
Entropy Measures for Transition Matrices in Random
Systems
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Abstract

A transition matrix can be constructed through the partial contraction of two
given quantum states. We analyze and compare four different definitions of entropy
for transition matrices, including (modified) pseudo entropy, SVD entropy, and
ABB entropy. We examine the probabilistic interpretation of each entropy measure
and show that only the distillation interpretation of ABB entropy corresponds to
the joint success probability of distilling entanglement between the two quantum
states used to construct the transition matrix. Combining the transition matrix
with preceding measurements and subsequent non-unitary operations, the ABB en-
tropy either decreases or remains unchanged, whereas the pseudo-entropy and SVD
entropy may increase or decrease. We further apply these entropy measures to
transition matrices constructed from several ensembles: (i) pairs of independent
Haar-random states; (ii) bi-orthogonal eigenstates of non-Hermitian random sys-
tems; and (iii) bi-orthogonal states in PT -symmetric systems near their exceptional
points. Across all cases considered, the SVD and ABB entropies of the transition
matrix closely mirror the behavior of the subsystem entanglement entropy of a sin-
gle random state, in contrast to the (modified) pseudo entropy, which can exceed
the bound of subsystem size, fail to scale with system size, or even take complex
values.
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1 Introduction

The quantum information transfer induced by post-selected processes could be described
by a non-trace-preserving transition matrix. Consider a bipartite protocol in which Alice
and Bob share an entangled state |ψ1⟩bc. Alice jointly post-selects her systems a and b
onto a fixed entangled state |ψ2⟩ab, inducing a linear transition matrix τ that maps an
unknown input state on a to Bob’s system c, as illustrated in Fig. 1. Such post-selected
transitions arise in diverse contexts, including time-symmetric quantum mechanics [1],



Figure 1: Given an entangled state |ψ1⟩bc shared by b and c, the post-selection is performed
on the joint system ab with one specific entangled state |ψ2⟩ab. This operation amounts
to transferring the information of an unknown state from a to c via the transition matrix
τ .

weak measurement [2, 3], and final-state projection proposals for black hole evaporation
[4–7].

Since the associated map ρ → τρτ † is completely positive but non-trace-preserving,
it does not define a quantum channel. So standard fidelity-based measures used in tele-
portation and CPTP dynamics [8–11] are not applicable. This motivates the use of
entropy-based diagnostics to quantify how much information can be transferred through
such post-selected processes. Existing proposals include pseudo entropy [12], its modified
variants [13], and the SVD entropy [14], each of which captures different structural aspects
of the transition matrix but suffers from conceptual or technical limitations.

The pseudo entropy [12] is defined as the von Neumann entropy of the normalized
transition matrix τ̂ , which is motivated by the entanglement entropy [15, 16] and its
holographic duality [17–21]. Since its introduction, pseudo entropy and its extension have
been studied in various physical settings, including many-body systems [22,23], quantum
field theories [7, 24–36] and holography [37, 38], and also applied to various phenomena,
including timelike entanglement [39–44] and quantum chaos [45–48]. The pseudo entropy
of τ constructed from the bi-orthogonal bases of non-Hermitian systems [49] was deeply
studied in [50–55]. Especially, in the PT -symmetric SSH model at criticality governed by
non-unitary CFT [50], the pseudo entropy displays a logarithmic scaling with a negative
central charge. Recently, a modified version of pseudo entropy was proposed by defining
the entropy in terms of the logarithm of absolute eigenvalues of τ̂ [13]. The modification
avoids the multi-valuedness associated with ln τ̂ in the pseudo entropy, and can also
effectively measure the correct negative central charges in some critical non-Hermitian
systems [50, 56] as the pseudo entropy does. Since its introduction, the modified pseudo
entropy has been further applied to non-Hermitian quantum systems [57–63], and has also
been used to define quantum mutual information in time [64,65].

However, there are some serious issues associated with the (modified) pseudo entropy.
Because the transition matrix is generally non-Hermitian, the resulting entropies can
takes negative or complex values rather than being real and positive, and in some cases,
may even diverge, exceeding the logarithm of the Hilbert space dimension, e.g., entropy
behaviors in PT -symmetric non-Hermitian system [13, 50]. To address these issues, the
SVD entropy was introduced in [14], defined as the von Neumann entropy of the SVD-
normalized transition matrix τ̄ . By construction, the SVD entropy is real, non-negative,
and strictly bounded by the logarithm of Hilbert space dimension. Its properties have
been further explored in a variety of settings, including general and holographic CFTs
and Chern-Simons theory [14], as well as in related applications [66]. In spite of this, some
new issues also arise, for example the difficulty of performing field-theoretic calculations
due to the presence of the square roots in the definition of τ̄ .
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Transition matrices τ̂ τ̄ τ̃

Normalizations
τ

Tr τ

√
τ †τ

Tr
√
τ †τ

τ√
Tr [ττ †]

Schmidt coefficients zi qi
√
pi

Spectra for entropy λi qi pi (τ̃ τ̃
†)

Table 1: The notation of different normalizations of a given transition matrix τ for (mod-
ified) pseudo entropy, SVD entropy and ABB entropy. The normalizations of τ̂ and τ̄ are
based on the trace norm, while the normalization of τ̃ is called state-normalization since
we regard τ̃ as a state between a and c.

Moreover, probabilistic interpretations of pseudo entropy and SVD entropy were pro-
posed in [12,14] by extending the notion of entanglement distillation for pure states [67,68]
to the distillation of transition matrices. In this analogy, many copies of an identical
transition matrix are asymptotically concentrated into a lower-dimensional one, which
is interpreted as distilling a certain number of two-dimensional transition matrices, each
contributing an entropy ln 2. In this sense, distillation implies that the associated en-
tropy of a single transition matrix is real, non-negative, and bounded by the dimension of
the Hilbert space. Thus, distillation offers a clear and effective description of complicate
transition matrices and also reveals the irreversibility of additional non-unitary opera-
tions (Sec. 2.3). As in the entanglement distillation, the distillation of transition matrices
should admit a clear physically operational interpretation. However, in [12, 14], the so-
called probabilities of concentration associated with pseudo entropy and SVD entropy
do not correspond to genuine measurement probabilities within the standard quantum
mechanics. This motivates us to explore another entropy measure based on distillation
that admits a clear probability interpretation.

In this paper, we introduce and analyze the Alter-Brown-Botstein (ABB) entropy,
introduced in [69]. The ABB entropy is defined as the von Neumann entropy of τ̃ τ̃ †,
where τ̃ denotes a state-normalized transition matrix. Throughout this work, we adopt a
notation for transition matrices with different normalizations, as summarized in Tab. 1.

In contrast to the pseudo entropy, modified pseudo entropy, and the SVD entropy,
we find that the ABB entropy monotonically decreases under generalized measurements
and non-unitary operations, and admits a clear probabilistic interpretation in terms of
transition-matrix distillation. We further apply all four entropy measures to Haar random
states, non-Hermitian chaotic systems, and the PT -symmetric SYK Lindbladian with
linear jump operators [70]. We find that, among these measures, only the SVD entropy
and the ABB entropy exhibit physically reasonable behavior as the subsystem size is
varied.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the ABB
entropy, review the (modified)pseudo entropy and SVD entropy, and analyze the behavior
of the different entropies when the transition matrix undergoes generalized measurements
and successive quantum operations. In Sec. 3, we discuss the probabilistic interpretations
of all four entropy measures based on the distillation of transition matrices. In Secs. 4
and 5, we calculate the ensemble averages of each entropy in the contexts of two Haar
random states and non-Hermitian chaotic systems, respectively. In Sec. 6, we analyze
the behavior of four entropies in PT -symmetric SYK Lindbladian. Finally, in Sec. 7, we
provide concluding remarks and future outlook.
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2 Various entropy measures for transition matrices

2.1 Transition matrices from post-selection

As already mentioned in the introduction, we construct the transition matrix τ through
post-selection, illustrated in Fig. 1 , and the transition matrix τ is expressed as

τ = Trb |ψ1⟩bc ⟨ψ2|ab : Ha → Hc , (1)

which is a linear map from the Hilbert space of system a to that of c. The resulting
output state is given up to normalization by

Trab |ϕ⟩a |ψ1⟩bc ⟨ψ2|ab = τ |ϕ⟩a , (2)

with the post-selection probability (⟨ϕ|a ⟨ψ1|bc) |ψ2⟩ab ⟨ψ2|ab (|ϕ⟩a |ψ1⟩bc) = ⟨ϕ|a τ †τ |ϕ⟩a,
where τ † : Hc → Ha is the adjoint of τ . For a general mixed state input ρ on system a,
the output state up to normalization becomes τρτ †, with the corresponding post-selection
probability Tr[⟨ψ2|ab (ρ⊗ |ψ1⟩bc ⟨ψ1|bc) |ψ2⟩ab] = Tr[τρτ †].

Denote the dimensions of Ha, Hb, and Hc by da, db, and dc, respectively. We apply
the Schmidt decomposition to the given states |ψ1⟩bc, |ψ2⟩ab, and the transition matrix τ .
There exist six orthonormal bases such that

|ψ1⟩bc =

d1∑
i=1

xi |βi⟩b |γi⟩c , |ψ2⟩ab =

d2∑
i=1

yi |αi⟩a |β̃i⟩b , (3)

τ =
d∑
i=1

zi |γ̃i⟩c ⟨α̃i|a , τ † =
d∑
i=1

zi |α̃i⟩a ⟨γ̃i|c , (4)

where we denote d1 = min(db, dc), d2 = min(da, db) and d = min(da, db, dc), and the
coefficients xi, yi and zi are real, non-negative numbers, unique up to re-ordering. We
emphasize that τ is constructed by taking the partial trace over b of the bipartite states
|ψ1⟩bc and |ψ2⟩ab. Because the dimensions of |ψ1⟩bc and |ψ2⟩ab can be distinct in general,
τ is not necessarily a square matrix. Even in square cases, it is generally non-Hermitian
except for some special situations where |γ̃i⟩ = ± |α̃i⟩ holds for all the indices i with
zi > 0.

The vector in these bases is unique up to reordering if its corresponding coefficient
is nonzero. In general, the overlap matrix ⟨β̃i|βj⟩ ≠ δij up to reordering, which implies
that the bases {|γi⟩} and {|γ̃i⟩} (and likewise for {|αi⟩}) are distinct. The discussion
for distillation of transition matrices in Sec. 3 will simplify in the diagonal case, where
|βi⟩b = |β̃i⟩b. In this case, the transition matrix τ in (4) becomes

τ
diag.
=

d∑
i=1

zi |γi⟩c ⟨αi|a , zi
diag.
= xiyi . (5)

The transition matrix τ defines a completely positive but non–trace-preserving map
that transfers only partial information of the input state from a to c. As a result, stan-
dard fidelity-based measures are not suitable for quantifying the amount of information
transferred. Instead, we introduce and compare several entropy measures of the transition
matrix τ to quantify the amount of information transferred. In the diagonal case, the en-
tropy measures of τ are directly related to the entanglement distillation of the states |ψ1⟩bc
and |ψ2⟩ab. Otherwise, their relation becomes more complicated due to the contribution

of the non-identical matrix ⟨β̃i|βj⟩.
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2.2 Entropy measures of transition matrix

In this section, we define the ABB entropy to describe the information transfer in the
above post-selection process with τ and compare it to other measures of entropy.

2.2.1 ABB entropy

We aim to investigate how much information from the input state ρ on system a is
transferred into the normalized output state ρτ = τρτ †/Tr[τρτ †] via the post-selection
process governed by the transition matrix τ . The information transfer from a to c can be
quantified by the minimal relative entropy between the input and output states, optimized
over all unitary transformation U

min
U
S[UρτU

†||ρ] = Tr[ρτ ln ρτ ] − min
U

Tr[UρτU
† ln ρ], (6)

where the relative entropy is defined as S[ρ||σ] = Tr [ρ ln ρ] − Tr [ρ lnσ]. Since unitary
operation should not affect the amount of information transferred, we rule it out in the
relative entropy by minimization. Clearly, this expression depends on both τ and ρ. To
isolate the effect of τ , we focus on the scenario in which the input state is the maximally
mixed state (MMS) ρmax = I/da, with I being the identity matrix in dimension da. In
this case, the output state becomes

ρmax
τ =

τρmaxτ †

Tr[τρmaxτ †]
=

ττ †

Tr[ττ †]
= τ̃ τ̃ † =

d∑
i=1

pi |γ̃i⟩c ⟨γ̃i|c , (7)

where we introduce a normalization for τ , given by

τ̃ =
τ√

Tr[ττ †]
=

d∑
i=1

√
pi |γ̃i⟩c ⟨α̃i|a , (8)

with pi =
z2i∑
j z

2
j

and
∑

i pi = 1. This decomposition in the last step follows from the

singular value decomposition of τ in (4). Due to ln ρmax = − ln daI, any unitary operation
on ρτ in (6) leaves the relative entropy invariant. Now, the minimal relative entropy
between ρmax

τ and ρmax is

min
U
S[Uρmax

τ U †||ρmax] = Tr[ρmax
τ ln ρmax

τ ] + ln da. (9)

The first term is the negative von Neumann entropy of the output state ρmax
τ , which is

defined as

Svon[ρmax
τ ] = −Tr[τ̃ τ̃ † ln(τ̃ τ̃ †)] = −

d∑
i=1

pi ln pi = SABB[τ ]. (10)

The MMS ρmax has the largest von Neumann entropy ln da. After post-selection with
transition matrix τ , the information loss is reflected in the decrease of Svon[ρmax

τ ]. A large
(small) value of Svon[ρmax

τ ] indicates that most of the states in ρmax = 1
da

∑da
i=1 |α̃i⟩a ⟨α̃i|a

survive (are eliminated) after post-selection, where we have used the basis {|α̃i⟩} coming
from the decomposition of τ in (4). In the last equality of (10), we identify that this
quantity coincides with the ABB entropy SABB[τ ], originally introduced in [69] to quantify
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the complexity of genome expression data. The name “ABB” is derived from the initials
of the authors of [69], following the convention in [14].

Alternatively, based on the Choi-Jamio lkowski (CJ) isomorphism [71,72], we can map
the transition matrix τ in (4) onto an entangled state |τ⟩ =

∑d
i zi |γ̃i⟩c |α̃i⟩a on the joint

system ca. Thus, the normalization of τ in (8) can be interpreted as the normalization
of the state |τ⟩, allowing the ABB entropy in (10) to be interpreted as the entangle-
ment entropy between system c and a on the state |τ⟩ after normalization. Finally, the
corresponding Rényi ABB entropy of τ is given by

S
(n)
ABB[τ ] =

1

1 − n
ln

Tr[
(
τ †τ
)n

]

Tr[τ †τ ]n
=

1

1 − n
ln Tr

[(
τ̃ †τ̃
)n]

. (11)

where Tr[X]n refers to (Tr[X])n by default. Obviously, the ABB entropy and its Rényi ver-
sion are invariant under the bi-unitary transformations τ → UτV with arbitrary unitary
matrices U and V .

We now review three other notions of entropy defined for the transition matrix τ
below, namely the (modified) pseudo entropy [12,13] and the SVD entropy [14].

2.2.2 (Modified) pseudo entropy

Several attempts have been made to generalize the von Neumann entropy for density
matrices to describe the “entropy” of non-Hermitian matrices [73] when systems a and
c could be identical. In our paper, when the Hilbert spaces of Ha and Hc have the
same dimension, given a transition matrix τ in (1), we define a linear map from Ha

to Ha by teleporting the outcome state τ |ϕ⟩a from system c back to system a via the
perfect quantum teleportation protocol [8, 9, 74] that teleports the basis state |γi⟩c to
|γi⟩a. Mathematically, this is equivalent to identifying the system a and system c from
the beginning. One considers two states |ψ1⟩ab and |ψ2⟩ab and defines the linear map as

τ = Trb |ψ1⟩ab ⟨ψ2|ab =
d∑
i=1

zi |γ̃i⟩a ⟨α̃i|a : Ha → Ha , (12)

where we have abused the notation of τ . Actually, Eq. (12) is the original definition of a
transition matrix as given in [12].

When |ψ1⟩ab = |ψ2⟩ab, the transition matrix τ = Trb |ψ2⟩ ⟨ψ2| is Hermitian, positive
semi-definite, and has a unit trace, making it mathematically identical to a reduced density
matrix on the system a. However, their physical roles are distinct: a transition matrix
describes an operation on an unknown quantum state, while a density matrix represents
a quantum state itself. Although one could formally apply the von Neumann entropy,
−Tr[τ ln τ ], as done in [12], the physical significance of such an entropy remains unclear,
since the interpretation of von Neumann entropy for a density matrix cannot be directly
extended to a transition matrix.

When |ψ1⟩ab ̸= |ψ2⟩ab, τ is neither Hermitian nor positive semi-definite in general.
Consequently, its spectrum may contain negative or complex values, and its trace is not
necessarily unity but can instead be negative, complex, arbitrarily small or even vanish.
It therefore cannot be regarded as a density matrix. Nevertheless, following [12] and
assuming Tr τ ̸= 0, one can define a normalized transition matrix

τ̂ =
τ

Tr τ
=

d∑
i=1

λi |ri⟩ ⟨li| , (13)

6
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Figure 2: The real parts of two entropy formulas Re[−z ln z] and Re[−z ln |z|] on the
complex plane.

where τ̂ is generally non-Hermitian and thus admits a bi-orthogonal decomposition [49].
The Schmidt bases {|γ̃i⟩} , {|α̃j⟩} in (4) are generally not useful in computing the (mod-
ified) pseudo entropy, since they are not necessarily bi-orthogonal. The spectrum {λi} is
generally complex, and the right and left eigenbasis {|ri⟩} , {⟨li|} satisfy the bi-orthogonality
condition ⟨li|ri⟩ = δij, ∀i, j. Substituting the spectrum of τ̂ into the von Neumann and
Rényi entropies leads to the definition of the pseudo entropy,

SP[τ ] = −Tr [τ̂ ln τ̂ ] = −
d∑
i=1

λi lnλi, (14)

and the Rényi pseudo entropy,

S
(n)
P [τ ] =

1

1 − n
ln Tr [τ̂n] =

1

1 − n
ln

d∑
i=1

λni . (15)

Since the normalization factor Tr τ can be negative, complex, arbitrarily small or
even vanish, the pseudo entropy may exhibit pathological behavior, including negative or
complex values. In particular, as Tr τ → 0, the pseudo entropy can be strongly amplified
or diverge. We will show that it is a common phenomenon near the exceptional points in
PT -symmetric non-Hermitian systems in Sec. 6.

For the non-positive spectrum of τ̂ , ln τ̂ in (14) is a multi-valued function, resulting
in multi-valued pseudo entropies. In [50], a proper branch of ln τ̂ was artificially chosen
to obtain the desired negative central charge in a non-Hermitian SSH model at a critical
point. Complementary to this approach, a modified version of the entropy formula was
proposed in [13] as follows 1,

SMP[τ ] = −Tr [τ̂ ln |τ̂ |] = −
d∑
i=1

λi ln |λi| , (16)

1In general, here the |τ̂ | is different from
√
τ̂ †τ̂ nor

√
τ̂ τ̂ †, except when τ̂ is Hermitian. So the modified

pseudo entropy could be considered as a generalization of the FP entropy defined in [64].

7



where the |τ̂ | is defined by taking the modulus of the spectrum of τ̂ as |τ̂ | =
∑d

i=1 |λi| ×
|ri⟩ ⟨li|. This modified definition successfully captures the expected negative central
charges in several critical non-Hermitian models [13]. The corresponding Rényi modi-
fied pseudo entropy is given by

S
(n)
MP[τ ] =

1

1 − n
ln Tr

[
τ̂ |τ̂ |n−1] =

1

1 − n
ln

(
d∑
i=1

λi |λi|n−1

)
. (17)

The (modified) pseudo entropy and its Rényi version are invariant only under unitary
similarity transformations τ → UτU †. Despite removing logarithmic branch ambiguities,
the modified pseudo entropy can still be complex and remains unbounded due to possible
small or vanishing Tr τ .

Finally, when dealing with random matrix models, as in Secs. 4 and 5, the ensemble-
averaged (modified) pseudo entropy generally reduces to the contribution from the real
part, as the imaginary part typically averages out to zero. Given this, we present the
value distributions of two entropy formulas Re[−z ln z] and Re[−z ln |z|] on the complex
plane in Fig. 2.

2.2.3 SVD entropy

As mentioned earlier, the pseudo entropy generally exhibits nonphysical behavior, such
as complex values or divergencies, due to the general non-positivity or complex nature of
the spectrum of τ . To address these issues, a natural alternative to pseudo entropy is the
SVD entropy [14], which is based on the singular value decomposition (SVD) of τ . This
approach constructs a normalized transition matrix via SVD-normalization as

τ̄ =

√
τ †τ

Tr
√
τ †τ

=
d∑
i=1

qi |α̃i⟩a ⟨α̃i|a , (18)

where the normalized sequence is defined as qi = zi∑
i zi

, with zi being singular values

of τ in (4). Notably, τ̄ in (18) is formally a density matrix defined on the system a,
with the transition information from a to c already being encoded in the sequence {qi}.
Following [14], we give the definition of SVD entropy of τ as

SSVD[τ ] = −Tr [τ̄ ln τ̄ ] . (19)

The SVD entropy is real, non-negative, and strictly bounded by the Hilbert space di-
mension. Nevertheless, no concrete bound exists between the SVD entropy of τ and the
corresponding entanglement entropies of two states |ψ1⟩bc and |ψ2⟩ab. For a fixed transi-
tion matrix τ , one can show that the ABB entropy is always bounded by the SVD entropy,
i.e., SSVD[τ ] ≥ SABB[τ ], with the proof given in App. A. We will see in later sections that
this inequality is universally satisfied across all quantum models considered in this work.
In analogy with entanglement entropy, a Rényi version of the SVD entropy for τ is defined
by

S
(n)
SVD[τ ] =

1

1 − n
ln

Tr[
√
τ †τ

n
]

Tr[
√
τ †τ ]n

=
1

1 − n
ln Tr [τ̄n] , (20)

8



Figure 3: Measurement and non-unitary operation

For convenience in the field-theoretic analysis within the path-integral formalism. An
extension of the replica trick is introduced in [14] by incorporating a second replica index
m, defined as

S
(n,m)
SVD [τ ] =

1

1 − n
ln

Tr[
(
τ †τ
)mn

2 ]

Tr[(τ †τ)
m
2 ]n

, (21)

whose value at odd m should be obtained by the analytical continuation of m from even
integers due to the fractional powers . The SVD entropy is obtained in the limit

SSVD = lim
n→1

lim
m→1

S
(n,m)
SVD . (22)

The SVD entropy and its Rényi version are invariant under bi-unitary transformation
τ → UτV .

2.3 Entropy monotone

The entanglement transformation is an important topic in quantum information theory,
with its connection to majorization established in [75]. Specifically, a bipartite entangled
state |ψ⟩ can be transformed into another |ϕ⟩ by local operations and classical commu-
nication (LOCC) if and only if the spectra of their reduced density matrices satisfy the
majorization relation2 λψ ≺ λϕ. For the d-dimensional vectors λψ = (x1, · · · , xd) and
λϕ = (y1, · · · , yd), each arranged in descending order, λψ ≺ λϕ means that [79]

k∑
i=1

xi ≤
k∑
i=1

yi , for k = 1, · · · , d , (23)

with equality holding when k = d. Since the von Neumann entropy is a Schur-concave
function, the majorization relation λψ ≺ λϕ implies S[λψ] ≥ S[λϕ]. In other words, the
entanglement entropy of a pure state cannot increase under LOCC. Other entanglement
monotonicity under LOCC and also the case of multipartite states were explored in [80–
82]. More recently, a LOCC theory for bipartite systems was developed by commuting
von Neumann algebras [83], in which the central result states that the LOCC ordering of
bipartite pure states is equivalent to the majorization of their restrictions.

2Beside the density matrix majorization, one can also discuss the relation between two states in terms
of Wigner majorization in the phase space [76–78].
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As mentioned in Sec. 2.2.1, since the state-normalized transition matrix τ̃ corresponds
to an entangled state, we explore the analogous relation between local operations, ma-
jorization, and entropy transformation for transition matrices in this section.

We consider the transformation from transition matrix τ̃ to another transition matrix
t̃ by first applying a generalized measurement Mm and then applying an operation Em,
as depicted in Fig. 3, where the generalized measurement Mm transformation satisfies∑

mMmM
†
m = I and the operation Em is a (possibly non-unitary) trace-preserving map

depending on the measurement outcome m. The resulting relation between τ̃ and t̃ is
thus given by

t̃⊗ t̃† =
∑
m

Em(τ̃Mm ⊗M †
mτ̃

†), (24)

where action of t̃ ⊗ t̃† is to transform any density matrix ρ into t̃ ρ t̃†. Analogous to the
requirement of the LOCC resulting in pure state [75], here due to the factorized structure
on the left-hand side of (24), each term on the right-hand side is proportional to t̃⊗ t̃†, i.e.,
Pmt̃ ⊗ t̃† = Em(τ̃Mm ⊗M †

mτ̃
†) with Pm being an undetermined probability constrained

by the normalized condition
∑

m Pm = 1. Taking the trace over system c, or rather,
performing the contraction over the second index of t̃, and using the trace-preserving
property of Em, we obtain

PmTrc[t̃⊗ t̃†] = Trc[Em(τ̃Mm ⊗M †
mτ̃

†)] ⇒ Pmt̃
†t̃ = M †

mτ̃
†τ̃Mm . (25)

Applying the polar decomposition [84]

M †
m

√
τ̃ †τ̃ =

√
M †

mτ̃ †τ̃MmUm =
√
Pm
√
t̃†t̃Um, (26)

we find

τ̃ †τ̃ =
∑
m

√
τ̃ †τ̃MmM

†
m

√
τ̃ †τ̃ =

∑
m

PmU
†
mt̃

†t̃Um. (27)

The eigen spectra of τ̃ †τ̃ and t̃†t̃ are denoted by sequences p[τ̃ ] and p[t̃], respectively.
Sorting the elements of both sequences in descending order with pi[τ̃ ] ≥ pi+1[τ̃ ] and
pi[t̃] ≥ pi+1[t̃], the relation (27) implies the sequences p[τ̃ ] is majorized by p[t̃], i.e.,

p[τ̃ ] ≺ p[t̃]. (28)

This is called Nielsen’s theorem, whose rigorous proof can be found in [85]. Since the von
Neumann entropy Svon[p] = −

∑
i pi ln pi is Schur-concave with respect to the spectrum

of p [84], the majorization in (28) ensures that the ABB entropy of τ always decreases
under the measurement and non-unitary operation in (24), i.e.,

SABB[τ ] ≥ SABB[t]. (29)

Next, we examine whether a similar monotonicity holds for the SVD entropy. From
(18) and (8), we can easily find that the spectrum of τ̄ can be expressed as qi =

√
pi∑

j
√
pj

,

which does not necessarily imply q[τ̃ ] ≺ q[t̃], in spite of (28). Now, we can consider a
majorization path in the spectrum space {pi}, parameterized by the increasing variable s,
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Figure 4: Left: SVD entropy in a two-dimensional Hilbert space. Two majorization paths
are shown: one from p1 = 0.5 to 0, and another from p1 = 0.5 to 1 with p2 = 1−p1. Along
both paths, the SVD entropy decreases monotonically. Right: SVD entropy in an 80-
dimensional Hilbert space. Along the majorization path parameterized by p1 = 3/10 + s,
p2 = 3/10 − s, and p3 = p4 = · · · = p80 = 1/195, the SVD entropy increases over a broad
range of s.

along which p[s1] ≻ p[s2] for s1 > s2. Then we can study how the SVD entropy behaves
along the majorization path. The SVD entropy can be expanded as

SSVD[τ ] = −
∑
i

qi ln qi =
1∑
j

√
pj

[
−
∑
i

√
pi ln

√
pi +

∑
i

√
pi ln

(∑
j

√
pj

)]
. (30)

We numerically verify that the SVD entropy is a Schur-concave function of p in low-
dimensional Hilbert spaces. For instance, in a two-dimensional Hilbert space, as shown in
the left panel of Fig. 4, it decreases monotonically along majorization paths. Similarly, the
Schur concavity also holds in three-dimensional space. However, this does not necessarily
hold in higher-dimensional Hilbert spaces, such as the majorization path in 80-dimensional
Hilbert space shown in the right panel of Fig. 4, the SVD entropy increases along the
majorization path in a region, violating the Schur concavity. Moreover, this observation
is also confirmed by the Schur-concavity criterion, which states that for any i, j, ∆ =

(pi − pj)
(
∂S
∂pi

− ∂S
∂pj

)
≤ 0 [86]. Thus, we conclude that the SVD entropy is not universally

Schur-concave for the probability distribution {pi} in arbitrary dimensions.
When the (modified) pseudo entropy coincides with the SVD entropy for a Hermitian

and positive semi-definite τ̂ , the (modified) pseudo entropy also fails to be Schur-concave,
as illustrated in Fig. 4. If the (modified) pseudo entropy takes a complex value, the notion
of Schur concavity is no longer meaningful. Later, in Sec. 6.1, we will see that in the PT -
symmetric region, the (modified) pseudo entropy is real but differs from the SVD entropy.
In contrast, since τ̃ τ̃ † = τ̄ = I/2, the ABB entropy, which happens to coincide with the
SVD entropy, remains constant. Meanwhile, the pseudo entropy increases as µ decreases,
while the modified pseudo entropy decreases with decreasing µ, indicating that neither of
them is Schur-concave. In the PT -broken region, the majorization path corresponds to
decreasing µ. Along this path, the SVD and ABB entropies decrease monotonically, while
the modified pseudo entropy increases. This opposite behavior further confirms that the
modified pseudo entropy is not Schur-concave.

In summary, we have demonstrated that transition matrix τ̃ can be transformed into
another transition matrix t̃ via generalized measurement and non-unitary operation if
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and only if the spectra of τ̃ †τ̃ and t̃†t̃ satisfy the majorization relation p[τ̃ ] ≺ p[t̃], which
implies SABB[τ ] ≥ SABB[t]. However, this monotonicity does not generally hold for the
SVD and pseudo entropies. Therefore, in the context of entropy transformation under
LOCC-like operation, the ABB entropy of τ offers a more physically reasonable measure.

3 Probabilistic interpretation

In this section, we will explore the probabilistic interpretation of the ABB entropy from
the perspective of distillation. To do that, we first review the entanglement distillation of
pure states [67, 68]. Following this perspective, we extend the entanglement distillation
from pure states to the transition matrix τ̃ in (8). Our analysis reveals that only the
distillation for the ABB entropy has a well-defined probabilistic interpretation from the
construction of the transition matrix. Finally, we revisit the probabilistic interpretation
of pseudo entropy [12] and SVD entropy [14], based on the construction of transition
matrices τ̂ in (13) and τ̄ in (18). We are unable to find a clear probabilistic interpretation
of the pseudo entropy and SVD entropy based on the construction.

3.1 Entanglement distillation of quantum state

The entanglement distillation describes the process of transforming the m-copy entangled
states into some amount of EPR pairs through LOCC [67, 68]. In the asymptotic limit
m→ ∞, the entanglement entropy S in base 2 serves as the asymptotic rate, quantifying
the average number of EPR pairs that can be extracted from each copy of the state [87].
We consider the states |ψ1⟩bc and |ψ2⟩ab in (3). We focus on entanglement distillation from
m copies of |ψ1⟩bc first, and similarly for |ψ2⟩ab. Given the Schmidt decomposition of |ψ1⟩bc
in terms of the d1 pairs of basis vectors {|βi⟩b |γi⟩c}

d1
i=1 in (3), we define a d1-dimensional

subspace spanned by these pairs of basis vectors, namely H1 = span {|βi⟩b |γi⟩c}
d1
i=1. The

m-copy state |ψ1⟩⊗mbc belongs to the m-copy subspace H⊗m
1 . We further decompose this

subspace into the direct sum of
(
m+d1−1
d1−1

)
orthogonal subspaces,

H⊗m
1 = ⊕kH1k, with k = (k1, k2, · · · , kd1) ,

d1∑
i=1

ki = m, (31)

based on the multinomial expansion dm1 =
∑

k d1k, where the dimension of the subspace
H1k is the multinomial coefficient

d1k =

(
m

k

)
=

m!

k1!k2! · · · kd1 !
. (32)

The number of different configurations of k is
(
m+d1−1
d1−1

)
. Accordingly, the state |ψ1⟩⊗mbc

can be expressed as a superposition of
(
m+d1−1
d1−1

)
MESs |BCk⟩ over each subspace H1k,

|ψ1⟩⊗mbc =
∑
k

√
P1k |BCk⟩ , |BCk⟩ =

1√
d1k

d1k∑
µ=1

∣∣Bk
µ

〉 ∣∣Ck
µ

〉
, P1k = d1k

d1∏
i=1

x2kii , (33)

where the state
∣∣Bk

µ

〉
is a rank-m tensor product of k1 copies of |β1⟩, k2 copies of |β2⟩, · · · ,

kd1 copies of |βd1⟩ for a fixed configuration k, and the index µ labels different orders of these
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bases in the tensor product. Similarly, the state
∣∣Ck

µ

〉
is a tensor product of {|γi⟩}. An

incomplete von Neumann measurement projecting onto the subspace H1k causes |ψ1⟩⊗mbc
to collapse into |BCk⟩ with probability P1k, as given in (33). The entanglement of a MES,
e.g., |BCk⟩, which has d1k equally weighted terms in its Schmidt decomposition, can be
equivalently regarded as that of log2 d1k EPR pairs.

In the limit m → ∞, the incomplete von Neumann measurement causes the initial
state to collapse into the dominant term with highest probability among all

(
m+d1−1
d1−1

)
MESs. From Stirling’s approximation m! ≈

√
2πm (m/e)m and ki! ≈

√
2πki (ki/e)

ki in
the large-m and large-ki limit, the logarithm of P1k in (33) is approximated as

lnP1k ≈ m lnm−
d1∑
i=1

ki ln
ki
x2i
. (34)

To determine k∗ for the most probable distribution P1k∗ , we introduce a Lagrange mul-
tiplier µ to enforce the constraint

∑d1
i=1 ki = m and define the function

F = lnP1k − µ

(
d1∑
i=1

ki −m

)
. (35)

Taking the derivative with respect to any ki gives

∂F
∂ki

= − ln
ki
x2i

− µ− 1 = 0 =⇒ ki = x2i e
−µ−1. (36)

Using the constraint on k again yields e−µ−1 = m. Thus, the probability P1k sharply
peaks around k∗ =

(
mx21, · · · ,mx2d1

)
. Consequently, the MESs |BCk∗⟩ in dimension d1k∗

are distilled from |ψ1⟩⊗mbc . The dimension of the MES offers an interpretation of the
entanglement entropy via

lim
m→∞

ln d1k∗

m
= −

d1∑
i=1

x2i lnx2i = S1, (37)

where log2 d1k∗ measures the expected number of 2-dimensional EPR pairs that could be
distilled from |ψ1⟩⊗mbc and we have used (32) for k∗ to compute the limit. This equality
states that the entanglement entropy of a quantum state equals the logarithm of the
dimension of the MES distilled from its infinite copies, normalized by the number of
copies.

In the same approach, |ψ2⟩⊗mab has the similar expansion

|ψ2⟩⊗mab =
∑
l

√
P2l |ABl⟩ , |ABl⟩ =

1√
d2l

d2l∑
µ=1

∣∣Al
µ

〉 ∣∣Bl
µ

〉
, P2l = d2l

d2∏
i=1

y2lii , (38)

where l = (l1, l2, · · · , ld2) satisfies the constraint
∑d2

i=1 li = m, and the state
∣∣Al

µ

〉
is a

tensor product of {|αi⟩}. Likewise, P2l peaks around l∗ =
(
my21, · · · ,my2d2

)
, and the d2l∗-

dimensional MESs |ABl∗⟩ are distilled from |ψ2⟩⊗mab . The corresponding relation between
the entanglement entropy of |ψ2⟩ab and |ABl∗⟩ is

lim
m→∞

ln d2l∗

m
= −

d2∑
i=1

y2i ln y2i = S2. (39)

Next, we extend this notion of distillation from pure states to transition matrices.
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3.2 Distillation of transition matrices

In this subsection, we analyze the probabilistic interpretation of ABB entropy, (modified)
pseudo entropy and SVD entropy from the distillation. Our goal is to demonstrate that
the ABB entropy provides a more physically meaningful measure compared to the pseudo
entropy and SVD entropy.

3.2.1 ABB entropy

Now we analyze the probabilistic interpretation of the ABB entropy based on the following
two distillation methods.

In Sec. 2.2.1, the ABB entropy of τ is identified with the entanglement entropy of the
normalized |τ̃⟩ between a and c. Following Sec. 3.1, the entanglement distillation of |τ̃⟩
can offer an interpretation of the ABB entropy. Via the CJ isomorphism, the m-copy
transition matrix τ̃⊗m corresponds to the m-copy state |τ̃⟩⊗m, both of which have the
expansion based on (8),

τ̃⊗m =
∑
k

√
Pk T̃k, T̃k =

1√
dk

dk∑
µ=1

|C̃k
µ ⟩⟨Ãk

µ|, (40)

|τ̃⟩⊗m =
∑
k

√
Pk |C̃Ãk⟩, |C̃Ãk⟩ =

1√
dk

dk∑
µ=1

|C̃k
µ ⟩|Ãk

µ⟩, (41)

where
∑

k dk = dm, and similarly, the state |C̃k
µ ⟩ is a tensor product of {|γ̃i⟩} and the

state |Ãk
µ⟩ is a tensor product of {|α̃i⟩}. The sub transition matrix T̃k defines a rank-dk

isometric map from a to c. Based on (8), (33) and (38), the probability Pk of distilling
MES |C̃Ãk⟩ from |τ̃⟩⊗m can be written as

Pk = dk

d∏
i=1

p2kii
diag.
=

P1kP2k/dk∑
j P1jP2j/dj

. (42)

We observe that in the diagonal case, Pk can be expressed as the joint probability P1kP2k

of simultaneously distilling dk-dimensional MESs |BCk⟩ from |ψ1⟩⊗mbc and |ABk⟩ from
|ψ2⟩⊗mab with a suppression factor 1/dk, where the factor accounts for the probability arising

from the projection onto the subspace spanned by
{∣∣Bk

µ

〉}dk
µ=1

during post-selection from

|BCk⟩ to |ABk⟩. According to the same entanglement distillation process as described
in Sec. 3.1, |τ̃⟩⊗m concentrates on the state |CAk∗⟩ with the highest probability Pk∗ with
k∗ = (mp21, · · · ,mp2d) in the large-m limit. Correspondingly, the transition matrix τ̃ also
concentrates on the sub transition matrix T̃k∗ with probability Pk∗ . Thus, based on the
same observation,

lim
m→∞

ln dk∗

m
= −

d∑
i=1

pi ln pi = SABB[τ ], (43)

we find that the ABB entropy of a transition matrix equals the logarithm of the rank of
the isometric map distilled from its infinite copies, normalized by the number of copies.

We can give another interpretation of ABB entropy of τ based on the fact that it
equals the von Neumann entropy of the output state ρmax

τ in (7). This entropy equality
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implies that the transition matrix τ̃⊗m inherits the distillation process from (ρmax
τ )⊗m.

Based on (7), we have the expansion

(ρmax
τ )⊗m =

∑
k

Pkρ
max
k , ρmax

k =
1

dk

dk∑
µ=1

|C̃k
µ ⟩⟨C̃k

µ |, (44)

where ρmax
k is the rank-dk MMS. The probability of collapsing into ρmax

k is also Pk, which
is consistent with (42) and results in the same story of concentration on ρmax

k∗ in the large
m-limit. Thus, based on (43) again, the ABB entropy of a transition matrix also equals
the logarithm of the rank of the MMS distilled from the infinite copies of the output
state of the transition matrix given a full-rank maximally mixed input, normalized by the
number of copies.

We showed that the ABB entropy of a transition matrix admits a probabilistic inter-
pretation, where the probability in the diagonal case equals the joint probability of en-
tanglement distillation from the constituent states, modulo suppression by post-selection.
Next, we will show that the (modified) pseudo and SVD entropies do not admit such a
probabilistic interpretation.

3.2.2 Pseudo entropy

To compare with the distillation of τ̃ for the ABB entropy, we first revisit the distillation
of τ̂ for the (modified) pseudo entropy presented in [12] and then comment on its lack of
probabilistic interpretation. As discussed in Sec. 2.2.2, the Schmidt bases {|γi⟩} , {|αj⟩}
are not mutually orthogonal, rendering them unsuitable for direct probabilistic interpre-
tation. To analyze the concentration behavior of τ̂⊗m, we instead use the diagonalized
form of τ̂ as given in (13), expressed in terms of potentially complex coefficients {λi}
and a pair of bi-orthogonal bases {|ri⟩} , {|li⟩}. Following [12], the m copies τ̂⊗m can be
expanded as

τ̂⊗m =
∑
k

ΨkVk, Ψk = dk

d∏
i=1

λkii , Vk =
1

dk

dk∑
µ=1

∣∣Rk
µ

〉 〈
Lk
µ

∣∣ , (45)

with
∑

k Ψk = 1,
∣∣Rk

µ

〉
the tensor product of {|ri⟩},

∣∣Lk
µ

〉
the tensor product of {|li⟩},

and TrVk = 1. Thanks for the bi-orthogonality
〈
Lk
µ|Rl

ν

〉
= δklδµν , although the sub

transition matrix Vk is non-Hermitian in general, its von Neumman entropy coincides
with the logarithm of its rank, namely Svon[Vk] = ln dk.

In general, λi takes a complex value, so we cannot identify {Ψk} as a probability
distribution. We may consider the special case of λi ≥ 0, ∀i such that Ψk ≥ 0,∀k. In this
case, the maximum of Ψk is attained at k∗ = (mλ1, · · · ,mλd). In the large-m limit, we
observe that the pseudo entropy of τ̂⊗m coincides with Svon[Vk∗ ]:

lim
m→∞

ln dk∗

m
= −

d∑
i=1

λi lnλi = SP[τ ], (46)

similar to the relation in ABB entropy (43), but their probabilistic interpretations are
different. Although the expansion in (45) resembles that of a density matrix decompo-
sition like (44), the former is an expansion of transition matrices, while the latter is an
expansion of density matrices. Consequently, the coefficients Ψk should be interpreted
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as summations of amplitudes rather than probabilities even they are non-negative in this
special case. In fact, we have

Ψk =

dk∑
µ=1

〈
Lk
µ

∣∣ τ̂⊗m ∣∣Rk
µ

〉 diag.
=

√
P1kP2k∑

j

√
P1jP2j

. (47)

In the last step, we consider the diagonal case together with the condition of Hermitian
and positive semi-definite τ̂ , namely |γi⟩ = |γ̃i⟩ = eiθ |α̃i⟩ = eiθ |αi⟩, such that Ψk is
expressed as the normalized square root of the joint probability P1kP2k, which further
emphasizes that Ψk is not a conventional probability in the quantum mechanical sense.
Furthermore, even |Ψk|2 cannot be interpreted as a physical probability, despite being
linear in P1kP2k and sharing the same extreme point k∗, since it represents the square of
the summation of a series of amplitudes rather than a square of single amplitude,

|Ψk|2 =

∣∣∣∣∣
dk∑
µ=1

〈
Lk
µ

∣∣ τ̂⊗m ∣∣Rk
µ

〉∣∣∣∣∣
2

. (48)

3.2.3 SVD entropy

Finally we revisit the distillation of τ̄ for the SVD entropy presented in [14] and then
comment on its lack of probabilistic interpretation, which is similar to the discussion on
pseudo entropy.

Following [14], we consider the m copies of τ̄ and expand τ̄⊗m as

τ̄⊗m =
∑
k

ΦkWk, Φk = dk

d∏
i=1

qkii , Wk =
1

dk

dk∑
µ=1

∣∣∣Ãk
µ

〉〈
Ãk
µ

∣∣∣ . (49)

where Wk is a dk-dimensional transition matrix with TrWk = 1, and the coefficients
{Φk} form a normalized distribution,

∑
k Φk = 1. In [14], both τ̄⊗m and each Wk are

treated formally as density matrices, with {Φk} interpreted as a probability distribution
directly. The maximum of this distribution is attained at k∗ = (mq1, · · · ,mqd), and the
SVD entropy of τ̄⊗m is identified with the von Neumann entropy of Wk∗ in the large-m
limit

lim
m→∞

ln dk∗

m
= −

d∑
i=1

qi ln qi = SSVD[τ ]. (50)

However, τ̄⊗m and Wk should be interpreted as transition matrices rather than density
matrices, due to the presence of the square root in the construction of τ̄ in (18). This
holds even though they are formally Hermitian, positive semi-definite, and normalized to
unit trace. Thus, the decomposition of (49) is still an expansion of transition matrices.
Consequently, the coefficients Φk should be still interpreted as summations of amplitudes
rather than probabilities. In fact, we have

Φk =

dk∑
µ=1

〈
Ãk
µ

∣∣∣ τ̄⊗m ∣∣∣Ãk
µ

〉
= dk

d∏
i=1

qkii
diag.
=

√
P1kP2k∑

j

√
P1jP2j

. (51)
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In the last step, Φk is given by the normalized square root of the joint probability P1kP2k,
which again underscores that Φk does not represent a conventional quantum-mechanical
probability. In the same way, |Φk|2 cannot be interpreted as a physical probability, despite
being linear in P1kP2k and sharing the same extreme point k∗, since it represents the square
of the summation of a series of amplitudes rather than a square of single amplitude,

|Φk|2 =

∣∣∣∣∣
dk∑
µ=1

〈
Ãk
µ

∣∣∣ τ̄⊗m ∣∣∣Ãk
µ

〉∣∣∣∣∣
2

. (52)

4 Haar random states and Page curves

In this section, we investigate the universal behaviors of several entropy measures for Haar
random states. A Haar random state is generated by applying a unitary matrix, drawn
from the circular unitary ensemble (CUE), to a fixed reference state. Due to the unitary
invariance of the Gaussian unitary ensemble (GUE) measure, the eigenvectors of a GUE
matrix are also distributed according to Haar measure. Therefore, any single eigenvector
of a GUE matrix is a Haar random state [88–90].

The average subsystem entanglement entropy of Haar random states exhibits a uni-
versal dependence on subsystem size, given by S ≈ ln da − da/2db for 1 ≪ da ≤ db
(with da and db exchanged otherwise), where D = dadb is the total Hilbert space dimen-
sion. As a function of the subsystem size ln da at fixed D, the entropy increases linearly,
reaches a maximum near balanced subsystem sizes, and then decreases linearly, forming
the so-called Page curve [91–93]. It has been extensively studied in black hole information
paradox [94,95].

Beyond standard entanglement entropy, the pseudo entropy for two independent Haar
random states was shown to have an extensive complex-valued distribution [12], in con-
trast to the strong concentration of single-state entanglement entropy around the loga-
rithm of Hilbert space dimension. The SVD entropy was later found to exhibit a behavior
analogous to the Page curve in [14]. In this section, we evaluate the averages of the mod-
ified pseudo entropy and ABB entropy over Haar random states, as well as the pseudo
entropy and SVD entropy, and also compare their properties. Considering two indepen-
dent Haar random states, |ψ1⟩bc and |ψ2⟩ab, which defines a generally non-square transi-
tion matrix, we show analytically that in the large dimension limit with fixed proportion
ln da : ln db : ln dc, both the SVD and ABB entropies are dominated by the logarithm of
the smallest Hilbert space dimension. We then calculate the averages of all four types of
entropies for different subsystem sizes numerically.

As demonstrated in [96], the ensemble-averaged Rényi entropy for a density matrix ρ
admits the approximation

Sn[ρ] =
1

1 − n
ln

Tr [ρn]

Tr [ρ]n
≈ 1

1 − n
ln

Tr [ρn]

Tr [ρ]n
, (53)

where the fluctuation term is significantly suppressed in the large-dimension limit. Con-
sequently, the ensemble averages of the Rényi versions of the SVD entropy (21) and ABB
entropy (11) reduce to evaluating the quantities,

Tr [(τ †τ)n] , Tr[τ †τ ]n , Tr[(τ †τ)
mn
2 ] , Tr[(τ †τ)

m
2 ]n. (54)
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We construct two Haar random states by |ψ1⟩bc = Ubc |0⟩bc and |ψ2⟩ab = Vab |0⟩ab, where
Ubc and Vab, sampled independently from two CUEs, are two unitary matrices acting on
Hbc and Hab, respectively. The transition matrix is then given by

τ = Trb

[
Ubc |0⟩bc ⟨0|ab V

†
ab

]
. (55)

We emphasize that the randomness of τ arises from the random states |ψ1⟩bc and |ψ2⟩ab,
and that τ should not be regarded as an independent random matrix. The ensemble
average in (54), such as the first trace, can be expressed as

Tr [(τ †τ)n] = Tr

∫
Haar

(
Trb

[
Vab |0⟩ab ⟨0|bc U

†
bc

]
Trb

[
Ubc |0⟩bc ⟨0|ab V

†
ab

])n
dUbcdVab. (56)

To perform the ensemble averages, we use a key result derived from Schur’s lemma in
[97,98], which states that for a D-dimensional Haar random state U |0⟩,

(U |0⟩ ⟨0|U †)⊗k =

∑
π∈Sk

Pπ

D (D + 1) · · · (D + k − 1)
, (57)

where Sk denotes the permutation group of order |Sk| = k!, and Pπ is the permutation
operator with π = π(1) · · · π(k), defined as Pπ |i1, · · · , ik⟩ =

∣∣iπ(1), · · · , iπ(k)〉. For the

special case with n = 2 and m = 2, where S
(2,2)
SVD [τ ] coincides with S

(2)
ABB[τ ], we employ the

result of (57) for k = 2 to obtain the averages as

Tr
[
(τ †τ)2

]
=
dadb + dbdc + dcda + 1

db (dadb + 1) (dbdc + 1)
, (58)

Tr [τ †τ ]2 =
dadbdc + da + db + dc
db (dadb + 1) (dbdc + 1)

, (59)

whose detailed derivation can be found in App. B. The corresponding average of the Rényi
ABB entropy for n = 2 is thus given by

S
(2)
ABB[τ ] = − ln

dadb + dbdc + dcda + 1

dadbdc + da + db + dc
. (60)

For general n and m, the ensemble averages in (54) may be evaluated using the same
method in App. B and the result in (57), or rather, the Weingarten functions in [99–
101]. However, exact expressions become increasingly cumbersome as n and m grow. We
therefore restrict our presentation to the leading-order contributions

S
(n,m)
SVD [τ ] =

1

1 − n
ln
dad

mn
2
b d

mn
2
c + d

mn
2
a dbd

mn
2
c + d

mn
2
a d

mn
2
b dc + · · ·

dnad
mn
2
b d

mn
2
c + d

mn
2
a dnb d

mn
2
c + d

mn
2
a d

mn
2
b dnc + · · ·

, (61)

where we consider n > 1 and m ≥ 2 since the analytical continuation starts from even m.
A similar analysis yields the dominant term of the n-Rényi ABB entropy

S
(n)
ABB[τ ] =

1

1 − n
ln
dad

n
b d

n
c + dnadbd

n
c + dnad

n
b dc + · · ·

dnad
n
b d

n
c + · · ·

, (62)

where we consider n > 1. In the limit of large dimensions with fixed proportion ln da :
ln db : ln dc, both expressions, (61) and (62) reduce to ln min [da, db, dc], implying that the
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Figure 5: Left: The ensemble averages for the SVD, ABB and (modified) pseudo entropy
of the transition matrix in (55), constructed from two independent Haar random states,
excluding the imaginary part of pseudo entropy. The gray curve denotes the leading-order
term given by (63). Right: Real and imaginary parts of the pseudo entropy. Numerical
results are performed over 100 disorder realizations for the SVD and ABB entropies, and
5×104 disorder realizations for the (modified) pseudo entropy, under the condition da = dc
and D = dadb = 210.

leading-order terms of the averaged Rényi SVD and ABB entropies concentrate around the
logarithm of the smallest subsystem’s Hilbert space dimension, independent of the Rényi
index n. Thus, the averages for the SVD and ABB entropies are respectively dominated
by

SSVD[τ ] = ln min [da, db, dc] + · · · , SABB[τ ] = ln min [da, db, dc] + · · · , (63)

where the next-to-leading terms for the averages of two entropies are different.
When identifying a and c, we can consider the (modified) pseudo entropy of τ in (55).

Its conjugate transpose, τ † = Trb[Vab |0⟩ab ⟨0|ab U
†
ab], is generated from two random states

and belongs to the same ensemble as τ , with equal statistical weight. Since the (modified)
pseudo entropy of τ † is the complex conjugate of that of τ , the ensemble average of the
(modified) pseudo entropy is therefore expected to be real.

Substituting τ in (55) into the (modified) pseudo entropy in (14) and (16), SVD
entropy in (19), and ABB entropy in (10), respectively, we numerically calculate the
ensemble averages of all four types of entropy for varying subsystem sizes log2 da under
the condition da = dc and dadb = D = const., as shown in Fig. 5. Our results reproduce
the behavior of the average pseudo entropy reported in [12], confirming that the ensemble
average of ReSP[τ ] remains positive while the imaginary part vanishes upon averaging.
We find that although the real part exhibits a similar Page curve behavior, it significantly
exceeds ln da, the maximal value of the entanglement entropy in a Hilbert space of the
same dimension. This phenomenon arises from the non-Hermitian nature of the transition
matrix τ̂ .

To further investigate the origin of this behavior, we analyze the distribution of the
spectrum {λi} of τ̂ for the transition matrix τ in (55) over Haar random states, as
shown in Fig. 6. We observe that the spectral distribution exhibits approximate rota-
tional symmetry centered around λ̄ = 1/da, a consequence of the normalization condition
Tr τ̂ =

∑da
i λi = 1. Given that λ̄ lies on the real axis, the rotational symmetry of the

spectrum is consistent with the vanishing of ImSP[τ ] in the ensemble average. The func-
tion Re[−z ln z] is positive over more than half of the complex plane, as illustrated in the
left panel of Fig. 2. Although the rotationally invariant spectral distribution is slightly
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Figure 6: The probability density functions (PDFs) of the eigenvalues {λi} of τ̂ ,{∣∣λi − λ̄
∣∣}, {qi} of τ̄ , and {pi} of τ̃ τ̃ † derived from the transition matrix constructed

from two independent Haar random states in (55), over 1000 pairs of disorder realizations
at da = db = dc = 25.

shifted along the positive real axis, the majority of the spectrum still lies within the re-
gion where Re[−z ln z] is positive. Consequently, the ensemble-averaged pseudo entropy
SP typically acquires a large positive value for the spectral distribution observed in Fig. 6.

The ensemble-averaged imaginary part of the modified pseudo entropy ImSMP[τ ] also
vanishes, as in the pseudo entropy. In contrast, the real part ReSMP[τ ] is significantly
suppressed and form a stable negative plateau around −0.3, independent of different
subsystem sizes. In addition, we observe that both pseudo and modified pseudo entropies
in the ensemble average are symmetric with respect to da ↔ db. This symmetry follows
from the fact that τa and τb, obtained by tracing out the system b and a, respectively, share
the same nonzero spectrum. The detailed proof is provided in App. C. Furthermore, we
confirm that this negative plateau persists in various total system sizes, includingD = 128,
256, 512, and 1024.

As shown in the right panel of Fig. 2, the function Re[−z ln |z|] is antisymmetric with
respect to the imaginary axis. It takes negative values in the right half complex plane
(Re z > 0), and positive values in the left half plane (Re z < 0), except within the unit disk
(|z| ≤ 1), where the sign is reversed. Due to the slight shift of the spectral distribution
toward the positive real axis, the portion of the spectrum inside the unit disk contributes
positively to ReSMP. However, the spectrum also has a considerable weight outside this
unit disk (see PDF of

∣∣λ− λ̄
∣∣ in Fig. 6), over which the average value of ReSMP is negative.

As a whole, the net negative contribution from outside the unit disk dominates over the
positive contribution inside the unit disk. Thus, the ensemble-averaged ReSMP acquires
a small negative value.

Finally, the ensemble-averaged SVD and ABB entropies over two independent Haar
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random states exhibit sharp concentration around ln min [da, db], analogous to the Page
curve in [91–93]. This is consistent with the analytical prediction (63), because the spec-
tra {qi} of τ̄ and {pi} of τ̃ τ̃ † are confined to the interval [0, 1], similar to conventional
entanglement entropy. According to (63), the entropy curves are symmetric under permu-
tations of da, db and dc. However, this symmetry is absent when two dimensions coincide,
e.g., da = dc, and one of {da, db} remains finite. In such a case, the ensemble-averaged
SVD and ABB entropies are no longer symmetric with respect to da ↔ db, as clearly
illustrated in Fig. 5, reflecting the fact that τ̄a and τ̄b, as well as τ̃aτ̃

†
a and τ̃bτ̃

†
b , do not

share the same nonzero spectrum, which is also explained in App. C. When both da and db
become sufficiently large, the symmetry is approximately restored, which can be verified
in the case of n = 2 Rényi ABB entropy in Eq. (60). For da < db, the SVD entropy always
exceeds the ABB entropy, with both attaining their maxima around da = db. Beyond
this point, the two entropies gradually converge as da increases. This behavior can be
explained by their spectral distributions. As illustrated in Fig. 6, the distribution of {pi}
is more concentrated than {qi} due to the quadratic relation pi ∝ q2i . This concentration
is consistent with the majorization relation q ≺ p, as proven in App. A. Consequently, the
ABB entropy is lower than the SVD entropy in the ensemble average.

Thus, we conclude that only the SVD and ABB entropies of the transition matrix,
constructed from two independent Haar random states, approach the Page curve in the
large-dimension limit, consistent with the subsystem entanglement entropy of a single
random state. By contrast, the (modified) pseudo entropy exhibits substantial deviations.

5 Bi-orthogonal eigenstates of non-Hermitian ran-

dom systems

In the previous section, we examined the behavior of ensemble averages for all four types
of entropy associated with the transition matrix τ , constructed from two independent
random states. In this section, we turn to the transition matrices constructed from two
correlated random states ⟨ψ1| = ⟨Ln| , |ψ2⟩ = |Rn⟩, namely

τ = Trb |Rn⟩ ⟨Ln| , (64)

where {⟨Ln| , |Rn⟩} are taken from the bi-orthogonal basis [49] of a non-Hermitian matrix
H of systems a and b defined by

H |Rn⟩ = En |Rn⟩ , ⟨Ln|H = En ⟨Ln| , En ∈ C (65)

with ⟨Lm|Rn⟩ = δmn, and Trb is the partial trace on a subsystem b. In this case, since
|ψ1⟩ and |ψ2⟩ have the same dimension, the transition matrix τ is square.

We consider the non-Hermitian Hamiltonian H drawn from the Ginibre unitary en-
semble (GinUE) or the non-Hermitian SYK model. For such systems, the modified pseudo
entropies of the associated transition matrices were studied in [62], revealing a significant
suppression of positive values compared to the Page curve of entanglement entropy. Fol-
lowing the analysis in the previous section, we investigate the origin of the plateau values
in the bi-orthogonal case by examining the spectral distribution in the ensemble. In this
context, we further compute the ensemble averages of the pseudo entropy, ABB entropy,
and SVD entropy for varying subsystem sizes and analyze their behaviors from the spec-
tral distribution. Besides, we also explore the universality of our results by analyzing the
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non-Hermitian SYK model. We will see that the ABB and SVD entropy of the transition
matrices constructed from bi-orthogonal random eigenstates exhibit the behavior of the
Page curve, in contrast to the plateau behavior of the modified pseudo entropy discovered
in [62].

5.1 Ginibre unitary ensemble

The Hamiltonian of dimension D×D in the GinUE [102] is defined as H = 1√
2

(H1 + iH2),
where H1 and H2 are real matrices whose entries are independently sampled from the
Gaussian distribution with zero mean value and variance D−1. Here, “unitary” refers to
the bi-unitary invariance of the probability density distribution of H under the trans-
formation H → UHV , with U and V being two arbitrary unitary matrices [103]. The
GinUE is identified as class A in the Bernard-LeClair symmetry classification [104,105].

It is well established [102, 106] that in the GinUE, the eigenvalue density follows the
circular law in the limit D → ∞; that is, the eigenvalues become uniformly distributed
within the unit disk in the complex plane:

ρ(w) =
1

π
, for |w| ≤ 1, and otherwise, ρ(w) = 0, for |w| > 1.

In the large D limit, the spectrum becomes so dense that, given a complex number w
with |w| ≤ 1, one can always find eigenvalues arbitrarily close to w.

At finite D, however, the spectrum is discrete and w need not coincide with any eigen-
value. To identify the closest one, let nw label the bi-orthogonal eigenstates {⟨Lnw | , |Rnw⟩}
whose eigenvalue Enw is closest to w in the complex plane. They could be computed by
applying the Arnoldi method [107] to the shifted Hamiltonian H − w and selecting the
bi-orthogonal eigenstates of the smallest absolute eigenvalue as follows,

(H − w) |Rnw⟩ = (Enw − w) |Rnw⟩ , ⟨Lnw | (H − w) = (Enw − w) ⟨Lnw | , (66)

where |Enw − w| is the smallest one among the eigenvaules of H. The transition matrix τ
is then constructed by substituting |Rnw⟩ and ⟨Lnw | into Eq. (64) as

τw = Trb |Rnw⟩ ⟨Lnw | . (67)

Because H is drawn from the GinUE, the states |Rnw⟩ and |Lnw⟩ are correlated Haar ran-
dom states, unlike the situation in Sec. 4, where τ was constructed from two independent
Haar random states.

Similar to the previous section, since H and H† belong to the same GinUE, the
corresponding transition matrices τw and τ †w are drawn from the same ensemble. As a
result, both ImSP and ImSMP vanish upon ensemble averaging. Figure 7 shows that
ReSP in the ensemble average is also markedly enhanced. This enhancement originates
from the fact that the spectral distribution of τ̂w derived from (67) in Fig. 8, is largely
concentrated in the region where Re[−z ln z] remains positive, while the portion of the
spectrum lying in the region where Re[−z ln z] is negative is very sparse (see Fig. 2).

The real part of the modified pseudo entropy ReSMP was shown in [62] to be signif-
icantly suppressed, forming a plateau in the ensemble average. The plateau value was
analytically obtained as

SMP =
1 − γ − ln(1 − |w|2)

2
, (68)
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Figure 7: The ensemble averages of the (modified) pseudo entropy, SVD entropy, and
ABB entropy of the transition matrix τw in (67) constructed from different bi-orthogonal
eigenstates of the GinUE matrices with D = 211. The corresponding eigenvalues of the
bi-orthogonal eigenstates are w = |w| eiθ and |w| = 0.9, with θ = kπ/16, k ∈ 0, · · · , 31,
and we perform the average over 256 disorder realizations.

in the limit of 1 ≪ da ≪ db, where γ is the Euler-Mascheroni constant. Obviously, this
expression is positive and depends only on |w|, but remains independent of subsystem
dimension da and total dimension D. As shown by the green curve in Fig. 7, our numerical
results for the modified pseudo entropy at D = 211 reproduce the plateau at D = 214

reported in [62]. In both cases, they match well with this analytical expression (68) even
at da = db. To further investigate the origin of the plateau values in the GinUE setting,
we analyze the spectral distribution of τ̂w again.

As shown in the upper left panel of Fig. 8, the spectral distribution of τ̂w is also
approximately rotationally invariant around the center λ̄ = 1/da. The shift of the center
from the origin by λ̄ results in ReSMP receiving greater positive contributions from the
right half of the unit disk (Re z > 0 and |z| ≤ 1) than negative contributions from the
left half (Re z < 0 and |z| ≤ 1), yielding a positive but suppressed value of ReSMP in
the ensemble average. However, unlike the case in Fig. 6, the distribution is concentrated
within the disk with a radius less than one. As shown in the upper right panel of Fig. 8,
the probability density function of

∣∣λ− λ̄
∣∣ peaks in this small region and decays rapidly,

approaching zero around
∣∣λ− λ̄

∣∣ ≈ 0.8. This agrees well with the asymptotic result in
the large-D limit and under the condition 1 ≪ da ≪ db, as given in [62],

ρ(x) = 2x
(

2 − e−x
−2 (

2 + 2x−2 + x−4
))
, with x =

∣∣λ− λ̄
∣∣√

1 − |w|2
. (69)

Consequently, ReSMP remains suppressed but positive, although there are negative con-
tributions from outside the unit disk. Its value also depends on |w|, as the spectral
distribution of τ̂w is itself a function of |w|.

We further numerically calculate the ensemble averages of the SVD entropy and ABB
entropy for τw in (67), with the results presented in Fig. 7. The ensemble-averaged SVD
and ABB entropies exhibit the same behavior as in the case of two independent Haar
random states discussed in Sec. 4. In particular, they are independent of the specific
eigenvalue w. As shown in Fig. 8, the distribution of the spectra {qi} and {pi} lies within
the interval [0, 1], with {pi} being much more concentrated than {qi} due to the quadratic
relation. This behavior again reflects the majorization relation q ≺ p, and consequently,
the SVD entropy is still greater than the ABB entropy in the ensemble average. Finally,
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Figure 8: The probability density functions (PDFs) of the eigenvalues {λi} of τ̂w,{∣∣λi − λ̄
∣∣}, {qi} of τ̄w, and {pi} of τ̃wτ̃

†
w, derived from the transition matrix τw in (67)

constructed from bi-orthogonal eigenstates of GinUE matrices at da = 24 and db = 27.
We sample from different eigenstates for w = |w| eiθ and |w| = 0.9, with θ = kπ/16,
k ∈ 0, · · · , 31, and also 256 disorder realizations for each case. The blue curve is given by
the analytical result of (69).

we also observe that in the ensemble average, the SVD and ABB entropies are asymmetric
under da ↔ db, while the (modified) pseudo entropy are symmetric. The origin is the same
as discussed in the previous section.

The strong suppression of the modified pseudo entropy of the transition matrix con-
structed from bi-orthogonal bases has been conjectured to be a universal feature of non-
Hermitian chaotic many-body systems [62], in contrast to the universal Page curve ob-
served in Hermitian chaotic systems. However, when the spectrum of the transition matrix
is complex, we are even unable to identify a probabilistic interpretation of the (modified)
pseudo entropy, as discussed in Sec. 3.2.2, let alone relate it to the entanglement of the
individual bi-orthogonal eigenstates. In contrast, the SVD and ABB entropies always
exhibit a Page-curve-like behavior, even though the bi-orthogonal eigenstates involved
are correlated. We therefore propose taking the Page-curves-like behaviors of the ABB
or SVD entropies derived from bi-orthogonal eigenstates as features of non-Hermitian
chaotic system, consistent with their use in single eigenstates of Hermitian chaotic sys-
tems3. We will test this proposal in the context of the non-Hermitian SYK model in the
next subsection.

3Recently, comparisons between the complex-eigenvalue and singular-value spectra of non-Hermitian
Hamiltonians and their implications for non-Hermitian chaos have been investigated in [108–113]. Here,
we instead focus on the statistics of the entanglement spectrum and the singular-value spectrum of the
transition matrix constructed from the bi-orthogonal eigenstates of chaotic and integrable non-Hermitian
Hamiltonians.
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5.2 Non-Hermitian SYK

The Hermitian SYK model consists of N Majorana fermions {ψi}Ni=1 interacting through
all-to-all q-body interactions with real Gaussian-distributed random couplings [114]. For
q = 2, the model is free and integrable, while for q ≥ 4, it is chaotic [115]. The entangle-
ment entropy of a subsystem of eigenstates for SYK model was previously studied in [116].
It was shown that when the subsystem size is much smaller than the total system, the
entanglement entropy reaches its maximum, i.e., ln da. However, for arbitrary q, as da
increases, the value remains below that of Haar random state, i.e., the Page curve. The
rigorous proof of this deviation was provided in [117], indicating that the eigenstates of
the SYK model do not fully realize the maximal randomness observed in the Haar random
states.

The non-Hermitian SYK (nSYK) model is generalized from the Hermitian SYK model
by considering complex random couplings, whose Hamiltonian is [118]

HnSYK =
∑

1≤i1<···<iq≤N

(
Ji1···iq + iMi1···iq

)
ψi1ψi2 · · ·ψiq , (70)

where {ψi}Ni=1 is a set of Majorana fermion operators satisfying {ψi, ψj} = δij. The
coupling coefficients Ji1···iq and Mi1···iq are both real Gaussian random variables with zero

mean and variance J2(q−1)!
Nq−1 .

We only consider the nSYK of class A in the Bernard-LeClair symmetry classification
as well. According to [119, 120], it can be realized in nSYK with N mod 8 = 2, 4 and q
mod 4 = 0, 2. The eigen spectrum of nSYK exhibits rotational symmetry in the complex
plane, but the eigenvalue distribution is non-uniform, distinct from the GinUE [62,118].

We construct the transition matrix τw according to (67) with the bi-orthogonal eigen-
states |Rnw⟩ and ⟨Lnw | of nSYK, whose eigenvalue is closest to w. We used the same
method of (66) to extract the bi-orthogonal eigenstates and investigate the four types of
entropy of the transition matrix τw. We numerically investigate the nSYK with N = 22
and q = 2, 4, which still belongs to class A. To compare the entropies between nSYK with
different q, we choose the bi-orthogonal states of eigenvalue w with w/ |Emax| being the
same, where |Emax| is the maximal absolute eigenvalue. Similar to the case of the GinUE,
since the ensemble of HnSYK is the same as its conjugation transpose, the imaginary parts
of the averaged entropies vanish, and we focus on their real parts.

At q = 4, the averaged entropies as the functions of subsystem size log2 da are shown
in Fig. 9. We observe the following phenomena:

• The pseudo entropy is greatly enhanced.

• The modified pseudo entropy is strongly suppressed and exhibits a plateau, consis-
tent with [62].

• The SVD entropy and the ABB entropy both exhibit a growth-peak-decline behav-
ior. Before reaching their peaks at intermediate system size, the SVD entropy is
noticeably larger than the ABB entropy. After the peak, the two entropies gradu-
ally converge. Both in their qualitative behavior and in their numerical values, the
two entropies of the nSYK model at q = 4 are close to those of the GinUE shown
in Fig. 7, consistent with the non-Hermitian chaotic nature of the nSYK model at
q = 4.
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Figure 9: The ensemble averages of the (modified) pseudo entropy, SVD entropy and
ABB entropy of the transition matrix τw constructed from the bi-orthogonal eigenstates
of the non-Hermitian SYK model with q = 4, N = 22. The corresponding eigenvalues of
bi-orthogonal eigenstates are w = |w| eiθ, where |w| / |Emax| = 0.73, and |Emax| denotes
the maximal absolute eigenvalue. The phase angles are sampled at θ = kπ/16, with
k ∈ 0, · · · , 31. For each case, we perform average over 512 disorder realizations.
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Figure 10: The ensemble averages of the entropies of the transition matrix τw constructed
from the bi-orthogonal eigenstates of the non-Hermitian SYK model with q = 2, N =
22. The corresponding eigenvalues of bi-orthogonal eigenstates are w = |w| eiθ, where
|w| / |Emax| = 0.73. The phase angles are sampled at θ = kπ/16, with k ∈ 0, · · · , 31. For
each case, we perform average over 512 disorder realizations.

At q = 2, the entropies in average as the functions of subsystem size log2 da are shown
in Fig. 10. We observe the following phenomena:

• The pseudo entropy is enhanced as well, but its value is significantly smaller than
that at q = 4.

• The modified pseudo entropy is suppressed and exhibits a plateau as well, but its
value is significantly larger than that at q = 4.

• The SVD entropy and the ABB entropy exhibit a growth-peak-decline behavior,
but their values are significantly lower than their q = 4 counterparts as well as
the entropies of the GinUE. We expect that this contrast in entropy values reflects
the non-Hermitian chaotic versus integrable properties of the nSYK models, as it
parallels the comparison between subsystem entropies of eigenstates in Hermitian
SYK models: the entropy at q = 4 takes the Page value given by random states
and the entropy at q = 2 takes a lower value derived by the Wachter law of free
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fermions [116]. Moreover, the SVD entropy remains noticeably larger than the ABB
entropy, indicating a non-flat singular-value spectrum.

By comparing the entropies from the nSYK at q = 4 and q = 2, we conclude that

• The enhancement of pseudo entropy is a common feature.

• The suppression and plateau of the modified pseudo entropy of transition matrices
constructed in a bi-orthogonal basis are not exclusive for non-Hermitian chaotic
systems; the same behaviors can arise even in a free non-Hermitian system.

• The SVD and ABB entropies, computed from bi-orthogonal eigenstates, are sensitive
to non-Hermitian chaos, mirroring the sensitivity of eigenstate entanglement entropy
to chaos in Hermitian systems.

It would be worthwhile to test these observations in other models in future work.

6 Close to the exceptional point

In this section, we are concerned with the behavior of different entropies when Tr[τ ] =
⟨ψ1|ψ2⟩ goes to zero, which occurs in particular at the exceptional points of a PT -
symmetric Hamiltonian. We demonstrate that the vanishing of the inner product leads to
the divergence of the (modified) pseudo entropy, while the SVD entropy and ABB entropy
remain finite.

We begin with a simple PT -symmetric Hamiltonian in a two-qubit system, which
serves as an analog of the vectorized Lindbladian studied afterwards. We compute all
four entropies for τ , defined in the bi-orthogonal basis. Then we extend our analysis to
the SYK Lindbladian.

6.1 Two-qubit system

To further illustrate the distinct behaviors of the above entropy measures, we first consider
a simple two-qubit non-Hermitian model, in which two subsystems a and b are coupled
as

H = iHa + iHb + µ(σxaσ
x
b + σzaσ

z
b ). (71)

where we choose local operators Ha = diag(−2/3, 1/3)⊗ I and Hb = I⊗diag(1/6, 1/6) on
the system a and b, respectively. The third term describes the interaction between a and
b, with µ being a real positive coupling strength and σx,z being Pauli matrices. This toy
model shares the similar structure as the vectorized Lindbladian operator (77) discussed
later.

We define the unitary operator as P = σx ⊗ σx, and the anti-unitary operator T as
complex conjugation. With these definitions, the Hamiltonian H in (71) satisfies PT
symmetry. Its eigenvalues are given by

E1,2 = ±µ− 1

2

√
4µ2 − 1, E3,4 = ±µ+

1

2

√
4µ2 − 1, (72)

as shown in Fig. 11. As µ decreases, each pair of eigenvalues approaches and eventually
coalesces at the exceptional point µc = 1/2. For µ < µc, the eigenvalues form complex-
conjugate pairs. According to PT symmetry properties of non-Hermitian Hamiltonians
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Figure 11: Spectrum of two-qubit model as the function of µ.
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Figure 12: Left: The (modified) pseudo entropy of τ . Solid and dashed lines denote
real and imaginary parts, respectively. Their real parts of pseudo entropy and modified
pseudo entropy coincide in the PT -broken region. Right: The corresponding SVD and
ABB entropies of τ .

discussed in [121,122], the eigenvalues remain real for µ > µc, indicating that PT symme-
try of the eigenstates is preserved. For µ < µc, the spectrum becomes complex, signaling
that PT symmetry of the eigenstates is broken.

We construct the transition matrix τ from the bi-orthogonal eigenstates. For this
model, τ has the same form across all four eigenstates, so we only need to consider one
eigenstate. Two distinct expressions of τ̂ corresponding to PT -symmetric and PT -broken
regions are obtained as

τ̂µ>µc =

1
2

+ i

2
√

4µ2−1
0

0 1
2
− i

2
√

4µ2−1

 , τ̂0<µ<µc =

1
2

+ 1

2
√

1−4µ2
0

0 1
2
− 1

2
√

1−4µ2

 .

(73)

Accordingly, we can easily obtain τ̄ = τ̃ τ̃ † = I/2 in the PT -symmetric region. Further-
more, we compute the four entropies for both the PT -symmetric and PT -broken regions,
and the results are displayed in Fig. 12, showing the entropy values as functions of µ.

As seen in the left panel of Fig. 12, in the PT -symmetric region, both pseudo and
modified pseudo entropy are real. For large µ, they approach ln 2. As µ decreases, the
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pseudo entropy grows and diverges positively at the exceptional point. However, the
modified pseudo entropy decreases, becomes negative, and diverges negatively at µc. In
the PT -broken region, the modified pseudo entropy remains real and negative, while the
pseudo entropy becomes complex. In the right panel, both SVD and ABB entropies take
the real and positive values, and are strictly bounded by the logarithm of Hilbert space
dimension in both the PT -symmetric and PT -broken regions. Notably, the SVD entropy
is always larger than the ABB entropy in the PT -broken region.

We will see similar phenomena of entropies in SYK Lindbladian.

6.2 SYK Lindbladian

We now turn to the non-Hermitian vectorization of the Lindbladian superoperator in the
SYK model.

In an isolated system without environmental interaction, the dynamics is governed by
a Hermitian Hamiltonian, and ρ evolves according to the Heisenberg evolution: dρ/dt =
−i[H, ρ]. However, a truly isolated system is an idealization. In practice, a system is
always coupled, to some degree, with an external environment. Under the assumption of
weak coupling and in the Markovian limit, the open system dynamics is described by the
Lindblad master equation [123],

dρ

dt
= L(ρ), L(ρ) = −i[H, ρ] +

∑
α

(
LαρL

†
α −

1

2
{L†

αLα, ρ}
)
, (74)

where L is the Lindbladian superoperator, describing the non-unitary evolution of the sys-
tem, H is the system’s Hamiltonian, and Lα are jump operators encoding the interaction
between the system and its environment.

The Lindbladian SYK models were proposed and investigated in [70, 124]. The SYK
Hamiltonian incorporates the Gaussian-distributed random couplings [115],

HSYK = iq/2
∑

1≤i1<···<iq≤N

Ji1···iqψi1 · · ·ψiq , (75)

where
〈
Ji1···iq

〉
= 0, ⟨J2

i1···iq⟩ = J2(q−1)!
Nq−1 , and {ψi}Ni=1 are Majorana fermionic operators

satisfying {ψi, ψj} = δij. We choose the linear jump operators

Li =
√
µψi, i = 1, 2, · · · , N. (76)

where µ ≥ 0 is the strength of dissipation. Specifically, we refer to the following vectorized
Lindbladian as non-Hermitian: it is the operator obtained by mapping the Lindbladian
superoperator onto the double-copy Hilbert space Ha⊗Hb via the CJ isomorphism [71,72],
and is given by [70]

L̂ = −iHa + i(−1)q/2Hb − iµ
N∑
i=1

ψai ψbi − µ
N

2
I , (77)

where Ha = HSYK ⊗ I and Hb = I ⊗ HSYK, and ψai, ψbi act on the double-copy Hilbert
space, obeying {ψsi, ψs′i′} = δss′δii′ , with s, s′ ∈ {a, b}. The third term induced by the
Lindblad terms describes the interaction between the systems a and b, corresponding to
the two subspaces of Ha⊗Hb, respectively. The Lindblad equation in superoperator form
(74) can be mapped to d |ρ⟩ /dt = L̂ |ρ⟩ with |ρ⟩ being the vectorization of ρ.
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In this work, we define the PT symmetry of the vectorized Lindbladian in analogy
with the definition used for non-Hermitian Hamiltonians in [121, 122], where the parity
operator P is a unitary transformation and the time reversal operator T an anti-unitary
one. The vectorized Lindbladian is PT -symmetric in the sense of

PT L̂(PT )−1 = L̂. (78)

Further details of the vectorization and PT symmetry can be found in App. D. In this
context, the PT symmetry of an eigenstate is preserved if its associated eigenvalue is
real. Conversely, if the eigenvalue is complex, then the PT symmetry of the eigenstate is
broken4.

The spectrum of the vectorized Lindbladians (77) was computed numerically for finite
N , revealing the complex eigenvalue distributions [70]. The real-time SYK Lindbladian
dynamics was investigated in [129–132]. The symmetry classification of PT -symmetric
SYK Lindbladians with more general Lindblad terms have also been investigated in [133,
134]. Various phenomena of non-Hermitian chaos have been studied in SYK Lindbladians,
such as various form factors with dissipation [129, 135, 136] and dissipative scrambling
[131,132,137,138]. More recently, dissipative dynamics in bosonic SYK Lindbladian was
studied in [139].

Here, we will numerically analyze the vectorized Lindbladian (77) and the PT sym-
metry breaking behavior of eigenstates for varying µ at N = 8, q = 4. Furthermore,
we investigate the behavior of the four entropy measures associated with τ constructed
from the bi-orthogonal eigenstates, with particular focus on the behavior near exceptional
points.

We numerically calculate the spectrum of L̂ for the varying parameter µ within one
disorder realization, shown in the left panel of Fig. 13, where we have omitted the last
constant term in (77) as it merely induces a shift of the real parts of the spectrum along
the real axis. For sufficiently large µ, the spectrum remains entirely real. As µ decreases,
some pairs of eigenvalues approach each other, eventually colliding at some points, beyond
which they become complex conjugate to each other. We trace two representative branches
of eigenvalues that first undergo their transitions from {E>, E<}-branches to {E+, E−}-
branches as µ decreases, as shown in the right panel of Fig. 13, where those branches of
eigenvalues obey

µ > µc : E>, E< ∈ R, E> > E<;

µ = µc : E< = E> = E+ = E−;

µ < µc : E+, E− ∈ C, E∗
+ = E−.

(79)

We present the spectrum for a single disorder realization and two representative branches
in Fig. 13. Although different disorder realizations lead to different spectra, and different
pairs of branches undergo the transition at different exceptional points, the qualitative
nature of the transition and entropies is universal.

4However, the PT symmetry employed here differs from that introduced in [125], where the symmetry
is defined in the superoperator space. In that framework, the PT transformation maps the Lindbladian
L → −L, leading to a distinct phase structure. For example, PT symmetry breaking typically occurs
in the small µ region, in contrast to the behavior observed here. There are also other definitions of the
PT symmetry with P and T defined in the operator space [126–128]. These framework also leads to the
different phase structures. For example, in the PT -symmetric region, parts of the spectrum lie on the
imaginary axis, while in the PT -broken region, all eigenvalues become real.
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Figure 13: Left: Spectrum of the SYK Lindbladian for varying µ within a single disorder
realization. Blue and red lines denote the real and imaginary parts, respectively. Right:
Evolution of two branches of representative eigenvalues. Solid and dashed lines indicate
the real and imaginary parts, respectively. In the PT -symmetric region, we label the
upper positive branch (green) by E> and the lower positive branch (orange) by E<. The
two branches coincide at the exceptional point µc/J = 0.586 and become a complex-
conjugate pair in the PT -broken region. We label the branches with positive (brown) and
negative (purple) imaginary parts by E+ and E−, respectively. In addition, we include
the two branches (gray) that are additive inverses of the colored branches; they have the
same entropies as their inverse counterparts.

Each eigenvalue corresponds to a left-right eigenstate pair in the bi-orthogonal basis.
When µ > µc, the two corresponding eigenstates {|R>⟩ , |R<⟩} respect PT symmetry. At
µ = µc, they coincide. When µ < µc, two new eigenstates {|R+⟩ , |R−⟩} are generated
and do not respect PT -symmetry. So, for these two branches, we call (µc,∞) the PT -
symmetric region, µc the exceptional point, and [0, µc) the PT -broken region5

We then construct the transition matrices τ = Trb |R⟩ ⟨L| by tracing out the system b
for each of right eigenstates {|R>⟩ , |R>⟩} or {|R+⟩ , |R−⟩} and their left counterparts. For
each transition matrix in {τ<, τ>} or {τ+, τ−}, we compute the (modified) pseudo entropy,
the SVD entropy, and the ABB entropy.

The (modified) pseudo entropy is shown in Fig. 14. In the PT -symmetric region (µ >
µc), the two branches of the pseudo entropy remain real and positive. As µ decreases,
they increase and ultimately diverge at the exceptional point µc. The modified pseudo
entropy for the branch E< decreases as µ decreases, eventually becomes negative, and
diverges to −∞ at µc, whereas for the branch E>, it exhibits non-monotonic behavior
and features a sharp increase in the vicinity of µc. In the PT -broken region (µ < µc), all
(modified) pseudo entropies become complex and diverge at µc. Both branches E+ and
E− share the same real part of the (modified) pseudo entropy, and their imaginary parts
are additive inverses of each other.

The SVD and ABB entropies are shown in Fig. 15. Unlike the (modified) pseudo
entropy, they remain real, positive, and strictly bounded by ln da = N

2
ln 2. In the PT -

symmetric region, the branch E> exhibits larger SVD and ABB entropies than the branch
E<. At µc, the entropies of each degenerate pair coincide and then decrease as µ is lowered
further into the PT -broken region. These decreases are consistent with the tendency of
the two eigenstates {|R>⟩ , |R<⟩} of the double-copy system to disentangle as the coupling

5Here, we define PT symmetry at the level of individual eigenstates, in contrast to the criterion
in [121,122], where a Hamiltonian is deemed PT -symmetric only if its entire spectrum is real.
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Figure 14: The pseudo entropy (left) and modified pseudo entropy (right) of τ constructed
from the bi-orthogonal eigenstates along the two branches in the right panel of Fig. 13 in
the same single realization.
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Figure 15: The SVD entropy (left) and ABB entropy (right) of the same τ in Fig.14.

µ is reduced. We also observe that the two branches take distinct values and that the
SVD entropy is consistently greater than the ABB entropy for all µ.

Thus, we have shown that the divergence of the (modified) pseudo entropy challenges
the claim that these entropies quantify quantum entanglement, even when they take real
values. By contrast, both the SVD entropy and the ABB entropy behave consistently with
the usual entanglement entropy of a single quantum state and align with the tendency
toward disentanglement.

Finally, we observe some opposite monotonic behaviors of entropies, which also chal-
lenge the claim that (modified) pseudo entropy quantify quantum entanglement. For
example, in the PT -symmetric region of the SYK Lindbladian, although all the four en-
tropies of the E< branch are real, the monotonicity of the modified pseudo entropy as
a function of µ is opposite to the monotonicity of others entropies. Similar situation
happens in the PT -symmetric region of the two qubits system, where both the pseudo
entropy and modified pseudo entropy change dramatically for varying µ but the SVD
entropy and ABB entropy stay constant.
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7 Conclusion and outlook

7.1 Conclusion

In this paper, we explored the transition matrix τ that describes a post-selection process
transferring part of the information of a quantum state, either pure or mixed, from one
side to another. In contrast to teleportation protocols, the transition matrix is not a
trace-preserving map, due to post-selection. Hence, we employ entropy-based measures
to quantify the amount of information transferred.

We introduced the ABB entropy of the transition matrix to quantify information trans-
fer, which could be interpreted as the relative entropy between the input maximally mixed
state and its output state bridged by the transition matrix (Sec. 2.2). The ABB entropy
also avoids the issues encountered in the (modified) pseudo entropy and the SVD entropy.
The pseudo entropy suffers from ambiguity due to the multi-valued logarithm. Both the
pseudo and modified pseudo entropies can diverge or take complex values. Although
the SVD entropy circumvents these problems, it lacks a clear probabilistic interpretation
based on entanglement distillation of the two quantum states that construct the transition
matrix (Sec. 3).

Subsequently, we demonstrated that the ABB entropy of the transition matrix does not
increase under the addition of measurements and non-unitary operations, as illustrated
in Fig. 3, in agreement with the behavior of conventional entanglement entropy for pure
quantum states under LOCC [75]. By contrast, the (modified) pseudo entropy and the
SVD entropy do not necessarily exhibit this monotonicity.

We showed that the ABB entropy of the large-copy transition matrices can be con-
centrated into that of the sub transition matrix with the highest probability (Sec. 3.2.1),
following the notion of entanglement distillation in [67]. That probability corresponds to
the highest probability of generalized measurement on a mixed state. We also examined
the probabilistic interpretation of the pseudo and SVD entropies of the transition matrix
in [12, 14]. We found that a meaningful concentration interpretation for the (modified)
pseudo entropy is possible only when the normalized transition matrix has a real and non-
negative spectrum, allowing them to be associated with a sub transition matrix. However,
even in this case, the so-called “probability” of the concentration does not correspond to
a true measurement probability in the quantum mechanical sense. For the transition
matrices with negative or complex eigenvalues, it is even not possible to construct any
probability-like distribution over the sub-transition matrices (Sec. 3.2.2). Similarly, for
the SVD entropy, although the singular spectrum of the transition matrix is real and non-
negative, the associated distribution over sub transition matrices still does not represent
a genuine probability distribution in a quantum measurement process.

We computed the ensemble averages of the four entropies for transition matrices con-
structed from two independent Haar random states in Sec. 4, and from biorthogonal eigen-
states of non-Hermitian random systems, including the GinUE and the non-Hermitian
SYK model, in Sec. 5. In all cases, the SVD and ABB entropies exhibit behavior similar
to the subsystem entanglement entropy of a single random state at large system size.
By contrast, the pseudo entropy exceeds the constraint from the subsystem size and the
modified pseudo entropy does not scale with subsystem size.

The contradistinction between these entropies becomes especially pronounced in a
PT -symmetric model, as discussed in Sec. 6.2. Both the pseudo entropy and the modified
pseudo entropy exhibit divergences near exceptional points and acquire complex values
in the PT -broken region, while the SVD and ABB entropies remain finite in both the
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PT -symmetric and PT -broken regions, and capture the entanglement properties of eigen-
states.

7.2 Outlook

For two independent Haar random states, the subsystem-size asymmetry of the SVD and
ABB entropies seen in Fig. 5 plausibly originates from subleading contributions in (63),
so a detailed evaluation of these terms is warranted in future work. Moreover, while we
numerically observe a plateau in the modified pseudo entropy in this case and attribute
the emergence of negative values to spectral properties, an analytical computation of the
spectrum for the normalized transition matrix remains for future investigation.

For bi-orthogonal states in the GinUE setting, although the SVD and ABB entropies
exhibit Page-curve-like behavior in numerics, analytic expressions for them are still lack-
ing, unlike the modified pseudo entropy, whose plateau is predictable [62]. Estimating
their scaling behavior in future work would support a more compelling universal state-
ment.

The ABB entropy has seen limited investigation in field-theoretic settings, and its
structural properties remain largely unexplored. By contrast, pseudo entropy has been
thoroughly studied in free scalar field theories and spin models [22, 23], where it dis-
plays area-law behavior, saturation, and the so-called non-positivity difference. In the
biorthogonal basis of PT -symmetric systems, the pseudo and modified pseudo entropies
exhibit logarithmic scaling with negative central charges at the critical points of the non-
Hermitian spin and SSH models [13, 50, 59]. It remains an interesting question whether
analogous behavior holds for the SVD and ABB entropies in such models.

Investigations of the ABB entropy within the framework of gravity duals are still
lacking. For pseudo entropy, the corresponding transition matrix was realized in holo-
graphic framework [12, 37, 38]. A promising direction is to construct the gravity dual of
the corresponding transition matrix for the ABB entropy in this setting.

Pseudo entropy is known to become complex in certain time-like configurations [39,
140], complicating its geometric interpretation [141]. In contrast, the SVD and ABB
entropies remain real and positive even in time-evolved or non-unitary contexts, making
it a potentially more robust alternative. Their construction also avoids ambiguities related
to analytic continuation and partial swaps in imaginary time. Systematic exploration of
its behavior under both unitary and non-unitary dynamics, could help establish SVD or
ABB entropy as a potential diagnostic tool for temporal entanglement [142].
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A Boundedness of ABB entropy by SVD entropy

In this appendix, we demonstrate that ABB entropy is always bounded by SVD entropy for
a fixed transition matrix τ by proving q ≺ p rigorously. Let Z1 =

∑d
i=1 zi, Z2 =

∑d
i=1 z

2
i

and arrange zi in non-increasing order as z1 ≥ · · · ≥ zd. For any k ∈ {1, · · · , d}, define

∆k :=
k∑
i=1

qi −
k∑
i=1

pi =
1

Z1

k∑
i=1

zi −
1

Z2

k∑
i=1

z2i . (80)

Multiplying Z1Z2 by ∆k yields

Z1Z2∆k = Z2

k∑
i=1

zi − Z1

k∑
i=1

z2i =
d∑
j=1

k∑
i=1

(
z2j zi − zjz

2
i

)
=

k∑
i=1

k∑
j=1

zizj (zj − zi) +
k∑
i=1

d∑
j=k+1

zizj (zj − zi) , (81)

where we split the sum over j into the parts of j ≤ k and j > k. The contribution of
j ≤ k vanishes because the summand is anti symmetric under the exchange of i and j.
Thus, only the term with j > k survives:

Z1Z2∆k =
k∑
i=1

d∑
j=k+1

zizj (zj − zi) ≤ 0, (82)

with the equality holding when k = d. Thus, ∆k ≤ 0, i.e.,

k∑
i=1

qi ≤
k∑
i=1

pi, k = 1, · · · , d. (83)

As shown in Sec. 2.2, SABB[τ ] = Svon(p) and SSVD[τ ] = Svon(q). Since the von Neumann
entropy is Schur-concave, the majorization q ≺ p directly implies Svon(p) ≤ Svon(q),
namely

SABB[τ ] ≤ SSVD[τ ], (84)

with the equality holding iff all zi are equal.

B Ensemble-averaged second Rényi ABB entropy over

Haar random states

In the following, we present the detailed derivation of (58) and (59). We first reshape the
states |ψ1⟩bc ∈ Hb ⊗ Hc and |ψ2⟩ab ∈ Ha ⊗ Hb into two matrices ψ and ϕ of dimensions
dc × db and da × db, respectively. The corresponding expansions are expressed as ψ =∑

i,j ψij |i⟩c ⟨j|b and ϕ =
∑

i,j ϕij |i⟩a ⟨j|b. Thus, the transition matrix τ in (55) can be
written as

τ = ψϕ† =
dc∑
i=1

da∑
k=1

(
db∑
j=1

ψij ϕ
∗
kj

)
|i⟩c ⟨k|a , (85)
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whose components are τik =
∑

j ψij ϕ
∗
kj and

(
τ †
)
ki

=
∑

j ψ
∗
ij ϕkj. We then have

Tr τ †τ =
dc∑
i=1

da∑
k=1

(
db∑
j=1

ψ∗
ijϕkj

)(
db∑
l=1

ψilϕ
∗
kl

)
=

db∑
j,l=1

(
ψ†ψ

)
jl

(
ϕ†ϕ
)
lj

= Tr
(
ψ†ψ ϕ†ϕ

)
,

(86)

where ψ†ψ = Trc |ψ1⟩bc ⟨ψ1|bc and ϕ†ϕ = Tra |ψ2⟩ab ⟨ψ2|ab are both db × db dimensional
matrices. The ensemble average of (86) over Haar random states, i.e., the case of n = 1
in (56), can be decomposed as

Tr τ †τ = Tr (ψ†ψ ϕ†ϕ) = Tr
[
ψ†ψ ϕ†ϕ

]
, (87)

since Ubc and Vab are drawn independently from two CUEs. Using the result of (57) for
k = 1, we can obtain

ψ†ψ = Trc|ψ1⟩bc ⟨ψ1|bc = Trc
Idb ⊗ Idc
dbdc

=
Idb
db
, (88)

ψ†ψ = Trc|ψ2⟩ab ⟨ψ2|ab = Tra
Ida ⊗ Idb
dadb

=
Idb
db
, (89)

where Ida , Idb and Idc are identity matrices of dimensions da × da, db × db and dc × dc.
Therefore, we obtain

Tr τ †τ = Trb
Idb
d2b

=
1

db
. (90)

Next, we can express Tr
[(
τ †τ
)2]

as

Tr
[(
τ †τ
)2]

=

db∑
i1,i2,i3,i4=1

(
ψ†ψ

)
i1i2

(
ϕ†ϕ
)
i2i3

(
ψ†ψ

)
i3i4

(
ϕ†ϕ
)
i4i1

= Tr
(
ψ†ψ ϕ†ϕψ†ψ ϕ†ϕ

)
. (91)

Because Ubc and Vab are independent, the ensemble average over Haar random states can
be decomposed as

Tr
[
(τ †τ)2

]
=

db∑
i1,i2,i3,i4=1

(ψ†ψ)⊗2
i1i2;i3i4

(ϕ†ϕ)⊗2
i2i3;i4i1

(92)

Using the result of (57) for k = 2, we obtain

(ψ†ψ)⊗2 = Trc(|ψ1⟩bc ⟨ψ1|bc)
⊗2 =

d2c Idb ⊗ Idb + Trc S(12)

dbdc(dbdc + 1)
, (93)

where S(12) is the swap operator expanded as follows

S(12) =

db∑
j,l=1

dc∑
i,k=1

|lk⟩1 ⊗ |ji⟩2 ⟨ji|1 ⊗ ⟨lk|2 . (94)
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Tracing out the system c yields Trc S(12) = dc
∑

j,l |l⟩ ⟨j|1 ⊗ |j⟩ ⟨l|2. So we have

(ψ†ψ)⊗2
i1i2;i3i4

=
d2c δi1i2δi3i4 + dc δi1i4δi2i3

dbdc(dbdc + 1)
. (95)

Similarly, we have

(ϕ†ϕ)⊗2
i2i3;i4i1

=
d2a δi2i3δi4i1 + da δi2i1δi3i4

dadb(dadb + 1)
. (96)

Substituting (95) and (96) into (92) yields the result of (58). Analogously, for

Tr [τ †τ ]2 =

db∑
i1,i2,i3,i4=1

(ψ†ψ)⊗2
i1i2;i3i4

(ϕ†ϕ)⊗2
i2i1;i4i3

, (97)

we find

(ϕ†ϕ)⊗2
i2i1;i4i3

=
d2a δi2i1δi4i3 + da δi2i3δi1i4

dadb(dadb + 1)
, (98)

and substituting (95) and (98) into (97) gives the result of (59).

C Proof of the symmetry and asymmetry of entropy

measures in the ensemble average

In this appendix, we provide a detailed proof of the symmetry of the ensemble-averaged
(modified) pseudo entropy and the asymmetry of the ensemble-averaged ABB and SVD
entropy observed in Fig. 5, 7, 9 and 10. Consider two states |ψ1⟩ab and |ψ2⟩ab in a D-
dimensional Hilbert space with D = d1d2. The total Hilbert space is factorized as

H = Ha ⊗Hb, dimHa = d1, dimHb = d2. (99)

With respect to this partition, these two states can be expanded as

|ψ1⟩ab =

d1∑
i=1

d2∑
j=1

ψij |i⟩a ⊗ |j⟩b , |ψ2⟩ab =

d1∑
i=1

d2∑
j=1

ϕij |i⟩a ⊗ |j⟩b , (100)

where {|i⟩a}
d1
i=1

and {|j⟩b}
d2
j=1

denote the two sets of orthonormal bases on d1 and d2-
dimensional Hilbert spaces. It is convenient to reshape the coefficients as matrices ψ =
(ψij) ∈ Cd1×d2 and ϕ = (ϕij) ∈ Cd1×d2 , respectively.

Tracing out subsystem b yields the transition matrix τa, whose matrix elements are

(τa)ik =

d2∑
j=1

ψijϕ
∗
kj, (101)

or equivalently, τa = ψϕ† ∈ Cd1×d1 . Similarly, tracing out subsystem a gives the transition
matrix τb with components

(τb)jl =

d1∑
i=1

ψijϕ
∗
il, (102)
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which can be written as τb = (ϕ†ψ)T ∈ Cd2×d2 .
Although τa and τb generally have different dimensions, the matrices ψϕ† and ϕ†ψ share

the same nonzero eigenvalues with the same algebraic multiplicities. This is a standard
linear-algebraic result: for A ∈ Cm×n and B ∈ Cn×m, the matrices AB ∈ Cm×m and
BA ∈ Cn×n have the identical nonzero spectra. A direct proof follows from the corollary
of the Sylvester determinant theorem: assuming m > n,

det (λIm − AB) = λm−n det (λIn −BA) . (103)

For any λ ̸= 0,

det (λIm − AB) = λm det

(
Im − 1

λ
AB

)
. (104)

Now using the Sylvester determinant theorem: det (Im + UV ) = det (In + V U) with U =
− 1
λ
A and V = B, one can get

det

(
Im − 1

λ
AB

)
= det

(
In −

1

λ
BA

)
. (105)

Hence, substituting (105) into (104) yields

det (λIm − AB) = λm det

(
In −

1

λ
BA

)
= λm−n det (λIn −BA) . (106)

Since both sides are polynomials in λ that agree for all λ ̸= 0, the identity extends
continuously to λ = 0. Consequently, AB and BA possess the same nonzero eigenvalues
with the same algebraic multiplicities.

In the present setting, we identify A = ψ, B = ϕ†, m = d1, and n = d2. Therefore, τa
and τb share identical nonzero spectra. For a single realization of |ψ1⟩ab and |ψ2⟩ab, this
implies

SP[τa] = SP[τb], SMP[τa] = SMP[τb]. (107)

Moreover, since the ensemble from which |ψ1⟩ab and |ψ2⟩ab are drawn is invariant under
exchange of the two subsystems, we have

SP[τa(d1; d2)] = SP[τa(d2; d1)], SMP[τa(d1; d2)] = SMP[τa(d2; d1)]. (108)

Despite the fact that τa and τb share the same nonzero spectra, their products with
their adjoints differ:

τaτ
†
a = ψϕ†ϕψ†, τbτ

†
b = (ψ†ϕϕ†ψ)T . (109)

These matrices are no longer related by the AB–BA structure and therefore do not, in
general, share the same nonzero spectra. To illustrate this explicitly, consider the case
d1 = 4 and d2 = 3, with ψ, ϕ ∈ R4×3 given by

ψ =


0 −1 −1
0 −1 1
−1 0 0
1 1 1

 , ϕ =


−1 1 1
−1 1 1
−1 0 0
1 1 −1

 . (110)
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Direct computation yields

τa =


−2 −2 0 0
0 0 0 −2
1 1 1 −1
1 1 −1 1

 , τb =

2 1 −1
3 −1 −3
1 1 −1

 . (111)

The spectra are

spec(τa) = {2,−1 + i,−1 − i, 0}, (112)

spec(τb) = {2,−1 + i,−1 − i}, (113)

confirming that τa and τb share the same nonzero eigenvalues. However,

spec(τaτ
†
a) = {12, 4 + 2

√
2, 4 − 2

√
2, 0}, (114)

spec(τbτ
†
b ) ≈ {24.61, 3.18, 0.20}, (115)

which are manifestly different.
In general, τ̄a and τ̄b possess different spectra, and the same holds for τ̃aτ̃

†
a and τ̃bτ̃

†
b .

Consequently, the ABB entropy and the SVD entropy of the transition matrix are gener-
ically asymmetric under exchange of the subsystems,

SABB[τa] ̸= SABB[τb], SSVD[τa] ̸= SSVD[τb]. (116)

After ensemble averaging, this asymmetry persists,

SABB[τa(d1; d2)] ̸= SABB[τa(d2; d1)], SSVD[τa(d1; d2)] ̸= SSVD[τa(d2; d1)]. (117)

D Vectorization and PT symmetry of the SYK Lind-

bladian

Here we introduce the vectorization of the SYK Lindbladian via the CJ isomorphism and
analyze its PT -symmetry, following [70,130,143].

The Hilbert space H of N Majorana fermions is in dimension 2N/2. We use the
Jordan-Wigner transformation [144, 145] to yield the (2N/2 × 2N/2)-dimensional matrix
representation of the N Majorana fermion,

ψ2k−1 =
(−1)k−1

√
2

σ⊗(k−1)
z ⊗ σx ⊗ I

⊗(N/2−k),

ψ2k =
(−1)k−1

√
2

σ⊗(k−1)
z ⊗ σy ⊗ I

⊗(N/2−k).

(118)

For later convenience, we define a Hermitian chiral matrix S = iN(N−1)/2
∏N

i=1

√
2ψi,

where the product of Majorana fermions is ordered sequentially from i = 1 to N , and S
satisfies {S, ψi} = 0 and S2 = 1.

To implement the CJ isomorphism, we introduce the 2N -dimensional double-copy
Hilbert space H ⊗ H. We define 2N Majorana fermion operators {ψai, ψbi}Ni=1 acting
on the double-copy Hilbert space as

ψai = ψi ⊗ S, ψbi = I⊗ ψi, i = 1, · · · , N, (119)
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which obey the anti-commutation relation {ψsi, ψs′i′} = δss′δii′ with s, s′ ∈ {a, b}.
To define a CJ isomorphism, we uniquely specify a MES

I → |0⟩ =
1

2N/4

2N/2∑
j=1

|j⟩ ⊗ |j̃⟩ with ⟨0|0⟩ = 1, (120)

in the double-copy Hilbert space, by imposing the requirement

ψai |0⟩ = −iψbi |0⟩ , ∀i. (121)

The detailed construction of |0⟩ can be seen in App. A of [130]. Then, the CJ isomorphism,
as a map from the operator space on the single-copy Hilbert space to the double-copy
Hilbert space, is defined as

O → O ⊗ I |0⟩ , ∀O. (122)

Using this CJ isomorphism and denoting the image of the density matrix ρ as |ρ⟩ =
ρ⊗ I |0⟩, we can demonstrate L(ρ) → L̂ |ρ⟩ with the vectorization (77) via

H ρ→ Hρ⊗ I |0⟩ = iq/2Ji1···iq(ψi1 ⊗ I) · · · (ψiq ⊗ I)(ρ⊗ I) |0⟩ (123)

= iq/2Ji1···iq(ψi1 ⊗ S) · · · (ψiq ⊗ S) |ρ⟩ = iq/2Ji1···iqψai1 · · ·ψaiq |ρ⟩ = Ha |ρ⟩ ,
ρH → ρH ⊗ I |0⟩ = iq/2Ji1···iq(ρ⊗ I)(ψi1 ⊗ S) · · · (ψiq ⊗ S) |0⟩ (124)

= iq/2Ji1···iq(ρ⊗ I)(−i)q(I⊗ ψi1) · · · (I⊗ ψiq) |0⟩ = (−1)q/2Hb |ρ⟩ ,
ψi ρψi → ψi ρψi ⊗ I |0⟩ = (ψi ⊗ S)(ρ⊗ I)(ψi ⊗ S) |0⟩ = −iψaiψbi |ρ⟩ , (125)

1

2

(
ψ†
iψiρ+ ρψ†

iψi

)
→ N

4
(Iρ+ ρI) ⊗ I |0⟩ =

N

2
I⊗ I |ρ⟩ , (126)

where we use the Einstein summation convention, and Ha and Hb are both SYK Hamil-
tonians with identical random couplings, as given in (75). One can also easily check
L̂ |0⟩ = 0.

Obviously, L̂ is non-Hermitian, i.e., L̂† ̸= L̂, but it enjoys PT symmetry [134],

L̂ = PT L̂(PT )−1, P = exp

(
−iπ

2

N∑
i=1

ψaiSaψbi

)
, T = QK, (127)

where Sa = S ⊗ I, Q =
∏

i=1

√
2ψa(2i)

∏
k=1

√
2ψb(2k), and K is complex conjugation

in the matrix representation (118). The unitary operator P acts as a parity operator,
while the anti-unitary operator T represents time reversal. It can be easily checked that
PP † = 1, T 2 = (−1)N/2. Using the anti-commutation relations, the operator P can be
further simplified as

P =
N∏
i=1

1√
2

(1 − 2iψaiSaψbi) , (128)

where the product is still ordered sequentially from i = 1 to N . Under the action of P ,
the transformations of Majorana fermions are given by

PψaiP
−1 = −iSaψbi, PψbiP

−1 = −iψaiSa. (129)
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Similarly, the action of T is given by

TiT−1 = −i, TψaiT
−1 = ψai, TψbiT

−1 = ψbi. (130)

One can directly verify (127) via the above properties.
However, the eigenstates of L̂ do not necessarily respect PT symmetry unless the

corresponding eigenvalues are real. This follows from

L̂ |R⟩ = E |R⟩ ⇒ L̂PT |R⟩ = PT L̂(PT )−1PT |R⟩ = PT L̂ |R⟩ = E∗PT |R⟩ . (131)

Thus, if the spectrum is real, the eigenstates remain invariant up to a phase factor under
the PT transformation, which means that they satisfy the PT symmetry. Conversely, if
the spectrum contains complex eigenvalues, the PT transformation just maps an eigen-
state |R⟩ to another state PT |R⟩ with eigenvalue E∗. This establishes that the spectrum
of L̂ is symmetric under complex conjugation.
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[120] A. M. Garćıa-Garćıa, L. Sá and J. J. M. Verbaarschot, Symmetry Classification
and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-
Ye-Kitaev Model, Phys. Rev. X 12(2), 021040 (2022), doi:10.1103/PhysRevX.12.
021040, 2110.03444.

[121] C. M. Bender and S. Boettcher, Real spectra in nonHermitian Hamiltonians having
PT symmetry, Phys. Rev. Lett. 80, 5243 (1998), doi:10.1103/PhysRevLett.80.5243,
physics/9712001.

[122] A. Mostafazadeh, Pseudo-hermiticity versus pt symmetry: The necessary condition
for the reality of the spectrum of a non-hermitian hamiltonian, Journal of Mathe-
matical Physics 43(1), 205–214 (2002), doi:10.1063/1.1418246.

[123] G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun.
Math. Phys. 48, 119 (1976), doi:10.1007/BF01608499.
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