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Abstract

We extend non-invertible duality concepts familiar from one-dimensional systems to two
spatial dimensions by constructing a web of non-invertible dualities for lattice models
with subsystem symmetries. Focusing on Z, x Z, subsystem symmetry on the square lat-
tice, we construct two complementary non-invertible dualities: a duality that maps spon-
taneous subsystem symmetry-broken (SSSB) phases to the trivial phase (often referred
to as the Kramers-Wannier (KW) duality in 14+1D models), and a generalized subsystem
Kennedy-Tasaki (KT) transformation that maps SSSB phases to subsystem symmetry-
protected topological (SSPT) phases while leaving the trivial phase invariant. Crucially,
these dualities are boundary-sensitive. On open lattices, both the subsystem KW and KT
transformations can be implemented as unitary, invertible operators. In particular, the
subsystem KT map not only identifies the bulk Hamiltonians of the dual phases but also
carries the spontaneous ground-state degeneracy of the SSSB phase directly onto the pro-
tected boundary degeneracy characteristic of the SSPT phase. In contrast, on closed man-
ifolds, the subsystem KW/KT maps become intrinsically non-unitary and non-invertible
when restricted to the original Hilbert space. We establish this non-invertibility from
three complementary perspectives — ground state degeneracy matching (applied to two
copies of the Xu-Moore/Ising-plaquette model), analysis of the symmetry-twist sector
mapping, and the fusion algebra of the duality operator. We further show that enlarging
the Hilbert space to include twisted sectors allows the formulation of the subsystem KW
duality as a projective unitary which preserves quantum transition probabilities, consis-
tent with the recent formulations of the generalized Wigner theorem for non-invertible
symmetries. We also show that the KT map faithfully transmits the algebraic content
of bulk and edge invariants diagnosing strong SSPT order: although strictly local SSPT
repair operators map to highly nonlocal objects in the dual SSSB phase, the essential
commutation algebra and the bulk-edge correspondence remain intact. We conclude
with field-theoretic consistency checks and discuss implications for the classification
and detection of subsystem-protected phases. Our construction provides a concrete lat-
tice realization of non-invertible subsystem dualities, highlighting the central role of
symmetry-twist sectors in characterizing generalized symmetries and exotic phases of
quantum matter.
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1 Introduction

Gapped phases of matter and their classification: The classification of quantum phases of
matter and their transitions is a central challenge in theoretical physics. Landau’s paradigm,
based on the concept of spontaneous symmetry breaking (SSB), provides a powerful frame-
work through the lens of the symmetries of the Hamiltonian and the associated local order
parameters. Yet, it has become clear that this approach is limited, as it cannot fully capture
exotic phases with robust topological features. Gapped systems without symmetry breaking
can host intrinsic topological order [1-3], which are characterized by patterns of long-range
entanglement [4,5]. Examples of such long-range entangled (LRE) phases include fractional
quantum Hall states [6] and quantum spin liquids [7]. On the other hand, gapped systems can
remain nontrivial even without symmetry breaking or intrinsic topological order, provided they
are protected by global symmetries. These phases are referred to as symmetry-protected topo-
logical (SPT) phases of matter, which are short-range entangled (SRE) states [8-11]. While
different LRE phases cannot be connected by local unitary transformations, SPT phases can
be continuously deformed into a trivial product state through a local unitary transformation,
provided the process is allowed to break the protecting global symmetry [12-14]. Exam-
ples of SPTs are the spin-1 Haldane gap phase [15], the Affleck—-Kennedy-Lieb-Tasaki (AKLT)
model [16], and topological insulators [17]. Their nontrivial nature is manifested in gapless
boundary modes that are protected by global symmetry, as seen in the archetypical example of
the AKLT chain, which hosts fractionalized spin edge modes [18]. Unlike conventional phases
with long-range order detectable by local correlations, the AKLT state is distinguished by a
nonlocal string order parameter [19]. These properties are also the defining characteristics
of the spin-1 Haldane gap phase, which can be viewed as a smooth deformation of the AKLT
state.

Quantum dualities: Duality is a powerful concept in theoretical physics, where two seem-
ingly different formulations can describe the same physical theory. The most well-known ex-
ample is the so-called Kramers-Wannier (KW) duality transformation® that relates the para-
magnetic and ferromagnetic phases of the transverse-field Ising (TFI) chain [20,23]. Similar

IStrictly speaking, the 1941 work by Kramers and Wannier [20] demonstrated the duality at the level of the
partition function of a finite-size classical 2D Ising model. Its extension to the self-duality of the quantum TFI chain
model is more recent and can be demonstrated at the level of the bond algebra automorphism [21, 22], without
referring to the classical Kramers-Wannier duality. Hence, some authors prefer not to use the KW acronym when
referring to the latter TFI duality.
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to the KW duality transformation, Kennedy and Tasaki introduced in 1992 a nonlocal uni-
tary transformation that maps spin-1 Hamiltonians realizing SPT on an open chain to the new
Hamiltonians with global Z, x Z, symmetry [24,25]. Soon thereafter, Oshikawa revisited these
results and provided a simple, compact expression valid for any integer spin [26]. As a result,
spontaneous breaking of this “hidden” Z, x Z, symmetry in the KT-dual model is mapped onto
the nonzero expectation value of the long-range string order parameter in the original sys-
tem. At the same time, the ground-state degeneracy of the dual SSB system accounts for the
degeneracy associated with the gapless edge modes of the original model. In summary, the
Kennedy-Tasaki (KT) transformation reveals a duality between an SPT phase and a SSB phase
in Z, X Z, symmetric Hamiltonians. Fig. 1 provides a schematic summary of the dualities

Generalized symmetries: Inrecent years, the traditional notion of symmetry in physics has
been significantly broadened through what is now referred to as the generalized symmetries
framework [27,28]. While conventional symmetries are invertible and neatly organized by
a group-theoretical structure, it is now recognized that symmetries can also be fundamen-
tally non-invertible, with their algebraic properties captured more naturally by fusion cate-
gories [29-33]. For example, there has been a recent resurgence of interest in the afore-
mentioned KW duality of the transverse-field Ising chain. The duality relates the paramag-
netic and ferromagnetic phases, which differ in their ground-state degeneracy. This mismatch
implies that the duality cannot be realized by an ordinary unitary mapping. Instead, it is
implemented by a non-unitary operator that follows the non-invertible fusion rules of the so-
called “Ising-category” fusion rule [29,30,34—44]. In recent work, the KW transformation has
been reinterpreted as a process of gauging non-anomalous global symmetries [34-36,45-47].
This realization has sparked an intensive wave of research, particularly focused on develop-
ing the mathematical foundations of non-invertible symmetries and understanding their role in
quantum field theories [48-56]. More recently, the focus has begun to shift toward condensed-
matter settings, where such exotic symmetries emerge concretely in finely tuned lattice models
at fixed points, opening up new avenues for their physical realization [40,41,57-73].

The KT transformation originally introduced in Refs. [24,25] was defined for spin-1 sys-
tems with open boundaries, and its extension to a ring geometry had remained unresolved
until recently. In an insightful recent work [41], the authors constructed the KT transforma-
tion on a ring through a combination of gauging and stacking SPT phases, treating both spin-1
and spin-1/2 chains and showing their equivalence. Remarkably, on a ring, the KT transforma-
tion was shown to be realized by non-unitary operators satisfying a non-invertible fusion rule,
whereas on an interval with appropriate boundary conditions, the transformation becomes
unitary. This establishes the KT transformation as a non-invertible duality transformation.

Subsystem symmetries: Inrecent years, a new type of global symmetry known as subsystem
symmetry has emerged as playing an important role in the study of exotic lattice systems. Un-
like ordinary global symmetries, where the symmetry generator acts on the entire spatial man-
ifold, a subsystem symmetry acts only within a chosen subregion. Choosing different subre-
gions typically produces independent conserved quantities, so on a lattice, the total number of
conserved charges increases only subextensively with system size [ 74,75]. This idea has gained
renewed attention with the discovery of fracton topological order [76-81], a striking new type
of topological order marked by subextensive degeneracy of ground states and quasiparticle ex-
citations whose motion is severely restricted. Subsystem symmetries can also protect nontrivial
phases, known as subsystem symmetry-protected topological (SSPT) phases [82,83]. One of
the earliest and most striking examples thereof is the square-lattice cluster model [84]. In the
presence of line-like subsystem symmetries, this model hosts an SSPT phase that can serve as a
universal resource for measurement-based quantum computation [85,86]. This discovery not
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Figure 1: Schematic illustration of the Kramers—Wannier (KW), domain-wall decora-
tion (DW) and Kennedy-Tasaki (KT) dualities in a model with subsystem symmetries
such as the one studied in this work. The dualities interrelate the phase with spon-
taneously broken subsystem symmetry (SSSB), the subsystem symmetry-protected
topological (SSPT) and the trivial phase.

only connected subsystem symmetries to quantum information theory but also inspired further
work showing that similar computational universality extends to other SSPT phases [87,88].
In developing a classification framework for SSPT phases, Refs. [87, 88] introduced the dis-
tinction between “weak” and “strong” SSPTs. The weak SSPT refers to phases that can be
viewed as stacks or arrays of independent one-dimensional SPT chains, while strong SSPTs —
exemplified by the square-lattice cluster state — cannot be smoothly connected to the limit of
decoupled 1d SPTs without closing the bulk gap.

In this work, we extend the Kennedy-Tasaki transformation originally formulated in (1+1)D,
to the setting of two spatial dimensions with Z, x Z, SSPT phase. We focus our attention on the
example of the so-called cluster state Hamiltonian on a square lattice, which realizes a strong
SSPT phase with symmetry-protected gapless edge modes. Upon applying the KT transfor-
mation, this model becomes dual to two copies of the Ising plaquette model, which harbours
subextensive ground state degeneracy thanks to the Z, x Z, subsystem spontaneous symmetry
breaking (SSSB). We thus establish the duality between SSPT and SSSB phases, which, when
taken together with the generalized KW transformation, connects these to the trivial phase —
as shown schematically in Fig. 1.

In the process of formulating the generalized KT transformation, we obtain several inter-
esting results, notably demonstrating that the subsystem KT duality is non-invertible when
formulated on a system with closed (periodic or twisted) boundary conditions; but, by con-
trast, this duality can be implemented via an invertible, unitary operator when open boundary
conditions are imposed. This dichotomy, common also to the KW duality, which we also gen-
eralized to the same (2+1)D models with subsystem symmetry, underscores the importance
of the boundary conditions when analyzing the generalized symmetries, as foreshadowed by
the early bond-algebraic formulation of dualities in Refs. [21,22] and more recently clarified
in the formulation of the generalized Wigner theorem [89] encompassing non-invertible sym-
metries. We formulate the noninvertible fusion rules for the duality defect operators for the
case of both the generalized KW and KT transformations in these models. Last but not least,
we touch upon the classification of SSPTs [83] and analyze how the cohomological invariants
can be viewed through the lens of the generalized KT transformation.
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1.1 Summary of Main Results

In view of the length of this paper, we shall summarize our main results here, referring the
reader to the corresponding sections of the main text for details. We have attempted to make
the paper as self-contained as possible, introducing the concepts of the KW and KT duality
transformations first for the (14+1)D case, before extending the formalism to (24+1)D models
with subsystem symmetries.

1.1.1 (Self)duality transformation for (2+1)D systems with subsystem symmetries

We begin by formulating in Section 2 the duality transformation for (2+1)D systems with one-
dimensional subsystem symmetries, such as the symmetries acting on the rows and columns
of a lattice. The resulting duality maps (subsystem) spontaneous symmetry broken phase onto
a trivial phase of the model. By analogy with the one-dimensional TFI chain, this duality is
often referred to as the (generalized) Kramers-Wannier transformation — a nomenclature we
adopt, albeit not historically accurate (as mentioned above, Kramers and Wannier formulated
their duality for a classical two-dimensional system [20]). We apply the KW transformation to
the concrete example of the Xu — Moore model, also known as the Ising plaquette model in
a transverse field [74, 75]. At the self-dual point, the transformation could be regarded as a
symmetry of the model. Crucially, the properties of this symmetry depend on the boundary
conditions — we show that in a system with open boundaries, this is a conventional symmetry
implemented by a unitary operator; by contrast, the symmetry becomes non-invertible, non-
unitary if closed (periodic or twisted) boundary conditions are imposed. We conclude Sec. 2 by
formulating the fusion rules for the subsystem defect operators of this noninvertible symmetry.

1.1.2 Generalized Kennedy-Tasaki transformation in (2+1)D

Building on the subsystem KW duality developed above, we introduce in Secs. 3 and 4 a gener-
alized KT transformation applicable to (2+1)-dimensional systems with subsystem symmetries,
extending the construction of Ref. [41] to two spatial dimensions. This generalized transfor-
mation establishes a one-to-one correspondence between Z, x Z, SSPT phases and Z, x Z,
subsystem symmetry-broken (SSSB) phases. A schematic overview of these dualities is pro-
vided in Fig. 1. We distinguish two cases: (i) the weak SSPT phase, which is mapped by the KT
transformation to the collection of decoupled Ising chains, discussed in Sec. 3 and (ii) strong
SSPT, exemplified by the 2D cluster Hamiltonian, which is mapped by the KT transformation
onto the Ising plaquette model, shown in Sec. 4.

In Appendix B, we establish from a field-theoretic perspective that the combined operation
of gauging a subsystem symmetry and stacking an SSPT phase transforms an SSSB phase into
an SSPT phase. Next, we present a careful formulation of the subsystem KT transformation
on the square lattice for both open boundary and periodic/antiperiodic boundary conditions.
In the latter case of closed boundary conditions, our generalized subsystem KT transformation
becomes non-unitary and non-invertible — the fact that we establish through three comple-
mentary perspectives. First, in Sec. 4.3, we implement the subsystem KT transformation on
two copies of the Xu—Moore model and show explicitly that it maps a Z, x Z, SSSB phase to
the square-lattice cluster Hamiltonian realizing a strong SSPT phase, while leaving the trivial
paramagnet invariant. Here, we provide a ground-state perspective: when acting within the
original Hilbert space, the subsystem KT transformation is intrinsically non-invertible. How-
ever, by extending the Hilbert space to include twisted sectors, the transformation regains uni-
tarity and becomes fully invertible, in agreement with the statement of the generalized Wigner
theorem that has been recently formulated to encompass the notion of non-invertible symme-
tries [89]. Second, in Sec. 4.4, we explicitly analyze how symmetry-twist sectors are mapped
under the transformation, which already provides clear evidence that it does not act as a uni-
tary operator when closed (periodoc or twisted) boundary conditions are imposed. Finally, in
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Sec. 4.5, we examine the fusion algebra between the subsystem KT duality operator and the
subsystem symmetry generators. This fusion structure directly reveals the non-invertibility
and non-unitarity of the transformation.

We further examine in Sec. 5 the subsystem KT transformation on an open square lattice
and demonstrate, through explicit calculation, that in this geometry the transformation acts
as a unitary, invertible operator. To illustrate this concretely, we analyze a Z, x Z, SSSB phase
of the Ising plaquette model and show that the subsystem KT transformation maps onto the
cluster Hamiltonian on the square lattice, which realizes the strong SSPT phase. Moreover,
within the ground-state manifold, we find that the subsystem symmetry generators act only
on localized boundary modes of the open lattice. Remarkably, these boundary degrees of
freedom form operators that satisfy the Pauli algebra, highlighting the effective edge structure
generated by the transformation.

1.1.3 Z, x Z, SSPT, its bulk and edge invariants, and KT transformation

The subsystem KT transformation we introduced in Sec. 4 and 5 connects not only the bulk
Hamiltonians of the SSSB and SSPT phases but also their boundary degrees of freedom, re-
vealing the duality between symmetry breaking and symmetry protection which we discuss in
detail in Sec. 6. We explicitly compute the edge symmetry operators of the strong SSPT phase
and show that they realize a projective representation of the subsystem symmetry group. Un-
der the KT transformation, these localized edge operators are mapped to decorated, extended
subsystem strings traversing entire rows or columns in the dual SSSB phase, thereby making
the hidden symmetry strings of the SSPT explicit.

Section 7 then formulates the bulk and edge invariants that diagnose strong SSPT phases
[82,83] and remain invariant under any linearly symmetric local unitary (LSLU) evolution.
The bulk invariant measures the phase accumulated when a half-space symmetry operator
is commuted past a local corner “repair” operator introduced by truncating the subsystem
symmetry to a finite region [83]. The boundary analogue of the bulk invariant characterizes
the projective algebra of the edge symmetry generators. The two quantities are connected by
the bulk-edge correspondence: the bulk phase equals the commutation phase between short
edge segments immediately to the left and to the right of a vertical cut.

For the strong Z, x Z, SSPT (2D cluster state) model, this correspondence yields a non-
trivial value of the bulk invariant. In contrast, for a weak SSPT constructed from decoupled
one-dimensional cluster states, all the bulk invariant values are trivial, as expected. On the
boundary, the same information is encoded in a “link diagram” representation introduced in
Ref. [83], where nontrivial commutation phases arise only between neighboring boundary
generators of different types. The parity of such links intersected by any cut reproduces the
corresponding bulk invariant.

Although the subsystem KT transformation maps the entire SSPT phase to its dual SSSB
phase, the quantities obtained by applying this transformation to the bulk diagnostic operators
do not constitute intrinsic invariants of the SSPT phase itself. In fact, the subsystem KT map
sends the strictly local repair operators of the SSPT description to highly extended, nonlocal
objects in the dual picture. Nonetheless, we show that the essential commutation structure
that distinguishes the strong phase is preserved under the transformation. In this way, the sub-
system KT map faithfully transmits the algebraic content associated with subsystem-protected
order, even though the transformed bulk/edge invariants no longer admit a simple local inter-
pretation.
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1.2 Relation to Prior Work

Prior work on subsystem dualities in the Ising plaquette model — most notably Ref. [57] - has
focused almost exclusively on closed square lattices with periodic or antiperiodic boundary
conditions. The structure of the generalized (Kramers—Wannier-like) subsystem duality on an
open square lattice, however, has not been addressed, despite its importance for formulating
boundary-sensitive subsystem dualities such as the generalized Kennedy-Tasaki transforma-
tion.

In this work, we fill this gap by deriving the subsystem KW duality operator explicitly on
the open square lattice and demonstrating, through direct calculation, that it defines a unitary
and fully invertible mapping in this geometry. To place this in context, we revisit the Xu-
Moore model, where the subsystem (self-)duality is realized. By analyzing its ground-state
structure, we show that the duality transformation becomes intrinsically non-invertible when
restricted to the original Hilbert space on closed manifolds, and that unitarity can be restored
only after enlarging the Hilbert space to include twisted sectors, in agreement with recent
observations [41]. This ground-state-based perspective serves as a conceptual and technical
precursor to the analysis of the generalized subsystem KT transformation, where analogous
issues of non-unitarity and non-invertibility again arise on closed manifolds.

In a recent work, a subsystem KT transformation was explicitly constructed [66] for the
strong SSPT phase, under periodic boundary conditions. The corresponding subsystem KW
duality operator was realized there through a sequential circuit construction combined with
a projection onto symmetry subspaces. Importantly, the KW transformation in that work acts
within the same lattice and Hilbert space, mapping the theory to another formulation defined
on an identical set of spins.

In our formulation, we have taken a different route, conceptually speaking, the one that
emphasizes precise treatment of symmetry actions, twist sectors/boundary conditions — the
essential elements for defining the subsystem KT transformation as a genuine duality. We
construct the explicit form of the subsystem KT operator for both the weak and strong SSPT
cases, under both open and closed (periodic or antiperiodic) geometries. Closed geometries
play a crucial role here, as twisting the boundary conditions serves as a sharp diagnostic of the
underlying SPT order. The subsystem KW formalism used in our construction draws inspiration
from Ref. [57], which maps a model defined on the original lattice to a dual theory defined
on the dual lattice, rather than acting within the same lattice as in Ref. [66] (see Sec. 2.3 for
more details).

Crucially, we demonstrate that while the generalized KT transformation is unitary and
invertible on open lattices, it becomes intrinsically non-unitary and non-invertible on closed
manifolds. The resulting fusion algebra differs from that of Ref. [66] by additional twist-
dependent terms that explicitly encode the symmetry-twist interplay central to the non-invertible
character of the transformation. This unified framework establishes a complete correspon-
dence between Z, x Z, SSSB and SSPT phases under the subsystem KT transformation, en-
compassing all boundary conditions.

Looking beyond the exclusive focus of Ref. [66] on the strong SSPT phase, our work pro-
vides a unified framework that connects both weak and strong SSPTs through their common
bulk-edge characterization. The quantities obtained by applying this map to the bulk diagnos-
tic operators of SSPT no longer have the meaning of the corresponding invariants in the SSSB
phase. Indeed, the subsystem KT transformation sends the strictly local repair operators that
define the SSPT bulk invariant to highly extended, nonlocal objects in the dual SSSB picture.
Nevertheless, we show that the essential commutation algebra distinguishing the strong SSPT
phase is preserved exactly under the duality. In this sense, the subsystem KT map faithfully
transmits the algebraic content of subsystem-protected order, even though the transformed
bulk and edge invariants no longer admit a simple local interpretation.
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2 Subsystem Kramers-Wannier duality transformation in (2 + 1)D
spin systems

In this section, we begin with a brief review of the subsystem Z, symmetry in (2 + 1)D on a
square lattice, together with the associated subsystem KW duality transformation [57], as a
prelude to the subsystem KT transformation to be discussed in Secs. 3 and 5. We will later
reformulate the subsystem KT transformation in terms of the KW transformation.

2.1 Subsystem Z, symmetry on a square lattice

Original lattice: We consider a closed L, x L, square lattice (i.e. a torus), with sites labeled
by coordinates (i, j), where i = 1,...,L, and j = 1,...,L,, subject to the periodic identi-
fications i ~ i+ L, and j ~ j+ L,. Each site hosts a spin-1/2 degree of freedom, with a
two-dimensional local Hilbert space spanned by the basis states |0i’j >, where 0; ; =0,1. We
indicate the vertices of the original lattice in red, as shown in Fig. 2. The Pauli operators act

on the state in the standard way,
ofjloi) =1 o), ofiloy)=[1-0is). (1)

As a concrete example of a model with subsystem symmetries, we consider the Xu-Moore
model, also referred to as the transverse-field plaquette Ising (TFPI) model [74, 75], defined
as follows:

Lx L}’

h _ _ 2z Z Z Z x
Hyy = Z Z ("i—l,j—lai,j—lai—l,ja ijt hc’i,j) ] @)
i=1 j=1

where the first term encodes the interaction on plaquettes of the square lattice and the second
term the effect of the transverse field. This model was first proposed in Refs. [74,75] as an
effective description of ordering in arrays of Josephson-coupled p +ip superconducting grains.
The Xu-Moore model admits an onsite (non-anomalous) global subsystem Z., symmetry, whose
generators are the Z, operators acting along every row and column of the lattice,

Lx Ly
X __ X Yy _ X
ur =]l v =] ot ®)
i=1 j=1

. x y .

We denote the eigenvalues of UJ?C ) Ul.“v as (—1)", (—1)% , respectively, where u;.( , ul?' =0,1.
The L, + L, symmetry operators are subject to a single constraint and are therefore not linearly
independent:

vl [ Jur=1 )

As a result, the number of independent symmetry operators is reduced to L, + L, —1, and the
Hilbert space (for a fixed boundary condition) is correspondingly decomposed into 2Lx*Ly~1
symmetry sectors.

In addition, one can introduce subsystem Z, defects along the time direction, resulting in
twisted boundary conditions for the spins as in Ref. [90]

_ _ y _ y
|0i+Lx,j> = ‘Ui,j + t;-c>, ‘O-i,j+Ly> = |(7i,j +t; >> 0i+Lx,j+Ly> = ‘O-i,j + + f}c +t; >, (5)
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Figure 2: Depiction of the Xu-Moore model on the square lattice, with the red sites
hosting the original Ising spins o ;, while the green sites correspond to the dual
degrees of freedom &,_ 11 at the centers of the plaquettes. The mapping of the
plaquette operator and the transverse field term through the KW transformation is

illustrated, following Eq. (11).

where t;‘ , tf’ ,t*Y € {0,1} specify the boundary conditions along the j-th row, the i-th col-
umn, and at the corner, respectively, for all i, j. t = +1 corresponding to periodic boundary

conditions, and t = —1 corresponding to anti-periodic (twisted) boundary conditions. The ad-
ditional twist parameter t*” allows us to specify the boundary conditions for the twist variables
x Y
t¥,t] as
X X Xy Y — Y Xy
iy, =t +07, 6, =6+ (6)

Although there are L, + L, + 1 twist parameters, a more careful analysis reveals that, for a
Hamiltonian with subsystem Z, symmetry, only certain combinations of these parameters are
physically relevant [90],

X — X X = Y Y
=ttt tiy_% =t +t). )
Imposing the constraint
L}’ Lx
S, =3, =, ®
=1"7% i=1 °?

reduces the number of independent twist variables (t;_‘ 1 tf' ) to Ly + L, — 1. Consequently,
—7 173

each symmetry sector is further decomposed into 25+~ twist sectors.
In summary, as pointed out in Ref. [90], the Hilbert space admits a natural decomposi-
tion into 4XxTLy~1 distinct symmetry-twist sectors. Each sector is uniquely specified by the
_y .
set of labels (u}“ U ,t;‘_ %,tl_y_ 1), which encode the subsystem Z, symmetry charges and the

corresponding twist Variablesz. The symmetry-twist labels are subject to global constraints
Lx L}’ Lx t* Ly t_)’
Y X . .
[ [ens =1 [Jen2]Jent=1 ©)
i=1 j=1 i=1 j=1

Dual lattice: We also define a dual lattice, with dual spins &,_ 1,1€ {0, 1} located at the

centers of the plaquettes of the original lattice, depicted in blue in Fig. 2. The states ’51'— 11 >

2
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and &*
i

in the dual local Hilbert space are acted upon by the Pauli operators 6?

1 >
—3,]

1 1.1
2 2,J73

in the same manner as in Eq. (1),

~Z

X
0. 1.1
=373

Giyj1), 0%,
i—=3.J=3/" i—2,j—%

6y =T

1.1
1=3,]73

iy o) =[1=Fig ) 0O

The Xu-Moore model (2) exhibits an exact self-duality between the large-h and small-h
phases, which can be seen as follows. On an infinite square lattice, we can define the dual
spins in terms of the original spins by

x ~z =~z ~z ~z

O:;.=0. 1. 10, 1. 10, 1..10. 1.1

LJ i—g,j—3 itg.j—3 i—g,jty itg.jty’

z ~

o= 11 s, a
ir<iji<j 27 ?

With the above, we can now demonstrate that, on an infinite square lattice, the Xu-Moore
Hamiltonian (2) admits the following representation in terms of the dual spins:

’\h ~X -~z ~gz ~z -~z
Hy , =— E E o + ho o o o 12
XM L\ T i-1,i-3 i—3.j=3  i+3.J-3 i—3.i+3 it+5.j+3)’ (12)
i

which has the same form as the original Hamiltonian, except that the roles of the term multi-
plied by h are interchanged. This is an example of the KW duality in two dimensions.

The dual Hamiltonian (12) respects an on-site global Z, subsystem symmetry, whose gen-
erators on a closed square lattice take the form

Lx L}’
ITx o _ ~X Ty ~X
U™, —l |O'-_1 1 U, —l |O'-_1 1- (13)
=2 Gy )T I s

Mirroring the discussion preceding Eq. (9), the dual Hilbert space can also be decomposed
Sx Y X
t

into 45+ *Ly~1 symmetry-twist sectors labeled by (uj LU s j,/t\?' ) with the global constraints
-3 i3
Lx ﬂyl Ly o~ X Lx —y L}’ ~
[l =] Jeni=1, [y ] Jens =1 (14)
=1 j=1 i=1 j=1

=X ﬁ}’ R R N
Here (—1) "2 and (—1) 2 denote the eigenvalues of U* ,,T” |, respectively, while ?j(,tl?'
=3 i3

represent the corresponding twist variables.

The spin variables of the original lattice and the dual spins on the dual lattice should not
be viewed as coexisting, independent degrees of freedom. Rather, they are connected through
the KW transformation, so that the configuration in one representation completely determines
the configuration in the other.

2.2 Subsystem KW transformation on a closed square lattice

We may regard the subsystem KW transformation as a duality that exchanges the plaquette
interaction with the transverse-field term, thereby establishing the mapping between the or-
dered (SSSB) and trivial phase, as illustrated schematically in Fig. 1. In recent years, several
works [57,66] have constructed explicit forms of the duality operator Ny, often referred to

11
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as the subsystem KW duality operator, which implements this mapping. More precisely, our
goal is to construct an operator Ny satisfying the following property: for any state |y) € H,

NKWO_l 1,j— lal] 10-1 ]_] Z |11b> ’-_1'/\/’KW|’¢>J v|w>€H1
NKWGi,j W)):O'i_%J IO'+2]__6'?_%,J_+% l+2]+ NKW“/)) Vlw) EH. (15)

We now briefly review the subsystem KW transformation, following Ref. [57], where the op-
erator Ny is defined explicitly on a closed square lattice. KW duality operators have been
explored both in the context of mapping between two theories [35, 41, 57,91, 92] and as
self-dual maps within a single theory [43]. Our discussion adopts the specific construction of
Ref. [57], in which the subsystem KW duality operator Ny maps the theory on the original
lattice, with spins o ;, to a dual theory defined on the dual lattice, with spins &';_ 11

The subsystem KW duality operator is then specified by its action on a basis state of the
original Hilbert space H, given explicitly as [57]

Coo
NKW|{G ,J}> (L +1,)/2 Z (=1 Gl iy
6.1 1}

o 1;1}) (16)

12]

where the sum runs over all dual-spin configurations of 6%, and the phase factors ngk and
o0 .
Cpay are defined by

bulk ZZ(Gl 1,j— 1+O-1] 11t 0 1]-{-0'1])0'_%]_%,
11] 1

X
bdy Zt (ULXJJFULXJ 1)+Zt (Gi,Ly+0i—1,Ly)+tyGLX,Ly: 17

Alternatively, the action of Ny can be written in a slightly different form

1 Co +CO |~
A e — — bulk " ~'bdy ) )
Newltowh) = oy 20 D Gsj}), (18)
i-3i-3
: 2Lt ATC o3
with the phase factors C 5, and Cy 4y given by
Lx L}’
506 _ ~ ~ ~ ~
Cbulk Zl:zl Oi,j (O-l—%,]—% + O-l+§,]—% + O-l—%,]-i-% + O-1+§,]+§) >
= J:
LJ/ Lx
A00 _ x (= =~ Y (= = Xy =
bdy—zl:tj (O-%,j—% +O-%,j+%)+ 2 ti (Gi—%,% +0i+%,%)+ t O'%’%. (19)
]: =

It is straightforward to check that C;J; ‘fk + C]‘)’d‘; Cgu‘fk + Cg d" , since one can obtain either form
by appropriately relabelling the summation indices. This estabhshes the equivalence of the
expressions in Egs. (16) and (18). We present both expressions here, as they will be useful
for later applications in Sec. 4.2. The boundary terms in the exponents are fixed to faithfully
preserve the structure of the symmetry-twist sectors under the mapping.

We next analyze the action of the subsystem KW duality operator Ny on Pauli operators,
and convince ourselves that it indeed satisfies the Eq. (15). By the definition of (10), the
operator 8;‘/ L acts on any state in the dual Hilbert space as

1
'3

~ . Y ./
1_0i/_lj/_l>; l=1,]=]

5.1 1>= 2073 . (20)

0. 1 ._1>, otherwise
1=3,]J72

12
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For convenience, we introduce the shorthand notation for the above statement as follows:

gl =[Gy b 0-8uy ). (21)

~X
4 1 41
i'—5,j'—5

To prove the Pauli operator mapping in (15), we start by noting the expression of Ny in
Eq. (16),
1’ 1 - INKW|{01)}> (L w; )/2 Z (-1) CoatCa bdy

Gy g 1=y ).

1.1}

—3J73
(22)
After performing the shift &,,_ 1jp-1 = 1-0,_ 1j-1,an additional phase factor arises from
Cgufl’k + ng‘}’, in Eq. (17), and we ultimately obtain
l, 1 j'— 1NKW|{O-1]}>
1 +C (Y] [0} (0% 1T ;1 31 o
m{ Z (—1) it oty (—1) 017190 71 01,0 ’{O-i—%,j—%}>

=33

i} (23)
which is exactly the first mapping in (15). The second mapping proceeds by an analogous
argument.

The operator ./\/'IIW can likewise be defined, specifying its action on the basis states of the
dual Hilbert space H,

]_ lexes oG
+ ~ _ CouctC
N[ 18g-0) = g 20 O (o))

z z
_NKWUl’ 1]’—101 ]—10i’—1,j’0i’,j’

Ui,j}

1 508 50'6
= SanE 2, D o), 24)

Tij

where the phases Cgu‘fk, ngc; are defined in Eq. (17), while Cgu({k, ng‘; are displayed in Eq. (19)
above.

It is straightforward to verify that the duality operator Ny is Hermitian. Furthermore, the
operator Ny defined in this manner does not depend on the specific form of the underlying
Hamiltonian. Instead, the condition [H, Ngw] |{oi’j}> = 0 can be employed to identify the
class of Hamiltonians that are self-dual under the subsystem KW transformation.

Specializing to the case of the Xu-Moore model in Eq. (2), we note that the subsystem KW
duality operator connects the pre- and post-transformation symmetry-twist sectors, as was
shown in Ref. [57] via

Lo, @, o, TS, TS (25)
j=3 J=3 i—3 i—3 ] ]

Now that we have established the mapping of the Pauli operators as per Eq. (23), we turn
to the fusion rules of the subsystem KW duality operator Nyy. Here, we use the word “fusion”
in a loose sense — not as a fusion of topological defects, but rather as a product of operators

acting on the Hilbert space. Following Ref. [57], the resulting expression is

Ly Ly
N Mo =5 [ [0+ PO+ o) =@, o
i=1 =1

where the right-hand side involves a projection onto a definite twist sector (labeled by/t?’ and

13?) of the model, which we denote by the projector P, making clear the non-unitary nature of
the transformation.

13
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2.3 Does the action of subsystem KW duality constitute a symmetry?

Here, we highlight the distinction between the KW duality operator and the KW duality sym-
metry. The operator form, denoted by Ny in Eq. (16), acts as a nonlocal map between two
distinct Hilbert spaces—one defined on sites and the other on plaquettes. To reformulate this
duality as a genuine symmetry acting within a single Hilbert space, one can relabel the pla-
quette degrees of freedom as site variables, following the prescription of Ref. [57],

5-1'+%,j+% _>O-1/',j' 27)
With this identification, the transformed operator — denoted Ay — acts internally within a
single Hilbert space #H and can therefore be regarded as a candidate for the duality symmetry

of the lattice model. Its action on Pauli operators is given by [57]

NKWO-?’jO-?+1,jUij+1O-?+1’j+1 hp) = O-iJNKW |,t/)> > V |¢> € H:

-/\_/’KWO-EJ' W’) = O-?_l,j_lO?,j_laf_l,jaij-/\_/’KW hp) , v W’) eH. (28)

Through these relations, one sees that Ny leaves the Xu-Moore Hamiltonian at the self-dual
point h = 1 invariant, and the operator Ny, commutes with the Hamiltonian. A key advantage
of this single Hilbert space formulation is that one can now meaningfully define the self-fusion
of this operator, which was shown in Ref. [57] to take the form

Lx Y
o1 . A
N x New =3 | (1+ s o)) [ [+ E00u) 1y =60, 00T,,,  29)
i=1 j=1
which closely mirrors the composition NK'W x Niw in Eq. (26), but includes an additional
factor T, implementing a translation along the lattice diagonal, which can be traced to two
half-translations in Eq. (27):

Txy|{0i,j}>= ‘{02,]- =Ui+1,j+1}>- (30)

This reformulation aligns with recent theoretical developments in non-invertible KW symme-
tries [43,63,66], clarifying how the translation operator appears on the right-hand side of the
composition /\_/K'W x Niaw-

In light of the above, can we declare Ny the symmetry of the Xu-Moore model? At first
glance, the answer would appear to be affirmative, as it commutes with the Hamiltonian in
Eq. (2), but there is an important subtlety that is often overlooked — in order for an operator to
be a faithful symmetry, it must, in addition, also preserve the transition probabilities between
all the states in the Hilbert space. This requirement appears in the statement of Wigner’s
theorem [93], ensuring that the symmetry action cannot be detected by any measurement.
Consider now two arbitrary states |a), |3) in the Hilbert space H, which are transformed into
|&) = Nywla) and |B) = NiwlB), respectively. By Wigner’s argument, we require that the
transition probability remain unchanged: |(f|a)|> = |(B]a)|. Consider the left-hand side:

[(Bla)® = [(BINGy x Niwla) > = [{BIB(E, ©) Ty |a)* # [(Bla) (31

for general |a) and |B). Indeed, it suffices to choose |a) = |B) to be in the kernel of the
projector operator (such that P(t°,t)|a) = 0) to see that the transition probability vanishes,
violating Wigner’s condition.

Is there a way to ensure that the subsystem KW transformation acts as a faithful symmetry
on the Xu-Moore model at the self-dual point h = 1? The answer is provided by the general-
ization of Wigner’s theorem to non-invertible symmetry which has been proven recently [89],
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stating that in order to preserve transition probabilities, the symmetry operator must be a
composition of a unitary (or antiunitary) operator I/ and a projector operator P defined on
an enlarged Hilbert space H = H & #, such that this projector acts trivially on the original
Hilbert space: P|a) = |a),V|a) € H. Indeed, for a 1+1D transverse-field Ising model, one can
explicitly construct a faithful symmetry operator of the desired form

Nipr = Urp P, (32)

by enlarging the Hilbert space by one qubit, H = H ©7H,, where the auxiliary Hilbert space H,,
is said to contain a so-called n-defect of the Z, symmetry — for details see Refs. [63] and [89].
The analogous construction for the 2+1D Xu-Moore model with subsystem symmetries is a
subject of a separate work [94] by one of the present authors (A.H.N.). In short, a bona fide
symmetry operator Ny, satisfying the generalized Wigner’s theorem [89] can be constructed,
with the fusion rule of the form

'/\N/‘IEW X ./\N/'KW = P_'_T

ey (33)

where P, projects onto the definite eigenvalue Z = +1 of the (L, + L, —1) ancillae qubits
spanning the auxiliary Hilbert space (see Ref. [94] for details):

L 1N\ L row
1z B 142
R @
J

i=1 =2

While this expression resembles the r.h.s. of Eq. (29), the crucial difference is that the projector
P, leaves the physical Hilbert space intact, instead performing a non-invertible projection onto
the enlarged Hilbert space H | . There is a one-to-one correspondence between the (L, +L,—1)
ancillae that span the enlarged Hilbert space and the subsystem symmetries defined by the
operators {U J’.‘, Ul.y } in Eq. (3), in fact the generalized KW transformation maps them onto one
another, thus exchanging the ordered and disordered phases of the Xu — Moore model. One
can think of the ancillae as labeling the twist sectors {tl?' s t}‘} of the model - indeed, as seen
from Eq. (25), the duality transformation exchanges the subsystem symmetry sectors with the
twist sectors of the dual model.

2.4 KW duality as a gauging transformation

In recent developments, the KW transformation has been understood in terms of gauging
global symmetries [ 34-36,45-47]. For a theory with a non-anomalous on-site symmetry, gaug-
ing promotes the global transformation into a local redundancy by introducing site-dependent
symmetry actions. In the Euclidean spacetime formulation, this is implemented by coupling
to background gauge variables placed on temporal links and spatial links of the original lat-
tice. The gauge degrees of freedom thus live on the vertices of the dual lattice. The proce-
dure involves two steps: (i) attaching to the partition function a phase whose exponent is
the cup product of the gauge fields in the original and dual theories, and (ii) summing over
all gauge-field configurations of the original theory to promote its background field to a dy-
namical one. The resulting gauged theory carries a new dual global symmetry, and its Hilbert
space naturally decomposes into symmetry and twist sectors. Viewed in this light, the KW
transformation precisely corresponds to this gauging step and is identified with the so-called
S-transformation [41].

In our setting, the symmetry in question is not a conventional global one but a subsystem Z,
symmetry. The gauging procedure is entirely analogous: in Euclidean spacetime we introduce
temporal link variables A* and spatial plaquette fields A*”, as in the Xu-Moore model, and again
proceed in two steps — first attaching to the partition function a cup-product phase between
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the original and dual gauge fields, and then summing over all gauge configurations of the
original theory to promote its background field to a dynamical one. A detailed discussion of
this procedure for subsystem Z, symmetries is presented in Appendix A following Ref. [90].
A more detailed exposition for the Xu — Moore model, incorporating also the so-called “half-
gauging” procedure to derive the duality defects, can be found in Ref. [94].

The analogous gauging procedure can also be applied to the dual theory Eq. (12) with &
matter degrees of freedom, by introducing the A gauge fields, detailed in Appendix A. In this
way, the partition function of the original theory, written in terms of the variables {o; ;,A}, can

be mapped to that of the dual theory expressed in terms of {G,_ 11 ,A}. Under this duality,
the twist sectors of the original theory are exchanged with the subsystem symmetry sectors
of the dual theory, and vice versa, as summarized in Eq. (25). In Appendix A.2, we rederive
the symmetry-twist sector mapping in Eq. (25), which follows naturally from analyzing the
partition function and from the gauging procedure.

Thus, the operator Ny in Eq. (16) is naturally understood as implementing the gauging
of the subsystem Z, symmetry. This perspective also explains why the exponent structures in

Egs. (16), (17), and (19) closely resemble minimal coupling terms to background gauge fields.

2.5 Subsystem KW transformation on an open square lattice

The subsystem KW transformation on an open square lattice has not been addressed in Ref. [57],
where the focus was primarily on the closed lattice case (with periodic or antiperiodic bound-
ary conditions). Here, we focus on the open square lattice, since this setup is crucial for
reformulating the subsystem KT transformation in this geometry in Sec. 3. While the oper-
ator Ny realizing the subsystem duality transformation is typically non-unitary and follows
a non-invertible fusion rule, we will show that for certain open boundary conditions, Ny in
fact acts as a unitary operator.

We consider an open L, x L, square lattice, where each site is labeled by coordinates (i, j)
withi=1,...,L, and j =1,...,L,. The corresponding dual spins are located at the centers
of the plaquettes, with coordinates (i — %, j— %), as depicted in Fig. 2. Let us begin with the
expression in Eq. (16) and adapt it so that only the terms fully contained within the system
are retained in the exponent, corresponding to a free boundary condition. Specifically,

]. O'O'/
open| Ay — Z _ Copen ~ >
Nav louh) = sammn 20 GO |Gy, (35)
o,_1. 1}
2772
where
Lx L}'
oo’ _ -~
S WY AL IPILIECE
i= 2] 2 i=1j=2
Lx Y
NN 3) S @
i=2 j=1 i=1 j=1

The unitarity of Ny, can be confirmed by explicitly evaluating <{0i’j}\N£5venTNI?V’f !

o’ .}). To illustrate this, we proceed with the calculation,
i,j p

1 ~
{o J}> = o(Le+Ly) o Z <{ai 303
g

>

({00} Ngoe™ T Nghen (—1)Corei

Sl ) en
i_%’j_% 2:J732

e/, 4}

1
=5,]73%
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where we have dropped the superscript indices on C(;)%; for the sake of brevity. The resulting
phase factor

LX Ly Lx Ly Lx Ly
NN _ ~ ~ ~
Copen —Zzai—l’f—lai—%,j—% + Z Tij-19i-4,j-3 +Zzai—1,10i—%,f—%
i=2 j=2 i=1 j=2 i=2 j=1
Lx Ly Lx L)’ Lx L}’
~ z : / ~ / ~
+ z : z :UI,J 1—5,]—% + g; 1,j 10-1—%,]—% + 01,]—101—%,]—%
i=1j=1 =2 j=2 i=1 j=2
Lx Ly Lx Ly
/ -~ /o~
22,000,000 0 (38)
i=2 j=1 i=1 j=1

)

[N

2>

As ‘{(’ii_l 1 }> is an orthonormal basis, the inner product <{8i_%’j_%} {61{_l i1 }> equals
2

1whena’ , |, = 61._% -1 for all (i,j) and O otherwise. Consequently, summing over all

i-3.0=3
6; . . 1, we obtain from Eq. (37)
—3.J=3
1 NTN
pen i pen / _ _ CO o
(o N N |(or ) = sy 20 (1%, (39)
g1, 1}
5 2,]
where C{)\[Qﬁv in Eq. (38) becomes
Lx L}’ Lx L}’
NN _ / ~ ’ -~
Copen =252 (i + 001 ) G gy + (o1 +0754)e 153
i=2 j=2 i=1j=2
Lx Ly Lx Ly
/ -~ / -~
2 2 (ot ol)8 ot (005 +07,) Tyt (40)
=2 j=1 i=1 j=1
Next, performing the sum over all &,_ 11 results in
opent , ropen oLsly Lx =
[ / —
«GiJ}lNKW Niw {Oi,j}> T oLetL, “1_1501‘,1,‘7?,;' (41)
i=1 j=1
If we rescale o properly, the prefactor 2L+y~(x*Ly) drops out and the expression re-

duces to the identity. This calculation confirms that
Nghe N = 1, (42)

thereby establishing that NI?&EH acts as a unitary operator under the free boundary conditions.
This behavior notably differs from that of the closed square lattice, where Ny is known to be
non-unitary, non-invertible operator [95], as we demonstrated above, see Eq. (26).

If, instead of the duality operator N, ", we consider the duality symmetry operator J\_/'I?\f)ven
equipped with half-translation (Eq. 27), the fusion rule under open boundary conditions takes
the form

NN W™ = Ty, (43)

where T y 1S the diagonal lattice translation defined in Eq. (30).
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To better understand the transformation, it is helpful to explicitly derive the mapping be-
tween the Pauli operators. By performing a straightforward calculation, we find that

o 1’j_%N12\1/;>\/en |"~p> = NOK\E)\/enOij ({O-X’Z}) W)) 5

5?_%’]._%Nﬁ$en|¢) :NOK\E)VenO'Zj ({o*Dly). (44)

In other words, the dual lattice variables get mapped to

-open pen
~ Kw ~ Kw
O').c_1 .1 ? Oicj ({O'x’z}): O-% 1.1 Olz] ({O'X’Z}) (45)
i=%,J=3 > i=2,=3 ’
where
Z Z y4 Z — SR
07 1,j-191j-10i-1,0 1> 1 2,..,Ly,j=2,...,L,
Z Z i : —
Ox ({O.X,Z}): O-l,j—lo-l,j’ L 1: ) ;Ly
b of . .oF i=2,...,L,j=1 ’
i—1,171,1° =4y, Ly, J =
o1 i=1,j=
Lx Ly
oy e p=[ ][ |oF;- (46)
V=i j'=j

For example, consider the spin located at the corner of the square lattice. According to

pen
the mapping in Eq. (44), we have &7 , — o7 ,- Unlike in the bulk, where 6 maps to a
product of four o* operators, at the C(iI"IzleI' 07 , transforms into a single spin operator ail on
the original lattice. This difference originates2 ’fzrom the fact that Cpe, in Eq. (36) contains the

term o7 ;07 ;. We will make use of these maps in Sec. 5.

1°
’2

DNl

2.6 Application of the KW Transformation to the Xu-Moore Model

As a concrete example, we turn to the Xu-Moore (XM) model [74,75] which exhibits the sub-
system KW duality. In this setting, we focus on the ground state and present an argument
illustrating why the KW transformation, when restricted to the original Hilbert space, is nec-
essarily non-invertible. We further show that its unitarity can be recovered by enlarging the
Hilbert space to incorporate the twisted sector, thereby allowing the transformation to act in
a fully invertible manner [41]. Establishing the invertibility or unitarity through an argument
focused on the ground state will prove useful in Sec. 4.3, where we address the invertibility
and unitarity of the subsystem KT transformation.

2.6.1 On a closed square lattice: A non-invertible transformation

We begin by considering the Hamiltonian of the Xu-Moore model in Eq. (2), defined on a
closed L, x L, square lattice. As a next step, we apply the subsystem KW transformation to
the Xu-Moore Hamiltonian. Using the mapping between Pauli operators provided in Eq. (15),
each term in the original Hamiltonian in (2) is rewritten in terms of the dual variables, yielding
the KW-dual Hamiltonian of the Xu-Moore model,

Lx L}’
T7h ~Xx -~z -~z -~z -~z
Hy , =— o + ho o o o . 47
DI N CARPEE L AVRL APRL AR A “7)
=1 j=
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By performing a simple relabeling of variables, in which the spins originally defined on the
plaquettes are shifted to the sites, we find that

h _ 3771/
Hyy = hHyy, - (48)

Hence, at the critical point h = 1, the Xu-Moore model exhibits a subsystem KW duality sym-
metry.

Let us now briefly discuss the phases of the Xu-Moore model [74,75]. The quantum model
in Eq. (2) enjoys subsystem symmetry as

[Hi, US| =0, [HE, U ]=0, (49)

where U ]?C, Ul.y are defined in Eq. (3). Due to the global constraint in Eq. (4), there are L, +L,—1

independent conserved quantities. Consequently, the theory is divided into 2kx*Ly~! symmetry
sectors, each labeled by the eigenvalues of the operators in Eq. (3). For h < 1, these symme-
tries are spontaneously broken, resulting in 2lxt2y~! degenerate ground states. In the ordered
phase (h < 1), the lowest-energy excitation is generated by flipping a single spin. Such a flip
creates four defective plaquettes, which can be viewed as Z, vortices located around the flipped
site. Remarkably, this composite excitation can fractionalize into four excitations that move
apart to occupy the vertices of a rectangle, with all spins inside the rectangle flipped relative
to the ground-state configuration.

In the large-h limit (h > 1), the system has a unique ground state that is invariant under the
Ly + L, —1 symmetry transformations. The lowest mobile excitation in this disordered phase
corresponds to flipping a single bond (in the o* basis). Such a flipped bond can propagate
only in the direction perpendicular to its orientation. Numerical studies show that the phase
transition occurring at the self-dual point (h = 1) is of first-order type [96].

We now turn to a physical perspective on the non-unitarity of the subsystem KW transfor-
mation, presenting an argument based on an analysis of the ground state. Under the subsystem
KW transformation, the ordered phase h < 1 of the original model (2) is mapped to the dual
Xu-Moore model (47) expressed in terms of dual spins residing in the disordered phase, a
regime in which the ground state is unique. This mapping, therefore, takes the 2lx*1y~1 de-
generate ground states of the original ordered-phase model and collapses them into a single
state in the dual description. Such a drastic reduction of the ground-state manifold makes it
clear that the subsystem KW transformation is intrinsically non-unitary and non-invertible. A
similar conclusion follows if we start from the disordered phase (h > 1) of the original Xu-
Moore model (2), which has a unique ground state; under the subsystem KW transformation,
it maps to the ordered phase of the dual Xu-Moore model (47), featuring 25x*Ly~! degenerate
ground states.

We now explain how unitarity can be restored by enlarging the Hilbert space to include
states from the twisted sector. In the disordered phase h > 1 of the original Xu-Moore model
(2), the system does not distinguish between periodic and twisted boundary conditions—the
ground-state energy remains essentially unchanged in either case. This insensitivity implies
that introducing twisted boundary conditions does not cost energy in the thermodynamic
limit. If we formally enlarge the Hilbert space to include all 252y~ twisted-sector configura-
tions (see Sec. 2.1 for details), the ground-state manifold correspondingly expands, yielding
a 2Ex*Ly=1 fold degeneracy.

In contrast, in the ordered phase of the original Xu-Moore model (2) (h < 1), imposing a
twisted boundary condition is energetically costly, as it necessarily introduces vortices with fi-
nite energy. This extra energy shifts the twisted-sector ground state above that of the untwisted
(periodic) sector, preventing them from being degenerate. Consequently, even if we formally
enlarge the Hilbert space to include the twisted sectors, the low-energy manifold remains un-
changed: the ground-state degeneracy stays at 2"x*1y~! arising solely from the spontaneous
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breaking of the subsystem symmetry. This extended Hilbert space then provides a natural
setting in which the subsystem KW transformation can act unitarily (and hence invertibly).

2.6.2 On an open square lattice: An invertible transformation

We now focus on the subsystem KW transformation of the Xu-Moore Hamiltonian on an open
square lattice. While we have already established its unitarity in this setting in Sec. 2.5, we
present here two additional physical arguments in support of this result. This discussion also
serves as a prelude to the more intricate subsystem KT transformation on an open square
lattice, which we will address in Sec. 5.

First, we note that due to the mapping in Eq. (44), the standard Xu-Moore model on an
open square lattice is not exactly self-dual. More precisely, we find that

h _
Hopenxm = ZC’I 11901 2011 107~ ZZ% 119171001,

i=2 j=2
Lx LJ’
i=1 j=1
is dual to
Lx L)’ Lx_lL)’_l
77h ~X ~z ~z ~z ~z
E E o —h o o o
open XM i—3.j—3 i—,j—3  i+3.—3 =3ty i+t
i=1 j=1 i=1 j=1
Ly—1 L,—1
—h E o o* —h o* o* —ho* (51)
-1 1 -1 1 1. 1 1 .,1 1 1-
i=gly—g i+3.ly—3 Ly—3,j=3 Lx—3.j+3 Ly=3.Ly—3

Note the presence of the first three terms of the original Hamiltonian in Eq. (50) and the
last three terms of the dual Hamiltonian in Eq. (51) at the boundary. These are precisely
the terms whose transformation properties under the subsystem symmetry generators defined
in Egs. (3) and (13) we shall now examine in detail. The first term in Eq. (50) explicitly
breaks Uy and Uy the second term exphc1tly breaks Uy fori=1,...,L,; and the third term
exp11c1tly breaks U]x for j=1,...,L,. Similarly, the thlrd term in Eq. (51) explicitly breaks

U” | fori=1,...,L,; the fourth term explicitly breaks [7;‘ , for j=1,...,L,; and the fifth
3

i-3
term explicitly breaks U” | and Ux ;- Physically, this means that the corner longitudinal
Ly

2

magnetic field 01 , in Eq. (50) and & aLx Lol in Eq. (51), acts as a boundary pinning field
that explicitly selects a single symmetry-brolzen configuration, even deep in the ordered phase.
The subsystem symmetry is therefore no longer free to generate a large degeneracy, and the
ground state remains unique. This removal of degeneracy directly resolves the hindrance to
the unitarity of the subsystem KW transformation discussed in Sec. 2.2, since the mapping
between the ground states becomes one-to-one.

We now present our second physical perspective on the problem. An alternative approach
to restoring unitarity is to ensure that the subsystem symmetry of the original spins is strictly
preserved from the outset. To achieve this, we can deliberately omit the first three terms of the
original Hamiltonian in Eq. (50), as these terms explicitly break certain subsystem symmetry
generators. Once these terms are removed, Eq. (50) takes the simplified form

Lx L}’
X
openXM ZZ% 1j-191j1911,i9% hZZ% (52)
i=2 j=2 i=1 j=1
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which in the dual picture corresponds to

Lx L}’ Lx_lL)’_l
H :—EEG?‘,—hE E&?,&?,G?,G?.
open XM L i3, L £ T img,j-y itgjeg gty itgits
i=2 j=2 i=1 j=1
Ly—1 L,—1
—h o* o* —h E o* o* —ho* (53)
1 1 2, 1 1 1. 1 1 .,1 1 1
— Tzl il = Ly=3,J=3 Lx—3.J+3 Ly=3.Ly—3

But now there are two special cases:

* First, let us consider the disordered phase (h > 1) of the original spins described by
Eq. (53), which possesses a unique ground state. Under the subsystem KW duality map-
ping, this phase corresponds to the ordered phase (h > 1) of the dual Hamiltonian in
(53). But for h > 1, the third term in Eq. (53) explicitly breaks ﬁly_l fori=1,...,L,;the

2

fourth term explicitly breaks LA]J?( , for j=1,...,L,; and the fifth term explicitly breaks
-3

[72’ , and ﬁz‘ .- Consequently, we once again observe that the end spin becomes po-
xT2 Y2
larized, resulting in a unique ground state.

* We now turn our attention to the ordered phase (h < 1) of the original Hamiltonian
in Eq. (53), characterized by 2x"Iy~1 degenerate ground states. In this h < 1 limit,
the first term of the dual Hamiltonian in (53) dominates, corresponding to the disor-
dered phase of the dual spins. However, this dominant term lacks certain transverse

field contributions, such as 6% ,, 0 , , fori =2,...,L,, and 07 i1 forj=2,...,L,.
253 253 2 2
These L, + L, —1 boundary spins lack a preferred orientation, which implies the pres-

ence of spin-% “edge modes”. As a result, the ground state manifold is 2"ty ~1-fold
degenerate. The mapping (44) directly shows that spontaneous breaking of the global
subsystem Z, symmetry in the original system manifests as an edge state in the dual
system. Concretely,

oy 4 -~z .
o o =1,...,L 1
N’OpenUxNOPEHT _ %,]_% %,j'i’%, J > sy
w TiNew = a2 - ,
O-lL _ 1> ]—Ly
27y 2
~ ~g .
. o o, i=1,...,L,—1
vy povent _ ) Tt 1 %ip e [T bl 54
KW L Kw 62 l: L
L.—11° X
xT252

This demonstrates that the transformation preserves the ground-state structure. In the dis-
ordered phase of the original theory, the unique ground state is mapped to the unique ground
state of the dual theory. In the ordered phase, the entire degenerate ground-state manifold
with 2LxTLy~1 states is mapped onto the corresponding manifold in the dual theory. Thus, the
transformation consistently acts as a unitary operator, as further confirmed in Sec. 2.5.

3 Subsystem Kennedy-Tasaki transformation: Mapping SSSB to
weak SSPT

So far, we have discussed the generalized subsystem Kramers—-Wannier transformation, which
relates the Z, subsystem)SSB phase to the trivial phase. We now turn to the generalized (sub-
system) Kennedy-Tasaki transformation, a duality mapping between a spontaneous symmetry-
broken phase and an invertible topological phase protected by symmetry (SPT), as illustrated
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schematically in Fig. 1. It is important to point out that a global Z, symmetry is insufficiently
rich to protect a bosonic topological phase — this can be understood in terms of classification of
bosonic SPTs, wherein different SPT phases correspond to (equivalence classes of) the projec-
tive representations of the global symmetry group G with unitary coefficients [8,9]. Distinct
SPT phases in d space dimensions are thus captured by the elements of the cohomology group
with coefficients in U(1): H#4*(G, U(1)) [8], which for G = Z, turns out to be trivial in 1 and
2 space dimensions.

The simplest global symmetry group that offers such protection turns out to be the dihedral
group D,, which is isomorphic to Z, x Z,. In 1+1D, the calculation of the cohomology yields
H2(Zy x Zo,U(1)) = H3(Zy x Zy,7) = Z,, reflecting the well known fact that in addition
to the trivial phase, there is a unique nontrivial SPT, realized in the Haldane phase of spin-1
chain. This, in fact, is the underpinning of the original Kennedy-Tasaki transformation, which
preserves the global dihedral symmetry group Z, x Z, of the spin chain, while interchanging
the SPT and the spontaneous symmetry broken phase.

This section is organized as follows: we first review the 1d KT transformation for the global
75 % Z symmetry in Sec. 3.1, which allows us to introduce the notion of the domain wall deco-
ration operator Upy, and consequently relate the KT transformation to the KW duality studied
in the previous section. We then transition to two space dimensions and consider the weak
SSPT protected by the subsystem Z, x Z, symmetry in Sec. 3.2. We then proceed to analyze the
non-invertible subsystem KT transformation, which maps a SSSB phase of decoupled chains
to a weak SSPT phase in Sec. 3.2. Finally, in the subsequent Sec. 4 we shall presents the
generalization to the strong SSPT case, where we study the properties of the subsystem KT
transformation in detail.

3.1 Brief review of 1d Z, x Z, SPT and KT transformation
3.1.1 1d Z, x Z, SPT

We consider a spin chain with L sites and L links. Each site hosts a spin-1/2 state |c7 i ), and each
link hosts another spin-1/2 state |7 -1 ), so that each unit cell contains two spins, as depicted
in Fig. 3(a). The local Pauli operators act as follows (as before, we use the convention o; =0, 1
and Ti1= 0,1):

o%loj) = (=17 |o;), of|oj)=|1—0;)

J
= e

The Z, x Z, symmetry is generated by

Uo=l£[0;f, UT=1%[T;_ . (56)

The symmetry and twist sectors are labeled by (u,,u,, ts, t;), where u,,u, are eigenvalues of
the symmetry generators U, U, and t, t; specify the boundary conditions o, = 0 + ts,
Tily, = Tl t o Throughout the paper, we interchangeably use the notations |0) = |1),
|1) = ||) for the eigenstates of the Pauli-Z operator, and |+) = |—), |—) = |« ) for the eigen-
states of the Pauli-X operator.

As a starting point, we consider the parent Hamiltonian of the 1d cluster state [97-100] on

a ring:

crjf T;_l. (57)

2

L L
— Z X Z V4
Hgpr =— E 04T 10— E T
¢ J73 ¢ J—3

j=1 j=1

22



SciPost Physics Submission

(a) B ox

e (d) T o
stpT>U§;o o/ e e\ e e- /
INKW\GZ o’ ‘

Ny

(b) o
pow) = w2 = b o h Wspr)s R OVNNONBN O -

[Yspr) = Y |[DDW) = [thetuster)

G

DDWs Ubw
() G
(S SVASTE RVAY WAV VAW WA o/ - 0——0—0—0—0---
P l l l l [Yuivials 7 [+)  [+) [+) [+) [+ )
CZ CzZ CzZ
vow Lo Niew
CZ CZ CZ CZ T o

- 0—0—0—0—0—0---
ol—i—i—l—l—l> [YssB)or J0) [0) [0) [0) 10) [0)

Figure 3: (a) The mapping of the Ising interaction terms through the 1d KW trans-
formation is illustrated; (b) Ground-state wave function showing the domain-wall
decoration pattern; (c¢) Preparation of the 1d cluster state |W,ser) from the trivial
state |Wvia) Using Upy; (d) Illustration of the sequence of transformations that con-
struct the 1D KT duality, which maps a Z, x Z, symmetry-broken state to a Z x Z,
SPT cluster state.

This Hamiltonian is exactly solvable and symmetric under a global Z3 xZ; symmetry generated
by U, and U, in Eq. (56). We represent the ground state of the 1d cluster Hamiltonian in the
basis of eigenstates of ajf € {1, !} for site qubits and T;_‘Jrl € {—, <} for link qubits. The

2
first term of the Hamiltonian (57) can be thought of as energetically enforcing the Gauss

law constraint 0?_10? = 7% |, which ties the configuration of the T spins to the domain
j—1

walls of the o spins. Specifically, when a domain wall occurs between neighboring sites (i.e.,
o?_la;’ = —1), the corresponding 7* link takes the value —1. This leads to the concept of
decorated domain walls (DDWs), where domain walls in the o configuration are “decorated”
by excitations in the T layer. A representative decorated configuration is illustrated in Fig. 3b,
where red arrows denote o* values and blue arrows indicate the values of 7*. The first term
in the cluster Hamiltonian ensures that all such DDW configurations satisfy local Gauss law on
each link, and the second term (acing like the transverse field on o qubits) induces quantum
fluctuations among the domain wall configurations. Consequently, the exact ground state is an
equal-weight superposition of all valid decorated domain wall configurations. The resulting

ground state is thus a linear superposition of all such DDW states:

[Wspr) = >, IDDW). (58)
DDWs

This construction realizes a Z, x Z, SPT phase [ 100], where each domain wall of one symmetry
sector carries a charge under the other — a structure we referred to above as domain-wall
decoration.

To contrast this with the trivial phase, we define the trivial Hamiltonian as

L
Htrivial = _Z O-;‘C - Z Tj-(_ P (59)
j=1

=~

1
=1 °?
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whose unique ground state is the trivial product state that can be written in the eigen-basis of
07 and 7*

1
2

|V trivial) ®|+ ®|+ = Z ’o'j,fj_%>, (60)

X
-1
2 {O-j;Tj_%}

where the sum runs over all (T? and 7* | configurations. This state is fully unentangled and
=3

symmetric under the same ZJ x Z; symmetry.
The SPT/cluster ground state is related to the trivial one: |Wgpr) = Upw [Wiivial) Via a
symmetric, finite-depth quantum circuit [95,101,102], illustrated in Fig. 3c:

UDW l_[ CZ 1T : ZU-,

1
J -3

- !je’q’[i?n(1“’7—1)(1”7—%”8"1’[ F0-a)(i-7y)] o

where CZ,;, is the control-Z gate that introduces a (—1) phase if both qubits a and b are
in the |]) state. The unitary Upy maps the trivial Hamiltonian H,yiy in (59) to the cluster
Hamiltonian Hgpr in (57).

In the (0%, 7%) basis, the SPT state takes the form

ser) = Z - D oy7i), (62)

N\»—l

where N counts the number of (|, |) configurations across each pair of o and = qubits con-
nected by a CZ gate. The nontrivial sign structure introduced by Upyy ensures that when
one changes basis on the T-qubits from 7* to T, this wavefunction precisely enforces the
constraint T;C_ , =0% a0 %, recovering the decorated domain-wall structure in Eq. (58). Thus,
Upw, known aé the domaln wall decoration operator, attaches the charges of one Z, symmetry
to the domain walls of the other. Moreover, this construction provides an explicit realization
of SPT stacking: starting from two decoupled trivial symmetric phases (o and 7) in Eq. (60),
the circuit Upy entangles them into a joint, nontrivial SPT phase protected by the combined
Zs X Zo symmetry.

Both Hgpr and Hy;, describe gapped phases with short-range correlations and share the
same bulk spectrum under periodic boundary conditions. On an open chain, however, Hgpr
supports spin-— edge modes, yielding a fourfold ground-state degeneracy. Within the ground-
state subspace, the Z, x Z, symmetry operators factorize as U, . ~ U, é’f ® Ug’r with [41]

L _ .z R _ -z X
U,=71, U;=1, 107,
2

L—3
L_ R _
Uu; = T)%( o}, U;=o7. (63)
At each boundary, the localized symmetry generators anticommute, USU? = —UZU¢ for (a = L,R),

realizing a projective representation of Z, x Z,. The projective classes are therefore in one-
to-one correspondence with elements of H?[Z, x Z,, U(1)] = Z,, which classifies 1D bosonic
SPT phases protected by Z, x Z, symmetry.

3.1.2 1d Kennedy-Tasaki transformation

Thus far, our discussion has covered two mappings: the KW duality operator, which sends the
Z X Z, phase to the trivial phase, and the DDW operator Upyy, which transforms the trivial
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phase into the Z, x Z, SPT phase. Next, we discuss the 1d Kennedy-Tasaki duality operator,
which maps the Z, x Z, SSB phase to the SPT phase protected by the same symmetry. Below,
we largely follow the exposition in Ref. [41].

From the field-theory viewpoint, the KW transformation corresponds to the so-called S-
operation, which gauges the Z, x Z, symmetry, while Upyy realizes the so-called T-operation,
corresponding to stacking the system with a gapped Z, x Z, SPT phase (see Appendix A and
B for details). In a general field-theoretic framework, Ref. [41] demonstrated that the com-
bined STS transformation implements the KT duality, mapping the Z, x Z, SSB phase to the
associated Z, x Z, SPT phase.

In the lattice model, the STS transformation takes the form Nl(l}i = NIZWUDWNKW’ which
defines the KT duality operator. Its action on the Hilbert-space basis states is as follows [41]:

1 /. /
M ltowry) =5 2 otalorm D)ol ), (64)

9L—1
(o7 )
2

where the configuration-dependent phase factor is given by

L
1d /. Ny — ) / ’
Ao, 0%57,7'}) —Z(O‘l +O'j)(Tj_% + T4 +’L'j_

+ r;+%) + (r% + T/%)(ta +t). (65)
j=1

NI

It is well defined for a closed boundary condition. To convince ourselves that this operator

transforms the SSB into the SPT phase, consider the parent Hamiltonian of the Z, x Z, SSB
state:

L L
_ b4 z _ z b4
Hggp = Zaj_laj ZTJ__%TJ_J’_%, (66)
j=1 j=1
As shown in Ref. [41], acting with the 1d duality operator Ny maps Hggp to the trivial

. . = L ~ L ~ . ~ ~
dual Hamiltonian H,j, = —Zj_l o* —Z]._l 77 (see Fig. 3a). Here, G and 7 are the KW
=191 =

dual spins of o and 7, residing on links and sites, respectively. Applying Upy maps the Hyiyinl
to the SPT Hamiltonian in the dual-spin basis,

L L

Hyr=—,5" o, - DTG, (67)
j=1 j=1

Finally, applying the operator NIlW once more returns the SPT Hamiltonian in terms of the

original spin variables, namely Hgpr in our Eq. (57). Fig. 3d illustrates the sequence of trans-

formations that realize the 1d KT duality, mapping a Z, x Z, SSB state to the Z, x Z, SPT

cluster state.

Although /\/I}}j is unitary on an open chain, it becomes non-unitary on a ring [41]. The
easiest way to see this is by noting that Hgep exhibits a four-fold degenerate ground state,
while Hgpr has a unique ground state, meaning that the ./\/'I}}j transformation must be non-
invertible. Alternatively, note that the algebraic form Nég = NIIWUDWNKW, taken together
with the fact that the Ny transformation is non-invertible on closed boundary conditions,
leads to the same conclusion.

For a detailed discussion of the symmetry-twist sector mapping under /\/’é{l and the asso-
ciated fusion rules that further establish its non-invertibility, see Ref. [41]. Here, we briefly
summarize the essential structure of this mapping. Consider a state belonging to a symmetry-
twist sector labeled by [(u,,, t,), (u;, t;)]. Under the action of the KT transformation, this state
is mapped to a new sector labeled by [41]

[(uy, ), (s )] = [(g, to +ue), (e, tr +1up)]- (68)
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This structure will prove particularly useful when analyzing the corresponding symmetry-
twist sector mapping for the weak subsystem KT transformation introduced in the next sub-
section.

3.2 2d weak Z, x Z, SSPT and weak subsystem KT transformation

Having reviewed the one-dimensional KT transformation and its role in mapping a Z, x Z,
SSB phase to a Z, x Z, SPT phase, we now extend this framework to construct a weak SSPT
phase in two dimensions. Before proceeding, we briefly review the construction of weak SSPT
phases following Refs. [82,83]. A two-dimensional weak SSPT phase can be constructed by
stacking one-dimensional Z, x Z, cluster chains in Eq. (57) along both the horizontal and
vertical directions of a square lattice. Each lattice site at coordinates (i, j) therefore hosts two
independent spin-1/2 degrees of freedom: 0§°W belonging to the horizontal chain that runs
along row j, and 01?01 belonging to the vertical chain that runs along column i. Similarly, each
horizontal (vertical) link carries % (7<) spin that forms part of the horizontal (vertical)
cluster state. Because the two sets of chains act on disjoint spins, the total system represents
a direct product of Nep,ins = Ly + Ly, decoupled one-dimensional SPTs.
The Hamiltonian of this weak SSPT is given by

Z rOW X,fOW _Z,rOwW zZ,JOW _X,IOW _Z,IOW
H‘S"’Se% E E O T 1 O FT 0T
i= 11 1 e S A S B

_ Z Z 2z, col1 x,col z col + TZ ,col O')_C’,COIT%’(.:OII ) (69)
,J J—— ,] 1]—— L,] iL,j+3
i=1j=1

The total symmetry group of this Hamiltonian is a product (Zs, x Z)Neains | where each pair
of Z,’s acts as the on-site symmetry for an individual 1d cluster state:

Ly
Tow __ X,TOW col x,col
ugy =] o™, us l_[ff :
i=1
Lx L)’ |
X,FOW X,C0
ver =] [=o5, vl =] [l (70)
T,j i—1 T, il
i1 3] i=1 )73

We regard the group generated by these unitary operators as the subsystem Z, x Z, symmetry
group of the full (2+1)D model. Importantly, although every lattice site lies at the intersection
of one row and one column subsystem, each spin is flipped by only one of them. In contrast,
within the strong SSPT phase, each spin is flipped under both the horizontal and vertical
subsystem symmetries. This feature — the non-overlapping microscopic action of the subsystem
symmetries — is what distinguishes the weak SSPT from the strong SSPT introduced below in
Section 4.

The weak SSPT phase inherits its key features from the one-dimensional cluster chains
that comprise it. For a system with open boundaries, each 1d chain terminating at an edge
contributes a twofold degeneracy associated with its SPT end modes. Consequently, a system
of size L, x L, exhibits a subextensive ground-state degeneracy that scales as 2L<*Ly protected
by the subsystem symmetries: any local perturbation preserving all symmetries can only act
within an individual chain, leaving the collective edge degeneracy intact.

The structure of the boundary symmetry action in the weak SSPT directly reflects the sym-
metry fractionalization pattern of the 1d cluster state discussed earlier in Sec. 3.1. Each termi-
nated chain at the boundary carries the same projective representation of Z, x Z,, character-
ized by the nontrivial cohomology class in H2[Z, x Z,, U(1)] = Z,, as established in Eq. (63).
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In the weak SSPT, every subsystem chain contributes an independent copy of this projective
representation, and the total boundary Hilbert space forms a tensor product of these decou-
pled projective doublets. Since the subsystem symmetries associated with different rows and
columns act on disjoint spins, all such projective representations commute, ensuring the ro-
bustness of the edge manifold. This stacked realization of symmetry fractionalization embodies
the essential nature of the weak SSPT: it is a direct product of lower-dimensional SPT chains,
each carrying the same Z, x Z, projective class, yet lacking any intrinsic two-dimensional
entanglement between subsystems.

Having discussed the weak SSPT, we now introduce the weak subsystem KT transformation
as a product of 1d KT transformations acting on every row and every column,

Lx . Ly .
Mk = (HM&%"‘”) (HN&&"W’”)- 7
i=1 j=1

where each J\/'IngOW’J ) (NIE?)LI) , respectively) acts only on the 1d row (column) chain according
to Eq. (64). Importantly, this mapping does not couple the two directions: each row (column)
transforms according to its own one-dimensional KT rule. Consequently, the subsystem KT
transformation factorizes into a product of decoupled one-dimensional mappings acting along
the two orthogonal sets of subsystem lines.

The transformation J\/;‘Qf"j‘kT maps the weak SSPT Hamiltonian in Eq. (69) to a system of
decoupled Ising chains harboring the SSSB ground state:

Hweak - O_,‘?J,I‘OV\./O_,‘?:,?OW + Tz,row Tz,row
SSSB ;_1: : : i—1,j 7 i,j i—%,j i+%,j

X Y
- o0l 7ol . geeol pacol | (72)
== L] L] i,j—g L,j+t3

~
[

This model enjoys the subsystem Z, xZ, symmetry whose generators are defined in Eq. (70).
Since the subsystem KT transformation acts independently along each one-dimensional sub-
system line, the correspondence between symmetry and twist sectors follows the same rule as
in the one-dimensional case [see Eq. (68)], applied separately to each row and each column.
The mapping thus preserves the separability of the subsystem directions: symmetry-twist data
associated with rows and columns evolve independently under the transformation, reflecting
its one-dimensional character. The overall transformation is non-invertible on a torus — being a
product of non-invertible 1d KT maps — but becomes unitary on an open rectangular geometry,
where it preserves the spectrum of the system chain by chain.

At this point, it is useful to distinguish between the SSSB ground state realized in a system
of decoupled Ising chains and the SSSB phase appearing in the Xu—-Moore model (a.k.a. Ising
plaquette model in transverse field), discussed in Sec. 2.1 for the Z, case and in Sec. 4.2 for
the Z, x Z, generalization. First, the subsystem symmetry generators of the decoupled Ising
wires in Eq. (70) and those of the Ising plaquette model in Eq. (3) are distinct, as previously
discussed (see the discussion below Eq. (70)). Second, the symmetry operators in the Ising
plaquette model are subject to the constraint in Eq. (4), whereas those in the decoupled Ising
wires are unconstrained. Third, Ref. [103] demonstrated that these two SSSB phases are
genuinely different: by introducing and tuning inter-wire coupling terms, one can drive a
phase transition from the decoupled Ising chain phase to two copies of the Ising plaquette
model. To see this explicitly, consider adding inter-wire coupling terms to the decoupled Ising
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chain Hamiltonian [Eq. (72)]:

L, Ly

X

Ly L
KUO'X oW X, col Z Z XTOW X col ) (73)

1—— l —3
i=1 j=1 i=1 j=1 2J b

Perturbation theory up to fourth order shows [103] that the resulting effective Hamiltonian
coincides exactly with two copies of the Ising plaquette model in Eq. (79). The effective Pauli
operators in Eq. (79) can be expressed in terms of the microscopic wire operators as follows
[103]:

o%. = O_z,rowo_z,col oX. = o_x,row o_z ,col
ij =% Yij o 9ij T 9 ij
2z, row z,col X,rOW X, Col
TE L =TT, T, =T, =T (74)
1=3,]—3% l_z;] 1:]_‘ I=3,]—3 1=3,] ;J_'

Another clear distinction between the two SSSB phases lies in the structure of their exci-
tations. In the decoupled Ising chains, excitations correspond to domain walls on individual
wires, whereas in the Ising plaquette model, flipping a single spin creates four fracton-like
defective plaquettes for each spin species, as discussed in Sec. 2.6.1.

4 Subsystem Kennedy-Tasaki transformation: Mapping strong SSPT
to SSSB

Having discussed the one-dimensional KT transformation in Sec. 3.1 and the two-dimensional
weak subsystem KT transformation in Sec. 3.2, which maps a system of decoupled chains with
spontaneously broken Z, x Z, symmetry to a weak Z, x Z, SSPT phase, we now develop
a systematic formulation of the strong subsystem KT transformation on the square lattice.
In this section, we treat both periodic and antiperiodic (twisted) boundary conditions, and
extend the construction to open boundaries in Sec. 5. The resulting transformation maps a
two-dimensional Z, x Z, SSSB phase to a strong Z, x Z, SSPT phase.

Formulating the subsystem KT operator with twisted boundary conditions allows us to
demonstrate its non-unitary and non-invertible character from three complementary view-
points. First, in Sec. 4.3, following the discussion of the Xu-Moore model in Sec. 2.6, we show
that the subsystem KT transformation is non-invertible when restricted to the original Hilbert
space. Its unitarity is restored only after enlarging the Hilbert space to include the twisted
(antiperiodic) sector [41]. Second, in Sec. 4.4, we analyze the mapping of symmetry-twist
sectors, which already shows that the operator fails to act unitarily on closed geometries. Fi-
nally, in Sec. 4.5, we study the fusion algebra between the subsystem KT operator and the
subsystem symmetry generators; the appearance of additional twist-dependent contributions
both signals non-unitarity and identifies states that are annihilated by the operator, thereby
establishing non-invertibility.

4.1 2d strong Z, x Z, SSPT

We begin by reviewing the essential ingredients of the strong SSPT construction, following the
framework introduced in Refs. [82,83]. We now turn to a closed square lattice of dimensions
L, x L, arranged on a torus, where each site is labeled by coordinates (i, j) withi =1,..., L,
and j=1,...,L,. Asin the previous section, at each site resides a spin-1/2 degree of freedom,
described by a two-dimensional local Hilbert space with basis states |oi’ ;i =0, 1). In addition,
the center of every plaquette hosts a spin-1/2 degree of freedom, with its own two-dimensional

local Hilbert space spanned by the basis states |7,_ 11 = 0,1). We place the o, ; spins on
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Figure 4: (a) The Pauli spin o;, re51des on the red sites, while the Pauli spin 7; 11
is placed on the blue sites. It i 1s important to emphasize that the blue 7,_ 11 spins

are part of the Hilbert space and are distinct from the dual space degrees of freedom
O, 1 1 in the context of the subsystem KW transformation, shown in green in Fig. 2.
(b) A representatlve decorated domain wall configuration is illustrated. Solid yellow
lines indicate domain walls between sites with opposite o* values, while dashed

yellow squares mark the corners where the domain wall is decorated 7 = —1 [104].

the red sites (vertices), and the Tiljl spins on the blue sites (plaquettes), as shown in
Fig. 4a. Consequently, every unit cell contains two spin-1/2 degrees of freedom. This is in
sharp contrast to the Ising plaquette model discussed in Sec. 2, where a unit cell carried only
one spin-1/2, positioned either on a lattice site or at the center of a plaquette, but never on
both. The local Hilbert space at each spin-1/2 degree of freedom is acted upon by the standard

Pauli operators,
Z i O; i X J—
ofiloi) =D o), ofloy) =[1-04),
_ i-1-1 x >_
. . = (— 272 . . =
[Fiog) = D) T4

Ti—%,i—%>’ Tl
The Hamiltonian of the 2d cluster state, whose ground state realizes a strong SSPT phase,
is given by [83,84,98]

_ *
Hggpr = E:E :0: 1,j— 10,1 105 1,j9 ,J —1j-1

=7 y) 09

i=1 j=1
Lx L.)’
Z Z Z Z X
- T T T T o .. 76
DI ILAPELAPEL RPN 76
=1 j=

As shown in Ref. [82], the 2d cluster model has the subsystem Z, x Z, symmetry generated
by the operators

Lx L}’
X x Yy x
UG,J - l_lai,j’ Us,i l_[GlJ’
i=1 j=1
Lx L}'
X _ b Y _ X
v | = T,l,l,U,l—llr,l,l. (77)
)73 ) 1=3,J73 Tol—3 i=1 1=3,J73

In order to understand the ground state of the cluster Hamiltoninan, we build on the dis-
cussion of the 1d Z, x Z, SPT presented in Sec. 3.1. First, note that all terms in Eq. (76)
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commute. Hence, the ground state of the 2d cluster model, |Yggpr), is the common +1 eigen-
state of all stabilizers. With periodic boundary conditions, the unique ground state can be
explicitly constructed as follows. In Hamiltonian (76), the first term enforces the local Gauss

law 0?—1,j—10?,j—10?—1,j0?,j = f_ e Hence, the role of the first term of the Hamiltonian
in (76) is to ensure that the ground state realizes the decorated domain wall configuration, of
which an example is depicted in Fig. 4b. The second term effectively flips the o* spin, while
simultaneously flipping the surrounding four 7~ spins. Thus, the ground state of Hggpr in (76)
can be viewed as a coherent superposition of all c* domain-wall patterns such as depicted in
Fig. 4b, with blue 7 spins furnishing the corresponding decorations.

As in Sec. 3.1, one can define a domain wall decoration operator Upy that generates the

SSPT state starting from the trivial state. Its explicit expression reads

im in
Upw = exp| —(1—0% ;. (1—7? _ )]ex [— 1—07%, (1—7? ) )]
ow=1 11 1 p[4( ) () Joe | 3 (0ohn) (et
in . B in 2 .
XeXp[Z(1_Ui—l,j)(1_Ti_%,j_1)]eXp[Z(1_01',)')(1_1'1-_%,]-_%)]' (78)

2

This can be understood as a composition of four Control-Z operations between a given 7;_ 11
at the plaquette-center and each of the four corners (o’s) surrounding it, in direct analogy to
the 1-dimensional DW transformation in Eq. (61).

With periodic boundary conditions, the Hamiltonian Hggpr in (76) admits a unique ground
state. However, when defined on an open lattice, it supports spin-% edge excitations that
remain gapless, resulting in a sub-extensive ground-state degeneracy of 4"x*Ly=1, A detailed

discussion of the open geometry and its edge structure can be found in Sec. 6.

4.2 Non-invertible subsystem Kennedy-Tasaki transformation

Having established the domain wall decoration operator Upy above in Eq. (78), and the sub-
system KW transformation Ny in Sec. 2, we now turn to the study of the strong subsystem
KT transformation in two dimensions. First, we would like to make a brief remark — in the
field-theoretic language, the operator Upy implements the so-called T-operation, while the
KW transformation Ny corresponds to the S operation of gauging the Z, x Z, symmetry. The
Kennedy-Tasaki transformation can be viewed as a composition STS of these operations [41].
In Appendix B, we extend the construction of Ref. [41] to two dimensions with subsystem sym-
metry and demonstrate that the STS transformation indeed maps an SSSB phase to a strong
SSPT phase. In this section, however, we shift to a lattice viewpoint and study the subsystem
KT transformation directly in spin-% systems, where the STS transformation is realized explic-
itly on a torus geometry via the composition Ngp = NIIWUDWNKW. Fig. 1 gives a schematic
summary.

We start by analyzing a Hamiltonian consisting of two copies of Ising plaquette interactions,
whose ground state realizes a Z, x Z, SSSB phase,

Lx L)’ Lx L}’
H =— E E o? .. . 0% .o%. .0% — E E T2 % T2 7% . (79
SSSB =Lj-174j-17 i1, L) i—3,j—% i+d,j—3 i—%jt+3 itjt+3 79
i=1 j=1 i=1 j=1

In this section, our aim is to explicitly construct the lattice expression of Ny, ensuring that
it maps Hgggp in (79) to the strong SSPT Hamiltonian Hggpr given in Eq. (76). Before pro-
ceeding, let us emphasize that the operator Nyr, as defined in this section, is not tied to the
specific form of any particular Hamiltonian, such as Hggcp above. Rather, it is characterized by

the condition H' Ny [{0; ;, Ti1 j_%}> = NxrH ‘{ai’j, Til j_%}>, which serves to identify the
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broader class of subsystem Z, x Z, symmetric Hamiltonians that are mapped, under the sub-
system KT transformation, to Hamiltonians realizing the strong SSPT phase. Nevertheless, it
is instructive to anchor the discussion to a specific form of the Hamiltonian such as in Eq. (79),
thus making the derivation more concrete.

The eigenvalues of the subsysteym Zy x Z, symmetry operators in Eq. (77) are given by

x u L
(=1)"o, (—1)“2V”‘ (=1) 2, (1) =2 respectively. We can also define the twist variables
0 , following Egs. (5 7) which denote the boundary conditions for spins o; ;. To

-1 ij*
o,] g,l1—
these we need to add the analogous twist variables (we denote those by tT ],tz D for the

Tilil degrees of freedom. In summary, the symmetry and twist sectors of the model are

labeled by the set of variables

{u;j,ug’i,u’;’j_%,u“:’i_%,tz’j_%,tii é’tﬁyt{z} (80)

Upon applying the generalized subsystem duality transformation Ny, which we derived
in Sec. 2, the theory defined on the original lattice with spins o; ; gets mapped to a dual
theory living on the dual lattice, with spins &,_ 11 It is important to stress that the dual
spins 0, 11 thus obtained are distinct from the 7,_ 11 spins in Eq. (79), even though they
occupy the same spatial location (namely, the centers of each plaquette). Similarly, we denote
the subsystem KW-duals of the spins 7,_ 11 by 7, ; which live on the vertices of the lattice,
but are distinct from the spins o

Likewise, the Hilbert space of the dual theory with spins &, _1 1 T;

1ji-1Tij is similarly divided
into symmetry-twist sectors labeled by

~X =~y =~ Y X e i~
{uo,j—%’ua U ;J’uT,i’tU:j’tg,i’tr,j—%’tf,i—%}' (81)

Following the definition of the subsystem KW transformation for a single Z, symmetry in
Eq. (16), we now extend the construction to the case of a subsystem Z, x Z, symmetry. Apply-
ing this generalized transformation, we arrive at two equivalent expressions for the generalized
KW operator

1 r ey | ~
Noew {gi’j,fi_%’j_m = o ST (Al ’{Gi_%’j_%’fi’j»
{ .

Q)

11,75}
i=g.j=5° "

:ﬁ Z (— 1)AKW({00 TT})’{AI——]—-’ 1]}> (82)

{3i_%’j_%,?ij}

: : : _ oo TT TT
Here, the phase Ay combines bulk and boundary contributions, Ay = bulk+Cb dy+ vuk TCh dy?

with the & terms given in Eq. (17) and the 7 terms defined analogously. Summing these yields

Lx Ly L}’
_ A5 . ~ . ~ x (= =
Arw _ZZUI’J (al—%,J—% TOi 1110ttt Gl+2,J+2) t 2.0, (G% 5 U%ﬁ%)
i=1 j=1 j=1
Lx Lx L}’
y o~ o~ xy —~
+ E to’l(O'l_%’%+O'H_% %)+t O'%%+ 71,1(71_;]_1 +Tl+1,j 1+Tl_%’1+1
i=1 i=1 j=1
Ly Lx
o~ i~ >y
g nd) * 20T (Thms H o) T (Fn T )+ BT 6D)
j=1 i=1
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and similarly, using Eq. (19), the phase /TKW, analogous to Ay, is given by

L, Ly Ly
~ ~ o
Aw=2.2, G 1 (O 0o+ o+ o)+ Ll (o0 -1t 0r,)
i=1 j=1 j=1
Lx Lx Ly
+ Z tO’,i—% (O-l—l,Ly + O-l,Ly) + tO‘ O-Lx’Ly + ZZ Ti—%,j—% (Tl—l,]—l + Tl,]—]. + Tl—l,]
i=1 i=1 j=1
Ly
+Tl])+Zt TL - tTr J)+th,i—§ (Tl_l,Ly-l-Tl,Ly)-FtT TLyly- (84)
i=1

Since Ay = .AKW, the two expressions in Eq. (82) are equivalent. To summarize, the gen-
eralized KW transformation maps the original degrees of freedom onto the dual one, defined
on the dual lattice related via half-diagonal translation T/, , 5 to the original:

Niew

1. 1—>0. 1.
i—5,j—35 i—3,j—3’

T;i,T: T (85)

i,j> i,j

In the previous subsection 4.1, we have constructed the two-dimensional analogue of the
domain-wall decorating operator Upyy (see Eq. (78)) for models with subsystem Z, x Z, sym-
metry. That operator was acting on the original spins {o; ;, T; _1-1 }. Anticipating that we are
aiming to construct the generalized KT transformation as a composition (see Appendix B for
the field-theoretic perspective)

Nir = N UpwNaw (86)

and noting that N transforms to the dual degrees of freedom via Eq. (85), we must therefore
define the action of Upyy on the dual spins. Following Eq. (78), we find

L, Ly .
Upw = nnexp[ ( %’j_%) (1 _??—1,1'—1)] exp [% (1 —a'f+%’j_%) (1 — ??—1,j—1)]

EZE _ 32 _Z ézz _ =2z _ 7z
xexp[ 2 (1 O'i_%,ﬂ_%)(l Ti_l’j_l)]exp[ 2 (1 ai+%’j+%)(1 Tl._l’j_l)jl
The above expression can equivalently be written as follows:

Upw = l_”_[exp[ ( G:_ i )(1—?‘;‘_1’j_1)]exp[i:n(1—6?_%’]__%)(1_%’] 1)]

1.1
i=1 j=1 202

xexp[ 4 (1_ i 1—1)(1_??—1,1)](&@[%(1_6?—%,1—%)(1_??’1)]' e

The action of Upyy on a basis state of the dual spins is given by two equivalent expressions
below:

87)

Upw ‘{Gi—%,]’_%: ;Ei,j}> = (—1)Aew{@7) ’{6'_%"_1,%\i,j}>
=(— 1)ADw({a K3)) ’{ Gy _l’%\i,j}> (89)

where the phase Apw({T,7T}) is given by

Aow(18, T =33 %0 (G111 #8103 + 80151 + 511501

i=1 j=1
Ly Lx

+ E T]( o1 %+0%,j+%)+ L (O-i—%,%+o-i+%,%)+tr o11, (90)
j=1 i=1
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and the phase /ZDW({G, T}) is given by

L, Ly Ly
~ o~y ~ i~
ADW({O',T})—Z G 11 (Tl 1j-1tTij+Timj+7 )+ ta’j_% (’L’L i1 t7T ])
i=1 j=1 j=1
LX
~y ~ ~ Xy~
LI RV L oD
i=1

We are now in the position to finally write down the generalized KT transformation as the
composition in Eq. (86). Before presenting its explicit form, let us clarify how the operator
acts on the basis state of the original Hilbert space. As per Eq. (85), the subsystem KW duality
Niw transforms a configuration of physical spins {o; ;, Tl %} into a superposition of con-
figurations of dual variables {7, _ 11 T;;}, with an appropriate sign (—1)*w (see Eq. (82))
associated with each configuration that keeps track of how the original and dual variables over-
lap locally. Next, we note that Upyy in Eq. (89) is a diagonal unitary: it does not alter the basis,
but simply assigns a (—1) phase to configurations where a dual 7-spin coincides with a domain
wall in the dual &-spin. Thus, it modifies amplitudes without generating superpositions. Fi-
nally, conjugating this diagonal operator by Myw i maps the decorated dual wavefunction back
to the original spin basis {0 ., T 7 -1 1 yleldlng the duality operator Ny, which acts entirely
within the original degrees of freedom

Explicitly, the operator Nyt acts on an arbitrary basis element of the original Hilbert space

as follows (see Appendix C.1 for detailed calculation):

§

2LxLy

Nir {Gi,j’Ti—EJ—'}> P 2L, Pk Z O toi %J‘-%}>’ (92)
{o :]T: 1)

1
—3)J73

where the sum extends over all original-spin conﬁguratlons {o! 7:’ _ 1} that arise when
Q,J

i,j’

New T acts on the dual-spin configurations {o,_ 117 T;;}. The phase Ay is defined as

/
AKT—ZZ(U i+ o] )(T L F Tl 1T T+ T L +Tl_+%,j_l

i=1 j=1
Ly
/ / 2 : x x / /
+7T . + (t +t 4)(’61 1+7T1.,1+7T +7T )
—3,j+% 1+§,J+%) = o o 2:J=3 2:J+3 1i—3 1i+3
LX
y Y / / xy Ixy /
+ (t -+t .)’L' 11+7T.11+7T +7T +(t 7+t Ti11+7T
- o,l o,l 1—5,3 +3,5 l—%,% H_%’% (O‘ o 553 %’% ’
i=

and the projector Pk is defined as

L L / P
11 DR AL N RS
PKT=51_[[1+(—1) o3 ity ]]_[ 14 (=1)73 o3 =g |, (94)

j=1 i=1

We now make a few remarks to clarify and contextualize the result. First, to construct N, we
use the first expression of the KW duality operator A in Eq. (82) (with the phase .4, in (83))
and the first expression of the domain wall decoration operator Upyy in Eq. (89) (with the phase
Ay in (90)). Second, t° ., y K the variables serve as labels for the twist sectors

3 7 . .
0'] o,i J— T’l_%
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Figure 5: Sequence of transformations illustrating the construction of the subsystem
KT duality Ngr = J\/’IZWUDWNKW: the KW duality Ny maps the Hgggp to a trivial one
in terms of dual spins; the domain-wall decoration operator Upyy then promotes it to
the Hggpy in the dual basis; and finally NIZW returns the SSPT Hamiltonian Hggpr in
terms of the original spins.

of the intermediate state produced after applying the first subsystem KW transformation. An
important observation is that these twist variables appear only inside the projectors in Eq. (94).
This means they are not independent degrees of freedom, but are instead fully determined once
the twist sectors of both the initial and final states are specified [41]. With this dependence
made explicit, Eq. (92) takes on a much simpler form

NKT {Gi,j: Ti—%,j—%}> = ZLxLy_(Lx+Ly+1) Z (_1)AKT({O‘,O‘ ;7T {o./ < - }> )

b2 gy
{o; 7 }
Tl
Y

(95)

where Agt is defined in Eq. (93). 5
Similarly, using the second expression of Ny in Eq. (82) (with tlle phase Ay in Eq. (84))
and the second expression of Upy in Eq. (89) (with the phase Apy in Eq. (91)), we can
formulate another equivalent expression for Ngr,
NKT {O-i,j’Ti—%,j—%}> = ZLXLy_(Lx+Ly+1) Z (_1)AKT({O',0’;T,T H {O-l/',j’ T;_l ) 1}>’

, 5 2272
{Gi,j’Ti,%« 1}

(96)
where the phase .ZKT is defined as follows:
Lx L}’
1T / / /
AKT —ZZ (Ti—%,j—% + Ti—%,j—%) (O-i—l,j—l + Oi,j—l + O-i—l,j + o-i,j + Oi—l,j—l + Gi,j—l
i=1 j=1
L}’ Lx
/ / X /x / / Y
To, 4t Oi,j) + (tw-_% + tm_%) (OLxJ—l tOL,jtop i1t OLXJ) + (tr,i—l
=1 i=1 2
ly ) / / xy Ixy /
+tT’i_%) (oi_l,Ly +0Oi, + 00y, + Gi,Ly) + (Y + 7 )(ULX,Ly + GLX,Ly)' (97)

In summary, within this subsection we have derived two equivalent formulations of the
subsystem KT transformation operator Nyr, given explicitly in Egs. (95) and (96). Although
these expressions are mathematically equivalent, each lends itself to different computational or
conceptual advantages, and both will play an important role in the derivation of the mapping
between symmetry-twist sectors in Sec. 4.4.
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The subsystem KT transformation (95) acts on the plaquette-product of the Pauli-Z opera-
tors as follows:

NKTO-I —1,j— 10-1] 10-l 1] |lp>_o-l 1,j— 10.1] 10-1 ljo-lel % lNKT|¢>; V#JEH,
P4 Z
N”Ti—%,j—%Ti+%,j—%Ti—%,J+% b ) S T T T Tl N )
(98)

In other words, it tranforms the sum of the plaquette operators in Hgggp into the sum over
the stabilizers of the 2d cluster stare in Hggpy. By contrast, the KT transformation leaves the
Pauli-x operators invariant:

Nirof ;1) =07 Nerlh), YV €H,
NKTT:(_l ]_% |’¢> = T:C_%’j_%NKT |’lp>, V’Ll) cH. (99)

2,

4.3 Subsystem KT transformation on the two copies of Xu-Moore model

Using the mapping of operators in Eq. (98), it follows directly that N maps Hgggp in Eq. (79)
to the SSPT Hamiltonian Hggpr in Eq. (76). We can track the composition of the operations
Nt = N;WUDWNKW step-by-step: first, acting with the KW duality operator Ny maps Hgsgg
in Eq. (79) to a trivial Hamiltonian expressed in terms of the dual spins,

tr1v1a1_ ZZ( il _-+?;C,j)’ (100)

i=1 j=1 2

Subsequently, the DDW operator Upy transforms Hyy, into the SSPT Hamiltonian, struc-
turally analogous to Hggpr in Eq. (76), but written in the dual-spin variables. A final applica-
tion of ./\/'IIW brings the result back to the original spin basis, yielding the SSPT Hamiltonian
Hggpr in Eq. (76). This sequence of mappings is schematically illustrated in Fig. 5.

To demonstrate that the trivial phase remains invariant under the subsystem KT transfor-
mation, we introduce transverse fields to the plaquette Ising Hamiltonian in Eq. (79), yielding

L}’
H ——EEO‘ —EZTZ 5T T
TXM - 1J 4L 1905111, S 30=3 itgjmg gty gty
Lx Ly
—h, E § of —h > > T L (101)
- 1=3,]J732

i=1 j=1 i=1 j=1

This model is essentially composed of two copies of the Xu-Moore model, discussed earlier in
Sec. 2.1. For small values of h, < 1, the model enters a subsystem Z, x Z, symmetry-broken
phase with a ground-state degeneracy of 4-x*Ly~1, In contrast, for large h, > 1, the system
enters a trivial paramagnetic phase.

Importantly, by virtue of Eq. (99), one finds that the transverse-field terms remain in-
variant under the subsystem KT transformation. Thus, applying the Pauli-operator mappings
defined in Egs. (98) and (99), the Hamiltonian in Eq. (101) transforms under the subsystem
KT transformation into

Hppc =— E E o?. .o% T T T T of.
TFC O 11 191,j-19i-1,j9 lJ i— + i—3,j—% Citd 1 Timd el Tind el T i)
i=1 j=1
Ly Ly Ly
pe
—h, Y. > ox E > LAY (102)
i=1 j=1 i=1j=1 *" ?
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which is the 2d cluster model (76) with an added transverse Zeeman field [84]. As dis-
cussed in Ref. 4.1, for small h, < 1, the model realizes a strong SSPT phase [82,83]. Con-
sequently, all the previous discussions of how our subsystem KT duality maps the SSSB phase
into the SSPT phase continue to apply in the presence of small transverse fields. In contrast,
for large h, > 1, the model enters a trivial paramagnetic phase. In summary, we are able
to organize the three phases, namely the trivial phase, the SSSB phase, and the strong SSPT
phase, into a web of dualities depicted schematically in Fig. 1.

Having established the formal properties of the transformation, we now turn to the physical
perspective, with a couple of remarks due:

Non-unitary nature of KT transformation under closed boundary conditions: In the or-
dered phase (h, < 1), the two copies of the Xu-Moore model (101) have 45x*Ly~1 degenerate
ground states. Under the subsystem KT transformation, this phase is mapped to the strong
SSPT phase of the transformed Hamiltonian (102), where the entire degenerate manifold col-
lapses into a single unique ground state (under the closed boundary conditions). Such a reduc-
tion of the ground-state manifold provides direct evidence of the intrinsic non-unitarity and
non-invertibility of the subsystem KT transformation. We hasten to add that while the strong
SSPT phase has a unique ground state under closed boundary conditions, we shall show later
that on an open square lattice it exhibits a ground-state degeneracy of 4-xtLy—1,

Enlarging the Hilbert space renders the KT transformation unitary: We now demonstrate
that the KT transformation becomes unitary once the Hilbert space is enlarged to include
twisted sectors. Similar to the discussion of the subsystem KW transformation of the Xu-Moore
model in Sec. 2.6, in the ordered phase (h, < 1) of Hyxy in Eq. (101), twisted boundary
conditions cost energy because they necessarily introduce vortices. Since vortices have finite
energy, the ground state in the twisted sectors lies above that in the periodic sector, so they
are not degenerate. As a result, even if we formally extend the Hilbert space, the low-energy
spectrum is unaffected: the ground-state degeneracy remains 45x*Ly~1 with origin in the
spontaneous subsystem symmetry breaking.

By contrast, the KT dual of this SSSB phase is the SSPT phase of Hpc in Eq. (102), where
periodic and twisted boundary conditions cost the same energy in the thermodynamic limit.
Thus, once we include all 45x*Ly~! twisted sectors, the SSPT ground-state manifold also ac-
quires a 4x*Ly~1_fold degeneracy. In this extended Hilbert space, the subsystem KT transfor-
mation maps the degenerate ground-state manifold onto itself, and hence becomes unitary.

4.4 Mapping between symmetry-twist sectors

We now turn to examining how the subsystem KT transformation (95) acts on the various
symmetry-twist sectors. This analysis will clarify how the transformation reorganizes states
between different sectors, and it will also provide our second concrete indication that Ny
is not a unitary operator when acting on a system with closed boundary conditions. Since
each subsystem symmetry generator in Eq. (77) acts by flipping all spins along a single row
or column, it is convenient to introduce an explicit notation for their action. Specifically, the
operator Ug’ p flips all o-spins along the j’-th row while leaving the rest unchanged, which we
denote as

X — 5 .
U, 1045 Ti—%,j—§}> = ‘{Gi,j#j’:ai,j“ Ti—%,j—§}>’ (103)

where we denoted 6 = 1— 0. The action of the symmetry generators of 7;_ 1j-10n the basis

states can be defined similarly.
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We begin with a general state of the original spin system,

W= D Yoy, [0 Tin)), (104)
T g3}
where Q,b{a, , ) denotes the wavefunction of the spin variables. The symmetry sectors of

X
u
o,j? 0- l’ ’L',]—%,

|y) are labeled by {u u’ . }. For example,
i—3

w{o' T 1]. 1} = (_1)ua’jlq’b{0ij’74 1.1}
i— =9,J=3

2

LA 1
w{au, - 1,1 Tl 1}_( 1) Tj_fw{all, 1.1} (105)
—325 =3.0-3

We now determine the symmetry-twist sector of the transformed state Nyt |4) under the
subsystem KT transformation in Egs. (95) and (96). To this end, we evaluate

Nicr ) = [9') = Z Vi, T ) (106)
{U ol 1; 1} il B >
1 2072

where the transformed wavefunction is given by

1 A(lo,0'7,7)
w{o. ’ L } - Z (—1) xt\10,0°;7T,T w{o'i,j’ri—%,j—%}
i=5.,J=% {Ut,j’fi,%’j,l}
_1 Fllo,0’s,7)
= E Z (—1)7r l/){oi,j’fi,%’j,%}' (107)

Here, Agp and Ay are the configuration-dependent phases given in Egs. (93) and (97),
respectively, and the above two expressions are equivalent. The symmetry sectors of |1/)’ ) are

labeled by {u’* u* u/Ty L1 }, which are defined in the same way as in Eq. (105) for
=3

o,j° O'l’ T,j_i,
).

Effect of KT transformation on the symmetry sectors: To determine the symmetry sectors

p after the KT transformation, we evaluate v’ (0! 1o y (the transformed wavefunc-
l]’ 1)/’ i 7; 1

tion), where we consider the first expression of Eq. (107). thpmg o ,tol1— J, can be
exactly compensated by flipping o j; to 1—0; j, since these variables always appear together
in the combination o it o i (see Eq (93)). Therefore, we find that

x  _ y _ .Y
Uy i1 = uUJ,, Uy = Uy e (108)

The same reasoning holds for T; 1 1 88 well. Therefore, we also find that
20’73

/
u/x./ 1=ux~/ 1> uy< 1=uy- 1° (109)
) =3 ) =3 =3 T,i'—3
2 2 2 2

In other words, the subsystem KT transformation preserves all subsystem symmetry charges.
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Effect of KT transformation on the twist sectors: Next, to see the effect on the twist vari-
ables, let us analyze the transformed wavefunction 1/){ . When we change

it ,,1—0’ J/,T:_%’j_%}
,t01—o0; J,, the effect is to multiply the entire wavefunction by a phase factor (—1)%,

W1th ¢, defined as (see the expression of Ayt Eq. (93))

Ly
bo = Z(TI—Z,J’—l F T li—3 ¥ ULl T Tl el
i=1
/ / / /
T T T T
+ i—3.j'—3 + i+3.5'—3 * i—5.0'+3 * i+%,j'+%)
=t e+t
T3 T,j+3 T.J—3 J+3
/.
=ttty (110)
Therefore, we conclude that
IX X /x
T (111)
Similarly, we can show that
y ry
Uy =t . (112)
Next, we look at how the transformed wavefunction behaves under a shift of 7/ | L
=3, 73
by one unit. Specifically, we consider 1/)20, o L y and use the second form of
ij’ i 1 75]/ 1 i—%]/—l

Eq. (107) to evaluate it. Performing this Shlft alters the state only by introducing a phase
factor, namely (—1)?+, where the quantity ¢ .. is defined as follows (see the expression of .AKT
Eq. (97)):

Ly
/
¢ =Z(m 1j—1+0ijya+t0i1j+0; ’+O'1 Lj—1 "“71]— +O'l Ly +0'i’j,)

i=1

— X X x x

Sloyatleytiejatisy

=t L +tF . (113)
0,]'—3 g,)'—3

We therefore arrive at the result
ur o=t (114)
T,)'—3 0,]’—3 0,]'—3

In a completely analogous manner, one can verify that

uoo o=t +tY . (115)

T 1’—5 o,i —% o,i'—3
Since the subsystem KT transformation preserves all subsystem symmetry sectors, the u’
variables appearing on the left-hand sides of Egs. (111), (112), (114), and (115) can be re-
placed by their corresponding u’s. In summary, the KT transformation leaves the symmetry
sectors unchanged:
Ix ly  Ix 'y _ x y x y
{uo,j’ ua,i’ uT,j_%’ uf’i_% } - {ua,j’ ua,i’ uT 1> ur,i—% } (116)

J732

while the twist sectors get transformed in a way that depends on both the twist and symmetry
sectors prior to the KT action:

{t’x. Lt 1,t’;‘],t’fyl}={t§j_ L SPIET TE SE  TRSN CE Tod } (117)

1 >
0,j=3 0,i—3 3 T.j=3" 0ji—3 T,i—3 ” 0.7 T
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Hence, the subsystem KT transformation leaves all subsystem Z, x Z, symmetry charges un-
changed. However, it shifts each o twist by the corresponding T charge and each 7 twist by the
corresponding o charge. In Appendix B, we provide an alternative derivation of how the sub-
system KT transformation acts on symmetry-twist sectors, demonstrating that the mappings in
Egs. (116) and (117) arise naturally from the partition-function formulation and a combined
gauging and stacking SSPT analysis.

Non-invertibility of the KT transformation from the symmetry-twist mapping: Let us
now explain how the mapping of symmetry twist sectors, following Ref. [41], makes it clear
that the subsystem KT transformation is not unitary. For a meaningful physical transformation,
we first fix the boundary conditions (or twist sectors). In other words, we project the final state
(after the subsystem KT transformation) onto a chosen twist sector. To illustrate this, let us
consider a concrete example, namely the final state in the untwisted sectors,
/x 4y /x /y
O =t =t =t =0, (118)
Using the twist-sector mapping in Eq. (117), we find that, after the subsystem KT trans-
formation, the projection retains only those initial states for which
X X — Y X X Yy _ .Y
to’j_% = ur’j_%, tz'r,i_% = um,__ t, 0= Uy s tm. =, . (119)
All other states are removed by the projection.
Now, consider an initial state in the untwisted sector, specified by
t =t =t .=t/ .=0. (120)
o,i—

,J__ 5 T,] T,l

but carrying subsystem Z, odd charges, for example u . = 1. From the mapping in Eq. (117),

the transformed twist variables are given by t = =1, Wthh corresponds to a twisted configura-
tion. If we subsequently project the transformed state to the untwisted sector, this component
is eliminated. Therefore, the subsystem KT transformation annihilates all untwisted states that
carry nonzero subsystem charges when the projection to the untwisted sector is performed.
Therefore, the probability is generally not preserved under the subsystem KT transformation,
indicating that Ny is nonunitary. Moreover, if a given sector is annihilated, the original state
cannot be recovered from its image, which means the transformation is also non-invertible.

4.5 Non-invertible fusion rules for the KT operators (with closed boundary con-
ditions)

Our next step is to examine the fusion rules, which likewise reveal the non-unitarity and non-
invertibility of Ny defined in Eq. (95) under the closed boundary conditions. Here, we use
the terminology “fusion” in a loose sense, referring to how the composition of operators acts
on the Hilbert space. This is distinct from the notion of the fusion of the symmetry defect
operators introduced e.g. in Ref. [63]. Note that the KT transformation Ny is not even a
symmetry of the model — it is just a duality operator and hence it does not make sense to talk
about the ‘symmetry defects’ in this context.

As a starting point, let us examine the composition of the KT duality and the generator of
the subsystem symmetry N X ug. * .. From the definition given in Eq. (77), we note that

Nkr {0-1]7&] ,1— 04,057 i—1,j— }> ZNKTU:;’]'/

{0471 1}). (121)
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From Eq. (95), the action of Ny shows that shifting o; ; by 1 produces a phase factor
(=1)%, with ¢, = t’T"j, + t’T’fj, as defined in Eq. (110). Consequently,

&+t
NKTUg,]‘/ .{O-i,jﬁ T. 1 ]—%}> = (—1) T,j T,J NKT {O-i,j’Ti—%,j—%}>’ (122)

i-1,

which implies the fusion rule

/x

Nir X UZ ;= (1) 50 N (123)

Using an analogous calculation, we obtain that
£+t
Nir % U(},/’i = (=1)"= =i Nk,

. (S S
N x Uz ;g = (07722 N
'y

ty 1 + 1
Nyt % Uj =D O N (124)
T2

We now highlight the utility of the fusion rules in Egs. (123) and (124). In fact, all map-
pings between twist sectors given in Eq. (117) can be recovered directly from these fusion
rules. As an illustration, consider an eigenstate of U, j satisfying

UX ;1) = (=1)" ). (125)
From Eq. (123) it follows that
(=) (Wier [9)) = (1) (Nir [9)), (126)
which leads to
o _
t;fj —ti,j +u§,j. (127)

By a similar argument, all other twist sector mappings in Eq. (117) can be rederived from
Eq. (124).

We now turn our attention to the fusion rule Ngp X Ngr. Since the calculation is lengthy,
it is presented in the Appendix C.2. Here, we simply state the result:

NKT X NKT = 42LxLy_(LX+Ly+1)PaPT, (128)

where P, P, are projectors onto a definite symmetry-twist sector, given by

L L
1 4 & 4%, = )+t Y
R S )
i1 i=1
. ¢ 2 ¢
P = 5 [1 +(—1)%z @iz U;C,J'—%il l_[ 14+ (=1)o2 iz U:i—% . (129)
i=1 i=1 ,

We now address the question of whether the subsystem KT transformation defined in
Eq. (95) is unitary. By definition, unitarity would require that NQTNKT be exactly equal to
the identity operator. Examining Eq. (128), however, we see that its right-hand side is not
identical to the identity. This deviation means that Ny fails to satisfy the unitarity condition,
and is therefore non-unitary. In particular, under periodic boundary conditions (untwisted)
as specified in (118) and (120), Nyt annihilates any state that is odd with respect to any of
the subsystem Z, symmetry operators defined in Eq. (77). In other words, the kernel of the
operator Nyt is not empty, thus establishing its non-invertibility.
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5 Invertability of the Subsystem Kennedy-Tasaki transformation
with open boundary conditions

Let us now examine the subsystem KT transformation for a spin-1/2 system on an open square
lattice. Much like the subsystem KW transformation, we will see that while the Ny operator is
non-unitary and non-invertible in general, it becomes unitary when considered under free open
boundary conditions. We consider an open square lattice of dimensions L, x L., where just
like in Sec. 4 the o; ; spin degrees of freedom live on the vertices of the lattice, while 7;_ 11
spins reside on the centers of plaquettes. We begin by imposing free boundary conditions on
Egs. (95) and (93), where contributions involving sites outside the square lattice are omitted.
Retaining in the exponent only those terms that are entirely supported on the open square

lattice, we obtain that the spin eigenstates transform as follows under the KT transformation:

1 open
Nep® {O-i,j:Ti_%,j_%}> = onT, Z (1A Uowesmsh) ‘{011’ _"_%}>, (130)
{of 7/ 1 1}

> 1
L7 273

e "({o,0’;7,7'}) is defined as

A {o, 01,7 = ZZ(O‘ ol )(Ti_%’j_%‘f"[/. s 1)"‘2 (Gi,j"'ag,j)

i=1j=1 i=1 j=1

Lx L}’_

/
9 . 1
(Fienit + ¥y i) (o + ot ) (Fipir + 7y )
2 i=1 j=1 o

where the phase A

[y

L,—1L,—

/ /
+ Z Z (‘Ti,f + "i,j) (Ti+%,j+% + TH%,H%)- (131)

i=1 j=1

. .. . X Ix Yy 'y
Note that the terms in Eq. (93) containing twisted-sector labels (t ot its j), (t oi T ls l.), and

(tf;y + t:,xy ) have been omitted, as these correspond to twisted boundary conditions that are
meaningful only on closed lattices.

By carrying out a calculation analogous to that in Sec. 2.5, where we established the uni-
tarity of the subsystem KW transformation on an open square lattice, we can similarly demon-
strate that

" pen T pen _
(torer, e iag oy o) =T T T6oyen8e, , yer, - 32

Hence, Ngen is unitary and invertible.

We now proceed to discuss the mapping between Pauli operators under Ngen = N;&em
USI\D,SHNI?\I,);D on an open square lattice. The subsystem KW operator N;&en on an open square
lattice is given in Eq. (35), which we have already discussed in Sec. 2.5. For the case of an
open square lattice, the domain-wall decoration operator U]gssn is obtained by starting from
Eq. (89) and retaining in the exponent only those contributions from Egs. (90) and (91) that
are completely supported within the open lattice.

Under Ny P both o and ’L' 11 are mapped to products of & o 1 and 7% j operators,

-2

2
respectively (see Eq. (44)) Wthh are dlagonal in the (6%, 7%) ba31s Because such diagonal
operators commute with the domain-wall operator Upyy appearing in /\/g , they are mapped

.. pen
back to the original G;f]. and T?‘_%’j_% operators by ./\/'I?W . As a result, the x-components
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remain unchanged:

Nopen x Nopenq = g¥
i

open _x opent __ _x
N "3 %’j_%NKT =7, . (133)

i—1

From Eq.(133), it follows that the subsystem Z, x Z, symmetry generators (77) remain
invariant under Ny °Pe This marks an important distinction between the subsystem KT and
subsystem KW transformations on an open square lattice: while the subsystem KT transfor-
mation preserves the symmetry generators, the subsystem KW transformation maps them to
local boundary operators (see Eq.(54)).

Let us now discuss how ng‘f’ven acts on af j and 7* | = ,. From Eq. (44), we find that
> —35,J73

open g opent __
New Ui,jNKW | ” | l/__]-__

i’'=1j'=1
Lx Ly
open g openy __ ~x
Niw Ti1 j_lNKW _l_[ Tivjre (134)
o i'=i j'=]

The action of Ugs\fn on the spins in the dual Hilbert space is given by

~y ~x . .
Ti1j- 1T’] 1Tl LJT’]O'I,_%’J._%, 1=2,....,L,j=2,...,L,
—Z —Z =X J—
Uopen/\x Uopen’r . T1,j—1Tl,jO-%’j_%’ =1, J 2, L
pw 915 1%w T, o Ay . . )
e Tic11%i19 1 1 1=2,...,Ly, j=
222
-z =X — J—
7110115 i=1,j=
(135)
and
[~z ~z ~g ~g ~x . .
o o o o ., i=1,...,L,.—1,j=1,...,L,—1
i—2,j—% it+3j—3 i—%,jt+3 it+s,j+s b’ e . ey
~z =z =X H :
o 77 . i=1L =1,...,L,—1
Opel‘l/\x open { Lx—%’j_l L—%,j+% Ly,j’ x5 ] s sy
Uow 73 Uow _<62 G* | Tx i=1,...,L,—1,j=1L
i—3.L,—3 i+3,L,—% LLy’ X ’ Y
g . .
(L1, —-TLX,L t=Ly, j=1y
(136)
Combining Egs. (134), (135) and (136), we obtain
open g peny __ z
Nir Oi,j/\[lgr = | ” | l/__’J__ Oij
i’=1j'=1
en en
Nep 't T J__M’P T=1 | || |ol il (137)

U=t j'=j

The relevance of these maps becomes central in two places: first, in establishing the duality
between the SSSB phase and the strong SSPT phase on an open square lattice (Sec. 6); and
second, in deriving the operator-level expressions for the transformed bulk and edge invariants
that diagnose the strong SSPT phase (Sec. 7).
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Similarly, by applying Egs. (133) and (137), we find that the two copies of the Xu-Moore
model in Eq. (101) are mapped, under the open-boundary subsystem KT transformation J\/'I?%’en
defined in Eq. (130), to the two-dimensional cluster model in a transverse Zeeman field in
Eqg. (102) on an open square lattice.

We now examine how the invertibility or unitarity of the KT transformation manifests
when comparing the models in Egs. (101) and (102) on such open geometries. In the triv-
ial paramagnetic phase, both models clearly share the same nondegenerate ground state. In
contrast, for small transverse fields, where the system enters the ordered (SSSB) regime, the
open-boundary ground-state degeneracy becomes 4-x*Ly~!, Remarkably, this same degen-
eracy appears in the KT-dual SSPT phase as well, where it originates from protected edge
states. The edge structure of the strong SSPT phase in open geometries is discussed in detail
in Sec. 6. While this observation does not constitute a rigorous proof, it strongly suggests that
the subsystem KT transformation acts unitarily in this context, as it preserves the ground-state
degeneracy structure across the two models.

6 Correspondence between SSSB ground states and SSPT edge de-
generacy

The subsystem KT transformation not only connects the bulk Hamiltonians of the SSSB and
SSPT phases but also maps their boundary degrees of freedom. In this section, we show that
under the open transformation Ngen, the extensive ground-state degeneracy of the SSSB
phase with open boundary conditions is converted into the boundary-protected degeneracy of
the strong Z, x Z, SSPT. We derive the resulting boundary symmetry algebra, which exhibits
a chain-like anticommutation pattern forming a non-factorizable projective representation of
the subsystem symmetry. This provides a microscopic signature that distinguishes the strong
SSPT from its weak, stackable counterpart.

To set the stage, we write the Hamiltonian of the two decoupled plaquette Ising models,
Eq. (79), now defined on an open square lattice that realizes the gapped Z, x Z, SSSB phase:

L, Ly L,—1L,—1
open b4 b4 z z z b4 z b4
H :_E E of . 0%, 0% . 0% — E E T T T T .
SSSB : L i—1,j—171,j—17i—1,j 7 1,j . . i—%,j—% i+%,j—% i—%,j+% i+%,j+%
=2 j=2 i=1 j=1

(138)

Each plaquette term enforces a local ferromagnetic constraint, minimizing the energy when
the product of the four spins around every plaquette equals +1. Consequently, the o- and
T-sectors each possess 21XtLY~1 degenerate ground states, giving an overall ground-state de-
generacy 45xTLy~1, The generators of the subsystem Z,, x Z, symmetry, defined in Eq. (77), act
by flipping all spins along a fixed row or column. Because H EESE commutes with the symmetry
generators, the entire ground-state manifold can be organized into simultaneous eigenstates
of these subsystem symmetries.

Explicit symmetry-eigenstate ground states can be constructed by projecting a reference

configuration |ref) (e.g., all spins up) into the desired o-symmetry sector labeled by 1} j and
ug ; as follows:

L}’ X

’0;{ug,j,ui’i}>:2Lx+% l_[(1+(—1)ui;JU§,j) . (1+(—1)“?Vf,iU3’)i) [ref),, (139)

j=1 i=1

and similarly for the 7-sector. The full ground states are tensor products of the eigenfunctions
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in the o and 7 sectors,

— . y . y
’\p{u Saa?y) = ‘U,{u;j,ua’i}>® 7 {u’;,j_%,uf’i_%}>. (140)

Under the open subsystem KT transformation N PN defined in the previous section, this
subsystem symmetry-broken manifold is mapped to the ground-state subspace of the two-
dimensional cluster model, Eq. (76), now defined on an open square lattice. The resulting
model, obtained using the Pauli-operator mapping defined in Egs. (133) and (137), realizes
the gapped Z, x Z, strong SSPT phase and takes the explicit form

open _E E o?. >
SSPT Ol 1,j— 10-,] 101 1] ,] 1]'

i=2 j=2
L,—1Ly,—1
V4 y4 X
E T T % o .. 141
1 j=1 =3 itgey sty itgjty b (141)
1= ]:

This model is exactly solvable, since all the terms in Eq. (141) mutually commute. The
ground state is therefore the simultaneous eigenstate of these commuting operators — so-called
stabilizers of the cluster state — with eigenvalue +1 (we use the ~ symbol to denote operator
relationships within the ground state manifold):

or_ Lj- 10,] 105 1}0',17 1ol ~1 (i=2,...,Lx,j=2,...,Ly),
T T T T of~1 (=1, k=1, =10, L 1) (142)

1 1 . L1
i—3,J—3 it5.J—3 =gty it.+3

Symmetry fractionalization in the SSPT: Applying these relations, the subsystem Z, x Z,
symmetry generators, as defined in Eq. (77), can be equivalently represented within the ground-
state subspace as (see Fig. 6a)

X
(o2
Y
(o2
Ur 1) ®(Ux. I)R’ (143)

U’ 1~(Uy, 1) ®(Uy, 1) .
T,I—E T,l—z B T,l—z T

Physically, this means that the bulk symmetry generators, when acting on the ground state
subspace, fractionalize into an action on the edges. Consider, for instance, the first equation
above - it states that the subsystem symmetry generator in the row j acts as a product of two
operators localized on the left and the right edge, respectively. Concretely, the edge operators
appearing on the right-hand side of Eq. (143) are defined as follows (see Fig. 6a):

Ux ) =17 Tz (Ux ) =1 T2 =1,. -1
(Va)s =7y (Ve = i gy e Ol G = e 1y =,
Y — 2 b4 Y — 2z _
(U‘T’i)B =T 11Tl (Ug,i)T Tl 1, 1T 1, _101 L, (i=1,...,L,—1),
U~ =1% .o%. 0%, |U* =0 . 0% ,(j=2,...,L

( Tj—3 /)1 $—3 LIT17 L\ Trj-3 g Ly,j=17 Ly,j? U 2t J')’

Y X Z -4 Y 2z Z .
(U ) 1) =1 1,07 11071 (U ‘ 1) =07 ., 0:, (i=1,...,L,). (144)

T,l—i B 1 353 > H T,l—i T >y >y
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Figure 6: (a) Hlustration of the fractionalization of subsystem symmetry generators:
for the o spins, the symmetry acts along the j-th row (horizontal red strip) and
the i-th column (vertical red strip); for the 7 spins, it acts along the (j — %)-th row
(horizontal blue strip) and the (i—%)-th column (vertical blue strip). The red ellipses
indicate the corresponding edge operators for the o spins, while the blue ellipses
indicate the edge operators for the 7T spins, as defined in Eq. (144). (b) Illustration

JoJ :
of the truncated symmetry operator Ul.(?ill and local repair (corner) operator V; ; .

Here, B, T, L,R indicate the bottom, top, left, and right corners of each subsystem symmetry
generators, respectively. In the ground-state subspace, the symmetry generators therefore
act only on localized modes along the boundary of the open square lattice. These boundary
operators obey the Pauli algebra and at the same time commute with all the bulk stabilizers
of the Hamiltonian Hggpy. To illustrate, consider the left edge of the open system, where the
structure of the boundary symmetry anticommutation algebra becomes most transparent,

(v3.), U, ==, 1) (vs,),

(03,0, =2, (), 155

This nearest-neighbor anticommutation arises from the local overlap of 7% and 7* oper-
ators on the shared boundary plaquettes as shown in Fig. 6a. As a result, the o- and 7-type
generators along the edge form a one-dimensional chain with a bipartite anticommutation pat-
tern: each operator (say, o) anticommutes only with its two adjacent operators of the opposite
type (in this case, 7) and otherwise commutes with the rest.

The same structure appears along the right, top, and bottom boundaries. Each edge
thus supports an identical sequence of interlaced o- and 7-type operators linked by nearest-
neighbor anticommutation. Counting the independent boundary modes, which amount to
2(Ly + L, —1), shows that they generate a 4L=Ly=1 fo]d ground-state degeneracy, originating
from the boundary of length 2(L, + L, —1). Consequently, the 4L:+Ly=1 fo]d edge degeneracy
on the boundary of this SSPT directly accounts for the 4-x*1y~1_fold degeneracy of the original
SSSB phase.

Projective representations of the subsystem symmetries: The algebra in Eq. (145) shows
that the boundary symmetry structure of the two-dimensional SSPT is intrinsically nontrivial:

the operator (U > f)L not only anticommutes with (U
. 7,j

(U~ 1 ); from the row above. Hence, each boundary symmetry operator simultaneously links
T,] 3

>

* ), from the row below, but also with
-2
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to two neighboring subsystem symmetries, producing an extended pattern of mutual anticom-
mutation along the entire edge — sort of like the warps in a weave connect two neighbouring
wefts. Collectively, they form a non-factorizable projective representation of the subsystem
symmetry group that extends continuously along the entire perimeter. In graphical terms,
this boundary algebra can be viewed as a chain-like anticommutation graph along each edge
— not a collection of isolated pairs, but an extended structure of alternating operators linked
by their mutual anticommutation. It is this interlinked nature of the projective representation
that holds the fabric of the strong SSPT together — in juxtaposition to the weak SSPT studied
in Sec. 3.2 whose operators only anticommute in a given row or column, allowing the action
of the symmetry operator to be confined to one thread.

This intertwined edge algebra marks a fundamental difference between the strong and
weak SSPT phases. In the weak SSPT, constructed by stacking decoupled one-dimensional
cluster chains, each terminated chain contributes an independent pair of anticommuting edge
operators: e.g. U* ~ U} ® Uy, thus realizing a tensor product of localized projective represen-
tations of Z, x Z, symmetry. In contrast, for the strong SSPT, the boundary symmetry genera-
tors are interlinked across neighboring sites and cannot be decomposed into independent 1d
doublets. The resulting edge representation is intrinsically collective and encodes a genuinely
two-dimensional projective structure that cannot arise from any stack of 1d SPTs. This dis-
tinction between independently fractionalized 1d edges in the weak SSPT and the weave-like,
entangled anticommutation network of the strong SSPT provides a sharp diagnostic separating
the two phases.

7 Bulk and Edge Invariants and Their Invariance under the KT
Transformation

Above, we distinguished between weak and strong SSPT phases. Weak SSPTs, defined in
Sec. 3, may be viewed as stacks of decoupled one-dimensional SPT chains protected by line-
like subsystem symmetries, whereas strong SSPTs, such as the square-lattice cluster model in
Eq. (76), cannot be decomposed into such independent 1d constituents, as is evident from
the structure of the edge modes studied in the previous section 6. While this distinction is
physically intuitive, it had remained unclear how to formalize it in a general setting. Ref. [83]
introduced a precise criterion by defining an equivalence relation between two SSPT phases:
two states are said to be LSLU equivalent if they can be connected through a finite-depth local
unitary evolution that preserves all subsystem symmetries along each line. Under this equiv-
alence, any weak SSPT — being a simple stack of 1d SPT chains — can be smoothly deformed
to a trivial product state, while a strong SSPT cannot. The resulting LSLU classification iden-
tifies distinct equivalence classes of strong SSPT phases with the non-trivial elements of the
cohomology coset [83]

CIG,1=H[G>, U(1)]/(H?[G,, U)]?, (146)

where G, is the onsite symmetry group associated with the line-like subsystem symmetries
and H2[G,, U(1)] denotes the second cohomology group of G, with coefficients in U(1) (for a
detailed review of the cohomology construct as it pertains to SPT classification, see Ref. [8]).
For our case, G, = Zy X Zy and C(Zqy X Zy) = Zy X Zy % Z4 [83], meaning that there is a total
of 8 equivalence classes of SSPTs (one of which is a weak SSPT that is LSLU equivalent to
a trivial state). Each distinct class can be characterized by a set of bulk and edge invariants
that remain unchanged under any LSLU transformation. The bulk invariant $(g) introduced
in Ref. [83] measures the commutation phase between a half-infinite subsystem symmetry
and a truncated rectangular symmetry operator, while the corresponding edge invariant ¢,
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encodes the projective algebra of the effective symmetry operators localized along the system’s
boundary.

In the remainder of this section, we briefly review these invariants and explicitly compute
B(g) and ¢, for both the weak and strong SSPT constructions following Ref. [83]. We then
demonstrate that the subsystem KT duality transformation leaves the values of these invariants
unchanged.

7.1 Bulk invariants

In Ref. [83], the bulk invariant $(g) was formulated on an infinite square lattice, where the
truncated symmetry operations and the associated corner unitaries can be defined without
boundary effects. Here, however, we focus on a finite L, x L,, square lattice with open bound-
aries. Working on a finite lattice will prove essential when analyzing the effect of the subsystem
KT transformation, which is a strictly unitary operation well-defined only in the presence of
physical edges.

We begin by introducing a few notational conventions that will be used throughout this
section. The on-site subsystem symmetry group is G, = Zy X Zy = {1, 25, %+, 858~ }> Where g,

and g are the two generators of the group. Their local representations act as
A

ui,j(go)zo'l)'fj; ui,j(gr):T?(_l j—l' (147)
2:J732

In this notation, the subsystem Z, x Z, symmetry generators introduced in Eq. (77) take the
compact form

Lx L}’
ur(g) = Juii(e). U(e)=] Jus;(e)- (148)
i=1 j=1

Following Ref. [83], the bulk invariant (g) can be defined using a truncated symme-
try operator that applies the subsystem symmetry to a finite rectangular region of the lattice
Lig,11] % [Jjo,J1] (see Fig. 6b):

. L)
ulli@) =] [ Juis®. (149)

iply
1=lp J=Jo

Because the symmetry is applied only inside this region, the operator Ug;’i]ll(g) acting on
the ground state [v) creates local excitations confined to the four corners of the rectangle:
bottom-left (BL), bottom-right (BR), top-right (TR), and top-left (TL). These excitations can
be removed by local unitaries V; ;(g) supported near each corner, which satisfy the following
relation (see Fig. 6b) [83]

Vi(@) = Vit () =V, (g ) =V (@) = V" (g, (150)
leading to the consistency condition [83]
Vigjo(8)Vigj (8 IWVay 1, (8)Viy, (87U (&) [9p) = 1) (151)

The above equation means that the local unitaries V;;(g) transform projectively under G;.

We now introduce the corresponding half-space symmetry operators, defined by extending
the subsystem symmetry to the semi-infinite region on one side of a chosen coordinate, say to
the right (indicated by the superscript R) of the ith column:

Ly Ly
St =[] Juwste- (152)

i'=i j=1
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Analogous half-space operators SiL (2), SjT(g), and Sf (g) can be defined for the left, top, and

bottom regions, respectively [83]; in what follows, we focus primarily on SlR(g).
The associated commutation phase between a half-space symmetry operator and a local
corner operator defines the invariant

ﬁl}i(g) = soor (Y] S:R(g)‘/l;(g)SLR(g)‘/lj(g) 1Y) sspr - (153)

This U(1) phase is independent of the choice of corner or orientation and cannot be modified
by the LSLU circuit. Hence, the set of /35.(g) invariants for the elements of the group g € G,
serves as a bulk topological invariant distinguishing inequivalent strong SSPT phases (the case
of B(g) =1 Vg € G, corresponds to the trivial, weak SSPT).

Evaluation for the 2d cluster model: For the 2d strong SSPT (cluster-state) Hamiltonian in

Eq. (76), a convenient choice of local repair operators is
Z

Vij(ga) = Ti—%,j—%’ Vij(gfc) = O-?—l,j—la ‘/ij(gO'gT) = Tf_%,j_%o-?—l,j—l' (154)

To see this explicitly, consider the bottom-left (BL) corner located at (iy, jo). Acting with the
truncated symmetry operator Ulj(fl]l '(g) on the 2d cluster Hamiltonian in Eq. (76) flips the sign
of the local stabilizer term

o? . 7% (155)

z z z
fo—=Ljo=1" to,jo—1 " to—L.jo ~ loso ig—13,jo—1’

restores the eigenvalue of the affected stabilizer. Hence, the appropriate local repair operator
at the BL corner is

Vij(8s) = rf_% 1 (156)

By applying the same reasoning to the other symmetry generators g, and g, g, we obtain the
full set of repair operators listed in Eq. (154).

Evaluating ﬁf}(g) for the 2d cluster model in Eq. (76) using the local repair operators
defined in Eq. (154), we obtain for the elements of Z, x Zy, = {1, 8,, 8+, &8 }:

/55(1)=/55(g0)=/55(g7)= 1, ﬁg(gagf)z_l- (157)
For example, the combined half-space symmetry operator takes the form

Lx Ly
S?(gagr):l_[l_[o-;c/,j’r:{,_l j—1° (158)
i'=i j=1 22
In the corresponding local repair operator V;;(g, &) in Eq. (154), the factor Gf_u_l commutes
with all the terms in SlR(gUgT) in Eq. (158), whereas Tf_l ., anticommutes with 7% |

_1 i—1: 1

272 272
contained in the half-space symmetry. This single anticommutation contributes an overall

minus sign, giving

ﬂiR}(gagT) =—1 (159)

The other ﬂf}(g) values in Eq. (157) can be obtained analogously. Since ﬁﬁ(ga g:) # 1, the
cluster model realizes a non-trivial strong SSPT phase.
By contrast, for the weak SSPT Hamiltonian in Eq. (69), one finds

B = Bli(g) = Bii(g:) = Bl(go8:) = 1, (160)

confirming its trivial (weak) character under this invariant.
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Invariance under the subsystem KT transformation: Although the subsystem KT trans-
formation maps the strong SSPT phase to the SSSB phase, the transformed quantity ﬂi’f(g)

obtained from the image of the local operators under Ngen does not correspond to any in-
trinsic bulk invariant of the SSPT itself. Indeed, the KT transformation renders the local repair
operator V;;(g) highly nonlocal, as seen below, even though the map acts locally at the op-
erator level. Nevertheless, it is instructive to examine the explicit transformed form of these
operators and to verify that the commutation structure defining ﬂﬁ(g) is preserved.

Let us focus on the nontrivial case ﬂf}(gagf) = —1 in the 2d cluster state. Under the
open-boundary KT transformation, the ground state |)gs is mapped to |¢)) ¢, While the
half-space symmetry and local repair operators transform as

Nopen Lx L)’
R KT /R _ X X
Si (gag*r) ? Si (gUgT) - | | | |0i’,jTi 11
. P 2> 2
i’'=i j=1

AoPen L, Ly i—-1 j—1
KT / _ Z X X Z
Vii(8s8:) — Vij(gogr) = Ti_%,j_% l_[ I | Oy jr Ti/_%,j/_% Oi1,j—1

/=i j'=j

(161)

Although Vl.g.(g(7 g.) is manifestly nonlocal, its leading local component T‘l? 1l anticommutes
—2.J73

with the 7* | | contained in S{R(gg g.), while all other factors commute. As a result, the

-1, 1

2:J73
commutation relation between S*(g, g.) and Vi’j(ga g.) remains identical to that of the orig-

inal operators, giving

B (gsg:) =—1. (162)

Similarly,
BR1) = BR(gs) = BR(g) =1. (163)

These results demonstrate that while one should no longer think of ﬁ{f(g) as being the
intrinsic bulk invariants of the SSPT - indeed, the KT-dual model in Eq. (138) is not at all
an SSPT - their algebraic values nevertheless coincide with those of ﬁf}(g) in Eq. (157), re-
flecting the preservation of the underlying commutation structure under the subsystem KT
transformation.

7.2 Edge invariants

In the previous subsection, we introduced following Ref. [83] the bulk invariant (g), which
encodes the non-trivial U(1) phase accumulated when a half-space symmetry operator is com-
muted past a local corner repair operator. As discussed there, 3(g) captures an intrinsic bulk
property that remains invariant under any linearly symmetric local unitary (LSLU) evolution.
The same topological information can also be extracted from a purely boundary perspective
through the edge invariant ¢.,p,, which characterizes the projective representation of subsystem
symmetries along the (say, top) edge.

Although we have discussed the edge symmetry algebra along the left boundary in Sec. 6,
here we focus on the top boundary, following Ref. [83]. Analogous to one-dimensional SPT
chains, the top edge of the 2d SSPT realizes a local projective representation of the extensive
vertical symmetry group G, = (G,)~, generated by the edge operators Ul.mp(g) corresponding
to the vertical subsystem symmetries Ul.y (g),i =1,...L, defined in Eq. (148). Let h‘l.g €G,

denote the element represented by Uimp(g). Their algebra defines the edge commutation phase

U'P(h) U*P(h) = ¢rop(hi, h) UP(R) UP(hy), (164)
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where ¢,,(h,h") = £1 for Z, symmetries. Avalue ¢,,(h,h") =—1 indicates that the two sym-
metry generators anticommute when acting within the edge subspace. Because the underlying
representation is local, ¢,p(h, h’) = +1 whenever |i —i’| exceeds the correlation length. In
a trivial weak-SSPT phase, this remains true for an arbitrary choice of i and i’, regardless of
the separation. A nontrivial value of ¢, (h, h’), on the other hand — for suitably separated
columns {i,i’} — would indicate a nontrivial SSPT edge invariant.

Relation between ¢, and 3(g): The bulk invariant can be re-expressed entirely in terms
of the edge projective data as [83]

B(&) = brop (A Fégne) (165)

where hlge fi/right AT€ short-width (size ~ &) products of edge symmetry generators immedi-
ately adjacent to a chosen vertical cut. This equality follows from identifying the truncated
half-space symmetry in the bulk with its restriction to the top boundary and noticing that

the corresponding corner repair operator acts on the same support as hrlght The quantity

¢t0p(hleft’ rght) therefore captures the same commutation phase as (g) in the bulk defini-
tion.
To make this relation more transparent, it is helpful to visualize the edge projective repre-
sentation as a simple link diagram. Place all edge generators {hig",hi%l} as vertices ordered
i—3

along the edge. A link is drawn between two vertices whenever ¢, (h, h’) = —1; i.e., when-
ever the corresponding edge operators anticommute. The global symmetry constraint — that
the full product of vertical and horizontal subsystem symmetries commute — implies that each
vertex connects to an even number of vertices of each type.

Now, consider introducing a vertical cut that divides the edge into two halves. The cross-
commutator between the two edge blocks on either side of the cut is

g = —_— NCIOSS( )
¢t°P( left’ r1ght) l_[ ¢top( h]') =(-1) &, (166)
icleft
jeEright
where N;o.5(g) counts the number of ¢, = —1 links crossing the cut. Thus, the bulk invariant

B(g) defined from the half-space symmetry is equivalently equal to the parity of links that cross
any given cut:

B(g) = (—1)Newoss(8), (167)

Since LSLUs can only add or remove pairs of nearby links, the parity N ,(g) mod 2 is cut-
independent and invariant under all allowed local transformations. This provides a direct
edge-based interpretation of the bulk topological invariant.

Evaluation for the 2d cluster model: Let us now compute ¢, explicitly for the 2d cluster
model. On the top boundary (y = L, ), the vertical subsystem symmetries act as

top — (1 top Y top — (1 y
U(gs) = (U2,),, UM(g)= (Ur’i_%)T, U (g,8:) = (U2,), (Ur’i_%)T, (168)
where (U 37' ,i)T and (Ui' 1 ) are the top-edge symmetry components given in Eq. (144). Since
Pl

(Ug )7 contains o7, and u” 'il)T contain o7, , they anticommute for the same column
5 sbiy T, T35 >y

>

index, yielding

Prop (hf“,hf;) =-1, (169)
2
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while all other pairs commute, ¢, = +1.

In the link-diagram language, each o-type vertex connects to its two neighboring 7-type
vertices by a single link. If we draw a vertical cut through the edge, exactly one of these o-7
links crosses the cut. According to the above relation, this gives

B(1)=p(gs)=B(g:) =+1, P(gsg:)=—1, (170)

in perfect agreement with the bulk calculation of Sec. 7.1. Thus, the nontrivial projective
commutation pattern of the edge encodes precisely the same topological invariant (g) that
characterizes the strong SSPT phase in the bulk.

Invariance of edge projective representation under the KT transformation: Having shown
that the bulk invariant $(g) remains unchanged under the subsystem KT transformation, we
now verify that its boundary counterpart, the edge commutation phase ¢, is likewise in-
variant. Applying the Pauli operator mappings in Egs. (133) and (137), the edge operators in

open
Eq. (144) transform as U, . U U, ., where the transformed operators U, _ are explicitly
given by

LX
X x z Z h
o (U ) _ T —1,...,L,—1
]J,.%( l,])’ 0,JJR Lx_%,j_l LX_%,]-_,’_%J (] ] sy ):

% L(@A=1,...,L,—1),

1 .1
—3ly=3 itg.ly—3

Ly
U’x =o%. o, |UX = | |T" o . 0% ., (j=2,...,L
( T,j—% L 1,j-1%1,j° ’r,j—l R i—%,j—% Ly,j—1Y L,,j’ (] > 5 y):
1y _ =z z 1y _ x z z .
Uu- ) =0l ,,0i, (U ] = | |T__l o o (i=1,...,Ly). @a71n
Ti—5 Jp P s i3 ) L i—35,j—3 sy bLlby

On the top boundary, Ul.mp( g, ) becomes a pair of 7¥ operators on the adjacent plaquettes, while
Uitjri(gf) acquires an extended 7* string along the column together with o endcaps. Despite

~—
(=
9 <
N——
w
Il
q
T ™01
NI=
Nl
~ﬂN
+
DNl =
ol
N
-
<
HQ
~
N———
=
9
N——
3
[
q
n
NI —=

2
these nonlocal attachments, the local commutation structure at the edge remains identical:
the overlap of 7% from Ul./mp(gc,) with 7 from U /:}3 (g.) on the same plaquette still produces
i3

an anticommuting phase,

/ 8o 8t — / _ .
d)top (hi ,hii%) =-—1, qbtop = +1 otherwise. (172)
All other pairs commute as before, so the edge link diagram~the pattern of ¢, = —1 connections—

is unaltered by J\/’ﬁ’en. Since f3(g) depends only on the parity of these nontrivial links across
any cut, the invariance of ¢, guarantees the invariance of 3(g) at the boundary level as
well. Thus, the subsystem KT transformation leaves both the bulk and edge topological data
unchanged, while transforming the strong SSPT into an SSSB phase.

8 Conclusions
In this work, we have extended the Kennedy-Tasaki duality from (1 + 1)D to (2 + 1)D lattice

systems endowed with one-dimensional subsystem symmetries, and developed a complemen-
tary formulation of the generalized KW duality for the same class of models. Focusing on the
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paradigmatic case of Z, x Z, subsystem symmetry on the square lattice, our construction estab-
lishes a precise duality web connecting three distinct gapped phases: the trivial paramagnet,
SSPT phases (both weak and strong), and SSSB phases, as illustrated schematically in Fig. 1.

First, in Sec. 2 we have formulated a generalized (Kramers—Wannier-like) duality for mod-
els with row/column subsystem symmetries and applied it to the Xu—-Moore model (a.k.a. Ising
plaquette model in transverse field). At the self-dual point of the model, the duality can be re-
garded as a symmetry, but its algebraic character depends sensitively on boundary conditions:
on open lattices, the duality is implemented by a unitary operator, whereas on closed (peri-
odic or twisted) manifolds the corresponding operator is non-invertible and satisfies nontrivial
fusion relations. We have derived these fusion relations for the subsystem defect operators,
providing an explicit lattice realization of a non-invertible symmetry in (2 + 1)D.

Building on this subsystem duality construction, in Secs. 3-4 we have introduced a gen-
eralized Kennedy-Tasaki map for Z, x Z, subsystem-symmetric models and showed that this
transformation furnishes a one-to-one correspondence between subsystem-SPT phases and
subsystem symmetry-broken (SSSB) phases. Concretely, the weak SSPT maps to a stack of
decoupled Ising chains, while the strong SSPT (realized by the square-lattice cluster model)
maps onto two copies of the Ising plaquette model.

A central technical result is the dichotomy between closed and open geometries: on closed
square lattices, the subsystem KT transformation is intrinsically non-unitary and non-invertible
when acting within the physical Hilbert space. We have demonstrated this non-invertibility
through three complementary perspectives. First, by implementing the subsystem KT map on
two copies of the Xu-Moore model, we showed that it sends a Z, X Z, SSSB phase to the square-
lattice cluster Hamiltonian realizing the strong SSPT phase, while leaving the trivial paramag-
net invariant-revealing a ground-state obstruction to invertibility. Second, an explicit analysis
of how symmetry-twist sectors transform shows that closed (periodic or twisted) boundary
conditions are mixed in a way incompatible with any unitary action. Third, the fusion algebra
between the subsystem KT operator and the subsystem symmetry generators directly encodes
the lack of an inverse. Together, these arguments establish that the subsystem KT map acts as a
genuinely non-invertible duality on closed manifolds. Importantly, we have further shown that
by enlarging the Hilbert space to include all twisted sectors, the subsystem KT transformation
becomes fully unitary and invertible, in agreement with recent generalized Wigner-theorem
formulations that incorporate non-invertible symmetries [89]. To complement these lattice
considerations, Appendix B provides a field-theoretic perspective: by combining the gauging
procedure of subsystem symmetries with the stacking of SSPT phases, we have re-derived the
subsystem KT correspondence and thereby supplied an independent, continuum-level check
of the lattice constructions we have developed.

In contrast, on open lattices, the subsystem KT transformation becomes manifestly unitary
and invertible (Sec. 5). In Sec. 6, we have shown that in this open geometry, the subsystem KT
map provides a one-to-one correspondence not only between the bulk Hamiltonians but also
between the degeneracy structures: the spontaneous ground-state degeneracy of the SSSB
phase is mapped to the boundary-mode degeneracy of the SSPT phase.

We have also constructed bulk and edge diagnostics that detect strong SSPT order and
examined their behavior under the KT map (Sec. 7). The bulk invariant remains unchanged
under the subsystem KT mapping. Similarly, the edge invariant, encoded in the projective
algebra of the boundary symmetry generators, preserves its essential algebraic structure. Al-
though strictly local repair operators in the SSPT description map to highly extended, nonlocal
objects in the dual SSSB picture, the commutation structure that distinguishes the strong SSPT
from its weak cousin persists. This observation yields an explicit bulk-edge correspondence in
which the bulk invariant equals the commutation phase between short edge segments across
a cut — a relation that is manifest in both the SSPT and SSSB descriptions, mapped onto one
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another by the KT duality.
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A The subsystem Kramers-Wannier transformation as a gauging
procedure

In this appendix, we explain how the subsystem KW transformation can be understood as
the gauging of a non-anomalous subsystem Z, global symmetry, as outlined in Sec. 2.2. We
remark that an alternative, lattice-resolved formulation of the gauging procedure, complete
with the derivation of the associated duality operator, can be found in the recent work by one
of the present authors [94]. Before proceeding, we first review how to formulate the partition
function in an arbitrary symmetry-twisted sector and how to couple the system to a background
gauge field. Throughout this discussion, we follow the notation of Refs. [57,90,105].

A.1 Implementing background gauge fields on the lattice

Let X be a (2 + 1)D QFT with an anomaly-free subsystem Z, global symmetry, defined on

a closed three-dimensional spacetime X5. For simplicity, we take X5 to be a cubic spacetime

lattice T2 with L,L,L, sites, where the z-direction is identified as the time direction. We

denote the partition function, within the fixed twist sector specified by t := {t}c_ 1 ,tiy_ .} and
2 2

symmetry sector specified by u := {u;.‘, u?’ }, as follows [57,90,105]:

b1+ (DS UR [ 1+ (1) U
x Y _ J i —BH
ZX[uj,ui:tj_%>t—l.),_%]_TrHt (l_[ 2 )(l_[ 2 )e 5 (173)

j=1 i=1

where H; denotes the Hilbert space corresponding to the twist sector labeled by (t}‘ L ,tf -
-3 I—3

The symmetry-twist labels satisfy the constraints given in Eq. (9).
To couple the theory to the subsystem Z, symmetry, we introduce a background gauge
field A = (A*,A*) € {0,1}. Here, the time-like component A® . is defined on the z-links,
l’.]!

2
and the spatial component A*”, =, L is defined on the xy-plaquette.
l—ﬁ,

2
We next clarify the correspondence between the symmetry-twist sectors (u, t) and the back-

ground gauge fields (A®,A*Y). Since the theory is defined on the three-torus T3, the back-
ground gauge fields can be equivalently described in terms of their Z,-valued Wilson loops.
The Wilson loop of A* can be expressed, following Ref. [90] as follows:

LZ
—_ Z
W= 3 as

At first sight, one might expect L, L, distinct variables W,.; ;. However, their number of in-
dependent degrees of freedom is actually reduced to L, + L, — 1. The reason is that W, ;,
being the Wilson loop in the time direction, effectively measures whether the subsystem Z,
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symmetry operators defined in Eq. (3) are inserted along the spatial directions. Concretely,

acting with a symmetry operator of the form ]_[JLi ) (U]x )al ]_[iLil (u? )ﬁ " on the ground state
corresponds to turning on background fields such that W,; ; = a; + f8; [90]. This immediately
implies that not all L, L, Wilson loops are independent; only L, + L, —1 of them are, matching
the number of independent subsystem symmetry operators. Equivalently, one can decompose
the time-like Wilson loop as

Wz;i,j = WZX] + W 2,512 (175)

where W, ,..; and W, ,.; are the Z,-valued Wilson loops associated with the row- and column-
type subsystem symmetries at time slice z. Concretely, W, ,..; (W, ;) detects the insertion
of the operator (UJ?“ YWexsj ((Ul.y YWeyi), respectively), corresponding to subsystem symmetries
acting along the j-th row (i-th column).

On the other hand, the gauge invariant Wilson loops of A*Y along x and y directions are

L,
x _ Xy 4
Z j—%’ Wyi3 = Ai—%,j—%,k =t 1 (176)

MI»—A

They capture the insertion of symmetry defects along the z-direction and are identified with
the twist variables t;‘ .t/ .. The constraints on the symmetry-twist labels given in Eq. (9)
-3

2
translate into corresponding conditions on the Wilson loops, which can be written as

Ly Ly
(Wz,X;J"Wz,y;i) ~ (Wz i LW+ ), l_[(—l)wx”'_% l_[(—l)wy;i‘% =1. (77
i=1 i=1

We denote the partition function in terms of the Wilson loop of the gauge fields as [57,90,
105]

L}’ Lx
ZX[Wz,x;J"Wz,y;i’Wx;j—%’Wy —11="Try, (l_l( ) “]) (l_[ (Uiy)wz’y;i) e PH. (178)

]:1 i=1

The partition function in different symmetry-twist sectors (173) is related to the partition
function in terms of the Wilson loops (178) by a discrete Fourier transformation

1
ZX[U. u tx l,tly—%]:W Z ( ]_)ZJ 1 ] ZXJ 21 1 1 Zyl
W, W,

2,x3)2 V2,51

X ZX[Wz,x;j:W tx 1:ty 1]: (179)

2,Y310 1
o j=gT iy

where the sum over (W,
is

x;j» Ws,y:i) should obey the constraint (177) and the converse relation

W
Za[ W s Wy y i XJ__,Wy,i_;]—Z( 1) W B ] W

XZX[U u ij_l W 1] (180)

where the sum over (u}‘ R uiy ) should obey the gauge redundancy (9).

We now turn to the dual theory (after the subsystem KW transforrnation) X, where the
twist sectors are labeled by t := {’* ty } and symmetry sectors by i := {u 1 ,u. , }. Similarly,

to couple the dual theory to the dual subsystem Z, symmetry, we 1ntroduce a dual background
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gauge field A = (AZ AYY ) € {0,1}. The Wilson loop variables of the dual gauge fields are
(W W . 1, W, W, .;) and satisfy the gauge redundancy and constraints

xl——’ z,y,l—i’ x;j>

L, N
(W’%X;J'—l’ W\Z,y;i—%) ~ (V/VZ P 1 Wz yi-t T 1) l_y[(_l)wx;j l_[(_l)wy;i =1. (181)

Analogous to Egs. (179) and (180), one can define a Fourier transform relation between the
dual partition function in a given dual symmetry-twist sector and the corresponding partition
function in terms of the dual Wilson loops.

A.2 Gauging subsystem Z, symmetry
Review: gauging global Z, symmetry

Next, we relate the partition function of the original theory X with gauge field A to that of
the dual theory X with A via gauging. In general, for a theory with an ordinary Z, global
symmetry, the gauging procedure (also known in field theory as the S transformation) yields
a dual theory SX = X/Z, = X defined on the dual lattice and endowed with a new Z,
symmetry. Its partition function takes the form [27,34,41,50,106]

R 1 i
ZelXg Al = ———— ST Zy[Xgp,al(=1)un (182)
|H (Xd+1’Z2)| a€HY (X 441,22)

The role of the two cohomology groups in this expression is as follows. The factor H!(X .1,
Z,) classifies all Z, gauge fields on the manifold X, ;, so that the sum over a € H* (X4, 1,%,)
implements the promotion of the original background field (A) to a dynamical one (a) by
summing over all possible periodic/twisted boundary conditions. Meanwhile, H°(X 1, 1,Z,)
encodes the constant Z, gauge transformations, one for each connected component of X4, 1,
which act trivially on the theory; dividing by |H°| removes this redundancy and gives the
correct normalization of the gauged partition function.

The additional sign (— 1)f a4 js determined by the cup product pairing a UA (denoted as
aA for brevity) between the dynamical gauge field (a) and the new background field (4), and
can be interpreted as counting their intersections modulo two. In this way, the relation above
provides the modern perspective on the KW transformation, viewing it as nothing but the
gauging of the underlying global Z, symmetry.

Gauging subsystem Z, symmetry

We now generalize the above gauging prescription to the case of subsystem global symmetries
in two spatial dimensions, following Ref. [105]. In this setting, the usual cohomology groups
are replaced by their subsystem analogues, and the dual partition function is then

1 aA
ZelXs A= ———— > Z[Xs, a)(~1) /2, (183)
2000, 22)| 5

Here Hslub(X3, 7Z.,) is the group of subS}.fstem Z, gauge ﬁelds, while ngb(X. 3 7Z,) consists of the
constant subsystem gauge transformations that act trivially and must be divided out to normal-
ize the partition function. As in the global symmetry case, the additional phase factor encodes
the subsystem analogue of the cup-product pairing, given explicitly by aA = a UA = ¢’V A*
+ A

To demonstrate the utility of this general construction, we now rederive the mapping be-
tween the symmetry-twist sectors under the subsystem KW transformation given in (25). To
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define the symmetry and twist sectors, we place the theory on the three-torus T3, so that
Eq. (183) can be expressed in terms of the Wilson loops of the gauge fields [105]:

— — —_

Z)?[W 1, W Wx;j’Wy;i]

z,x5j—37 " 2,y5i—3’

1 E Z
B 2Lx+Ly_1 X[WZ’X;j’ z.Y5 W ,J_%’W)’;i_%]

WZX): 2,y
w 1,W_ .1
xjmy vty

AW 1+W w, + 1w 1+WA-W i
x (1) ’1( i Wiy Wi Waris) 5, nysimg yimg Y Z’y’l). (184)
Combining (179), (180) and (184), we obtain
Zel@ @ B S AW W TR
X j—%’ i— ;’ ]’ 2LX+Ly—1A 4 X zx,J——> 2,y5i—57 j 2 i
w LW 1
z,x;j=5" " zYyii—5
L}' = W x 7 W
u, 1
() T e ST Wy
- 4Lt ~1 E z : X[Wz,x;]: z,y500 Wy ’J_%>Wy;i_%]
sz -,l’w\z 1 WszJ: 2,502
T2 BYITR x}_l: yl_%
Ly ~ o7 Ly 4 W
ZJ 1uj % fo*l+z i-3 Z.Yl*l-i_zl 1( 2,%;j— ZWx;j*%-’—/P.;WZ’X;j)
x (~1) RN, iy )
=D Z 2.7
- 4Lx+Ly—1 - X u u W %’W_y;i—%]
W 1’W 1 ZX]’ zyu Ll Ll

2,X;j—5"  z,yii—5 W W

L _—
Y ax Lx oy
oW 1+ LU W 1+ZJ 1( . WX;]'_%-FP;’WZ,X;])

j=1 % 2,X;j— ,% 2,y;i—
x (_1) +Z z s l—%wy i_%"'tilwz Y 1)"‘2] 1 j;c z,x;j+2i§1 uglwz,y;i )
(185)
After carrying out the sum over ( exijbs WZ v 1—-) and (w, . o Ways .;), we obtain
X =~y i~
ZX[uj_%,ui 1’tJ’tl 1= Z Z ZX[uJ’ XJ'—%’Wy;i—%]
Wi y;'f% u] ,U
X 5Ax O Opr x O
T %,wx;};% u?’_%,wy;i_% /Pj‘,uj t )
=Zx[t, CATERTAN) (186)
j=3 1—5
Thus, we conclude that the symmetry-twist sectors before and after gauging are related by
X =y ™ 7 — X Yy 1
(uj_l,ui_%,tj,t‘l?') (tj_%,tlyl,u],u ) (187)

which exactly reproduces the mapping (25) obtained in the main text from lattice considera-
tions.

B Subsystem Kennedy-Tasaki transformation in a field-theory frame-
work

In this Appendix, we present a field-theoretic formulation of the subsystem KT transformation,
following the approach of Ref. [41]. For a generic QFT X" with a subsystem Zg x ZJ symmetry,
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STS
Trivial
S \
T
T SSSB <L> SSPT S

Figure 7: Relation between the three gapped phases with subsystem Z5 x Z; sym-
metry through duality transformations.

we write its partition function as Zy[A,,A. ], where both Z, symmetries are taken to be non-
anomalous. Following the notation in Appendix A, we denote the background gauge field for
the first subsystem symmetry ZJ as A, = (AfT,A’f,y ) € {0,1} and for the second subsystem
symmetry Z2 as A, = (A%, A7) €{0,1}.

When X is in the trivial phase, the corresponding fixed-point partition function can be set
to unity [107]

ZyilAg, Al =1. (188)
For the SSSB phase, the fixed-point partition function is given by [107]
Zsssp[Ag,Ar] = 6(A5)6(A,). (189)

The fixed point partition function for the global Z, x Z, SSB phase was constructed in
Refs. [108,109]. Extending this framework to the subsystem setting, we obtain for the strong
Z3 x Z SSPT phase

ZssprlAg,Ar] = (—1)IX3 Aot (190)

To clarify how the different fixed-point theories are connected, it is useful to introduce
certain transformations that act directly on the partition function:

N n 1 G'A\T-’» TA\O'
S:Zsx[Ag,Ac]l= X, Z)1 Z ZX[aG,aT](—l)fxaa e
3720 g, eH} | (X3,29),

sub
sub
ar eHslub(XB ,Z‘zr)

T ZralAg,Ar] = Zy[Ag A, Y (— 1) (191)

Here, S corresponds to gauging the pair of subsystem Z, symmetries, and T corresponds to
“stacking” with a nontrivial ZJ x Z; SSPT phase [41]. The unique combination of topological
operations that maps the strong SSPT phase to the SSSB phase (and vice versa), while leaving
the trivial phase invariant, is given by the composition

STS =TST. (192)

The connections among the trivial, SSSB, and SSPT phases through the duality transfor-
mations are explicitly summarized in Fig. 7. In this work, we employ the STS sequence to
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implement the subsystem KT transformation, as it provides a considerably simpler and more
transparent construction [41]. The action of the STS transformation on the partition function
can be expressed as follows

1

VR v ke G0l Ha G+ @ A AL T AL
ZSTSX[AO,AT]——”_IO AL Z Zylas,a;](—=1)%s
b 3’ 2 aU’aT’aU1aT
H. (X3, Z)| ta A +a A +A A,
B IHOsu (X3, Zo)|* 2.2 Zalay, @, )(—1)x dottaohrahotho A (193)
ub 3> &2 a,,a;

where, a, and a,; (@, and @) represent the dynamical Z§ x Z; gauge fields that are introduced
during the first S (second) operation.

We now derive the mapping between the symmetry-twist sectors under the STS transfor-
mation starting from the partition function of a generic QFT X with a subsystem ZJ x Z
symmetry. To define the symmetry and twist sectors in a precise manner, we consider the the-
ory compactified on the three-torus T2. On this geometry, Eq. (193) naturally takes the form
of an expression written in terms of the Wilson loops of the background gauge fields

Zsrsx WS WSO WT [ W” w’e uWw. JWIT W/T]

226G Y e xgj—t U ayi—y’ -3’ yii—y’ X0’
e 2.
T gL +L,—1
4 x Y g WO' T W’T
X8y z,X;j—%’ Z,y;i—%’
w? we wEowT
X'j—l y;i—% X377yt
x (=1)2Z[wo . wo . wT w’ w2 w? wi o wt. 194
( ) X[ 2,52 " 2,51 Z,X;j—%’ Z,y;i—%’ ,j—l’ y,i—%’ x;j? y;l]’ ( )

where the phase Q is given by

L,
w’ T
W w? W
Z ,]—— zx,]— L tw Zx] XJ)+Z( ¥ii— yl—l+ 2,51 y;l)

Ly
o /T /T /T (o T
E w w W, E w w. W .
+ ( x;j—% z,x;j—% ZXJ )+ ( 1—5 2,Y51— 1 + z,)5t }';l)
j=1

J:

L}'
+le(w;x;j_%w;§; LW w;§])+2(wyl__ WS

JLy
+Z£(Wg_%wz’;;j + W/, JW’T)+Z(W"T W WIS, (195)
]:

The relation between the partition function of the original theory & in different symmetry-
twist sectors and its expression in terms of gauge-field Wilson loops is established via a discrete
Fourier transformation

Zyvlu u® uw t* t .t
X[ O']’ O'l’ T,j—%’ T,i—%, O',j—%, O',i—%, T,j° T,l]
: Z
=— Zy[w] ., wy whooowt Lt Y ]
gLxtly=1 L A2 Pyt Vo xsj=1 Vayiici? o, -1 Tojimd’ TI
Wa s Wa,ysio
wt wt
ZX;J'*% z,y;ifl
L L
Yy s we X T
2 2 AN w +35
j=1 cr] ZX] i=1 Ul zyl -1 -71 _1 71
x(<1) Ra i S e S (196)
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and the inverse relation is

ZX[WO' (o T T (o) (o) T ; l]

23] V250 Uy i U ysi—1’ U a1 T yii—3 T XY

— X Y X Y o o T T
= 2 Zaltto jo o oV i 4 Wiy Wiy Wi Wy

y
Ug ol >
u* i
-1 -1
Ly x .o Ly ¥y o Ly  x
ST X wl 4>k wl 4> u w' +30
=1"0,j 7" zx; =1"0,i"2y; =1 -,l 1 17, vl
x (—1)7T T T ORI T g E A (197)

From the relations established above, we can now combine them to deduce the desired map-
ping

x 1y /x 'y /x 'y /x
ZSTSX[U-U’J'; uo‘,i’uT j__: uT,i—%,tG,j—%’tO',i ;; TJ’ Tl]
y _Ix 'y /x /x 'y 1y ¢ Ix 1Y 1y
=7 u:-.,u u t +u ,t +u tug Lt U
xlug Yojotloite 1> Ti—} oj-3  Tj-3 oi-} Ti-}’ Lo Tlopte il
X Y X X
- ZX[uo- i’ o, l’ uT,j—%, uT,i—%’ tO‘,j—%, tZ',i—%’ tT’jJ t}r/’i]n (198)

which reproduces the symmetry-twist mapping obtained earlier in Eqs. (116) and (117). Namely,
the KT transformation leaves the symmetry sectors unchanged, while the twist sectors get
transformed in a way that depends on both the twist and symmetry sectors of the model.

C Explicit computation of non-invertible KT transformation

In this Appendix, we present the detailed derivation of the expression for NVt given in Eq. (92)
of the main text, and explicitly work out the steps leading to the fusion rule Nyt x Ny stated
in Eq. (128).

C.1 Computation of Ny

With the explicit forms of the subsystem KW duality operator N in Eq. (82) and the domain
wall decoration operator Upy in Eq. (89) at hand, we can now evaluate Ny, defined by
Nyt = NTUpwN. Applying this definition to an arbitrary basis state in the original Hilbert
space, we obtain the explicit form of the KT transformation operator,

1
Nkt {O-i,j’Ti_%,j_%}>:4LX—+Ly ZA (—1)Aaloomeh {‘71]: z,f—%}>’ (199)
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where the phase Axr({o,0’; 7, 1’}) is given by

Lx Ly L}'
_ ~ ~ ~ ~ x [~ ~
A =22704;(Fi 1 +0up 1 0y T 001 50p) + 2565, (01,01 + 51 50)
i=1 j=1 =1
Ly Ly L.Y
+ t” (6‘ 11+ 0 11)+txy611+ T (T 1+ 7T 1+ 7T 1
Z o i\"i=3,3 | Uity o 723 ST AR B - S A
i=1 i=1 j=1
L}’ Lx
x 7y Xy
o) 1 ey (7o + )+ e (Figy+rig )+ 877y
j= i=
L, Ly Ly
—~ ~ ~ ~ —~ /\x —~ ~
+ Z Tij (01—7,1—5 TOi 11701541t Ul+§,1+2) T 2.0 (U%,J—% + 0%,J+%)
i=1 j=1 =1
L, Ly L}’
Y (= P XYy & (= ~ ~
+ tT’i(O'l_%’%+O'l+%’%)+tT O'%}%-I-Z ai,j(al—2,1—7+O—H—%,j—§+o.l—5,]+7
i=1 i=1 j=1
L}' Lx
x [ =~ -~ 'y (A o ) IXy =~
+O-l+%,]+é)+ 1t0’j(0'%)]_%+0'%,ﬂ_%)+ 1t0’i O'l_%,%—i-O'H_%,% +t, O'%%
J: 1=
LX Ly Ly
~ / / / / ~
+ E E T (T +7 .+ 7T + )+ t (T +7 )
RN e B S o A Fas SR A [EANE ST N
i=1 j=1 j=1
X
Y / / -~ /
+ E tﬂ.(ﬂ.'_ L1+ T 11)+tf3"511. (200)
= N 22 +3,3 23

We then carry out the summation over the 7; ; degrees of freedom in the dual Hilbert space,
which yields a product of delta-function constraints

(Ti—é,j—% R T T T L S T N R WEE R T
/ / / / . .
+7 +7 +7 +7 =0 i,]. 201
S B N B UAs MRS BES Vi (201

The general solutions of the constraints are

=~ / X y X Yy .
. . =T. . (S
Oy 1, 1=Ti 1,1+ T + ey + My, MM {0,1}, Vi,j, (202)
The general solutions of the constraints further imply that
~ _ Ix —~ _ /y
=t +t, tcym. _t{’l.+tm.. (203)

We subsequently sum over all distinct solutions

(204)
By substituting the solutions (202) into Egs. (199) and (200), we obtain
olLyLy .
Nir ’{O-i,j’fi—%,j—%}> = JhL, > Y, (pfalosise ‘{Uf,j”:_%,j_;}>’
Ulfj,'r’_ 1. pm* m) )eM
AL S A B
(205)
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where the prefactor 25xLy arises from the summation over 7; ; and the phase Axr({o, o’;7,7'})
in Eq. (200) becomes

/

A‘“‘ZZ(" L) (g + Fanh i T T g Ty

=4 =3z i3
L}’
/ / /
T T l+2,J+2) * 1( o L ;)( Tt T T T T%,ﬁ%)
=
Ly
+ ; (2, +¢2) (ri_%’% T TRt r;r%’%) + (X + e (r%’% + r’%’%)
Ly Ly

I l(tx_ RV 1)+Zm«Y1 g+t +T ). (206)
= j—3 \ 0.j—3 0,j—3 T.J—3 = 3\ 0,173 )

By performing the sum over (m 1,M, ;) € M subject to the constraint specified in (204), we
—2

can derive the compact express1on for NKT presented in (92) of the main text.

C.2 Computation of the fusion rule: Ny X Ny

Here, we outline the derivation of the fusion rule Ny x Ngr given in Eq. (128). By the
definition of Nyt in Eq. (95), we have

_ gL L,—(L,+L,+1) _1\B 7 7
Nir * Nr {O_i,j’Ti_%,j__}>—4 y y Z (-1 ‘{Ui,j,fl._%,j_%}>, (207)

{01]5 I 1 };

1
" //2] j
ol T
@ )
where the phase B({c, 7;0',7’;0”,7"}) is given by
Lx Ly
— /
B= (‘71]+01J)(Ti 1l Tl T T ]+_+T %,j_%+'r L
i=1 j=1
L}'
/ / X x /
+7T T. + (t +t )(Tl 1+7T1 1+ 7T + 7T )
i—3,j+3 1+§,J+%) o o o 2.J=3 2.t 1.j—% 1i+3
J:
Ly
y Y / / xy Ixy /
+E (tol+to’1)(’[l_%’%+’rl+%,%+’L'l_ll+’rl+ll) + (5 4+ ¢2 )( %%+rll)
i=1 202 222 2,3
Lx L}'
/ 1/ / / / / 1 17
+ (O’ + 0 )(T +7' + 7 +70 . +T +7
2Tt T\ Ty g T e T e T i
i=1 j=1
L.}’
1/ 12 x ""x / / 1/ 1/
+7T + 7T + (t +t ) T +7T +7T +7T
Loyt ) 2\t o)y T i TR T
Ly
/_y //y / V24 V24 x 1x / 1/
+ E (ta,i+t )(Tl_ll+Ti+ll+Tl_ll+Tl+l l)+(t0y+tgy (rll+rl 1)
i=1 222 252 2°2 2°2 222 252

We next perform the summation over o ., which produces a factor of 2L<Ly along with a

J)
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set of delta-function constraints

(Tl—i,j—l + Tl+2,j 1+ T; 1’J+1 + Tl+%,j+%
ST P L PPE, TH'z»H'z) =0, VYi,j. (209)
The constraints admit the following general solutions
i =7, 1. 1+m* +m’ , m* ,,m’ | e€{0,1}, Vi,j, (210)

i-1,j—1 1=2,)73 T,j—% T,i—3 T,j—3 T,i—3
In this notation, setting m* | = 1 corresponds to inserting Ux i and m* | =1 corre-

.73 T,)"3 T 1_5
sponds to inserting U” | [41]. The next step is to sum over all the unique solutions,
T,1—3

M, =(|m* m’ m* m’ €{0,1
T T,j—l’ .01 T,j—%’ T,i—% { 5 }’

2 Fo)
(mX, L,m l)z(m’c, 1+1m 1+1)>, Vi, j. (211)
T,)—3 T,l—3 )73 T,l—35
From these solutions in (210), it naturally follows that
"x _ ny __ }’
th=t, ti=t (212)

Upon substitution of (210) into Egs. (207) and (208) followed by simplification, the expression
reduces to

NKT ><J\/'KT { 1]’ %,j—%}> :4LxLy_(LX+Ly+1)2LxLJ' Z Z
v, 1}{0”}(m Cm . )eM,
=2.J=3 -3 TiTg
B y
x(=1)" {o l],Tl_i’j_l +m* ol +m7’i_%}>, (213)

where B in (208) reduces to

Lx L)’
— / 17
B= (Ti_%’j_%+fi_%’j_%)(0'l 1j-1t0ij1+t0i1;+0:; ol Lji-1 100
i=1j=1
L}’
17 17 X x
+ai_1’j+0i,j)+ (tT,j_%+tT’j_i)(O'L jatop ol 1+<7LX’])
Jj=1
LX
Y 1y % Xy 4 /Xy ( " )
+Z(tf’i_%+tm_%)(al 1, + O+ 0l ol ) (Y ) (o +ot
i=1
L, .
+ ( +t”x)(mx_ . )+ (’y +t”y)(my, L +mY 1)
- T,j—3 ,]+2 - T,i—5 T,it3
_]:]. i=1
xy 1"xy X Y
+ (¢ 4t )(mT’%-i-mT’%). (214)

We further sum over ©/ , . ,, which produces another factor of 2LxLy along with a set of
=3,j=3
delta-function constraints

1/
+ 0.

i,j— 1+O'l 1 +0 =0, Vi,j. (215)

ll]l+o-l)1+o-l 1J+O' +O' j

i—1,j—1
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Solving the constraints yields the following general solutions,

ol = =0;;+myg +mol, m* m E{Ol} Vi, j. (216)

L] 0.j’

Here, m . =1 indicates an insertion of Ux , while m o= =1 indicates an insertion of Uy
We then perform the sum over all distinct conﬁguratlons that satisfy the constraints (216),

_ X Yy
My = <(mo,j’ mo,i)

The general solutions of the constraints in (216), in turn, imply that

m e {0,1) (mXm) )~ (mX 4+ Lm)  +1)), Vij. (217)

U,J’

=t ., t7 =t . (218)

.1 > .1
g,]—3 0,]—3 O,l—3 O,l—3

Inserting the solutions (216) into Egs. (213) and (214), and after a few lines of calculation,
the expression simplifies to

ALy Ly—(Ly L, +1) gL L
N % N [{01 7y -y} ) =il (Bertorgbeds 2.
(maj, e, (m* . %,mi,ii%)EMT
_1)8 x y
x (=1)" {o;j +m], +mal,f _1-1 +mT’j_% +mm,_%}>,
(219)
where the exponent B in (214) reduces to
Ly L, Ly,
— / Y /
B=my (e, + ¢ )+ > m) (6, +2 )+ > m o=l ( oot T t;,j—l)
j=1 i=1 j=1 > 2
Ly
y 1y
+ Z m (ti it tU,i_%) : (220)
i=1
We may express Eq. (219) in a more formal form as
Nir x Nir {04, T; ’j_%}> — 42LeLy—~(Ly+Ly+1) Z Z
(m 3 )eM, (m* Lom’ e,
R f Ti-g
XPB’{O-i,j’Ti—%,j—%}>’ (221)

where Py is a projector onto a definite symmetry-twist sector given by

Py = (_1)Z]L'ilmi,j(t:,j+t:fj) (U;j)mcr,j |:(_1)Zfilmg,i(t¥,i+tgi) (Uy.)mg’i

m P+ )LX Mol
x | (= 1) 1_7(0,1-_% oi-% l_[(Uy. 1) =3 (222)

By summing over (

my, i, m ) € M, and (m , 1,my, 1) € M, subject to the constraint
T,l1—3

>

specified in (217) and (211), respectlvely, we can obtain the final expression for Nyt x Ngr
presented in Eq. (128) of the main text.
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