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Abstract

Recently, researchers have proposed the Asymmetric Bethe ansatz method-a theoret-
ical tool that extends the scope of Bethe ansatz-solvable models by “breaking" partial
mirror symmetry via the introduction of a fully reflecting boundary. Within this frame-
work, the integrability conditions which were originally put forward by Gaudin have
been further generalized. In this work, building on Gaudin’s generalized kaleidoscope
model, we present a detailed investigation of the relationship between DN symmetry and
its integrability. We demonstrate that the mathematical essence of integrability in this
class of models is characterized by a newly proposed Kaleidoscope Yang-Baxter Equation.
Furthermore, we show that the solvability of a model via the coordinate Bethe ansatz de-
pends not only on the consistency relations satisfied by scattering matrices, but also on
the model’s boundary conditions and the symmetry of the subspace where solutions are
sought. Through finite element method (based numerical studies), we further confirm
that Bethe ansatz integrability arises in a specific symmetry sector. Finally, by analyzing
the algebraic structure of the Kaleidoscope Yang–Baxter Equation, we derive a series of
novel quantum algebraic identities within the framework of quantum torus algebra.
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1 Introduction25

The coordinate Bethe ansatz (CBA) was first introduced by Hans Bethe in 1931 in his study of26

the one-dimensional Heisenberg spin chain model [1]. This groundbreaking work established27

the theory of quantum integrable systems. Bethe postulated that the wave function of a one-28

dimensional many-body system-within each region of fixed particle ordering can be expressed29

as a linear combination of finitely many plane waves. Coefficients across distinct regions are30

linked by constraints from particle interactions and boundary conditions. These constraints31

reduce to a set of transcendental algebraic equations for quasi-momenta, termed the Bethe32

equations. In subsequent developments, the CBA has been extended to a range of prominent33

one-dimensional systems: the Lieb-Liniger model [2,3] describing 1D bosonic gases with delta-34

function interactions, the Yang-Gaudin model [4] (spinful Fermi gases), the XXZ [5] and XYZ35

[6, 7] spin chains, and the Hubbard model [8]. This expansion has greatly broadened the36

scope of the CBA into one-dimensional integrable systems.37

The CBA’s core significance lies in its provision of a complete, exact solution framework for38

1D quantum many-body systems, enabling the rigorous calculation and analysis of key physical39

properties, including energy spectra, ground/excited states, and correlation functions of such40

systems [9, 10]. This approach has not only underpinned the development of 1D quantum41

many-body theory but also driven progress in cutting-edge fields: condensed matter physics42

[11–13], quantum statistics [14], and cold atom physics [15, 16]. Its theoretical predictions43

have also shown excellent agreement with experimental results [17–20]. Furthermore, the44

CBA is tightly coupled to the mathematical structures inherent to integrable models including45

group theory, symmetries, and quantum groups [21, 22], establishing it as an indispensable46

theoretical tool for investigating integrable systems and quantum many-body problems.47

For the Lieb-Liniger model [2, 3], M. Gaudin developed a concrete, systematic solution48

framework (see Chapter 5 of [23]). Within this framework, Gaudin solved mirror systems via49

the Bethe ansatz. These mirror systems exhibit a generalized kaleidoscope structure—composed50

of δ-function mirrors and invariant under reflection across each mirror. In the absence of cou-51

pling constants, such mirror systems are classified by finite reflection groups [24]. A necessary52
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(but not sufficient) condition for reflection invariance of a mirror set is that dihedral angles53

between mirrors take the form π/n, where n is a positive integer. Building on Gaudin’s frame-54

work, it was pointed out in [25] that coupling constants of any two mirrors intersecting at π/n55

must be equal.56

In this context, a notable example is the solution to the Liu-Qi-Zhang-Chen (LQZC) model57

[26]—a system once thought to violate the necessary integrability conditions [25]. Building58

on Gaudin’s framework, M. Olshanii and collaborators recently introduced the Asymmetric59

Bethe ansatz (ABA) method [25, 27]. This approach lifts prior symmetry-related restrictions60

on sufficient integrability conditions, extending the Bethe ansatz to a wider class of models61

with δ-function interaction potentials.62

In this work, we present a detailed analysis of Gaudin’s generalized kaleidoscope frame-63

work in a two-dimensional system. We demonstrate that the solvability of the model via the64

coordinate Bethe ansatz (CBA) is equivalent to the existence (over the solution domain) of65

a Bethe ansatz, defining vector bundle section. A necessary condition for this existence of66

section can be cast in terms of the Kaleidoscope Yang-Baxter Equation (KYBE). We also es-67

tablish a systematic approach to deriving Bethe ansatz equations via concrete examples and68

show that a system’s CBA solvability depends not only on the consistency relations satisfied by69

scattering matrices, but also on the model’s boundary conditions and the symmetry of the sub-70

space where solutions are sought. Unlike Gaudin’s original treatment, which adopted a trivial71

symmetry group representation for simplicity, our work generalizes Gaudin’s framework and72

uncovers the intricate relationship between integrability and the symmetry group. Further-73

more, we note that the KYBE exhibits a nontrivial mathematical structure and is deeply linked74

to quantum torus algebra.75

2 Coordinate Bethe ansatz in two-dimensional plane76

The coordinate Bethe ansatz is an analytical method in which the many-body wave function77

is expressed, within each distinct region of solution domain, as a linear combination of plane78

waves, with the coefficients determined by scattering and boundary conditions [23]. We focus79

on the two-dimensional case and consider particle scattering in a potential that is invariant80

under the DN group [26]. In this case, the wave function can be generally expressed as81

Ψ( x⃗) =
∑

g∈DN

Agei( x⃗ ,gk⃗), x⃗ ∈ DF . (1)

The DF denotes the fundamental region, which is a convex subset within the solution domain.82

In the above equation, ( x⃗ , gk⃗) denotes the inner product. Under reflection group action, this83

region generates a family of convex subsets whose union constitutes the full solution domain,84

and the intersection of any two such subsets has measure zero (see [23], Chapter 5, formula85

5.28). In simple cases, the Bethe ansatz wave function is a pure superposition of plane waves86

within DF , while the wave function in the remaining solution domains follows from symmetry87

group operations on DF . k⃗ is the Bethe root, Ag is the amplitude, and DN denotes the dihedral88

group with 2N elements, in which the group elements satisfy:89

rmrn = rm+n, rmsn = sm+n, smrn = sm−n, smsn = rm−n (2)

for m, n= 0, 1, · · · , N − 1. The addition and subtraction in (2) are both performed modulo N .90

Fig.1 provides a schematic of group D6. The initial momentum k after being acted upon by91

elements of the group g is uniformly distributed along the circumference of a circle. As a group92

element, rm represents a rotation about the origin by an angle of 2πm/N , while sn represents93

a reflection with respect to the axis at an angle of π/N . In the subsequent discussion, we use sk94
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to denote a barrier, i.e. a reflection with respect to this barrier, corresponding to the symmetry95

group operation sk.96

kx

ky

r0k⃗

r1k⃗

r2k⃗

r3k⃗

r4k⃗

r5k⃗

s0k⃗

s1k⃗

s2k⃗

s3k⃗

s4k⃗

s5k⃗

θ

Figure 1: A schematic of the D6 group. Here, rm
k⃗ and sn

k⃗ denote the points obtained
by applying rotation rm or reflection sn operations, respectively, to the initial object
(for example, the momentum vector k⃗, which corresponds to the point r0 := id), θ
denotes the initial angle.

The form of the Bethe ansatz wave function in Equation (1) naturally introduces a section97

of a vector bundle over the entire solution domain. If we regard Ag as a vector of dimension98

2N , then at each point in the solution domain we attach a vector. In the fundamental region99

DF , this vector bundle can be defined as100

Ag( x⃗) = Ag · ei( x⃗ ,gk⃗). (3)

and in other regions (coordinate charts), the vector bundle can be determined by scattering,101

which will be discussed below.102

Note that the symmetry of the wave function in Equation (1) can be reformulated as a103

symmetry property of the section of the vector bundle. In this regard, we state the following104

proposition without proof:105

Proposition 1. Suppose Ψ and Ψ′ are two Bethe ansatz wave functions of the form (1), while A106

and A′ correspond to the sections reduced by Ψ and Ψ′, respectively. If Ψ′ is obtained from Ψ by107

a symmetry operation described by η ∈ DN , i.e., Ψ′(η−1 x⃗) = Ψ( x⃗), then at the origin point, we108

have A′g = Aη−1 g .109

The vector bundle induced by the form of the Bethe ansatz wave function possesses the110

following property: if the attached vector at a single point in the solution domain is known,111

then the attached vector at any other point in the domain can be determined starting from that112

point. Below, we present the rules that govern the “evolution” of these vectors from a known113

point A to other points B, which can be categorized into three main types:114

1. Free propagation115

In this case, points A and B are located within the same region and can be connected by116

a straight line segment. Then according to (3), Bg = Ag · ei( x⃗B− x⃗A,gk⃗). If we denote the117

vector with the basis118

A := [Ar0
,Ar1

, · · · , ArN−1
,As0

, As−1
, · · · , As−(N−1)

]T , (4)
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A

propagating

B

crossing δ-potential

A
B

A

hard wall

Bg = βgAg B = SkA Ag +Askg = 0

λ⃗⊥
sk

Figure 2: Schematics of the three types of rules. The left panel represents propaga-
tion within the same region, which can be described by a diagonal matrix (5). The
middle panel depicts scattering at the potential barrier, which can be represented by
a scattering matrix (9). The right panel shows the boundary condition at the hard
wall, which can be expressed as a constraint (15).

where T stands for the transposition. Then the vector at B and A can be linked by a119

diagonal matrix120

β∆⃗x := diag(ei(∆⃗x ,r0 k⃗), ei(∆⃗x ,r1 k⃗), · · · , ei(∆⃗x ,rN−1 k⃗), ei(∆⃗x ,s0 k⃗), ei(∆⃗x ,s−1 k⃗), · · · , ei(∆⃗x ,s−(N−1) k⃗))
(5)

with ∆⃗x := x⃗B − x⃗A. In simple terms, free propagation can be represented by left multi-121

plication with diagonal matrix defined by (5)122

A→ βA. (6)

2. Crossing δ-potential barriers123

This is a typical coordinate Bethe ansatz problem. The wave function satisfies two condi-124

tions [2,3]: (i) continuity; and (ii) the discontinuity in its derivative of the wave function125

along the direction perpendicular to the barrier equals the interaction constant c times126

the value of the wave function on the barrier. Let the reflection across the barrier be127

denoted by sk, and the reflection with respect to the axis perpendicular to the barrier by128

sk⊥. Since N is even, sk⊥ also lies in the DN group. Along the barrier, the wave function129

on side A can be given by130

ΨA =
∑

g∈DN

Agei( x⃗ ,gk⃗) =
∑

g∈DN/{I ,sk}

(Ag + Ask g)e
i( x⃗ ,gk⃗), (7)

here, DN/{I , sk} denotes the quotient group obtained by dividing DN by its subgroup131

{I , sk}. The second equality in (7) holds because ( x⃗ , gk⃗) = ( x⃗ , sk gk⃗) as x⃗ locates at132

the barrier. Similarly, the derivative in the direction perpendicular to the barrier can be133

expressed as134

∇λ⃗⊥ΨA =
∑

g

i(λ⃗⊥, gk⃗)Agei( x⃗ ,gk⃗) =
∑

g∈DN/{I ,sk}

i(λ⃗⊥, gk⃗)
�

Ag − Ask g

�

ei( x⃗ ,gk⃗), (8)

here λ⃗⊥ denotes the unit vector across the barrier between A and B, in other words,135

perpendicular to the barrier. For the wave function on side B of the barrier, we can136

obtain expressions entirely analogous to (7) and (8). Using the conditions ΨB = ΨA and137

∇λ⃗⊥(ΨB −ΨA) = c ·ΨA which hold at the barrier, we then obtain138

Bg =

�

1+
c

2i(λ⃗⊥, gk⃗)

�

Ag +
c

2i(λ⃗⊥, gk⃗)
Ask g . (9)
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It should be noted that in (9), the dependence of the coefficients on the symmetry group139

element sk is reflected in the vector λ⃗⊥. Here, λ⃗⊥ is the unit vector perpendicular to140

the symmetry axis, as illustrated in the middle panel of Figure 2. For symmetry axis sk,141

the form of λ⃗⊥ is given by [cos(πk
N +

π
2 ), sin(

πk
N +

π
2 )], and the coefficients in (9) can be142

computed explicitly.143

We rearrange the result of Equation (9), introducing N×N Toeplitz matrix t and diagonal144

matrix s as follows:145

t :=













0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0













N×N

s :=











(sinθ )−1 0 · · · 0
0 [sin(2π

N + θ )]
−1 · · · 0

...
...

. . .
...

0 0 · · · [sin(2π(N−1)
N + θ )]−1











.

(10)
In the above expressions, we have reparametrized the Bethe roots in (1) in terms of146

k0 > 0 with θ via k⃗ = [k0 cosθ , k0 sinθ]. These parameters help us to write a simple147

form for the operations of the DN group elements rm and the reflection sn to the Bethe148

roots k⃗:149

rmk⃗ = [k0 cos(
2πm

N
+ θ ), k0 sin(

2πm
N
+ θ )],

snk⃗ = [k0 cos(
2πn
N
− θ ), k0 sin(

2πn
N
− θ )],

respectively. Then using (10) we construct 2N × 2N block matrices150

T :=

�

t 0
0 t−1

�

, S0 :=

�

I + c
2ik0

s c
2ik0

s
− c

2ik0
s I − c

2ik0
s

�

. (11)

With the help of the above definitions, we can readily write down the scattering matrix151

for the barrier along the sk axis 1
152

Sk = T−k/2S0T k/2. (12)

Consequently, the "evolution" across the δ-potential barrier can be written by153

A→ SkA. (13)

3. Hard-wall boundary condition154

A hard wall imposes a Dirichlet-type boundary condition, i.e, the value of the wave155

function at the hard wall is zero. According to the expression (7) we obtain Ag+Ask g = 0.156

Defining157

Γ k =

�

0 t−k

t k 0

�

, (14)

then we can express the boundary condition in the matrix form:158

A+ Γ kA= 0. (15)

The three rules (6), (13), and (15) outlined above fully determine the behavior of vector159

bundle sections over the solution domain.160

1Where k is even, the case with odd k can be described by a similar expression, requiring only a redefinition of
the s -matrix.
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C

D

A

B

x⃗1 x⃗2

δ-potential
B′

B

A

A′

A

A′

hard wall

βx⃗1βx⃗2 = βx⃗2βx⃗1
βx⃗k

Sk = Skβx⃗k
βx⃗k

Γk = Γkβx⃗k

Figure 3: Schematics of the consistency conditions. The left panel illustrates the
equivalence of different paths in the free propagation region, which follows directly
from the fact that the matrices β x⃗ are diagonal. The middle panel depicts the equiv-
alence between two different paths starting from point A: one path crosses the po-
tential barrier first and then propagates along the barrier, while the other path first
propagates along the barrier and then crosses the barrier. This equivalence is also
manifested as the commutativity of the matrices β x⃗k

and Sk. The right panel rep-
resents the consistency of the boundary conditions, i.e., a point A that satisfies the
boundary condition will continue to satisfy the boundary condition after propagation
along the hard wall direction. This property can likewise be established through the
commutativity of the matrices β x⃗k

and Γ k.

These rules must satisfy consistency requirements: whenever two points can be connected161

by different paths in the solution domain, the resulting amplitude transport must be path inde-162

pendent. These conditions are a core prerequisite for integrability [4,14] and are straightfor-163

ward to verify (see Figure 3). For paths confined to the same region, the relevant β matrices164

are diagonal and commute, so consistency holds trivially. A nontrivial case occurs when both165

paths cross a δ-potential barrier (see middle panel of Figure 3), where consistency relies on166

commutativity between matrices β x⃗k
and Sk. Here x⃗k = [r0 cos πk

N , r0 sin πk
N ] denotes the dis-167

placement along the direction of the potential barrier. Without losing generality, we only prove168

the k = 0 case, β x⃗k
for different barrier directions obey transformation relations analogous to169

Eq. (12). Commutativity [βr0 e⃗x
,S0] = 0 can be verified with the help of the equations (5),170

(10), and (11). Additionally, boundary condition consistency requires (I + Γ k)A = 0 , which171

implies (I + Γ k)β x⃗k
A= 0. This also follows directly from [β x⃗k

, Γ k] = 0.172

In the preceding discussion, we establish the rules governing sections of the vector bundle.173

This vector bundle is directly linked to the Bethe ansatz—thus, finding coordinate Bethe ansatz174

solutions reduces to identifying self-consistent vector bundle sections that satisfy these rules.175

We will present the merits of this framework: for additional physical terms in the Hamiltonian,176

the vector bundle formalism naturally encodes multi-scattering consistency into the multicom-177

ponent plane-wave ansatz. The non-trivial holonomy of the bundle enforces the Kaleidoscope178

Yang-Baxter Equation (KYBE), which we elaborate on in subsequent sections. This approach179

extends to higher dimensions, though this generalization is not pursued in the present work.180

3 Liu-Qi-Zhang-Chen model revisited181

Liu, Qi, Zhang, and Chen (LQZC) [26] first solved the quantum mechanical problem of two182

particles with a mass ratio of 3 : 1 confined in a one-dimensional hard-wall potential. They183

derived an explicit solution via the coordinate Bethe ansatz. Notably, this solution violates184

Gaudin’s necessary conditions for conventional integrability [23,25]. It can be interpreted as185

a generalization of the Lieb-Liniger model [2,3]. The model schematic is shown in Figure 4(a).186
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Figure 4: (a) Schematic phase diagram of the Liu-Qi-Zhang-Chen model [25]. The
original 1D two-body problem is equivalent to a 2D single-particle problem, i.e. a
quantum particle confined in a box of size 1

2 L ×
p

3
2 L. (b) Consider the section A of

the vector bundle over this region. For computational convenience, we rotated the
model clockwise by 90◦.

Taking the rectangle’s lower-left corner as the origin, we express the Hamiltonian as:187

Ĥ = −
∂ 2

∂ x2
−
∂ 2

∂ y2
+ cδ(

p
3

2
x −

1
2

y), (16)

where c is the coupling constant. The LQZC model was solved by Bethe ansatz of the form (1)188

with N = 6 [26].189

Here, we revisit this model and develop a systematic method for solving such systems. Our190

primary result is a general conclusion on the Bethe ansatz solution: for the DN symmetry group191

with N ≥ 4, the Bethe ansatz equations for the system of Eq.(16) are generically overcon-192

strained, meaning the system cannot be solved via the conventional coordinate Bethe ansatz.193

As a complementary result, we numerically verify that for the special D6 case, an explicit set194

of quantum numbers generates a complete family of Bethe-ansatz states and reproduces the195

full spectrum.196

3.1 The Bethe ansatz equations197

We consider the section A over the solution domain, as being shown in Figure 4 (b). Here198

we have rotated the original model clockwise by 90◦. this is done to align the symmetry axis199

corresponding to the δ-function barrier with s1, which simplifies our calculations. (In fact,200

for any dihedral group DN with N even, for computational convenience, we require that the201

δ-function barrier corresponds to a symmetry axis sk with k being odd. It is straightforward202

to show that this can always be achieved.203

We first note that this model possesses a Z2-type symmetry corresponding to a π-rotation,204

which allows us to decompose the solution space into sectors of even and odd parity. We205

consider the sections on either side of the center of this rotation, as shown in Figure 4(b);206

their relationship can be described by the rules (13) we established earlier. Therefore these207

two sections can be denoted as A′ and SkA. Moreover, due to the π-rotational symmetry and in208

light of Proposition 1 stated previously, we can build the equation SkA′ = ±T N/2A′. Here T is209

8
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the rotation matrix defined in (11), and the plus and minus signs correspond to even and odd210

parity, respectively. Additionally, note that A at the lower right corner simultaneously satisfies211

two boundary conditions described by rule (15), and its relation to A′ is described by rule (6).212

Thus, we obtain the following equations for scattering process:213



















T N/2A′ = ±SkA′,

A′ = β∆⃗x A,

Γ 0A+ A= 0,

Γ N/2A+ A= 0,

(17)

here ∆⃗x denotes the displacement from A to A′. Next, using Equations (17), we derive the214

Bethe ansatz equations for the model with an even number of particles N and odd k.215

For simplicity, we use θg to denote the coefficient in the scattering equation (9), where216

θg =
c

2i(λ⃗k⊥,gk⃗)
. Then by considering the first two equations in the system (17), we obtain the217

following equation:218

(1+ θg)βgAg + θgβsk gAsk g = ±βr N
2

Ar N
2

g . (18)

Substituting g = rm into (18), applying the group operation (2), and taking into account the219

boundary conditions represented by the last two equations in (17), we can obtain220

�

(1+ θrm
)βrm
∓ βr N

2 +m

�

Arm
= θrm

βsk−m
Arm−k

. (19)

Equation (19) provides a recursive form for the components of A, which we express as follows:221

Arm−k
= fmArm

, fm :=
(1+ θrm

)βrm
∓ β−1

rm

θrm
βsk−m

. (20)

The boundary conditions give, Arm+N/2
= Arm

. Moreover, since we have assumed that k is odd222

and N is even, it follows that m− (N/2) · k ≡ m− N/2 (mod N). Then we can derive223

Arm
= Ar

m− N
2

= Ar
m− N

2 k
= fm fm−k · · · fm−( N

2 −1)kArm
. (21)

It follows by the self-consistency condition224

fm fm−k · · · fm−( N
2 −1)k = 1, for m= 0, 1, · · · , (N − 1). (22)

It is also straightforward to see from this self-consistency equation that fm = fm+N/2. Sub-225

stituting (20) into this result and performing some simplifications, we obtain the BA (Bethe226

ansatz) equation227

βrm−2k
± β−1

rm−2k

βrm−2k
∓ β−1

rm−2k

−
βrm
± β−1

rm

βrm
∓ β−1

rm

=
2
θrm

. (23)

In the above simplification, we used the following fact: the direction of ∆⃗x corresponds to the228

symmetry axis s−k, and thus we have βsk−m
= βs−ksk−m

= βrm−2k
. When the BA equations (23)229

hold, we can obtain fm = (βrm
∓β−1

rm
)/(βrm−2k

∓β−1
rm−2k
). Substituting this expression into (22),230

one can observe its validity. This demonstrates the equivalence between the BA equations (23)231

and the self-consistency condition (22).232

The Bethe ansatz equation (23) is derived by using fm = fm+N/2. it appears that there233

are N/2 independent equations under this condition . However, due to the definition of θg ,234

we can verify
∑

n θ
−1
rm−2nk

= 0, where the range of the summation is n = 0,1, . . . , N/2 − 1.235

The sum all the right-hand sides of the equations (23) thus vanishes, the sum on all left-hand236
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sides is trivially zero. Hence, Eq. (23) actually contains N/2− 1 independent equations. Our237

derivation is general, so (23) holds for any even N . The Bethe ansatz (1) involves only two238

complex degrees of freedom. For D2N with N ≥ 4, however, the Bethe ansatz equations 23 are239

generically overconstrained: the number of independent algebraic equations exceeds that of240

unknowns (k0,θ). Even if accidental solutions exist for finely tuned values of the parameter241

c, such solutions form at most a measure-zero subset in the (k0,θ)–plane and do not yield242

the robust, continuously parametrized families linked to integrability. In this sense, for D2N243

(N ≥ 4) the model is non-solvable via the coordinate Bethe ansatz.244

3.2 The quantum number and the solution of Bethe ansatz equations245

Let us further discuss the solution of the LQZC model with N = 6, k = 1. Now λ⃗⊥ = [cos 2π
3 , sin 2π

3 ],246

rmk⃗ = k0[cos(πm
3 + θ ), sin(πm

3 + θ )] and the displacement ∆⃗x = L
2 [cos 5π

6 , sin 5π
6 ]. After a247

lengthy calculation, we obtain the BA (Bethe ansatz) equations (17) in terms of the original248

kx and ky249

¨

kx +
p

3ky =
c
2 cot L

4 (
p

3kx + ky) +
c
2 cot L

2 ky ,

−kx +
p

3ky =
c
2 cot L

4 (−
p

3kx + ky) +
c
2 cot L

2 ky ,
for even case;

¨

−kx −
p

3ky =
c
2 tan L

4 (
p

3kx + ky) +
c
2 tan L

2 ky ,

kx −
p

3ky =
c
2 tan L

4 (−
p

3kx + ky) +
c
2 tan L

2 ky .
for odd case. (24)

This coincides with with the BA equations obtained in [26].250

However, obtaining the BA equations alone is far from sufficient to solve the problem.251

First, solving these equations is generally highly challenging. More critically, a set of quantum252

numbers must be found to exhaustively and uniquely enumerate the original model’s solutions-253

only then can we confidently assert the model is solved via the Bethe ansatz, as exemplified by254

the XXX spin model and Lieb-Liniger model [1–3]. Quantum numbers further enable analysis255

of the thermodynamics and dynamics of quantum integrable models, advancing BA method256

research to a deeper level. From this standpoint, equations (23) and (24) are insufficient to257

solve our model. While these equations admit infinitely many solutions, we lack a systematic258

way to enumerate all model solutions, solve the equations themselves, or even identify the259

model’s ground state.260

In order to identify the quantum numbers and systematically solve for all solutions of this261

model, we perform a transformation on the BA equation (23). We introduce the following262

reparameterization:263

x1 = k0 L cos(θ −
π

6
), x2 = k0 L cos(θ +

π

2
), x3 = k0 L cos(θ +

7π
6
), (25)

define η= 2
cL sin(2π/3) , we obtain the “separated variables” type of BA equations:264

ηx1 ∓ cot±
x1

2
= ηx2 ∓ cot±

x2

2
= ηx3 ∓ cot±

x3

2
,

x1 + x2 + x3 = 0. (26)

To obtain the quantum numbers, we rewrite the BA equations for the even parity as the fol-265

lowing form (similarly for the odd parity case)266

f (x) = ηx − cot
x
2

. (27)

Here we assume c > 0. All integer multiples of 2π are singularities of this function. We thus267

restrict our search to x i ∈ (2πni , 2π(ni + 1)) for i = 1,2, 3 ( where ni are integers). Withni268

10
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Figure 5: Example of numerical solution of the equation (26): for a fixed set
of (n1, n2, n3) = (−2,−1, 1), we only need to search for w = f (x i) such that
x1 + x2 + x3 = 0 holds, thereby obtaining the unique solution of the BA equations
associated with this set of integers.

fixed, let w = f (x i), we only need to perform a bisection search along the y-axis to find w269

under the condition x1 + x2 + x3 = 0. This yields the solution to the equation (27) for the270

integer set (n1, n2, n3). Figure 5 shows the numerical solution for these fixed integers. From271

the obtained x1,2,3, we find the solution of BA as k0 =
r

2(x2
1+x2

2+x2
3)

3L2 and θ = π
6 + arccos x1

k0 L ,272

which recover the solution given in [26].273

In fact, the set of integers introduced above is not the set of quantum numbers which we274

are searching for. The later, must satisfy the constraint −3< n1+n2+n3 < 0 in order to admit275

a solution for the equation (26). By analyzing the solutions, we observe that for given two276

positive integers p and q with p < q in the even-parity case, we have277

n1 =
j p− q

3

k

− p, n2 =
j p− q

3

k

, n3 =
j p− q

3

k

+ q, s.t. p− q ̸≡ 0 (mod 3); (28)

and for the odd-parity case, we have:278

n1 =
�

p− q
3
+

1
2

�

− p, n2 =
�

p− q
3
+

1
2

�

, n3 =
�

p− q
3
+

1
2

�

+ q. (29)

Here the notation ⌊ ⌋ denotes the floor function. The integers p and q are the quantum num-279

bers which we seek. For 1 ≤ p < q, we use (28) or (29) to find n1,2,3 under the constraint280

x i ∈ (2πni , 2π(ni + 1)), yielding the unique solution to the separated-variable BA equation281

(26). This quantum number choice is consistent with that for hard-core bosons, i.e. model re-282

duces to hard-core bosons as c→∞. Moreover, the additional constraint p− q ̸≡ 0 (mod 3)283

on quantum numbers in this even-parity case implies our Bethe ansatz equations may miss284

some solutions. We address this issue in the subsequent numerical study.285

3.3 The numerical solutions286

In this section, we employ the finite element method (FEM) to solve the model. The FEM is287

a numerical technique that partitions a complex continuum into simple finite elements, con-288

structs approximate equations on each element, and assembles them into a global system of289

equations [28–30]. This approach offers an efficient means of solving partial differential equa-290

tions and related problems in engineering and physics. For the present model, an additional291

11
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Figure 6: The numerical solutions of the LQZC model are obtained using the FEM
method. We set the parameters L = 1 and c = 10.0. The three contour plots in the
figure show the ground-state solutions of the three different modes.

aspect requiring special treatment is the δ-function barrier. Appendix A provides a detailed292

introduction to the FEM tailored to the specific problem under consideration.293

In Figure 6, we show our numerical results. The upper left panel shows the numerical294

energy spectrum which agrees very well with the spectrum obtained from the Bethe ansatz295

solution. The horizontal axis i denotes the energy level index. In the remaining three panels,296

the z-coordinate of the contour plots represents the wave function value. We note that, in297

addition to even- (upper right panel) and odd-parity (lower left panel) solutions, we find a class298

of solutions not captured by the Bethe ansatz equations (26), denoted by green points in the299

upper left panel’s energy spectrum—termed the brick mode". Such solutions were previously300

reported in [25]. Notably, the mode is constructed by introducing δ-function barriers into the301

original domain, partitioning it into smaller right triangles (lower left panel). It is formed by302

assembling solutions to these right triangles via reflection symmetry–hence the name brick303

mode".304

At the end of the preceding subsection, we noted that even-parity wave functions impose305

an additional constraint on the quantum numbers p and q, implying some solutions are missing306

from the Bethe ansatz spectrum. We emphasize these missing solutions are precisely the "brick307

mode" states. We would like to point out that these missing solutions are precisely the "brick308

mode" states. These modes can still be characterized by the quantum numbers p and q for309
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p < q310

n1 = −
2p+ q

3
, n2 =

p− q
3

, n3 =
p+ 2q

3
, s.t. p− q ≡ 0 (mod 3);

Ebrick =
8π2

3L2

�

n2
1 + n2

2 + n2
3

�

. (30)

It is clear that the energy of this mode no longer depends on c, since the value of the wave311

function is strictly zero on the barrier.312

For quantum numbers 1 ≤ p < q, equations (28) and (30) yield two solutions: one for313

odd parity, and the other corresponding to either even parity or the brick mode. In summary,314

strong evidence indicates the BA equations (26) lack completeness–supplemented by the brick315

mode. We recover the full energy spectrum of the LQZC model. This completeness is further316

corroborated by our numerical results. Here, the brick mode acts as a singular solution to BA317

Equation (26), i.e., when both sides of the equation diverge to ±∞. Nonetheless, it must318

be recovered via methods beyond direct solution of the BA equation. The completeness of BA319

equations is inherently a subtle issue. They may not capture all possible solutions, and system-320

atically recovering the missing ones via simple methods is often challenging. In subsequent321

sections, we present more specific examples to illustrate this point.322

4 Gaudin’s Kaleidoscope model and the Kaleidoscope Yang-Baxter323

Equation324

In Ref. [25], the authors astutely note that the LQZC model’s integrability is nontrivial, as it325

violates Gaudin’s necessary conditions for integrability. To resolve this, the authors creatively326

extended these conditions to accommodate the LQZC model within a new framework. How-327

ever, this approach raises conceptual difficulties. Firstly, the LQZC model itself possesses no328

reflection symmetry other than the Z2 arising from the π-rotation symmetry discussed above.329

Moreover, as highlighted in the previous section, brick mode solutions rely on introducing ad-330

ditional barriers to partition the model. For general solutions, we cannot conclude whether331

this argument remains valid.332

4.1 Gaudin’s approach revisited333

To fully understand the ideas in [25], we closely revisited Gaudin’s book. We found that334

Gaudin’s original discussion includes specific constraints. Here we quote Gaudin’s statement335

(p. 84) concerning Eq. (5.32) [23].336

A restrictive hypothesis is made, namely that the function ψ(x) is symmetric in337

RN , in other words that its data in D suffices to determine it in the whole of RN338

using the properties (5.28):339

ψ{k}(g x) =ψ{k}(x), x ∈ D. (5.32)

This is, of course, a very strong restriction, as it limits the wave function’s symmetry group to340

a nontrivial representation. Gaudin’s motivation for this choice was to relate the Bethe ansatz341

solution to the root systems of Lie algebras, i.e. a classical problem in Euclidean geometry.342

Gaudin was clearly aware of the specialized nature of this discussion. At the end of Section343

5.2 (p. 89), he noted344
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Figure 7: (a) Gaudin’s kaleidoscope model with D6 symmetry. Within the regular
hexagonal hard-wall potential, three δ-function barriers are placed along the three
diagonals of the hexagon, each with the same strength.

We shall moreover not mention anything of a more interesting problem consisting345

of constructing the wave-functions belonging to an irreducible representation of346

G of dimension higher than 1:347

ψ(g x) = T (g)ψ(x),

in other words having an arbitrary ‘type of symmetry’, except for algebra AN−1348

corresponding to the permutation group πN whose problem is treated completely349

in Chapters 11 and 12.350

Clearly, this approach raises a key problem: the integrability conditions from Gaudin’s351

method only determine if the model is Bethe-ansatz solvable within a specific symmetry sec-352

tor. Gaudin’s integrability is thus best understood as a sufficient condition for Bethe-ansatz353

solvable states in a representation sector, not for the full many-body spectrum. We emphasize354

that a model may be Bethe-ansatz solvable only in specific symmetry subspaces, but not355

generically.356

4.2 Gaudin’s D6 kaleidoscope model: symmetry-resolved analysis357

To elaborate further, we next consider a fundamental example: Gaudin’s kaleidoscope model358

with D6 symmetry. To ensure the eigenvalue problem is well-defined, we impose hard-wall359

boundary conditions on the regular hexagon in Fig. 7(a). This model exhibits perfect D6 sym-360

metry: the Hamiltonian, boundary conditions, and Bethe ansatz method all satisfy its symme-361

try requirements. We incorporate symmetry into the FEM approach by solving the Hamiltonian362

in each symmetry subspace.To this end, we first list the conjugacy classes of D6, whose char-363

acter table is given by364

D6 C1 C2 C3 C4 C5 C6

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 -1 -1
Γ3 1 -1 -1 1 1 -1
Γ4 1 -1 -1 1 -1 1
Γ5 2 -2 1 -1 0 0
Γ6 2 2 -1 -1 0 0

Table 1: Character table of the D6 group

C1 = {r0}
C2 = {r3}
C3 = {r1, r5}
C4 = {r2, r4}
C5 = {s0, s2, s4}
C6 = {s1, s3, s5}

365
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According to group representation theory, the original space of wave functions can be366

projected out using projection operators, which are given by the character table as follows:367

Pα =
dα
|D6|

∑

g∈D6

χ(α)(g)U(g). (31)

Here, α labels the conjugacy classes, corresponding one-to-one with the irreducible represen-368

tations; dα is the dimension of the representation; U(g) is the operator acting on the symmetric369

space, which, in this context, corresponds to the rotation and reflection operations on the wave370

function.371

By utilizing the irreducible representations of this symmetry group, we can decompose the372

wave function according to its symmetry properties. For a specified symmetry Γ , the wave373

function can be rewritten as:374

ΨΓ ( x⃗) =
∑

a

M Γ
a,ηΨa(η

−1 x⃗), if η−1 x⃗ in DF . (32)

Here, DF denotes the fundamental region, which, specifically, is a right triangle with an acute375

angle of π/6. By applying the operations of the D6 group on this right triangle, one can376

generate the entire regular hexagon. a = 1 or a = {1, 2} corresponds to the one- or two-377

dimensional irreducible representations, respectively. By the projection operator (32), we can378

obtain the explicit form of the matrix M Γ
a,η as follows (treat the group elements as column379

indices):380

M Γ1 = [1, 1,1, 1,1, 1,1, 1,1, 1,1, 1],

M Γ2 = [1, 1,1, 1,1, 1,−1,−1,−1,−1,−1,−1],

M Γ3 = [1,−1,1,−1, 1,−1, 1,−1,1,−1, 1,−1],

M Γ4 = [1,−1,1,−1, 1,−1,−1, 1,−1,1,−1,1],

M
Γ
(1)
5

1 = [0,−1,−1,0, 1,1, 0,−1,−1, 0,1, 1]/
p

8,

M
Γ
(1)
5

2 = [2, 1,−1,−2,−1,1, 2,1,−1,−2,−1,1]/
p

24,

M
Γ
(2)
5

1 = [2, 1,−1,−2,−1,1,−2,−1, 1,2, 1,−1]/
p

24,

M
Γ
(2)
5

2 = [0, 1,1, 0,−1,−1, 0,−1,−1, 0,1, 1]/
p

8,

M
Γ
(1)
6

1 = [0,−1,1, 0,−1,1, 0,−1, 1,0,−1, 1]/
p

8,

M
Γ
(1)
6

2 = [2,−1,−1,2,−1,−1,2,−1,−1,2,−1,−1]/
p

24,

M
Γ
(2)
6

1 = [2,−1,−1,2,−1,−1,−2,1, 1,−2, 1,1]/
p

24,

M
Γ
(2)
6

2 = [0, 1,−1, 0,1,−1, 0,−1, 1,0,−1, 1]/
p

8. (33)

Γ1,2,3,4 correspond to the four one-dimensional irreducible representations of the D6 group.381

For its two 2D representations, each has two distinct Γ5,6 choices (i.e., each 2D representation382

has multiplicity two). Accounting for symmetry, our FEM calculations are restricted to the383

fundamental region-only 1/12 of the original domain. Given that the computational cost of384

eigenvalue problems typically scales as O(N3), this symmetry-based decomposition yields a385

103-fold computational speedup. The only caveat is that at the boundaries of the fundamental386

region, the symmetry group reduces from D6 to Z6 requiring careful handling. Since this work387

does not focus on numerical computation, we do not elaborate on these technical details in388

detail.389
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Figure 8: The Kaleidoscope Gaudin model solved by FEM. The top-left figure shows
the energy spectrum, while the remaining figures display the ground-state solutions
in each symmetry subspace. Here we take c = 1.0, and the entire computational
domain is partitioned into 89, 448 small triangles (elements). All wave functions are
normalized so that their maximum value is 1, for the purpose of a good visualization.

We present our FEM results in Fig. 8. The ground state resides in the subspace of the trivial390

representation.I n contrast, the antisymmetric representation exhibits the highest energy of391

the ground state. While not strictly proven, we observe that wave functions with more nodes392

typically correspond to higher energies.393

While numerical solutions offer many advantages, the main focus of this work is on the394

discussion of integrability. In what follows, we present a numerical algorithm to check if this395

model is solvable for a specific symmetry using the coordinate Bethe ansatz. The Bethe ansatz396

reads397

Ψ( x⃗) =
∑

g

Agei( x⃗ ,gk⃗), k⃗ = [k0 cosθ , k0 sinθ]. (34)

as a type of trial variational wave function. Here the variational parameters include Ag , k0398

and θ . Let us denote the numerical wave function Ψ0 that has already been obtained (it has399

been numerically solved and properly normalized). If Ψ0 is representable by the Bethe ansatz400

form, then the maximal normalized overlap should approach 1 upon optimizing the variational401

parameters namely,402

max
〈ΨBA |ΨBA〉=1

|〈Ψ0|ΨBA〉| → 1. (35)

It is clear that k0 =
p

E must be satisfied. Therefore we first chose to fix k0, and then adjust403

the other parameters to examine (35) whether the above relation can be fulfilled.404
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It is not difficult to show that, once θ is fixed, the remaining optimization problem with405

respect to the left hand side of (35) reduces to a quadratic optimization over the parameters406

Ag . The corresponding loss function is defined as follows:407

L[A] = B†A− β(A†MA− 1) (36)

with β being the Lagrange multiplier, and matrices M and column vector B are defined by the408

integrals over the fundamental region as the following:409

Mg ′g =

∫

DF

d x⃗ ei(gk⃗−g ′ k⃗, x⃗), Bg =

∫

DF

d x⃗ Ψ0( x⃗)e
i(gk⃗, x⃗). (37)

Thus, the maximal overlap between the two wave functions and its deviation from 1 can be410

obtained as:411

1− max
〈ΨBA |ΨBA〉=1

|〈Ψ0|ΨBA〉|= 1− B†M−1B. (38)

By running over θ , we calculate the corresponding M and B matrices, and then compute412

the minimal error given by Equation (38), we can examine how this error depends on θ . This413

dependence serves as a criterion for whether the original wave function can be represented by414

the Bethe ansatz (34) regarded as a trial wave function.415

Γp

Γq

Sr
A′

A

Figure 10: Depict the
symmetry with respect
to the Eq. (39).

In Figure 9, we show the dependence of the minimal distance416

on θ . The sub-figures correspond to the four representative ground417

states, Γ1, Γ2, Γ4, and Γ (1)5 , as indicated in Figure 8. We observe that418

in panels (b) and (c) in Fig. 9, the minimal distance is sensitive to419

θ and approaches zero at specific values of θ . In contrast, for panels420

(a) and (d), the minimal distance shows no significant dependence421

on θ , and there is no indication that it approaches zero as the num-422

ber of elements increases. In fact, according to our numerical results,423

among all eight symmetry sectors, only Γ2 and Γ4, corresponding to424

Figure 9(b) and 9(c), are integrable via the Bethe ansatz. The re-425

maining six sectors, including Γ1 who contains the ground state of426

the system, cannot be solved by the Bethe ansatz.427

The calculations above confirm the opening statement: the inte-428

grability of the coordinate Bethe ansatz depends on the decomposi-429

tion into irreducible representations of the symmetry group. Even430

if we find solutions using the coordinate Bethe ansatz, it does not431

guarantee that we can obtain all solutions, or even key solutions like the ground state. In the432

example above, the solutions obtained via the coordinate Bethe ansatz are only a small subset433

of all possible solutions.434

We can analytically prove the observations from our numerical calculations. In the present435

model, the barrier forms an angle of π/3 with the hard wall. According to Ref. [25], its436

integrability is guaranteed by the asymmetric Bethe ansatz. We further conclude that Bethe437

ansatz solutions exist only in the two symmetry sectors Γ2 and Γ4. Following the local structure438

of the model as depicted and the rules established in Section 2, we readily obtain the following439

equations:440











A′ = Sr A,

(I + Γ p)A= 0,

(I + Γ q)A′ = 0.

(39)

Let A = [X ; Y] (X corresponds to the rotational group elements, while Y corresponds to the441

reflection group elements), and by simplifying the above equations, without loss of generality442

setting r = 0, we obtain the following linear equation:443
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(a)

(c)

(b)

(d)

Figure 9: For numerically obtained ground-state wave functions in different symme-
try sectors, we use the Bethe ansatz as a trial wave function and plot the results of
Equation (38) as a function of θ . The different colored lines represent the results for
different numbers of elements which we used in the FEM algorithm, see the legend.

�

I − t p−q +
c

2ik0
(I − t−q)s(1− t p)

�

X = 0, (40)

with t and s defined in (10). Here we consider p = −2 and q = 2. Substituting these values444

into Equation (40) with lengthy calculation, we find the nontrivial solutions of this equation445

indicating the following condition446

X = t 2X , (41)

This shows that the solutions of Equation (39) are antisymmetric with respect to the symmetry447

axis sr . In other words, for the local structure of the model depicted in the figure Fig. 10, any448

solution obtained via the Bethe ansatz must vanish exactly on the δ barrier. These solutions449

correspond precisely to the two symmetry sectors Γ2 and Γ4.450
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4.3 The Kaleidoscope Yang-Baxter Equation451

In Section 2, we established the rules for constructing sections, and in Section 3, we applied452

these rules to solve the LQZC model. However, for Gaudin’s Kaleidoscope model considered in453

this section, an additional self-consistency condition is required. As being illustrated in Figure454

7(b), for a section A near the origin, after undergoing a sequence of scatterings, it must return455

to itself. This can be expressed by S0S10S8S6S4S2A = A. We provide a sufficient condition for456

the validity of the above equation for the case of even N :457

[TS0(θ , z)]N = I (42)

with matrices T and S0 defined in (11), we denote z = c
2ik0

and treat S0 as a function of θ and z.458

Like the Yang–Baxter Equation (YBE), (42) ensures the scattering matrix’s self-consistency (a459

sufficient condition). By analogy, we call this the Kaleidoscope Yang–Baxter Equation (KYBE)460

as it plays a role analogous to YBE in enforcing multi-scattering consistency, although its al-461

gebraic form differs from the standard braid-type YBE. Similar to the YBE, it involves two462

complex parameters.463

Equation (42) is nontrivial, primarily due to S0 nonlinear dependence on θ . Admittedly, we464

lack a sufficiently concise proof for it (unlike standard proofs for YBE with given R-matrices).465

Below, we outline a more involved proof. We prove the following sufficient condition: the466

eigenvalues of TS0 are exp(2πin/N) for n= 0,1, . . . , N −1 each with multiplicity two. To this467

end, we consider the eigenvalue problem TS0A = ωkA with ω = exp(2πi/N). For nonzero468

solutions, we write A in block matrix form, A=
�

X ; Y
�

, leading to the following equation for469

X :470

(I −ωk t )(α1d +α−1d−1)(I −ωk t−1)X =ωk(t − t−1)X . (43)

In the aove equation, we have reparameterized variable z and θ byα1 := −izeiθ andα−1 = ize−iθ .471

We list the definition of the t and d, as they play a crucial role in our subsequent analysis:472

t :=













0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0













N×N

, d :=











e
2πi
N ·0 0 · · · 0

0 e
2πi
N ·1 · · · 0

...
...

. . . 0

0 0 · · · e
2πi
N ·(N−1)











N×N

. (44)

Then applying the Fourier transformation with Umn = N−1/2 exp(2πi·mn/N) to Equation (43),473

and using the relations UtU† = d−1 and UdU† = t , we obtain the Fourier transformation form474

Ĥ X̃ =
�

(I −ωkd−1)(α1t +α−1t−1)(I −ωkd) +ωk(d − d−1)
�

X̃ = 0. (45)

with the Fourier transformation of X by X̃ = UX . We note that the first term on the left-hand475

side of Ĥ in Equation (45) is a product of three simple matrices: the leftmost matrix is diagonal476

with the (k+1)-th row set to zero; the rightmost matrix is also diagonal with the (N − k+1)-477

th column set to zero and the middle matrix is a tridiagonal matrix. The second term is a478

diagonal matrix, in which the elements in the first row and the (N/2+1)-th row are zero. We479

represent the distribution of the elements of Ĥ using a checkerboard diagram in Figure 11:480

white squares indicate zero elements, gray squares correspond to nonzero elements from the481

first term of Ĥ, and red squares represent nonzero elements from the second term of Ĥ. In this482

example, we take N = 10 and k = 2. Note that in this example, the third row of the matrix483

is zero, which implies X3 = 0. For the remaining components of X , we divide them into two484

linear systems, as indicated by the two black dashed boxes in Figure 11.485
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Figure 11: A chessboard representation of the nonzero elements of the matrix Ĥ in
Equation (45).

We focus on the linear system highlighted by the black dashed box in the middle of the486

Figure 11. Its matrix can be obtained directly by projecting the matrix in Equation (45) onto487

the relevant subspace:488

�

(α1t +α−1t−1)B +ω
k(I −ωkd−1)−1

B (d − d−1)B(I −ωkd)−1
B

�

(I −ωkd)B X̃B

= ĤB(I −ωkd)B X̃B = 0. (46)

Here, the subscript B denotes the block matrix operation. Following this block extraction, the489

matrix (I−ωkd±1) becomes invertible, enabling us to derive the result above. It is evident that490

the block matrix ĤB satisfies the chiral symmetry P−1ĤB P = −ĤT
B , where P denotes the back-491

ward identity matrix. Consequently, this matrix exhibits spectral antisymmetry [31]. Given its492

odd dimension, it must have a zero eigenvalue, implying the existence of a nontrivial solution493

for this subsystem. Furthermore, the block matrix is guaranteed to be nonzero in the gray-494

and red-labeled regions. Using a recurrence relation, one can show that this matrix’s nontriv-495

ial solution is unique, with all components X̃B nonzero. After solving the two subsystems, an496

additional constraint relating them remains. For the case in Figure 11, there is a linear con-497

straint involving x8, x9, and x10. This means two linearly independent solutions exist for the498

full matrix Ĥ in Equation (45). Reversing our reasoning, the matrix TS0 in Equation (42) has499

eigenvaluesωk for k = 0,1, · · · , N−1, with each eigenspace two-dimensional. In other words,500

this matrix is diagonalizable with eigenvalues ωk. Therefore, we can conclude that Equation501

(42) indeed holds.502

5 Algebraic structures underlying the Kaleidoscope Yang-Baxter503

Equation504

We rewrite the Kaleidoscope Yang-Baxter Equation in a more concise form. For even N , we505

rewrite the following two matrices:506
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T :=

�

t 0
0 t−1

�

, Λ :=

�

s s
−s −s

�

. (47)

Here, t and s are defined as in Equation (10). Notice that the dependence on θ is encoded in507

the S matrix. Thus, Equation (42) takes the following form:508

[T(I + zΛ)]N = I . (48)

Expanding the left-hand side of Equation (48) in powers of z yields a series of identities. For509

example, (TΛ)N = 0. Furthermore, we find that the T and Λ matrices satisfy the following510

properties:511

1. T N = I;512

2. Λ2 = 0;513

3. Conjecture: ΛT k1ΛT k2 · · · T kMΛ= 0, for M ≥ N
2 and k1, k2, · · · , kM ∈ Z.514

The third point above is a conjecture we have proposed, which is a generalization of a corollary515

of the Kaleidoscope Yang-Baxter Equation. So far, we have not been able to prove it. We516

have only verified its validity for N ≤ 10. If it holds, it provides some structural information517

about the Kaleidoscope Yang-Baxter Equation. We note that T and Λ, as generators, form a518

monomial algebra A of Loewy-length N/2. This algebra can be decomposed into a semisimple519

part S = span(T k), k ∈ Z and a nilpotent part (Jacobson root) J = 〈Λ〉:520

A= S +J . (49)

We note that for the quantum mechanical scattering problems under discussion, the quantum521

contribution appears in the matrix Λ. For classical scattering, there is no need to introduce522

Λ–it suffices to consider t in (10) alone. The semisimple part of this algebra is generated by523

T , which indicates that, when we use the Bethe ansatz to discuss scattering problems. The524

quantum mechanical scattering can be understood as a torsion added to the classical scattering.525

To further explore the hidden mathematical structures in the the Kaleidoscope Yang-Baxter526

Equation, we apply the following similarity transformation to Equation (48). Let us introduce527

P :=

�

I I
−I 0

�

, P−1 :=

�

0 −I
I I

�

(50)

with the similarity transformation, we have528

P−1T pP =

�

t−p 0
t p − t−p t−p

�

, P−1ΛP =

�

0 s
0 0

�

. (51)

The above transformation is very convenient for our computations when expanding the Kalei-529

doscope Yang-Baxter Equation. Note that s can be expressed as s = (ud − u−1d−1)−1, with530

free parameter u = eiθ . This means that s itself is a function of d. In Equation (44), t and d531

serve as the generators of the quantum torus algebra, satisfying532

t N = dN = I , td = e2πi/N dt . (52)

This mathematical structure was first noticed as a special sub-algebra in the study of quan-533

tum groups [32]. It is also widely presented in various branches of modern physics, including534
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noncommutative field theory [33], the quantum Hall effect [34], and noncommutative geom-535

etry [35].536

The Kaleidoscope Yang-Baxter Equation yields a series of identities for the quantum torus537

algebra. For example, expanding the Kaleidoscope Yang-Baxter Equation and examining each538

order in z, we obtain the following identities which hold for any u ∈ C539

∑

p1+···+pM=N−1

t±p1(ud − u−1d−1)−1(t p2 − t−p2) · · · (t pM−1 − t−pM−1)(ud − u−1d−1)−1t±pM = 0

(53)

for p1, · · · , pM ≥ 1. These identities themselves are not easy to prove directly. However, as540

consequences of the Kaleidoscope Yang-Baxter Equation, we are able to obtain this series of541

intricate results. This serves as further evidence of the nontrivial nature of the Kaleidoscope542

Yang-Baxter Equation.543

6 Conclusion544

In this work, we have thoroughly studied the generalization of integrability conditions pro-545

posed in Ref. [1] and established a systematic method for constructing Bethe ansatz solu-546

tions for a class of two-dimensional models. We have reanalyzed the LQZC model, derived its547

complete energy spectrum, and show why coordinate Bethe ansatz fails for symmetry groups548

D2N with N ≥ 4. Using a complete decomposition method, we have solved Gaudin’s Kalei-549

doscope model. Notably, through numerical and analytical analysis of its exact solution, we550

have observed that Bethe ansatz solvability depends not only on the model’s symmetry but551

also on the symmetry subspace where solutions are sought. Furthermore, we have also ob-552

tained a nontrivial self-consistency condition for the scattering matrix in term of the Kalei-553

doscope Yang-Baxter Equation, which exhibits rich mathematical structure and merits further554

investigation. In future work, we will study this equation in detail and analyze its math-555

ematical structures. We will also apply our developed methods to explore connections be-556

tween integrability, quantum chaos, and topology. To facilitate reproducibility, the full im-557

plementation and all scripts used to produce the results in this work are publicly available at558

https://github.com/qiuwenjie24/CodeSciPostFig-KYBT.559
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Appendix569

A The Finite Element Method for δ-interacting Problems570

The finite element method (FEM), also known as finite element analysis (FEA), is a power-571

ful and versatile numerical technique for solving a wide range of field problems governed by572

partial differential equations (PDEs) with given boundary conditions. These problems arise in573

diverse disciplines such as structural mechanics, heat transfer, fluid dynamics, mass transport,574

and electromagnetics [28, 29]. The core idea of FEM is to discretize a complex domain into575

smaller, simpler subdomains called finite elements. Within each element, the unknown field576

variables are approximated by simple functions, and local equations are derived. These local577

equations are then assembled into a global system that approximates the behavior of the en-578

tire domain, reducing the original PDE problem to a system of algebraic equations that can579

be efficiently solved using modern computational techniques [30], further developments were580

given in [36–38]. Today, major engineering industries employ the FEM for virtual prototyping,581

design optimization, and performance assessment of complex products [29, 39]. The math-582

ematical rigor and computational efficiency of the FEM have led to its widespread adoption583

and continuous development.584

In our work, the problem under consideration is a typical eigenvalue problem with δ-585

function potential. Rigorously speaking, we deal with contact interaction potentials, which586

can also be interpreted as boundary conditions connecting the field across different regions.587

To the best of our knowledge, neither such potentials nor the associated boundary conditions588

have been discussed in previous FEM studies. Apart from this particular aspect, we also show589

that this problem can be addressed in a very concise and efficient manner by using the FEM.590

The purpose of this appendix is to demonstrate the application of FEM to the δ-function591

potential problems. We will provide a brief introduction to the FEM, with a particular focus on592

deriving the formulation of the matrices in the presence of contact interactions. The following593

study is essential for carrying out the computations presented in the main text.594

A.1 The mesh and basis in FEM595

The most crucial step in the finite element method is the partitioning of the solution domain,596

typically into triangular elements. Based on this partition, the solution space can be reduced to597

a finite-dimensional subspace whose basis functions are defined as follows: for each grid point,598

the corresponding basis function takes the value 1 at that point and 0 at all other grid points,599

and is linear within each triangle. As shown in Figure 12, the left panel displays a triangular600

partition of the solution domain (here, the unit square). For each point in this partition, a601

basis function can be defined, which takes the form of a polyhedral cone in three-dimensional602

space. We denote this subspace F -space, and its basis are φn(x).603

We continue to use the standard definition of the inner product in the Hilbert space of604

square-integrable functions (L2-space), i.e., 〈 f , g〉 :=
∫

Ω
d x⃗ f ∗( x⃗)g( x⃗). For a given function605

| f 〉 in the L2-space, our goal is to find a point in the F -space that is as close to it as possible.606

This is equivalent to solving the minimization problem for the following loss function L:607

L= || | f 〉 −
∑

n

bn|φn〉 ||2 = 〈 f | f 〉 −
∑

n

�

b∗n〈φn| f 〉+ bn〈 f |φn〉
�

+
∑

n′n

b∗n′ bn〈φn′ |φn〉. (A.1)

It is a typical quadratic optimization problem. According to ∂L
∂ b∗

n′
= 0, we obtain the solution608

for the expansion coefficients b := [b1, b2, · · · , bN ]T as609

b = M−1 f , (A.2)
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Figure 12: The left panel illustrates the triangular partition, while the right panel
shows a basis function corresponding to the point marked by the red dot (labeled
23) in the left panel.

here, the components of the column vector f are the overlap integrals between | f 〉 and the610

bases functions, i.e., fn = 〈φn| f 〉, and the M is known as the “mass matrix” defined by611

Mn′n = 〈φn′ |φn〉. (A.3)

An important feature of the M matrix is its sparsity, which arises because its matrix elements612

Mn′n are nonzero if and only if the points labeled by n and n′ belong to same triangle. This613

sparsity is a key factor enabling the high efficiency of the FEM algorithm.614

𝑃1
𝑃2

𝑃3

𝑥

𝑞𝑎 (1 − 𝑞)𝑎

𝑝ℎ

(1 − 𝑝)ℎ

(𝑎) (𝑏)

Figure 13: Schematic for calculating the overlap integrals of basis functions. We
focus on a small element, namely the triangle △P1P2P3. Here the basis function
corresponding to P1 is illustrated by the triangle△Q1P2P3 in the left panel, while the
basis function corresponding to P2 is illustrated by the triangle △P1Q2P3. The right
panel illustrates the reparameterization of points on the triangle △P1P2P3.

In the following, we provide a brief explanation of the computation of the mass matrix.615

According to the basic principles of the finite element method, it suffices to focus on calculating616

the overlaps of the basis functions within each small triangle, referring to Figure 13(a), we617

now compute the overlap integral between the basis functionsφ1 andφ2, which correspond to618

△Q1P2P3 and△P1Q2P3, respectively, on the triangle△P1P2P3. To this end, we reparameterize619

the triangle according to the method shown in Figure 13(b). In this coordinate system, the620

area element is given by dS = ahqdpdq, where a and h denote the base and the height of the621
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triangle, respectively. It is straight forward to obtain622

∫

△P1P2P3

dS |φ1( x⃗)|2 =
∫ 1

0

dp

∫ 1

0

dq ahp2q =
1
3

S△P1P2P3
,

∫

△P1P2P3

dSφ∗1( x⃗)φ2( x⃗) =

∫ 1

0

dp

∫ 1

0

dq ahp(1− p)q =
1
6

S△P1P2P3
, (A.4)

here S△P1P2P3
= 1

2 ah is simply the area of the triangle. Thus, to obtain the mass matrix (A.3),623

all we need to do is loop over each triangle and, for each triangle, compute and add its contri-624

bution to the M matrix according to the rules in (A.4). This process is referred to as "assemble"625

in FEM. After assembling, what we obtain is a set of sparse matrices, and the physical problem626

to be solved is reduced to a linear algebra problem involving these sparse matrices.627

A.2 The kinetic matrix, potential matrix and the eigenvalue problem628

We consider the result of an operator Ĥ acting on a field (wave function) |ψ〉 in the F -space629

described by a column matrix b as |ψ′〉 = Ĥ|ψ〉 =
∑

n bnĤ|φn〉. Our goal is to find a wave630

function in the F -space, described by column matrix b′, such that it approximates |ψ′〉 as631

closely as possible. This problem is entirely analogous to the quadratic optimization problem632

in (A.1). Here we simply present the result:633

b′ = M−1Hb. (A.5)

Equation (A.5) completely characterizes the action of an operator in the F -space, where M is634

the mass matrix defined in (A.3) and the H matrix is defined similarly as635

Hn′n = 〈φn′ |Ĥ|φn〉=
∫

d x⃗ φ∗n′( x⃗)Ĥφn( x⃗). (A.6)

A.2.1 The eigen problem636

In accordance with (A.5), in the computational space of finite elements, the Hamiltonian H is637

transformed into a matrix M−1H , and thus the eigenvalue problem Ĥ|ψ〉 = ε|ψ〉 is reduced638

to a generalized eigenvalue problem:639

Hb = εMb, (A.7)

the ε and b in (A.7) are the eigenvalues and eigenvectors that we are interested in.640

In a broad class of physical problems discussed using the FEM (including the problem641

considered by this work), Ĥ consists of a kinetic part and a potential part Ĥ = T̂ + V̂ , with642

the kinetic part given by the Laplacian operator K̂ := −∂ 2 [28–30]. Thus, the H matrix is also643

separated into the kinetic matrix K and the potential matrix V:644

H = K + V . (A.8)

Now the FEM procedure reduces to two main tasks: (1) assembling the matrices Kn′n = 〈φn′ |K̂ |φn〉645

and Vn′n = 〈φn′ |V̂ |φn〉; and (2) solving the generalized eigenvalue problem in (A.7). For (2),646

there already exist many well-established algorithms and software packages capable of per-647

forming this task, so it is unnecessary for us to consider the algorithmic details. Therefore, in648

the following, we will focus on the problem of assembling kinetic and potential matrices.649
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A.2.2 The kinetic matrix650

For the calculation of the kinetic energy matrix, the key point is the action of the derivative651

operator ∂ on the basis functions. As shown in Figure (14), we consider the basis function652

φ1 defined on the region of triangle △P1P2P3. This function increases linearly in the direc-653

tion perpendicular to the base P2P3 of the triangle, as illustrated in Figure 14(a). A direct654

consequence of this linearity is that ∂ φ1 results in a constant vector field which is perpendic-655

ular to the base with magnitude 1
h1

(h1 is the height of the triangle with respect to the base656

P2P3), see Figure 14(b). It is evident that this gradient field is discontinuous across each of the657

three edges of the triangle, and thus taking the divergence of this gradient field yields three658

δ-potential functions supported on the three edges of the triangle, see Figure 14(c). We will659

compute their coefficients in the following.660

0

0.5

1
𝑃1

𝑃2 𝑃3

𝜙1 (®𝑥)

𝑃1

𝑃2 𝑃3

𝜕𝜙1 (®𝑥)

𝑃1

𝑃2 𝑃3

𝛿-
po

ten
tia

l 𝛿-potential

𝛿-potential

𝜕2𝜙1 (®𝑥)

(𝑎) (𝑏) (𝑐)

𝜕 𝜕

Figure 14: (a) The basis function φ1: it is linear, increasing from 0 to 1 along the
height of the triangle; (2) The gradient of the basis functionφ1: it is a constant vector
field in the direction of the height; (3) The divergence of the gradient of the basis
function, i.e., ∂ 2φ1: it is a sum of δ-functions localized on the edges of the triangle,
each with a different coefficient.

Consider the behavior of the basis function φ1 corresponding to P1 in two adjacent regions661

△P1P2P3 and △P1P3P ′2. Please refer to Figure 15. It is clear that the gradient of the basis662

function is discontinuous across the two regions; however, along the interface line P1P3, the663

projections of the gradients onto the direction along the line P1P3 are continuous on both sides.664

In Figure 15(a), we have drawn the heights P1Q and P1Q′ of the two triangles, respectively.665

Then the gradients of φ1 at the two regions can be evaluated:666

∇φ1

�

�

x⃗∈△P1P2P3
= |QP1|−1 r̂QP1

, ∇φ1

�

�

x⃗∈△P1P3P ′2
= |Q′P1|−1 r̂Q′P1

. (A.9)

here r̂QP1
and r̂Q′P1

are the unit vectors in the direction of
−−→
QP1 and

−−→
Q′P1 respectively. In the667

direction parallel to
−−→
P3P1, the two gradients are equal, which is evident from668

r̂P3P1
· ∇φ1

�

�

x⃗∈△P1P2P3
= r̂P3P1

· ∇φ1

�

�

x⃗∈△P1P3P ′2
= |P3P1|−1. (A.10)

Therefore, at the interface between the two regions, the discontinuity of the gradient of φ1669

across the two sides exists only in the direction perpendicular to the interface. This is also why670

∂ 2φ1 results in a δ-function localized on the interface. We can write the expression for ∂ 2φ1671

in a single triangular region as follows (see Figure 15(b)):672

∂ 2φ1( x⃗) = c23δ(x23( x⃗)) + c31δ(x31( x⃗)) + c12δ(x12( x⃗)), (A.11)

the functions x23( x⃗), x31( x⃗) and x12( x⃗) denote the distance from x⃗ to the edge P2P3, P3P1 and673

P1P2 respectively.674
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Figure 15: (a) The discontinuity of the gradient of φ1 across two adjacent triangular
regions; (b) This gradient discontinuity determines that the result of ∂ 2φ1 is a set of
δ-functions localized on the boundaries of the triangle. Here, we consider only the
contribution from a single region.

The coefficient in front of the δ-function in (A.11) is determined by the discontinuity of675

the two gradient fields. For example, on P1P3 we can compute:676

∂ 2φ1

�

�

x⃗∈P3P1
=

tanθ + tanθ ′

|P3P1|
·δ(x31( x⃗)), (A.12)

here θ := ∠P3P1Q, θ ′ := ∠P3P1Q′, see Figure 15(a). Note that the coefficients of the δ-677

functions in the above expression (A.12) are contributed separately by the two triangular re-678

gions. Since we will eventually loop over all triangles, it suffices to consider a single triangle.679

Figure 15(b) illustrates the case where only a single triangle is considered, and the contri-680

bution to the δ-function arises solely from this triangle. The calculation in Equation (A.12)681

has already provided the coefficient in front of δ(x31( x⃗), and the other two coefficients can682

likewise be obtained directly by computing the second derivative of φ1. After some straight-683

forward manipulations (involving only elementary plane geometry), the results for this set of684

coefficients in Equation (A.11) and Figure 15(b) can be written as follows:685

c12 =
r̂P1P2
·
−−→
P2P3

2S△P1P2P3

, c23 =
r̂P2P3
·
−−→
P2P3

2S△P1P2P3

, c31 =
r̂P3P1
·
−−→
P2P3

2S△P1P2P3

. (A.13)

Our current task is to compute the overlap between φ1,φ2,φ3 and the field ∂ 2φ1 shown in686

Figure 15(b). This calculation is straightforward: due to the presence of the δ-function, we687

only need to evaluate a one-dimensional integral along each edge of the triangle. Substituting688

(A.11) and (A.13) into the definition, it is evident that we can obtain:689

〈φ1|K̂ |φ1〉
�

�

△P1P2P3
= −
∫

△P1P2P3

dSφ∗1( x⃗)∂
2φ1( x⃗) = −

−−→
P2P3 ·

−−→
P2P3

4S△P1P2P3

,

〈φ2|K̂ |φ1〉
�

�

△P1P2P3
= −
∫

△P1P2P3

dSφ∗2( x⃗)∂
2φ1( x⃗) = −

−−→
P2P3 ·

−−→
P3P1

4S△P1P2P3

,

〈φ3|K̂ |φ1〉
�

�

△P1P2P3
= −
∫

△P1P2P3

dSφ∗3( x⃗)∂
2φ1( x⃗) = −

−−→
P2P3 ·

−−→
P1P2

4S△P1P2P3

. (A.14)

The result of Equation (A.14) is sufficient for assembling the kinetic energy matrix. We can690

simply loop over all triangles, compute the pairwise matrix elements on each triangle, and691

sum them up, in complete analogy with the computation for the mass matrix (A.3) and (A.4).692
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A.2.3 The δ-potential matrix693

Compared to the calculation of the kinetic energy matrix, the computation of the potential694

energy matrix is much simpler: we only need to evaluate the overlap integrals between the695

basis functions, weighted by the potential. In particular, for our problem, this calculation can696

be further simplified. Since we have the freedom to generate the grid points, we can ensure697

that every point on the δ-potential barrier lies on the edge of a triangle (see Figure 16(a)),698

making the resulting potential matrix both easier to compute and even more sparse.699

𝑃1

𝑃2 𝑃3

(𝑎) (𝑏)

Figure 16: (a) A convenient way to generate the mesh is to ensure that both the
boundaries and the δ-potential barriers are located along the edges of the small tri-
angles. The gray lines represent the δ-function barriers. (b) Only those triangles that
have at least one edge lying on the barrier need to be considered in the calculation;
for example, the triangle △P1P2P3.

Suppose that the potential V̂ is described by the δ-function V ( x⃗) = cδ(r( x⃗)), here c is700

the coupling constant, and r( x⃗) denotes the distance from x⃗ to the barrier. Then the matrix701

elements 〈φn′ |V̂ |φn〉 are nonzero if and only if the points corresponding to n′ and n both lie702

on the barrier, and they are either identical or adjacent. As before, we only need to consider703

each small triangle individually and then obtain the result by summing their contributions.704

Moreover, only those triangles that share an edge with the delta barrier contribute to the final705

result, such as the triangle △P1P2P3 in Figure 16(b). In this triangle, the overlap between706

the basis function corresponding to P1 and the barrier is zero, so it can be neglected. Only707

the basis functions corresponding to P2 and P3 have nonzero overlap with the barrier, which708

reduces to one-dimensional linear functions on the segment P2P3. Thus, the calculation is709

straightforward, and we list the nonzero matrix elements as follows:710

〈φ2|V̂ |φ3〉
�

�

△P1P2P3
= 〈φ3|V̂ |φ2〉
�

�

△P1P2P3
=

c
2

∫

△P1P2P3

dSφ∗2( x⃗)δ(x23( x⃗))φ3( x⃗) =
c

12
|P2P3|

〈φ2|V̂ |φ2〉
�

�

△P1P2P3
=

c
2

∫

△P1P2P3

dSφ∗2( x⃗)δ(x23( x⃗))φ2( x⃗) =
c
6
|P2P3|

〈φ3|V̂ |φ3〉
�

�

△P1P2P3
=

c
2

∫

△P1P2P3

dSφ∗3( x⃗)δ(x23( x⃗))φ3( x⃗) =
c
6
|P2P3|. (A.15)

Note that in the above results (A.15), c denotes the coupling constant in front of the δ-function,711

and we have included a factor of 1
2 because the region we consider lies on one of the two total712

sides of the barrier. The result (A.15) is sufficient for assembling the V matrix.713

In summary, the results of Equations (A.14) and (A.15) allow us to assemble the matrix H714

according to Equation (A.8), while the result for M is given in Equation (A.4). After completing715

these calculations, the problem is reduced to the generalized eigenvalue problem (A.7). By716

28
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applying existing numerical algorithms, we obtain an approximate solution to the original717

eigenvalue problem in the F -space. The above constitutes the entire computational procedure718

of the finite element method.719

A.3 Some remarks720

Please note that our discussion above is limited to the computations required for this work;721

in practice, the finite element method encompasses much more than what is presented in this722

appendix. Moreover, we have not addressed the problem of boundary conditions, which is723

a crucial aspect of FEM. However, in our current calculations, the boundary conditions are724

very simple—we consider only Dirichlet boundary conditions, where the wave function van-725

ishes at the boundary. In this case, we simply remove from the F -space any basis functions726

corresponding to points on the boundary. Therefore, we will not elaborate on this further.727

Our derivation differs slightly from the traditional approach [28–30]. First, we have ad-728

dressed the problem of the contact interaction potential, which is a distinctive feature of the729

model studied here and has not received much attention in previous FEM literature. The730

more significant difference lies in our treatment of the kinetic matrix. Drawing primarily on731

the modern perspective of [40], we combined this with techniques for handling δ-functions to732

complete the calculation of the kinetic matrix. This approach avoids the use of the Green’s inte-733

gral formula and the associated discussion of weak solutions. From the viewpoint of someone734

familiar with Bethe ansatz, I believe this derivation is simpler and more direct.735
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