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ABSTRACT: In this work, we provide a self-contained derivation of the spin-operator matrix
elements in the fermionic basis, for the critical periodic Ising chain at a generic system
length N € 2Z>5. The approach relies on the near-Cauchy property of certain matrices
formed by the Toeplitz symbols in the critical model, and leads a few square-root products
for the leg functions. The square root products allow simple integral representations, that
further reduce to the Binet’s second integral and its generalization by Hermite, in the
finite volume scaling limit. This leads to simple product formulas for the spin operator
matrix elements in the scaling limit, providing explicit expressions for the spin-operator
form factors of the Ising CFT in the fermionic basis, that were computed iteratively in [1].
They are all rational numbers up to /2. We also determine the normalization factor of the
spin-operator and show explicitly how the coefficient G(%)G(%) appear through a ground
state overlap. Moreover, by expanding the spin-spin two point correlator in the fermionic
basis, we observed a Fredholm determinant identity

1 i TE+5TG+35)
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which allows to show the convergence of the rescaled two-point correlator to the CEFT

version on a cylinder.
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1 The critical Ising chain, square-root products and main results

The finite volume spin-operator form factors of the massive fermion Ising-QFT [2] were
well known, but what about their massless limits? Will the results become meaningless,
or will they reduce to the spin-operator matrix elements of the Ising CF'T in the fermionic
basis, that were computed only iteratively in [1]? To the author’s knowledge, it seems that
many references who used the massive form factors in [2], including this paper itself, forgot
to mention their convergence to a nontrivial finite volume massless scaling limit. Instead,
the integrals in the leg functions were usually written in certain forms, creating impressions
of their ill-posedness or triviality at the zero fermion mass'.

Similarly, in the literature, there are plenty discussions and derivations [4-9] for the
finite volume form factors in the Ising model and the Ising chain. These works are very
non-trivial, but most of them were assuming 1" > T, or T < T, and forgot to mention what
happened at the critical point. For example, in the published version of [7], the authors
said explicitly after the Eq. (78) that the results are valid both when g > 1 and 0 < g < 1,
but just omitted the critical point ¢ = 1. Very often, the formulas were written with a
refactor such as & = (g% — 1)i in front, a factor that vanishes at the critical point g = 1,
like the expressions given to the leg functions in the massive theory, despite that in the

'For example, in Ref. [3], the leg function was written with an overall m?. Still, it is easier to spot a
non-trivial massless limit from the representation in [3] than the rapidity space integral in [2].



proper way of taking the g — 17 limit, the results are actually finite and as we will show,
lead exactly to the form factors at the critical point.

Meanwhile, in the literature, there were also not too many discussions on the spin-
operator form factors in the Ising-CF'T, despite that they are clearly universal, beautiful
and unique quantities: the massless fermion basis of the Ising CFT is perhaps among the
few integrable massless scattering basis [10, 11] of 2D CFTs, that allow explicit expressions
for local operator’s matrix elements between them. On the other hand, in comparison
to the Virasoro basis, it could be the massless scattering basis, that respect better the
scale-full deformations of CFTs either to the integrable lattice models in the UV [12], or to
the massive QFTs in the IR. It is also possible, that for certain non-inclusive high-energy
limits that are more sensitive to the structures of the Hilbert space, one needs not just
the standard CFT perturbation theory for point-like objects, but also the correct massless
basis, to write out the correct high-energy asymptotics. These questions deserve more
investigations, and were among the motivations of this work. Furthermore, to the author’s
opinion, CFTs are beautiful not just for themselves, but also for the explicit asymptotics
telling how they were approached. It is always interesting to establish such asymptotics
from the first principle for various quantities, whenever possible.

Given all above, the author believes that it is not unreasonable to provide a self-
contained derivation for the spin-operator form factors in the 2D periodic Ising chain,
directly at the critical point. Below we will provide such a derivation, and show how
in the finite volume scaling limit, the results converge to the Ising CFT versions. We
believe that many of the products, integral representations, large N asymptotics and the
matrix elements in this work are novel, beautiful and simple. We also believe that the
explicit formulas provided by this work could be of practical usages (such as the TFCSA
applications [1]).

1.1 The square root function and roots of £1

We first clarify the notations used in the work. Throughout the work, unless otherwise
stated, we use the (0, 27) branch of the square-root function

As such, v/Z is an analytic function with a branch cut along the positive real axis. This
choice is natural in the context of the critical Ising chain. Without otherwise mentioning,
for positive numbers p € R>g, we use the upper branch with \/p > 0. We choose the
system size N € 2Z>9 to be a positive even integer. Given NV, the sets of the roots of £1
are denoted as S+

Sp= {8 BY =1}, S_={z N = -1} (1.3)

They are the exponentials of the periodic and anti-periodic momenta. Throughout this
paper, the small letter B in formulas will be reserved for S, and the small letter z reserved



for S_. Since N is even, —1 € S, and points in S except 1, —1 can be grouped to %
pairs symmetric with respect to the real axis. Similarly, all points in S_ are grouped to %
such pairs. Using these properties, one has first of two of the product formulas to be used

latter

[T ve=in=" [ va=(-1>. (1.4)

pseS+ zeS_

where we will use the upper branch v/1 = 1 at § = 1 without otherwise mentioning. We
also need the following product formulas

1 i+1 - -1
I 5 - I -t (15)
pesys g VP~ L= ey VAT
This is because in the (0,27) branch, for z # 1 one has % = —ﬁ, and for e’ # +1,
one has
eia -1 76—1‘@ -1
. . =-1. 1.6
eza—f—lx—e*w‘ﬂ—l (16)

Latter we will use these formula to simplify the leg functions at g = 1.

1.2 The critical Ising chain

After introducing the sets S4, we set up the conventions for the critical periodic Ising
chain. We choose the —, + convention of the Hamiltonian

= Nl
H:—§Zaf0f+1+§zgf,gfv:03- (1.7)

i=0 i=0
Here, 07,0/, 0! are the standard 2 x 2 Pauli matrices at the site i. These spin operators

commute at different sites. It is possible to choose the ¢ and o* to be purely real, as such
H can also be purely real. We define the standard Dirac matrices as [13, 14]

Ty =of [[ (=07) . Tai1=—0? J] (-07), 0<i<N-1, (1.8)
0<j<i 0<j<i
{0, T} =28;5, 0<i,j<2N —1. (1.9)

In terms of them, one has the relations

0'7';2 = iFQiF2i+1 y 0 S ) S N -1 5 Uf@'g:_l = _’L.FQZ‘_i_lFQi_A'_Q ; 0 S ) S N -2 y (110)
N-1

%108 = ilan_1To [ [ (—i)T2iT2i1 - (1.11)
=0



As such, in terms of the Dirac matrices, the Hamiltonian reads

. 2N-2 . N-1
1 7 .
H= § 0 Tilip1 — 5TanaloZ , Z = H) (—i)DiTgi41 - (1.12)
1= 7=

The operator Z is just the standard Zs charge and commutes with H and other even
combinations of fermion operators. As such, in the charge odd and even sectors, one has
two different quadratic Hamiltonians, but in terms of the same set of fermion operators. In
each of the sectors, one can diagonalize the Hamiltonian by finding the proper, orthogonal
transformations that diagonalize the skew-symmetric matrices appearing in H.

To further set up our conventions for the eigensystem, especially, to convince the
readers that our sign choices at the 8§ = 1 point is correct, here we review how the diago-
nalization process works in the Z = —1 (R) sector. The Z =1 (NS) sector can be handled
similarly and is free from the 8 = 1 issues. We will mainly follow the spirit of [14], but the
computations are simpler in the Ising chain than the Ising model. For Z = —1, one has
the following rotation matrix

Eij=0jiv1 —0ijr1, 0 <4, <2N —1 ; &n10=—Eoon-1=1, (1.13)
i
H(1-2) = > TiTE(1-Z) . (1.14)
ij

To diagonalize the Hamiltonian, one needs to find the orthogonal transformation 2 such
that the Q7 £Q is block-diagonalized. It is sufficient to find the normalized eigenvectors A(j)
of £ with the eigenvalues ie(j) where €(j) > 0, and fill the 2j-th and the 2j + 1-th columns
of Q by v2Re(A(5)) and v/2Im(A(j)). To find them, we write the eigenvalue equation as

ie)\i = )‘i-l-l — >\i—1 ,1 S ) S 2N —2 s (115)
iﬁ)\() = )\1 — /\QN_l ,iﬁ)\QN_l = A() - )\QN_Z . (1.16)

To be compatible with the results away from the critical point, we treat the even and odd
sites differently and write the ansartz as

Aai(B) = B5u(B) , Aawi1(B) = Bv(B) , BY = +1, (1.17)

ie(B)u(B) =v(B)(1 = B) , ie(B)v(B) = u(B)(B —1) . (1.18)

For 8 # 1, the above can be solved as

) =-i(Vi- ) >0 u@ =i v =St —ivE. 9

Notice that the /8 here is in the (0,27) branch. For 8 = 1, although €(1) = 0, there are
more freedoms for the eigenvectors. Here we introduce the function

eB) =B, B£1L p(1) =1, (1.20)



and make the following choice to be justified latter
u(l)=14, v(l) =ip(l)=-1. (1.21)

We then introduce the 2N x 2N rotation matrix 2. The rows of () are labeled by the
indices of the gamma matrices ordered from 0 to 2N — 1, while the columns are labeled by
the g € S,. For each (3, there are two columns, one denoted by (3, and another denoted
by 6+ % We always place the 5+ % column right next to the 8 column. The elements of
Q read

Qor,p = V%VIhXiﬁkL Qg1 = V%VInmin), (1.22)
1 1
Qok1,8 = ﬁRe(W(ﬁ)ﬁk)a sz+1,5+% - ﬁlm(W(ﬁ)ﬁk) ‘ (1.23)

The factor \/% is because the norm of the vector A(f) is v2/N. From the rotation matrix,
one can form the rotated Dirac matrices

N-1

V3 = Z <F2k92kﬂ + F2k+192k+1,5> , (1.24)
k=0
N-1
Vpyl = Z (FQkQQk’BJFé + F2k+192k+1,5+§> , (1.25)
k=0

that block diagonalize the Hamiltonian

HO-2)= 2 3 B (1-2). (1.26)
BESH

At this point, one only knows that Q7Q = 1, but to further determine the spectrum, one
needs to know the sign of det €2 in order to express the charge operator Z in terms of the

75775+%S'

Instead of computing the determinant by brute force, we deform €2 by replacing the
¢(B) with

1—hp
1—hp

1
go(ﬁ,h)zi( )2,0§h<1, (1.27)
where the square-root function is defined with the principal branch. The deformed matrices,
called Q(h), are still orthogonal and are for the Ising chain in the disordered region, whose
Hamiltonian contains an extra h in front of the ofo} ; terms. Furthermore, Q(h) is a
continuous function of A when 0 < h < 1 and § € S, and the h — 17 limit exactly
reduces to the rotation matrix €2 for the critical model. In particular, at 5 = 1, one has

lim o(1,h) =1, (1.28)
h—1—



justifying the choice made above. The continuity implies that det (1) = det (0), since
the determinant is a continuous function of h which could take only two values £1. It is
not hard to compute that det 2(0) = 1, since at h = 0 the Hamiltonian is non-interacting,
and Q(0) is a 2N x 2N rotation underlying an N x N unitary transformation. As such,
the rotation matrix {2 = Q(17) is already proper. Notice if one choose ¢(1) = —i, then the
det Q2 would be —1, since this choice only changes the sign of ~.

Knowing the sign of det (), one can further introduce the creation and annihilation
operators

1 .

in terms which the diagonalized Hamiltonian and the charge operator read

Hx(1zy:§:ew)0%%;>x(12), (1.30)
BES+

Z=detQ T (=inprger) = JT 1= 2chics) - (1.31)
Besy Besy

Since €2 is non-degenerate, one can always find a normalized state |{2r) # 0 annihilated by
all the cgs. This state must be charge even, due to the Eq. (1.31) for the Zy charge. Since

the representation space is 2V dimensional, the Fock space generated by acting the cTﬁs

on |Qp) is the full space. Among them, only those with an odd number of c;;s are energy
eigenstates, due to the 1 — Z projection. The diagonalization process in the NS sector is

similar. All the expressions in the R sector remain the same form, except § € S should
be replaced by z € S_. There is no z = 1 issue in NS and ¢(z) = /z for all z € S_.

To summarize, in terms of the following Toeplitz symbol?

- 1
C(B) =CT(B) = —— = —ip(B), 1.32
(3) = C1(68) = g5 = =ivl® (1.52)
one has the mode decompositions in terms of 5 € S
i i —i
Ty = Y (Q2i,6’>’ﬁ + 92@5%75%) - UN > (Bleh—87"e) . (1.33)
Bes, Bes,
Foip1 = Z <Q2i+1,ﬁ’m + in+1,g+%’m+%>
ﬁ€S+
Z (B'C(B)cl + B7'C(B)es) . (1.34)
B€S+

1

2The choice is to be consistent with the symbol C(z, h) = (} ZZ> for the Toeplitz determinant of the

oo two point correlator in the ordered region.



and similarly in term of z € S_

Ty = — z’ci —z7%,) , 1.35

z€S_

Tyse1 = _\/1N S (HOE) + () (1.36)
zE€ES_

The Hamiltonian in the NS sector is diagonalized by c,, ci, and in the R-sector is diago-

nalized by cg, c}j. The state |Q2r) annihilated by all the cgs is charge even. Meanwhile,

the ground state |Qyg) annihilated by all the ¢,s is also charge even and is the absolute

ground state of the whole system, whose energy will be normalized to 0. A complete set

of energy eigenstates of the system and their energies are therefore

2k 2k
. 1
NS: ]l IQns), E=> —i (ﬁ—) ; (1.37)
=1 =1 \/27

2k'+1 2k'+1

: ol = —i ._L _ '
R [T chion) B=ap)+ 3 (m m) (1.38)

Notice that c} |Qg) is the physical ground state in the charge odd sector, and the CJ{ excita-
tion is called the zero mode. In the diagonalized Hamiltonian, ¢; and cJ{ disappear, but the
energy difference Ag(N) between the R and NS ground states is non-zero and approaches
in a N — oco. To show this, one simply notice that

Ap(N) =5 S ee)— 5 3 e(B) (1.39)

zeS_ BES,

The sums are geometric and can be performed in elementary manner. However, to illustrate

the method we will use to perform such sums for more complicated functions, it is also

possible to use the weighting functions ﬁz;—]xl and 27T1iﬂ %

as contour integrals, and then deform the contours to the branch cuts along the positive

to express the summations

real axis. At the end, after partial integration one has the following integral representation

Ag(N) = dt——In =tan ==~ + 1o m + 0 15

1t 14t 1—tN s s 73 7o

- — = tan = (1.40)
27 Jo tvt 1+t 4N 4N  192N3

This ; is exactly due to the scaling dimension of the spin operator and allows the iden-

tification of the state cJ{|QR) as the primary state |6) of the spin operator in the CFT

language.

We should mention that although |Qg) is not an eigenstate of the H in Eq. (1.7), it is
the absolute ground state of another “twisted” Hamiltonian which relates to H by a sign



flip in the o%;_,0f term

N-2 N-1

1
H =—>> ol + UN 106 + 5 ZU : (1.41)
i=0 i=0

N | =

Indeed, the fermion quadratic form for H' simply differs from Eq. (1.12) by a sign flip in
the Z5 dependent term. As such, the spectrum for H’ can still be expressed in terms of
the same sets of ci, cgs as H, but with even numbers of excitations on top of |Q2g), and
odd numbers of excitations on top of [Qxg). As such, it is reasonable to call |Q2g) also as
a ground state, and the quantity (Qr|Qns) as a ground state overlap. This observation
also helps to establish the property of the eigensystem Eq. (1.37) and Eq. (1.38) under the

spatial translation. For this, we introduce following translation operations

T+U;~1T+_1 =0 1,0<i <N -2 ;T+U?V_1TJ:1 =05 ,a=12,Y,%2 . (1.42)
T-o¢T- ' =08 ,0<i<N—-2;T 0% T-' = 0fofof ,a=my,2. (1.43)

They can be realized as unitary operators on the 2% dimensional Hilbert space. We chose
the normalization of the T such that

T =—0iT, . (1.44)

Clearly, H is invariant under Ty, while H' is invariant under 7. Using the fermionization
relations Eq. (1.8) and Eq. (1.44), one can show that

TyT; =TiyoTs, 0<i <2N =3, Tulon_g = +T0T5Zo , Tulon_1 = 01T Z, . (1.45)

Using the mode decompositions in Eq. (1.33) and Eq. (1.35), and the fact that 2V = —1,
BN =1, one has [9]

AT~ Tech—— = Bl Te=——= . (1.46)

As such, when acting on the states Eq. (1.37) and Eq. (1.38), by moving the 7% all the
way to the right using Eq. (1.46), one has

T+HCT Qns) = (sz )T+\QN5>, (1.47)

=1

2k'+1 2k’ +1
T[] e lon) = (H fich )T_|QR>. (1.48)

=1

However, since the [Qyg) and |Q2g) are the absolute ground states of H and H', they must
be invariant under T} and 7_ up to two phases

Ty |Qns) = e Qns) , T-|Qr) = e~ |QR) . (1.49)



As such, the eigensystem Eq. (1.37) and Eq. (1.38) are indeed eigenstates of the spatial
translation 7'y. Moreover, since we have chosen T = —o§1’., one can write

e O+=0)(Qp|ONs) = (Qr|T-T:QNs) = —(Qr|oE|Qns) - (1.50)
As such, when (Qg|Qns) # 0, due to the reality property, the phase difference e=#%+=0-)
must be +1 and is an absolute quantity independent of the state normalization. Latter we
will show explicitly using the overlapping matrix v,5 define in Eq. (2.20) that el0+—0-) = 1,
Equivalently, the left continuity at h = 1 and the absence of discontinuities when h € [0, 1)
allows ¢/®+=9-) to be computed by the h = 0 version, which is clearly 1. Indeed, when
h =0, H= H’, and the absolute ground state is a trivial “all-down state”.

1.3 Square-root products and form-factors at finite N

The major focus of the paper is on the matrix elements of the spin-operator between the
fermionic states. Due to the property under spatial translations discussed at the end of
the previous subsection, it is sufficient to locate the spin operator at the starting point of
the fermionization

> 1
Uozrozﬁ > (e —e.) =

zeS_

> (el —ca) - (1.51)

BES+

5

We will show latter that the ground state overlap (Qg|Qyg) is non-vanishing and ap-
proaches to 0 slowly as O(Nfi) when N — oo. Since both [Qyg) and [Q2g) can be purely
real, it is our freedom to choose the signs of the two states such that (Qr|Qxg) > 0. The
sign rescaling will not change the matrix elements for all the Zs-even operators. In terms
of the ground state overlap, it is more convenient to define the rescaled spin operator

i

(Qr|Qns) (1.52)

o=

The matrix elements which we will compute are (products are all from left to right)

2k+1 2l

(Qrl [T es.o ] el 10vs) = (-1 Marsra({8:}: {z}) - (1.53)
=1 i

—

The advantages of using the rescaled spin operator are two folds. First, computation of
the rescaled form factors is naturally separated from the computation of the ground-state
overlap in our algorithm. Second, it is the rescaled form-factors that allow finite-volume

scaling limit, defined as

N —o00,8—1, NB—-1)—=2mixn,neZ, (1.54)

1
N—>oo,z—>1,N(z—l)%2m’><m,meZ+§. (1.55)



Clearly, the numbers n € Z and m € Z + % correspond to the quantization levels on
a cylinder. The vacuum overlap, on the other hand, approaches to zero at a power-law
exactly specified by the scaling dimension of the spin operator. We will show that

2 1 2 4 6
21\ 4 1 3 —TT T T
_ 1 3 7 1.
(N) G <2> G <2> P (384]\72 *+ 52160t ¢ <N6> )  (1.56)

where G(Z) is the Barnes-G function. The constant (27r)%G(%)G(%) will ensure that the

rescaled corrector can be matched back to the infinite-volume version, at distances that are

(@l

much larger than 1, but much smaller than N. This is similar to the connecting property
of the infinite-volume massive scaling functions [15]. One major difference is: instead of
appearing in the short distance expansion of the scaling function, the constant G (%)G (%)
moves to the ground state overlap, a quantity that resembles more the spontaneous mag-

netization in the infinite volume version. In fact, we will show that

‘<QR|010(3)C|QNS> (1.57)

= ’(QR|QNS>

As such, Eq. (1.56) is also a statement concerning the more standard one-point function of
the spin-operator.

For the convenience of readers, below we provide a result list for all the computed
form-factors. The results at a generic N are given by Eq. (1.78), and their scaling limits
are in Eq. (1.106), Eq. (1.107). It turns out that certain square-root products and their
relations are crucial in all the stages of the derivation and appear also in the final results, so
we decide to interlude for a while, by first introducing all the required square-root products.
In our algorithm, they will be naturally generated after inverting certain Cauchy matrices
and performing further summations. For 5 € S, one needs two products

_ H,B'es+(\/3+ V)

p(B) Mocs (VBT Vo) | (1.58)
. Hz’eS,(\/B - \/;)
O Mycsipaa - VF) )
and similarly for z € S_
[Ipes, (Vz+ VB')
z) = , 1.60
M s WE +V2) o)
q(z) _ Hz’GS_, z’;éz(\f_ \/Z) . (161)

[lges, (Vz—VB)
In these products, we use v/1 = 1. They satisfy the simple relations

) = S20(5) . ale) = onl) (162

~10 -



which allows to use only the products p(f) and p(z) in the final results. To show this
relation, we introduce the 2N-th roots of unity>

STV ={¢ PN = +1} (1.63)
They can be expressed as unions of ++/z, 4+/3 of elements in S4

SN = (Vzze 8 YU{—Vz2€ S}, (1.64)
STV ={VB;B e S u{-VBiB €S}, (1.65)

where we use v/1 =1 . By expanding the logarithms, it is not hard to show the following

> I (1 — %) = lim > In(1-X) =(@2N), (1.66)

CeSN, ¢#y/B CesN, ¢#1
C ) et (_1)k—1)\2Nk
E In(fl—-—)]=1 E ———=1In2, 1.67
ces?N ’ ( VB) T k=1 k ' o

and similar for sums with y/z in the denominators. As such, we can write

p(®) _leesy 2 3(VB—O)  an N (168)
a(B) [Teesen (VB =) 2VB VB’ '
pz) _ esr(VZ2=0 2z 2 (169
a(z)  Tleesewy, c2z(Vz2—=C) 2N N’ ‘

proving the desired relations. We can combine the above with the product formula Eq. (1.5)
to derive closed expressions at = 1. In fact, Eq. (1.5) implies that

p(Hg(l) _i+1

= E— 1.70
2 i—1 (1.70)
As such, to obtain p(1) it remains to know its phase. However, using the paring relation
in Sy, and using the fact that in the (0,27) branch one has vz~1 = —ﬁ, for any pair

appearing in the product, one has the following contribution with o > 0

ia _ia e
(I4+e2)(1—e 2):2zsm§. (1.71)
Since « > 0, p(1) is then a positive number multiplying

(1+i)(i) 2 (—i)2 =1—i. (1.72)

3They are the momenta sets one could encounter, if one decide to treat even and odd sites equally when
diagonalizing the rotations. But then, the pairing between the positive and negative energies restrict the
excitation momenta to the upper half plane, which are essentially the square-roots of elements in S4.

- 11 -



Combing all above, one obtains the exact values

1 .
ﬁ(l—z) .

They will be used latter throughout the derivation, in particular, to show a crucial matrix

p(1) = VN1 —1i), ¢(1) = (1.73)

is invertible. On the other hand, for 8 # 1, no such simple formulas can be derived for
the p function. From the perspective of the SiN circles, this is because all the products
are restricted to the upper half-plane. But for both Sy and S_, the p function can still be
simplified into a single integral representation. What one need are the following

p(Z) = exp (fN(Z) - %m (1 — é) - %ln (1 + \/12) > : (1.74)

. 4 1 Loat 1+t 1—tN
En(2) == (‘F - \/§> /0 i (= BO(1— 210 " T4V (175)

where Z can be both § € Sy A3 # 1 and z € S_. In the expression, the logarithm is define
with the principal branch. The function I' ~(5) and r ~(z) are purely real when 3,z € Sy,

and allow analytic continuation to the whole complex plane, with a power-law bound at
infinity, and a branch cut along the positive real axis.

Given all the square-root products. we now list the form factors. To further simplify
the expressions, we introduce the following dressing functions

_ VB p(B)
f1+f

d(z) = \/N(\/E— D) (1.77)

p(B) =p(B) (1 +idga) , d(1) =1, (1.76)

In terms of the dressing functions, the form factors define in Eq. (1.53) read

NN
Mogpra({Bi}s {z}) = E \F\/@ _jl H ]1;[/ \ﬁﬁ — 1
241 21

X Hdﬁz H (2) - (1.78)

Notice that within {f;} there can be only one § = 1, and all the denominators are well
defined. This is the first major result of the work. Furthermore, in terms of the 'y
function, the ground state overlap has a simple representation

2:(2>16Xp ZFN 2 NI (1.79)

BGS‘F: 6751

(;)iexp (/01 dtﬁlggﬁjﬁi 2;1175) _ (1.80)

‘<QR’QNS>
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Notice in Eq. (1.80), the integrand has a Int in the denominator. It is this logarithm that
generates the Barnes-G functions in the large N asymptotics Eq. (1.56).

Here we prove the integral representation for p(f), p(z) given in Eq. (1.74) and
Eq. (1.75). We first consider the sum with 5 € Sy A # 1

VB
SLy(B)= Y.  In(1l+ . (1.81)
’ BeSs, BI#1 ( \/B)

Here, the logarithm is in the principal branch and all the square roots are in the (0, 27)
branch. As an analytic function of ', there is a branch cut singularity along the positive
real axis, but no other singularities when 3’ is away from the positive real axis. As such,
one can introduce the following contour representation

dw N Vw
= 0 _T g T 0 _T —p<
Cy {0.96, N_@_N}U{ue, N <0<

U{re%,0.9<r< 1.1}U{re?3”,0.9<7«< 1.1}. (1.83)

It encircles all the zeros of w — 1 = 0 counter-clockwisely, except w = 1. Now, we deform

The contour C4 is a union of four segments

=[=

the contour to the branch cut along the positive real axis. The decay at infinity and around
w = 0 are guaranteed, but the w = 1 pole of the w"¥ — 1 needs to be taken care of. Since
the upper and lower limits of the logarithm are continuous at w = 1, one simply needs to
pick up half of the upper and lower residues

© dt N Vit © dt N Vit
SL. (B PV/ s (H\/B> Pv/0 SN <1\/B>
éln( \/B> ;ln <1+ \/13> , (1.84)

where v/t > 0, and the last line is due to the half residues. The PV are for the singularity
at t = 1. We further simplify the two integrals by splitting the domain into the (0,1) and

(1,00), and then change the variable according to ¢ — ¢~! in the (1, 00) part. This leads

PV/OOO;’;“WNlm(li\‘/%):—N/012i2t1n<1i\\/[%>
+/012CZZVHV__11 (m(u:f%) In <1j:\[1\f>) (1.85)

to
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We now use the fact that

vaV—l
tN -1

iln(l—tN):

” (1.86)

and partial integrate. After simplifying the resulting integrands, one obtains

SL+(P) = <ﬂ— 1) /01 27:?\/ t(1— ;t;zlt ft) In(1 = %) - éln <1 - x/13>

—;ln<1—|—> /mt <1+>+N/ 5 ( :{%) (1.87)

Similarly, for the sum (8 € Sy AB # 1)

=> In <1 + f) , (1.88)

z€S_

we can write it as
© dt —-N Vit Vit
SL_ = ———— [In{l+—= ] —-In(1—-— . 1.89
D= sy (e 5) m(-75) o
Again split the domain and change ¢ to ¢! in the (1, 00) part, one has
N g (1 75) + [ (1 7
2mt 2mt /B

+/2‘jf%(1(1+fg> (1) - (f% Vi)

Using

pJﬂVfl
14+tN 7

iln(l—{—tN):

7 (1.91)

and partial integrate again, one has

1 Lodt 1+t
SE-6)= <\/B_ﬂ>/0 2min/t I—Bt)(l—ﬂt)l n(1+%)

/2”“ (1+>+N/ 2mit < :{%) (1.92)

Now, combining the Eq. (1.87), Eq. (1.92) with the definitions Eq. (1.58) and Eq. (1.75),
one obtains

p(8) =exp (SL4(3) = ST +1u (14 ) )

= exp <f‘N(,8)—;ln (1—\%) —|—%ln <1+\}B>> : (1.93)
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which is the desired Eq. (1.74) for Z = 3. Notice that the extra In(1 + %) is due to the
B =1 term in the Eq. (1.58). The case for Z = z € S_ can be established exactly the

same way.

1.4 Scaling limits of the form factors

The integral representations allows to take the scaling limit of the form factors. The
crucical quantity is the function I'y(Z) defined in Eq. (1.75). To obtain its scaling limit,
one changes the variable as t — e_%, leading to (o € R)

. i lae] [ e"IN . 1—et 1+6_Wt
Iy(e'N) =sin — n - — ——dt
2N Jo 7N 1+e (1—e~")1—e~)
©dt o 1—et ol wlaf?
— — 1 — O . 1.94
/0 TPt "ot gene T\ e (1.94)

Clearly, this is because that when Z — 1 = O(N '), the integral in Eq. (1.75) receives
the largest contribution only in the scaling region when ¢t — 1 = O(N~!). Here the crucial
integral is

®dt « 1—et F(%—i—%)
b(a):/o C s =hvath =22 a0, (1.95)

This is a combination of the Binet’s second integral and its generalization by Hermite [16,
17]. To convince oneself this non-trivial formula, one can use the following Barnes repre-

du 1\ T(w)gu+1) _,
- o 1 1.
b(a) /(]<Re(u)<1 27T ( 2u+1> cos LQU « ; ( 96)

sentation

which allows to compute the small a expansion of b(«) and compare with that of the I’
function ratios. Notice that throughout this work, the contours for such Barnes integrals
are always along the imaginary direction from Re(u) — ioco to Re(u) + ico.

Given the scaling limit of the I'y, the scaling limits of the dressing functions d(3) and
d(z) naturally follow. Here we introduce the following dressing function in the scaling limit
T(n+ 3
T(n) = _Lintg) , (1.97)
V2rl(n+1)
and further separate the non-zero quantization levels in the scaling limit to the left (L)
and right (R) sectors

L:ﬁ::eiT;R:ﬁ;:e—iT,n62217 (1.98)
; 2T - 2Tm 1
L:zfg:eﬂT;R:z;l:e*lzT,mGZZo—i-f. (1.99)

2
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Then, the dressing function approaches the following limit

d(BH) = e Tr(n), d(By) — é'ir(n), (1.100)
ey > i (= 3 ) | dleg) » eTr (m - 3) (L.101)

Notice that at the zero momentum, d(1) = 1 is a constant. In term of the above, the form
factors in the scaling limit can be further simplified.

To present the results, we first clarify the conventions we used in the scaling limit. In
all the matrix elements, we label the creation and annihilation operators from the left to the
right. On each sides of the spin operator, the plus momenta (L) are always placed left to all
the minus momenta (R). Without zero mode, we use the integer sequence (nr,ng; mr, mg)
in the subscript of the matrix element to denote that there are ny, 37s, ng 37s, and my, z7s,
mp z~s. And (0,nr,ng;nr,ng) denotes that in addition there is a zero mode ¢1, which
is always placed next to the (Qg|. The quantization levels for these modes are collected
by four ordered sets Ny, Ng, My, Mg, where Ny, Ng consist of positive integers, and M,
Mp consist of positive half integers. To summarize, in the scaling limit, the momenta in
the matrix elements are collected by the following ordered sets

{BiY(wp.Nm) = {8 n e N} U{ﬂﬁan € Ng}; |Np| =ng, |[Nr|=ngr, (1.102)
{2}y ) = {zmom € M} [z m € Mg} 5 M| =mp, Mgl =mpg, (1.103)
{Bi}onuvmy = {HUB v vm) (1.104)

where the orderings are always from the left to the right, and |A| denotes the size of the
set A. To present the scaling limit, we further introduce the following products

D(N):HT(n),D(M):HT<m—;> nw,my = [ MEm

n—m
nenN meM neN,meM

. ni—nj . mi—mj
nn = J] m,H(M)_ 11 g (1.105)

ng,n;EN, 1<j mg,mjeM, i<j

where N is a set positive integers, and M is a set of positive half integers. A product
equals to 1 when one or both of the sets appearing in the product are empty. In terms of
the products, scaling limits of the matrix elements without zero mode are given by

MnL+nR§ mr+mpg (NL7 Np; My, MR) - ZnL,nR;mL7mRD(NL)D(NR)D(ML)D(MR)
x (N p)I(Ng)I(Mp)I(Mp)I(NL, Mp)I(NR, ME) (1.106)

and with a zero mode one has

M?’LL+7LR+1; mr+mp (07 NL7 NR7 ML7 MR) = ZO,nL,nR;mL,mRD(NL)D(NR)D(ML)D(MR)
X II(N)IW(Ng)I(M)I(Mp)IN(N L, M)II(Ng, MR) - (1.107)
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In Eq. (1.106), the excitation numbers are subjected to the restriction ny,+ng =1 mod 2,
mr +mpr =0 mod 2. And in Eq. (1.107) one has ny, + ng = 0 mod 2, mp +mpr =0
mod 2. The phase factors depend only on the even-odd parities of these excitation numbers.
If we use + to denote the even parity, and — to denote the odd parity, then the phase factors
read

s

’ 7 Z_7 T T = _Z+7_7++ = 6_ 4 ’

1

Zetitt = - =

F)

Zov+7+7+7+ = 207_7_;_7_ - /L ZO - _7+7+ - ZO+ = — = 1 : (1'108)

PR

To obtain the phase factors, one simply notice that in the scaling limit, the two particle
functions in the R sector simplifies as (formulas with in the NS sector are similar)

VB~ - VBB

——0,0=%. (1.109)
4 o _ 1 n +n' o
VBN BY VBB -1
Between the two sectors, instead one has
o g _ 1 o —0 _ 1
VOiVE L ndm B (1.110)

VB~ nem Jmm e

For the two particle functions involving 8 = 1, simply notice that in our ordering they
all become —1. Collecting all the —1 and the e*T factors leads to the final expressions
Eq. (1.108) for the phase factors. The explicit expressions Eq. (1.106), Eq. (1.107) and
Eq. (1.108) for the form factors in the scaling limit are the second major result of the
paper. They provide explicit formulas for the CF'T matrix elements computed recursively
in [1]. Notice that all the form factors in the scaling limit are rational numbers in our
convention, due to the overall e*7 in the phase factors.

Given the matrix elements in the fermionic basis, one can establish form factor expan-
sions for the (re-scaled) multi-point correlators. We will show in Sec. 2.4 that the form
factor expansion of the two-point correlator in the N.S ground state can be summed into a
product of two Fredholm determinants of the form Eq. (0.1) given in the abstract, one for
the left sector, another for the right sector. Assuming the identity det(1+K) = (1 —w)~s
checked up to w?® in the small-w expansion, this leads exactly to the standard CFT 2pt
on a cylinder. This is another major result of the work.

2 Derivation of the main results

After introducing all the main results, in this section we derive the results presented in
the previous sections. The overall strategy is similar to [18, 19]%, but the way of solving
the matrix equation is different. Rather than using the Wiener-Hopf trick suitable for the
infinite-volume limit, our approach is based on the near-Cauchy property of the W, W’

4This strategy is essentially equivalent to that of [9], but allows to avoid the explicit Gaussian wave
functions of the ground states.
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matrices given below in Eq. (2.17), which is a special property of the critical model and
allows explicit expressions at finite V.

Our derivation can be separated into three stages. First, we derive the crucial over-
lapping matrices between the NS and R ground states. There are three types of them

(Qrlcses|Qns)

(Qrlclel [Qns) /

Qnlns) u(z,2'), (2.2)
(Qrlescling) _ o

(Qr|Ons) (8.2). 23)

Since both of the |Qg) and |Qyg) are gaussian-type ground states of fermionic quadratic
forms defined in terms of the same set of fermionic operator, multi-point correlators between
the two states are all generated by the overlapping matrices through Wick-contractions [20].
In particular, since the off = I'¢ is also a fermionic operator, correlators with ¢ can also be
obtained from Wick contractions. It turns out that it is more convenient to introduce the
following matrices

98,50 = u(B,B'), gor(2,2)) = u(2,7) , vap = u(B,2) . (2.4)

In terms of which, one has the following contractions with I'g
i
cglgy=—= 11— o, 2.5
(cgT'o) Wi > 988 (2.5)

(Tocl) = \;ﬁ (‘1 + Zgz’z> ; (2.6)

Z/

where we have used the mode decompositions in Eq. (1.33) and Eq. (1.35). As such, given
the overlapping matrices, in the second stage we perform the Wick contraction to obtain
the result Eq. (1.78) of the form factors. Finally, in the third stage, we derive the Eq. (1.79)
for the ground state overlap |(Qg|Q2ns)| as an application of the form factors we derived.
For notation simplicity, below we will use following notation for the average

(Qr[O|QNs)

()= alons)

(2.7)

where O can be a generic operator.

To proceed, we first derive the equations satisfied by the matrices g, g, v in Eq. (2.4).
For this, we first notice that the formula

N-1

> (B/2) = 25 BesS,zeS_, (2.8)

=0 z
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allows to convert between c, and cg

T
2 Cc fCB
CTZ—CEZNZ f_é (2.9)
BESY z
.|.
2 cgtc5C(2)
T o B8 T"B
dte=2) 5 (2.10)
BeSL L— z C(IB)
Similarly, one can also express cg, c}‘g in terms of c,, cl as
t 2 CL —c3
cﬂ—cB:NZ —, (2.11)
zZES_ B
.I.
T 2 cz +c: C(B)
cht+ep=1 > (2.12)

_z :
= 1-3 C(z)
To show the above, we start from the mode decompositions Eq. (1.35) and Eq. (1.36). We
can use the relations Eq. (1.24), Eq. (1.25) and Eq. (1.29), or equivalently, the standard
summation formula
Nﬁ .

(22 = N6, 2,2 €S_, (2.13)
0

—

7=

and the relation C'(2)C(2) = C(B)C(B) =1 to express ¢, or cz in terms of I';s

N-1 N—1
1 , 1 .
T _ T T o . —1
cl —cz = - g Doiz™, el +cz:=— E [i1C(2)z7" . (2.14)
v IN =0 vV IN =0

Then, we express I'; in terms of c[g,c% using Eq. (1.33), Eq. (1.34) and use the sum rule
Eq. (2.8) to simplify the results.

Knowing the conversion rules, we now consider the following identity [18]
(Qrlesez|Qns) =0 . (2.15)
Now, express the c; using cg and cg, and then move the CTBS to the left, one obtains

S Qnleseylas) SO FCE L C (ﬁﬁ) ““opons) . (@10)

r_
BeSy pr—=

At this stage, it is time to introduce the following N x N matrices

W= = PB el p(B) — ¢(2)
B 5 — B ﬁ — 5 ( )
where C(Z) = —ip(z). Here we show that, if W is invertible, then the ground state
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overlap (Qr|Q2ns) must be non-vanishing. Assume the opposite, then from Eq. (2.16), the
overlapping matrix with two cgs must be identical to zero. Then, using the same trick for

(Qrles, cpyepezlQns) =0, (2.18)

and move the c}‘js in ¢z to the left, one can show that all the (Q2g|cg, cg,cs,¢5,|2ns) are also
zero. Recursively®, this implies that all the matrix elements (Qg|cg, cg,¢s,...Cp,, | QN s) are
zero. But this is impossible, because 021022"'02n |2r) is a complete set of orthogonal basis
of the full 2V dimensional Hilbert space, and vanishing of all the (Qg|cs, cg,ca,---Ca,, |Ns)
(odd numbers naturally vanish due to the charge condition) would imply that |Qyg) = 0.
We will show below that W is indeed invertible. As such, by dividing the (Qr|Qnxs) on

the two sides of Eq. (2.16) one obtains the matrix equation
GgW =W 5g=wWw1, (2.19)

where ¢ is defined in Eq. (2.4). Similarly, we can use Eq. (2.12) in the relations (c};cb =0

and (cﬁ/%) = g3 to derive the following equations

Nyg

B )
where ¢ and v are defined also in Eq. (2.4). The Eq. (2.19) and Eq. (2.20) will be the
starting point of the following discussions.

Gg=-WIW', v=W1):2p (2.20)

2.1 Inversion and summation

Up to now, the discussions are very general and applies to the Ising chain in the whole
disordered region, with the h-dependent ¢ functions in Eq. (1.27). At the critical point,
however, there is a major simplification: the matrices W and W' are nearly Cauchy, up to
rank-one perturbations. This allows to obtain explicit product formulas at a generic V.

Indeed, using the fact that ¢(z) = /2 when z # 1, and (1) = i, it is easy to see that
one has

VB+ =z i—1 1
Wg.=—F——+90 = 0)s(vl. , 2.21
, VB—+>z i—1 1
_ _ - — L 2.22
W, G 0p17— o 10)5{v] (2:22)
where |0) and |v) are following vectors
1—1 -1 1 1
_ =), = v, = _ _ . 2.2
08 =0p1, (vl =[v)e =ve = 37— == (1—\/2 —1—\/2> (2.23)

5This method can also be used to prove the Wick theorem in the current context, as it leads to a recursive
relation for Pfaffians [18].
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T

Notice that no complex conjugation was performed here, (v| = v* means the transpose of

v. As such, we can introduce the following Cauchy matrices

1 1

Tpe= 7 Hpo= ——1
FUVB-VE T VB E

(2.24)

in terms of which one has

— 1
W=T+[0)(v|, W =H = [0)(v] v, = —— (It — Hy.) - (2.25)

As a Cauchy matrix, T is clearly invertible, as the elements labeling the columns and rows
are non-coinciding. Using the explicit product formula for its inverse, one has

1 _ 1 [Les (VB=VZ) [ses, (=vVz+VB)
P NB Ve llpes, prs(VB— V) s wpa(—Vz + V)
_ v 9B 1 VBYVz p(B)
VB—vzaz) N2B—zp(z)

As promised, the square-root products ¢ defined in Eq. (1.60), Eq. (1.61) appear, and we

(2.26)

have used the relation Eq. (1.62) to express them in terms of p(3) and p(z) defined in
Eq. (1.58), Eq. (1.59).

To proceed further, we need the following summation formula

3 1 < 1 >‘1 1 1 1 IL =) IL(C—y5)

= - 2.27
n+yi \zi+yi); w+C n+¢ n+CILm+y) [L(C+z) (2:27)

i?j

where ¢ {—y;}; and ¢ ¢ {—x;}; are two extra numbers. This formula can be obtained
from the standard inversion formula for Cauchy matrices by enlarging the original matrix
(x; + yj)*1 with one extra column and row, with two elements 7, (, and express its inverse
at the ¢, n location in two different ways. By taking limits on 7 and (, this formula allows
to compute all the summations required by this work into products. We first consider the
product HT~!. This quantity is also required in

WI'T Y = = ! (651 — (HT Y)1p) (2.28)

2
_ _ 7 —1
W[T7H0) = v (T71)1 = 5

(1—(HT M) . (2.29)

In Eq. (2.27), using n = —/ and send ¢ — —+//, by comparing the residues one obtains
the following

1 _1_VF
VBV NVB+VA"

where the square root products appear again. Given the above, the invertibility of W can

(HT™)pe = (B)a(8") = BB (2.30)
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be addressed. From Eq. (2.25), it is easy to show that
det W = (1 + (v|T710)) x det T, (2.31)

since T is invertible. From the Eq. (2.29), Eq. (2.30) and Eq. (1.70), one has

ifl_i_ifl
2 4

1+ @ T7H0)y =1+ p(1)g(1) =1+i#0. (2.32)

This crucial identity shows that W is indeed invertible, justifying the overall strategy.

Knowing that W is invertible, we proceed to compute all the overlapping matrices.
First, for the v, one needs

1
wlt=r"1t- 7T hHo(uT!. 2.33
L0 (2:33)
Given W™, we can also compute
1
WWwt=HT"'— ————(|0) + HT}0))(v|T* 2.34
o (0 AT T (2:349)
and
1
—1yx// -1 -1 —-1
=7T"H— —uo——_T T H) . 2.
4 1+ (o[T-1]0) 10) ((v] + (v] ) (2.35)

In the above, T~!, HT-1 | vTT~! and (v|T~!|0) are already known. To finish derivation,
it remains to compute the 7-'H and (v|T~'H. The former can be computed similar as
HT~!, while for the latter, one needs to use the sum-rule Eq. (2.27) with both ¢ and 7.
The results read

L VE
e =N o) (230

=1 p(1)
2 (Vz—1)p(2)

We now have all the ingredients to obtain the final results for the g, § and v defined in
Eq. (2.4).

v, + (WTT'H), = (2.37)

We first present the results of g. For 3,3 # 1 one has,

9pp’ = (W/W_l)ﬂﬁ’
_p(BeB)  i-1 _ p(B)a(1) . p(Ma(B)
s ara (- Bt t) (e )
VB p(B)p(8)(1 +VBVE)

= T NA VAWV PP L (238)

where we have used the relations p(1) = (1 —i)V/N, ¢(1) = (1 — i)

With one zero

=
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mode, one has

_ VBp(B) _ . pB 5 99
T TUNA+VE) T N+ VB) (2:39)
And g11 = 0. We now need the following property for 8 € Sy, g #1
L VB-1
p () =1V 100). (2.40)

which follows from the representation Eq. (1.74) and the fact that I'y(Z) = I'(Z) when
Z € S4. Using this relation, we obtain the desired overlapping matrix in Eq. (2.1)

eren) — (B ) — g — L BBOPE) BV
BEB I = ) *965'*]\](14_\/3)(1_’_\/@)\/3\/?_17
p(B) = (1+ids1)p(B) , H(1) =2VN . (2.42)

(2.41)

As expected, it is manifestly skew-symmetric. Similarly, one obtains the other two over-
lapping matrices defined in Eq. (2.2) and Eq. (2.3). For the g, one has

1 = LI V=
Y2 =N V2 0(2p(Z) N (vz— DV — Dp(2)p(#)
_ Vz(V/ZV7 +1) (2.43)

Np(2)p(2)(vz = DV = 1) (Vz+ V)

leading to the skew-symmetric expression

clel ) = u(z, 2 :—i \/E\/; \[—\/? 2.44
e P TV oV v~ I

Finally, for the mixed contraction, one has

1 EB) VaVB-1
Np()(vVz - D)WB+1) VB—z

The overlapping matrices Eq. (2.41), Eq. (2.44), Eq. (2.45) are the major results of this
subsection.

(cpel) = u(B, 2) = (2.45)

We now compute the contraction between the I'y and the fermion operators. We start
from contractions with cg, and write

<C/3Fo>—\/iﬁ 1= > gpr | - (2.46)

B'esSy
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To perform the sum, one needs the following summation rule

1 1\ L)
Zn+yj (%"F%’) - [T;(n+wy)’ (247)

2,] Jt

which can be obtained from Eq. (2.27) by taking the large ¢ limit. Using this, one has

S (HT Moy =1-p(8) . 3 (IT N = (). (2.48)

B'eSt peSt

This way, one obtains the crucial contraction

_ i VBp(B)
<CBP()> = ﬁ 11 \/B . (2.49)

In particular, for 8 = 1, one has the simple relation for the one-point function

(Qrlciof|Qns)
(QrIQNs)

<01F0> == (250)

Similarly, the contraction with the bl on the right side can also be computed

o i SN_ 11 1
me = (14 2 0e) = rvE (250

We note that the results in the subsection have been verified by numerical evaluation of
W=IW’, W'W~1 and W~ at various N.

As a by-product of the overlapping matrices, we can also compute the phase difference

e0+=9-) in Eq. (1.49). Using o5 = —il'oI'1 and the mode decomposition of I'g in terms of
cg, cg, I'{ in terms of ¢, and ci, one has
; Qplilol' |2
e—z(9+—97) _ _< R’;} (|)Ql‘ NS> - Z (’D(z)(W—l)ZﬁSO(BB) ] (252)
(Qrl2ys) BeSy zeS-

All the sums can still be performed using Eq. (2.27). To obtain ﬁ in the denominator, one

can simply set ¢ = 0. However, to obtain the y/z in the numerator, one needs to expand
at large 1 to the second order

1 1 i 1
=—y;+(9<3> . (2.53)
n+Y; non n
At the end, one finds
e 0+=0-) — 1 (2.54)

T

This guarantees that there will be no extra (—1) in the matrix elements of o%.
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Here we comment on the ¢ in the one-point function Eq. (2.50). As the ground states

|Qr) and |Qxng) can be chosen purely real, this sign must due to the normalization of ¢;

and cJ{. Let’s show this. In our convention, from Eq. (2.14) one has

1

2V N

N-1 N-1
. 7 .
c = Z (T +iL9i41) cJ{ = STN Z (Tg; —il941) - (2.55)
=0 i=0

2V N

Since the ground state |Q2g) is annihilated by c;, one has

(QR‘01F0‘9N5'> = 7<QR’ Z FQZ‘FO‘QNS> . (2.56)

Then, since it is possible to have all the I'y; and iI'9;11 purely real, the one-point function
in Eq. (2.50) indeed must be purely imaginary in our convention. Clearly, this i can be
traced back to the choice u =i in Eq. (1.19). The reason of making this choice is that it
allows the mode decompositions Eq. (1.34), Eq. (1.36) of I'g;4+1 to be expressed in terms of
the Teoplitz symbol C(z) without extra is.

2.2 The Wick contraction

In this subsection, given all the three overlapping matrices in Eq. (2.41), Eq. (2.44),
Eq. (2.45), and the contraction with Ty in Eq. (2.49), Eq. (2.51), we perform the Wick
contraction to obtain the main result Eq. (1.78) for the form factors. As a reminder, the
matrix elements in Eq. (1.53) are defined as

2% +1 21
Mori1a({Bi},{z}) = Moo= (D] ] eao [ ) - (2.57)
i=1 j=1

The extra factor of (—1)! can be achieved through the redefinition
el — —icl | ¢, —ic, (2.58)

The advantage of this redefinition is that it makes the contractions among the two sectors
more symmetric.

To perform the contraction, for the moment it is convenient to defined the following
modified leg functions

B8 _dB) 2.59)

~ VNI + VD) é

= \/2 = zalz
P = A = VAR (2.60)

f+(B)

It is easy to check after the operator redefinition Eq. (2.58), in every contraction contribut-
ing to the Moy 91, after factorizing out a product of all the f; (5) and f_(2)s, one obtains
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a (2k + 21 + 2) x (2k + 21 + 2) Pfaffian, whose entries are given by

11
A8 =iV e =i (261)
Vive
0— L
A(670—) = _ZO\ZBl ) A(U7 Z) =—1 _1\/E ) (262)
JA- L
M@@:ﬂ@LXE (2.63)
7z

Here, A(B,0) and A(o,z) denote the contractions with the spin field. As such, if we
introduce the following numbers

1
si=\Pi 1 <i<2k+1550%42=0; Sopt24;=——, 1 <5 <20, (2.64)
VZi
the matrix element can be expressed as
M2k+1721 = —’ik+l+1 H f+ 61 H f Z] Pfaff ( 1) (265)
1<i<2k+1 1<j<2l 5187 7 L/ 1<i j<2k+21+2

Here, the factor i¥*+1 is due to the is in each term of the contraction, and the overall
minus sign is due to the sign flip for contractions with the sggyo. The crucial determinant
formula is that for n € Z>1, one has

%ﬁ<&_%> - ST (2.66)
$i8i =1/ 1cij<on  1<icicon 5% — 1
To show this, we can change variable as

Si:ti—i_l S; — S5 _>ti—tj (267)

ti—l, SiSj—l ti'i‘tj’

and then the Eq. (2.66) becomes a Cauchy-type identity. Using Eq. (2.66), the contractions
with the spin operator leads to an extra —1 sign, as well as a product of the \[s from the
NS sector, and a product of the \/Bs from the R sector. These factors compensate the
overall minus sign, and the additional factors in fi. As such, one obtains

2k+1
(=1) H CBK’H 1) = Mo, 2({Bi}, {2})
i=1
— Z'k-i-l-‘rl i - \/57 N
175751 H H\ﬁ\/z_1 [eeoT] e o

This exactly the desired result Eq. (1.78).
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2.3 The vacuum overlap

As an application of the form factors, in this subsection we compute the overlap (Qz|Qns)
between the two ground states and prove the Eq. (1.79). First notice that for any two z;

and z; in S_, the quantity % is real. As such, the following spin-spin two point
correlator (o(7) = efl7o¥e~H7) in the imaginary time direction can be expressed as

e~ AT (Qple1o(1)(0)cl |QR)

N

2 \/57\/5 2
EGHIRICNS SEEIL ol | [FEREA H() C 209)

0 k ZE€ES_ i i<j ﬁﬁ_l

We can introduce the following N x N skew-symmetric matrix

n _ @Az = V) e
KT(Z,Z)_ (\[\/—_1) , (2'70)

then using Eq. (2.66), one has
e AN (Qpler0(1)0(0)cl |QR) = [(Qr|QNs)? det(1 + K,) | (2.71)

where the 1 in such Fredholm determinants always means the identity operator. In partic-
ular, for 7 = 0, since (¢&)? = 1, one has

1= |(Qr|Qns) > det(1 + Ko) , (2.72)

which allows the overlap between the two ground states to be computed as a Fredholm
determinant. However, one also has

det(1 + Kp) = det(1 + WW') (2.73)

where W and W' are defined in Eq. (2.17), and the matrix elements for § = —W =W’ are
given explicitly in Eq. (2.43). To show that these determinants are the same, we choose
the following particular ordering for the z € S_

20=€'N,z1 =e "N 2o = e N ) 2okt = i , 0<k< (2.74)
In this ordering, we simply notice the following identity
1 Lyps! / T
Qi (Wﬁ W )Q = ZKOE N Qz,z’ = 52,,3’ \[ Y= ®z 0 o] . (275)

This can be proven using the identity Eq. (2.40) for p(z) and the fact that p(z) = e T Ip(2)]
when z € S_. More precisely, multiplying > from the right switches z and z in the columns
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in our ordering, while for z, 2’ € S_, one always has

O |
VR - ! : (2.76)
(Vz-1)(2-1) (V-2 -1)|

if all the square-roots are defined using the (0, 27) branch. The above are sufficient to show
the identity Eq. (2.75). As such, one has

det(1 4+ WtW’) = det(1 + iK% . (2.77)
However, one also has
YKopY=—-Kp . (2.78)

This is because the Eq. (2.40) implies that |p(z)(v/z — 1)| = |p(2)(v/Z — 1)|. Combining
Eq. (2.77) and Eq. (2.78) establishes the identity Eq. (2.73).

We now compute the determinant of 1 + W~1W’ as

—Z

2 N\
det(1 + WLW') = det WL det(W + W') = det <ﬁ P )det <W> . (279)

For W, using the definition Eq. (2.17), the relations Eq. (2.25) and the crucial identity
Eq. (2.32), we can write

det W = det(T 4 0)(v|) = det T(1 + (v|T710)) = (1 4+ i) det T . (2.80)
As such, one has

ON(—1)% 1
( )Qdet Zdet

1+ 8- (x/Bl—\/E)_l '

Thus, it is now a ratio of two Cauchy determinants. We first consider the simple one, the

1= [(QrlQns)|* x (2.81)

inverse of which read

1 (T9)-1 = — 1 [Lies (B2 H,B/es+(z - A
B—z P B—=z Hg/#a(ﬁ -8 Hz’;ﬁz(z —2)

We already encountered these products before when showing the Eq. (1.62)

Zln<1—g>zln2, > 1n<1—g>:lnN, (2.83)

Ty, = (2.82)

Zes B'ESs,B#B
6/ Z/
1 - — _ — g . .
> n<1 Z) m2, > ln<1 z) In N (2.84)
peSy 2'eS_,z2'#z
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As such, one has

(IO =~

B ¥ (2.85)

From the inverse, the determinant can be easily extracted. Since the [(Qg|Qns)|? is posi-
tive, here we will not care two much about the signs

1 0 a\" o (N\Y
W =detT" x m X (—1) s detT" = +1 5 . (286)

This determinant is very large. Now, it comes to the matrix T" defined in Eq. (2.24). Using
the inversion formula Eq. (2.26), one can write

1 detT detT
mr wew IV - I e

Here, using the Eq. (1.74) and Eq. (1.73) we can further simplify

H];((f; =V2Nexp | > Tn(B) = > Tn(z)|=P>0, (2.88)
B#1 z€S8_
thus one has
detT? = iN?*NP~! | detT = j:\/;TD(l +i)NN | (2.89)
leading to
, 2P 2 1 1 A 1 N
det(1+W'W’) = \C = *2[(21\[)4 xexp | =Y Twn(B) - 3 > Tw(z) (2.90)

This gives the following ground state overlap

2 1
:(2) S ED IO SR TN (2.91)

\mmﬂm
ZES BeESL, B#1

This finalizes the derivation for the overlap in Eq. (1.79).

We now derive the integral representation Eq. (1.80) that allows to expand the overlap
to an arbitrary order in % We start from Eq. (1.74). Here the key observation is that for
B €Sy and B # 1, as well as for z € S_, one always has Re(—i\/g),Re(—i\/F) > 0. As
such, it is convenient to introduce a Barnes representation in the variable —iy/3. Denote
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the Barnes parameter as u, one has for Z = z, 8

/dt/ du 7175 ( Htu) 1n1_tN( iVZ)™ , —1 <Re(u) <1. (2.92)

27 4cos TL 14+t

Now, as far as Z ¢ R, the exponential decay in the Im(u) direction will be preserved and
the double integral is absolutely convergent. The ¢ integral can be performed, leading to

In(2) = —/d“tan‘w(—z’\/?)—". (2.93)

47 u cos 5

It is easy to perform the finite sums which are geometric and obtain

(N—1)mu

D3R MEEE D SR V) B Ay e s SN CXY)

16iu  cos T¥ cos?
2€85_ BeSy,B#1L 2 AN

Now, to finally obtain the Eq. (1.80), we choose the integration path along the imaginary
axis u = ip

z:_/oo (6%_0 (W HW / d 62N _1) (e%ﬂﬂp) . (2.95)

dp P T 2
T 4p (e +1) (ew + 1 p(e™ + 1) (eW + 1)

The second equality is because the integrand is symmetric under p — —p. Finally, we
change the variable to t = e~ % and obtain

L a-vHty+vt) 1
I:/ dt( V(Y + V1) , (2.96)
o (I+vVB)2(N +1)2tnt
which is exactly Eq. (1.80). To perform the large N expansion, one can write
L a-vHtvN+vt) 1 L oa-vt) 1 % tanh? ;&
/ dt( V(YN + V) :/ dt( Vi) _/ du’ (2.97)
o (1++Vt)2(N +1)2tint o (1+Vt)22Vtlnt 0 2t(e! +1)

where in the second term we changed the integration variable as t — e~~. The N-
independent first term is the dominant contribution in the large N limit. It can be evaluated

L=V o1 v B3 (21 (me)
/Odt(1+ﬁ)22\/ﬂnt—ln<7r 0(2)0(2)>_1n<A3 > (2.98)

where A is the Glaisher constant. Eq. (2.98) will be shown in the Appendix. B. On the
other hand, the term with tamh2 A ~ represents the sub-leading corrections and can be easily

exactly as
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expanded to an arbitrary order in %

o tanh? -t 1 o tdt 1 o 3t 1
- df—— 4N _ _ / / ol-—]. 2.99
/0 2t (et + 1) 32N2 J, et +1 t T6sNe o et+1 + N6 (2.99)

Integrals here are elementary and can be integrate to ¢ values at positive even integers. As

such, in the large N limit, one has the following large N expansion

2 1 2 4 6
21\ 4 1 3 —T i s
- <N> ¢ <2> ¢ <2> P <384N2  ga60m T O <N6> ) (2100

confirming the asymptotics Eq. (1.56). Notice that the % corrections are quite small at

’(QR|QNS>

the first few orders, but will finally grow factorially. Still, the large N expansion is Borel
summable.

At the end of this subsection, we would like to address two issues. The first issue is
on the origin of the constant (’R’)iG(%)G( 3). In the derivations above based on the exact
integral representation Eq. (1.80), this constant is due to the integral Eq. (2.98). However,
from the asymptotics Eq. (1.94) and the Binet’s integral Eq. (1.95), in the scaling region, the
I'n(B) and Iy (z) are all finite and allow simple expressions in terms of gamma functions.
Is the Glaisher constant purely due to the scaling region’s contribution to the sum? The
answer is yes. In fact, one can show that

H — 1;(131;(%; 2 _ita <;> G (‘;) _ (2.101)

To show the product formula in Eq. (2.101), simplify notice that products of factorials can

be expressed through hyper-factorials H(n) = []i; ', whose large n asymptotics leads to
the Glaisher constant

Zlnz' =(n+1)lnn!— lnH I)Inn!—InH(n), (2.102)
1 2
InH(n) — <n ;—n+ 12>lnn—z+lnA (2.103)

We should also mention that instead of using the Binet’s integral Eq. (1.95), if one perform
the sum in the Barnes representation Eq. (1.96), one can obtain the following Barnes
representation for the Glaisher constant

/0<Re(z)<1 ;l;@ —2°)(2 =279 (2)[(=2)¢(2)¢(=2) = In <7r4G <2> G <2> ) . (2.104)
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Notice that the integrand is symmetric under z — —z. To be more precise, one first write

3 (b(w(% 1)) — b(2m(i + 1)))
=0
o 1 ra+y o T(i+3)

—n (ﬁa (;) G <;’>> . (2.105)

where the b(a) is defined in Eq. (1.95), and we have used Eq. (2.101). Then, due to the
absolute convergence, we can sum under the Barnes integral Eq. (1.96). This leads to

> (b(ﬂ(% +1)) — b(m(2i + 2)))

i=0

_ du (1 \T(u)((u+1) R et

a /0<Re(u)<1 2mi <1 2“+1> COS%L (2 ) X (2 Q)C( ) . (2106)

Finally, we use the functional equation of the ¢ function to change {(u + 1) to {(—u) and
obtain Eq. (2.104). In Appendix. A, we will use this Barnes integral to find the small mass
expansion of a related crossover function.

The second issue we would like to address is the computation of the sub-leading cor-
rections. From the Eq. (1.94), one can expand the 'y function in the scaling region to the
sub-leading orders

e k[x2  7rllk| (1 — 8k?) 1
Iy (e N ) = b(2nlk]) ~ o + —maont— O (7 ) - (2.107)

On the other hand, after summing over k € Z and k € Z + %, divergences are generated
in the subleading terms, even after taking the difference between the two sectors. It is
interesting to check, if the standard (-regularization work in this case. For this, we compute

2 1 1 _ 2 9 108
 48N? Z me Z nv T 384N2 (2.108)
mEZ>o+% neZ>y u=—1
i 1 — 8m?2 1 —8n? Tt
- S - 2.109
23040 N4 < Z m Z nu > ., 92160N*4 ( )
meZso+3 n€Z> ur

The first two subleading corrections in Eq. (2.100) are exactly reproduced. It is reasonable
to expect that the ¢ regularization works for higher order corrections as well.

2.4 Scaling limit of the two-point correlator

As the N — 0o, we have shown that the overlap between the two ground states approaches
0 at a very slow speed N ~1 controlled by the scaling dimension of the spin operator.
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The rescaled spin operator ¢ in Eq. (1.52), on the other hand, allows the finite volume
scaling limit at the level of the form factors, given by the Eq. (1.106), Eq. (1.107) and
Eq. (1.108). Here we would like to show that the finite-volume scaling limit at the level of
the spin-spin two-point correlator also exists and leads to the standard CFT correlator on
a cylinder. More precisely, we first separate the two spin operators by an Euclidean time
like in Eq. (2.69), but within two NS ground states. Then, the finite volume scaling limit
means

r T
=00, N—>00, —=—=0(1). 2.110

T ) ) L N ( ) ( )

We first show that the scaling limit of the form factor expansion can be taken under the
summation for the individual form factors. For this, first notice that the exponential factors

can be bounded uniformly by

o) = T ENO) <o = R < 2.111)
Second, notice that if 3,3’ € S, then
<1, (2.112)
e

which allows to bound the two-particle products in the form factor expansions by one.
Finally, for the dressing functions, one needs just the simple bound

[d(B)| < e, (2.113)

where ¢ is an N-independent number. This way, after fixing » > 0, the finite-N form
factor expansion is uniformly bounded from the above by an absolutely summable infinity

sequence
& VBi— /B
S I (2% )
k=0 2’”1' fics, i sy \WBiv/B; —1
oo 2k+1
gz;)%ﬂ ( Ze L> <00, (2.114)

allowing to take the scaling limit under the sum, due to the dominated convergence theorem.

After showing the convergence, we show that the rescaled two point correlator can
be expressed as the square of a Fredholm determinant. In fact, in the product formulas
Eq. (1.106), Eq. (1.107), there are no correlations between the left and right momentum.
As such, in the vacuum two point correlator, within each of the four possible even odd
parity assignment of the excitation numbers, the particle numbers in different L, R sectors

— 33 —



can be summed independently, leading to
(Qns|6(r)5(0)|Qns) = eTTE (2F F_ 4+ F2 + F?) = e it (Fy + F_)? . (2.115)

Here, the e i is due to the ground state energy difference Eq. (1.40), while the F', F_
are defined as

00 2k 2
1 _ n; — Mj
Fi(w) = Z oIAY] Z 72 (n;)w™ H : j , (2.116)
k=0 {ni>1}i=1 i<j
oo 1 2k+1 ) N — 2
P =Y g 3 12T (m) S e
k=0 T {ni>1} i=1 i<j N

w=e L . (2.118)

Using the Cauchy determinant formula, it is nor hard to show that the Fy + F_ can be
combined to a single Fredholm determinant

1 i L@+ 5HTG+3)

Fi(w) + F-(w) = det(1 + Kij)i<ij<oo , Kij = - TG+ )G+ D)

w . (2.119)

As such, one obtains the the following Fredholm determinant representation of the rescaled
correlator

(Qns]6(r)a(0)[Qns) = e det(1 + Kyj)? . (2.120)

This is another major result of the work. Notice that after the similarity transformation
. it

w! — Jijw 2], the operator K is clearly of trace-class when |w| < 1, and the Fredholm

determinant is well defined.

At small w, the Eq. (2.120) allows to expand the scaling function to any given order
in w. We have checked that up to w?’, the expansion coefficients exactly agree with that
of the (1 — w)_%:

uw?  5lwd  1275w?

w
det(1+ICZ-j) =1+ 3 + 198 + 1024 + 39768 + ... . (2.121)

It is very likely that this is an exact relation. Assuming this, one has then

=

2nr

Q] ()6 (0)|Qns) = e i (1 - e*T)_ . (2.122)

This is exactly the standard CFT two-point correlator on an infinite cylinder [21, 22] and
generalizes the sum-rules in [21]. As such, after multiplying back the factor [(Qr|Qns)|?,
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at small » < L, one has then

() oo (7) s o) 5op e

This is exactly the large distance asymptotics of the infinite-volume critical chain. As such,
the simple fixed-point scaling scenario defined in [23] continues to hold in this example, if
one believes that det(1+ K) = (1 — w)_é.

It should be note that it is also possible to locate the two spin operators at different
spatial positions, for example, one at (7,7) and another at (0,0), where 0 < ¢ < N —1 is the
spatial position in the lattice unit. Then the scaling limit in the spatial direction amounts
to

i

X
| — N — =+ =
7 0, oo,N I

o0(1) . (2.124)

In this situation, it is not hard to show that one can introduce

_ 27 (rtix) _ 2n(r—ix)

w=e L ,w=e [ZEN (2.125)
and generalizes the Fredholm determinant formula to the following factorized form
(Qns|é(r,z)5(0)|Qns) = e i det(1 + Kyj(w)) det(1 + Kij(@)) - (2.126)

This is again consistent with the standard CFT formula [21, 22].

3 Comparison with literature and further comments

Before finishing the work, let’s compare with the literature and make the following com-

ments.

First, in the introduction, we mentioned that the massless limits of the finite volume
massive form factors in [2] were rarely mentioned, so the first thing we would like to
comment are the leg functions in that reference. In the notation of [2], the function x(6)
reads

oo q6’ 1 1— e—uLcoshQ’
0) = o 1 1
~(6) /OO 27 cosh(6 — ¢) n 1 + e—#lLcosho’ > (3.1)

where p # 0 is the fermion mass. At any fixed 8, the p — 0 limit diverges logarithmically.
However, in order to reduce to the CFT limit, one must fix the quantization levels and the
radius, then send p to zero, which means # — +oo and suppresses the 8/ = O(1) region.
On the other hand, when 6/ — § = O(1), then the denominator is no longer large, and the
p in the exponential is also be compensated by the puL cosh @’ ~ pLcosh @, which is O(1)
in the scaling limit. To magnify the 8’ — 6 = O(1) region, we change the variable to the
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momentum space, and denote p = psinh 6, £ = y cosh

> dk 5 1 — e LV +p?
Kk(EL,uL) :/ n
o 2W\/k2+H2E\/k2+H2_pk 1—|—€7L k2+4p2
EFE' 1— e LE

o dFE’
p— l '
/u m/E? — 2 E? + E? — M LE

(3.2)

The first line is essentially the integral given in [3], while in the second line, we have
averaged with the k — —k integrand and changed to B’ = \/k? + pu2. In this form, it
finally becomes transparent that there is a non-trivial g — 0 limit at fixed E'L

*dJE' E 1—e LB EL [* dt 1—et
EL0)= [ — 1 =— I :
K(EL,0) /0 T E21E? 14 e LE T /0 t2 4+ (EL)? Tt

This is exactly the Binet’s integral Eq. (1.95). As such, at the quantization levels EL =
27|n| of the R sector, and at EL = 2r|m| (m € Z + 1) for the NS sector, the leg functions
in [2] evaluate to

(3.3)

— = 5 3.4

VuLceoshf, — 27l(n+1) () (34
e~ r(0m) V2rl(m + 1) < 1>

m )

% =
VuLcosh@,, — 2rmI(m+ 3) T

where 7 is given by Eq. (1.97). The above exactly reproduces the dressing functions in
Eq. (1.106) and Eq. (1.107). For the zero mode, instead one needs

> (3.5)

[0/ PR L SRS S S 3.6
K(:U' 7/‘)_;1 tmnl—l—e*““_ﬁnﬂ +O()a ()
implying
en(O)
-1, (3.7)

VuL

again consistent with the d(1) = 1. Two particle functions clearly simplify to the II factors
in Eq. (1.106) and Eq. (1.107). Moreover, in Appendix. A, we show that normalization
function .S(uL) of [2] has the following small p expansion

™ é n Il2
5S(uL) = <2L> exp (gfuL 2L — L)+ O((ML)4)> 33

Given this, we conclude that the massless limit of the massive matrix elements in [2], up to

1
overall phase factors, exactly reduce to (%’T) 8 multiplying our Eq. (1.106) and Eq. (1.107)
for 6. The normalization of [2] ensures the small-r limit of the massless two point correlator
to be r~1 without extra factors.
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Second, in the introduction, we have mentioned that in [7], the authors have omitted
the ¢ = 1 point in their discussions, but this does not rule out the possibility that the
results therein also applies at the g = 1 by taking limit. Let’s show that this is indeed the
case. The major quantity to check are the products of their leg function. In our notation,
the leg function in [7] reads

Ly 1 yes, (e8) +<(3)
Ne® " Ne(B) s, (08) + (=)

s B#L. (3.9)

For 8 = 1, if one start from the g > 1 region and then take the ¢ — 17 limit, then the
result is finite

Ly _ 2 s ed)
Ne(1) Nl.es €(2)

Let’s see if they reproduces our |d(3)|? and |d(1)|*> = 1. We first check 8 = 1. One has

2 [lgme®) _ 2 i) [Tz (1= 8) TLes V= _ 3(—2‘)5&
N HZGS_ E(Z) N HZGS_(l - Z) H,BES+ \/B N 2 Z(—l)T_2

(3.10)

vz

=1. (3.11)

Here, we have used the unrestricted products when showing the Eq. (1.62), and the products
in Eq. (1.4). As expected, the |d(1)|?> = 1 is reproduced. For 3 # 1, notice

\/B+\/E—\/13—\/%=(\/B+ﬁ)(1—\/ﬁl\ﬂ> , (3.12)

and using the fact that % = —ﬁ in the (0,27) branch when 8 # 1, one has

[Ipes, (€(B)+e(8) B-1

[Les (e(B) +e(z)) " VBt 1p(ﬁ)2 ’ (3.13)
L e, WBRB? | VBB |’ _ ,
7 M Ty il v rwy ) el L L (3.14)

where we have used the definitions of p(3) and d(8) in Eq. (1.58), Eq. (1.76), and the fact
that p(8) = e~ 7 |p(8)|. On the other hand, for z € S_, one can also compute
| Thoes () +e=) vz 1 i

() — _ s |
N = Ne@) [yes, (@) T B)) ~ Nz 17 —ipap ~ 110> G19)

where we have again used p(z) = e_%lp(z)], Eq. (1.60) and Eq. (1.77). As such, we have
found that all the leg functions of the g — 17 limit in [7] agree with our results. For the
two-particle functions, it is also easy to check that they agree with our expressions. Finally,
for the overall normalization factor ££7, notice that the & = (g2 — l)i again cancels with
the (26(1))i in the denominator, and the g — 17 limit is again finite. Moreover, using the
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relations above, one can compute

. B [[es (1— V7)? 9 p?(2) i
i ger = ( - m0—var” 1l 50)

ST

_ (fv>exp @ IRNCEEEDS wa)) — (R[5 . (3.16)

zeS_ BeES,B#L

where we have used the relation p(1)g(1) = —2i in Eq. (1.70). As such, all the form factor
squared in [7, 8], in the proper g — 17 limit approached from the disordered side, agree
with the results derived directly at the critical point.

After comparing with the literature, we would like to make a few more comments on
possible future directions and generalizations.

1. First, we should emphasize that although we believe that the Fredholm determinant
Eq. (2.120) leads exactly to the CFT correlator through the formula

0ol

det(1+K) = (1 —w)"% , (3.17)

we have not yet verified this analytically. However, we have noticed that the expan-
sion of this determinant is similar to the infinite-volume form factor expansion [24]
of the Ising chain or diagonal Ising correlators away from the critical point, and at
zero or very small distances. For example, the first two terms in the expansion equal

to
= I26+3) , Kw) 1
1+ Tk =1 2w = = 1
ok +;27r1“2(i+1)w x Ta (3.18)
where K (w) is the complete Elliptic integral of the second Kind. The @ is exactly

half of the one particle form factor contribution fé,lo) (t) to the diagonal correlator at
zero separation [25]. If such relations could be established at high orders, then the
identity Eq. (3.17) becomes understandable: 03, = 1, while the form factor expansion
in [25] contains an overall (1 — t)%. This implies that all the form factors at zero
separation must sum to (1 — t)fi. It is also possible that differential equations in w
could be established, similar to the Painleve VI for the parameter derivatives [26].

2. Second, although in this work we only checked the two-point correlator, given the
finite-volume form-factors, it should be possible to show the convergence of the scaling
limit and establish determinantal representations for multi-point spin-correlators at
non-vanishing Euclidean time separations, in a way similar to the massive version in
the infinite volume [27, 28]. What remains not clear at the moment, is how to use
the form factor representations, to show the resulting correlators indeed agree with
the known CFT results.

On the other hand, it was proven recently that the spin correlators of the 2D Ising
model on a torus indeed converge to the CFT version [29], using more subtle methods
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that are not based on form factors. Meanwhile, finite-volume form factors of the
critical Ising model can be established in a similar way or in the formalism of [9] based
on elliptic Cauchy determinants, by noticing similar Cauchy property at the critical
point®. They are expected to converge to the same set of CFT matrix elements,
leading to identical form factor representations of rescaled correlators as obtained
from the Ising chain. As such, by comparing the form factor representations and the
known CFT results allows to establish many Fredholm determinant identities that
are not obvious at the first glance at all. Clearly, it is also interesting to see how
the form factors can be summed to the more general toroidal correlators at a finite
temperature.

3. Third, we comment that the finite volume form-factors are also known explicitly for
more general XY spin-chains in a transverse field [30] away from the critical points.
Either by taking the appropriate XX limit (k = h = 0) or by deriving the finite-
volume form factors directly at that point which is technically possible, one should
be able to obtain form factors of certain vertex operators in the ¢ = 1,3% = 4rx
Sine-Gordon CFT in the massless Dirac fermion basis.

4. Finally, we should mention that for integrable lattice models solved by the Algebraic
Bethe-Ansartz (ABA) such as the X XZ spin-chains, there are also discussions on
the large distance properties based on form-factors [31-35]. These discussions mostly
concern the infinite-volume limit at zero or non-zero temperatures, but the region
—1 < A < 1 with CFT-like asymptotics are covered.

It is interesting to see how to extract from the X XZ spin-chain, the CFT matrix
elements in more general ¢ = 1 Sine-Gordon CFTs in the ABA-type massless basis,
by starting with a finite volume, then taking the finite-volume scaling limit. It could
be expected that going to a finite volume would simplify a bit the analysis aspects
(taking limits) of the massless form factors. Such matrix elements might also be
related to the finite temperature results in [35-37]. Showing the convergence to the
Cylindrical CF'T correlators is expected to be more challenging than to obtain the
form factors.

Acknowledgments

The author thanks Zoltan Bajnok for constructive discussions and introduction to the
references [1, 2]. In particular, the author was alerted that there seem to be no explicit
formulas for the CFT matrix elements in [1] after discussing with him.

The results Eq. (1.106), Eq. (1.107) and Eq. (1.108) for the CFT matrix-elements was
double checked by two less rigorous semi-infinite versions of this work, corresponding to
taking the scaling limit at two different early stages. Notes for these computations can be
provided upon request. The product formulas was checked by Zoltan Bajnok against the
algorithm of [1] with his private codes.

5The author thanks Oleg Lisovyi for pointing this out in private communications.

-39 —



A The s — 0" expansion of a crossover function

In this appendix, we compute analytically the small s — 0T expansion of the function g;(s)
of [38]. We start from the definition with s > 0

1 [ 1 — e Vyits?
/0 dyIn (A.1)

_fI(S):; —1+ i
mgrs) = [ (=) + [T E e (4.2)
S 4 1 S

To perform the integral, it is convenient to use the following Mellin-Barnes representation

of f1(s)

‘ﬁ@zﬁmmiﬁﬂMW’ (A.3)
M) = (201 — )rzgru;l) Clutl) (A1)

The above can be established by expanding the logarithm into the Taylor series

1— e*\/y2+52 o 67(2k+1)\/y2+52
HES A ) S (A.5)
1 + e VY +s =0 2k + 1

and Mellin-transform the individual terms. It is easy to see that

Res <M(u)> (u=0)= % , (A.6)

consistent with the subtraction term —i. Given the above, it is then straightforward to
establish the following double Barnes integral

dzdu s7% —1
Ings(s // = s Mu)M(z — u)
Re(u)—1<Re(z) <0<Re(u)<1 27” z

+/ du s~ “—1 // dzdu M(u)M(z — u) (A7)
2 J 1 <Re(wy<o0 2mi 0<Re(u)<Re(z)<1 (27%)? z S

Here, the first two terms are due to the integral in the (0, 1) region, while the last term is

due to the integral in the (1,00) region. The —3 subtractlon is achieved by appropriate
contour shifting. We now shift the z contour in the last term to the Re(z) < 0 region to
cancel the s independent terms. There are z = 0 and z = u two poles. Using the fact that

Res (M(“)> (W=0)=0, (A.8)

u
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one finally obtains

dzdu s=%
Ings (s // 205 7 MMMz — u)
Re(u)—1<Re(z)<0<Re(u)<1 (2mi)? 2

1 du s du
+ 2/1<Re( v ——M(u) + /O<Re( : — M((u)M(—u) . (A.9)

<0 2T u <1 2mi

Now, using the functional equation of the ( function, it is straightforward to show that
MuM(—u) = (2-2%) (2—-27") T (W (—w)¢(u)¢(—u) . (A.10)

As such, the last term of Eq. (A.9) exactly leads to the Barnes-G product using the Barnes
integral Eq. (2.104). On the other hand, in the first two terms, one can shift the contours
to the left to perform systematically the small s expansion. The results of the expansion
up to the third order read

_ 1 1 3 In2 n?2 , (3 4
. =In <7r4G(2> G<2>> + v X Bl L +0(s") . (A1l

In particular, the leading term exactly reproduces the constant C; in [38] extracted nu-

Ingr(s)

merically. At higher orders, there will be (or11(o;11 type terms. The expansion has a
convergence radius equals to .

Given the expansion of In g7(s), the expansion of the function S(uL) in [2] can also be
found using the relation

1 1
InS(pul) = 3 Ingr (uL) — glnuL , (A.12)

which is equivalent to Eq. (A13) of [2]. Especially, using the expansion Eq. (A.11), in the
massless limit the 5;1%5 (uL) is finite

1
o\
tim b2 eE AR S(uL) = (re)badia—% = ( > . (A13)
n—

Using the Eq. (2.15) of [2] and the massless limits of their leg functions discussed in Sec. 3,

this implies that the overall normalization of the spin operator in [2] is exactly ( ) times
our ¢. In particular, at small 7, the two point correlator approaches a simple power-law
r~1 without extra factors.

B The integral Eq. (2.98)

In this appendix, we prove the integral formula Eq. (2.98). We first change the variable
from /t — ¢, and introduce another integral representation for (1 — ¢)(Int)~!, leading to

1 /Y dt l—t
Iy=- | — - . B.1
0 2/0 Int(1+1)? /d”“"/ dt1+t (B-1)
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It convergences absolutely. The t integral can be integrated to a special case of the Gauss
Hypergeometric function and can be expressed in terms of the digamma function, leading

to
/Oldtuft)Q:;+;<¢<1;m)_w(Hg)> , (B.2)

Ioz—i—i/old:m<w<l—;x>—z,b(l—i—:;)) . (B.3)

The integral here is similar to that of the Ising connecting computation [39]. Using ¢(z) =

(InT(x))" and partial integrating as in [39], one has

I = %m I;%)) g (g(lfz Ol In (ﬁG (;) G (g) ) . (B.4)

Here we have used the relation G(Z) = ﬁ between the Barnes G function and the

double gamma function I'9(Z). This is exactly Eq. (2.98).
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