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Abstract
It has been conjectured that the size of the black hole interior captures the quantum

gate complexity of the underlying boundary evolution. In this short note we aim to
provide a further microscopic evidence for this by directly relating the area of a certain
codimension-two surface traversing the interior to the depth of the quantum circuit. Our
arguments are based on establishing such relation rigorously at early times using the
notion of operator Schmidt rank and then extrapolating it to later times by mapping bulk
surfaces to cuts in the circuit representation.

1 Motivation
In the realm of quantum dynamics, one very interesting quantity is the circuit complexity:
the minimal number of elementary gates required to build a given unitary - we refer to [1]
for a recent review. Sometime ago it was suggested [2–5] that the ”size” of black hole
interior is equal to the complexity of the circuit preparing that black hole state. Here we
used ”size” in the quotation marks because there are many different proposals of what this
geometric quantity should be: volume [2, 3, 6, 7], action inside the Wheeler–DeWitt patch
[4, 5, 8], more generic functionals [9, 10]. These proposals pass many interesting indirect
checks: initial linear growth, switchback effect [11] and even saturation at exponentially
late times [12]. However, circuit complexity is exceptionally hard to compute a. Moreover,
it depends on the set of basis gates and there might be several circuits which are locally
minimal. More progress can be obtained in 1+ 1 bulk dimensions and the Sachdev–Ye–
Kitaev (SYK) model [14–17] by directly mapping [18–20] the chord representation [21, 22]
to Krylov complexity [23–30]. Thus, unfortunately, most known checks of this proposal are
indirect. It is tantalizing to find a proxy for complexity which is computable and for which
it is possible to establish a general direct link with some concrete geometric quantity in the
interior:

A circuit complexity proxy direct←−→ A concrete geometric quantity.
aWe refer to [13] for a recent progress in this direction.
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The purpose of this short note is to present a direct connection between holographic
volume and complexity. Namely, we will argue from the first principles that the area of a
certain extremal codimension-two surface passing through the black hole interior, namely
Hartman–Maldacena (HM) surface [31], bounds from below the circuit depth of the bound-
ary evolution operator:

AHM

4GN
≤C× (circuit depth) , (1)

where C = A∂ (logD)r is a time-independent constant: D is the local Hilbert space dimen-
sion, r = 2d−2 is constant arising from the brickwork circuit circuit connectivity, assuming
the boundary theory has d−1 space dimensions b, A∂ is the boundary area of the region the
HM surface is anchored to (in fact, there is the same factor in AHM). For early times we
will be able to establish the inequality (1) rigorously. For late times it is a conjecture which
we will back up by explicitly mapping a gravity computation to a quantum circuit picture.
Circuit depth is a measure of how complicated the underlying circuit is: how many layers of
gates are needed to prepare it. So it is similar to circuit complexity. In the translationally-
invariant case they are proportional to each other: total number of gates equals depth times
the system’s size. We would like to emphasize that we relying on translation invariance in
order to relate the area of a HM surface, associated with a subregion, to the complexity of
the total state. It was recently shown that complexity associated with a small subregion can
suddenly collapse [32, 33].

It is important that in eq. (1), the circuit depth is any circuit depth which prepares a given
unitary. This relation will allow us to clarify the result of gravitational computation. We will
argue that it indeed probes a global minimum and that, surprisingly, the set of basis gates
can be chosen arbitrary. This bound remains valid even in the presence of a Python’s lunch
[34, 35], however it becomes extremely loose in this case as we explain in the Discussion
section.

The first difficulty of defining complexity for field-theories is the UV regularization. In
this paper we will be able to by-pass this difficulty by appealing to entanglement entropy.
The main idea of this paper is to interpret the two sides of the thermofield-double (TFD)

state not as two independent systems, but the past and the future of the same system. Then
entanglement entropy in this state can be viewed as ”entanglement in time”. We will obtain
the inequality (1) in two steps, by invoking an auxiliary quantity – the operator Schmidt
rank χ . We will show that for any discrete circuit, a certain operator entanglement entropy
SvN(AL∪AR) bounds the log of the operator rank and the the corresponding complexity:

Early times
(rigorous, any discrete)

: SvN(AL∪AR)≤ log(χ)≤C× (circuit depth). (2)

This statement is very general and does not rely on holography. After that we will switch
to holographic field theories and invoke the standard dictionary to relate SvN(AL ∪AR) to a

bFor concreteness, in this paper we analyzed brickwork circuits, but the arguments can be very easily
generalized to other geometries. In this case r is the number of bounds per gate per circuit layer intersected by
a co-dimension one hyperplane cutting the circuit along time direction.
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Figure 1: The sketch of the behavior of various quantities as a function of time. We expect
that all three have the same linear slope at early times, but we cannot show this rigorously.

gravitational bulk computation:

Early times
(holography, continuous)

: SvN(AL∪AR) =
AHM

4GN
(3)

Combining (2) and (3) leads to (1) at early times. Finally, we will provide heuristic evidence
why we expect (1) to hold at all times. The operator rank χ is a feature of given unitary
only, it does not depend on the choice of gate set. At late times (beyond the total system’s
size) log(χ) saturates to a constant value. However, the HM surface continues to exist and to
grow at the same rate. The same is expected for the circuit depth. Moreover, we will be able
to qualitatively translate the bulk Ryu–Takayanagi (RT) [36, 37] surfaces to minimal cuts in
the circuit representation, where the HM surface maps to the temporal cut probing the depth.
This is why we conjecture inequality (1) beyond the early time regime.

The two regimes and the behavior of all three quantities is illustrated by Figure 1. In case
of an infinite system, the late time regime is never realized. To make a stronger connection
between operator rank and complexity, in Appendix A we will argue that log χ satisfies the
properties of complexity, such as subadditivity and switch-back effect.

Usually obtaining lower bounds on complexity (in the broad sense of this words) is hard,
this is why the inequality (1) is interesting by itself. Other approaches to lower bounds on
complexity include the geometric approach of [38] and the entanglement power [39].

2 Derivation
Given two copies (left L and right R) of a system, we can defined time-evolved TFD state
|TFD(t)⟩ as:

|TFD(t)⟩= 1√
Z ∑

n
e(−β/2−it)En|n⟩L|n⟩∗R, (4)

where |n⟩ are energy eigenstates and Z = ∑n e−βEn - is the partition function. We can rep-
resent this state using the following tensor diagram - Figure 2 (a), where U = e−(β/2+it)H .
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We must comment right away that this operator is not a unitary. We will discuss this fact
and its relation to the Python’s lunch conjecture in the Discussion section. The arguments
in this Section are not affected by this possible non-unitarity. For holographic theories, this
state is conjectured to be dual to two-sided black hole geometry in anti-de Sitter (AdS) [40] -
Figure 3 (a). Hartman and Maldacena [31] studied the entanglement entropy of a subregion
A = AL∪AR, consisting of two identical subregions: AL on the left side and AR on the right.
For concreteness, we will consider the case of a finite system with periodic boundary con-
ditions, such that the system is translationally-invariant. Subsystems AL/R are of order half
the total system size. For holographic theories, in the leading order in GN , the entanglement
entropy SvN(AL∪AR) is equal [36, 37] to the area A of the extremal surface homologous to
AL∪AR:

SvN(AL∪AR) =
A

4GN
+O(G0

N). (5)

If there are several competing surfaces then one needs to choose the minimal one. We will
define HM surface as:

HM surface: the minimum among the extremal connectedc surfaces homologous to
AL∪AR.

In this terminology, at early times (times smaller than the system size) the relevant extremal
surface is the HM surface γ stretching through the black hole interior - Figure 3. Whereas at
late times (times larger than the system size) the minimal extremal surface is disconnected
γ ′ on Figure 3.

However, geometrically, HM surface continues to exist and to grow, it is simply not a
global minimum anymore. What does its area compute? To answer this question, our main
conceptual step is to interpret L and R not as two independent systems, but as one system
in two different moments in time. Algebraically, we ”bend” the legs of the tensor diagram
on Figure 2 (a) to arrive at Figure 2 (b). Now it is obvious that AL is in the past d of AR. In
this interpretation, the entanglement entropy of A is the ”entanglement in time”, as defined
in [45], since it is evaluated for a region consisting of a past part AL and future part AR. The
intuition is that it is sensitive to a connected time-like cut through the evolution operator
(HM surface), so it has the information about the circuit depth. To be more quantitative, we
will invoke the notion of operator Schmidt rank.

It is well-known that entanglement entropy is bounded by the logarithm of the density
matrix rank. To determine the rank (or approximate rank) we need to cut the operator U
along the time-direction to see how many non-zero singular values it has - Figure 2 (c).

|TFD(t)⟩=
χ

∑
α=1
|V A

α ⟩|V A
α ⟩AL∪AR. (6)

cIn 2+1 bulk dimensions the relevant bulk surface traversing the black hole interior consists of two com-
ponents. Then we can substitute the word ”connected” by ”each component connects AL to AR”.

dIn the condensed matter literature SvN(AL∪AR) is known as operator entanglement [41–44]. We treat U as
an evolution operator - Figure 2 (b), but strictly speaking, U is not unitary. In the Discussion section we discuss
how this problem can be easily fixed. Also for high temperatures, it is approximately unitary.
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Figure 2: The sequence of transformations from the TFD state to the operator Schmidt de-
composition. (a) A conventional TFD state. (b) We bend the legs of the circuit diagram
and interpret the left (L) side as the past of the right (R) side. (c) We perform a Schmidt
decomposition of the unitary: V A

α evolves the past subsystem (AR) into the future subsystem
(AL). Bond index α is responsible for the exchange of information between A and the rest.

In other words, we perform a singular value decomposition. Quantity χ is known as operator
Schmidt rank. From this representations it is evident that

SvN(AL∪AR)≤ log(χ). (7)

This relation is very general: both parts of the inequality do not depend on gate set or whether
the system is holographic. It is an important point which we will recall later.

Why is it related to the circuit depth? It is convenient to represent the operator U as a
brickwork circuit geometry to emphasize the locality properties - Figure 3 (c) - we can bound
the rank by providing any cut through the circuit which separates AL∪AR for the rest of the
system:

log(χ)≤ logD× (number of cut links), (8)

where D is the local Hilbert space-dimension. One can establish a close parallel between the
dominant surfaces in holography and the cuts through the circuit diagram -Figure 3 (c):

• Connected cut γ traversing the evolution operator is the direct analogue of the HM
surface traversing the black hole interior. It leads to the following bound, assuming
the boundary has d−1 space dimensions:

log(χ)≤C× (circuit depth), C = A∂ r logD, (9)

where A∂ is the area of the boundary of AL and r = 2d−2 reflects the connectivity
of the brickwork geometry: it is one-half of how many unitaries in the next layer
are connected to a given one at the current layer – this is how many bonds will be
intersected by γ per one layer. For shallow circuits this cut dominates. Hence we have

AHM

4GN
=︸︷︷︸

early time

SvN(AL∪AR)≤ log(χ)≤C× (circuit depth). (10)
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Figure 3: (a) Penrose diagram of AdS black hole. (b) A direct space-time illustration for the
cases of 1+2 dimensional bulk at t = 0. Semi-circle represents Euclidean state preparation.
(c) Associated quantum brickwork circuit representation with d = 2. Notice periodic bound-
ary conditions. In all figures γ ′ (purple) is the disconnected saddle. The main conjecture
of this paper is that the connected HM surface γ (yellow) from (a) and (b) translates to the
time-like circuit cut in (c).

• A disconnected cut γ ′. In the bulk it corresponds to the union of extremal surfaces for
AL and AR which stay away from the black hole interior, leading to:

log χ ≤ r log(D)|AL|. (11)

For deep circuits it is this cut that dominates the entanglement entropy:

Late times:
AHM

4GN
̸= SvN(AL∪AR)≤ log(χ)≤ r logD|AL| ≤C×(circuit depth). (12)

However, the HM surface/circuit cut γ continue to exist and to grow. The area of the
HM surface grows linearly with time and this growth is not expected to change prior to
exponentially long (in the system size) times. In principle, there could be an extra island
saddle [46–49] appearing but again it is an extra saddle, the HM surface continues to exist
even then. Similarly, the circuit depth is not expected to exhibit any qualitative changes prior
to exponentially long times. This expectation is based on the fact that for translationally
invariant systems the circuit depth is proportional to the number of gates (that is, complexity).
Based on that, we conjecture that part of the inequality (10) continues to hold, namely:

AHM

4GN
≤C× (circuit depth). (13)

3 Discussion
This short note was dedicated to the measures of complexity of an evolution operator U =
e(−it−β/2)H . We argued that for holographic systems, the area of HM surface (in units of
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4GN) bounds from below the number of layers in a quantum circuit - eq. (13). Our arguments
are based on rigorously establishing the following bound at early times:

AHM

4GN
≤ log χ ≤C× (circuit depth), (14)

And then extrapolating to later times based on the fact that the leftmost quantity (AHM) and
the rightmost (circuit depth) continue to grow at a steady rate, unlike log χ . The arguments
in this paper can be improved: we treated holographic conformal field theories as finite di-
mensional systems and we obtained only a lower bound on complexity, rather than showing
that it is equal to some bulk quantity. Also we tacitly assumed translation-invariance, oth-
erwise it is not clear how to define the circuit depth and AHM depends on the choice of a
subsystem: currently we do have A∂ in our formulas, but it will conveniently cancel out
with the same factor in AHM because the HM surface preserves the shape of the boundary
region through its bulk journey [31]. However, our arguments have provided a microscopic
evidence that a black hole interior size captures quantum circuit complexity. Let us offer
some closing remarks about the potential lessons from this relation.

From circuit depth to complexity. The relation to the area of an extremal surface in the
interior seem to favor ”complexity=volume”, rather than ”complexity=action”. For transla-
tionally invariant systems, quantum gate complexity is equal to the depth times the system
size. Similarly, if we sum (integrate) over all codimension-two surfaces we will get a mea-
sure of volume (however it is not obvious it would coincide with the conventional volume),
hence we very roughly have:

(volume)≲C× (gate complexity). (15)

Gate set and minimality. It is important to emphasize that log χ is an intrinsic property
of U , it does not depend on gate decomposition. Whereas the upper bound on log χ can be
obtained from any circuit. Hence we are bound to conclude that AHM/4GN , bounds from
below C×(circuit depth) for any circuit - we are free to choose any gate set, any connectivity
and search for the minimal circuit representation globally.

Properties of the operator Schmidt rank. In general, log χ is greater than the operator
entanglement entropy SvN(AL ∪AR). However, for Clifford circuits the entanglement spec-
trum is actually flat, so they are equale.

Measures of circuit complexity are supposed to satisfy two simple properties: subaddi-
tivity and switchback [11]. In Appendix A we argue that the log of operator rank satisfies
them too:

• Subadditivity:
log χ(U1U2)≤ log χ(U1)+ log χ(U2). (16)

eWe are grateful to Zixia Wei for pointing this out.
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Figure 4: Illustration of the Sz.-Nagy dilation.

• Switchback: for a local unitary operator W and a scrambling unitary U the following
holds for large enough times:

log χ(UWU†)≤ 2log χ(U)−2δ , δ < t∗ (17)

The actual switchback effect predicts that the above relation is actually equality, but
we will be able only to demonstrate inequality.

How tight is the bound? Naively, our bound is very loose f because we are essentially
bounding entanglement entropy with the logarithm of the rank, which is very far from the
saturation unless the entanglement spectrum is flat, which we do not expect. However, we
would like to point out that both HM surface area and holographic complexity growth is
parametrically the same: both grow as t/β with possibly different numerical prefactor. So
our bound is close to saturation at least for empty TFD. We should contrast this with naive
estimation coming from Trotterization: separating a unitary evolution into t/ε Trotter steps
will definitely result in a circuit of depth t/ε . We should expect a similar answer for the
exact (logarithm of) operator rank. This difference suggests that holographic complexity
only addresses the complexity of dynamics in some low-energy subspace. The conclusion of
this paper is that HM surface correctly captures this low energy complexity.

A comment on non-unitarity and UV-cutoff. So far we only used the word ”operator” for
U = e(−it−β/2)H because it is not a unitary. Hence, strictly speaking, we cannot use the word
circuit depth for U . Fortunately, we can represent U as a truly unitary operator at the expense
of introducing ancilla system and projecting it on a given state - Figure 4. This statement
reflects the mathematical fact that a non-unitary matrix can be embedded as a block into a
unitary matrix - sometimes it is referred to as Sz.-Nagy dilation theorem. For simple cases
such embedding can be found explicitly [50].

The purpose of this projection is to remove UV degrees of freedom. One can imagine
separating in the circuit the non-unitary part e−βH/2 from the unitary e−iHt . The former gives

fWe would like to thank anonymous referee for asking this question.
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a constant overhead to the circuit depth, whereas the latter grows linearly in time ∼ t/ε ,
where ε is the UV cutoff. Naively, the bound on circuit depth in terms of AHM/4GN then
becomes very loose, because in the area, ε enters only as a constant shift. However, the idea
is that e−βH/2 removes the UV-degrees of freedom from the system, hence e−iHt acts only
within the low-energy subspace, effectively reducing the cutoff to β . Then the area and the
depth become comparable, both growing as t/β .

Interestingly, non-unitarity from projecting on low-energy subspace reduces complexity
from t/ε to t/β . We would like to contrast this with the Python’s lunch conjecture. It
states that a bulge inside the black hole interior can add exponentially large (in GN) factor
to complexity. The rationale behind it comes from interpreting the bulge as the reduction in
degrees of freedom, which necessitates computationally expensive post-selections. It would
be interesting to revisit the complexity of e−βH/2 from this perspective.

Can HM surface detect Python’s lunch? For now, we can instead ask a simpler question
whether the argument presented in this paper can detect Python’s lunch g. The answer seems
to be negative: while the area of HM surface is certainly sensitive to the change in the
geometry, this change is not exponentially large. In turn, in this paper we are providing a
lower bound on the number of gates in terms of entanglement entropy. However, we are
not specifying how ”expensive” a given gate is. Exponentially large factor in the Python’s
lunch conjecture is related to exponential complexity of non-unitary gates, not their number.
Whereas in our derivation we use the same weight (of order 1) for all gates. So the lower
bound we derived remains to be valid, but it becomes very loose.

To provide a sample computation, lets consider the case of 2+1 bulk dimensions. In this
case if we insert an extra perturbation of energy E to create a bulge the answer for the HM
surface area is known exactly [51]:

ℓ= 2log
(

cosh
(

πt
β

)
+GNE

)
. (18)

So the HM answer is definitely affected, but only perturbatively in GN .
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A Properties of the operator-rank
Subadditivity: This reflects a simple fact that unitaries U1,U2 might partially cancel each
other. Assuming that both U1 and U2 have the exact operator ranks χ1,2 (with respect to the
decomposition into A and A), the operator rank of U1U2 is less than the product of the ranks.

In the approximate setup this statement is less obvious and it would be interesting to
analyze it. We can define χε as the operator rank of the matrix Uε which approximates U
with accuracy ε: ||U −Uε || ≤ ε . Then the matrix U1,εU2,ε has the rank less than χ1,ε χ2,ε ,
but unfortunately its distance to U1U2 is only bounded by 2ε:

||U1,εU2,ε −U1U2||= ||U1,εU2,ε −U1,εU2 +U1,εU2−U1U2|| ≤ ||U1,εU2,ε −U1,εU2||+
+||U1,εU2−U1U2|| ≤ ||U1,ε ||||U2,ε −U2||+ ||U1,ε −U1||||U2|| ≤ 2ε.

(19)

Here || · || is any operator norm that is unitary invariant:

||UMV ||= ||M||, for unitary U,V, (20)

and subadditive. For example, any Schatten p-norm. Unfortunately, subadditivity (as a
function of unitary with a given bi-partition) does not hold for operator entanglement, one
can easily construct numerical counter-examples to SvN(A|U1U2) ≤ SvN(A|U1)+SvN(A|U2)
and also to |SvN(A|U1)−SvN(A|U2)| ≤ SvN(A|U1U2).

Switchback: This effect reflects the fact that U and U† partially cancel each other only
around W . This is illustrated by Figure 5. So far we could ignore the fact that χ depends on
the choice of subsystem A because we could concentrate on the translationally-invariant case.
The unitary corresponding to the switchback effect manifestly breaks this invariance. For
example, for the subsystem A1 we expect that log χ(UWU†) ≈ 2log χ(U) (no switchback),
whereas for A2 we can use the cut γ2 to definitely say that log χ(UWU†)≤ 2log χ(U)−2δ ,
where δ depends on the precise location of A2. However, δ cannot be bigger than t∗, where
time t∗ is require to scramble the operator W - because past the time t∗ the circuit does not
have cancellations anymore.

For unitaries of the form UWU†, the operator entanglement is sometimes referred to as
a local operator entanglement [52, 53].

References
[1] Stefano Baiguera et al. “Quantum complexity in gravity, quantum field theory, and

quantum information science”. In: (Mar. 2025). arXiv: 2503.10753 [hep-th].

[2] Leonard Susskind. “Computational Complexity and Black Hole Horizons”. In: Fortsch.
Phys. 64 (2016), pp. 24–43. DOI: 10.1002/prop.201500092. arXiv: 1403.5695
[hep-th].

10



Figure 5: Illustration of the switchback effect. Blue denotes the collection of unitaries form-
ing U and U†. The hour-glass shape illustrates the cancellations around W .

[3] Leonard Susskind. “Addendum to Computational Complexity and Black Hole Hori-
zons”. In: (2014). arXiv: 1403.5695 [hep-th].

[4] Adam R. Brown et al. “Complexity Equals Action”. In: (2015). arXiv: 1509.07876
[hep-th].

[5] Adam Brown et al. “Complexity, Action, and Black Holes”. In: (2015). arXiv: 1512.
04993 [hep-th].

[6] Josiah Couch, Willy Fischler, and Phuc H. Nguyen. “Noether charge, black hole vol-
ume, and complexity”. In: JHEP 03 (2017), p. 119. DOI: 10.1007/JHEP03(2017)
119. arXiv: 1610.02038 [hep-th].

[7] Josiah Couch et al. “Holographic Complexity and Volume”. In: JHEP 11 (2018),
p. 044. DOI: 10.1007/JHEP11(2018)044. arXiv: 1807.02186 [hep-th].

[8] Kanato Goto et al. “Holographic Complexity Equals Which Action?” In: JHEP 02
(2019), p. 160. DOI: 10.1007/JHEP02(2019)160. arXiv: 1901.00014 [hep-th].

[9] Alexandre Belin et al. “Does Complexity Equal Anything?” In: Phys. Rev. Lett. 128.8
(2022), p. 081602. DOI: 10.1103/PhysRevLett.128.081602. arXiv: 2111.02429
[hep-th].

[10] Alexandre Belin et al. “Complexity equals anything II”. In: JHEP 01 (2023), p. 154.
DOI: 10.1007/JHEP01(2023)154. arXiv: 2210.09647 [hep-th].

[11] Douglas Stanford and Leonard Susskind. “Complexity and Shock Wave Geometries”.
In: Phys. Rev. D90.12 (2014), p. 126007. DOI: 10.1103/PhysRevD.90.126007.
arXiv: 1406.2678 [hep-th].

11



[12] Luca V. Iliesiu, Márk Mezei, and Gábor Sárosi. “The volume of the black hole interior
at late times”. In: JHEP 07 (2022), p. 073. DOI: 10.1007/JHEP07(2022)073. arXiv:
2107.06286 [hep-th].

[13] Jonas Haferkamp et al. “Linear growth of quantum circuit complexity”. In: Nature
Phys. 18.5 (2022), pp. 528–532. DOI: 10.1038/s41567-a022-a01539-a6. arXiv:
2106.05305 [quant-ph].

[14] Subir Sachdev and Jinwu Ye. “Gapless spin fluid ground state in a random, quan-
tum Heisenberg magnet”. In: Phys. Rev. Lett. 70 (1993), p. 3339. DOI: 10.1103/
PhysRevLett.70.3339. arXiv: cond-amat/9212030 [cond-mat].

[15] Alexei Kitaev. http://online.kitp.ucsb.edu/online/joint98/kitaev/.
KITP seminar, Feb. 12, 2015.

[16] Juan Maldacena and Douglas Stanford. “Remarks on the Sachdev-Ye-Kitaev model”.
In: Phys. Rev. D94.10 (2016), p. 106002. DOI: 10.1103/PhysRevD.94.106002.
arXiv: 1604.07818 [hep-th].

[17] Joseph Polchinski and Vladimir Rosenhaus. “The Spectrum in the Sachdev-Ye-Kitaev
Model”. In: JHEP 04 (2016), p. 001. DOI: 10.1007/JHEP04(2016)001. arXiv:
1601.06768 [hep-th].

[18] E. Rabinovici et al. “A bulk manifestation of Krylov complexity”. In: JHEP 08 (2023),
p. 213. DOI: 10.1007/JHEP08(2023)213. arXiv: 2305.04355 [hep-th].

[19] Takanori Anegawa and Ryota Watanabe. “Krylov complexity of fermion chain in
double-scaled SYK and power spectrum perspective”. In: JHEP 11 (2024), p. 026.
DOI: 10.1007/JHEP11(2024)026. arXiv: 2407.13293 [hep-th].

[20] Jiuci Xu. “On Chord Dynamics and Complexity Growth in Double-Scaled SYK”. In:
(Nov. 2024). arXiv: 2411.04251 [hep-th].

[21] Micha Berkooz, Prithvi Narayan, and Joan Simón. “Chord diagrams, exact correla-
tors in spin glasses and black hole bulk reconstruction”. In: Journal of High Energy
Physics 2018.8 (2018), p. 192.

[22] Henry W. Lin. “The bulk Hilbert space of double scaled SYK”. In: JHEP 11 (2022),
p. 060. DOI: 10.1007/JHEP11(2022)060. arXiv: 2208.07032 [hep-th].

[23] Daniel E. Parker et al. “A Universal Operator Growth Hypothesis”. In: Phys. Rev. X
9.4 (2019), p. 041017. DOI: 10.1103/PhysRevX.9.041017. arXiv: 1812.08657
[cond-mat.stat-mech].

[24] Anatoly Dymarsky and Michael Smolkin. “Krylov complexity in conformal field the-
ory”. In: Phys. Rev. D 104.8 (2021), p. L081702. DOI: 10.1103/PhysRevD.104.
L081702. arXiv: 2104.09514 [hep-th].

[25] Pawel Caputa, Javier M. Magan, and Dimitrios Patramanis. “Geometry of Krylov
complexity”. In: Phys. Rev. Res. 4.1 (2022), p. 013041. DOI: 10.1103/PhysRevResearch.
4.013041. arXiv: 2109.03824 [hep-th].

12



[26] Budhaditya Bhattacharjee, Pratik Nandy, and Tanay Pathak. “Krylov complexity in
large q and double-scaled SYK model”. In: JHEP 08 (2023), p. 099. DOI: 10.1007/
JHEP08(2023)099. arXiv: 2210.02474 [hep-th].

[27] Vijay Balasubramanian et al. “Quantum chaos and the complexity of spread of states”.
In: Phys. Rev. D 106.4 (2022), p. 046007. DOI: 10.1103/PhysRevD.106.046007.
arXiv: 2202.06957 [hep-th].

[28] Pawel Caputa et al. “Krylov complexity of modular Hamiltonian evolution”. In: Phys.
Rev. D 109.8 (2024), p. 086004. DOI: 10.1103/PhysRevD.109.086004. arXiv:
2306.14732 [hep-th].

[29] Chang Liu, Haifeng Tang, and Hui Zhai. “Krylov complexity in open quantum sys-
tems”. In: Phys. Rev. Res. 5.3 (2023), p. 033085. DOI: 10.1103/PhysRevResearch.
5.033085. arXiv: 2207.13603 [cond-mat.str-el].

[30] Chenwei Lv, Ren Zhang, and Qi Zhou. “Building Krylov complexity from circuit
complexity”. In: Phys. Rev. Res. 6.4 (2024), p. L042001. DOI: 10.1103/PhysRevResearch.
6.L042001. arXiv: 2303.07343 [quant-ph].

[31] Thomas Hartman and Juan Maldacena. “Time Evolution of Entanglement Entropy
from Black Hole Interiors”. In: JHEP 05 (2013), p. 014. DOI: 10.1007/JHEP05(2013)
014. arXiv: 1303.1080 [hep-th].

[32] Yale Fan et al. “Sharp Transitions for Subsystem Complexity”. In: (Oct. 2025). arXiv:
2510.18832 [hep-th].

[33] Jeongwan Haah and Douglas Stanford. “Growth and collapse of subsystem complex-
ity under random unitary circuits”. In: (Oct. 2025). arXiv: 2510.18805 [quant-ph].

[34] Adam R. Brown et al. “The Python’s Lunch: geometric obstructions to decoding
Hawking radiation”. In: JHEP 08 (2020), p. 121. DOI: 10.1007/JHEP08(2020)121.
arXiv: 1912.00228 [hep-th].

[35] Netta Engelhardt, Geoff Penington, and Arvin Shahbazi-Moghaddam. “Finding pythons
in unexpected places”. In: Class. Quant. Grav. 39.9 (2022), p. 094002. DOI: 10.1088/
1361-a6382/ac3e75. arXiv: 2105.09316 [hep-th].

[36] Shinsei Ryu and Tadashi Takayanagi. “Holographic derivation of entanglement en-
tropy from AdS/CFT”. In: Phys. Rev. Lett. 96 (2006), p. 181602. DOI: 10.1103/
PhysRevLett.96.181602. arXiv: hep-ath/0603001 [hep-th].

[37] Veronika E. Hubeny, Mukund Rangamani, and Tadashi Takayanagi. “A Covariant
holographic entanglement entropy proposal”. In: JHEP 07 (2007), p. 062. DOI: 10.
1088/1126-a6708/2007/07/062. arXiv: 0705.0016 [hep-th].

[38] Michael A. Nielsen. “A geometric approach to quantum circuit lower bounds”. In:
Quant. Inf. Comput. 6.3 (2006), pp. 213–262. DOI: 10.26421/QIC6.3-a2. arXiv:
quant-aph/0502070.

13



[39] J. Eisert. “Entangling Power and Quantum Circuit Complexity”. In: Phys. Rev. Lett.
127.2 (2021), p. 020501. DOI: 10.1103/PhysRevLett.127.020501. arXiv: 2104.
03332 [quant-ph].

[40] Juan Martin Maldacena. “Eternal black holes in anti-de Sitter”. In: JHEP 04 (2003),
p. 021. DOI: 10.1088/1126-a6708/2003/04/021. arXiv: hep-ath/0106112
[hep-th].

[41] Xiaoguang Wang, Barry C. Sanders, and Dominic W. Berry. “Entangling power and
operator entanglement in qudit systems”. In: Physical Review A 67.4 (Apr. 2003).
ISSN: 1094-1622. DOI: 10.1103/physreva.67.042323. URL: http://dx.doi.
org/10.1103/PhysRevA.67.042323.

[42] Tianci Zhou and David J. Luitz. “Operator entanglement entropy of the time evolution
operator in chaotic systems”. In: Physical Review B 95.9 (Mar. 2017). ISSN: 2469-
9969. DOI: 10.1103/physrevb.95.094206. URL: http://dx.doi.org/10.1103/
PhysRevB.95.094206.

[43] Laimei Nie et al. “Signature of quantum chaos in operator entanglement in 2d CFTs”.
In: J. Stat. Mech. 1909.9 (2019), p. 093107. DOI: 10.1088/1742-a5468/ab3a29.
arXiv: 1812.00013 [hep-th].

[44] Kanato Goto et al. “Information scrambling versus quantum revival through the lens of
operator entanglement”. In: JHEP 06 (2022), p. 100. DOI: 10.1007/JHEP06(2022)
100. arXiv: 2112.00802 [hep-th].

[45] Alexey Milekhin, Zofia Adamska, and John Preskill. “Observable and computable
entanglement in time”. In: (Feb. 2025). arXiv: 2502.12240 [quant-ph].

[46] Geoffrey Penington. “Entanglement Wedge Reconstruction and the Information Para-
dox”. In: (May 2019). arXiv: 1905.08255 [hep-th].

[47] Ahmed Almheiri et al. “The entropy of bulk quantum fields and the entanglement
wedge of an evaporating black hole”. In: JHEP 12 (2019), p. 063. DOI: 10.1007/
JHEP12(2019)063. arXiv: 1905.08762 [hep-th].

[48] Ahmed Almheiri et al. “Replica Wormholes and the Entropy of Hawking Radiation”.
In: JHEP 05 (2020), p. 013. DOI: 10.1007/JHEP05(2020)013. arXiv: 1911.12333
[hep-th].

[49] Geoff Penington et al. “Replica wormholes and the black hole interior”. In: (Nov.
2019). arXiv: 1911.11977 [hep-th].

[50] Alexey Milekhin and Fedor K. Popov. “Measurement-induced phase transition in tele-
portation and wormholes”. In: SciPost Phys. 17.1 (2024), p. 020. DOI: 10.21468/
SciPostPhys.17.1.020. arXiv: 2210.03083 [hep-th].

[51] Stephen H. Shenker and Douglas Stanford. “Black holes and the butterfly effect”. In:
JHEP 03 (2014), p. 067. DOI: 10.1007/JHEP03(2014)067. arXiv: 1306.0622
[hep-th].

14



[52] Bruno Bertini, Pavel Kos, and Tomaz Prosen. “Operator Entanglement in Local Quan-
tum Circuits I: Chaotic Dual-Unitary Circuits”. In: SciPost Phys. 8.4 (2020), p. 067.
DOI: 10.21468/SciPostPhys.8.4.067. arXiv: 1909.07407 [cond-mat.stat-mech].

[53] Bruno Bertini, Pavel Kos, and Tomaz Prosen. “Operator entanglement in local quan-
tum circuits II: solitons in chains of qubits”. In: SciPost Phys. 8.4 (2020), p. 068. DOI:
10.21468/SciPostPhys.8.4.068. arXiv: 1909.07410 [cond-mat.stat-mech].

15


