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Abstract

We present iHOMER, an iterative version of the HOMER method to extract Lund fragmenta-
tion functions from experimental data. Through iterations, we address the information
gap between latent and observable phase spaces and systematically remove bias. To
quantify uncertainties on the inferred weights, we use a combination of Bayesian neural
networks and uncertainty-aware regression. We find that the combination of iterations
and uncertainty quantification produces well-calibrated weights that accurately repro-
duce the data distribution. A parametric closure test shows that the iteratively learned
fragmentation function is compatible with the true fragmentation function.

Contents

1 Introduction 3

2 String fragmentation 4
2.1 Model choices 4
2.2 Implementation choices 5
2.3 Reweighting fragmentations 6

3 Reweighting with HOMER 7
3.1 Step 1: Event reweighting 9
3.2 Step 2: Weight factorization 10
3.3 Iterative HOMER 12

4 Simulated datasets 15

1



SciPost Physics Submission

5 Results 18
5.1 Accuracy 19
5.2 Uncertainties 23
5.3 Parameter closure 25

6 Outlook 27

A Further details on the HOMER method 28

B Training details and hyperparameters 30

C BNN results 31

References 34

2



SciPost Physics Submission

1 Introduction

Monte Carlo event generators (MCEGs) are essential tools for analysis of collider measure-
ments, providing theory predictions in the form of simulated events [1, 2]. Their accuracy
and precision are critical for measurements at experiments such as the Large Hadron Collider
(LHC). A key component of MCEGs is the modeling of hadronization — the binding of partons
into hadrons, which are then observed in the experiments. Since the process of hadroniza-
tion is non-perturbative, empirical models are employed to capture the relevant phenomenol-
ogy [3–5].

Current state of the art generators such as PYTHIA [6], HERWIG [7] and SHERPA [8] employ
either one or both of the two main empirical models: the Lund string model [9, 10] and the
cluster model [11–13]. The level of precision reached by or obtainable at current and future
colliders however, is now such that hadronization has become a relevant systematic uncertainty
in many precision measurements, such as the top quark mass measurements, αs determination
from shape observables, or in investigating jet substructure [14–16]. These uncertainties will
only become more relevant as modern, unbinned analyses are performed, pushing the limits
of MCEG accuracy.

An alternative approach to improving MCEG accuracy is the use of Machine Learning (ML)-
based hadronization models [17–23] that provide more flexible empirical functions that could
better reproduce existing data and reduce the associated error budget in downstream analyses.
Their adoption faces three distinct challenges. First, training of an accurate neural network,
or any other hadronization model, is difficult due to the complex relationship between the
microscopic dynamics of hadronization and the observable data. Second, any hadronization
model, and therefore also the corresponding neural network, should come with reliable uncer-
tainties. Finally, on the more fundamental side, we want to improve our physical description
and understanding of hadronization, not just the accuracy of the simulator. The question is
how we can leverage ML without discarding physically motivated fragmentation models.

To address these challenges, Refs. [17–23] adopted a modular approach, using ML to re-
place only a physics-defined and interpretable component of the simulation pipeline. In par-
ticular, the HOMER method [22,23] relies on the Lund string fragmentation picture and learns
a fragmentation function f (z|m2

T ) by reweighting a reference distribution fref(z|m2
T ), in order

to obtain better agreement with data. The strategy has been shown to work for a simplified
hadronization scenario involving only pion production, with and without the addition of glu-
ons from a parton shower [22,23] and could in principle be extended to other hadronization
models or simulators in general if the generation process can be written in terms of repeated
samplings of a given probability distribution defined over a set of relevant features.

In this work, we extend the HOMER method both in accuracy and in precision. Regarding
accuracy, we show that the HOMER method can be systematically improved through an iter-
ative procedure that removes any lingering bias due to the factorization assumption at the
event level. Regarding precision, we account for the statistical uncertainties of the HOMER
method, due to finite training datasets, and for the systematic uncertainties, due to model bi-
ases derived from architectural choices and training performance. The end result is an iterative
iHOMER variant, based on Bayesian Neural Networks (BNNs) [24–27] and uncertainty-aware
regression, where the learned calibrated uncertainties [28,29] can be propagated downstream
in the form of weight variations.

The paper is organized as follows. We start by providing a brief review of the Lund string
fragmentation model in section 2. We then review in section 3 the HOMER method and introduce
the necessary modifications to include uncertainty quantification and the iterative debiasing
framework. Section 4 contains details about the simulated dataset, the results are shown in
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Section 5, and we list our conclusions in Section 6. Further details on the HOMER method are
relegated to Appendix A, training specifications can be found in Appendix B, while Appendix C
contains results obtained using BNN weights.

2 String fragmentation

The Lund string fragmentation model [9,10] is based on the identification of the confined color
field between a color-charge and an anti-color-charge with a massless relativistic string. The
simplest system one can consider is that of a quark and an anti-quark produced from a color-
singlet, e.g. a Z-boson produced in an e+e− collision, with no gluons present. The string has
a constant energy density κ ≈ 1 GeV/fm. When the two string ends move apart, making the
string longer, energy will be transferred from the end-points to the string. If the total energy
of the initial system is small, this will result in a “yo-yo” motion back and forth. If the energy is
large, however, it will at some point become energetically favorable for the string to fragment
into smaller pieces — the hadrons. In the simplest case, we restrict ourselves to motion in one
spatial dimension and only one quark flavor. It can be shown in this 1+1 dimensional case [9]
that the probability of a final state with momenta (p1, · · · , pn) is proportional to the imaginary
part of the action of a massless relativistic string with area A:

P∝
¨� n∏

i=1

d2piδ(p
2
i −m2)

�
δ(2)

�
ptot −

∑
i

pi

�«
exp(−bA) . (1)

where ptot is the total momentum. Generating this final state from a color-singlet initial state
requires several modeling and implementation choices. The key choices relevant to this study
are outlined below, followed by a brief overview of the reweighting method.

2.1 Model choices

The mechanism for string breaking is the production of qq̄-pairs from vacuum fluctuations.
Starting from string endpoint quark q1 and producing a pair q2q̄2, the resulting meson consists
of q1q̄2, while the remaining string now ends with quark q2. The size of the potential barrier
to tunnel through is given by the energy of the qq̄-pair that is to be created, with the energy
available proportional to κ. The tunneling probability is given by [30],

dP
d2∆p⃗⊥

∝ exp

�
−
πm2

T,q

κ

�
, (2)

where m2
T,q = m2

q + |∆p⃗T,q|2 is the transverse mass of the produced quark; the transverse
momentum arises when extending the model from 1+1 to 3+1 dimensions. The produced
hadron receives a fraction z of the string’s light-cone momentum,

z ≡ (E ± pz)had

(E ± pz)string
, (3)

where +(−) applies to the breaks occurring on the positive (negative) string endpoint. After
a hadron takes a fraction z of the string’s light-cone momentum, only (1− z) remains for the
next iteration. The fraction z is sampled from the symmetric Lund fragmentation function,

f (z|m2
T )∝

(1− z)a

z
exp

�
− bm2

T

z

�
, (4)
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where mT is now the transverse mass of the hadron and f is normalized to 1 in z ∈ [0,1]. The
fragmentation function in Eq.(4) is the simplest form derived from a set of minimal assump-
tions about the fragmentation process [30], such as left-right symmetry and causality.

In this work, we will restrict ourselves to the above problem of hadronizing qq̄ strings with-
out gluons, and further restrict the final states to consist exclusively of pions. We do this both to
compare with the validated results of [22] and to keep the complications of the model to a min-
imum when introducing the iterative procedure and the uncertainty quantification. The Lund
model as such is, however, able to handle more complex topologies involving gluons [30–32],
production of baryons [33–35], and string interactions in multi-string configurations [36–38],
as well as hadronizing junction topologies emerging from string interactions or hadronic beam
remnants [39–41].

2.2 Implementation choices

The Lund string model is implemented in the PYTHIA Monte Carlo event generator [6], and has
remained a core component since its origin as JETSET over 40 years ago. Its implementation
introduces additional choices, of which the most relevant for this study are outlined below.

The produced hadrons are spacelike separated, and thus causally disconnected, meaning
there is no preferred time ordering in the fragmentation process. In PYTHIA, this is imple-
mented as an “outside-in” cascade, starting from the qq̄ string ends and then moving inward.
This introduces two implementation choices. First, the algorithm randomly selects a string-
end to hadronize at each step. This choice is encoded as a binary feature fromPos ∈ {±1}
which selects the sign in Eq.(3). Second, the “outside-in” approach leaves the algorithm with
a small-mass remnant in the middle, which must be handled. This is done by the finalTwo
algorithm, which attempts to generate two on-shell hadrons from the remnant, rejecting the
constructed hadronization chain if this is not possible (due to the inability to conserve en-
ergy and momentum, while still respecting the Lund string fragmentation function probability
distribution).

The model itself does not prescribe whether transverse or longitudinal degrees of freedom
should be generated first. The default choice in PYTHIA is to generate flavor and transverse
momentum first, allowing for the hadron transverse mass mT to enter the selection of z from
Eq.(4). The algorithm for the emission of a single hadron (a “string break”) can thus be sum-
marized as the following.

1. Randomly select fromPos, which determines the string end to be considered.
2. Select a quark flavor. For the purposes of this paper, only u and d quarks are relevant, each

chosen with equal probability.
3. Select a hadron from the combination of the original and new flavor. This determines the

hadron mass mhad.
4. Sample the transverse momentum∆p⃗T of the quarks from a Gaussian with a tunable width
σT ≈ 300 MeV, exploiting the factorization property of Eq.(2). The meson produced in the
string break has a total transverse momentum

p⃗T,had =∆p⃗T + p⃗T,string ,

while the transverse momentum of the string fragment is updated accordingly,

p⃗T,string→ p⃗T,string −∆p⃗T .

5. Sample the light-cone momentum fraction z. The parameter b in Eq.(4) is universal, while
the parameter a can be modified depending on quark flavor (not relevant for this paper).
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2.3 Reweighting fragmentations

In Section 3, we will use the HOMER method to find corrected probabilities for string fragmen-
tation through reweighting. To reweight fragmentations, one needs to specify a probabilistic
model of a string break, which is represented as a set of features (we use a shortened version
of the notation from Refs. [22,23], see Table 1 in App. A)

s ≡ �z, ∆p⃗T , mhad, fromPos, p⃗T,string

	
. (5)

We are primarily interested in the probability conditioned on the string state prior to the break

p(s)≡ p(z,∆p⃗T , mhad, fromPos|p⃗T,string)

= f
�
z|m2

T

�
N (∆p⃗T |0,σT )p(mhad)Bern(fromPos|0.5) (6)

where N (·|µ,σ) is the multivariate Gaussian distribution with mean µ and diagonal covari-
ance σ21, and Bern(·|p) is the Bernoulli distribution with probability of success p. Note that
here we abuse notation to define p(s) as the conditional probability of the sampled features
given the string state. It is not to be interpreted as the joint probability of all the components
of s.

A generated sequence of string breaks is called a fragmentation chain, S ≡ (s1, · · · , sN ),
and follows a factorized probability distribution

p(S) =
∏
s∈S

p(s) . (7)

The observable event x , specified by the four momenta and flavors of the produced hadrons,
is a deterministic projection of the chain S

x =O(S). (8)

The operator O projects out the sampled values of z, fromPos and p⃗T,string and gives the four
momenta of hadrons, out of which one can form observables measurable by experiment. Note
that a given chain S leads to a unique observed event x , but the opposite is not true. In
general, one cannot uniquely reconstruct O−1(x) since x does not, for example, contain infor-
mation on the order of string breaks; several different orderings with appropriately modified z,
fromPos and p⃗T,string lead to the same x . Instead, a measured event x is linked to a probability
distribution over compatible chains S, which we write as the Bayesian posterior

p(S|x) = p(x , S)
p(x)

=
p(x |S)p(S)

p(x)
=

δ(x −O(S))p(S)∫
dSδ(x −O(S))p(S) . (9)

Simulations provide implicit access to this posterior through generated pairs (x , S).

The length of a chain S is set when the string invariant mass falls below an energy thresh-
old, at which point PYTHIA applies its finalTwo algorithm which attempts to generate two
hadrons from the remaining string. In actuality, and due to the iterative nature of the string
breaking procedure and the discrete number of possible hadron masses, this may not be kine-
matically possible and in such a case the chain is rejected and the hadronization starts anew.
Thus, a full simulation history H ≡ �Srej

1 , · · · , Srej
N , Sacc

�
contains also fragmentation chains Srej

i
rejected by the finalTwo algorithm, with only the final fragmentation chain Sacc accepted.

Because an event can only be generated from an accepted chain, the posterior in Eq.(9) is
defined only over the subset of accepted chains Sacc. To correctly compute the probability of
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an event using just the probabilities for the accepted chains, we need to take into account the
acceptance rate

α≡
∫

dSaccp(Sacc) =

∫
dSA(S)p(S) = 〈A(S)〉p(S) , (10)

with A(S) =
¨

1 S accepted

0 S rejected .

We can then write

p(x) =

∫
dSacc p(x |Sacc)p(Sacc)∫

dSacc p(Sacc)
=

∫
dSaccδ(x −O(Sacc))p(Sacc)

α
, (11)

where the integration is restricted to accepted chains Sacc, see App. A for the derivation. The
posterior p(Sacc|x) does not explicitly depend on α because of a cancellation in the ratio be-
tween the joint p(x , Sacc) and the marginal p(x). The acceptance rate can be estimated using
a set of M simulated histories H (and thus M accepted chains), by counting how many chains
were generated in total,

α≈ M∑M
m=1 (Nm + 1)

, (12)

where Nm is the number of rejected chains in the mth simulated history and there is always
one accepted chain per history. Beyond being used to compute the acceptance rate, histories
contain the complete information of the generated samples and are used to compute the best
possible weights that can be achieved in a closure test.

3 Reweighting with HOMER

HOMER is a method to extract an optimal fragmentation function by reweighting a PYTHIA

reference simulation to match experimental data [22,23]. Its goal is to approximate the exact
single emission weights w(s),

w(s)≡ pdata(z, ∆p⃗T , mhad, fromPos|p⃗T,string)

pref(z, ∆p⃗T , mhad, fromPos|p⃗T,string)
, (13)

where pdata refers to the data probability distribution and pref to the reference distribution,
given by the choice of simulator parameters. Corresponding weights for chains and histories
follow by taking products

w(S)≡ pdata(S)
pref(S)

=
∏
s∈S

w(s) and w(H)≡ pdata(H)
pref(H)

=
∏
S∈H

w(S) . (14)

Throughout this reweighting procedure, HOMER still manifestly assumes and respects the Lund
string fragmentation picture, including momentum conservation, and thus delegates most of
the physics constraints to PYTHIA without explicitly hard-coding them.

The conceptual and practical challenge is that experimental observations do not have ac-
cess to individual string breaks, but are rather functions of only the final hadron momenta. In
HOMER, this problem is solved by splitting the training procedure into two steps:
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fPYTHIA(z)

p(x)

w(x)p(x) w(S)p(x)

Simulate

Reweight

Factorize

Iterate

fHOMER(z)≡ w(s) fPYTHIA(z)

Figure 1: Illustrative diagram of the HOMER method and its iHOMER extension: HOMER learns
a data-driven fragmentation function via the reweighting and factorization steps. iHOMER
improves upon its performance by iterating these steps.

Step 1 (Reweighting): A classifier is trained to distinguish experimental measurements from
predictions of a reference PYTHIA simulation. This yields an approximation to the like-
lihood ratio pdata(x)/pref(x).

Step 2 (Factorization): Using the reference simulation only, a regressor operating on string-
break features is trained to statistically match the Step 1 density ratio at the observable
level. This yields inferred string-break weights.

which are shown schematically in Figure 1, along with the iterative procedure introduced in
this work.

HOMER has been shown to work for qq̄ strings with and without parton showers [22, 23],
but some challenges remain. Among them is uncertainty quantification. Generally speaking,
we expect neural network training to be subject to both statistical and systematic uncertain-
ties [28]. Statistical uncertainties capture the effect of having training datasets of finite size,
while systematic uncertainties remain for arbitrary training statistics and capture, for instance,
noisy data, insufficient network expressivity, or a limiting training strategy. For HOMER, we can
make the following assumptions:

1. The classifier is sufficiently expressive to fit the true likelihood ratio pdata(x)/pref(x)
=⇒ We consider dominantly statistical uncertainties in the reweighting Step 1.

2. A sufficiently large reference dataset is available
=⇒ We consider only systematic uncertainties in the factorization Step 2.

Regarding the first assumption, we check that no systematic biases arise due to architectural
choices or imperfect network training (See App. C for validation). Additionally, because we
are performing a closure test using simulated datasets, we know that the simulator perfectly
captures all details of the data, except for the targeted hadronization model, and we can safely
neglect systematic uncertainties due to simulator mismodeling of non-hadronization effects.
We assume that for the correct hadronization model x =O(Sacc) induces the correct distribu-
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tion in observable space.

As for the second assumption, since each event contains approximately O(15) fragmenta-
tions, the effective statistics of the reference simulation used to learn the fragmentation func-
tion in Step 2 is the corresponding order of magnitude larger than the number of generated
events. As a result, we find that statistical uncertainties can be neglected.

Given these assumptions, our approach to quantifying fragmentation uncertainties is to
train Step 1 as a Bayesian Neural Network (BNN) [24, 25, 42, 43], to capture the statistical
uncertainties, and Step 2 with a heteroscedastic loss to capture the systematics. In this com-
bination, the uncertainty learned for Step 1 propagates to the systematics in Step 2 as label
noise, and should be captured by the learned uncertainty. Here the strict separation of the
two sources of uncertainties should be taken with a grain of salt, because the BNN classifier
will still attempt to accommodate systematics, if they occur, and the heteroscedastic loss can
improve the training also for statistical limitations [28].

3.1 Step 1: Event reweighting

Step 1 of HOMER estimates the data-reference likelihood ratio over the observable phase space,

w(x)≡ pdata(x)
pref(x)

. (15)

We estimate it via a trained classifier Cθ (x), to distinguish events sampled from pdata(x) and
pref(x). To quantify statistical uncertainties, we employ a BNN [44]. This involves a variational
approximation to the posterior distribution of the network parameters θ conditioned on the
training dataset [44],

q(θ )≈ p(θ |Dtrain) . (16)

Here, Dtrain consists of samples from pdata(x) and pref(x)with corresponding binary labels. The
BNN loss maximizes the corresponding likelihood and, from Bayes’ theorem, also includes a
KL-divergence between q(θ ) as a regularization and a finite-width prior p(θ )

Lclass = DKL [q(θ ), p(θ )]−
¬
log p(Dtrain|θ )

¶
q(θ )

= DKL [q(θ ), p(θ )]−
¬
Ndata



log Cθ (x)

�
pdata(x)

+ Nref



log [1− Cθ (x)]

�
pref(x)

¶
q(θ )

. (17)

For the classification we choose a binary cross entropy likelihood. To be able to compute the
KL divergence, we choose

q(θ )≡ qµ,σ(θ ) (18)

and p(θ ) to be independent Gaussian distributions for each network parameter. For p(θ ) the
means are fixed to zero, while the standard deviations are set to a constant value which is a
hyperparameter. The BNN network parameters consist of the means µ and standard deviations
σ for each weight. This effectively doubles the number of network parameters. We emphasize
that for deep networks, Gaussian weights do not imply Gaussian network output [26,45,46].

The independent Gaussians allow for efficient sampling during training and for uncertainty
estimation. For a given point x in phase space, we can sample θ ∼ q(θ ) and compute the clas-
sifier output Cθ (x). In the limit of perfect training, and assuming Ndata = Nref, each sampled
classifier Cθ is related to the likelihood ratio by

Cθ (x)
1− Cθ (x)

≡ wθ (x)≈ w(x), (19)

9
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Throughout this paper, weights with Greek subscripts represent NN parameterizations, while
the absence of a subscript indicates an exact density ratio.

Without assuming a Gaussian shape, we can estimate the expected value of any quan-
tity and its uncertainty by drawing samples from the BNN and taking the sample mean and
standard deviations. Of particular interest is the variance of the log-weight

σ2
q(x)≡ Varq(θ ) [log wθ (x)] . (20)

We will use it to validate the results of Step 2.

3.2 Step 2: Weight factorization

The goal of Step 2 in HOMER is to approximate the string-break level weights w(s), defined in
Eq.(13). As in Refs. [22,23], the only difference between data and simulation lies in the choice
of fragmentation function f (z|m2

T ). The string-break level weights are then given by

w(s)≡ pdata(z, ∆p⃗T , mhad, fromPos|p⃗T,string)

pref(z, ∆p⃗T , mhad, fromPos|p⃗T,string)
=

fdata(z |m2
T )

fref(z |m2
T )

, (21)

and depend only on z and mT . We emphasize, however, that this simplification is not assumed
during training and the full s can be kept as the input.

While the Step 2 network is trained on a simulated reference dataset, the problem is con-
strained by data through the trained Step 1 classifier wθ (x). To allow for this link, we write
the event-level weights induced by w(s) as

w(x) =
αref

αdata

®∏
s∈Sacc

w(s)

¸

pref(Sacc|x)
, (22)

where pref(Sacc|x) is defined as in Eq.(9), with the reference label added to specify the model,
and evaluated only over the subset of accepted chains. We introduce acceptance efficiencies
αref and αdata for the reference and data, respectively.

While Eq.(22) constitutes an exact relation between string break-level and event-level
weights, the averaging it requires is not practical to implement. This is because the proba-
bility that multiple accepted chains in a simulation produce the exact same event is negligible,
in other words, the posterior pref(Sacc|x) is always very “sharp”. This implies that averaging
requires arbitrarily large simulated samples. The simplest approximation is to consider only
the accepted chain used to generate each event such that

w(x)≈ αref

αdata

∏
s∈Sacc

w(s)

�����
x=O(Sacc)

. (23)

This approximation, which would be exact when the observables were invertible and Sacc could
be uniquely assigned, avoids explicit averaging when relating event- and chain-level weights.
However, when computing binned observable distributions, an implicit averaging is performed
by integrating over all events belonging to the same bin.

The approximate Eq.(23) is used in Step 2 of HOMER, where we train a fragmentation-level
network wφ(s), with parameters φ, so that it satisfies

wθ (x)≈
αref

α(φ)

∏
s∈Sacc

wφ(s)≡
αref

α(φ)
wφ(S

acc) . (24)

10
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In the above, α(φ) is the acceptance rate induced by weighting the reference with wφ(s),

α(φ) =

∫
dSA(S)wφ(S)pref(S) =



A(S)wφ(S)

�
pref(S)

. (25)

It is needed to ensure correct normalization of the weights, and can be approximated using
histories sampled from the reference simulation as

α(φ)≈
∑

Sacc wφ(Sacc)∑
Srej wφ(Srej) +

∑
Sacc wφ(Sacc)

, (26)

where the denominator gives the effective number of both accepted and rejected chains. In
effect, the matching procedure of Eq.(24) factorizes the classifier weight wθ (x) as a product
of string break-level weights wφ(s). If both Step 1 and Step 2 of HOMER are optimally trained,
we expect the learned weights to approximate the exact weights at the fragmentation level,
wφ(s)≈ w(s), subject to the error associated with the approximation in Eq.(23).

The matching in Eq.(24) can be enforced in several ways. For instance, Ref. [22] trains
wφ(s) with another BCE loss. Since we aim to simultaneously learn systematic uncertainties,
we use a heteroscedastic regression loss. This amounts to fitting the learned distribution of
Step 1 BNN log-weights with a Gaussian likelihood that has a learnable mean and standard
deviation,

Lfactor(φ) = −
­

logN
�

log wθ (x =O(Sacc))
��� log

αref

α(φ)

∏
s∈Sacc

wφ(s),σφ(S
acc)

�·
pref(Sacc), q(θ )

.

(27)

We consider the log-weights because they can be negative, unlike the positive-definite weights,
and tend to be more naturally modeled by a simple Gaussian. The expectation is taken over
paired events and accepted chains, where x = O(Sacc), and over Step 1 classifier parame-
ters θ sampled from the BNN. The rejected chains of the simulated histories are taken into
account when computing the acceptance rates via Eq.(26). The expected value in the loss is
constructed in terms of individual fragmentation-level log-weights log wφ(s) through Eq.(24)
in its logarithmic form, and the uncertainty σφ(Sacc) is likewise constructed from individual
fragmentation-level uncertainties by adding in quadrature

σ2
φ(S

acc)≡
∑

s∈Sacc

σ2
φ(s) . (28)

This ignores the uncertainty contribution from the acceptance rate α(φ), which we have veri-
fied to be negligible by injecting noise to the fragmentation weights and observing insignificant
changes in the rate. For the same reason, we also do not consider Jensen’s inequality when
constructing the expected data acceptance rate α(φ) in terms of the exponential of the ex-
pected log-weights.

Although we denote wφ(s) and σφ(s) with the same parameter label φ, these can be
implemented either as two outputs of a single network or as two independent networks. In
the numerical results below, we keep the networks separate. Additionally, we modify the inputs
of the networks from the full set of string break features to

s→ �
z, p⃗T,string +∆p⃗T , mhad, fromPos

	
. (29)

Without this feature reduction, the networks can learn to exploit the arbitrary distinction be-
tween first and subsequent fragmentations in a chain, where the former always have p⃗T,string = 0,
and the ultimate performance is compromised.

11
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By construction, successful training with the loss (27) ensures that log-weight predictions
are calibrated against the classifier, meaning that the pull statistic

t
�
wθ (x) |αref/α(φ)wφ(S

acc),σφ(S
acc)

�≡
log wθ (x)− log

αref

α(φ)
wφ(Sacc)

σφ(Sacc)
, (30)

is normally distributed when sampling pref(Sacc) (with x =O(Sacc)) and q(θ ). Even in a real-
istic application to data, this pull can always be checked in order to validate that σφ has been
learned correctly. Ultimately, we hope this translates into calibration at the fragmentation level
so that the pull t[w(s) |wφ(s),σφ(s)], defined analogously to Eq.(30), is normally distributed
when sampling pref(s). However, as we detail below, this may not be exactly the case due to
the observable information failing to completely constrain the fragmentation-level weights.

To summarize, the output of HOMER is now a string-break-level log-weight and its uncer-
tainty, log wφ(s)±σφ(s). This induces corresponding expected log-weights and uncertainties
at the chain, and history levels,

log wφ(S) =

�∑
s∈S

log wφ(s)

�
±
√√∑

s∈S

σ2
φ
(s)

log wφ(H) =

�∑
S∈H

log wφ(S)

�
±
√√∑

S∈H

σ2
φ
(S) . (31)

We do not consider an additional uncertainty associated with α(φ) when computing the event
level log-weights log αref

α(φ)wφ(S
acc). The learned expected log-weights and uncertainties can

then be translated to expected weights with uncertainties through the first two moments of
the log-normal distribution,

〈w〉log w∼N (log wφ ,σφ) = exp(log wφ +σ
2
φ/2)


w2
�

log w∼N (log wφ ,σφ)
= exp(2 log wφ + 2σ2

φ) . (32)

3.3 Iterative HOMER

When introducing HOMER, Ref. [22] found promising results for the fragmentation function,
but the event-level observables showed a bias towards the reference simulation. This bias re-
flects a conceptual limitation due to the main assumption of Eq.(11), that the event weight
factorizes in the same way as the chain weight (modulo the acceptance ratio). This is gen-
erally not the case. In part to address this issue, Ref. [23] introduced an alternative strategy
that approximates the expectation value in Eq.(22) using a smearing kernel of tunable width
and averaging over all histories in a given batch. While effective, the kernel increases the nu-
merical requirements of the algorithm and adds a hyperparameter to be tuned. Additionally,
the introduction of a smearing kernel increases the variance of the weights and reduces the
effective sample size of the reweighted samples.

An alternative strategy to improve HOMER for non-invertible observables is inspired by iter-
ative unfolding [47–49]. There is also a correspondence with expectation-maximization [50],
where the unseen chain-level weights are the latent variables whose expectation value is ap-
proximated iteratively. Applied to HOMER, we propagate the inferred fragmentation weights
forward to another round of inference.

We introduce two strategies to iterate HOMER. They differ only in Step 2, where one strategy
refines the result of the previous iteration, while the other strategy restarts from the initial

12
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reference distribution. In most cases, we observe the same behavior and final performance
from both iteration styles but believe it might be useful to still consider both strategies. For
the results presented in Section 5 we use the first, “refinement” strategy.

Refinement-style iteration

At the end of iteration i, which produced Step 2 weights wφi
(s), we freeze the parameters φi

and update the reference distribution to

p(i+1)
ref (s) = wφi

(s) p(i)ref(s) . (33)

The next iteration of Step 1 and Step 2 training proceeds through the same loss functions
introduced above, but with the replacement pref→ p(i)ref. Applying Eq.(33) recursively, we can
write the reference distribution at iteration i ≥ 1 as

p(i)ref (s) =

 
i−1∏
j=1

wφ j
(s)

!
pref(s) , (34)

where p(1)ref = pref is the original reference distribution. The induced distributions at the chain
and event levels are

p(i)ref (S) =

 
i−1∏
j=1

wφ j
(S)

!
pref(S)

p(i)ref(x) =

 
i−1∏
j=1

α(φ j−1)

α(φ j)
wφ j
(Sacc)

!
pref(x) , (35)

where we make use of the pairing between x and Sacc in simulation in the second line and
understand α(φ0) = αref. At the end of N iterations, the cumulative string-break weights are

wφ(s) =
N∏

i=1

wφi
(s) . (36)

The chain and history weights wφ(S) and wφ(H) are built from wφ(s) by taking products
according to their usual definitions (31), while the event weights need only the first and last
acceptance rates α,

� N∏
i=1

α(φi−1)
α(φi)

wφi
(Sacc)

�
=
αref

α(φN )

N∏
i=1

wφi
(Sacc) =

αref

α(φN )
wφ(S

acc) . (37)

Restart-style iteration

Instead of updating the Step 2 reference distribution as described above, we can alternatively
train Step 2 from scratch using the updated Step 1 results. While Step 1 remains unchanged
with respect to the previous iteration style, using Eq.(33) to define p(i)ref(x) and train the clas-
sifier at iteration i, the reference distribution for Step 2 is always the original

p(i)ref(s) = pref(s) . (38)

In Step 2 of iteration i, the regressor is trained to estimate

αref

α(φi)
wφi
(Sacc)≈ αref

α(φi−1)
wφi−1

(Sacc)wθi
(x) , (39)
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that is, an updated version of the previous Step 2 prediction including a Step 1 classifier that
corrects for non-closure in event-level observables. The corresponding loss is

L(i)factor(φ) = (40)

−
­

logN
�

log
αref

α(φi−1)
wφi−1

(Sacc) + log wθ (x)
�� log

αref

α(φi)
wφi
(Sacc),σφi

(Sacc)
�·

pref(Sacc), qi(θ )
,

which differs from Eq.(27) only by the addition of log αref
α(φi−1)

wφi−1
. Since we learn the frag-

mentation function weight from scratch at each iteration, the final Step 2 result will simply
be the output of the regression network of the last iteration. This is the reason we call this
alternative training strategy the “restart” iteration style. For efficiency, we find it beneficial to
initialize the Step 2 regressor with the parameters of the previous iteration.

Stopping condition

Iterating will gradually improve the agreement between the iHOMER predictions and data at an
observable level. However, the variance of the weights increases with each iteration due to the
accumulation of training uncertainties. To avoid introducing unnecessary noise into training,
and to reduce computational costs, we only apply a minimal number of iterations.

A stopping condition requires a performance metric. Here, we discuss a number of possi-
bilities before introducing our metric of choice used in the remainder of this work, the area-
under-the-curve (AUC) from the Step 1 classifier at iteration i. Since HOMER distills the Step 1
classifier into a learned fragmentation function, this metric should be defined in terms of the
agreement between the observed distribution and the Step 2-derived distribution. However,
computing the goodness-of-fit of a model defined over a multi-dimensional unbinned distribu-
tion is far from trivial [51].

One possible approach is to bin each observable and compute a global χ2/Nbins. How-
ever, this approach may fail to capture subtle differences between non-perturbative models,
if perturbative physics dominates. Due to this, one may want to concentrate on the agree-
ment in the features most sensitive to fragmentation, such as the full and charged multiplicity
distributions, or their moments.

Alternatively, we could use the Step 1 classifier as a summary statistic, and study the agree-
ment between the weight distributions. Since in this work the classifier distinguishes between
two simulated datasets that differ only in their non-perturbative parameters, it should be fo-
cused on non-perturbative physics. In an application to real data, the perturbative behavior of
the classifier score should be studied carefully. If we compare the weight distributions through
unbinned tools such as e.g., Kolgomorov-Smirnov test or the Earth Mover’s Distance [52],
these metrics will be extremely sensitive to small imperfections in modeling, and may make a
threshold definition difficult. Binned probability distribution comparisons, such as the KL di-
vergence or the Hellinger distance [53], are more robust against modeling imperfections but
at the expense of introducing a binning choice.

A related possibility is to compare the weight distributions by assessing the performance of
the Step 1 classifier with a “global” metric, where the performance of the classifier trained at
iteration i+1 reflects how the fragmentation model learned at iteration i compares with data at
the observable level. The simplest metric is the AUC. Although it may not capture local failure
modes [54], it provides a cheap, fast metric with a well-defined target value of 0.5. Visual
inspection of the weight distributions validate this simple choice, but future implementations
may require less global stopping metrics.

We expect the Step 1 classifier performance to degrade as we iterate, both because the
iHOMER predictions become more similar to data, and because the effective sample size of the
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reference distribution,

Neff = Nref



wφ(Sacc)

�2
pref(Sacc)


wφ(Sacc)2
�

pref(Sacc)

, (41)

decreases. Even assuming that the classifier is always trained optimally, its AUC should mono-
tonically decrease to 0.5 once the statistical fluctuations in the training samples are compara-
ble to the differences between the reference and data distributions. We stop iterating once the
classifier AUC is compatible with 0.5, where we define “compatible” statistically by sampling
the BNN posterior. Specifically, we estimate the mean AUC of the classifier, and its associated
uncertainty

µAUC ≡



AUC [wθ ]
�

q(θ ) and σ2
AUC ≡ Varq(θ )

�
AUC [wθ ]

�
, (42)

using M samples, and take the stopping condition to be

µAUC −
1p
M
σAUC < 0.5 . (43)

It is satisfied in two distinct cases: either the reweighted simulation and the observed data are
indistinguishable, or the Step 1 classifier fails to learn the likelihood ratio. In both cases we
want to stop iterating. In the latter case, however, we should re-tune the hyperparameters of
the given Step 1 classifier and proceed iterating. Therefore, we also require Step 1 weights to
match the precision of the previous iteration.

Uncertainty-aware iHOMER

In Sections 3.1 and 3.2 we introduced uncertainties in Step 1 and 2 of HOMER, and these
uncertainties can be computed at each iteration of iHOMER regardless of the iteration style. At
each iteration i we train a BNN qi(θ ) during Step 1 and estimate a string break uncertainty
σφi
(s) in Step 2.

When iterating, the reference distribution is re-defined via Eq.(33) using the predicted
means for the weights, without explicitly accounting for the uncertainties. This is a valid
working assumption, since pref is a fixed reference to reweight from, however arbitrary it
may be, and it greatly simplifies things. Since the reference is fixed at iteration i, we only
care about the uncertainties of that iteration associated with reweighting the reference at
iteration i in order to match data. We do not need to combine uncertainties across iterations.
This statement, which seems natural for the Step 2 weights in the “restart” iteration style,
also applies to the Step 2 weights in the “refinement” iteration style as well as to the Step 1
weights. We still compute the uncertainties at each iteration, since they are needed for the
stopping criterion and because they are useful as means of validation.

The iHOMER setup is summarized in Figure 2, showing how uncertainties are introduced for
both Steps 1 and 2 through the sampling of network parameters and the additional uncertainty
σφ(s), respectively. At the end of each iteration, we use the Step 2 results to update pref
accordingly until the stopping criterion is met.

4 Simulated datasets

HOMER [20] and its extension to strings with gluons [23] was validated through a closure
test where two simulated datasets, with different fragmentation parameters a, were used as
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x ∼ pdata(x)

x ∼ pref (x)

Step 1:

Reweight
wθ(x), θ ∼ q(θ )

Step 2:

Factorize
s ∼ pref(s)

wφ(s)

σφ(s)

pref(x)→ αref
α(φ)wφ(S

acc)pref(x)

Figure 2: Schematic visualization of iHOMER, including uncertainties and iterations. Step 1
and Step 2 networks are defined by their weights θ and φ respectively.

“Simulation” (a dataset sampled from pref and which contains the full simulation history)
and “Data” (a dataset sampled from pdata and from which HOMER can only access observable
events). To validate our uncertainty quantification and the iterative debiasing, we consider
slightly modified datasets. The reference dataset, denoted “Simulation”, is generated with
PYTHIA 8.312 exactly as in Ref. [22] and contains 2 × 106 events generated from the Lund
string fragmentation model with

a = 0.68 b = 0.98 σT = 0.335 . (44)

The generated events are split evenly into training and test datasets.

For “Data” we use a more complicated version, to demonstrate the ability of iHOMER to
fit non-standard functional forms of f (z|m2

T ). We sample the lightcone momentum fraction z
from a mixed fragmentation function,

fdata(z|m2
T ) → fa1,a2,r,b(z|m2

T ) = (1− r) fa1,b(z|m2
T ) + r fa2,b(z|m2

T )

with a1 = 0.3 a2 = 0.68 r = 0.5 , (45)

keeping b and σT the same as in Eq.(44). Evaluating each f (z|m2
T ) requires calculating its

normalization, which we do numerically. This choice of a mixed fragmentation function has
the advantage that it provides a dataset beyond the reach of a parametric fit while still being
easy enough to implement via importance sampling while minimizing sample inefficiency. Ad-
ditionally, we can still compute the exact weights to validate the accuracy and calibration of
the learned central values and uncertainties of different weights.

To generate these “Data” events without modifying PYTHIA, we sample 2×106 events from
a dataset with the standard Lund string fragmentation function with a = 0.3 and weight each
event by keeping track of the full history (including both rejected and accepted chains) using
only a simple UserHooks class [6]. These generation weights wgen(H) are used to compute
all expectation values over functions of x , F(x)



F(x)

�
pdata(x)

→ 

wgen(H)F(x)

�
pgen(H)

,

where H = (Srej
1 , . . . , Sacc) and x =O(Sacc). This is needed to compute



log Cθ (x)

�
pdata(x)

dur-
ing the training of the Step 1 classifier via Eq.17 and to compute the binned “Data” distributions
in all relevant figures. These events are evenly split into training and test data.
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The weighted “Data” events do not alter the iHOMER implementation beyond this opera-
tional distinction, since wθ (x) still approximates w(x) = pdata(x)

pref(x)
. However, weighted events

decrease the statistical size of the sample. The ratio between the effective and generated sam-
ple size is



wgen(H)

�2
pgen(H)


wgen(H)2
�

pgen(H)

= 0.86 , (46)

so we do not observe a significant degradation.

For the choice of observables x we follow Ref. [22] and choose a high-level representation
of events consisting of 13 shape variables motivated by the Monash tune [55]:

• event-shape observables 1− T , BT , BW , C , and D. Thrust is defined as [56,57]

T =

∑
i |p⃗i · n⃗T |∑

i |p⃗i|
, (47)

with the axis n⃗T chosen to maximize the above expression. It divides the space into two
hemispheres, S±, which are then used to compute the jet broadening variables B± [58,59]

B± =

∑
i∈S± |p⃗i × n⃗T |
2
∑

i |p⃗i|
BT = B+ + B−

BW =max(B+, B−) . (48)

C and D are related to the eigenvalues of the linearized momentum tensor [60,61]

Θi j =
1∑

a |p⃗a|
∑

a

pi
ap j

a

|p⃗a|
, i, j = 1,2, 3 , (49)

The three eigenvalues of Θi j are denoted λ1,2,3, and

C = 3(λ1λ2 +λ2λ3 +λ3λ1)

D = 27λ1λ2λ3 . (50)

• particle multiplicity n f and charged particle multiplicity nch; and
• the first three moments of the | ln xp| distribution for all visible particles x f and for the

charged particles xch, where xp = 2|p⃗|/ps is the momentum fraction of a particle obtained
by comparing the momentum of the particle p⃗ and the center of mass of the collision

p
s.

This list is not to be confused with the overall collection of observables x . We keep the
notation x f and xch to follow standard conventions within the literature.

The full set of observables x is

x ≡
¦

T, C , D, BW , BT , n f , nch,

〈| ln x f |〉, 〈(| ln x f | − 〈| ln x f |〉)2〉, 〈(| ln x f | − 〈| ln x f |〉)3〉,
〈| ln xch|〉, 〈(| ln xch| − 〈| ln xch|〉)2〉, 〈(| ln xch| − 〈| ln xch|〉)3〉

©
. (51)

We use the first three moments of | ln xp| to condense these per-event distributions of particle-
level variables into a summary statistic of fixed dimension without needing to resort to arbi-
trary binning of the distributions.
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5 Results

Following the motivation and the discussions above, we now assess whether iHOMER

1. accurately reweights the fragmentation function and high-level observables from simula-
tion to data without bias; and

2. provides meaningful and well-calibrated uncertainties.

As a closure test, we also demonstrate that the implicit fragmentation functions defined by
HOMER can be recovered explicitly.

We train iHOMER iteratively in the “refinement” style and with uncertainties, as described
in Section 3, using the datasets introduced above. The specific training setup and hyperpa-
rameters are detailed in App. B. Figure 3 shows the mean sampled AUC score of each Step 1
BNN over each iteration. We show 10 independent iHOMER runs, which are essentially indis-
tinguishable because the AUCs are stable to within precise margins; the BNN uncertainties on
each point are in the fourth decimal place. Since the AUC closely approaches 0.5, our stopping
criterion may not always activate in the same iteration. The histogram overlaid in grey shows
the distribution of iterations selected by our statistical AUC criterion, giving an almost even
split between iterations 3 and 4. While the results do not depend strongly on the stopping iter-
ation, those runs which stopped in iteration 4 perform marginally better. This is likely due to
the aforementioned shortcomings of the AUC metric. To be conservative, we randomly select
a single run among those that stop in iteration 3 for all the results shown below.

We also keep track of the effective sample size defined in Eq.(41) over iterations for history-
and event-level weights in Figure 3. After the first iteration, we observe a clear decrease in
the relative effective sample size. Over the next two iterations, however, the relative effective
sample size decreases only by 2–3%, revealing that iterating does not dramatically reduce the
statistical power of the data.

The classifier weight distribution for the fourth iteration of a single run is shown in Figure 4.
These weights are of particular interest because the stopping criterion flags this classifier as
random, halting iterations. Visual inspection confirms that the classifier does not detect any
local failures that could be missed by the AUC.
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Figure 3: (Left) Step 1 classifier AUCs over iterations. For 10 independent runs, the points
show the BNN-averaged value and (negligible) associated uncertainty estimated from 10 BNN
samples in the test dataset. The gray histogram shows the iterations selected by the stopping
criterion. (Right) Relative effective sample size over iterations, computed for event- and
history-level iHOMER weights.
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Figure 4: Step 1 log-weight distributions for iteration 4. The histogram count and uncer-
tainty comes from computing mean and standard deviation of 10 BNN samples, respectively,
allowing count values below 1.

5.1 Accuracy

To see the impact of the iHOMER iterations we compare the reweighting performance after one
(iHOMER-1) and three (iHOMER-3) iterations. The former corresponds to standard HOMER [20],
modulo differences in training due to the different Step 2 loss functions. Figure 5 shows the
results for select high-level observables, where we include the ratio to the exact reweighting
of the reference simulation. This allows easier comparison of different reweightings of the
simulation, since statistical fluctuations are shared. “Data” should be distributed around a ratio
of 1. The χ2/Nbins values against “Data” are shown in the legend. The different distributions
shown are the following.

• Sim: the reference distributions obtained using the baseline PYTHIA model.
• Data: the measured distributions mimicked by synthetic data from the modified mixture

model in Eq.(45). One goal of HOMER is to reproduce the “Data” distributions.
• Exact: the distributions obtained by reweighting the simulation dataset “Sim” with the exact

weights [62]. The “Exact” and “Data” distributions should be identical, up to the increased
statistical uncertainties introduced by the reweighting.

• iHOMER-n: the iHOMER results after the n-th iteration. These distributions are obtained by
reweighting the simulation dataset “Sim” with the history weights wφ(H) defined in Eq.(31).

• Fit: To highlight the flexibility of HOMER, which makes no assumptions about the form of the
fragmentation function, we include a prediction that assumes “Data” is generated using the
standard Lund fragmentation function, Eq.(4) rather than the mixed model. This “naive”
fit directly uses a set of string breaks for m2

T ∈ [0.024,0.029) of the “Data” sample. This
maximizes the available statistics while fitting a single f (z|m2

T )without integrating over mT .
We perform a binned parametric fit on the z distribution using the iminuit [63] interface
to the Minuit minimizer [64] and the parametric form for f (z|m2

T = 0.027) with a as a
free parameter. This best-case scenario provides an upper limit on how well a constrained
parametric fit can infer the parametric model, since we do not have access to the break-level
information in real data. We obtain

afit = 0.461± 0.006, (52)

and use the central value to define break-level weights with Eq.(21) for all m2
T values. The

induced history-level weights provide an additional reweighting of the reference simulation.
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Figure 5: High-level observable reweighting, comparing iHOMER with a naive parametric
fit. The bottom subpanel shows the ratio to the exact reweighting of the simulation, but the
χ2/Nbins values indicated in the legend evaluate the agreement with “Data”.

In Figure 5 we see that for all observables the HOMER prediction is visibly improved over
iterations; while iHOMER-1 deviates from the “Exact” distributions by up to 10%, iHOMER-3
learns the reweighting at the percent level. Small deviations from closure are only visible in
low-statistics regimes, namely in the tails of the event-level distributions. They are typically
covered by the uncertainties from HOMER and “Data”. Since the naive fit assumes the incorrect
fragmentation function, we observe almost 10% deviations of “Fit” from “Data”, similar to
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Figure 6: Optimal observable reweighting, comparing iHOMER with a naive parametric fit at
the event (left) and history (right) levels. The subpanel shows the ratio to the exact reweight-
ing of the simulation, while the χ2/Nbins values in the legend indicate the agreement with
“Data”. The optimal event observable is approximated by the mean BNN log-weight from it-
eration 1.

iHOMER-1. Although iHOMER-1 and the parametric fit are clearly biased, these biases are dif-
ferent in nature. iHOMER-3 matches “Data” better than the parametric fit across all high-level
observables.

To compare the power of each set of weights, we examine the optimal observables at the
event and history levels, given by −2 log w(x) and −2 log w(H) respectively, in Figure 6. To
compute the event-level optimal observable, we use the Step 1 BNN from the first iteration
as the estimated event-level likelihood ratio w(x) following Eq.(19), and compare the various
reweightings of the “Data” baseline. These optimal observables provide a holistic approach
to validate the learned fragmentation function. A low χ2/Nbins value when comparing the
reweighted simulation to “Data” suggests that the weights capture all relevant information
contained across phase space. Additionally, we can use the optimal observables to quantify
the information gap between the measured high-level observables and the inaccessible frag-
mentations. To do so, in the right panel in Figure 6 we show an additional “BNN” distribution.
It is obtained by reweighting the simulation dataset “Sim” by the event-level weights as sam-
pled Step 1 BNN from the first iteration, capturing the degree of information encoded in the
high-level observables.

For both optimal observables, the iHOMER-1 and “Fit” weights show a systematic offset with
respect to the truth distributions, while iHOMER-3 reaches almost perfect closure, mimicking
the exact weights. Additionally, iHOMER generalizes beyond the high-level observables distri-
butions, implied by the “BNN” weights yielding an inferior performance when compared to
the “Fit” and iHOMER. This highlights the fact that iHOMER is actually learning a fragmentation
model.

Next, we check whether the learned iHOMER weights are normalized to unity in each mT
bin in Figure 7. That is, we compute

〈wφ(s)〉s∼pref(s),m2
T∈[α,β] =

〈H(m2
T −α)H(β −m2

T )wφ(s)〉s∼pref(s)

〈wφ(s)〉s∼pref(s)
, (53)

with H(x) the Heaviside step function. The closer the learned weights approximate the ex-
act weights, the more accurately they should satisfy the conditional normalization for each
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Figure 7: Conditional normalization of the fragmentation-level iHOMER weights across var-
ious mT bins, comparing the first and final iterations. The χ2/Nbins values in parentheses
indicate the agreement of the bin values with 1.

m2
T followed by the exact weights in Eq.(21). Consequently, verifying normalization in this

closure test, where the true conditional structure is known, serves as a check of optimality.
From Figure 7 we see that the iHOMER-1 weights do not fully satisfy the conditional normal-
ization, however it is satisfied by the 3rd iteration. Unlike the original HOMER implementation
in Ref. [22], our method does not require any secondary regularization loss to enforce this
structure. Instead, the necessary normalization emerges solely through the optimization of
the learned fragmentation function.

Finally, we show the fragmentation function reweighting in Figure 8. In the top row, we
show the inclusive distribution of z over all string breaks in the “Data” and “Sim” test datasets,
as well as for the various reweightings. Since the break-level weights are defined as ratios of
conditional probabilities according to Eq.(13), we need to supplement them with an estimate
of pdata(m2

T )/pref(m2
T ) to compute the marginal density

pdata(z)≡
∫ ∞

m2
T,min

dm2
T fdata(z|m2

T )pdata(m
2
T )

=

∫ ∞

m2
T,min

dm2
T w(s) fref(z|m2

T )
pdata(m2

T )

pref(m2
T )

pref(m
2
T )

=

�
w(s) fref(z|m2

T )
pdata(m2

T )

pref(m2
T )

�

pref(m2
T )

, (54)

where m2
T,min is the minimum squared transverse mass. We compute the necessary ratios of

probability distributions, pdata(m2
T )/pref(m2

T ), by binning the m2
T densities of “Data” and “Sim”,

which is possible in this closure test.

Also in Figure 8 we investigate the behavior of the reweighted fragmentation function in
bins of mT demonstrating that iHOMER learns the conditional fragmentation function correctly.
The iHOMER-3 weights reproduce the exact reweighting at the percent level, whereas the fit
shows systematic offsets of up to 5%. The only visible deviation between iHOMER-3 and the
exact reweighting is in the tails of the fragmentation function. This shows that iHOMER ac-
curately deduces an interpretable reweighting of the fragmentation function, regardless of its
analytical form.

22



SciPost Physics Submission

1

2

3

4

5

D
en

si
ty

×10−2 Inclusive

Data
Sim

Exact (1.09)
Fit (16.12)

iHOMER-1 (9.88)
iHOMER-3 (2.28)

0.2 0.4 0.6 0.8
z

0.95
1.00
1.05

R
at

io

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0.040 < m2
T,had < 0.063

Data
Sim

Exact (0.94)
Fit (2.43)

iHOMER-1 (1.81)
iHOMER-3 (1.20)

0.2 0.4 0.6 0.8
z

0.95
1.00
1.05

R
at

io

2

4

6

D
en

si
ty

×10−2 0.160 < m2
T,had < 0.207

Data
Sim

Exact (0.85)
Fit (2.45)

iHOMER-1 (1.99)
iHOMER-3 (1.05)

0.2 0.4 0.6 0.8
z

0.95
1.00
1.05

R
at

io

1

2

3

4

D
en

si
ty

×10−2 0.512 < m2
T,had < 1.794

Data
Sim

Exact (1.03)
Fit (4.26)

iHOMER-1 (2.79)
iHOMER-3 (1.20)

0.2 0.4 0.6 0.8
z

0.95
1.00
1.05

R
at

io

Figure 8: Fragmentation-level reweighting, comparing iHOMER with a naive parametric fit.
The bottom subpanel shows the ratio to the exact reweighting of the simulation, where the
χ2/Nbins values in parentheses indicate the agreement with “Data”. For the inclusive distri-
bution in the top left panel, we supplement the weights with the exact pdata(m2

T )/pref(m2
T )

ratio.

5.2 Uncertainties

Following the second iHOMER improvement, we now evaluate the learned uncertainties. As
an initial check, we compare the event-level uncertainty learned in Step 2, σφ(Sacc), with the
spread of the Step 1 log-weights representing the noise on the Step 2 training target, as defined
in Eq.(20).

The left panel in Figure 9 compares iterations 1 to 4. In the first iteration, the learned σφ
is approximately five times larger than the BNN uncertainty. This suggests that the target noise
is not the leading systematic uncertainty in Step 2 during iteration 1. Rather, σφ covers the
error associated with non-factorization of the classifier wθ (x). Over iterations, the learned σφ
decreases, while the BNN uncertainty is essentially constant after the first iteration. The drop
in Step 1 uncertainty from iteration 1 to iteration 2 can be explained by inspecting the AUC
evolution in Figure 3. Between the first iterations there is a noticeable drop in AUC, which
we expect to be reflected in the statistical uncertainties since the classifier needs to learn a
simpler likelihood ratio that can be better constrained with the same, or slightly lower due to
Neff, statistics.

The Step 2 uncertainty is always strictly larger than the BNN uncertainty, indicating that
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Figure 9: (Left) Step 1 and Step 2 uncertainties over iterations. The learned chain-level log-
weight uncertainty σφ(Sacc) is compared to the BNN uncertainty estimated using 10 samples.
Each point is the average over the test dataset. The shaded region shows the gap between the
two uncertainties, which we broadly refer to as “non-factorization error” in the text. (Right)
Step 2 log-weight calibration in terms of its pull against the mean classifier log-weight in
each iteration, sampling p(i)ref(S

acc) and qi(θ ).

Step 2 correctly absorbs the statistical uncertainties captured in Step 1. We attribute the per-
sistent gap to the non-factorization of wθi

(x) — since α(φi−1)/α(φi) × wφi
(Sacc) cannot be

exactly matched one-to-one with the classifier weight, σφi
(Sacc) grows to accommodate the

error.

To validate this interpretation, we show in the right panel in Figure 9 the calibration of the
Step 2 prediction in terms of its pull against the BNN target for each iteration. We construct
the pull defined in Eq.(30). For each iteration, the pull follows the unit Gaussian, indicating
that the Step 2 uncertainty σφ is calibrated. Given the gap between the learned and BNN un-
certainties in iteration 1, this correct calibration confirms the presence of a systematic beyond
BNN noise, namely the non-factorization error. While other sources of systematic uncertainty
can contribute to the Step 2 training, we do not expect them to change in magnitude as much
as observed between iterations 1 and 2 in the left panel of Figure 9.

Finally, we compare the network predictions with the exact weights, which represent our
primary quantities of interest. For iteration 3, we start with the chain and history results,
shown in Figure 10. In both cases, we observe Gaussian but narrow pulls, indicating con-
servative uncertainties. This is expected if σφ contains a large contribution from the non-
factorization error; other sources of uncertainty captured by σφ should spoil the agreement
with the exact weight. The non-factorization error leads to under-confident predictions be-
cause it implies a broad family of fragmentation functions compatible with the observed high-
level distributions. We then compare against exact weights that are sampled from a single fixed
distribution. In this way, the non-factorization error properly accounts for the degeneracy of
the high-level observables.

The calibration of the iHOMER uncertainties and its limitations is further illustrated by the
calibration of break-level weights shown in Figure 11. We observe how the pulls are overly
narrow and also display noticeable non-gaussianity. We further investigate this by examin-
ing different mT quantiles separately (bottom row of Figure 11) and observing how certain
subsets of pulls exhibit a more Gaussian behavior than others. The non-Gaussianity can be
understood from the fact that the observables lack constraining power on the fragmentation
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Figure 10: Chain-level (upper) and history-level (lower) uncertainty calibration, compar-
ing the predicted log-weight to the exact value. The black curves of the middle and right panels
correspond to a unit Gaussian.

function, and HOMER may fail to properly reweight some regions of phase space accordingly.
However, the average pull is still null, the associated uncertainty is large, and the resulting
event-, chain- and history-level weights are Gaussian, albeit under-confident. This means the
iHOMER uncertainties properly reflect the lack of knowledge on the fragmentation function due
to the high-level observables and the factorization approximation used during training.

To validate the interpretation of the non-factorization error leading to under-confident
uncertainties, we can inspect the pull

t
�
αref
αdata

w(Sacc) | αref
α(φ)wφ(S

acc),σq(x)
�
=

log
αref

αdata
w(Sacc)− log

αref

α(φ)
wφ(Sacc)

σq(x)
. (55)

It tests the coverage of the exact log-weight when assigning the BNN uncertainty to the Step 2
prediction log wφ(Sacc). The true value is the event-level weight built using the factorization
approximation but considering the exact chain weight w(Sacc) and the exact acceptance ratio
αref/αdata. In Figure 12 we show that the BNN component of the uncertainty alone is initially
overconfident in iteration 1, but becomes well calibrated by iteration 3. This confirms that if
Step 2 could exactly learn the BNN uncertainty, the full calibration shown in Figure 10 would be
correct. Fortunately, this effect of non-factorization error only leads to under-confidence, and
accounts for the lack of constraining power of the observables on the fragmentation function.

5.3 Parameter closure

Although HOMER does not assume any parametric form of the fragmentation function, it can
still be related to a physical hadronization model, if needed. As a final check, we perform
a parametric fit on the learned fragmentation function, using the mixture model defined in
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Figure 11: Fragmentation-level uncertainty calibration, comparing the predicted log-weight
to the exact value. The top row is the inclusive result, while the bottom row is split by quartiles
of mT , distinguished by color.

Eq.(45) with a1 and a2 as free parameters. To do so, we bootstrap the weighted samples of
z for a fixed, narrow m2

T ∈ [0.024,0.029) bin, again chosen to maximize the statistics while
ensuring we only need to compute a single per-class normalization for each set of explored
(a1, a2) values. We then fit the function

fa1,a2,r=0.5(z|m2
T = 0.027) (56)
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Figure 12: Calibration of the BNN uncertainty in terms of the pull between the Step 2 log-
weight and the exact value, sampling p(i)ref(S

acc) and qi(θ ).
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Figure 13: Ensemble of Maximum Likelihood Estimates of the fragmentation function
parameters, obtained via an unbinned parametric fit on a set of bootstrapped samples. We
compare different iterations of iHOMER, “Exact” and “Data”. True values are shown as dashed
lines.

to the density of z values. For iHOMER, we sample weights adding Gaussian noise to log wφ(s)
according to the predicted uncertaintyσφ(s). Unlike the earlier naive fit, this fit is unbinned, to
avoid any increased uncertainties due to binning. To accurately find the maximum likelihood
estimate (MLE), we implement an expectation maximization algorithm that takes advantage of
the mixture model structure by introducing a latent variable representing a class assignment.

In Figure 13, we show an ensemble of 100 MLEs for bootstrapped samples from iHOMER-1,
iHOMER-3, “Exact” and “Data”. We use them to obtain a notion of uncertainty on the MLE
estimate, although it is not a rigorous analysis. Indeed, iHOMER-3 improves on iHOMER-1 and
becomes more similar to the “Exact” and “Data”, containing the true values in a reasonable re-
gion. This means iHOMER-3 learns something consistent with the true fragmentation function,
even given the non-gaussian pulls from Figure 11. It allows us to effectively reweight high-level
observables in simulation to data, while maintaining a physical description of hadronization.

6 Outlook

We introduced iHOMER, an extension of the original HOMER method [22,23] that improves its ac-
curacy and precision. Inspired by unfolding techniques [65], the accuracy of HOMER is improved
through an iterative training which allows us to correct for the invertible observables approx-
imation used during Step 2 training. A data-driven stopping criterion avoids over-iterating
once the reweighting is sufficiently accurate.

The precision is quantified by extending Step 1 and Step 2 to account for different sources
of uncertainty. In Step 1, a Bayesian Neural Network quantifies the statistical uncertainties
arising from finite data. This uncertainty is propagated to Step 2, where a learnable uncertainty
is trained via a heteroscedastic Gaussian loss to capture the dominant systematic uncertainty
that prevents exact matching of the Step-1 weights.
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To showcase the utility of these two new features, we go beyond fitting HOMER to the same
Lund fragmentation function with changed parameters and instead consider a more arbitrary
fragmentation function to generate the pseudo-data. This highlights how the flexibility of the
ML-approach captures non-trivial deviations from the reference function. In this closure test,
and using high-level observables to represent the events, we have shown that the iterations
increase the performance of HOMER and the resulting chain-level and event-level weights are
reproduced correctly. We have also inspected the learned fragmentation function and shown
via a parametric fit that, although the high-level information cannot perfectly constrain the
learned function, it is compatible with the true, known fragmentation function. In the future,
the flexibility of iHOMER should be further tested by fitting to observables generated under
different hadronization models such as the cluster model, which would probe how much the
string picture limits the capability of the model.

Currently, iHOMER has been tested on the simplified qq̄ scenario. The introduction of glu-
ons presents many challenges, including the variability of the initial state and the decrease in
constraining power of the high-level observables. Future work will explore how iterations can
improve HOMER in those cases, and extend the uncertainty quantification techniques presented
here. It should also explore how uncertainty in detector effects and the modeling of perturba-
tive physics (such as the hard processes and the parton shower) should be taken into account,
both in terms of accurate modeling and uncertainty quantification.
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A Further details on the HOMER method

In this appendix we give further details about the HOMER method. First, Table 1 contains a
translation between the present paper and the notation used in Ref. [23].
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Next we give a detailed derivation of Eq.(11), which takes into account the effects of
rejected chains through the change of corresponding acceptance rates. In the derivation we
need to take into account that each simulated event is not associated with a single chain S, but
rather to a history H containing a sequence of N + 1 chains, N of which were rejected by the
finalTwo algorithm, and one accepted chain. The probability density for a history for a model
M (in our case, M= {ref, data}) is the product of accepted and rejected chain densities

p(H|M) = p(Sacc|M)
N∏

i=1

p(Srej
i |M) . (57)

By construction, the above probability is normalized over histories of varying lengths

∫
dSacc

∞∑
N=0

∫
dSrej

1 · · · dSrej
N p(H|M) = 1 . (58)

The corresponding event probability is given by

p(x |M) =
∫

dSaccδ(x −O(Sacc))
∞∑

N=0

∫
dSrej

1 · · · dSrej
N p(H|M)

=

∫
dSaccδ(x −O(Sacc))p(Sacc|M)

∞∑
N=0

N∏
n=1

�∫
dSrej

n p(Srej
n |M)

�

=

∫
dSaccδ(x −O(Sacc))p(Sacc|M)

∞∑
N=0

(1−αM)N

=

∫
dSaccδ(x −O(Sacc))

p(Sacc|M)
αM

,

(59)

where

αM =

∫
dSA(S)p(S|M) =

∫
dSaccp(Sacc|M) = 1−

∫
dSrejp(Srej|M), (60)

is the acceptance rate for model M. This proves the relation in Eq.(11) in the main text.

HOMER expresses the Lund string fragmentation function implicitly in terms of string-break–
level weights w(s)

w(s) =
pdata(s)
pref(s)

. (61)

That is, multiplying the reference fragmentation function fref(z|m2
T ) by the appropriate weight

w(s), where s contains the correct z and mT , gives the reweighted fragmentation function
fdata(z|m2

T ).

The chain-level and history-level weights are the products of single emission weights,

w(S) =
∏
s∈S

pdata(s)
pref(s)

and w(H) =
∏
S∈H

w(S) . (62)

The event-level weights are obtained by averaging over histories that yield the same event.
Written in terms of accepted chains we have,

w(x) =
αref

αdata
〈w(Sacc)〉p(Sacc|x) , (63)
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Ref. [23] This work
String break s⃗hcb s
Fragmentation chain S⃗hc S
Fragmentation history S⃗h H
Event eh x
Event representation x⃗h x
Acceptance pacc

i αi

Classifier weight wclass(eh) wθ (x)
String break weight winfer

s (s⃗hcb,θ ) wφ(s)
Chain-level weight winfer(S⃗hc ,θ ) wφ(S)
History-level weight wHOMER(S⃗h,θ ) wφ(H)

Table 1: Translation of the notation used in Ref. [23] (2nd column) to the one used in this
work (3rd column).

where the averaged weight for accepted chains given event x is computed as

〈w(Sacc)〉p(Sacc|x) =

∫
dSaccδ(x −O(Sacc))w(Sacc)pref(Sacc)∫

dSaccpref(Sacc)

∫
dSaccpref(Sacc)∫

dSaccδ(x −O(Sacc))pref(Sacc)

=

∫
dSaccδ(x −O(Sacc))w(Sacc)pref(Sacc)∫

dSaccδ(x −O(Sacc))pref(Sacc)
. (64)

In practice, we do not perform the above-defined averaging, but rather work in the approxi-
mation where 〈w(Sacc)〉p(Sacc|x) is replaced by w(Sacc) for a single chain Sacc that happened to
be produced in the simulation (and is giving event x). Effectively, the averaging occurs later in
the analysis chain, when one bins the distributions of observables, thus pooling many events
x . Alternatively, one could perform explicit averaging over neighboring events, as was done
in [23].

The acceptance rate αdata in Eq.(63), describing acceptance of chains in simulation of
hadronization using the true fragmentation function fdata(z|m2

T ), is given by

αdata =

∫
dSacc pdata(S

acc) =

∫
dSacc w(Sacc)pref(S

acc), (65)

and estimated in a similar fashion to Eq.(12),

αdata =

∑M
m=1 w(Sacc)

∑M
m=1

∑
S∈H w(S)

. (66)

In HOMER, the string break-level weights w(s) in Eq.(61) are parameterized by a neural
network with parameters φ. This then enters in the r.h.s. of Eq.(63) via w(Sacc) and the
acceptance ratio αdata. The values of NN parameters φ are then optimized to match the event
weight w(x) obtained in Step 1 of HOMER (see Section 3).

B Training details and hyperparameters

In this appendix we give further details about the BNNs used and the training. The complete
list of network and optimization hyperparameters are given in Table 2.
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Step 1 Step 2

MLP hidden channels 2 3
MLP hidden layers 32 64
MLP activation SiLU SiLU

Ndata (training/validation) 900k/100k -
Nref (training/validation) 900k/100k 900k/100k
Loss ScheduleFree AdamW ScheduleFree AdamW [66]
Learning rate 10−4 10−3

Weight decay None None
Batch size 8192 8192
Epochs 500 2500
Patience None 250

Table 2: Network and optimization hyperparameters for training networks in iHOMER. Both
MLPs in Step 2 share the same architecture.

Before training, we normalize each high-level observable and string-break vector by sub-
tracting the mean and dividing by the standard deviation of the full training dataset. During
Step 2, we find it beneficial to explicitly normalize the target weights using

wθi
(x)→ wθi

(x)/


wθi
(x)
�

p(i)ref(S
acc) , (67)

which uses paired events x = O(Sacc). Eq.(67) applies to both iteration styles, so long as
the correct p(i)ref is used. This helps to prevent reinforcement of mis-normalized weights over
iterations.

Since the Bayesian loss in Eq.(17) consists of two terms, the likelihood loss and the KL-
regularization, it is important to track them separately. Here, a relevant hyperparameter is the
width of the Gaussian prior p(θ ). We confirmed that all presented results are consistent under
a wide range of different priors, while for the numerical results shown in this paper we chose
a prior width of 1. If the prior is chosen too narrow, the BNN posterior will not sufficiently
cover θ space.

C BNN results

In this appendix we show the reweighting results of the Step 1 BNN classifier itself, which is
trained as specified in App. B.

Figure 14 shows the distributions of high-level observables for “Data” and “Sim”, as well as
for the simulation reweighted either by the BNN, or by the exact weights (denote as “Exact”)
in the figure. The uncertainty bands for “Data”, “Sim” and “Exact” are standard (weighted)
Poisson statistics per bin b

σ2
b = Nref,b 〈w2(x i)〉i∈b =

∑
i∈b

w2(x i) , (68)

with unit weights for “Data” and “Sim”. The “BNN” uncertainty includes the variance from
sampling θ ∼ q(θ ),

σ2
q,b = Nref,b 〈w2

θ (x i)〉i∈b,θ∼q(θ ) =
1
M

M∑
j=1

∑
i∈b

w2
θ j
(x i) . (69)
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Figure 14: High-level reweighting with Step 1 classifier: Distributions of select high-level
observables for data and simulation, as well as and simulation reweighted by either classifier
weights or exact weights. The classifier error band includes sampling over the BNN parameter
posterior.
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Figure 15: Calibration of the Step 1 classifier: The residual between predicted and observed
proportions of “Data" to “Sim" events in bins of the iteration-1 BNN score is shown. A perfectly
calibrated classifier yields a constant residual at zero. Predictions are obtained as the average
over 10 BNN samples.

The BNN matches the “Data” distribution precisely throughout all of the observables, with
small deviations present only in the low-statistics tails.

Finally, we validate the calibration of the BNN by binning the mean classifier score

C(x)≡ 〈Cθ (x)〉q(θ ) , (70)

with Cθ (x) as defined in Eq. (19), and comparing it to an MC estimate of the true score in
each bin

Cobs ≡
Ndata,C(x)∈b

Ndata,C(x)∈b + Nref,C(x)∈b
(71)

Figure 15 shows the resulting distribution in bins of C(x). The prediction and observed ratios
are in agreement over the entire range of BNN outputs. This validates the interpretation of
the Step 1 weight as a likelihood ratio.
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