as we can see by rewriting Eq. (S61) as:

$$\eta_{i \rightarrow j}(n_i) \propto n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i^2 - 2n_i) \right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(n_i). \quad (\text{S64})$$

We can then analyze the BP convergence directly at the level of the link-to-node cavity messages $\hat{\eta}_{i \rightarrow j}(n_j)$. As said before, the advantage is that $\hat{\eta}_{i \rightarrow j}(n_j)$ is a well-behaved function that allows us to avoid the divergence of $\eta_{i \rightarrow j}(n_i)$ at $n_i = 0$.

If we initialize all the messages $\hat{\eta}_{i \rightarrow j}(n_j)$ to the uniform distribution over n_j , the update rule (S63) in the first iteration step becomes:

$$\hat{\eta}_{i \rightarrow j}(n_j) \propto \int_0^\infty dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i^2 - 2n_i) \right\} \exp \left\{ -\beta\alpha_{ij}n_i n_j \right\}. \quad (\text{S65})$$

The advantage of this initialization is that we can rewrite Eq. (S65) as

$$\hat{\eta}_{i \rightarrow j}(n_j) \propto \int_0^\infty dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}n_i^2 + \beta n_i(1 - \alpha_{ij}n_j) \right\} \quad (\text{S66})$$

$$= \frac{1}{\beta^{\frac{\beta\lambda}{2}}} \int_0^\infty dx x^{-p-1} \exp \left\{ -\frac{x^2}{2} - zx \right\}, \quad (\text{S67})$$

where in the last passage we introduced the change of variable $x = \sqrt{\beta}n_i$, with $p = -\beta\lambda$, $z = \sqrt{\beta}(\alpha_{ij}n_j - 1)$. The integral in Eq. (S67) can be exactly solved and expressed in terms of *parabolic cylinder functions* $D_p(z)$. In particular, as it is shown in Eq. 9.241 in Ref. [7], the integral (I) is equivalent to:

$$I = \frac{\Gamma(-p)}{e^{-\frac{z^2}{4}}} D_p(z), \quad (\text{S68})$$

where $\Gamma(-p)$ is the Euler's Gamma function. The first iteration step for the update of the message $\hat{\eta}_{i \rightarrow j}(n_j)$ then corresponds to

$$\hat{\eta}_{i \rightarrow j}(n_j) \propto \beta^{-\frac{\beta\lambda}{2}} \Gamma(\beta\lambda) e^{\frac{\beta}{4}(\alpha_{ij}n_j - 1)^2} D_{-\beta\lambda} \left(\sqrt{\beta}(\alpha_{ij}n_j - 1) \right), \quad (\text{S69})$$

which then has to be normalized.

For the following iteration steps, instead, we go back to Eq. (S63), which we rewrite as

$$\hat{\eta}_{i \rightarrow j}(n_j) \propto \exp \left\{ \frac{\beta}{2}(1 - \alpha_{ij}n_j)^2 \right\} \int_0^\infty dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i - 1 + \alpha_{ij}n_j)^2 \right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(n_i). \quad (\text{S70})$$

In order to analyze the integral part of Eq. (S70), which we will denote by $I_{i \rightarrow j}(n_j)$, let us split it at some $\delta > 0$:

$$\begin{aligned} I_{i \rightarrow j}(n_j) &= \int_0^\delta dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i - 1 + \alpha_{ij}n_j)^2 \right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(n_i) + \\ &+ \int_\delta^\infty dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i - 1 + \alpha_{ij}n_j)^2 \right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(n_i). \end{aligned} \quad (\text{S71})$$

For $\delta \ll 1$, the first contribution, i.e. the integral between 0 and δ , can be approximated as:

$$I_{i \rightarrow j}^\delta(n_j) = \exp \left\{ -\frac{\beta}{2}(1 - \alpha_{ij}n_j)^2 \right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(0) \frac{\delta^{\beta\lambda}}{\beta\lambda}, \quad (\text{S72})$$

where we performed the integration of the factor $n_i^{\beta\lambda-1}$ over the interval $[0, \delta]$, while approximating the remaining part of the integrand by its value at $n_i = 0$.

Substituting Eqs. (S71) and (S72) into Eq. (S70), we obtain the following BP update rule for the cavity messages $\hat{\eta}_{i \rightarrow j}$:

$$\begin{aligned} \hat{\eta}_{i \rightarrow j}(n_j) = & \frac{1}{\hat{z}_{i \rightarrow j}} \left[\frac{\delta^{\beta\lambda}}{\beta\lambda} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(0) + \right. \\ & \left. + \int_\delta^\infty dn_i n_i^{\beta\lambda-1} \exp \left\{ -\frac{\beta}{2}(n_i^2 - 2n_i) \right\} \exp \left\{ -\beta\alpha_{ij}n_i n_j \right\} \prod_{k \in \partial i^- \setminus j} \hat{\eta}_{k \rightarrow i}(n_i) \right]. \quad (\text{S73}) \end{aligned}$$

After having *initialized* the messages following Eq. (S69), the update rule of the continuous BP equations is given by Eq. (S73).

This approach is general, but we specifically used it in order to study the transition from a single-equilibrium phase (where BP converges) to a multiple-equilibria one (where BP does not converge) in the presence of homogeneous ($\sigma = 0$) and competitive interactions ($\mu > 0$). The results are in Subsection IV.C of the main text. In this case, the species abundances will only rarely be larger than the carrying capacities, which in our case are all equal to 1. Some thermal fluctuations could drive species to abundances slightly larger than 1, but we can safely restrict the integral \int_δ^∞ in Eq. (S73) to the interval $[\delta, 2]$. In our implementation, we set $\delta = 10^{-4}$ and compute the integral numerically.

Let us specify that in our analysis we used a sequential update, meaning that at each iteration step k , each $\hat{\eta}_{i \rightarrow j}^{(k)}(n_j)$ is updated to $\hat{\eta}_{i \rightarrow j}^{(k+1)}(n_j)$ asynchronously. In particular, the order of updates follows a random fixed sequence of directed edges $i \rightarrow j$. This sequential approach is essential to avoid convergence inconsistencies, ensuring that BP stops converging only once the multiple-equilibria phase is reached. These issues are also discussed in Appendix C of the main text. As for IBMF and numerical integration, the code is available at Ref. [8].

References

- [1] Wang, Y., Chakrabarti, D., Wang, C., and Faloutsos, C. “Epidemic spreading in real networks: an eigenvalue viewpoint”. In: *22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings*. 2003, pp. 25–34. [10.1109/RELDIS.2003.1238052](https://doi.org/10.1109/RELDIS.2003.1238052).
- [2] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. “Epidemic processes in complex networks”. *Reviews of Modern Physics* 87.3 (2015), p. 925. [10.1103/RevModPhys.87.925](https://doi.org/10.1103/RevModPhys.87.925).

- [3] Cator, E. and Van Mieghem, P. “Second-order mean-field susceptible-infected-susceptible epidemic threshold”. *Physical review E* 85.5 (2012), p. 056111. [10.1103/PhysRevE.85.056111](https://doi.org/10.1103/PhysRevE.85.056111).
- [4] Mata, A. S. and Ferreira, S. C. “Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks”. *EPL (Europhysics Letters)* 103.4 (2013), p. 48003. [10.1209/0295-5075/103/48003](https://doi.org/10.1209/0295-5075/103/48003).
- [5] Tonolo, T., Angelini, M. C., Azaele, S., Maritan, A., and Gradenigo, G. *Generalized Lotka-Volterra model with sparse interactions: non-Gaussian effects and topological multiple-equilibria phase*. 2025. arXiv: [2503.20887 \[cond-mat.stat-mech\]](https://arxiv.org/abs/2503.20887).
- [6] Roy, F., Biroli, G., Bunin, G., and Cammarota, C. “Numerical implementation of dynamical mean field theory for disordered systems: application to the Lotka–Volterra model of ecosystems”. *Journal of Physics A: Mathematical and Theoretical* 52.48 (2019), p. 484001. [10.1088/1751-8121/ab1f32](https://doi.org/10.1088/1751-8121/ab1f32).
- [7] Gradshteyn, I. and Ryzhik, I. *Table of Integrals, Series, and Products*. Elsevier, 7th Edition, 2007. ISBN: 9780123736376.
- [8] Machado, D., Valigi, P., Tonolo, T., and Angelini, M. C. [GenLotkaVolterra_SparseGraphs](https://github.com/GenLotkaVolterra_SparseGraphs): GitHub Repository for this article. 2025. [10.5281/zenodo.17612770](https://doi.org/10.5281/zenodo.17612770).