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Abstract

Symmetries rigidly delimit the landscape of quantum matter. Recently uncovered spatially modu-
lated symmetries, whose actions vary with position, enable excitations with restricted mobility, while
Lieb—Schultz—Mattis (LSM) type anomalies impose sharp constraints on which lattice phases are re-
alizable. In a one-dimensional spin chain, gauging procedures have linked modulated symmetry to
LSM type anomaly, but a general understanding beyond 1D remains incomplete. We show that gener-
alized LSM anomalies force the emergence of the modulated symmetries upon gauging. We construct
explicit lattice models in two and three spatial dimensions and develop complementary field-theoretic
descriptions in arbitrary spatial dimensions that connect LSM anomaly inflow to higher-group sym-
metry structures governing the modulated symmetries. Our results provide a unified, nonperturbative
framework that ties together LSM constraints and spatially modulated symmetries across dimensions.
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Symmetry is a unifying organizing principle across physics: it classifies phases of matter, constrains low-

energy dynamics, and often enables model-independent predictions. Recent progress has broadened this

notion beyond ordinary on-site global symmetries to include higher form symmetries acting on extended



objects and categorical symmetries generated by topological defect operators [1, 2, 3,4, 5, 6,7, 8]. ! In
parallel, spatially modulated symmetries whose symmetry transformations are position-dependent, have
emerged as a fertile setting for unconventional phases, constraints and anomalies.

Initially motivated by the fracton topological phases [14, 15, 16], unconventional topological phases
of matter admitting excitations with mobility constraints, (spatially) modulated symmetry has been de-
veloped, giving rise to diverse research interests. While there are several types of the spatially modulated
symmetries, in this work, we particularly focus on dipole symmetry, which is associated with conserva-
tion of dipole moments [17, 18, 19, 20, 21]. A key insight of dipole symmetry is that a mobility constraint
is imposed on a single charge due to the conservation of the dipole, leading to interesting physical con-
sequences. The dipole symmetry has played pivotal roles in many aspects of physics. For instance, a
new type of Bose-Hubbard model with dipole conserving system reveals rich exotic phases [22, 23, 24].
Meanwhile, dipole conserving systems show unusual ergodicity breaking properties, providing a new
insight in the context of the eigenvalue thermalization hypothesis [25, 26]. In addition, there have been
growing interests in gauge theory with the modulated symmetries [20, 27], including studying theories of
anyons with dipole symmetries [27, 28, 29, 30], especially relation to the symmetry enriched topological
phases [31, 32, 33, 34, 35, 36, 37, 38], and their anomalies [39, 40, 41, 42].

’ Dim ‘ Global symmetries | Anomaly | Dipole sym by gauging U)((p )| Dipole sym by gauging Uéq)

1D U)((O)’ Uéo) g 0-form = 0-form 0-form — 0-form
2D U)(<0)’ Uz(o) o 0-form = 1-form 0-form = 1-form
2D U)((O)J(I =1,2), Uz(l) o 1-form 5> 1-form 0-form - O-form
3D U)((O)J(I =1,2,3), Uél) o 1-form 5 2-form 0-form — 1-form

Table 1: Classification of modulated symmetries generated by gauging generalized LSM anomalies
across dimensions and symmetry forms. We construct spin models with two types of global symme-
tries, U}((p ), Uz(q), comprised of Zy Pauli X’s and Z’s, respectively. The superscript p and ¢ denote the

(p)

form of the symmetries. The spin models are anomalous in the sense that two global symmetries, Uy ’,

UéQ), exhibit unusual commutation relation which depends on ®*" with ® := e2milN

and L being linear
system size. After gauging either U)((p ) or Uéq), we obtain dipole symmetry, described by a dipole algebra,
consisting of p’-form and ¢’-form symmetries, the latter of which is generated by acting a translational
operator (represented by “7” in the fourth and fifth column ) on the former. The case of 1D (the first

row [43, 44, 45]) complies with our theoretical framework.

Based on these motivations and backgrounds, in this paper, we try to address the following question:
“how do these modulated symmetries emerge?” Such a question was partially answered in the case of
1D spin chain [43, 46, 45] 2: the modulated symmetry emerges from an anomalous spin chain with
two global symmetries that exhibit nontrivial commutation relation, depending on the system size. In
literature, such an anomaly is referred to as the Lieb-Schultz-Mattis (LSM) anomaly [47, 48, 49, 50] 3

IFor a complete reference about generalized symmetries, the readers can refer to the following reviews and lecture notes [9,
10, 11, 12, 13].

2Throughout this paper, the "D" stands for spatial dimension.

3While LSM anomalies deal with global O-form and translations, there are higher form analog of them in higher dimen-
sion (See also e.g, Ref. [51] for discussion on LSM anomalies for O-form symmetries beyond 1D.). We refer to the latter as the

generalized LSM anomalies throughout.



the name of which comes from the well known theorem that can be used, for instance, to rule out trivial
gapped states of matter in systems with a spin-1/2 degree of freedom (d.o.f) per unit cell. In particular, Zy
dipole symmetry has been obtained by gauging one Zy global symmetry in a spin chain with the LSM
anomaly with respect to Zy X Zy global symmetry and translational symmetry.

While gauging-induced dualities in lattice models are well established, their interplay with LSM
anomalies has so far been explored mainly in one dimension. In this work, we demonstrate that in two
and three spatial dimensions, gauging a non-anomalous internal subgroup in a system with an LSM-type
anomaly generically produces modulated symmetries. We show that this correspondence is not model-
dependent but reflects an isomorphism between algebras of symmetric local operators before and after
gauging. Our results provide an explicit higher-dimensional realization of the duality between LSM
anomalies and modulated symmetries, clarifying their interpretation in terms of higher-group symmetry
structure. More explicitly, we introduce a Zy spin system with p- and g-form global symmetries, denoted
by U)((I7 ) and UZ(Q), defined in (d + 1) spacetime dimension, which is subject to the relation

U Z(q) U )((p) —ol'U )((p) U Z(q) .

Here, L represents linear system size and s =d — p — g > 1 *. We show that modulated symmetries are
generated by gauging one of the global symmetries °. Furthermore, these modulated symmetries form
unconventional dipole algebra — p-form and g-form symmetry operators are related with one another via
translational operators. We emphasize that depending on the system and spatial dimension, p and ¢ are
not necessarily the same, which is not discussed in the previous studies.

Our work provides a new insight of emergence of modulated symmetries in a concrete quantum lat-
tice model with generalized LSM type anomaly, making better understanding of these exotic symmetries,
especially the ones in spatial dimension more than one. We summarize our results in Table. 1. We also
give an interpretation of our results by field theoretical analysis, allowing us to understand the emer-
gence of the modulated symmetries in view of (foliated) anomaly inflow terms. The summary of the field
theoretical analysis is given in Table. 2 (Sec. 4.4).

The rest of this work is organized as follows. In Sec. 2, we review examples of modulated symmetries
in 1D and 2D, and how dipole symmetry emerges in 1D. In Sec. 3, we introduce two anomalous lattice
models in 2D to show how modulated symmetries are generated from gauging. In Sec. 4, we make an
interpretation of our results based on the gauge fields associated with dipole symmetries and foliated
anomaly inflow terms. Finally, in Sec. 5, we conclude our work with a few remarks. Technical details,

including a thorough analysis of a 3D example, are relegated into appendices.

2 Review of modulated symmetries

In this section, we review modulated symmetries in 1D and 2D lattice models, with a focus on dipole
symmetries mixed with lattice translation and ordinary symmetry of the same form. In 1D spin chain, we
show that dipole symmetry can emerge after gauging a subgroup of the internal symmetry with a LSM
type anomaly. We perform the gauging procedure on the lattice systematically, which extends naturally

to arbitrary dimensions for generating new modulated symmetries in later sections.

4Generally, commutation relation between p- and g-form symmetry operators depends on a linking number. However, in
our work, these two operators always have overlap, whose area is proportional to L* (s > 1).
SThroughout this work, we discuss emergence of the dipole symmetry, which is the simplest example of modulated symme-

tries. Hence, in the rest of this work, we use the term modulated symmetry and dipole symmetry interchangeably.



2.1 Review of dipole symmetry in 1D
2.1.1 Dipole Ising model and global symmetries

We start from the simplest spin model that respects modulated symmetry — 1D dipole Ising model [44,
45, 52]. The Hamiltonian on a periodic chain with system size L is given by

L L
Hip dipote = —J Y, Zj \(Z))*Zjs1 —h Y Xj+hoc., ey
j=1 j=1

where X; and Z; are Zjy shift and clock operators at site j with standard relations Z;X; = @wX;Z;, where
o = 2N, XJN = Zﬁ-\’ =1, and h.c. stands for the Hermitian conjugate. When L is divisible by N, the
model (1) respects the full Zy x Zy symmetry generated by

L

L .
QOZHXJa Q)C:H(Xj)ja (2)
j=1

j=1
where Qg generates the ordinary Zy 0-form symmetry and Q, generates the Zy 0-form dipole symmetry.

These two global symmetries, including the lattice translational operator 7, form the dipole algebra

O, ' =Q0)0:, T.00T, " = Qo, 3)

where T, acts on a local operator O; by shifting one lattice site as 7,0 jT;1 = Oj41. The dipole algebra,
which imposes restricted mobility for single excitations, plays an important role in the context of fracton
physics. One can also intuitively construct gauge invariant operators in a gauge theory with modulated

symmetries from the dipole algebra [53, 54].

2.1.2 1D dipole symmetry from LSM type anomaly

In this subsection, we show how the 1D dipole symmetry (2) emerges from gauging a subgroup of internal
symmetry with an LSM type anomaly [43, 46, 45]. A typical example with an LSM type anomaly in 1D
is the XZ model

Hip=—h:Yy X/ Xj11—h:Y Z\Zj 1 +hec., )
J J
with Zy x Zy 0-form symmetry generated by
0 ._T 0 ._ T
Uy =11% Uz =]]%. 5)
j=1 j=1
These two symmetry operators exhibit a nontrivial commutation relation
v = otuPuy, ©6)

with an anomalous phase @’ depending on size L. The relation (6) is an indication of the LSM type
anomaly — a mixed anomaly involving internal symmetry, Zy X Zy in this case, and lattice translation
symmetry [55, 43, 46]. The LSM anomaly is manifested by the projective representation of Zy x Zy at
each site, as shown in Fig. 1.

(0)

Now we gauge the global symmetry generated by UXO . Generally, gauging is a procedure to promote

a global symmetry to a local one [56, 57] ©. To this end, we introduce extended Hilbert space on each

5The gauging induces dualities, giving rise to isomorphisms between algebras of symmetric local operators which is appli-
cable to all Hamiltonians with the appropriate symmetries subjected to projection onto the appropriate sub-Hilbert space [58].
Throughout this paper, however, we focus on gauging symmetries by minimally coupling particular models with these symme-

tries to investigate how modulated symmetry emerges.



Figure 1: Visual illustration of the LSM anomaly in the 1D chain (4). On each site, we have a projective

representation of Zy X Zy, i.e. Z;X; = 0X;Z;.

link between adjacent sites, and Zy Pauli operators %;(71 /25 %].Zfl P acting on link j — 1/2. We define the

Gauss’s law as follows ’
X =1, 7

Intuitively, the form of the Gauss’s law (7) comes from the fact that one crops the global symmetry U)((O)

+1/2

into small segments with inclusion of operators acting on the extended Hilbert space. Indeed, when we

multlply 4 /2 in the entire space, we reproduce the original global symmetry, viz

FZT
j+1/2

™~

(0)
H i 1/2X7+1/2) Uy”.
]:

To proceed, we modify the spin coupling term Z; Z! ;41 50 that it commutes with the Gauss’s law (7),
corresponding to minimal coupling in the standard gauge theory:

AVIREEY A rX a2 (8)
After relabeling the operators as
z . zZ X VA
T2 = T Tt _ZJT]-H/Z i ®
the gauged Hamiltonian reads as
7 2,7 X
H=—h, Z 12 J+1/2) Tsp—he ) Tpthe. (10)
J
In summary, the gauging procedure induces the following transformation on Zy symmetric operators
i o
zjzjﬂ—mxl/z, X; —m 1/2 T (11)

Up to shifting the spin operators by a half-lattice spacing, the gauged model (10) is identical to (1) and
admits the dipole symmetry generated by 8

L o

L .
H Y 0= [T | (12)

j=1
with o := N/ gcd(N, L), where gcd stands for the greatest common devisor. Qy is the dual Zy symmetry
and Q, arises from UZ(O) by imposing transformation (11) and the periodic boundary condition. When

L =0 mod N, we get the full dipole symmetry identical to (2).

7We put the tilde on top of variables to emphasize that they are used in the intermediate steps of gauging, which are written
as the ones without tilde [See, e.g., (9)] after completion of the gauging.

8We get a sequence of theories (labeled by length L) after gauging in a theory with the LSM anomaly. At every L as multiple
of N, the dual theory exhibits full dipole symmetry, while for generic value of L the dipole symmetry may be broken due to the
periodic boundary condition. Nevertheless, for every L, we can still define dipole symmetry as a bundle symmetry defined on

patches covering the whole chain [59].
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Figure 2: (a) Three types of terms defined in (14) that respect the O-form dipole symmetry (15). (b) Con-
figurations of 0-symmetries given in (15). The three charges are described by dipole algebra (16); acting
translational operator 7; (I = x,y) on the charge Q»p.s yields Qap.o, forming hierarchical structure, which

is schematically portrayed as an inverse of a triangle in the bottom.

2.2 Examples of modulated symmetries in 2D and dipole algebra

In this subsection, we briefly review modulated symmetries in 2D with a focus on O-form and 1-form
dipole symmetries. Here we work on a 2D square lattice with L, x L, sites and assume L, = L, =0 mod N

to have the full modulated symmetries.

2.2.1 O-form modulated symmetry

On the 2D square lattice, we define a Zy spin on each site, whose shift and clock operators are given
by X, Z,. We start by the following Hamiltonian [52]

HZD:—JXZJVx?r—Jy):JVZ Jyzgﬂ hZX +h.c., (13)
r
with each term defined as
. 2 . 2 .
N =T e (2] Loy, Ny = Loe (2]) 2o, P .:ng% Zp+77elZp+%+%Zpi%+%. (14)

where r:= (£,9),%£,9 € Z, and e, := (1,0), e, := (0,1), p:= (£+ 3,9+ 1). The spin coupling terms are
shown in Fig. 2a. This Hamiltonian (13) respects Zy X Zy X Zy 0-form symmetry generated by

QZDO—HHXn Qopix = HHer Qopy = HHXr7 (15)

x=1y= i=1y= t=1y9=

where Q»p., and Q»p., exhibits spatial modulation in x- and y- directions. They form the following O-form

dipole algebra
TxQZD:er_l = QZD:xQ;D;()a TyQZD:yTv_1 = QZD'yQ;D 07
T.QoT, ' = TyQZD:OTy_l = 0w, L0y, = Qopy, Ty02pxTy, " = Qopix, (16)
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Figure 3: (a) Three types of terms defined in (18) which constitute the Hamiltonian (17). (b) 1-form dipole
symmetry, forming dipole algebra (21) which is schematically portrayed as a triangle in the bottom.

where T; denotes lattice translational operator in the /th-direction with the action T,O,rT,_1 = Or4¢, ON
local operator O,. The symmetry operators (15) realize the lattice analog of the dipole symmetry in
the field theory [29]. As shown in 2b there is a hierarchy between the dipole charges Qzp.¢, Q2p:y and
the global one QOp.o: the global charge is generated by acting the lattice translational operator on the

corresponding dipole charge.

2.2.2 1-form modulated symmetry

For 1-form modulated symmetry, we introduce the rank-2 toric code with dipole symmetry [27]. Intro-

X/Z X/Z X/zZ

ducing two sets of Zy spins 7. '*, o '~ on each site and another set of Zy spins '~ on each plaquette,

the Hamiltonian is described by

Hpre:=—hY G —ng;le —gBy;Bly +h.c. (17)
T - -
with
Gri = e (5T e, X 07 (0]7) 207, (Nf,(_%Jr%)T#g_%_%(ﬂ§+%_%)TH§+%+%,
B, : = ZcZ* o Oyl e\ulﬁ?,
B, : = Z!ﬁ ——*‘ul +4 0, ,M}Le;, (18)

where I, := (£+1,9) and 1, := (£,5+ 1). The terms given in (18) are portrayed in Fig. 3a.
Similar to the standard toric code, the model (17) is exactly solvable as all terms in the Hamiltonian

commute. As such, the ground state is a projected state |®), satisfying,

Gi|o) =By, |®) = B |®) = |0), VYl (19)

v4

On a torus, this Hamiltonian commutes with noncontractible loops of the operators 7, 6Z, and u,g in

the x-direction as well as the ones in the y-direction. There are three types noncontractible loops in



the x-direction
Ly

Ly Ly . %
o, & =Tlutry &=11(%0)" o)

x=1

2

where the last one exhibits spatial modulation. These loops are depicted in Fig. 3b. Note that these
operators are topological, i.e., independent operators depend solely on the homology class due to the

condition (19). A simple calculation, jointly with (19) leads to that

Z Z —1 VAR YA
T, élTé X,y T, xvyTy =52 Sxy
5ZT‘ Z, TE/T ' =& (i=1,2), 1)

which indicates that the loop operators form the 1-form analog of the dipole algebra (16) [52]. Fur-
thermore, these loops constitute 1-form dual dipole algebra [40], that is, one 1-form dipole charge fol-
lowed by two 1-form global charges, symbolically described by a triangle portrayed in the bottom of
Fig. 3b. The similar 1-form operators and dual dipole algebra can be found in the noncontractible loops
in the y-direction. Note that this dual dipole algebra is valid when the gauged theory is in the ground state
subspace, where there is no excess magnetic flux rather than on the full tensor-factorized Hilbert space.
In the following section, we will demonstrate with concrete lattice models that O-form and 1-form

modulated symmetries emerge from gauging an internal ordinary symmetry with the LSM-type anomaly.

3 Emergence of modulated symmetries from the LSM anomaly in 2D
models

In this section, we employ the gauging method to generate new modulated symmetries in 2D, as well as
to explain the known modulated symmetries shown in the previous section. The main idea is to gauge a
subgroup of the internal symmetry with the LSM type anomaly. In 2D, we focus on LSM type anoma-
lies generalized in two directions, comparing to the 1D case. In Sec. 3.1, we start from two O-form
global symmetries whose symmetry operators satisfy an anomalous commutation relation. However, the
anomalous phase in this case depends on the area of the system. This signals a generalized version of the
LSM type anomaly where the anomalous phase usually depends on the linear size of the system. After
gauging, we obtain new modulated symmetry with dipole symmetry mixing with ordinary symmetry of a
different form. In Sec. 3.2, we study LSM type anomaly involving different forms of internal symmetries.
We illustrate this by one O-form and one 1-form symmetries where the commutation relation between
symmetry operators depends on the length of the system. After gauging either the O-form or the 1-form

symmetry, we obtain various modulated symmetries explored in Sec. 2.2.

3.1 Two O-form symmetries

We consider the following Hamiltonian on a square lattice with system size L, x L, and periodic boundary

condition:
Hypo = — Z,(XrT Xrte, + XJXH-ey) - Z(Zj Zyie, + ZI Zr+ey) +h.c.. (22)
r r

This model has Zy x Zy 0-form symmetry generated by

L, Ly
HHXr’ 73 HHZr» (23)
x=1y= x=1y=



with the anomalous commutation relation
vy = ot U Uy (24)

Closely parallel to the 1D example in (6), this anomalous phase w’», depending on the area of the
system, signals a generalized LSM anomaly involving internal O-form global symmetry Zy X Zy and
lattice translation symmetry in the x- and y-direction: at each node of the lattice, we have a projective
representation of Zy X Zy.

Now we gauge one of the global symmetries generated by U)((O) [56, 57]. To this end, we accommodate
extended Hilbert space on each link of the lattice with a new set of Pauli operators X/%, and impose the
following Gauss’s law

Al i S o =1 (25)

T*T Ity
Similar to the 1D case in (7), this Gauss’s law comes from cropping the global symmetry operator U)((O)

into small segments, which can be understood as

) (CAPEA <A ES 7

r
To proceed, we modify the spin coupling terms, Al Zy+e, and Al Zrye,
LZrie 2 LT o Zrver LiZrie, 2 T o Zrve, (26)

such that they commute with the Gauss’s law term. Furthermore, we add the following flux operator of
the gauge field

P AN A Al
_gz T T T he, 27)

to the Hamiltonian to make the theory fluxless. Rewriting operators as

X X

vy Ty Te =TT e
Z 7T RZT 4 AT RZF
Ts =7 T +%Zr+ex Tr+% =27 rr+%er+ey, (28)

we obtain the following gauged Hamiltonian:

Hopo ==Y (Gr x Grie, +G; X Grie) =g L Bp— 1% = L% +he, (29)
T p I, l,V
with
X X% VA Z T
Ti(fﬂ Tery 3 r—%‘rf-i-%y’ By = T -5 TP* 2 TP"‘eyT 3 G0

The first three terms in gauged model (29), also shown in Fig. 4a, resemble the ones constituting the Zy
toric code [60] with a crucial difference that we have product of the “star operators” Gy in the two
consecutive sites.

Now we turn to identifying symmetry of the model (29) on torus geometry, assuming g — oo so that

the model does not admit any magnetic flux, i.e., the ground state |Q) is a projected state, satisfying

By |Q) =1[Q), Vp. 31D
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Figure 4: (a) The first three terms in (29). (b) Example of the dipole algebra (34) in the case of N =2
and L, even. Note that as opposed to previous studies which discuss dipole algebra involving the same
form, we have unusual dipole algebra which involves O-form and 1-form symmetry. Namely, acting a
translational operator on the O-form symmetry yields stack of 1-form symmetries. In the present case,
the stack of 1-form symmetries can be deformed into identity of one 1-form symmetry, depending on

whether L, is even or odd via flatness condition of the gauge field.

The gauged model (29) respects a new 0-form modulated symmetry generated by

Ly L, o Ly Ly ~\ Oy
o =TI &= TTIT ()" (32)
J=1%= J=1%=

where oy =N/ gcd(N,Ly), I =x,y. This modulated symmetry depends on the system size in a subtle way.
Note that depending on the N and values of L,, Ly, these two charges are not independent: If gcd(N,L;) >
1, further, if there exist integers {c; : 1 < ¢; < ged(N,L;) — 1} such that c,0 + ¢y, = 0 mod N, then
by (31), it follows that the two charges are subject to [Q)(CO)} “ X [QS))] - I, where I on the right hand
side represents identity operator.

Besides the modulated O-form symmetries that cover entire horizontal or vertical link in the bulk, the
model admits ordinary Zy 1-form symmetries, corresponding to the noncontractible Wilson loops along
the x- and y-direction of the torus, that is,

L,
(X ._ TTZ Wy . T2
Q" =110 2 y.—H’C(ler%). (33)

1
=1 2 $=1

These loops are topological, viz, independent operators depend solely on the homology class due to the
flux-less condition (31). Moreover, the symmetry operators of these O-form symmetry and the 1-form
symmetry (33) generate a dipole algebra, that is,

o\ el B
ro¥1 ! =0 (o), o1 = o

) ayLX
EQ§O)T;:1 — Q§O), TyQ;O)Tyfl — Q)(,O) <Q(()1)7)T> ) (34)

The first and last relation in (34) indicates that acting a translational operator on a O-form symmetry gives

rise to stack of 1-form symmetries in the x- or y-direction. Since the 1-form symmetry is topological, the

10



stacking is manifest in the exponent Ly,L,. The subtlety of this modulated symmetry is also reflected
in the dipole algebra. At the extreme case, we have the full modulated feature of Q)(CO) if Ly =0 mod N
and L, = 1 mod N. But then the modulation for Q§0) lost entirely. If we require L, = Ly, = 0 mod N, all
modulated features will lost. We demonstrate this behavior through the first relation of (34) in Fig. 4b in
the case of N =2, L, being even.

Therefore, using the gauging method, we construct a new type of dipole algebra mixing dipole sym-
metry with ordinary symmetry of different form. The known examples in the literature only cover the
dipole algebra where p-form symmetry and another p-form one are related via lattice translational oper-
ators, while in our new example (34), different forms of symmetries are associated with one another by

lattice translational operators.

3.2 Two O-form and one 1-form symmetries

In this subsection, we demonstrate that our gauging method is able to explain the known modulated
symmetries in 2D. We start from two O-form and one 1-form symmetries with an LSM type anomaly
implied by the linear system size dependence in the anomalous commutation relations. After gauging,

we recover modulated symmetries discussed in Sec.2.2.

3.2.1 Model

We consider Zy spin on each link of a 2D square lattice with system size L, x L, and periodic boundary

condition, and introduce the Hamiltonian as

Hpi= — Jx Z(lezli-i-ex + Zl'\‘Zl-L-—O-ey) —Jy z‘4<zlyzlt+e;v + ZlyZl-E+ey)
1, ly
T T i i
- JGZr:Xr_%XH%xXF%XH% —Jp ;zp,%zw%zw%ZP% +he., (35)

where the first line describes spin coupling terms shown in Fig. 5a, and the second line describes the Zy
toric code. We assume Jp — oo so that we focus on the projected states without gauge fluxes.
Now we turn to identifying global symmetries of the model. There are two Zy 0-form global sym-

metries generated by

Lx L,V LX L\
v =T %, o7 =T]]%. (36)
=13=1 F=13=1

and one Zy 1-form symmetry generated by noncontractible loop operators along x- or y-direction

~

y

L
(Wx._ 1T (Dy._ H
Uy " = I Ilz(}?+%al)7 Uy ” = 1 IZ(Ly”r%)‘ 37
o j

Note that these loops are topological due to the flux-less condition by taking Jg — oo. In Fig. 5b, we show
examples of these symmetry operators. The O-form (36) and 1-form symmetry operators (37) satisfy the

following anomalous commutation relations:

UZ(I)xU)EO),l _ wLxU)((O),lUZ(])x7 UZ(])yU)((O),Z _ wLyU)((O),ZUél)y. (38)

Symmetry operators with different forms exhibit unusual commutations relation with anomalous phases
(0, w™) depending on system size (Ly,Ly), as opposed to previous cases, where nontrivial commuta-

tion relation involves only O-form symmetries. This implies the LSM type anomaly: as shown in Fig Sc,

11
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Figure 5: (a) Spin coupling terms in the first line of (35). (b) (Top) Two O-form symmetries in (36).
(Bottom) Example of the 1-form symmetry, corresponding to Uél)’x in (37). (¢) Visual illustration of the
LSM anomaly in our model: in each slab (the area inside the gray dashed line, we have two operators,
Z()e T (Héy: 1 X1X> which do not commute, signaling anomaly involving O-form and 1-form symmetries
and translational one in x-direction, in analogy to the 1D case (Fig. 1). (d) Gauss’s law for gauging two

0-form symmetries (39). (e) Gauss’s law for gauging 1-form symmetries (48).
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in each slab, Q; € {(£+3,5), 1 <9 <L,} (1 <% <L), we have nontrivial commutation relations

between two operators as

L
x+1 1) (HX]) = a€+%,1) (HXI.\) (1<2<Ly),

signaling the LSM anomaly involving O-form and 1-form and translational symmetry in the x-direction.
The indication of LSM anomaly in the y-direction can be analogously discussed. As compared between
Fig. 1 and Fig Sc, this is generalization of (6) where there is a projective representation of Zy X Zy at
each site of the chain. In what follows, we gauge either the O-form or the 1-form global symmetries,

which leads to different kinds of modulated symmetries in Sec. 2.2.

3.2.2 Gauging O-form symmetry

First, we gauge two Zy 0-form symmetries generated by (36) in the model (35). We introduce two copies

of extended Hilbert spaces on each site and another two on each plaquette of the lattice, with two sets of

Zy Pauli operators on each site and plaquette as 6, X and up é‘p Then we introduce the Gauss’s law
2X  &Xy =Xt X EX =X EX
Boe BN =1, §le 68X 6 & =1 (39)

See also in Fig. 5d. The Gauss’s law terms come from cropping the O-form global symmetry opera-
tors (36) into local segments. Indeed, by multiplying the Gauss’s law terms on every site, we obtain the

original O-form symmetry operators
L, Ly Xt Xt O B X sXy Xt EX (0),2
H(uper’fxlrr;exap')zuxv, [T (&.a%65,87) =u2
F=15=1

F=19=1

We then modify the spin terms in the first line of (35)

Zl Zl.r—l-e - Zl ’EZTZI +ey’ Zl Zl +ey - Zl ngZlT +ey
leZl +ey - Zl Z}Zl +ey” leZl +ey - Zl\ uup IZlT+e (40)
so that they commute with Gauss’s laws (39). To proceed, we rewrite the operators as
~ o - -
of =6, of =76l T =T, T =Z Tl
él))( = §3(7 épZ = thégzlﬁ-ew .u[))( = .a[))(v .u'g = Zl—ill’lgzl)"‘rey' (41)
We also add the following flux operators
z ST
_JllZcH%clﬁﬂ H) - —JZZ vy 1_251 wg,r%x +h.c., (42)

to the Hamiltonian to make the gauged theory fluxless. Further, by using Gauss’s laws (39), the “star

operator” of the toric code [third term in (35)] becomes

¥ f _ X X1Y2 X X (X2 X
Xr_%XH%Xr_%XH% = r—e (T ) T rre, X Op_¢ (Or ') Oppe,
f
X X X X
X e e
(upf%‘%épf%‘%) Hos-55p-5 -y
i
X X X X
X : : . 43
(“H?*%éw%*%) Hpiss o oo @)



Also, in the original model (35), we impose the fluxless condition on the theory, i.e., we focus on the

projected state satisfying
T T _
Zp—%Zw%Zer%Zp,% =1, Vp. (44)
After the procedure (40) (41), this condition becomes
uy&y =1, vp. (45)

Applying this condition to the Hamiltonian to replace all the &, with 1, and rewriting the operator ,uff 3( —
X

Hp » we arrive at the gauged Hamiltonian
Hypy=—1Y (6F + 1) =Y (tf+uf) —Jc Y, Ge =y ;le —JZIZB.y +hc., (46)
T N N
with
Ge = Tre(f) T e, GX, .(Gf*)zciiey X () B g o (e o) e

_ VAl
B, = ZG ex61+exul e)u

_ VA
B, = Z'ul _Lx“[ﬁ"z\ Tl ,i\TlJr

It is worth emphasizing that the gauged Hamiltonian contains the terms of the toric code with dipole
symmetry (17). The symmetry of the gauged Hamiltonian includes the following loop operators along x-

direction:
7 T2 z 1,2 z _Tl(z V1°
& = 1—117()@0)7 & = I—[llu(ﬂ%,%)v Xy T 1—11 [(T()?,O)) } ' 47)

which are nothing but the modulated 1-form symmetries. When L, = 0 mod N, the loops become identical
to the ones in (20) with the relations (21), forming the dual dipole algebra. One can similarly show that
the gauged model has modulated 1-form symmetries in the y-direction, generated by noncontractible

loop operators in the y-direction.

3.2.3 Gauging 1-form symmetry

Now we turn to gauging Zy 1-form global symmetry of the model (35). To this end, we accommodate
extended Hilbert space on each site of the lattice whose Pauli operator is denoted by LX/ % The Gauss’s
law is given by (Fig. Se)

2z LA z VA
)“lx*%zl")'lx*% — 1, ), e\ Z] ),l _i" — 1 (48)

Intuition behind the Gauss’s law term is that one decomposes the 1-form operators (37) into local pieces,
in the same manner as the one in the previous subsection.

We modify the “star operator” so that it commutes with the Gauss’s law (48):

T i T 1 Xty T
er%Xr+%Xr,%Xr+% %Xri%XrJr%rlr er%Xr-‘r% (49)
Rewriting the right hand side of (49) as X, viz
X. i 3 Xty T
A .:XJ_%XH%)LT TXJ,%XH%? (50)
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jointly with A.Z := irz , the gauged Hamiltonian reads as

Hpi= — U Z [ AZ e ( ATZT) +eX + A7 ’lrziex Zjevxlrzﬂx +e}}
z
B J)’Z [lrzfe). 2'rZT) +e\ + )LZ +ex -:ey Z+ex+e).]
r
— JeY AN +hec. (51)
r
This Hamiltonian respects O-form modulated symmetry. To wit, the model commutes with the following
operators:
Lx L) % Lx L) O(y
O2p:0 = H le O2px = ; Qwy= : (52)
x=1y= x:ly:] x:ly:]

In particular, when L, = L, = 0 mod N, it is identical to (15), forming the O-form dipole algebra in (16).

3.3 Summary for 2D and comment on general dimensions

To recap the argument in this section, we study two 2D spin models with LSM-type anomalies, indicated
by nontrivial commutation relations with dependence on system size. In the first model (22) with two
0-form global symmetries, gauging one of them yields a new type of modulated symmetry, character-
ized by unusual dipole algebra containing O-form dipole and standard 1-form symmetries. In the second
model (35) with two O-form and one 1-form symmetries, gauging two O-form global symmetries yields
modulated 1-form symmetry whereas gauging 1-form symmetry leads to modulated O-form symmetry.
It is widely known that when gauging p-form symmetry in (d + 1) spacetime dimension, one obtains
dual (d — 1 — p)-form symmetry [4]. Based on this fact, jointly with our results, we conjecture that in an
anomalous spin system in (d + 1) spacetime dimension, where there are p- and g-form global symmetries
(0< p,g<d,0< p+q<d— 1) with nontrivial commutation relation depending on L=7~¢ °, gauging
p-form symmetry gives a modulated symmetry in the dual theory, characterized by dipole algebra involv-
ing (d — 1 — p)-form and g-form dipole symmetry. Further, hierarchical structure of the dipole algebra is
formed in such a way that g-form symmetry is located at the higher hierarchy than the (d — 1 — p)-form
symmetry. In other words, acting a translational operator on g-form symmetry produces (d — 1 — p)-form
symmetry. To support the validness of this observation, we demonstrate an anomalous spin model defined
in 3D in App. A and obtain new modulated symmetries from gauging one of the global symmetries. Also,
we give an alternative interpretation of our results in the field theoretical description in Sec. 4, allowing

us to understand the emergence of the modulated symmetries systematically.

4 Field theoretical interpretation

It is often the case that an anomaly can be described by a topological action comprised of background
gauge fields associated with global symmetries [61]. In this section, we give field theoretical interpreta-
tions of our results. It turns out that the emergence of the modulated symmetries can be described in a
similar manner to the generation of the higher groups [62]. To this end, we review gauge fields associated
with the dipole symmetry and discuss how dipole symmetries emerge in view of anomaly inflows and
higher groups.

9Recall that L denotes linear system size of the system.
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4.1 Gauge fields associated with p-form dipole symmetries

We first review gauge fields of p-form dipole symmetries [63, 29, 40]. Suppose we have a theory in
(d + 1)-spacetime dimension with conserved p-form charges associated with U(1) global and dipole
symmetries, defined on (d — p)-dimensional spatial submanifold, X;_ p.10 We denote the global charge
by Q[X4-,] and dipole charge by Q;[X;_,], where the index I = 1,--- ,d denotes the dipole degrees of
freedom in the /-th spatial direction. !!

While the global charge Q follows the relation

[iP;, Q] =0, (53)

implying it is homogeneous in space, the dipole charges satisfy the following relation:

[iP, Q)] = 61y Q. (34

An intuitive picture is considering the global and dipole charges densities p, x;p (where p denotes the
density of the U(1) charge, and x; as the J-th spatial coordinate) under translation in the /-th direc-
tion (I,J =1,---,d) [29]. For instance, if we translate by a constant Ax; in the /-th direction, then the
change of dipole moment gives (x;+Ax;)p —x;p = (Ax;)p, corresponding to the nontrivial commutation
relation between the translational operator and the dipole charge operator.

We write the charges Q and Q; via integral expression using the (p + 1)-form conserved currents as

OEap= [ 7V, Qiffap)= [ k7.
Yip d—p

In order to satisfy the dipole algebra (54), we require that
sk = P oy 0D (1=1,--- d) (55)

with k;p +1) being a local (non-conserved) current. Subsequently, we gauge the symmetries by introduc-

ing U(1) (p+ 1)-form gauge fields aPt1) ATP+1) and minimally coupling them to the local currents'? '3

d
Sep = / P AP Y ATED p g (56)
Va+1 =1

where V. denotes the spacetime manifold. A proper gauge transformation is required to gives rise to
the conservation law of the higher form currents from the gauge invariance of this coupling term. We
illustrate this point in App. B with the case of ordinary U(1) symmetry. It turns out that the following
gauge transformation
aPth) — q(p ) L galP) (_1)17261(17) Adxy,  AlPHD 5 Al41) 4 g 61(P), (57)
I
where A?) and ¢/(P) denote the p-form gauge parameters, together with the gauge invariance of the

coupling term S, yields the conservation law

dx jPH) =0, d(ekPT —xp s j0HD) = dx K PTY =0,

10Here we take 0 < p < d. The p = 0 case corresponds to the ordinary global symmetry.

e interchangeably represent the spatial direction / = 1,2,3,---,as [ = x,y,z,-- -, depending on the context.

12 A5 discussed in [29], one regards the gauge group as U(1), taking the fact that quantization condition of the dipole gauge
field depends on the length of the dipole into consideration. We set such a length to be 1 throughout this section.

BIntuition behind this coupling is as follows: First, we introduce a gauge field aPth o couple with the current j(”+]).

Second, we introduce additional gauge fields A’ (P+1) 1o couple with the remnant part of the current in (55), which is kl(p .
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In what follows, dx; is interpreted as a 1-form foliation field [64, 65]:
el = dxy, (58)

which is widely used in the context of fracton topological phases so that along the direction of foliation
field, layers of co-dimension 1 submanifolds are stacked.
For later purposes, we also define the dual dipole algebra with an inverted hierarchy structure. Instead

of (53) and (54), consider d global charges Q; and one dipole charge Q with relation
[iP1,0)] =0, [iP1,0] = 0. (59)

Analogous to the argument below (54), this relation can be intuitively understood by acting translation
on the dipole and d global charge density 1) = — Zjl:l x1p1, and p;. For example, by shifting the dipole 7
in the [/-th direction, one obtains the second relation in (59). Following the similar argument presented
around (55)-(57), we define gauge fields associated with the global and dipole charges (59) as b’ (p+1)

and B(P+1) respectively with the following gauge transformations:
plP ) 5 pl D) 4 g ®) — (—1)P&P pel, BT 5 BPHD 4 g5(P) (60)

with p-form gauge parameters ¥'(") and (7).
The dipole algebra (54) is related to the dual one (59) by inverting the hierarchy structure of the
algebra. Stated symbolically,

01 O -+ Qq o ) ~Q Y 1)
o 01 O -+ Qu

These algebras put different mobility constraints on charges. In the case of the dipole algebra (54), a
single charge is immobile as dipole moment is conserved in any spatial direction. On the contrary, in the
case of the dual dipole algebra (59), which consists of d charges (labeled by I = 1,--- ,d) and one dipole,
the I-th charge, Q;, is mobile in the direction perpendicular to the I-th direction, yet it is immobile in
the /-th direction.

The gauge invariant fluxes are introduced as

d
S = dalr ) (P Y AP A R &I (62)
I=1
£ g0t (—1yPBP D A ! FEPTY = gl (63)

The flatness conditions of the gauge fields are given by
ﬁE[Hl) —0, Fl(p+1) —0,
flf(erl —0, Flngrl) -0

which are rewritten as

d

daPt) = (~1)P ZAI(pH) Nel,  dAlPt) =, (64)
I=1

dbl(p+1) _ (_1)p+1B(P+1) /\el7 dB(P+1) =0. (65)

Although in this subsection we assume U (1) symmetry for simplicity, the nontrivial flatness condition
for gauge field of dipole symmetry can be generalized to Zy gauge theory by Higgsing the U(1) gauge
theory by a charge N field.
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4.2 p-form dipole symmetries from generalized L.SM type anomaly
4.2.1 1D example

In Sec.2.1.2, we reviewed how to obtain Zy dipole symmetry algebra from a Zy X Zy symmetry with

the LSM type commutation relation between symmetry generators

vl = otuPul, (66)
on a Zy-qudit spin chain. This can be shown from a field theory perspective. This LSM type anomaly is
captured by a (2+ 1)d Zy x Zy weak symmetry protected topological (SPT) phases [35, 36, 66, 67]

iN

— [ GO AHD A, (67)
2n M

protected by internal Zy x Zy symmetry and lattice translation symmetry. Weak SPTs are invertible
foliated field theories, serving as anomaly-inflow bulk theories for the boundary LSM anomaly between
internal symmetry and lattice translation symmetry [34, 68]. Here G, HWY denote 1-form background
Zy gauge fields. '* Now we gauge the Zy symmetry with gauge field G(') by promoting it to dynamical
gauge field g!) and coupling to the dual background gauge field G(!). The gauge symmetry should be
free of anomaly, which means we need to couple

iN ~ iN ~ iN ~

L WA = NV 40,0 A G0y = 7/ oM A g&W 68

21 /,9/143 § 21 M3 (g ) 21 M3 & ’ ( )
at the boundary to cancel the bulk anomaly term (67). We used the flatness condition dg(!) = 0 for the Zy
gauge field gV in the last equality. Therefore, we have

gDAHD A et — g AgG) =0. (69)
This leads to the modified flatness condition for the dual gauge field
dGY =HW Ae. (70)

Together with dH (1) =0, the gauged theory exhibits the same flatness condition as (64) for the case of
the 0-form dipole symmetry. 1

4.2.2 General dimensions

We will generalize the argument in (1 + 1)d to general dimensions. We start from a (d + 1)-dimensional
theory with LSM type anomaly between internal symmetries and lattice translation symmetry. By gaug-
ing one of the internal symmetries, we expect to get a dual modulated symmetry with gauge fields fol-

lowing a dipole-like flatness condition.

14In the gauging process, we use the capital letters G, H for background Zy gauge field and g, / for dynamical gauge field.
This should not be confused with the convention we used to derive gauge field for dipole symmetry, where we use the capital
letters A, B for gauge field coupled to currents of dipole symmetry and a,b for gauge field coupled to current of ordinary
symmetry.

15We thank Linhao Li for helpful discussion on this point.
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For simplicity, consider one p-form and d copies of (d — p — 1)-form Zy global symmetries with
background gauge fields Gt and H!4=P) where I=1,---,d distinguishes different (d — p — 1)-form
symmetries. Assuming these symmetries have LSM type anomaly described by

— Z - GrHD A g1@=P) g ol (71)

My

where the foliation field ¢/ is regarded as the gauge field associated with translation symmetry in the I-
th direction. This is a natural generalization of the weak SPT in (24 1)d. Physically, the terms in (71)
describe SPT phases protected by Zy p-form and (d — p — 1)-form symmetries stacked along in the I-
th direction. An explicit lattice model of (71) in (3 + 1)d was constructed in App. B of [40]. For the
anomalous boundary theory on the d-dimensional square lattice, this anomaly term is reflected by d

copies of commutation relations with dependence on linear system size on each direction, for example,
d— d—
UL (- p)U P70l ) = oMU L VUP (ay), T=1,--d, (72)

where U(p)(Zd ) and Uy Ld=p=1) 51

»+1) Tepresent Zy p-form and (d — p — 1)-form symmetry operators

which have support on X;_, and x! p+1> Tespectively. Also, the intersection of Zﬁ, 41 and X4, is aline in
the /-th direction.

Now we are in a good place to perform gauging the p-form symmetry by making it dynamical and
coupling it to the dual background field through

iN ~ IN ~ iIN ~
L (p+1) p Gld—p) — 2V / Aot A gla—p)y = Y / ) D) A g@ld-p) (73
37 o, 8 3, 48 =5 ), Vs 73)

This term should cancel the bulk anomaly by

d
Y g PO AR Aot (—1)P T gP T A @GP =0, (74)
I=1

which leads to the modified flatness condition
d
dGYr) = (—1)? Y H'“"PI pn e, (75)

for gauge fields of (d — p — 1)-form dipole symmetry.

This derivation closely parallels the one studied in the context of higher group [69, 62]: for a theory
n (d + 1)-dimension with two global symmetries with mixed ’t Hooft anomaly, gauging one of the
global symmetries leads to the dual theory with a nontrivial extension between dual symmetries (which
forms a higher group structure). During the gauging procedure, we also trivialize the (d 4-2)-dimensional
dependence from the anomaly counterterm by modifying the cocycle (flatness) condition of the gauge
fields. We give a lightning review of this problem in App. C.

By the same logic, in the same setting with LSM type anomaly (71), if we gauge (d — p — 1)-form
symmetries, one can trivialize the (d + 2)-dimensional dependence by imposing the following flatness

condition of the gauge field:
dair+1) — (—1)p<d—p)+]G(p+l) /\el, dG\r+h) — 0, (76)

where A'(P*1) denotes gauge field of the p-form dual symmetry. Up to the minus sign, this flatness con-

dition corresponds to the one for the gauge fields associated with p-form dual dipole symmetry in (65).
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Figure 6: Visual illustration of the charge Q[Y,, X}, "], which is composed of stack of the currents *j 2)

located on X (blue lines on the right hand side) along the x-direction.

In summary, we introduce a (d + 1)-dimensional theory where there are p-form and (d —p —1)-
form Zy global symmetries with LSM type anomaly (71). Gauging either of the global symmetry leads
to a dual modulated symmetry. This is a natural generalization from the previous study of modulated
symmetries in 1D [43, 46] and in 2D [54]. In the case of 1D, gauging one of O-form symmetries with an
LSM type anomaly described by the inflow term (71) with p = 0 and d = 1 gives rise to dipole symmetry
with O-form dipole algebra. In the case of 2D, for a theory with two O-form and one 1-form symmetries
with an LSM type anomaly described by the inflow term (71) with p = 0,d = 2, gauging two 0-form
symmetries leads to 1-form dipole symmetry with dual dipole algebra. The corresponding lattice model
is in Sec. 3.2 [see (21)]. Likewise, if we instead gauge 1-form symmetry, we would end up with 0-form

dipole symmetry with dipole algebra, whose lattice realization is discussed in Sec. 3.2.3 [see also (16)].

4.3 Dipole symmetries involving different forms from generalized LSM type anomaly

In previous subsections, we review the properties of gauge field for p-form dipole symmetry. We show
that the modified flatness condition including foliation fields can be obtained by gauging a theory with
the LSM type anomaly, which is captured by a weak SPT phase in one higher dimension. The weak SPT
is described by an invertible foliation field theory with one layer of foliation, reflecting the anomalous
phase with linear system size dependence on the lattice.

However, we have discovered new types of modulated symmetries mixing between symmetries of
different forms in lattice models. These new symmetries can be obtained from a generalized LSM type
anomaly with anomalous phase depending on the area of the system. In this subsection, we initiated the
study of gauge fields for these novel symmetries in the field theory perspective for examples in (2 +
1)d. We also show that by gauging from an invertible foliated field theory with two layers of foliation,
which captures the generalized LSM type anomaly, the properties of gauge field associated with the new
modulated symmetries emerges naturally.

Consider a theory in (2+ 1)d with one 1-form and one 0-form U(1) symmetries whose corresponding
conserved currents are given by i@ and KV From these currents, one could construct charges as

0= [ +j®, 0= [ «k".
Z

)y}
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Instead of doing it, we would like to have an algebraic relation between charges with different forms via
translational operators, in analogous to the previous discussion on the dipole algebra. However, space
dimensions where these charges are defined are different. To circumvent this issue, we propose the fol-

lowing charges:
01, = [ (+/®), Ae, Q[Ea)= [ 4k 7
JXy Z:l py)

While the second term is the standard expression of the charge for O-form symmetry, the first term
includes higher form current (* j(z))zl’ located on one dimensional rigid slices X; along the y-direction
and stacked along the other direction through the foliation field. See also Fig. 6 for illustration. This is
consistent with the foliated 1-form charges in the lattice dipole algebra (34). Here, we specify the foliation
field €* in the first term of (77), hence, the way O-form charge is defined depends on the manifold X; and
the foliation field. In what follows, we retain such manifold and foliation field dependence of the charge
(More explicitly, we write the two charges in (77) as Q[X;,¢'] and Q'.). To proceed, we impose the
conditions on charges:

(P, QZ1,e' ]| =0 (I=x,y), [iR,Q]=0[¢], [iP,Q]=0, (78)

which are generalization of dipole algebra involving different form of symmetries. In the following, we
introduce gauge fields corresponding to the dipole algebra (78). To do so, in analogy to the discussion in

the previous subsection, we rewrite the current *K!) as
«K ) = 5D (*j(2)> Aet (79)

with k(1) being non-conserved current. A simple calculation gives (78) from (79). Introducing 2-form

and 1-form gauge field, a'® and AV, we think of the following coupling term:
S‘:/ (a(z)/\*j(2>—|—A(1)/\*k(1)> (80)
\4]
If we demand the following gauge transformation '©
d® S a® £ ax ) L AO A AN Sy A 4 gA©O) 81

then gauge invariance of the coupling term (80) leads to d * i@ =daxk® =o. Defining gauge invariant

fluxes as
) =da® - A pene, P =aal, (82)
the flatness condition of the gauge fields reads fé3) =F A(z) =0, viz,
da® =AW nene, dA) =o. (83)

In summary so far, we gauge dipole symmetry involving two global symmetries with different forms.
The gauge fields associated with such a symmetry are subject to the flatness condition given by (83).

Note that had we choose one foliation field ¢” instead of ¢* and define charges as

Q[Ez,Zl,ey]:/E <*j(2)>2 Ae, Q’[zz]:/)E <K (84)

1611 the rest of this section, A(?) andA@) denote p-from and g-form gauge parameters.
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and think of the following dipole algebra

(P, Q[E1,€]] =0 (I=x,y), [iP.Q]=0[L,€], [iR,Q]=0, (85)

we would arrive at the same flatness condition (83) when gauging dipole symmetry.

Now we derive this modified flatness condition for gauge field corresponding to the dipole symme-
try (78) from the generalized ’t Hooft anomaly. As discussed in 3.1, the anomalous phase for two Zy
0-form global symmetries (2 + 1)d depends on the area of the system. This implies that this anomalous

theory lives on the boundary of a 2-foliated invertible theory !’

s_ iV

= GOAHD At Ne.
27 Jmy

(86)

where G, H(") are background gauge fields for these two Zy symmetries. When we gauge the Zy

2). To cancel

symmetry with gauge field G!), we obtain a dual 1-form symmetry with gauge field G'
the bulk anomaly term and trivialize the four spacetime dimensional dependence, we follow similar

discussion in the previous subsections, and obtain the correct modified flatness condition

dGY =HY pnene?, dHY =0, (87)
which is identical to (83).
Dim p- and g-form sym Bulk invertible theory Dipole sym Dipole sym
for LSM anomaly by gauging p by gauging ¢
1D (p,q) = (0,0) S, GOAHWD A" 0-form - 0-form | O-form — 0-form
Sec. 2.1 G, gt
2D (p,q) =(0,0) Ju, GOAHD A" Ne¥ | O-form L 1-form | O-form L 1-form
Sec. 3.1 G, HW
2D (p,q) = (0,1) Ju, GIOAH®) A 1-form 5 1-form | 0-form = 0-form
Sec.32 | G'My=1,2),H?
3D (p,q)=(0,1) S GOINH@ Ne? NeK | 1-form L 2-form | O-form L 1-form
App. A | GWA(1=1,2,3), H? (I#J+#K)

Table 2: Summary of this subsection. We think of a theory with p- and g-form symmetries in (d +
1) spacetime dimension whose corresponding gauge fields are Gt and H@HD| respectively, with
the anomaly described by the third column. By gauging p- or g-form symmetry, one obtains dipole
symmetry, described by a dipole algebra consisting of different form of symmetries. In the second line of
the first column, we refer to the section where the corresponding lattice model is discussed. By gauging
one of the global symmetries, we obtain dipole symmetry, described by a dipole algebra, consisting
of p’-form and ¢’-form symmetries, the latter of which is generated by acting a translational operator

(represented by “T" in the fourth and fifth column ) on the former.

17Field theories with two foliation fields were discussed in [70] in a different context. In our case, such two foliation fields
are introduced to discuss the LSM anomaly between two global and translational symmetries in the x- and y-direction.
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4.4 Summary of this section

By investigating dipole algebra and gauge fields associated with them in the field perspective, we elu-
cidate that emergence of Zy dipole algebra can be interpreted as gauging one of the global symmetries
with an anomalous system involving foliation field(s). The emergence of such dipole symmetry corre-
sponds to the our Zy spin model on a discrete lattice. In App. D, we discuss the anomaly inflow terms
involving two foliation fields that comply with our 3D lattice model given in App. A. We summarize the
consideration given in this section in Table. 2

5 Discussion

To address the question “how does modulated symmetry emerge?", in this work, we have presented
explicit lattice models defined in two and three spatial dimension, possessing global symmetries with
the LSM-like anomaly — global symmetries exhibiting nontrivial commutation relations depending on
the system size. We elucidate that depending on the form of the global symmetries, there are various
dipole symmetries: Suppose the model has p-form and g-form global symmetries in d spatial dimen-
sion (0 < p,q < d), with an anomaly in the sense that commutation relation between p-form and g-form
symmetry operators depend on system size L~ (P79 or put simply the two global symmetries and the
lattice translation have the LSM anomaly. Then, gauging p-form symmetry yields a dipole symmetry,
described by dipole algebra consisting of emergent [d — (p + 1)]-form and g-form symmetries. More
explicitly, the dipole algebra is formed in a such a way that acting a translational operator on the g-form
symmetry generates [d — (p + 1)]-form symmetry. We give field theoretical argument to understand the
relation between the emergence of the modulated symmetry and the LSM anomaly. Our work provides
a new perspective of the emergence of modulated symmetries in a concrete quantum lattice system with
anomaly, making better understanding of these exotic symmetries, especially the ones in spatial dimen-
sion more than one. We emphasize that our method to get modulated symmetry holds generally, beyond
the exactly solvable models we provide in this paper.

We close this section by giving a few future directions. In this paper, we discuss the relation be-
tween modulated symmetries and the LSM type anomaly involving translational symmetries. One would
naively wonders whether it can be generalized to a system with another type of the LSM anomaly, asso-
ciated with crystalline symmetries, such as rotation and reflection. We have a speculation that given two
global symmetries, whose gauge fields are a(?) and B(P), we start with an anomaly term which has the

form of
/ a?) ABDAC( w,- ),
Mgz

where C describes a gauge field associated with crystalline symmetry, such as translation and rotation,
whose gauge fields are denoted as ¢/ and ®, respectively, more general modulated symmetries are ubiq-
uitously generated via gauging one of the global symmetries. Studying emergence of the modulated
symmetries in this more broad perspective would deepen our understanding of the concept of symme-
tries. In this paper, we focus on a theory with two global symmetries. One could extend the analysis
to the case of lager number of internal symmetries. In such a case, one would expect higher rank of
multipole symmetries, such as quadrupole symmetry [71, 72]. Further, studying anomaly counter term
involving more general foliation structure [73] would contribute to better understanding of the modulated

symmetries.
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Also, it would be interesting to address how modulated symmetries that we have studied in this paper
would influence on dynamics of a system. Since our model are described by spin systems on a lattice,
one could study more practical aspect of the model, such as what is the behavior of the Hilbert space
fragmentation or thermalization (See e.g., [74].). Exploring phase diagram of a system with modulated
symmetries could be another direction to go by making use of dualities that we have found in this pa-
per [45, 75, 76]. For instance, in Ref. [45], a phase diagram of the dipole Ising chain is given by a
duality mapping between this chain and XZ chain the latter of which has the LSM anomaly . It would
be intriguing to address what kind of phases are there in a system with modulated symmetries which
can be mapped to classification of phases of matter with LSM anomaly involving global symmetries via

gauging. We hopefully come back to these issues in the future.
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A Emergence of modulated symmetry from 3D model with the LSM anomaly

In this appendix, we demonstrate our conjecture through a spin model on a cubic lattice with three 0-
form and one 1-form symmetries with a generalized LSM type anomaly. This LSM anomaly combines
two generalized features in 2D: (i) It is the mixed 't Hooft anomaly between lattice translation and
internal symmetries of different forms. (ii) The anomalous phases in the commutation relations depend
on the area of the system O(L?). Via gauging one of global symmetries, we obtain novel modulated

symmetries characterized by dipole algebra, involving p-form and g-form symmetries with p # q.

A.1 Hamiltonian

To start, we consider Zy spin on each link of a cubic lattice with L, x L, x L, sites and periodic boundary

condition. We introduce the following Hamiltonian:

Hyp=—J. Y (Z,T S A +ezzlx) -5y (Z,T IS A +ezle)
1, 1,

y

. IZ (z;z+elex AN A +ezzlx) — Y PX Iy D vhe, (83

Pab r

with

X . t 4t
Py =X 10, X X

Z._ T t F
11;+eaX'b’ 2 '_ZH%ZF%ZH%ZP%ZH-%ZF%' (89)

Here, p,, with ab = xy, yz, zx denotes coordinate of a plaquette on ab-plane, that is, py, = (£ + %,yA + %,2),
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Figure 7: (a) [The first three configurations]: Spin coupling terms corresponding to the first three terms
in (88). [The last two configurations]: terms given in (89) that constitute 3D toric code. (b) One of 0-
form [1-form symmetry] operators given in (91) [(92)] on the left [right] configuration. (c) Gauss’s laws

defined in (94).
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1 ~ A

py: = (£, 9+ %,24— %), P = (45,9245 1). The first three terms as well as the last two in (88) are
portrayed in Fig. 7a. Note that the last two terms in (88) describe the 3D Zy toric code. In what follows,
we set Jg — oo to ensure the fluxless condition, that is, we focus on a state |Q) satisfying

27|Q) =1Q),vr. (90)

The model (88) have the following three Zy 0-form global symmetries generated by

&~

L, L,
HX H X.‘, HXIZ. 91)
1

t=1 i=1y=12= x=1y=12z=1

=

i =

I
fox
20

%
In addition, the model admits one Zy 1-form symmetry, generated by the following noncontractible

membrane operators

Ly L,

)| NI o CPRRTL 1| RIS

i=1y=1 y=12= =1x=1

I\J

Note that the membrane operators are topological: they only depend on the nontrivial homology of the
lattice due to the fluxless condition (90). These O-form and 1-form global symmetries exhibit nontrivial

commutation relations:

Uél)’yZU)((o)’l _ wLyLzU)((O),lUZ(I),yz
Uél)g,xU)((O),Z _ wLZLxU)((O),ZUZ(I),Zx
UZ(I),ny)((O)J _ (i)L"LyU)((O)73Ué1)7xy, (93)

with anomalous phases depending on the area of the system O(L?).

Based on our conjecture (Sec. 3.3), one could speculate what kind of modulated symmetries are
generated in this system. Gauging three O-form symmetries yields dual 2-form symmetries and the con-
sequent dipole algebra mixes between 1-form and 2-form symmetries. On the other hand, after gauging
the 1-form symmetry, one obtains a dual 1-form symmetry, leading to a dipole algebra involving O-form
dipole symmetry and 1-form ordinary symmetry. In the following subsections, we show that this specu-
lation is correct by explicitly performing gauging in this lattice model. Further, a detailed field theoretical
analysis on our model is given in App. D.

A.2 Gauging O0-form symmetry

Let us first focus on gauging three O-form symmetries (91). To this end, we introduce three Zy spins on
each node whose X Pauli operators are denoted by X, 6X, 71X with Pauli Z operators being analogously
defined. Further, we introduce three types of Zy spins on plaquettes. Their Pauli X operators are repre-
sented by ﬂf,fl , (ab=xy,zx) , \71{ , (ed =xy,yz), [)I)fe ; (ef = zx,yz). Pauli Z operators are similarly defined.

The Gauss’s laws are

~X ~XT

1 J:,eXILL 2 ,Ul X Xl T] eX.u e) .u“l__, = 1, Vl,

Xt Xt <Xt ~XT ~X _

Gl erHex 1+2X Gu e Vl,gx"l_% = 1, W,

771 +9 pl +Ex Pl + Xl nl & plz—%plf% = 17 vlZ (94)
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See also Fig. 7c. Accordingly, quadratic terms of spins in (88) are modified as

t 7z f Zi . i?
Zl te, Z] — Zl te, le, Zl +e, Z] — Zl +e, upxyZIX, Zl Te, Z] ezupazlx
Zl +ey Zl - Z: +ey ZZ' Zl +e, Zl - Zl +ey V Zl Zl +e, Zl - Zl +e; V Zl
T
Z,T o b= Z,T oW, zl el Z1 A/ A o2 Zl e, pe. 2., (95)

in order for them to commute with Gauss’s laws (94). To proceed, we rewrite the operators as

ZlT-i-e Zle’ “gab = ZIT-&-ebﬁgabZ TIX = %l)'(’ 'ul)l(ah = ‘al)’ith [(a7b) - (y’x)’ (Z’x)]
ZlT+e ZZl V = ZlT+ed Pc le GI)'( = 61)'(7 VI))(L-d = ~l))(cd (C’d) - (x7y)’ (Z’y)]

[
nr = ZlTJre rlr Zl ) ppf _Z]TJre/ppefZlea nf = ﬁfxv ppe/ = ﬁl))if [(eaf) = (X,Z), (y,z)]. (96)

We add the following gauge flux operators

RIRAEUSEL AR e ONE MLy T g My I L i MM R (O7)

)’

to the Hamiltonian (88) to ensure that gauged theory does not admit excess magenetic flux. Further,

referring to (95) and (96), the fluxless condition (90) becomes
(90) <+ t6Zn? =1 Vr. (98)

Substituting Gauss’s laws (94) and (96) into 2% “» 1n (88), and changing the lattice grid so that we ex-
change p-cell and (3 — p)-cell (0 < p < 3) to make the model visually friendly, we finally arrive at the

following gauged Hamiltonian:

I | Y G, +Y G +Y G | - [ZuerZuerer] —J, [pr+2pf+2cs§r§]
I, 1, 1, 1, 1, ¢ 1, 1, c
S t
_JB|Z H {<“§a+5e§) <T§1¥+t%) }

P st=+1

Hyp =

_— [va+2vf+265
1, 1. c

- X T () (B 0 TT{ (00 () )

- L T { () () ok T { () (20) )

- JBGZr‘,SIL{(uise;)S(urZHe;) } Jng.”Hﬂ{(P‘H;)S(Tiw;"iw;)t}

- X 1T {(50) (Fanotin) "}

. JBQESHI{(,)YZH?)‘(&ZH?)t}+h.c., (99)
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Figure 8: (a) Three terms in (100). The top view of Gy, from the z-axis is also shown. (b) Nine flux
operators introduced in (99). (c) An example of the dipole algebra in the case of N = 2, even L, and
odd L,. When acting a translational operator on a noncontractible membrane operator, a loop operator is

generated.
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where

. 2.,X XT\2 A X
G,: = v, I—e (Vl )W, ! ><pl te, (P, " P1,—e,
Pq x —ab
x H ( LtsS+15 > X H ( Ltp$+a% ) x H (Glx+a%+b%)
a,b==+1
. Xt\2,,X
G, = .ul\—&-e (Hl T) Hy, ie Ply+ex(ply) Pl),_ex
—st pq ¥ ab
X H ( )+S ) X H (pl +p2+q ) X H (le—ka%"-i-b%)
= a,b=+1
. 2,.X 2.,X
G1: - = 'ulz+ey(”l ) 1y, jeV X vl +e (Vl ) vl je

ab
X+
thI:L (Nlﬁs%ﬂ?) X H (1+p2+q ) X H <l+ae‘+b— l+ae*+b )(LOO)

The terms given in (100) and nine flux operators defined in (99) are portrayed in Fig. 8a and 8b, respec-
tively. Recall that we take the limit of Jp, — oo (1 <i < 9) so that the gauged theory does not admit
fluxes.

We investigate what is the symmetry that the gauged Hamiltonian (99) respects. We have the follow-
ing 1-form modulated symmetries described by noncontractible membrane operators:

(Dyz,1 . T Z . (yz,2 .__ ot z z *
Q N ﬁ_lg(“(lﬂﬂ)) » 0 - Eg(“(ler;,z))
1)zx,1 e, s 1)zx,2 e, ™
ozt . [Hlnl(v(““f))] o HHl(v(mM)) ] : (101)
=lx= =lx=

Here, we have defined o; = m (i =x,y,z). Depending on N, and the system size, the first and second
charges in (101) are not independent: If ged(N, L,) and ged(N, L,) are more than one, further, there exist
integers {c; : 1 <¢; < ged(N,L;) — 1, i =x,y} such that c,0t, 4+ ¢y, = 0 mod N, then by the fluxless
condition, it follows that the two charges are subject to [Q(l)xyvl] “x [Q(l)xyvz} © = I. Likewise, regarding
the third and fourth charges, if gcd(N,L,) and gcd(N,L;) are more than one, and there exist integers
{ci:1<¢; <ged(N,L;)—1, i =y,z} such that ¢,0 +c;0; =0 mod N, then by the fluxless condition,
we have [Q(l)yzﬂ % [Q(l)mz] “ = . Wee have the similar relation for the last two charges in (101): If
gcd(N,L;) and ged(N, L,) are more than one, and there exist integers {c; : 1 <¢; < gcd(N,L;) —1, i =
z,x} so that c;a; + ¢, =0 mod N, then we have [Q(l)zx’l]cz X [Q(sz,z]cx =1.

The model (99) also admits 2-form symmetries corresponding to the following noncontractible loops:

L,

,<
£
&~

1 Geppyy O :)e:lV(Zm,%)’ Q1 =11eGy
b L, L,
=Iot gy @9=TTel s 0 =TIkl
L . L ~
o :zr-lf<aaz+%>°éez+%>’ A VTR I R
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The 1-form and 2-form symmetries are related via translational operators. To wit,

any X _ o s oLy
1,002, = (o2 (Q(z)y,ﬂ) . T.Ww2p = g2 <Q<2)m)> 7

oLy

. azL)r
TZQ(l)zx,lT;I — o(haxl (Q(z)z,3.> ’ TyQ(l)zx,lTyfl _ ghxl (Q(2)1,1>

ZLV

7,271 = (=2 (Q(Z)Z,ZT> %5

oLy

73CQ(l)xy,lTx—l _ Q(l)xy,l (Q(Z)x,3T> >’ EQ(I)xy,lTZ—l _ Q(l)xy,l <Q(2)x,1T) :
oL,

aXLZ )
T,0V=21 -1 = g2 (Q(Z)X-,ZT) ’ TyQ(l)zx,zTy—l — =2 (Q(Z)x,w) ’

oLy

TXQ(l)yzg];l — Q=2 (Q(z)z,l) 7

oLy

2\ WLe L
TyQ(l)yz,lTy_l — gzl <Q(2)y,3|> L oWl — gl (Q(z)y.,u)% _ (103)

Acting a translational operator on a 1-form symmetry yields stack of 2-form symmetries, manifested
as the power L; on the right hand side of relations in (103). We demonstrate one of the relations in
Fig. 8c with N =2, even L, and odd L,. We obtain a new dipole algebra consisting of 1-form and 2-form

symmetries.

A.3 Gauging 1-form symmetry

In this subsection, we turn to gauging 1-form symmetry (92) in the model (88). To this end, we introduce

extended Hilbert space on each plaquette whose Zy Pauli operator is denoted as ,ﬂli {, % Gauss’s laws are

given by

a T () () =1, (104)

st==+1
where (a,b,c) are cyclic permutation of (x,y,z) (See also Fig. 9a). We modify the term &, defined

in (89) so that it commutes with Gauss’s laws:

Pow = Pyl (105)

ab

To proceed, we rewrite the operators as

T L T T (106)

Further, we add the following flux operator

—8f2 H HH (“5+sex)s (’Jéﬁtey) (“éruez)u +h.c. (107)

¢ s=Flrtlutl

to the Hamiltonian (88) so that theory does not have magnetic flux. Overall, the gauged Hamiltonian

reads
Ap= — ¥ L |Y (6l G+ 6l 6+ 6l G
a=x,y,z 1, ’
o t
— &) [TTTIT (&) (uﬁze,) (1 e) +hc, (108)
¢ s=t1ttlutl
where
Gli= [T (Mfise,) ()" (109)
sit==x1
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Figure 9: (a) Gauss’s laws corresponding to (104). (b) The action of translational operator in the x-
direction on 0-form symmetry Q(®%2 (left) gives rise to 1-form symmetry, Q)% (right) in the case of
N =2, even L, and odd L,.

While the terms in the second line of (108) describe flux operators that were introduced in the 3D toric
code, the ones in the first line correspond to the product of the adjacent “star operators", Gﬁ. In the
following, we take g — oo so that the model does not admit any flux.

The model (108) respects the following O-form modulated symmetries generated by

| Ol ) B Oy
(0)xy,1 . __ e LZ( X ))? 0)xy,2 .__ L LL( X )f )
oot (it | o [fififi
x=ly=1z= X=1ly=12z=
L. Ly L ay L. Ly L o;
001 — [ 110 w] Lo [ (T >Z]
=1j=12= r=1y=12=
LX L} LZ R & LX L."' LZ n %
ot = [HT | 0= [Tl 110
t=19=12=1 i=19=15=1

Depending on N and system size, there are several constraints on these charges: If gcd(N, Ly),gcd(N, Ly) >
1, and there exist integers {c; : 1 <¢; < gcd(N,L;) — 1, i =x,y} such that ¢,0, — 00, =0 mod N, then
we have [Q(O)yz’l]cy = [Q0=2] “. Also, if gcd(N, Ly),gcd(N,L;) > 1, and there exist integers {c; : 1 <
¢; <ged(N,L;)— 1, i=y,z} such that ey, +c,0, =0 mod N, then we have [Q(O72]% x [QO= 1] =],
The similar constraint [Q(O)xy’l]cx X [Q(O)yzﬂl]c‘"‘ = [ can be obtained if ged(N,L;),gcd(N,L,) > 1, and
there exist integers {c¢; : 1 <¢; < ged(N,L;) — 1, i = z,x} so that c,a; + ¢,y =0 mod N.

The model also respects the following 1-form symmetries generated by the noncontractible mem-

branes:
Ly L,V L)‘ Lz Z X

L L
Day . X Dyz . X Dex . X
Q™ = [11 I“(ﬁ+%,ﬁ+%71)’ QP = lIII“(L)H’%-ﬁJF%)’ o= ‘_IIII“(H%,LH%)‘ (111)

3=19=1 $=13=1 3=13=1
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Furthermore, the O-form and 1-form symmetry operators are related via translational operators

oL

1 — Xy ot %L X — X Xyt
1,00 i1 = 0wl (Q(w H) . T, = g0)w2 (me)

oLy

vLx
T, Q(O)yz,lTyfl — Q0= (Qu)m) % | T.QO27 ! = 02 (Qu)yzf)

oL,

ZL’ y
LQO=IT 1 — gO)zx! (Q(l)sz>a " QOmRpl — )2 (Q(l)zxf> (112)

We demonstrate the last relation in (112) with N = 2, even L, and odd L, in Fig. 9b. We obtain a new

and unusual dipole algebra consisting of O-form and 1-form symmetries.

B Gauge field for 0-form U(1) global symmetry

In this section, we review how to gauge standard global U(1) symmetry in view of a field theory, which
may help one to understand gauging dipole symmetry discussed in Sec. 4.1. To start, we consider a theory
with global U(1) zero-form symmetry (i.e., symmetry operation acts on an entire space) and its charge Q

defined in (d + 1) spatial dimension. The conserved charge is expressed as

ov)= [ + (113)
Va
where j and V denotes the conserved 1-form current and d dimensional spatial volume, and * does the
Hodge dual. This charge commutes with the translation operation, P (I =1,--- ,d), i.e.,
[iP;, Q] = 0. (114)

We introduce a one-form U(1) gauge field a which couples with the current j with the coupling term

being described by

SC:/a/\*j. (115)
\%4

With the gauge transformation (: gauge parameter) @ — a -+ d) and the condition that the coupling
term (115) is gauge invariant, we have the conservation law of the current d x j = 0.

In the main text, we apply this logic to the case of dipole symmetry, meaning, we define charges
associated with dipole symmetry and express them in terms of the currents. Introducing gauge fields and
coupling terms, we demand gauge transformation for the gauge fields so that gauge invariance of the

coupling term leads to the conservation of the current.

C Higher group from gauging with a mixed ’t Hooft anomaly

In this section, we review how the higher group is generalized. Given finite groups, N, K, and G, we start

with the following exact sequence
1 N—-G—-K—1, (116)

whose central extension is characterized by € € H>(K,N) with H?(K,N) being p-th cohomology group
of K with coefficients in N. We introduce a theory in (d + 1)-spacetime dimension where there are (d —
1)-form N and 0-form K symmetries with corresponding gauge fields being a@ and BV, Here, o) ¢
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c4(M,N),BY) € C'(M,K) [CP(M,N) represents p-th cochain of manifold M with coefficients in N
and similarly for C?(M,K)]. We further assume that that the two global symmetries, N and K have the
following ’t Hooft anomaly:

S= aDue(p)). (117)

Myi2

It is known that after gauging p-form symmetry in (d + 1)-spacetime dimensions, there is a dual (d —
p — 1)-form symmetry [4]. By gauging the (d — 1)-form symmetry, the gauged partition function reads

z[aW, B~ Y Z[al®, pM]exp {1/ a(d)u(e(ﬁ“))} X exp {z/ a(d)u&“)] (118)
ald My My

+2 +1

Here, a&!!) € C! (M, K) denotes the background gauge field corresponding to the dual O-form symmetry.

To make the theory (118) gauge invariant, we demand that
da = (M), ap) =o. (119)

While we have usual flatness condition of the gauge field (1), there is an unconventional flatness condi-
tion of the gauge field all), implying the nontrivial central extension.

To recap the argument, if we start with a theory with two global symmetries, (d — 1)-form N and
0-form K symmetries with 't Hooft anomaly determined by £ (117), and gauge one of the symmetries,
(d — 1)-form N symmetry, we obtain a condition (119), where one of the flatness condition of a gauge
field is modified. In the main text, we introduce gauge fields of dipole symmetries (Sec. 4.1). There is a
resemblance between the condition (119) and flatness condition of the gauge fields of dipole symmetries,
implying that the emergence of the dipole symmetries can be accounted by the ’t Hooft anomaly counter

term in the similar form as (117).

D Field theoretical analysis for 3D example

In this section, we provide field theoretical analysis on 3D lattice model studied in App. A. For one 1-
form and three 0-form symmetries with conserved currents j(2) and *K’(1) (I = 1,2,3), their charges
are defined as

Q[X3,%, €] :/

(41®), ne Q)= [ K0 (1=1.23). (120)
23 Z‘«2 23

Similar to the case of 2D, the first charge is defined in such a way that the current % j(2) defined on X, is
stacked along the x-direction. We retain such dependence in the following argument, meaning, we write
the two types of charges in (120) as Q[%,,¢"] and Q. We assume that

(P, Q'] =0(=1,23), [iP,Q]=8,0[% ¢ (I,J=2.3),[iP,Q[%,e"]]=0(I=1,2,3). (121)

To proceed, we can rewrite the current «+K'(1) as

K=y (5jD) e (122)
2

K2 — *k2<1>_z<*j(2)>z At (123)
2

K3 = *k3(1)—y(*j(2)>2 Ne* (124)
2
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to reproduce the relations (121). Here, #k/(!) (I = 1,2,3) denotes nonconserved current. Introducing

gauge fields a® and A’ we define coupling term as

3
5= (a(z)/\*j(z)+ZAI(Z)/\*k](l)>. (125)
Vy I=1

The following gauge transformation

a? o a4 aa M L AT A e+ A2V A o A3O) g2 A ¥
A AT L gATO) (1=1,2,3), (126)

jointly with the gauge invariance of (125) leads to the conservation law of the currents, that is, d  j2) =
d*K'") = 0. We introduce gauge invariant fluxes as

ff) = da® —A" WA ne —A2 D A Nt — AP D A6t A e
FZ(Z) _ dAI(l)7

from which the flatness condition of the gauge fields is given by
da® =A'W A ne + A2 A Nt + A3 A A, dA) =0 (1=1,2,3). (127)
Instead of (120), had we defined charges as (the foliation field ¢* is replaced with &)

0[X3,%, €] :/

(*j(2)> Ne', Q1[23] :/ «K! (I=1,2,3), (128)
T3 )Y} 3

with relation
[iP,Q'1=0(I=1,2,3), [iP,Q]=8,0[%s,¢] (I,J =1,3), [iP,Q[Z2,€]] =0 (I=1,2,3),129)

and introduced gauge fields associated with the symmetries, we would arrive at the same flatness condi-
tion of the gauge fields as (127). Likewise, if we define [we replace e* with e compared with (120)]

0322, = [ (+¥), ne Qms]= [ kI (1=1,23) (130)
3 2 X3
with
[iPZ7Q1]:0(1:172)3)) [iPhQJ]:SI,JQ[227eZ} (17']:172)7 [IPI7Q[2276Z”:0(1217273)7(131)

and introduce gauge fields, we would end up with the same condition as (127).

We also discuss another type of dipole algebra in 3D, involving one 1-form and three 2-form sym-
metries. We consider a theory with such symmetries whose conserved currents are represented by K 2)
and j'®) (I =1,2,3). We introduce

01[%2,%1,¢"] = / (*Jv(a)) A (1=1,2,3), QL] = / *R? (132)
X3 L )

with the following relation

[iP,0y[L1,€"]] =0 (I, =1,2,3), [iP,0]=0, [iP,0]=0i[L1,€e"] (I=2,3). (133)
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One can rewrite the current *K(?) as

*Ig(Z):*];(z)_y<*j1(3)>Z /\ez_y<*j2(3)> /\ex—z*<*j3(3)> At (134)
1

21 Z:1

which reproduces the relation (133). Introducing gauge fields as b'(®) and B, we define a coupling term

as

3
Va \I=1

The following gauge transformation

S O LAl @ LA A e
23 o 523 1 g22@ L AD A A
B O L gad® L AW A ALY,
BY 5 B 1 gAl), (136)

together with the gauge invariance of the coupling term (135) yields the conservation law of the currents,
viz, d * J'® = d « K = 0. Analogous to the previous arguments, one could introduce gauge invariant

fluxes, from which the flatness condition of the gauge fields are given by

db'® = B@ A AL,
ar*® = BO A A€,
dr’® = B@ At Al
dB® = 0. (137)

We could introduce other charges than the ones in (132) by replacing the foliation field ¢* with ¢”

or ¢°. For instance, instead of (132), if we introduce

01[%2,%1,¢"] :/

(+79), ne'1=123), 0Olm:)= [ +K® (138)
X3 )} Y3

with relation
[l[)hQJ[ZheyH:0(17*]:1’2)3)) [le7Q~]:07 [l[)IaQ]:QI[Elvey] (12173)7 (139)

the similar line of thoughts leads to that we have the same flatness condition of the gauge fields (137)

when gauging dipole symmetry. Likewise, had we defined

012221, ¢ :/

(79), A& 1=1,23), Oiza] = [ & (140)
X3 Z )

with relation
[l})IuQJ[Zlan]]20(17*12172)3)) [leQ’“}:Ou [lf)hQ]:Ql[ElveZ] (12172)7 (141)

then we would arrive at the same condition as (137) when gauging dipole symmetry.
Now we are in a good place to study the relation between dipole symmetries that we have discussed in

this subsection and the anomaly inflow counter term. We consider a theory in (3 4 1)d with three O-form
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and one 1-form Zy symmetries whose corresponding gauge fields are represented by G(") (I=1,2,3),

H®), respectively. We assume these symmetries have mixed 't Hooft anomaly, described by

S:ﬂ/ Y GUAHD NS N (142)
27 Ims \ 1y K123

TAT£K

Here, the indices 1,J,K are cyclic permutation of 1,2,3. The term (142) indicates the mixed anomaly

between O-form and 1-form global symmetries, and translational symmetries in the J- and K-direction.
Gauging 0-form symmetries, gives rise to dual 2-form symmetries with corresponding gauge fields

being G!©) (I =1,2,3). By following the similar argument presented in the previous subsections, we

have the following flatness condition of the gauge fields:

dG'®) = H@aene,
dG*®) = H@ pe' Al
dG*®) = HP pene,
dH® = o. (143)

which coincides with (137). The situation corresponds to the lattice model that we have investigated in
App. A. Namely, in a spin system with O-form and 1-form global symmetries with the LSM anomaly
involving these symmetries and translational ones in the two orthogonal directions, gauging 0-form sym-
metries gives modulated symmetries whose dipole algebra is given in (103). The relations in the first and
second line of (103) corresponds to the dipole algebra introduced in (139). Also, the relations in the third
and fourth [fifth and sixth] line of (103) corresponds to the dipole algebra shown in (133) [(141)].

If we gauge 1-form symmetry in a theory with (142), then we have a dual 1-form symmetry with
corresponding gauge field being H(?). The flatness condition of the gauge fields reads

dA? =G W AN + DN N+ G D nefnet, dG') =0 (1=1,2,3). (144)

This is nothing but (127). The consideration is also in line with our lattice model studied in App. A. To
wit, we have Zy analog of the dipole algebra, the one in (133), (139), and (141) which is given in the
first, second, and third line of (103).
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