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Abstract: About ten years ago, Katz, Klemm and Huang conjectured that topolog-

ical string amplitudes on compact, elliptically fibered Calabi-Yau threefolds at fixed

base degree could be expressed in terms of meromorphic Jacobi forms for SL(2,Z),
giving access to Gromov-Witten invariants at arbitrary genus. This was later gen-

eralized to torus-fibered CY threefolds with N -sections, where topological string

amplitudes are conjecturally governed by meromorphic Jacobi forms under the con-

gruence subgroup Γ1(N). In this work, we show that these modularity properties

follow from (and are equivalent to) the wave-function property of the topological

string partition function Ztop under a relative conifold monodromy, implementing a

particular Fourier-Mukai transformation on the derived category of coherent sheaves.

In particular, we introduce a variant of Ztop which is both holomorphic and modu-

lar covariant. Under the same relative conifold monodromy, the generating series of

genus 0 Gopakumar-Vafa invariants at fixed base degree is mapped to the generating

series of rank 0 Donaldson-Thomas indices counting D4-D2-D0-brane bound states

wrapped on the torus fiber. We show that the quasimodularity of the generating se-

ries of GV invariants matches the expected mock-modular behavior of the generating

series of D4-D2-D0 indices, despite having different multi-cover contributions. We

analyze and tabulate a large number of CY threefolds fibered over del Pezzo surfaces,

with an N -section for N ≤ 5, including several new examples beyond the realm of

toric geometry.

mailto:pioline@lpthe.jussieu.fr
mailto:thorsten.schimannek@gmail.com


Contents

1. Introduction 2

2. Preliminaries 6

2.1 Prepotential, topological free energies and Gromov-Witten invariants 7

2.2 BPS states and Donaldson-Thomas invariants 9

2.3 Modularity of D4-D2-D0 indices 11

2.4 Genus one fibrations and Jacobi forms 14

3. Base degree zero modularity and Eichler integrals 19

3.1 Elliptic fibrations 20

3.2 Genus one fibrations 22

3.3 Simplified formulae for N = 2, 3, 4, 6 25

4. Modularity from wave-function property 26

4.1 Wave-function property of the topological string partition function 26

4.2 Relative conifold monodromy 30

4.3 Modularity of genus 0 GW invariants 35

4.4 Modularity at higher genus from the wave-function property 39

5. Modularity of DT invariants from monodromy 44

5.1 Elliptic property of PT invariants 45

5.2 Modularity of D4-D2-D0 invariants 46

5.3 Comments on the black string SCFT 52

6. Discussion and open problems 55

A. Modular forms for Γ1(N) 57

A.1 Dirichlet characters, Bernoulli numbers and L-series 58

A.2 Eisenstein series with character 61

A.3 Polylogarithms and Eisenstein series with character 64

A.4 Eichler integrals 67

B. Relative conifold monodromy 73

C. Genus one fibrations 77

C.1 Projective bundles 79

C.2 2-sections 80

C.3 3-sections 82

– 1 –



C.4 4-sections 83

C.5 5-sections 84

C.6 Projective bundles from monad bundles 87

D. Generic genus one fibrations on P2 87

D.1 2-sections 88

D.2 3-sections 91

D.3 4-sections 94

D.4 5-sections 97

D.5 Extended Kähler cone and effective cone for fibrations over P2 101

E. Some examples over bases with higher Picard rank 109

E.1 Elliptic fibrations over Fk 110

E.2 Fibration with 2-section over F0 111

E.3 Fibration with 3-section over F1 112

E.4 Fibration with 4-section over dP3 113

1. Introduction

Type II strings compactified on a Calabi-Yau threefold X provide a tractable yet

extremely rich arena to investigate non-perturbative aspects of string theory, with

profound connections to many topics in mathematics including algebraic and sym-

plectic geometry. Topological string theory, obtained by a suitable twist (of A or

B-type) of the superstring worldsheet theory [1, 2], encodes a particular set of pro-

tected couplings in the low energy effective action [3]. Remarkably, it also determines

(at least in principle) the full spectrum of BPS states [4, 5, 6]. Mathematically, the

topological A-model counts holomorphic curves of arbitrary genus in X (more pre-

cisely, computes their Gromov-Witten invariants), while the topological B-model

does not yet have a first principle mathematical formulation beyond genus 0 and 1

(where it reduces to variation of Hodge structure and analytic Ray-Singer torsion,

respectively; see [7, 8] for attempts to define the B-model at all genera). Both models

are related by mirror symmetry, and computable by localization methods when X is

toric (hence non-compact) [9, 10].

When X is a smooth, compact CY threefold, the only currently available method

for computing topological string amplitudes at higher genus, that does not rely on the

existence of a fibration structure, is to exploit the holomorphic anomaly equations [2].

These have to be supplemented by certain boundary conditions in order to fix the
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holomorphic ambiguity arising at each genus. Since the number of ambiguities grows

faster than the currently known boundary conditions (including Castelnuovo bounds

at large volume and gap vanishing conditions at conifold points), this puts a bound on

the maximal computable genus, e.g. 53 for the benchmark case of the quintic three-

fold P4[5][11]. Recently, this upper bound was pushed up further for the quintic

threefold and other one-modulus hypergeometric models [12, 13], by exploiting rela-

tions between Gromov-Witten (GW) invariants and rank 0 Donaldson-Thomas in-

variants associated to the derived category of coherent sheaves C = Db Coh(X) [5, 6],

and enforcing the (mock) modularity of the corresponding generating series of D4-

D2-D0 BPS indices predicted by S-duality [14, 15, 16]. Unfortunately, the infinite

set of additional constraints gained in this way still grows slower than the number of

holomorphic ambiguities. Moreover, despite overwhelming evidence the modularity

properties are still conjectural (see however [17] for some recent progress).

In the case of CY threefolds with K3 or genus one fibrations, one may obtain fur-

ther boundary conditions by exploiting the modularity associated with the fiber. For

example, for CY threefolds fibered by lattice-polarized K3 surfaces, the generating

series of vertical (i.e. zero base degree) Gromov-Witten invariants are known to trans-

form as vector-valued modular forms, being closely related to the Noether-Lefschetz

invariants of the fibration, and can be determined to arbitrary genus [18, 19]. Similar

modularity constraints apply at non-zero base degree, although they are currently

only understood at genus 0 and become increasingly more complicated when the de-

gree increases [20, 21, 22]. Moreover, vertical D4-D2-D0 invariants are determined by

the same Noether-Lefschetz invariants [23], and hence also transform as vector-valued

modular forms, establishing the S-duality predictions in this case.

In this work, we study the case of smooth CY threefolds fibered by genus one

curves1. In this case, it was observed in [24, 25, 26] that generating series of GW

invariants with fixed base degree and genus transform as quasi-holomorphic modular

forms under SL(2,Z) (in the case of elliptic fibrations), and satisfy holomorphic (or

modular) anomaly equations similar to [2]. Based on this structure, and the duality

with F-theory [27, 28, 29], it was conjectured in [30] that the topological string

partition function at fixed base degree (but arbitrary genus) can be expressed in terms

of meromorphic Jacobi forms, where the topological string coupling plays the role of

the elliptic parameter. Since the ring of Jacobi forms is finitely generated, this opens

the way to determine the topological amplitude at fixed base degree and arbitrary

genus, provided the order of the poles in the elliptic parameter can be controlled.

While the elliptic transformation property has by now been rigorously proven for

reduced divisor classes in general elliptic fibrations [31], and the holomorphic anomaly

1We reserve the terminology elliptic fibration for a genus one fibration with a section. A general

genus-one fibered CY threefold need only admit a multisection of degree N ≥ 1. We will say that

a geometry exhibits a genus one fibration with an N -section if there is no N ′-section with N ′ < N .
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equations proven in some special cases [32], the modular transformation property

remains conjectural. In [33] these conjectures were extended to the case of genus one

fibrations with an N -section, where the modular group is restricted to the congruence

subgroup Γ1(N) ⊂ SL(2,Z) defined in (A.1). It was further observed in [34] that

the topological string partition functions of two smooth genus one fibered Calabi-Yau

threefolds with a 5-section that share the same Jacobian fibration transform into each

other under an Atkin-Lehner involution. More generally, it was proposed that the

topological string partition functions of different torus fibrations that share the same

Jacobian fibration transform as vector valued Jacobi forms under the full modular

group, after taking into account the presence of flat but topologically non-trivial

B-fields that non-commutatively resolve certain singularities [35], see also [36, 37,

38, 39]. This structure has been further clarified and generalized in [40]. Physically,

the vector valued modularity can be understood after relating the topological string

partition function to the twisted-twined elliptic genera of non-critical strings in the

six-dimensional F-theory compactification that is associated to the fibration [35, 41].

Our first main result is to derive the holomorphic anomaly equations and modular

transformation rules for smooth genus one fibrations X
π→ B over a generalized del

Pezzo surface B with h1,1(X) = h1,1(B)+1 (in particular no fibral divisors), from the

wave function property of the topological string partition function [42, 43, 44, 45, 46].

Recall that the holomorphic anomaly equations of [2] can be interpreted [42] as

the statement that the full, non-holomorphic topological string partition function

ΨBCOV(t
a, t̄a, λ, xa) can be viewed as the overlap of a background-independent wave

function |Ψtop⟩, living in a finite-dimensional Hilbert space H ∼ L2(Cb2(X)+1) asso-

ciated to the quantization of the even cohomology of X (or middle cohomology of

the mirror X̂, depending whether one is interested in the A or B-model) against a

family of coherent states t,t̄⟨λ, xa| parametrized by the background moduli ta spec-

ifying the complexified Kähler or complex structure, respectively. Under a mon-

odromy around the discriminant locus in moduli space, both the state |Ψtop⟩ and

the coherent states t,t̄⟨λ, xa| transform according to the metaplectic representation

of Sp(2b2(X) + 2,Z) = Sp(b3(X̂),Z), such that their overlap is invariant. In the

limit t̄a → −i∞ keeping ta fixed, ΨBCOV(t
a, t̄a, λ, xa) reduces to the usual topological

string partition function Ztop(t
a, λ). This interpretation was used in [44] to elucidate

the modular properties of topological string amplitudes on local CY manifolds.

In the case of a smooth, compact genus-one fibered CY threefold X with an N -

section, the homology class of the generic fiber is N -divisible. It is therefore natural

to introduce a complexified Kähler parameter T such that NT is the complexified

volume of the torus fiber. There is a natural monodromy U , the so called relative

conifold monodromy, which acts on this parameter as T 7→ T/(1 +NT ), and on the

derived category Db Coh(X) by a Fourier-Mukai transformation with kernel given
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by the ideal sheaf of the relative diagonal [47, 48, 49, 33].2 For N = 1, this can be

combined with large volume monodromies T 7→ T +1 to obtain another monodromy

S acting as T 7→ −1/T , corresponding to a double T-duality with respect to the

genus-one fiber [51, 52, 53], but in general S is not a symmetry, rather it maps

X to another element in the Tate-Shafarevitch group [54, 35, 40]. Assuming that

Ztop(t
a, λ) transforms under U according to the metaplectic representation, we shall

derive the Jacobi transformation property of the topological string partition function

at fixed base degree under T 7→ T/(1 + NT ), recovering the predictions of [30,

33]. Conversely, this may be taken as evidence that the topological string partition

function (an object whose mathematical definition remains obscure) does transform

according to the metaplectic representation under monodromies. A key step in the

derivation of the Jacobi properties is a new representation of the topological wave

function Zmod(t
a, λ) which is completely free of modular anomalies, and encodes the

‘depth zero’ part of the quasimodular generating series of invariants.

Our second main result is to compute D4-D2-D0 indices (or rank 0 DT invariants)

supported on divisors D = π∗(Ď) pulled back from the base (i.e. D4-branes wrapped

both along a basis divisor Ď ⊂ B and the generic genus-one fiber) by applying the

same monodromy U to vertical D2-D0 branes. This generalizes the work [26] to

arbitrary genus one fibrations without fibral divisors. In particular, we show that

the holomorphic anomaly equations satisfied by generating series of genus 0 GW

invariants at fixed base degree agree with the modular anomaly equations satisfied

by rank 0 DT invariants, even though multicover effects are different on both sides.

The rest of this work is organized as follows. In §2 we set up notations and

review basic facts and conjectures about various enumerative invariants of genus one

fibered CY threefolds. In §3, we focus on base degree zero Gromov-Witten invari-

ants, which are entirely determined by the Euler numbers of the threefold X and the

base B and by the multiplicities Nk of fibral curves that intersect the N -section k

times. We express the resulting generating series as linear combinations of Eisenstein

series of Γ1(N), and (in the genus 0 and genus 1 case) holomorphic Eichler integrals

thereof. These results rely on Proposition 1 as well as the Lemmas 4, 5 and Theo-

rem 1, the proofs of which are relegated to Appendix A. In §4.1, after reviewing the

wave function property of the topological string partition function, we compute the

monodromy matrix implementing the Fourier-Mukai transformation with respect to

the ideal sheaf of the relative diagonal, and spell out the resulting transformation

properties of the generating series of Gromov-Witten invariants at fixed base de-
2The usual conifold monodromy, around the locus where the central charge of the 6-brane van-

ishes, corresponds to the Fourier-Mukai transformation with kernel given by the ideal sheaf of the

diagonal ∆ ⊂ X × X [50]. The relative conifold mondromy arises around the component of the

discriminant (in the stringy Kähler moduli space of the Calabi-Yau) where the central charge of

a 2-brane wrapping the torus fiber vanishes and the Fourier-Mukai kernel is the ideal sheaf of the

relative diagonal ∆B ⊂ X ×B X. For a gentle introduction we refer to [33, Section 3.2-3.3].
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gree. For vanishing base degree, we recover the anomalous transformation properties

following from the Eichler integral representations obtained in §3. We introduce a

new ‘modular polarization’ where modular anomalies are absent, and use it to estab-

lish the Jacobi properties of the normalized topological string partition function at

fixed base degree. In §5, we study the implications of the invariance under the rel-

ative conifold monodromy on Donaldson-Thomas invariants (assuming the absence

of wall-crossing). In this way we obtain (heuristic) derivations of the elliptic prop-

erty of the generating series of PT invariants, of the periodicity of base degree zero

GV invariants, and of the S-duality property of generating series of MSW invariants

counting D4-D2-D0 branes wrapped on the genus fiber (times a fixed divisor on the

base). In §6 we summarize and discuss a few open questions. The remainder of this

long paper consists of a suite of appendices collecting background material, technical

computations and lots of examples. In §A, we discuss Eisenstein series for Γ1(N) and

prove new results for their transformation under Fricke involutions, expressions in

terms of polylogarithms and their holomorphic Eichler integrals. Further details on

the evaluation of the action of the relative conifold monodromy on the Chern classes

of branes are provided in §B. In §C, we discuss the construction of generic genus one

fibrations over generalized del Pezzo surfaces with N -sections for N ≤ 5 and provide

general expressions for their topological invariants (summarized in Table 3). A large

set of examples of generic genus one fibered CY threefolds over P2 with h1,1 = 2 is

collected/constructed in §D, while some examples over other del Pezzo surfaces are

discussed in §E.3 In both cases we also provide tables of modular generating series

of GW invariants at base degree 1 and 2.
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Dierigl, Emanuel Scheidegger, Amir-Kian Kashani-Poor, Jan Manschot, Paul Oehlmann

and Stefan Vandoren for valuable discussions. We are particularly grateful to Sergey

Alexandrov for collaboration at the initial stage of this project, and detailed com-

ments on the draft. The research of BP is supported by Agence Nationale de la

Recherche under contract number ANR-21-CE31-0021. For the purpose of Open Ac-

cess, a CC-BY public copyright licence has been applied by the authors to the present

document and will be applied to all subsequent versions up to the Author Accepted

Manuscript arising from this submission.

2. Preliminaries

In this section, we first set up notations and review basic properties of enumera-

tive invariants and topological string amplitudes on a general smooth projective CY

3The topological invariants of 72 genus one fibrations over P2 are summarized in Tables 5, 8, 11

and 13, and are collected in a Mathematica worksheet available with the source code on arXiv.
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threefold X. We then review some of the special properties that have been conjec-

tured to arise in the genus one fibered case.

2.1 Prepotential, topological free energies and Gromov-Witten invariants

Let us denote by {Ca}, a = 1 . . . b2(X) = h1,1(X) a basis of effective curves in

H2(X,Z), {Ha} the dual basis in H4(X,Z) such that Ha ∩ Cb = δba, by κabc = Ha ∩
Hb ∩Hc the triple intersection numbers, and by c2,a =

∫
Ha

c2(TX) the intersections

with the second Chern class.

At two-derivative order, the low energy effective action describing type IIA string

compactified on X in the vector multiplet sector is determined by the tree-level

prepotential F (0)(XΛ) = (X0)2F(ta), a holomorphic homogeneous function of degree

2 in local coordinates XΛ,Λ = 0, 1, . . . , b2(X) where ta = Xa/X0, a = 1 . . . b2(X) are

the complexified Kähler parameters, such that the complexified Kähler form reads

ω = taHa with Im ta > 0 (here and below, we use the same symbol for an element in

Hp(X,Z) and its Poincaré dual in H6−p(X,Z)). 4 In the large volume limit ta → i∞,

one has 5

F (0)(ta) =
1

6
(2πi)3κabct

atbtc − 1

2
ζ(3)χX +

∑
βa>0

GW
(0)
βa
e2πiβata (2.1)

where GW
(0)
βa

are the genus 0 Gromov-Witten invariants counting rational curves in

X of homology class βaC
a (with βa > 0 meaning that βa ≥ 0 for all a = 1 . . . b2(X),

not all vanishing at once). The homogeneous prepotential F (0) can be understood as

the generating function of a Lagrangian subspace FΛ = ∂XΛF (0) inside the complex

vector space C2b2(X)+2 ∼ Heven(X,C) with coordinates V = (FΛ, X
Λ)t equipped with

the symplectic form ω = dXΛ ∧ dFΛ. As a result, under a monodromy

V =

(
FΛ

XΛ

)
7→ V ′ =

(
A B

C D

)(
FΛ

XΛ

)
, (2.2)

where A,B,C,D are square matrices of size b2(X) such that

ATD − CTB = 1, ATC = CTA, BDT = DTB , (2.3)

the prepotential transforms as [55]

F (XΛ) 7→ F ′(X ′Λ) = F (XΛ)− S(XΛ, X ′Λ) (2.4)

4If the Kähler cone is non-simplicial, then Ha have to be choosen such that they generate

H2(X,Z) and Im ta > 0 is a simplicial sub-cone of the Kähler cone.
5Here we use a non-integral basis, referred to as primed basis in [46], that differs slightly from

the integral basis typically used in the topological string literature, but which allows to get rid of

quadratic and linear terms in ta.
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where, assuming that the matrix C is invertible,

S(XΛ, X ′Λ) = −1

2
XΛ(C−1D)ΛΣX

Σ +XΛC−1
ΛΣX

′Σ − 1

2
X ′Λ(AC−1)ΛΣX

′Σ (2.5)

satisfies ∂XΛS = FΛ, ∂X′ΛS = −F ′
Λ, such that the r.h.s. of (2.4) is extremized with

respect to XΛ.

At higher order in the derivative expansion, special protected couplings are gov-

erned by the topological free energies F (g)(ta, t̄a). These observables are not holo-

morphic, but satisfy holomorphic anomaly equations which will be reviewed in §4.1.
The holomorphic free energies F (g) := (X0)2−2gF (g)(ta) are defined as the holomor-

phic limit t̄a → −i∞ keeping ta fixed. Near the large volume point, the F (g)’s are

determined by the Gromov-Witten invariants GW
(g)
βa

counting stable maps from a

curve of genus g into X with image in the class βaC
a, up to a classical, linear term

at genus 1, and a constant map contribution at genus g ≥ 2,

F (1)(ta) =
2πi

24
c2,at

a +
∞∑

βa>0

GW
(1)
βa
e2πiβata ,

F (g≥2)(ta) =
(−1)g−1B2gB2g−2

(2g)(2g − 2)(2g − 2)!
χX +

∞∑
βa>0

GW
(g)
βa
e2πiβata .

(2.6)

The topological string partition function on X is defined as a formal asymptotic

series

Ztop(t
a, λ) := λ

χX
24

−1e
∑

g≥0 λ
2g−2F(g)(ta) , (2.7)

where λ is the topological string coupling. We note that the χX-dependent terms

are all captured by a power of the MacMahon function6

M(λ) :=
∏
k≥1

(1− eikλ)−k

=exp

[
−ζ(3)

λ2
+

1

12
log(−iλ) + ζ ′(−1) +

∑
g≥2

(−1)g−1 B2gB2g−2λ2g−2

(2g)(2g−2)(2g−2)!

]
.

(2.8)

In §4.1 we shall explain that Ztop transforms as a wave-function under monodromies

in Kähler moduli space, hence specifying the transformation properties of the respec-

tive holomorphic free energies F (g).

GW invariants are in general rational numbers, but can be expressed in terms

of the integer-valued Gopakumar-Vafa (GV) invariants GV
(g)
βa

by the multi-cover

6The asymptotic expansion of the (logarithm of the) MacMahon function was first worked out

in [56, (E.32)], and later rederived in a much simpler way in [57, (4.37)]. The two expressions agree

after correcting ζ ′(1) into ζ ′(−1) in [57, (4.37)], and using the identity 1
2 log(2π)−

1
2π2 ζ

′(2)+ 1
12γE =

−ζ ′(−1) + 1
12 . There remains a discrepancy by the additive constant 1

12 , which was apparently

missed in [56].
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formula [58, 59, 60]

∞∑
g=0

∑
βa>0

GW
(g)
βa
e2πiβataλ2g−2 =

∞∑
g=0

∞∑
k=1

∑
βa>0

GV
(g)
βa

k

[
2 sin

(
kλ

2

)]2g−2

e2πikβata .(2.9)

At genus 0, this reduces to the standard multicover formula for rational curves

GW
(0)
βa

=
∑

d|βa

1
d3
GV

(0)
βa/d

. While GW invariants are supported on the Mori cone

βa > 0, GV invariants are typically supported on a smaller cone, sometimes called

the ‘infinity cone’ [61], up to a few so-called nilpotent rays, which by definition sup-

port a finite number of non-vanishing genus 0 GV invariants. The infinity cone is

given by the intersection of the Mori cones of all CY threefolds birationally equiv-

alent to X, obtained by flopping the curves associated to the nilpotent rays, see

[61] for a more precise statement. Moreover, for fixed class βa, GV
(g)
βa

vanishes when

g > gmax(βa) is large enough [62].

2.2 BPS states and Donaldson-Thomas invariants

BPS states correspond to stable objects E in the bounded derived category of coher-

ent sheaves C = DbCoh(X). This category is graded by the Chern character ch(E),

related to the electromagnetic charge γ = (p0, pa; qa, q0) (in the ‘primed basis’, see

footnote 5)

p0 = ch0, pa =

∫
Ca

ch1, qa = −
∫
Ha

(ch2+
c2(TX)

24
ch0), q0 =

∫
X

(ch3+
c2(TX)

24
ch1),

(2.10)

such that the following quantization conditions are satisfied:

p0, pa ∈ Z, qa ∈ Z− c2,a
24

p0 − 1

2
κabcp

bpc, q0 ∈ Z− c2,a
24

pa (2.11)

We denote by Γ ⊂ Q2b2(X)+2 the lattice specified by these quantization conditions,

and by γ = (p0, pa; qa, q0) a generic lattice vector. Γ is equipped with an antisym-

metric integer pairing, known as the Dirac-Schwinger-Zwanziger product, or Euler

form,

⟨γ, γ′⟩ = q0p
′0 + qap

′a − q′ap
a − q′0p

0 (2.12)

Donaldson-Thomas invariants depend on a choice of stability condition σ = (Z,A),

where Z is a central charge function and A an Abelian subcategory of C, determined

locally by Z, satisfying various axioms. Physical stability conditions are those where

the central charge is determined by the tree-level prepotential,

Zt(γ) = q0 + qat
a − pa∂taF (0) − p0(2F (0) − ta∂taF (0)) (2.13)

such that |Zt(γ)| measures the mass of a BPS state with electromagnetic charge γ.

In the large volume limit ta → i∞, Zt is determined by the Chern character of the
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object E,

Zt(E) ∼
∫
X

e−taHa ch(E)

(
1 +

c2(TX)

24

)
(2.14)

up to terms proportional to ζ(3)χX , arising from O(α′)3 corrections in string theory,

and up to exponentially suppressed terms as ta → i∞, corresponding to worldsheet

instanton corrections. We choose an Abelian subcategory At compatible7 with Zt,

and denote by Ωt(γ) the Donaldson-Thomas invariant counting semi-stable objects of

charge γ for the stability condition σt = (Zt,At). When σt is generic, this is an integer

number, corresponding physically to the index counting (with signs) BPS states of

charge γ ∈ Γ. We further define the rational DT invariant Ω̄t(γ) =
∑

d|γ d
−2Ωt(γ/d),

which has simpler behavior under wall-crossing [63]. Importantly, Ωt(γ) and its

rational counterpart are invariant under complex structure deformations, and under

monodromies in Kähler moduli space, in the sense that

Ωσ(γ) = Ωg·σ(γ · g) (2.15)

where g · σ is the action of the auto-equivalence g ∈ Aut(C) implementing the mon-

odromy (acting conventionally from the left on σ), while γ · g is its action on the

charge row vector (acting conventionally from the right). In particular, Ωt(γ) is

invariant under the large volume monodromy

p0 7→ p0, pa 7→ pa + p0ϵa, qa 7→ qa − κabcp
bϵc − 1

2
p0κabcϵ

bϵc,

q0 7→ q0 − qaϵ
a +

1

2
κabcp

aϵbϵc +
1

6
p0κabcϵ

bϵcϵc (2.16)

provided the Kähler moduli (and the corresponding stability condition) are shifted

as ta 7→ ta + ϵa (for any ϵa ∈ Z). DT invariants may however jump on certain walls

of marginal stability where the phase of Zt(E) aligns with the phase of one of the

subobjects of E. In particular, the r.h.s. of (2.15) need not be equal to Ωσ(γ · h).

For p0 = pa = 0, the invariant Ωta→i∞(0, 0; βa = qa, q0) counting semi-stable

sheaves supported on the effective curve C = βaC
a is expected to be independent

of q0, and to coincide with the genus 0 Gopakumar-Vafa invariant GV
(0)
βa

[64]. Note

however that its rational counterpart Ω̄ta→i∞(0, 0; qa, q0) is not independent of the

D0-brane charge (or Euler number of the sheaf) q0, and differs from the genus 0 GW

invariant due to different multi-cover effects.

For p0 = −1, pa = 0, the invariant Ωt→eiπ/3∞(−1, 0; βa +
c2,a
24

,−m) in a suitable

large volume, large B-field limit coincides with the invariant PT(βa,m) counting

7Such an Abelian subcategory, or more precisely heart of t-structure, exists provided X satisfies

the Bayer-Macr̀ı-Toda inequality, which remains conjectural for the CY threefolds of interest in this

paper. See [12] for references and introduction to stability conditions on CY threefolds aimed at

physicists.
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stable pairs E : OX
s→ F where F is a pure one-dimensional sheaf with ch2(F ) =

βaC
a and χ(F ) = m, and s is a section of F with zero-dimensional kernel [65]. PT

invariants vanish for m ≪ 0, and are related to GV invariants via [5, 66]∑
βa>0,m

PT(βa,m) e2πiβataqm =
∏
βa>0

∏
k>0

(
1− (−q)ke2πiβata

)kGV
(0)
βa

×
∏
βa>0

gmax(β)∏
g=1

2g−2∏
ℓ=0

(
1− (−q)g−ℓ−1e2πiβata

)(−1)g+ℓ

(
2g − 2

ℓ

)
GV

(g)
βa .

(2.17)

Upon identifying q = −eiλ, the right-hand side is recognized as the topological string

partition function, up to a power of the MacMahon function and a polynomial term

coming from classical contributions at genus zero and one,

Ztop(t
a, λ) = M(λ)

χX
2 eFpol(t

a,λ)
∑
βa,m

PT(βa,m) e2πiβata+imλ . (2.18)

2.3 Modularity of D4-D2-D0 indices

In general, the generating series of rational D4-D2-D0 indices with fixed D4-brane

charge pa associated to an ample divisor class Dp = paHa and D2-brane charge µa,

evaluated in the so-called large volume attractor chamber,

hp;µ(τ) =
∑

q̂0≤
χ(Dp)

24

Ωp;µ(q̂0) e
−2πiτ q̂0 (2.19)

transforms as a vector valued mock modular form of weight −1− b2(X)
2

under SL(2,Z)

[67, 68, 15, 14, 69] (see [70, 71] for early work on this topic, and [72] for a recent

review). Here q̂0 is the invariant D0-brane charge

q̂0 = q0 −
1

2
κabqaqb (2.20)

where κab is the inverse8 matrix to κab := κabcp
c, µa labels the coset in Λ∗/Λ (of

cardinality | det (κab)|), with Λ = H2(X,Z), such that

qa = µa + κabϵ
b +

1

2
κabcp

bpc (2.21)

and χ(Dp) = κabcp
apbpc + c2,ap

a is the Euler number of a divisor Dp with class p.

More precisely, there exists a canonical completion

ĥp;µ(τ) := hp;µ(τ) +
∑
n≥2

∑
γ̌=

∑n
i=1 γ̌i

Rn ({γ̌i}, τ2) eiπτ Qn({γ̌i})
n∏

i=1

hpi,µi
(τ) (2.22)

8When Dp is ample, the matrix κab has signature (1, b2(X)− 1) and is invertible by the Hodge

index theorem.
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where γ̌ = (pa, qa) denotes the vector of D4 and D2 charges, Qn is a quadratic form

of signature ((n− 1)(b2(X)− 1), n− 1),

Qn({γ̌i}) = κabqaqb −
n∑

i=1

κab
i qi,aqi,,b (2.23)

and Rn ({γ̌i}, τ2) a sum of products of generalized error functions and derivatives

thereof [73, 74, 75], such that ĥp;µ transforms as a vector valued modular form with

weight −1 − b2(X)
2

in the Weil representation of Λ∗/Λ. In particular, under the

S : τ 7→ −1/τ and T : τ 7→ τ + 1 transformations, it transforms by the matrices [14,

Eq.(2.10)] (see also [76, 77, 78, 79])

Mµν(T ) = eπi(µ+
p
2)

2
+

πi
12

c2,apa δµν ,

Mµν(S) =
(−1)χ(ODp )√

|Λ∗/Λ|
e(b2(X)−2)πi

4 e−2πiµ·ν ,
(2.24)

where µ · ν = κabµaνb, δµν is the Kronecker delta on the discriminant group Λ∗/Λ,

and χ(ODp) =
1
2
(b+2 (Dp) + 1) is the arithmetic genus given by

χ(ODp) =
1

6
κabcp

apbpc +
1

12
c2,ap

a . (2.25)

While the modular completion (2.22) is not holomorphic, due to the kernelsRn ({γ̌i}, τ2),
its τ̄ -derivative is simply determined by the modular completions of the generating

series of the constituents, as

∂τ̄ ĥp;µ(τ) =
∑
n≥2

∑
γ̌=

∑n
i=1 γ̌i

Jn ({γ̌i}, τ2) eiπτ Qn({γ̌i})
n∏

i=1

ĥpi,µi
(τ) (2.26)

where the kernels Jn ({γ̌i}, τ2) are again sums of products of generalized error func-

tions, this time leading to a modular theta series, consistent with the fact that τ 22∂τ̄
raises the modular weight by 2 units.

Up to now, we assumed that the quadratic form κab = κabcp
c was invertible, and

that the vector pa had positive norm, κabp
apb > 0. Both conditions are automatically

satisfied when the divisor class paHa is ample (see footnote 8), however they fail for

the D4-D2-D0 indices related to D2-D0 indices by a relative conifold monodromy, as

we shall see in §5. Generalizations of the modularity constraints were conjectured

in [80] in the case where κab is degenerate, and in [72] in the case where the vector

pa is isotropic, κabp
apb = 0. We now briefly summarize the resulting prescriptions,

while pointing out that it is an open problem to characterize the modular properties

of generating series for arbitrary, non-ample effective divisor classes.

Starting with the case where κab is degenerate, let {λa
s} be a set of null vectors,

i.e. κabλ
a
s = 0, and Λp ⊂ Λ the sublattice orthogonal to these vectors,

Λp = {qa ∈ Zb2(X) +
1

2
κabp

b : λa
sqa = 0}. (2.27)
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We now introduce the pseudo-inverse quadratic form9 κab defined by the conditions

i) rank(κab) = rank(κab), ii) κacκcb = δab −
∑

s,t e
stλa

sλ
b
t where est is the inverse of

est =
∑

a λ
a
sλ

a
t . Then the claim of [80] is that, upon replacing Λ by Λp and b2(X)

by rank(Λp), all results previously stated for ample divisors continue to apply. In

particular, the modular weight of the generating function is now −1− 1
2
rank(Λp). In

the special case where pa itself is a null vector (i.e. κabp
b = 0), as happens in the

case of vertical D4-D2-D0 invariants in K3-fibered CY threefolds [22], the modular

anomaly turns out to be absent, so that ĥp;µ coincides with hp;µ for any p, reducible

or not.

Next we turn to the case where pa is an isotropic vector, κabp
apb = 0 with

κab being non-degenerate. In this case, the modular anomaly is still present but it

significantly simplifies. For simplicity, we assume that pa lies along the boundary

of the effective cone, such that the only allowed splittings involve collinear charges,

pai = rip
a
0 where pa0 is a primitive vector with p30 := κabcp

a
0p

b
0p

c
0 = 0. In this collinear

case, only binary splittings occur on the r.h.s. of (2.26) [14, 5.2]. The isotropic case

p30 = 0 can be obtained as a limit ϵ → 0 of a positive vector pϵ = p0+ ϵv1, where v1 is

any lattice vector with positive inner product ξ := p0 · v1 > 0. While the coefficient

J2 is in general proportional to
√

p3ϵ , which vanishes in the limit ϵ → 0, it also

involves a theta series which diverges in the same limit. In [72, §D], it is shown that

the result is finite in the limit ϵ → 0, and given by

τ 22∂τ̄ ĥrp0,µ =
1

16πi

∑
r=r1+r2

Jr1,r2 ĥr1p0,µ ĥr2p0,µ (2.28)

where

Jr1,r2 = r0
∑

µ1∈Λ∗
1/Λ1,µ2∈Λ∗

2/Λ2

δµ−µ1−µ2∈r0Λ0

ng−1∑
A=0

δ
(ξr12)

p0·(µ∥
12+r12g

∥
A)
ϑ⊥
µ⊥
12+r12g⊥A

. (2.29)

Here r0 = gcd(r1, r2), r12 =
rr1r2
r20

; Λ0 is the lattice Λ equipped with the quadratic form

κ0,ab = κabcp
c
0, Λ1 and Λ2 are the same lattices with quadratic form rescaled by r1 and

r2, respectively; the lattice Λ
∥
0 is the two-dimensional sublattice of Λ0 spanned by

(p0, v1), and Λ⊥
0 is its orthogonal complement; the glue vectors (g

∥
A, g

⊥
A), A = 1, . . . ng

generate the quotient Λ0/(Λ
∥
0 ⊕ Λ⊥

0 ), and δ
(N)
m is the Kronecker delta on ZN , equal

to 1 if m = 0 mod N and 0 otherwise. Finally, the factor µ12 is defined as

r0 µ12,a = r2µ1,a − r1µ2,a + r1r2κ0,ab

(
ρb1 − ρb2 +

1

2
(r1 − r2)p

b
0

)
, (2.30)

where ρa1, ρ
a
2 are any integer solutions of

µa − µ1,a − µ2,a + r1r2κ0,abp
b
0 = κ0,ab

(
r1ρ

b
1 + r2ρ

b
2

)
(2.31)

9This is also known as the Moore-Penrose inverse.
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(which exist by virtue of the condition µ − µ1 − µ2 ∈ r0Λ0). While these various

definitions depend on the choice of vectors v1, ρ1, ρ2, the final result does not. Of

course, it is advisable to choose v1 in such a way that the number of glue vectors is

minimal. In the case of interest in §5, we shall have to deal at the same time with a

degenerate quadratic form κab and an isotropic vector pa, but the lattice Λ⊥
0 will be

null such that the theta series ϑ⊥
µ⊥
12+r12g⊥A

will actually be a constant.

2.4 Genus one fibrations and Jacobi forms

We now assume that X is a CY threefold with a torus fibration F ↪−→ X
π→ B over

a generalized del Pezzo surface B. By this we mean that B is either P1 × P1, the

Hirzebruch surface F2 or an iterative blow-up of P2 in k = 0, . . . , 8 points that are not

necessarily generic but do not lie on any curve of self-intersection −2. For simplicity,

we shall focus on sufficiently generic fibrations such that b2(X) = b2(B)+1. 10 We also

assume that the complex structure is sufficiently generic, such that the discriminant

divisor in B is reduced and irreducible and has at most isolated nodes and cusps as

singularities. For a more detailed discussion of such geometries, see [40, Section 3].

Let us first introduce some terminology. A divisor S is called an N-section if

π(S) = B and there exists a dense open subset U ⊂ B such that S
∣∣
U
is an N -sheeted

branched covering of U . This implies that F ∩ S = N . We further assume that

the covering is irreducible and refer to divisors that are unions of Ni-sections with∑
iNi = N as pseudo N-sections. A 1-section is just a section.

If the fibration has a section it is called elliptic. On the other hand, if it only

exhibits an N -section – and there are no N ′-sections with N ′ < N – we refer to it

as a genus one fibration with an N-section. We use the term torus fibration if we

want to remain agnostic about the existence of a section. Every torus fibration has

an N -section for some N ∈ N.

We choose a basis {Ďα, α = 1, . . . , b2(B)} of effective curve classes on B, with

intersection form Cαβ = Ďα ∩ Ďβ, and denote by Ďα = CαβĎ
β ∈ Pic(B) the dual

basis such that Ďα ∩ Ďβ = δαβ (here Cαβ is the inverse of Cαβ; note that detCαβ = 1

as the lattice H2(B,Z) is self-dual). If the Kähler cone of B is simplicial, we assume

that the divisor classes Ďα form a basis. If it is not simplicial, we assume that the

Ďα span a simplicial sub-cone of the Kähler cone and that all integral divisors inside

the Kähler cone are linear combinations with integer coefficients of the Ďα’s. We

denote by c1(B) = aαĎ
α = aαĎα the first Chern class of B.

A basis of effective divisors {Da} = {De} ∪ {Dα, α = 1, . . . , b2(B)} in H4(X,Z)

can be assembled by combining the class of the N -section De with pullbacks Dα =

10This implies in particular that the fibration does not exhibit any fibral divisors, that resolve

singularities over one-dimensional components of the discriminant locus, or additional N -sections

that correspond to a non-zero Mordell-Weil rank of the associated Jacobian fibration.
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π∗(Ďα) of effective divisors on the base. By construction, the divisors Dα have van-

ishing intersections, Dα∩Dβ∩Dγ = 0, while their intersection withDe is proportional

to their intersection on the base, De ∩Dα ∩Dβ = NCαβ. We denote the intersection

numbers by κabc := Da ∩Db ∩Dc and introduce κ, ℓα such that

κ := κeee , ℓα := κeeα , κeαβ = NCαβ, καβγ = 0 (2.32)

and denote the integrals of the second Chern class c2(TX) on (De, Dα) by

c2 := c2,e, cα :=
1

12
c2,α . (2.33)

In fact, the coefficients cα appear to be always equal to the coefficients aα of the

anti-canonical class on the base, but since we are not aware of a proof in general, we

use a different notation. 11 Importantly, while the divisors Dα are always nef, and

De is always effective, De is not necessarily nef. One can however always shift it by a

linear combination De 7→ De + ηαDα, such that the resulting divisor is nef and such

that {De, Dα} generates the nef cone (defined as the closure of the Kähler/ample

cone). Under this shift, the intersection coefficients (2.32) transform as

ℓα 7→ ℓα + 2NCαβη
β, κ 7→ κ+ 3ℓαη

α + 3NCαβη
αηβ , (2.34)

leaving the following combinations invariant,

κ̂ := κ− 3

4N
ℓαC

αβℓβ, ĉ2 := c2 −
6

N
cαℓα . (2.35)

We will refer to curves that are supported on a single fiber of the fibration as

fibral curves. The fibers of the fibration are irreducible except for I2-fibers over

isolated points of the base. The I2-fibers consist of two rational curves that intersect

transversely in two points. We denote by Nk, k = 1, . . . , N − 1 the number of fibral

curves that intersect the N -section k times. By comparing the Chern-Simons terms

of the corresponding F- and M-theory vacua, it was conjectured in [40, Conj. 3] that

the invariant combinations (2.35) are determined in terms of these numbers by

κ̂ =
12− χB

4
N3 − 1

8N

N−1∑
k=1

k2(N − k)2Nk ,

ĉ2 = 4(15− χB)N − 1

2N

N−1∑
k=1

k(N − k)Nk .

(2.36)

11For elliptic fibrations with a section this is proven for example in [81, Appendix D] and for

certain genus one fibrations with N -sections a proof can be found in [33, Appendix B]. A sketch

of a more general proof is discussed in [40, Section 3.3] and a physical derivation can be found

in [40, Section 4.5] by comparing the Chern-Simons terms of five-dimensional F- and M-theory

compactifications.
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Moreover, theNk’s along with the Euler numbers χX and χB determine all non-trivial

Gopakumar-Vafa invariants at base degree zero [82]12,

GV
(0)
mN+k,0α

= Nk, GV
(0)
(m+1)N,0α

= −χX , GV
(1)
m+1,0α = χB (2.37)

for all m ∈ N, k = 1, . . . , N − 1. Moreover, the following sum rule

N∑
k=1

GV
(0)
k,0α

= 60(12− χB) , (2.38)

is required by the cancellation of gravitational anomalies in F-theory [84]. For N = 1,

this sum rule reduces to χX = −60(12 − χB). Since the base is a rational surface,

we also have χB = 12− aαa
α.

Now, we denote by {Ca} = {E}∪{Cα, α = 1, . . . b2(B)} the basis of curve classes

in H2(X,Z) dual to {Da}, such that

E ∩De = 1 , E ∩Dα = Cα ∩De = 0 , Cα ∩Dβ = δαγ . (2.39)

The curve class Ce := E is related to the class of the generic fiber F via F = NE
such that F ∩De = N , consistent with the fact that De is the class of the N -section.

The curve classes Cα are linear combinations of F and of the intersections De ∩Dα,

Cα =
1

N
Cαβ

(
De ∩Dβ −

ℓβ
N
F

)
. (2.40)

Note that Cα is an integral class, despite the factors of 1/N appearing in this ex-

pression. For N = 1, i.e. in the presence of a section σ, the intersection DeDα is

identical with the embedding σ(Ďα) of the curve on B, but differs from CαβC
β by a

multiple of the fiber class.

As in §2.1, the Kähler form ω can be expanded as a linear combination of the

Poincaré dual of the basis of divisors {De, Dα},

ω = TDe + SαDα . (2.41)

In order to state the modular properties of the generating series of Gromov-Witten

invariants, it is useful to expand ω in a different basis {D̃e := De +
1
2N

D,Dα} where

D is the pull-back of the so called height pairing [30, 33],

D := −π∗π∗(DeDe) = −ℓαC
αβDβ , (2.42)

12This statement generalizes [83, Thm 6.9] to the case of torus fibrations. We do not know of

a rigorous mathematical proof in general, but we shall give a heuristic argument of the mod N

periodicity of GV
(0)
n,0 using invariance under the relative conifold monodromy in §4.3.
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and parametrize instead the Kähler form as

ω = TD̃e + ŜαDα , Ŝα := Sα +
T

2N
Cαβℓβ . (2.43)

Although D̃e is in general not an integral class, it is worth noting that it is invariant

under shifts De 7→ De − ηαDα accompanied by the corresponding change (2.34) in

the intersection numbers. In fact, the invariants κ̂ and ĉ2 respectively are the self-

intersection D̃3
e and second Chern class D̃e ∩ c2(TX) for the non-integral class D̃e,

which satisfies D̃e ∩ D̃e ∩Dα = 0.

In terms of the parametrization (2.43), one may define generating series of

Gromov-Witten invariants at fixed genus g and base degree kα

f
(g)
kα

(T ) =
∑
n≥0

GW
(g)
kαCα+nF e

2πiT

(
n−

ℓαCαβkβ
2N

)
(2.44)

(where the sum over n is bounded from below) such that

F (g)(T, Sα) = F (g)
pol(T, S

α) +
∑
kα≥0

f
(g)
kα

(T ) e2πikαŜ
α

(2.45)

where the first term is the contribution of the non-constant polynomial terms that

arise at genus zero and one. In [24, 26, 25], it was observed in a few examples that the

generating series are quasimodular forms of weight 2g−2. A more precise statement

was conjectured for elliptic fibrations in [30], and generalized to torus fibrations

in [33],13 in terms of the coefficients Zkα(T, λ) appearing in the Fourier expansion of

the topological string partition function Ztop with respect to Ŝα, normalized by the

base degree 0 contribution,

Ztop(Ŝ
α, T, λ)

Z0(T, λ)
= 1 +

∑
kα>0

Zkα(T, λ) e
2πiŜαkα . (2.46)

It will be convenient to use the notations Zkα and ZH interchangeably, where H =

kαĎ
α is an effective divisor class on the base B. Using (2.18), ZH(T, λ) can equiva-

lently be defined as the generating function of PT invariants with fixed base degree

H, normalized by the generating function of PT invariants with zero base degree,

Zkα(T, λ) =
PTkα(T, λ)

PT0(T, λ)
,

PTkα(T, λ) =
∑
n,m

PT(kαC
α + nF,m) e2πi(n−

ℓαCαβkβ
2N

)T+imλ .
(2.47)

13Generalizations for elliptic fibrations with fibral divisors and/or non-zero Mordell-Weil rank

have been proposed in [85, 86, 87] and were also extended to genus one fibrations in [33].
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For base degree zero, the only non-vanishing GV invariants are those listed in (2.37),

so the GV/PT relation (2.17) gives

PT0(T, λ) =
∏
n>0

(1− e2πinT )−χB

×
N−1∏
µ=0

(∏
k>0

∏
n>0

(
1− (−1)ke2πi(µ+nN)T+ikλ

)(µ+nN)GV
(0)
µ,0

)
.

(2.48)

In terms of the normalized generating functions (2.47), the statement of [30, 33]

is that ZH(T, λ) should be a meromorphic Jacobi form of weight 0 and index hH − 1

under the congruence subgroup Γ1(N) ⊂ SL(2,Z) defined in (A.1), where

hH = 1 +
1

2
H ∩ (H − c1(B)) = 1 +

1

2
kαC

αβ(kβ − cβ) (2.49)

is the arithmetic genus of the curve class H. This entails several properties of

ZH(T, λ̌) that are most conveniently formulated using λ̌ := λ/(2π) and slightly abus-

ing the notation:

i) Periodicity under λ̌ 7→ λ̌+1 and T 7→ T +1 (up to a phase), which is manifest

from the definition (2.47).

ii) Quasi-periodicity under λ̌ 7→ λ̌+mNT for any integer m ∈ Z,

ZH(T, λ̌+mNT ) = e−2πi(hH−1)(m2NT+2mλ̌)ZH(T, λ̌) . (2.50)

This was proven in [31] for elliptic fibrations (N = 1) and reduced14 H, but

remains conjectural in general. Note that one could rescale λ̌ → λ̌/N so as

to enforce quasi-periodicity under λ̌ → λ̌+mT , at the expense of introducing

fractional powers of e2πiλ̌.

iii) Modular invariance under the generator
(

1 0

N 1

)
of Γ1(N),

ZH

(
T

1 +NT
,

λ̌

1 +NT

)
= e−2πi(hH−1) λ̌2

1+NT ZH(T, λ̌) . (2.51)

iv) For N ≥ 5, similar relations as (2.51) under the remaining generators of Γ1(N).

Sets of generators for N = 5, 6, 7 can be found in Table 1 on page 58.

We note that ii) follows from i) and iii), for which there is considerable evidence in

explicit models but no mathematical proof yet. In fact, the conjectures in [30, 33]

14I.e. for any decomposition H =
∑

Hi into effective classes, all Hi’s are primitive.
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go beyond these Jacobi modular properties, and provide an Ansatz specifying the

analytic structure of ZH(T, λ̌), namely

ZH(T, λ̌) =
∆2N(T )

rH
N

η(NT )12c1(B)·H
∏b2(B)

α=1

∏kα
s=1 φ−2,1(NT, sλ̌)

φH(T, λ̌) (2.52)

where η(T ) = q1/24
∏
(1−qn) with q := e2πiT is the Dedekind eta function, ∆2N(T ) is

a specific modular form of weight 2N under Γ1(N), φ−2,1(T, z) = −ϑ1(T, z)
2/η6(T )

is a weak Jacobi form of weight −2 and index 1, and φH(T, λ̌) is a weak Jacobi form

of suitable weight and index,15 such that (2.52) has weight 0 and index hH − 1, as

specified in (2.49). The modular form ∆2N(T ) is given explicitly by16

∆2N(T ) = e−2πiTφ−2,1(NT, T )−N =

{
q(1 + 8q + . . .) N = 2

qN−1 (1 + 2Nq + . . . ) N ≥ 3
(2.53)

while the exponent rH is determined modulo N by

rH =
1

2
[N2c1(B)− π(D)] ∩H mod N =

1

2
(N2cα + ℓα)C

αβkβ mod N , (2.54)

Upon Laurent expanding around λ̌ = 0, these properties automatically imply that

the generating series (2.44) are quasimodular forms of weight 2g − 2 under Γ1(N),

which furthermore satisfy a holomorphic anomaly equation of the form

∂E2(NT )f
(g)
H (T ) =− 1

24

∑
g=g1+g2

H=H1+H2

(H1 ∩H2)f
(g1)
H1

f
(g2)
H2

− 1

24
H ∩ (H − c1(B)) f

(g−1)
H

(2.55)

where the second term is absent for g = 0. For N = 1, this recovers [25] [32, §3.6].

3. Base degree zero modularity and Eichler integrals

In this section, we derive general modular expressions for the base degree zero contri-

butions f
(g)
0 (T ) to the topological string free energies, based on the simple structure

of the vertical GV invariants summarized in (2.37). This completes and generalizes

the results from [30, Section 4.5] for N = 1 and [33, Section 4.3] for N = 2, 3, 4, 6

to the case of genus one fibered Calabi-Yau threefolds with N -sections for arbitrary

N . These results will also serve as consistency checks for the general transforma-

tion properties of the topological string partition function that will be the subject of

Section 4.

15For example, for an elliptic fibration over B = P2, with hyperplane class H, rnH = 0 and

φnH(T, λ̌) is a weak Jacobi form of weight 16n and index 1
3n(n− 1)(n+ 4).

16See [40, §D.4] for a proof of the modularity properties of ∆2N .

– 19 –



As reviewed in Section 2.4, the only non-vanishing base degree zero Gopakumar-

Vafa invariants are

GV
(0)
mN,0α

= −χX , GV
(0)
(m−1)N+a,0α

= GV
(0)
mN−a,0α

= Na , GV
(1)
mN,0α

= χB , (3.1)

for m ≥ 1 and a ∈ {1, . . . , ⌊N
2
⌋}. The base degree zero contributions to the

topological string free energies at arbitrary genus are then determined by the GV-

formula (2.9), together with the expansion

∑
m≥1

qm

m

[
2 sin

(
mλ

2

)]−2

= λ−2Li3(q) +
∑
g≥1

(−1)g+1λ2g−2B2g

2g[(2g − 2)!]
Li3−2g(q) , (3.2)

and the constant map contributions

F0|const. = −1

2
ζ(3)χX , Fg≥2|const. =

(−1)g−1

2

B2gB2g−2

2g(2g − 2)[(2g − 2)!]
χX . (3.3)

At genus zero, this leads to the result

f
(0)
0 (T ) = −χX

(
ζ(3)

2
+
∑
m≥1

Li3(mNT )

)
+
∑
m≥0

N−1∑
k=1

NkLi3
(
qmN+k

)
, (3.4)

while the higher genus free energies take the form

f
(1)
0 (T ) =

1

12

[
(12χB − χX)

∑
m≥1

Li1(q
mN) +

∑
m≥0

N−1∑
k=1

Nk Li1
(
qmN+k

)]
, (3.5)

f
(g≥2)
0 (T ) =(−1)g+1 B2g

2g[(2g − 2)!]

(
χX

[
B2g−2

2(2g − 2)
−
∑
m≥1

Li3−2g

(
qmN

)]

+
∑
m≥0

N−1∑
k=1

Nk Li3−2g

(
qmN+k

))
.

(3.6)

3.1 Elliptic fibrations

Let us first understand the modular properties of these expressions (3.4), (3.5) and

(3.6) in the easiest case N = 1. We start by recalling some well-known properties of

Eisenstein series and their less familiar Eichler integrals.

For even k ∈ N, with k ≥ 4, the Eisenstein series

Ek(τ) := 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n = 1− 2k

Bk

∑
m≥1

Li1−k(q
m) , (3.7)
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is a modular form of weight k for SL(2,Z). The weight two Eisenstein series E2(τ)

is a quasimodular form for SL(2,Z) and transforms as [88]

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

12

2πi
c(cτ + d) ,

(
a b

c d

)
∈ SL(2,Z) . (3.8)

Using the relation∑
m≥1

σk−1(m)qm =
∑
m≥1

∑
n|m

nk−1qm =
∑

m,n≥1

nk−1qmn =
∑
m≥1

Li1−k(q
m) , (3.9)

one can rewrite

Ek(τ) =1− 2k

Bk

∑
m≥1

Li1−k(q
m) . (3.10)

In general, given a holomorphic modular form f(τ) =
∑

n anq
n of weight w,

its holomorphic Eichler integral is defined as f̃(τ) = Pw−2(τ) +
∑

n̸=0
an

nw−1 q
n, such

that the iterated derivative (2πi)1−w∂w−1
τ = f(τ). The constant term Pw−1(τ) is

polynomial in τ of degree w−1, unspecified except for its top degree term, determined

by a0. Under γ ∈ SL(2,Z), f̃(τ) transforms like up modular form of (negative)

weight 2 − w, up to a γ-dependent polynomial of degree w − 2 (and a logarithmic

term when w = 2). We are particularly interested in the holomorphic Eichler integral

of the weight four Eisenstein series E4(τ), which we define following [89, (27)] (see

also [90, App. B] and [91, 92])

Ẽ−2(τ) :=
(2πi)3

1440
τ 3 +

1

2
ζ(3) +

∑
m≥1

Li3(q
m) , (3.11)

such that

(2πi)−3∂3
τ Ẽ−2(τ) = E4(τ) . (3.12)

Under SL(2,Z), E−2(τ) transforms as a weight −2 modular form, up to a quadratic

polynomial in τ ,

τ 2Ẽ−2(−1/τ) =Ẽ−2(τ) +
iπ3

36
τ ,

Ẽ−2(τ + 1) =Ẽ−2(τ)−
iπ3

180
(1 + 3τ + 3τ 2) .

(3.13)

Similarly, the holomorphic Eichler integral of the weight two Eisenstein series E2(τ)

takes the form

Ẽ0(τ) := log η(τ) =
2πi

24
τ −

∑
m≥1

Li1(q
m) , (3.14)

– 21 –



and satisfies (2πi)−1∂τ Ẽ0(τ) = E2(τ). The transformations of the Dedekind eta

function

η(−1/τ) = e−
πi
4
√
τη(τ) , η(τ + 1) = e

πi
12η(τ) , (3.15)

imply that the Eichler integral transforms as

Ẽ0(−1/τ) = Ẽ0(τ) +
1

2
log(τ)− πi

4
, Ẽ0(τ + 1) = Ẽ0(τ) +

πi

12
. (3.16)

Combining the expressions for the base degree zero free energies (3.4), (3.5)

and (3.6), with (3.11), (3.14) and (3.10), and using χX = −60(12−χB), one obtains

the identities

f
(0)
0 (T ) =− (12− χB)

[
(2πi)3

24
T 3 + 60Ẽ−2(T )

]
,

f
(1)
0 (T ) =4(15− χB)

[
2πi

24
T − Ẽ0(T )

]
,

f
(g≥2)
0 (T ) =(−1)g

15B2gB2g−2

g(2g − 2)[(2g − 2)!]
(12− χB)E2g−2(T ) .

(3.17)

Further defining

f̂
(0)
0 (T ) :=

κ̂

6
(2πiT )3 + f

(0)
0 (T ), f̂

(1)
0 (T ) := − ĉ2

12
πiT + f

(1)
0 (T ) (3.18)

and using (2.35) with N = 1, we see that the cubic and linear terms cancel, leading

to

f̂
(0)
0 (T ) = −60(12− χB)Ẽ−2(T ) , f̂

(1)
0 (T ) = −4(15− χB)Ẽ0(T ) (3.19)

The transformation properties of these expressions under SL(2,Z) can be easily

deduced from (3.8), (3.13) and (3.16). In particular, the third derivative Y0(T ) :=

(2πi)−3∂3
T f̂

(0)
0 (also known as Yukawa coupling) is a modular form of weight 4, ef̂

(1)
0

is a modular form of weight 2χB − 30, f (2) is a quasimodular form of weight 2 while

f
(g≥3)
0 is a modular form of weight 2g − 2.

3.2 Genus one fibrations

We shall now generalize the expressions (3.17) to genus one fibrations with N -

sections. To this end, it will be necessary to understand the modular properties

of expressions

ϕ
(g)
N,a(τ) :=

∑
m≥0

N∑
k=1

gN,a(k)Li3−2g

(
qmN+k

)
, (3.20)
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where we use

gN,a(k) =

{
1 if k ≡ ±a mod N

0 else
. (3.21)

We relegate most of the technical work to Appendices A.2–A.4. In §A.3, we prove

Lemma 4, which together with Proposition 1 from §A.2 implies that for g ≥ 2,

φ
(g≥2)
N,a (τ) := − B2g−2

2g − 2
δ1,N/ gcd(N,a) + ϕ

(g)
N,a(τ) (3.22)

is a modular form of weight 2g − 2 for Γ1(N). In Appendix A.3 we also prove

Lemma 5, which implies that for g ∈ {0, 1} the expression

Φ
(g)
N,a(τ) :=− (2πi)3−2gβ4−2g,N,a

(4− 2g)[(3− 2g)!]
τ 3−2g + ϕ

(g)
N,a (τ) , (3.23)

is a holomorphic Eichler integral of a Γ1(N) (quasi) modular form

φ
(g)
N,a(τ) := (2πi)2g−3∂3−2g

τ Φ
(g)
N,a(τ) , (3.24)

of weight 4 − 2g. For g = {0, 1}, the coefficient β4−2g,N,a defined in (A.8) is given

explicitly by

β2,N,a =
1

N

(
N2

6
− a(N − a)

)
, β4,N,a =

1

N

(
−N4

30
+ a2(N − a)2

)
. (3.25)

The transformation properties of Φ
(g)
N,a(τ) under τ → τ + 1 and τ → τ/(Nτ + 1) are

determined in Appendix A.4 and summarized in Theorem 1 on page 68.

Genus 0. Using (3.11) and (3.23), we can express (3.4) as

f
(0)
0 (T ) =(2πi)3CT 3 − χXẼ−2(NT ) +

⌊N/2⌋∑
a=1

NaΦ
(0)
N,a(T ) , (3.26)

where the constant C is defined as

C :=
χX

1440
N3 +

⌊N/2⌋∑
a=1

Na

24N

(
−N4

30
+ a2(N − a)2

)
. (3.27)

Using (2.38) and (2.36), we can rewrite this as

C =
N3

1440

χX −
⌊N/2⌋∑
a=1

Na

+
N−1∑
a=1

Na

24N
a2(N − a)2 = −1

6
κ̂ . (3.28)
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In terms of the function f̂
(0)
0 introduced in (3.18), we therefore have

f̂
(0)
0 (T ) = −χXẼ−2(NT ) +

⌊N/2⌋∑
a=1

NaΦ
(0)
N,a(T ) . (3.29)

Using Theorem 1 and (3.13), as well as (2.38), we see that this transforms as

(NT + 1)2f̂
(0)
0

(
T

NT + 1

)
− f̂

(0)
0 (T )

=
iπ3

180
χX(4N

2T 2 − 3NT − 3)

− iπ3

90

⌊N/2⌋∑
a=1

Na

[
2(15a2 − 15aN + 2N2)T 2 − 3NT − 3

]
=(2πi)3

[
1

8
(χB − 12)(NT + 1) +

1

24
N(ĉ2 − 12N)T 2

]
,

(3.30)

as well as f̂
(0)
0 (T + 1)− f̂

(0)
0 (T ) = (2πi)3 κ̂ (3T 2 + 3T + 1)/6. The third derivative of

f̂ (0)(T ) is a linear combination of Γ1(N) Eisenstein series of weight four,

Y0(T ) := (2πi)−3∂3
T f̂

(0)
0 (T ) = −χXN

3E4(Nτ) +

⌊N/2⌋∑
a=1

Naφ
(0)
N,a(T ) . (3.31)

More generally, under γ =
(
a b

c d

)
∈ Γ1(N), f̂

(0)
0 transforms as

f̂
(0)
0

(
aT + b

cT + d

)
=

f̂
(0)
0 (T ) + xT 2 + yT + z

(cT + d)2
(3.32)

where x, y, z are γ-dependent constants, subject to obvious cocycles relations, such

that the third derivative transforms as Y0

(
aT+b
cT+d

)
= (cT + d)4Y0(T ).

Genus 1. Using (3.11) and (3.23), we can express (3.5) as

f
(1)
0 (T ) =2πiDT −

(
χB − χX

12

)
Ẽ0(NT ) +

1

12

⌊N/2⌋∑
a=1

NaΦ
(1)
N,a(T ) , (3.33)

where the constant D is defined as

D :=
N

24

(
χB − χX

12

)
+

1

24

⌊N/2⌋∑
a=1

Na

N

(
N2

6
− a(N − a)

)
. (3.34)

Using also (2.38) and (2.36), we can rewrite this as

D =
N

24
(χB + 5(12− χB))−

1

24N

⌊N/2⌋∑
a=1

Naa(N − a) =
ĉ2
24

. (3.35)
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In terms of the function f̂
(1)
0 introduced in (3.18), it follows that

f̂
(1)
0 (T ) =

(χX

12
− χB

)
Ẽ0(NT ) +

1

12

⌊N/2⌋∑
a=1

NaΦ
(1)
N,a(T ) . (3.36)

Using Theorem 1 and (3.16), as well as (2.38) and (2.36), we find that

f̂
(1)
0

(
T

NT+1

)
− f̂

(1)
0 (T )

=
(χX

12
− χB

)[1
2
log(NT + 1)− πi

12

]
− 1

12

⌊N/2⌋∑
a=1

Naĉ
(1)
N

=
1

24
(χX − 12χB) log(NT + 1) + 5πi− πi

3
χB ,

(3.37)

as well as f̂
(1)
0 (T+1)−f̂

(1)
0 (T ) = −πiĉ2/12. More generally, under γ =

(
a b

c d

)
∈ Γ1(N),

ef̂
(1)
0 transforms as a modular form of weight χX

24
− χB

2
, up to a phase subject to the

group relations. Moreover, the derivative of f̂ (1)(T ) is a quasimodular form of weight

two under Γ1(N),

(2πi)−1∂T f̂
(1)(T ) = N

(
χB − χX

12

)
E2(NT ) +

1

12

⌊N/2⌋∑
a=1

Naφ
(1)
N,a(T ) . (3.38)

Genus g ≥ 2. Using (A.35) and (3.20), we can express (3.6) as

f
(g≥2)
0 (T )

=(−1)g+1 B2g

2g[(2g − 2)!]

χX
B2g−2

2(2g − 2)
E2g−2(NT ) +

⌊N/2⌋∑
a=1

Naϕ
(g)
N,a(T )

 .
(3.39)

For g = 2, one can use Lemma 4, together with the fact that eN,2(τ) := NE2(Nτ)−
E2(τ) is a modular form of weight two for Γ1(N), to see that f

(2)
0 (T ) itself is a

quasimodular form of weight two for Γ1(N). For g ≥ 3, Lemma 4 implies that

f
(g)
0 (T ) is a modular form of weight 2g − 2 for Γ1(N).

3.3 Simplified formulae for N = 2, 3, 4, 6

For N = 2, 3, 4, 6, the relevant Eisenstein series of Γ1(N) can all be obtained in terms

of the Eisenstein series of SL(2,Z) with arguments rescaled by divisors of N . In this

way, we get, for N = 2,

f̂
(0)
0 (T ) =N1Ẽ−2(T )− (χX +N1)Ẽ−2(2T ) ,

f̂
(1)
0 (T ) =− N1

12
log η(T ) +

N1 + χX − 4χB

12
log η(2T ) ,

(3.40)
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for N = 3,

f̂
(0)
0 (T ) =N1Ẽ−2(T )− (χX +N1)Ẽ−2(3T ) ,

f̂
(1)
0 (T ) =− N1

12
log η(T ) +

N1 + χX − 4χB

12
log η(3T ) ,

(3.41)

for N = 4,

f̂
(0)
0 (T ) =N1Ẽ−2(T ) + (N2 −N1)Ẽ−2(2T )− (χX +N2)Ẽ−2(4T ) ,

f̂
(1)
0 (T ) =− N1

12
log η(T ) +

N1 −N2

12
log η(2T ) +

N2 + χX − 4χB

12
log η(4T ) ,

(3.42)

and for N = 6

f̂
(0)
0 (T ) =N1Ẽ−2(T ) + (N2 −N1)Ẽ−2(2T )

+ (N3 −N1)Ẽ−2(3T )− (χX −N1 +N2 +N3)Ẽ−2(6T ) ,

f̂
(1)
0 (T ) =− N1

12
log η(T ) +

N1 −N2

12
log η(2T ) +

N1 −N3

12
log η(3T )

+
N2 +N3 −N1 + χX − 4χB

12
log η(6T ) .

(3.43)

For N = 5, 6, the transformation properties of f̂
(0,1)
0 under the extra generator of

Γ1(N) (see point iv) in §2.4) can be obtained from the transformation properties of

the Eichler integrals conjectured in §A.4.1.

4. Modularity from wave-function property

In this section, we shall derive the modular properties of generating functions of

GW invariants, and the Jacobi properties of PT invariants, from the wave-function

behavior of the topological string partition function under a suitable monodromy.

4.1 Wave-function property of the topological string partition function

First, let us recall the wave function interpretation of the topological string partition

function, following [42, 43, 44, 45, 93]. This interpretation is most transparent in

terms of the topological B-model, which depends only on the complex structure of the

Calabi-Yau manifold, rather than the topological A-model, which depends only on

the complexified Kähler moduli, but the two are related by mirror symmetry. Thus,

the moduli ta below stand for flat coordinates on the complex structure moduli space

M of the CY threefold X̂ related to X by mirror symmetry. With this in mind, let

us define17

ΨBCOV(t, t̄;λ, x) = λ
χX
24

−1 exp

(
∞∑
g=0

∞∑
n=0

1

n!
λ2g−2 C(g)

a1···an(t, t̄)x
a1 · · · xan

)
. (4.1)

17In [2], χ should be understood as the Euler number of the A-model geometry, χ = χX = −χX̂ .
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where C
(g)
a1···an are the topological correlators, which vanish unless 2g − 2 + n > 0.

Those arise as iterated covariant derivatives of the genus g free-energies F (g)(t, t̄) for

g ≥ 1, or of the Yukawa couplings Cabc for g = 0. The topological string partition

function (4.1) satisfies the holomorphic anomaly equations [2, (3.17-18)][
∂t̄a −

λ2

2
e2KC̄āb̄c̄g

bb̄gcc̄
∂2

∂xb∂xc
+ gābx

b

(
λ
∂

∂λ
+ xa∂xa

)]
ΨBCOV = 0,[

∂ta + Γc
abx

b ∂

∂xc
+ ∂taK

(χX

24
− 1− λ∂λ

)
− ∂xa + ∂taF1 +

1

2λ2
Cabcx

bxc

]
ΨBCOV = 0,

(4.2)

where Γc
ab are Levi-Civita coefficients of the special Kähler metric gab̄dt

adt̄b̄ with

Kähler potential K(t, t̄). As explained in [42, 43], these equations naturally arise

by viewing ΨBCOV as the wave function of a particular state |Ψtop⟩ in the Hilbert

space obtained by quantizing the symplectic space H3(X̂,R), in a suitable complex

polarization determined by the complex structure on X̂.

More precisely, the real vector space H3(X̂,R) carries a symplectic form ω(C,C ′)

=
∫
X̂
C ∧ C ′, and inherits a complex structure (called Griffith’s complex structure)

from the Hodge decomposition

C = x0Ω3,0 + xaDaΩ3,0 + x̄āDāΩ̄3,0 + x̄0Ω̄3,0 , (4.3)

where Ω3,0 is a nowhere vanishing holomorphic 3-form on X̂, depending on the moduli

(t, t̄). In the complex coordinates xΛ = (x0, xa), the symplectic form becomes

ω = e−K
(
gab̄dx

a ∧ dx̄b̄ − dx0 ∧ dx̄0
)
= dxΛ ∧ dx̃Λ (4.4)

where x̃Λ := (x̃0, x̃a) := e−K(−x̄0, gab̄x̄
b̄). Upon quantization, the Darboux coordi-

nates (xΛ, x̃Λ) become operators18 satisfying the canonical commutation rules

[x̂Λ, ̂̃xΣ] = iℏ δΛΣ , [x̂Λ, x̂Σ] = [̂̃xΛ, ̂̃xΣ] = 0 . (4.5)

Introducing a basis of (dual) coherent states t,t̄⟨xΛ| which diagonalize the operators

x̂Λ, the topological string partition function can be interpreted as the overlap

ΨBCOV(t, t̄;λ, x) =t,t̄ ⟨xΛ|Ψtop⟩, (4.6)

where |Ψtop⟩ is a fixed, background independent state (as will become clear below,

the topological string coupling λ can be identified with
√
ℏ in the Kähler gauge

X0 = 1). The indices t, t̄ indicate that the Hodge decomposition (4.3) depends in a

18Note the unusual hermiticity property x̃0 = −e−Kx̄0, which originates from the minus sign in

(4.4) and leads to convergence issues. This can be remedied by exchanging (x0, x̄0), which amounts

to using Weil’s complex structure rather than Griffith’s, see [45, 46].
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non-holomorphic way on the moduli ta. The resulting dependence of the coherent

states implies the holomorphic anomaly equations (4.2).

On the other hand, after choosing a symplectic basis (gΛ, g̃Λ) of H
3(X̂,Z) (also

known as marking, satisfying
∫
X
gΛ∧ g̃Σ = δΛΣ,

∫
X
gΛ∧ gΣ =

∫
X
g̃Λ∧ g̃Σ = 0), one can

alternatively parametrize V by real Darboux coordinates (ζΛ, ζ̃Λ),

C = ζΛaΛ − ζ̃Λb
Λ , ω = dζΛ ∧ dζ̃Λ (4.7)

such that (ζΛ, ζ̃Λ) become hermitean operators satisfying the canonical commutation

rules

[ζ̂Λ, ̂̃ζΣ] = iℏ δΛΣ , [ζ̂Λ, ζ̂Σ] = [ ̂̃ζΛ, ̂̃ζΣ] = 0 (4.8)

and work in a polarization where the hermitean operator ζ̂Λ is diagonalized, while

ζ̃Λ = iℏ∂ζΛ . The resulting ‘real polarized’ wave function ΨR(ζ
Λ) no longer depends

on a choice of background (t, t̄), but it depends on a choice of marking. Under mon-

odromies in M, it transforms under the metaplectic representation of Sp(b3(X̂),Z).

If the monodromy acts via (
ζ̃Λ
ζΛ

)
7→
(
A B

C D

)(
ζ̃Λ
ζΛ

)
, (4.9)

where A,B,C,D are square matrices of size 1
2
b3(X̂) with integer entries satisfying

(2.3), and if the matrix C is invertible, the wave function should transform as

ΨR(ζ
Λ) 7→ Ψ′

R(ζ
′Λ) =

1√
det (ℏC)

∫
e−S(ζ,ζ′)/ℏΨR(ζ

Λ)
∏
Λ

dζΛ (4.10)

where, similar to (2.5),

S(ζΛ, ζ ′Λ) = −1

2
ζtC−1Dζ + ζtC−1ζ ′ − 1

2
ζ ′tAC−1ζ ′ . (4.11)

If the matrix C is not invertible, the Gaussian kernel should be replaced by the

product of a delta function along the null directions of C, times a Gaussian kernel

along its orthogonal complement. For example, if C = 0 and therefore D = A−T ,

Ψ′
R(ζ

′Λ) = e
1
2
ζ′Bζ′ΨR(D

−1ζ ′).

The key question is now to relate the real polarized wave function ΨR(ζ) to

the BCOV wave function ΨBCOV(t, t̄;λ, x). For this, following [93], we define the

quasi-homogeneous function

Ψ̃(t, t̄, λ;xΛ) :=λ1−χX
24 ΨBCOV(t, t̄;λ/x

0, xa/x0)

=(x0)1−
χX
24 exp

(
∞∑
g=0

∞∑
n=0

1

n!

(
λ

x0

)2g−2

C(g)
a1···an(t, t̄)

xa1

x0
· · · x

an

x0

)
.

(4.12)
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and take the ‘holomorphic limit’ t̄a → −i∞ keeping xa and other variables fixed.

From this limit one arrives at the wave function in holomorphic polarization [93,

(36)]19

Ψhol(t, λ;x
Λ) = λ

χX
24

−1eF
(1)(t,−i∞)Ψ̃(t,−i∞, λ;xΛ) . (4.13)

Using the fact that C
(g)
a1...an are covariant derivatives of F (g)(t, t̄), and that ∂taK van-

ishes in this limit, one arrives at

Ψhol(t, λ;x
Λ) = (x0)1−

χX
24 exp

(
F (ta + xa

x0 ,
λ
x0 )− (x0)2

λ2

(
F (0) + xa

x0 ∂taF (0) + xaxb

2(x0)2
F (0)

ab

))
(4.14)

where F (ta, λ) =
∑

g≥0 λ
2g−2F (g)(ta,−i∞), and the genus 0 subtractions originate

from the fact that C
(g)
a1...an only includes correlators with 2g − 2 + n > 0.

Now, let us consider the effect of the ‘holomorphic limit’ t̄a → −i∞ on the Hodge

decomposition (4.3). Using(∫
X

gΛ ∧ Ω3,0;

∫
X

g̃Λ ∧ Ω3,0

)
= (XΛ;F

(0)
Λ ) = X0(1, ta; 2F (0) − taF (0)

a ,F (0)
a ) , (4.15)

where F (0)
a = ∂taF

(0),F (0)
ab = ∂2

tatb
F (0), one finds that in this limit, the real Darboux

coordinates are related to the coordinates in the Hodge decomposition by

ζ0/X0 =x0 ,

ζa/X0 =xa + tax0 ,

ζ̃a/X
0 =x̃a + F (0)

ab x
b + F (0)

a x0 ,

ζ̃0/X
0 =x̃0 − tax̃a + (F (0)

a − tbF (0)
ab )x

a + (2F (0) − taF (0)
a )ζ0 .

(4.16)

This implies that the wave function in the real polarization is related to the wave

function in the holomorphic polarization by

Ψhol(t, λ;x
Λ)

=e
− (X0)2

ℏ

(
F(0)(x0)2+F(0)

a x0xa+ 1
2
F(0)

ab xaxb
)
ΨR
(
ζ0 = X0x0, ζa = X0(xa + tax0)

)
.

(4.17)

Comparing with (4.14) and setting λ =
√
ℏ/X0, we see that the genus 0 subtractions

cancel and one finds

ΨR(ζ
Λ) =(λx0)

χX
24

−1 exp

(
F

(
ta +

xa

x0
,
λ

x0

))
=(λζ0/X0)

χX
24

−1 exp
(
F
(

ζa

ζ0
, λX

0

ζ0

))
=Ztop

(
ζa

ζ0
,
√
ℏ

ζ0

)
,

(4.18)

19We adjust the normalization by xΛ-independent factor such that Ψhol satisfies the holomorphic

limit of the holomorphic anomaly equations.
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where Ztop(t
a, λ) was defined in (2.7). Thus, we conclude that the topological string

partition function Ztop is equal to the real polarized wave function, and should

transform under monodromies according to the metaplectic representation (4.10),

with ℏ replaced by (λX0)2. Further renaming ζΛ 7→ XΛ and enforcing the Kähler

gauge choice λ = 1/X0, we arrive at the transformation property under the mon-

odromy (2.2),

Z ′
top(X

′Λ) =
1√
detC

∫
e−S(X,X′)Ztop(X

Λ)
∏
Λ

dXΛ (4.19)

for Ztop(X
Λ) := Ztop(X

a/X0, 1/X0) = (X0)1−
χX
24 exp(

∑
g≥0 F

(g)(XΛ)).

We emphasize that Ztop(X
Λ) is only defined as an asymptotic series in powers of

1/X0, and correspondingly the integral in (4.19) should be evaluated using the saddle

point method, by the usual Feynman expansion around extrema of F (XΛ)−S(X,X ′)

with respect to XΛ. As an example, restricting to a one-parameter model with

T = X1/X0, λ = λ′ for simplicity,20∫
dT exp

(
−S(T, T ′)

λ2
+
∑
g≥0

F (g)(T )λ2g−2

)
= exp

(∑
g≥0

F ′(g)(T ′)λ2g−2

)
(4.20)

with S(XΛ, X ′Λ) = (X0)2S(T, T ′) and

F ′(0) = ⟨G(T, T ′)⟩T , G(T, T ′) := F (0)(T )− S(T, T ′) ,

F ′(1) = F (1) − 1

2
log(∂2G) ,

F ′(2) = F (2) − ∂2F(1)+(∂F(1))2

2∂2G + ∂4F(1)+4(∂F(1))(∂3G)
8(∂2G)2 − 5(∂3G)2

24(∂2G)3 ,

F ′(3) = F (3) − 2∂F(1)∂F(2)+∂2F(2)

2∂2G + 4∂3G∂F(2)+∂4F(1)+2(∂2F(1))2+4∂3F(1)∂F(1)+4(∂F(1))2∂2F(1)

8(∂2G)2

−∂6G+12∂4G∂2F(1)+12∂4G(∂F(1))2+20∂3G∂3F(1)+8∂3G(∂F(1))3

48(∂2G)3 − ∂F(1)(∂5G+8∂3G∂2F(1))
8(∂2G)3

+4(∂4G)2+30(∂3G)2∂2F(1)+24(∂4G)2(∂F(1))2+7∂5G∂3G+32∂4G∂3G∂F(1)

48(∂2G)4

−30(∂3G)3∂F(1)+25∂4G(∂3G)2
48(∂2G)5 + 5(∂3G)4

16(∂2G)6 , (4.21)

where ∂ ≡ ∂T evaluated at the extremum of G(T, T ′) with respect to T , assuming

that this extremum is unique.

4.2 Relative conifold monodromy

In order to derive the modular properties of the generating series of GW and PT

invariants introduced in §2.4, we shall exploit the wave-function transformation prop-

erty of Ztop under a certain monodromy U in Kähler moduli space M, which acts

20See [44, (2.11)] for an example of a Feynman expansion up to second order in multi-parameter

models, along with a pictorial representation.
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on the fiber modulus as T 7→ T
1+NT

, while preserving the large base limit Sα → i∞.

Together with the large volume monodromy T 7→ T + 1, this generates a subgroup

of Γ1(N) which coincides with Γ1(N) for N ≤ 4.

Generalizing [49] to the case of genus one fibrations with an N -section, it turns

out that the relevant monodromy U corresponds to an auto-equivalence gU of the

derived category of coherent sheaves C = DbCohX given by a Fourier-Mukai trans-

formation with respect to the ideal sheaf of the relative diagonal in the fiber product

X ×B X [33, Section 3.3]. Its action on the Chern character of a brane E• ∈ C is

given by

gU : ch(E•) 7→ ch(E•)− π2,∗
[
π∗
1

(
ch(E•)Td(TX/B)

)]
, (4.22)

where Td(TX/B) is the Todd class of the virtual relative tangent bundle of the fibra-

tion. In Appendix B, we use this relation to compute the action of U on the integral

basis of the charge lattice Γ

B = (ch(OX), ch(ODe), ch(ODα), ch(OE), ch(Cα), ch(Opt.) )
T . (4.23)

The end result then takes the form B 7→ UB where U is the matrix with integer

coefficients 21

U =



1 0 −cβ N
2
cγ(aγ − Cγγ) 0β 0

−N 1 N
2

(
aγ +

1
N
ℓγ
)
Cγβ ρ 0β 0

0α 0α δβα −Ncα 0αβ 0α
0 0 0β 1 0β 0

0α 0α −Cαβ N
2
Cαγ (aγ − Cγγ) δαβ 0α

0 0 0β −N 0β 1


, (4.24)

with Cγγ being the vector of diagonal entries of the matrix Cαβ, and

ρ = N2 +
N

4
(ℓα +Naα)C

αβ(Cββ − aβ)−
N

12
(2κ+ c2) . (4.25)

If the base B is a del Pezzo surface, then Cαα − aα = −2 and we find the simpler

expression

ρ = −N

1
2

b2(B)∑
α=1

(Naα + Cαβℓβ)−N +
1

6
κ+

1

12
c2

 . (4.26)

The combination 1
6
κ + 1

12
c2 is equal to the holomorphic Euler characteristic of the

divisor De, so is integer, and one may check that
∑

α(Naα + Cαβℓβ) is always even.

Using F̌ (0) := (2πi)−3F (0), we introduce the period vector22

V = X0(1, T, Sα,−(2F̌ (0) − T∂T F̌ (0) − Sα∂SαF̌ (0)),−∂T F̌ (0),−∂SαF̌ (0))T (4.27)

21The integrality of N
2

(
aγ + 1

N ℓγ
)
Cγβ is not obvious but implied by the fact that the Fourier-

Mukai transform induces an automorphism of H∗(X,Z).
22This differs from the vector V = (FΛ, X

Λ) in (2.2) by a basis change.
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associated to the prepotential (in ‘primed’ basis, see footnote 5)

F (0)(T, Sα) = (2πi)3
(
κT 3

6
+

T 2

2
ℓαS

α +
NT

2
SαCαβS

β

)
+ f (0)(Sα, T ) (4.28)

where

f (0)(T, Sα) =
∑

kα≥0,n≥0

GW
(0)
kαCα+nF e

2πi(nT+kαSα), (4.29)

where the constant map contribution is as usual GW
(0)
0,0α = −1

2
χXζ(3). In terms of

this basis, the monodromy acts as V 7→ U ′V with23

U ′ =



1 N 0β 0 0 0β
0 1 0β 0 0 0β

1
2
cα N

2
cα δαβ 0α 0α −Cαβ

12−χB

4
N(12−χB)

4
0β 1 0 −1

2
cβ

−N(12−χB)
4

(χB−8)N2

4
− c2N

12
−N

2
cα −N 1 N

2
cβ

0α −N
2
cα 0αβ 0α 0α δβα


. (4.30)

The two matrices are related as U = PU ′P−1 where

P =



0 c2
24

1
2
cβ 1 0 0β

−κ
6
− c2

24
−κ

2
−1

2
ℓβ 0 1 0β

−1
2
cα Nα − N

2
cα 0αβ 0α 0α δαβ

0 1 0α 0 0 0β
0α 0α δαβ 0α 0α 0αβ
−1 0 0β 0 0 0β


(4.31)

with Nα being a vector with all entries equal to N .

Using (4.30), we find that the relative conifold monodromy acts on (T, Sα) by

T 7→ T

1 +NT
, Sα 7→ Sα +

1

2
cα +

Cαβ

1 +NT

(
T 2

2
ℓβ +

∂Sβf (0)

(2πi)3

)
(4.32)

or in terms of the shifted variable Ŝα defined in (2.43),

Ŝα 7→ Ŝα +
1

2
cα +

1

(2πi)3
Cαβ∂Sβf (0)

1 +NT
(4.33)

while the (instanton part of the) prepotential f (0)(Sα, T ) should transform as

f (0)(T, Sα) 7→f (0)(T, Sα)

(1 +NT )2
+

(2πi)3

(1 +NT )2

[
κ̂NT 4

6(1 +NT )
+

NT 2

24
(ĉ2 − 12N)

−12− χB

8
(1 +NT )

]
+

1

2(2πi)3(1 +NT )3
Cαβ∂Sαf (0)∂Sβf (0) .

(4.34)

23Here we used the conjectural equality aα = cα. Note that U ′ is not integral in general, unlike U .
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In particular, it follows that the derivative of f (0) with respect to Sα (or, equivalently,

with respect to Ŝα) should transform like a modular form of weight −2 under Γ1(N),

∂Sαf (0) = ∂Ŝαf
(0) 7→ ∂Sαf (0)

(1 +NT )2
. (4.35)

It will be convenient to introduce

f̂ (0)(T, Ŝα) :=
(2πi)3

6
κ̂T 3 + f (0)(T, Ŝα) (4.36)

whose transformation property is somewhat simpler than (4.34),

f̂ (0)(T, Ŝα) 7→ f̂ (0)(T, Ŝα)

(1 +NT )2
+

(2πi)3

(1 +NT )2

[
NT 2

24
(ĉ2 − 12N)− 12− χB

8
(1 +NT )

]
+

1

2(2πi)3(1 +NT )3
Cαβ∂Ŝα f̂

(0)∂Ŝβ f̂
(0) .

(4.37)

Lift of a general Γ1(N) element

More generally, any element γ =
(
a b

c d

)
∈ Γ1(N) can be obtained by suitable prod-

uct of large volume monodromies T 7→ T + 1, relative conifold monodromies T 7→
T/(NT + 1) and monodromies around other components of the discriminant locus

when N > 4. The corresponding element gγ ∈ Sp(2b2(X) + 2,Z) in general acts on

T, Sα via transformations of the form

T 7→ aT + b

cT + d
,

Sα 7→ Sα +
ℓα[1 + (cT − a)(cT + d)]

2Nc(cT + d)
+

c

N(cT + d)

Cαβ∂Ŝα f̂ (0)

(2πi)3
+ δα,

f̂ (0)(Ŝα, T ) 7→ f̂ (0)(Ŝα, T )

(cT + d)2
+

(2πi)3 (xT 2 + yT + z)

(cT + d)2
+

Cαβ∂Ŝα f̂ (0)∂Ŝβ f̂ (0)

2(2πi)3(cT + d)3

(4.38)

for some γ-dependent constants δα, x, y, z subject to the group relations. While

the transformation of Sα looks complicated, it is such that Ŝα, defined in (2.43),

transforms as

Ŝα 7→ Ŝα +
c

N(cT + d)

Cαβ∂Ŝα f̂ (0)

(2πi)3
+ δα , (4.39)

and the variable S̃α defined in (4.49) below transforms in an even simpler way,

S̃α 7→ S̃α + δα. This product of monodromies is realized by an auto-equivalence

gγ ∈ Aut(C) acting on the period vector (4.27) by V 7→ U ′
γV , where U ′

γ is a matrix
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of the form

U ′
γ =



d c 0β 0 0 0β
b a 0β 0 0 0β

dδα − bℓα

2N
ℓα(d−a)

2N
+ cδα dδβα 0α 0α − c

N
Cαβ

ρ1 ρ2 bδβN a −b bℓβ

2N
− aδβ

ρ3 ρ4 − bℓα
2

− dδαN −c d ℓβ(a−d)
2N

+ cδβ

−bδαN −aδαN − bℓα
2

−bNδαβ 0α 0α aδβα


(4.40)

where

ρ1 =b

(
y +

δ2N

2

)
− 2az ,

ρ2 =
1

2

(
aδ2N − 2ay + 4bx+ bδℓ

)
,

ρ3 =
1

2

(
−bδ · ℓ+ 4cz − d

(
δ2N + 2y

))
,

ρ4 =− 2N (aδ · ℓ+ cδ2N − 2cy + 4dx+ dδ · ℓ) + bℓ2

4N

(4.41)

and δ2 = δαδ
β, δ · ℓ = δαℓ

α, etc. For γ =
(
1 1

0 1

)
, one recovers the standard action of

the large volume monodromy T 7→ T + 1,

U ′
T =



1 0 0β 0 0 0β
1 1 0β 0 0 0β
0α 0α δαβ 0α 0α 0αβ

κ
6

κ
2

ℓβ

2
1 −1 0β

−κ
2

−κ −ℓα 0 1 0β

− ℓα
2
−ℓα −NCαβ 0α 0α δαβ


(4.42)

corresponding to δα = ℓα

2N
, (x, y, z) = (κ̂/2, κ̂/2, κ̃/6). While we do not know how

to determine the constants δα, x, y, z for a general group element, an important con-

straint is that the matrix

Uγ = PU ′
γP

−1 =



a −b ∗ ∗ ∗ ∗
−c d ∗ ∗ ∗ ∗
0α 0α aδβα ∗ −bNCαβ ∗
0 0 0β a 0β −b

0α 0α − c
N
Cαβ ∗ dδαβ ∗

0 0 0β −c 0β d


, (4.43)

where the stars stand for somewhat complicated but easily computed combinations

of x, y, z, δ, κ, cα, c2, should have integer entries.

– 34 –



4.3 Modularity of genus 0 GW invariants

At this point, we can deduce the modular properties of generating series of GW

invariants (2.44) at genus zero, by inserting the Fourier expansion

f̂ (0)(T, Ŝα) =
(2πi)3

6
κ̂T 3 +

∑
kα≥0

f
(0)
kα

(T ) e2πikαŜ
α

(4.44)

into (4.37). As before, we use the notations f
(0)
kα

= f
(0)
H interchangeably, for any nef

divisor class H = kαĎ
α on B, and in this section omit the genus superscript (0) to

lighten the notation.

First we note that in the large base limit Sα → i∞, the quadratic term on

the second line of (4.34) is exponentially suppressed, so we get the transformation

property for the base degree 0α, genus zero generating series

(1 +NT )2f̂0α
(

T
1+NT

)
− f̂0α(T ) = (2πi)3

(
NT 2

24
(ĉ2 − 12N)− 12−χB

8
(1 +NT )

)
(4.45)

in perfect agreement with (3.30). In particular, the Yukawa coupling Y0(T ) =

(2πi)3∂3
T f̂0α is a modular form of weight 4 under Γ1(N), and f̂0α(T ) is its holomorphic

Eichler integral.

We now turn to the case of non-vanishing base degree, kα > 0. In this case, we

can determine the modular properties of the generating series fkα(T ) by inserting

(4.44) into (4.35),∑
kα>0

kα fkα(
T

1+NT
) e2πikα(Ŝ

α+ 1
2
cα+

Cαβ∂
Ŝβ f

1+NT
) =

1

(1 +NT )2

∑
kα>0

kα fkα(T ) e
2πikαŜα

(4.46)

and expanding in powers of e2πiŜ
α
on both sides. The only difficulty is that the

function ∂Ŝβf appearing in the exponent on the left-hand side is itself a function of

Ŝα which needs to be expanded.24 For primitive curve classes, this complication does

not arise and one immediately concludes that the generating series of genus 0 GV

invariants is a modular form of weight −2 with multiplier system,

fkα(
T

1+NT
) =

e−iπkαcαfkα(T )

(1 +NT )2
, fkα(T + 1) = e−

iπ
N
kαℓαfkα(T ) (primitive case)

(4.47)

where ℓα := Cαβℓα. In general however, there are contributions from lower degrees,

leading to a modular anomaly of the form

eiπkαc
α

(1 +NT )2fH(
T

1+NT
)− fH(T ) =

1

1 +NT

∑
H=

∑
Hi

a{Hi}
∏
i

fHi
(T )

1 +NT
(4.48)

24Such doubly exponential contributions were ignored in [33], but in fact, e−e−S

= 1 + e−S +

O(e−2S) and such effects are key for the modular properties of the topological string amplitude.
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where a{ki} are rational coefficients (see (4.60) below for some examples). This indi-

cates that fH is in general a quasimodular form of weight −2.

To show this more explicitly, it is useful to introduce yet another shifted version

of the Kähler moduli Sα, namely

S̃α := Ŝα − E2(NT )

12

Cαβ∂Ŝβf (0)

(2πi)2
(4.49)

where Ŝα was defined in (2.43) and E2(T ) is the quasimodular Eisenstein series of

weight 2 already encountered in §3.1. Using

E2

(
NT

1 +NT

)
= (1 +NT )2E2(NT ) +

12

2πi
(1 +NT ) (4.50)

which follows from (3.8), we see that S̃α transforms simply with a constant shift

under the relative conifold monodromy,

S̃α 7→ S̃α +
1

2
cα . (4.51)

Thus, upon Fourier expanding ∂Ŝαf as a function of S̃α rather than Ŝα,∑
kα>0

kα fkα(T ) e
2πikβ Ŝ

β

=
∑
kα>0

kα f̃kα(T ) e
2πikβ S̃

β

(4.52)

the new generating series f̃kα(T ) (which are polynomials in E2(NT ) and in the pre-

vious series fkα(T )) are now actual modular forms of weight −2 with a multiplier

system but no modular anomaly,

f̃kα(
T

1+NT
) =

e−iπkαcα f̃kα(T )

(1 +NT )2
, f̃kα(T + 1) = e−

πi
N
kαℓα f̃kα(T ) . (4.53)

In fact, one may integrate the vectorial equation (4.52) to a scalar equation

f̃(S̃α, T ) := f(T, Sα)− E2(NT )

24(2πi)2
Cαβ∂Ŝαf∂Ŝβf =

∑
kα≥0

f̃kα(T ) e
2πikαS̃α

. (4.54)

To see that the last equality defines the same Fourier modes f̃kα>0 as in (4.52), along

with the zero mode f̃0α(T ), we use that

∂f̃

∂S̃α
=
∂Ŝβ

∂S̃α

∂

∂Ŝβ

(
f(T, Sα)− E2(NT )

24(2πi)2
Cγδ∂Ŝγf∂Ŝδf

)
=
∂Ŝβ

∂S̃α

(
δγβ − CγδE2(NT )

12

∂2
Ŝβ Ŝδ

f

(2πi)2

)
∂Ŝγf ,

(4.55)
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together with

∂ŜαS̃
β = δβα − CγβE2(NT )

12

∂2
ŜαŜγ

f

(2πi)2
. (4.56)

From this follows the important fact that ∂Ŝαf = ∂S̃α f̃ . Taking derivatives with

respect to E2(NT ) on both sides of the first equality in (4.54), keeping Ŝα fixed, we

get

− 1

12(2πi)2
Cαβ∂Ŝβf ∂S̃α f̃ = ∂E2(NT )f − 1

24(2πi)2
Cαβ∂Ŝβf ∂Ŝαf (4.57)

and therefore

∂E2(NT )f = − 1

24(2πi)2
Cαβ∂Ŝαf∂Ŝβf (4.58)

Further expanding in Fourier modes with respect to Ŝα, we get the genus zero version

of (2.55),

∂E2(NT )f
(0)
H (T ) = − 1

24

∑
H=H1+H2

(H1 ∩H2)f
(0)
H1

f
(0)
H2

(4.59)

confirming that the generating series f
(0)
H (T ) (now restoring the genus superscript)

are quasimodular forms of weight −2, and depth given by the maximal number

of elements in possible decompositions of H =
∑

Hi into a sum of effective curve

classes in H2(B,Z). In contrast, the functions f̃
(0)
H (T ) defined by (4.54) are ordinary

holomorphic modular forms of weight −2 under Γ1(N), given by the depth zero part

of f
(0)
H (T ).

Explicit formulae for genus one fibrations on P2

To illustrate the constructions above, let us consider genus one fibrations with N -

section on P2. For brevity we write fk(T ) := fkH(T ), where H is the hyperplane class

of P2. Denoting by Ak the left-hand side of (4.48), and setting f̂ki = fki/(1 +NT ),

we find the following anomalous transformations properties of the generating series

of genus zero GW invariants,

A1 =0 ,

A2 =− 1

2
f̂ 2
1 ,

A3 =− 1

3
f̂ 3
1 + 2f̂1f̂2 ,

A4 =− 2

3
f̂ 4
1 + 4f̂ 2

1 f̂2 − 2f̂ 2
2 − 3f̂1f̂3 ,

A5 =− 25

24
f̂ 5
1 +

25

3
f̂2f̂

3
1 − 15

2
f̂3f̂

2
1 − 10f̂ 2

2 f̂1 + 4f̂4f̂1 + 6f̂2f̂3 .

(4.60)

– 37 –



In contrast, the combinations f̃k defined by (4.52) transform as weakly holomorphic

modular forms of weight −2,

f̃1 =f1

f̃2 =f2 +
E2(NT )

24
f 2
1 ,

f̃3 =f3 +
E2(NT )

6
f1f2 +

E2(NT )2

288
f 3
1 ,

f̃4 =f4 +
E2(NT )

4
f1f3 +

E2(NT )

6
f 2
2 +

E2(NT )2

36
f 2
1 f2 +

E2(NT )3

2592
f 4
1 ,

f̃5 =f5 +
25E4

2

497664
f 5
1 +

25E3
2

5184
f2f

3
1 +

5

96
E2

2f3f
2
1 +

5

72
E2

2f
2
2 f1 +

1

3
E2f4f1 +

1

2
E2f2f3

(4.61)

where in the last line, we left the argument NT of E2 implicit. Inverting this tri-

angular system of equations, it is straightforward to check that the fk’s satisfy the

holomorphic anomaly equations

∂

∂E2(NT )
fk(T ) = − 1

24

∑
k=k1+k2

fk1(T )fk2(T ) . (4.62)

In fact, the f̃k’s are simply the depth zero part of the quasimodular forms fk. Using

the ansatz

f̃k(T ) =
[∆2N(T )]

k(3N2+ℓ)
2N

η36k(NT )
P18k−2−k(3N2+ℓ)(T ) , (4.63)

where ∆2N(T ) is the weight 2N modular form defined in (2.53), we can easily deter-

mine the holomorphic modular form Pw of weight w under Γ1(N) from the knowledge

of the GV invariants GVk1,k2≤k for sufficiently large k1. The power of ∆2N in (4.63)

is the lowest one allowed by (2.54), although it can be frequently increased by an

integer by lowering the weight of Pw correspondingly. In the simplest case of the el-

liptic fibration over P2, with N = 1, the corresponding modular forms were already

identified up to degree 3 in [25, §D.2] [26, (5.15)], which we record below:

f̃1 =
31E4

4 + 113E4E
2
6

48η36

f̃2 =− 196319E4E
5
6 + 755906E4

4E
3
6 + 208991E7

4E6

221184η72

f̃3 =
E4(49789907821E12

4 +1904214859592E9
4E

2
6+6966210848730E6

4E
4
6+4311836724416E3

4E
6
6+360744024241E8

6)

557256278016η108

(4.64)

Similar expressions for genus-one fibrations with N -section over P2 are collected

in Appendix §D. In order to extract from these expressions the genus zero GV
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invariants, it is necessary to invert the system (4.61) so as to express fk in terms of

f̃k, and then use the multicover formula

fGV
k (T ) =

∑
d|k

µ(d)

d3
fk/d(dT ) (4.65)

where µ(d) is the Möbius function, equal to (−1)k if d is the product of k distinct

primes, or zero otherwise. For N = 1, this produces

fGV
1 (T ) = f̃1(T )

= q−3/2
(
3− 1080q + 143770q2 + 204071184q3 + 21772947555q4 + . . .

)
,

fGV
2 (T ) = f̃2(T )−

E2(T )

24
f̃ 2
1 (T )−

1

8
f1(2T ) (4.66)

= q−3
(
−6 + 2700q− 574560q2 + 74810520q3 − 49933059660q4 + . . .

)
,

fGV
3 (T ) = f̃3(T )−

1

33
f̃1(3T )−

E2(T )

6
f̃1f̃2 +

E2
2(T )

2 · (24)2
f̃ 3
1

= q−9/2
(
27− 17280q + 5051970q2 − 913383000q3 + 224108858700q4 + . . .

)
.

For N ≥ 1, the same expressions hold (but not the q-expansions) after rescaling the

argument of E2 by a factor of N .

4.4 Modularity at higher genus from the wave-function property

We now turn to the modular properties of generating series of higher genus GW

invariants, and for this purpose study the transformation of the topological string

partition function Ztop under the relative conifold monodromy.

4.4.1 Modular properties of Ztop

As reviewed in §4.1, under a general monodromy, the topological string partition

function transforms according to the metaplectic representation (4.19). Now, since

the upper-right block in the matrix U ′ (4.30) is not invertible, the definition (4.11)

of the kernel S cannot apply literally. This is simply due to the fact that the trans-

formation T 7→ T/(1 +NT ) does not mix T with the conjugate variables

(F0,FT ,FSα) := (2F (0) − T∂TF (0) − Sα∂SαF (0), ∂TF (0), ∂SαF (0)) . (4.67)

The remedy, already hinted at below (4.11), is that the Gaussian kernel should be

restricted to the variables Sα, while the transformation of T is enforced by a Dirac

delta function δ(T ′ − T/(1 +NT )). The appropriate kernel S(Sα, S ′α) can be found

by requiring that the prepotential transforms as in (2.4),

(1 +NT )2F ′(0)(T ′, S ′α) = ⟨F (0)(T, Sα)− S(Sα, S ′α)⟩Sα (4.68)
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where the bracket denotes extremization with respect to Sα, and T ′, S ′α on the l.h.s.

are the transformed variables (4.32). The factor of 1+NT on the l.h.s. follows from

the relation X ′0 = cX1 + dX0 = X0(cT + d), which implies that the topological

string coupling λ = 1/X0 should transform as

λ 7→ λ′ =
λ

1 +NT
. (4.69)

Moreover, the value of Sα extremizing (4.68) should be consistent with (4.32). This

determines uniquely the quadratic kernel

S =(2πi)3
(
−1

2
(Sα − (1 +NT )S ′α)Cαβ(S

β − (1 +NT )S ′β + cβ)

−NT
2
SαCαβc

β + 12N2−c2N
24

T 2
)
.

(4.70)

According to the prescription(4.19) in §4.1, the topological string partition function

should thus transform as

Ztop(T
′, S ′α, λ′) =

∫
e

−S(Sα,S′α)

λ2 Ztop(T, S
α, λ)

b2(S)∏
α=1

dSα

λ
. (4.71)

Inserting the genus expansion in (2.7) and trading Sα for the shifted variable Ŝα

defined in (2.43), we get

exp

(∑
g≥0

λ′2g−2F ′(g)(T ′, Ŝ ′α)

)
=

(1 +NT )
χX
24

−1

λb2(B)

∫ ∏
dŜα exp

(
− S
λ2

+
∑
g≥0

λ2g−2F (g)(T, Ŝα)

)
(4.72)

where, on the r.h.s, the O(1/λ2) terms are given by

F (0) − S =(2πi)3
(
1 +NT

2

[
(Ŝα − Ŝ ′α)Cαβ(Ŝ

β − Ŝ ′β + cβ) +NTŜ ′αCαβŜ
′β
]

+
κ̂T 3

6
− T 212N

2 − ĉ2N

24

)
+ f (0)(T, Ŝα) .

(4.73)

Computing this integral in perturbation theory around the saddle point Ŝα = Ŝ ′α −
1
2
cα − Cαβ

1+NT
∂Sαf (0)

(2πi)3
determines the transformed free energies F ′(g)(T ′, S ′α) in terms of

the original ones.

In the classical, leading order approximation, we recover by construction the

transformation property of f (0)(T, Ŝα) discussed in the previous subsection. At one-

loop order around the saddle point, we get a factor

(λ2/(1 +NT ))b2(B)/2√
det

(
Cαβ +

1
(2πi)3(1+NT )

∂2
SαSβf (0)

) , (4.74)
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up to an overall constant factor, from the fluctuation determinant. Using the fact

that b2(B) = χB − 2 for a rational surface, and including the contribution from the

prefactor λ
χX
24

−1 in Ztop., we obtain that the genus one amplitude

f̂ (1)(T, Ŝα) := − ĉ2
24

(2πi)T + f (1)(T, Ŝα) (4.75)

must transform as

f̂ (1)(T ′, Ŝ ′α) =f̂ (1)(T, Ŝα) + χX−12χB

24
log(1 +NT ) + 5πi− πi

3
χB

− 1

2
log det

(
Cαβ +

1
(2πi)3(1+NT )

∂2
SαSβf

(0)
)
.

(4.76)

Here, we have fixed the constant term using the known transformation prop-

erty (3.37) of the generating function of base degree zero, genus 1 Gromov-Witten

invariants, which dominates in the large base limit (where the determinant in (4.76)

is effectively equal to one). Unfortunately, we are not able at this stage to derive

this constant term directly from the wave function behavior (although we suspect it

is related to the choice of steepest descent integration contour). Fourier expanding

with respect to Ŝ, one finds that the generating series of genus 1 Gromov-Witten

invariants at non-zero base degree H transforms as a quasimodular form of weight

0 and depth equal to the maximal number of terms in decompositions H =
∑

i Hi

into effective divisor classes, plus one.

4.4.2 Introducing the modular covariant wave function Zmod

In order to characterize the quasimodular properties more precisely, we find it useful

to introduce a different polarization, making use of the improved Kähler modulus S̃α

introduced in (4.49), which we recall for the reader’s convenience,

S̃α := Ŝα − E2(NT )

12

Cαβ∂Ŝβf (0)

(2πi)2
7→ S̃α + δα . (4.77)

Since this definition mixes Ŝα with the derivative ∂Ŝβf (0), we can view it as a canoni-

cal transformation (at fixed T ), and ask for the wave function in a polarization where

S̃α is diagonalized: since the latter transforms simply by a constant shift under mon-

odromy, we expect that the new wave function will have much simpler transformation

properties. With this motivation in mind, we define the topological wave function in

‘modular polarization’ as the transform

Zmod(T, S̃
α, λ) :=

1(
λ
√

E2(NT )
)b2(B)

∫
Ztop(T, Ŝ

α, λ) e
H(S̃α,Ŝα)

λ2

∏
α

dŜα (4.78)

– 41 –



where H is the quadratic kernel

H(S̃α, Ŝα) = −(2πi)3
NT

2
ŜαCαβŜ

β − (2πi)2
6

E2(NT )
(S̃α− Ŝα)Cαβ(S̃

β − Ŝβ) . (4.79)

The first term in (4.79) is chosen to cancel the classical term in the prepotential (4.28),

while the second term combines with the instanton contribution to the prepotential

f (0) such that the integral has a saddle point precisely when (4.77) is obeyed. The

overall power of E2(NT ) in (4.78) is chosen such the inverse formula takes the same

form,

Ztop(T, Ŝ
α, λ) =

1(
λ
√

E2(NT )
)b2(B)

∫
Zmod(T, S̃

α, λ) e−
H(S̃α,Ŝα)

λ2

∏
α

dS̃α . (4.80)

Substituting (2.7), we have, more explicitly,

Zmod(T, S̃
α, λ)

= λ
χX
24 −b2(B)−1

E2(NT )
1
2 b2(B)

∫
exp′

(
κ̂T 3

6λ2
− 3Cαβ(S̃

α − Ŝα)(S̃β − Ŝβ)

πiλ2E2(NT )
−

ĉ2T + 1
2
cαŜ

α

(2πi)2

)

× exp

(∑
g≥0

f (g)(Ŝα, T )λ2g−2

)∏
α

dŜα ,

(4.81)

where we use exp′(x) = exp ((2πi)3x). To obtain the transformation property of

Zmod, we need to invert (4.78), apply the transformation (4.71) and then apply

(4.78) again. The result is that Zmod(S̃, T, λ) transforms into

Zmod(T
′, S̃ ′, λ′) =

∫
Zmod(T, S̃, λ)(

λ3
√

E2(NT )E2(NT ′)
)b2(B)

exp′

(
NTŜ2

2λ2
+

3(S̃ − Ŝ)2

πiλ2E2(NT )

)

× exp′
(

(Ŝα−(1+NT )Ŝ′α)Cαβ(Ŝ
β−(1+NT )Ŝ′β+cβ)

2λ2 + NT
2λ2 cαŜ

α −
(

N2

2
− c2N

24

)
T 2

λ2

)
× exp′

(
−NT ′Ŝ ′2

2λ′2 − 3(S̃ ′ − Ŝ ′)2

πiλ′2E2(NT ′)

) ∏
α

dŜα dŜ ′α dS̃α . (4.82)

Using that T ′ = T/(NT +1), λ′ = λ/(1+NT ) and the transformation rule (4.50) of

E2(NT ), one finds that the quadratic from in (Ŝα, Ŝ ′α) appearing in the product of

exponentials has half-maximal rank, with null space spanned by (E2(NT ), E2(NT )+
1
2πi

12
1+NT

)xα for any xα ∈ Rb2(B). Decomposing

(Ŝα, Ŝ ′α) =
(
(1 +NT )E2(NT )xα + yα,

(
12
2πi

+ (1 +NT )E2(NT )
)
xα + yα

)
(4.83)

the integral over xα leads to a delta function δ[(1+NT )(S̃ ′α− S̃α− 1
2
cα)/λ2]. Setting

S̃ ′α = S̃α + 1
2
cα, the remaining Gaussian integral over yα is peaked at

yα = S̃α − (1 +NT ) (2πiE2(NT ) + 12)

24
cα , (4.84)
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with Hessian (1 + NT )Cαβ/
[
λ2E2(NT )E2(

NT
1+NT

)
]
. Collecting fluctuation determi-

nants, we get

Zmod

(
T

1+NT
, S̃α + 1

2
cα, λ

1+NT

)
Zmod(S̃α, T, λ)

=
exp′

(
− (12N2−c2N)T 2

24λ2 + χB−12
8λ2 (1 +NT )

)
(1 +NT )

12χB−χX
24

, (4.85)

where we have also used that χB = 12 − aαaα and assumed that aα = cα. More

generally, under a Γ1(N) monodromy of the form (4.40), a similar computation shows

that Zmod transforms as

Zmod

(
aT+b
cT+d

, S̃α + δα, λ
cT+d

)
=(cT + d)

χX−12χB
24 exp′

(
xT 2+yT+z

λ2

)
Zmod(S̃

α, T, λ) .

(4.86)

As a result, if we compute (4.81) in perturbation theory around the saddle point

and define new topological amplitudes f̃ (g)(S̃α, T ) :=
∑

kα
f̃ (g)(T )e2πikαS̃

α
via

Zmod(T, S̃
α, λ) = λ

χX
24

−1 exp

(
(2πi)3κ̂T 3

6λ2
+ πicαS̃

α +
∑
g≥0

f̃ (g)(S̃α, T )λ2g−2

)
(4.87)

it follows that each Fourier coefficient f̃
(g)
kα

(T ) will be a modular form of weight

2− 2g under Γ1(N), with no anomaly except for g = 0, 1. For g = 0, this definition

reproduces (4.54), while for g = 1, it yields

f̃ (1)(S̃α, T ) =f̂ (1)(Ŝα, T )− 1

2
log det

(
Cαβ − E2(NT )

12(2πi)2
∂2
SαSβf

(0)
)

− E2(NT )
12(2πi)2

Cαβcα∂Ŝβf
(0) .

(4.88)

Taking derivatives with respect to E2(NT ) on both sides of (4.88) keeping Ŝα fixed,

similar to (4.57), and using the genus 0 result (4.58), we obtain

∂E2(NT )f
(1) =− 1

12(2πi)2
Cαβ∂Ŝαf

(0)∂Ŝβf
(1)

− 1

24(2πi)2
Cαβ∂2

ŜαŜβf
(0) +

1

48πi
cαC

αβ∂Ŝβf
(0)

(4.89)

or in terms of the Fourier coefficients,

∂E2(NT )f
(1)
H (T ) = − 1

24

∑
H=H1+H2

(H1 ∩H2)f
(0)
H1

f
(1)
H2

− 1

24
H ∩ (H − c1(B))f

(0)
H (4.90)

confirming the quasimodularity of the generating series f
(1)
H .

More generally, the series f
(g)
H are quasimodular forms of weight 2g − 2 and

depth equal to g plus the maximal number of elements in possible decompositions

of H =
∑

iHi into effective divisor classes, while the series f̃
(g)
H are actual modular

forms of weight 2g − 2, equal to the depth zero part of f
(g)
H . See Appendix §D

for many explicit examples. We leave it as an exercise to the reader to derive the

modular anomaly equations at genus g > 1 using the same techniques.
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4.4.3 Jacobi properties of ZH(T, λ)

We are now ready to derive the Jacobi property of the normalized generating series

of PT invariants defined in (2.47). Substituting (2.46) in (4.78) and integrating term

by term, we get

Zmod(T, S̃
α, λ) =Zmod,0(T, λ)

∑
kα≥0

Zkα(T, λ)e
2πi(kα− 1

2
cα)S̃α

× exp

(
λ2E2(NT )

24
kαC

αβ

(
kβ −

1

2
cβ

))
,

(4.91)

where

Zmod,0(T, λ) =λ
χX
24

−1 exp

(
(2πi)3κ̂T 3

6λ2
− πi

12
ĉ2T +

12− χB

96
λ2E2(NT )

)
× exp

(∑
g≥0

f
(g)
0 (T )λ2g−2

)
.

(4.92)

Note that we have once more used that b2(B) = χB − 2, χB = 12 − aαaα and the

assumption that aα = cα. Eq. (4.85) then implies that ZH(T, λ) transforms as a

Jacobi form of weight 0, index 1
2
H ∩ (H − c1(B)) under T 7→ T/(1 + NT ). As

explained below (2.51), the quasiperiodicity property (2.50) then follows from the

manifest periodicity under λ̌ 7→ λ̌+ 1.

5. Modularity of DT invariants from monodromy

In this section, we discuss the implications of invariance under the relative conifold

monodromy on various types of Donaldson-Thomas invariants. As mentioned in

§2.3, DT invariants are invariant under auto-equivalences of the derived category

g ∈ Aut C, provided g acts both on the charge γ and on the stability condition σ,

see (2.15). In general however, g · σ and σ may not lie in the same chamber, so

the invariants Ωσ(γ) and Ωσ(γ · g) need not be equal. Here we shall assume that

no wall-crossing takes place between σ and g · σ, and see what kind of property this

implies for the generating series of DT invariants.

The auto-equivalence of interest is the Fourier-Mukai transformation gU with

respect to the ideal sheaf of the relative diagonal discussed in §4.2. It acts on the

charge row vector γ = (p0, pe, pα; qe, qα, q0) as γ 7→ γ · U with

U = ΣU ′−1Σ−1 =



1 0 1
2
cβ −N(12−χB)

4
0β

12−χB

4

N 1 N
2
cβ − c2N

12
+ (χB−8)N2

4
−N

2
cβ

N(12−χB)
4

0α 0α δαβ −N
2
cα 0αβ 0α

0 0 0β 1 0β 0

0α 0α −Cαβ
N
2
cα δαβ −1

2
cα

0 0 0β −N 0β 1


(5.1)
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where Σ is the matrix appearing in the central charge Z = γΣV ,

Σ =



0 0 0β −1 0 0β
0 0 0β 0 −1 0β
0α 0α 0αβ 0 0 −δαβ
0 1 0β 0 0 0β
0α 0α δαβ 0α 0α 0αβ
1 0 0β 0 0 0β


. (5.2)

In view of the action (4.32) on Kähler moduli, the large volume (LV) limit is mapped

to a phase (T → 1
N
, Sα → i∞) where the base B is still very large but some fibral

curves have vanishing volume and fractional B-field 1/N . 25

5.1 Elliptic property of PT invariants

First, we briefly discuss how the invariance of PT invariants under the relative coni-

fold monodromy implies the quasi-periodicity property (2.50), i.e. the ‘elliptic’ part

of the Jacobi properties. Recall from §2.2 that the PT invariant PT(ke, kα,m) counts

stable BPS states with charge γ = (−1, 0, 0α;−ke+
c2
24
,−kα+

1
2
cα,−m) for large vol-

ume and large B-field of suitable sign. Its image under gU is

γ · U =
(
−1, 0, Cαβkβ − cα;−ke +Nm− N(12−χB−kαcα)

2
,−m− 12−χB−kαcα

2

)
. (5.3)

Further acting by a large volume monodromy (2.16) with (ϵe, ϵα) = (0, Cαβkβ−cα), so

as to set the D4-brane charge to zero, we get a PT charge vector γ′ = (−1, 0, 0α;−k′
e+

c2
24
,−k′

α+
1
2
cα,−m′) with the same horizontal D2-brane charge k′

α = kα but with new

vertical D2 and D0 brane charges

k′
e = ke +

N

2
kαC

αβ(kβ − cβ)−mN, m′ = m− kαC
αβ(kβ − cβ) . (5.4)

For N = 1, this reduces to the result in [31, Lemma 9] for the action of the auto-

equivalence ΦH on the Chern character. As explained in loc.cit., this autoequivalence

maps stable pairs to so-called π-stable pairs, but wall-crossing is trivial between these

two notions of stability. Assuming that this statement continues to hold for genus

one fibrations, we conclude that

PT(ke, H,m) = PT (ke +N(hH − 1)−mN,H,m− 2(hH − 1)) , (5.5)

where hH = 1+ 1
2
kαC

αβ(kβ−cβ) is the arithmetic genus of the curve class H = kαĎ
α

on the base. As explained in [31, Corollary 1], this implies the quasi-periodicity

25Note that the limit (T → 0, Sα → i∞) is instead expected to correspond to the large volume

limit of the relative Jacobian fibration that, for N > 1, carries a flat but topologically non-trivial

B-field.
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property (2.50) of the generating series of PT invariants Zβ. It is worth stressing

that (5.5) is only supposed to be valid for any non-trivial nef divisor class H on B.

In particular it does not apply for H = 0, due to modular anomalies in the base

degree zero sector.

5.2 Modularity of D4-D2-D0 invariants

We now turn to the action of the relative conifold monodromy on D2-D0 brane BPS

bound states, with charge γ = (0, 0, 0α; ke, kα,m), where ke ≥ 0 and H = kαĎ
α is an

ample divisor on the base B. As recalled in §2.2, these bound states are counted at

large volume by the genus zero GV invariant GV
(0)
ke,kα

, independent of the D0-brane

charge m. Under the action of gU , the charge vector becomes

γ · U =

(
0, 0,−Cαβkα;−Nm+ ke +

N

2
cαkα, kα,m− 1

2
kαc

α

)
. (5.6)

After applying an homological shift E 7→ E [1] such that γ 7→ −γ, we arrive at a

D4-D2-D0 bound state with divisor class pαDα, D2-brane flux (qe, qm) and D0-brane

charge q0 given by

pα = Cαβkα, qe = Nm− ke −
N

2
cαkα, qα = −kα, q0 =

1

2
kαc

α −m. (5.7)

In particular, the D4-brane charge has no component along the section De (pe =

0). In order to determine the invariants (µ, q̂0) introduced in §2.3, we evaluate the

quadratic form κab := κabcp
c:

κab =

(
ℓαC

αβkβ Nkβ
Nkα 0αβ

)
. (5.8)

Note that this matrix has rank 2, signature (1, 1), and that the vector pα is isotropic,

paκabp
b = κabcp

apppc = 0. This is a consequence of the divisor class D = pαDα being

not ample. However, D is nef and we therefore expect the modular properties to

be as reviewed in §2.3, assuming that there is no wall-crossing between the chamber

gU · LV and the large volume attractor chamber.

If b2(B) > 1, one needs to follow the prescription summarized below (2.27) and

restrict κab to the orthogonal complement of the null space spanned by (0, λα
s ) where

λα
s , s = 1, . . . , b2(B)− 1 is a basis of vectors such that λα

s kα = 0, and take its inverse.

In any case, the result is

q̂0 = −ke
N

+
ℓαC

αβkβ
2N2

. (5.9)

In particular, it is independent of the original D0-brane charge m. Indeed, the

action of a large volume monodromy (2.16) with ϵe = 0 shifts m 7→ m−kαϵ
α without
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affecting the other charges. Moreover, (5.9) satisfies the Bogomolov-Gieseker bound

q̂0 ≤ χ(Dp)

24
=

cαCαβkβ
2

for any ke ≥ 0, so long as the condition

(ℓα −N2cα)C
αβkα ≤ 0 (5.10)

is obeyed. This inequality implies that η(NT )12cαk
α
f
(0)
kα

(T ) is regular at T → i∞. It

is satisfied in all of our examples but we are not aware of a proof.

The discrete fluxes (µe, µα) are in turn given by

µe = Nm− ke −
N

2
kα(k

α + cα)− ϵekαℓα −Nϵαkα , µα = −kα −Nϵekα (5.11)

where ϵe, ϵα are arbitrary integers. Modulo these spectral flow parameters, and re-

stricting to the space λα
sµα = 0, the fluxes (µe, µα) are a priori valued in the dis-

criminant group ZkN × ZkN , of cardinality (kN)2, where k is the greatest common

divisor of the kα’s. Note that kα(k
α + cα) = 2kαk

α − kα(k
α − cα). Since kα(k

α − cα)

is the Euler characteristic of a curve in the class kα, which is even, we conclude that
N
2
kα(k

α + cα) is an integer multiple of N , as long as the class can be represented by

a smooth curve in B.

The assumption that there is no wall-crossing between gU · LV and the large

volume attractor chamber implies the equality of integer DT invariants

Ω∞(0, 0, 0; ke, kα,m) = GV
(0)
ke,kα

= Ω0,kα;µe,µα(q̂0) . (5.12)

In particular, the fact that the D2-D0 brane index is independent of the D0-brane

charge (or holomorphic Euler characteristic) m implies that the corresponding D4-

D2-D0 indices on the r.h.s. of (5.12) are invariant under µe 7→ µe +N , rather than

just µe 7→ µe + kN . While the origin of this invariance is obscure on the D4-D2-

D0 side, its effect is to cut down the number of independent fluxes to kN2, further

halved by the symmetry µ 7→ −µ. For a fixed value of µα, there are effectively N

components, and we shall later argue that only the coset µα = −kα is populated.

Before discussing the implications of the relation (5.12) at the level of generating

series of GW and DT invariants, we remark that for D2-D0 branes wrapping the

genus-one fiber (i.e. for γ = (0, 0, 0α; ke, 0,m)), the image under the relative conifold

monodromy gU has vanishing D4-brane charge,

γ · U = (0, 0, 0; ke −Nm, 0,m) (5.13)

and the corresponding BPS states are counted at large volume by the genus 0 GV

invariant GV
(0)
ke−Nm,0. Assuming again the absence of wall-crossing, and using the m-

independence of the DT invariant counting the original BPS states of charge γ, we

conclude that GV
(0)
ke,0

should be invariant under ke 7→ ke +N . This gives a heuristic

derivation of the periodicity property stated above (2.38), although it does not say

anything about higher genus base degree zero GV invariants.
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5.2.1 Relating generating series of GW and rank 0 DT invariants

Now, we explore the relation between the generating series fkα(T ) of genus 0 GW

invariants and the generating series hp;µ(τ) of D4-D2-D0 invariants, which we recall

for convenience,

fkα(T ) =
∑
ke≥0

GW
(0)
ke,kα

q
ke− ℓαkα

2N
T , h0,kα;µe,µα(τ) =

∑
q̂0≤

χ(Dp)

24

Ω̄0,kα;µe,µα(q̂0) q
−q̂0
τ .

(5.14)

Note that we again drop the genus superscript of f
(0)
kα

(T ). We further introduce the

generating series of integer D4-D2-D0 invariants,

hint
0,kα;µe,µα

(τ) :=
∑

q̂0≤
χ(Dp)

24

Ω0,kα;µe,µα(q̂0) q
−q̂0
τ . (5.15)

We will first show that

fGV
kα (T ) =

N−1∑
µe=0

hint
0,kα;µe,kα (NT ) . (5.16)

To this end, note that for p0 = pe = 0, pα = kα and µα = −kα, we have

q̂0 = q0 +
1

2
kαk

α −
(
µe

N
− kαℓ

α

2N2

)
, (5.17)

and since q0 ∈ Z− 1
2
cαk

α, and kα(kα − cα) ∈ 2Z, we can write

hint
0,kα;−µe,−kα(τ) =

∑
n∈Z

n≥nm

Ω0,kα;µe,kα

(
−n− µe

N
+

kαℓ
α

2N2

)
q
n+µe

N
− kαℓα

2N2
τ , (5.18)

where nm := µe/N − kα(c
α − ℓα/N2)/2. Using (5.12) we then observe that∑

ke≥0

GV
(0)
ke,kα

q
ke− ℓαkα

2N
T =

∑
ke≥0

Ω0,kα;−ke,−kα

(
−ke

N
+ ℓα

2N2k
α
)
q
ke− ℓαkα

2N
T

=
N−1∑
µe=0

∑
n∈Z

Ω0,kα;−µe,−kα

(
−n− µe

N
+ ℓα

2N2k
α
)
q
Nn+µe− ℓαkα

2N
T .

(5.19)

The result (5.16) follows after taking into account the symmetry under µ → −µ.

In order to obtain the relation between genus 0 GW invariants and rational DT

invariants, we use the multicover formulae, which crucially involve different powers

of d in the sum over divisors:

GW
(0)
ke,kα

=
∑

d|(ke,kα)

1

d3
GV

(0)
ke/d,kα/d

, Ω̄t(γ) =
∑
d|γ

1

d2
Ωt(γ/d) (5.20)
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or equivalently

GV
(0)
ke,kα

=
∑

d|(ke,kα)

µ(d)

d3
GW

(0)
ke/d,kα/d

, Ωt(γ) =
∑
d|γ

µ(d)

d2
Ω̄t(γ/d) (5.21)

where µ(d) is the Möbius function. Morever, it is important to stress that the

statement of m-independence holds only for the integer DT invariants in (5.12),

rather than for their rational counterparts. Nonetheless, we claim that the relation

between generating series of GW and rational DT invariants is almost identical to

(5.16), namely

k fkα(T ) =
kN−1∑
µe=0

h0,kα,µe,kα(NT ) , (5.22)

where we recall that k is the greatest common divisor of the kα’s.

To show this, we first observe that for a function

f(T ) =
∑
n≥0

ane
2πiT (n+ϕ) , an ∈ C , ϕ ∈ Q , (5.23)

and any N ∈ N>0, k ∈ {0, . . . , N − 1}, the restricted sum over n = k mod N is

given by

1

N

N−1∑
b=0

e−
2πiµ
N

(k+ϕ)f

(
T +

b

N

)
=
∑
n≥0

aNn+ke
2πiT (Nn+k+ϕ) . (5.24)

We can therefore invert the relation (5.16) into

hint
0,kα;µ,kα(NT ) =

1

N

N−1∑
b=0

e−
2πib
N

(µ− ℓαkα

2N
)fGV

kα

(
T + b

N

)
(5.25)

and insert it into the definition of hp;µ,

h0,kα;µ,kα(NT ) =
∑

d|(µ,k)

1

d2
hint
0,kα/d;µ/d,kα/d(dNT ) (5.26)

=
∑

d|(µ,kα)

1

Nd2

N−1∑
b=0

e−
2πib
dN

(µ− ℓαkα

2N
)
∑

e|(k/d)

µ(e)

e3
fkα/(de)

(
deT + b

N

)

=
∑
m|k

1

m3

 ∑
d|(µ,m)

d

N
µ(m/d)

N−1∑
b=0

e−
2πib
dN

(µ− ℓαkα

2N
)

 fkα/m
(
mT + b

N

)
.

Summing over µe and using the identities

∀d,
∑

µ=0...kN−1
d|µ

e−
2πibµ
dN =

kN

d
δ
(N)
b ; ∀m,

∑
d|m

µ(m/d) = δm,1 (5.27)

we arrive exactly at (5.22).

– 49 –



5.2.2 Comparing holomorphic anomaly equations

Let us now compare the holomorphic anomaly equations satisfied by generating series

of GW and rank 0 DT invariants. For simplicity we continue to restrict to genus one

fibrations over P2, such that the index α takes only one value, which we omit.

We assume that the divisor class pa = (0, k) lies on the boundary of the effective

cone, such that the only possible decompositions p =
∑n

i=1 pi are of the form pi =

(0, ki). As a result, only two-term decompositions contribute, k = k1+k2. We denote

k0 = gcd(k1, k2). According to the prescription (2.28), the holomorphic anomaly for

rank 0 DT invariants is given by26

∂τ̄ ĥ0,k;µe,µ =
1

16πiτ 22

∑
k1+k2=k

k0
∑

µ1∈Zk1N
µ2∈Zk2N

δ
(k0N)
µ−µ1−µ2

δ(Nkk1k2/k20)
µ12

×
∑

µ1,e∈Zk1N
µ2,e∈Zk2N

δ
(k0N)

µe−µ1,e−µ2,e− ℓ
N
(µ−µ1−µ2)

ĥ0,k1;µ1,e,µ1ĥ0,k2;µ2,e,µ2

(5.28)

where

k0µ12 = k2µ1 − k1µ2 +Nk1k2(ρ
e
1 − ρe2) (5.29)

with (ρe1, ρ
e
2) any integral solutions to

µ− µ1 − µ2 = N(k1ρ
e
1 + k2ρ

e
2) . (5.30)

Let us focus on the case µ = k. Note that for k = k1 + k2 one has gcd(k, k1) =

gcd(k1, k2) = k0 and introduce k̂ := k/k0, k̂1 := k1/k0, k̂2 := k2/k0. Then we can

solve (5.30) for ρe2 and find that the second δ-function in (5.28) imposes

k̂µ1 − k̂k1 +Nk1k̂ρ
e
1 = 0 mod Nk1k̂2k̂ . (5.31)

This implies that k̂µ1 − k̂k1 = 0 mod Nk1k̂. Solving (5.30) instead for ρe1, one also

obtains that k̂µ2 − k̂k2 = 0 mod Nk2k̂. We therefore find that the sum only receives

contributions from terms with

µ1 = k1 mod Nk1 , µ2 = k2 mod Nk2 . (5.32)

All of these terms are compatible with ρe1 = ρe2 = 0 and the holomorphic anomaly

equations take the simplified form

∂τ̄ ĥ0,k;µe,k =
1

16πiτ 22

∑
k1+k2=k

k0
∑

µ1,e∈Zk1N
µ2,e∈Zk2N

δ
(k0N)
µe−µ1,e−µ2,e

ĥ0,k1;µ1,e,k1ĥ0,k2;µ2,e,k2 . (5.33)

26For fibrations on P2, the lattice Λ⊥ is trivial and one does not need any non-trivial glue vectors,

so ng = 1, gA = 0.
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In terms of the sum over all residue classes h0,k :=
∑

µe∈ZkN
ĥ0,k;µe,k, this further

simplifies to

∂τ̄h0,k =
k

16πiτ 22

∑
k1+k2=k

h0,k1 h0,k2 . (5.34)

Identifying h0,k(Nτ) = kf̂k(T ), we arrive at

∂T̄ f̂k(T ) =
1

16πiNT 2
2

∑
k1+k2=k

k1k2 f̂k1 f̂k2 (5.35)

or equivalently, using Ê2(NT ) = E2(NT )− 3
πNT2

, ∂T̄ Ê2(NT ) = 3i
2πNT 2

2
,

∂Ê2(NT )f̂k = − 1

24

∑
k1+k2=k

k1k2 f̂k1 f̂k2 . (5.36)

This reproduces the holomorphic anomaly equation (4.59) for genus 0 GW invariants.

Generalizing this argument to the case of genus-one fibrations on higher del Pezzo

surfaces would require to confront both the isotropicity of pa and non-invertibility of

κab simultaneously, which we leave for future work.

5.2.3 Vector valued modularity

So far, we have been able to express the genus zero free energies in modular polar-

ization as sums over modular completions of D4-D2-D0 indices

kf̂k(T ) =
kN−1∑
µe=0

ĥ0,k,µe,k (NT ) . (5.37)

However, this relation only involves contributions where the coset of the base curve

class µ ∈ Λ∗/Λ is equal to the image k of the D4-brane charge in Λ∗. This is closely

related to the fact that f̂k(T ) is a modular form for Γ1(N) but transforms itself as a

vector valued modular form under the full modular group [34, 35, 40].

In [35] it was proposed that – for N > 1 – the image of fk(T ) under the Fricke

involution T → −1/(NT ) can be interpreted as a genus zero topological string free

energy f∨
k (T ) of the relative Jacobian fibration J of X, in the presence of a flat but

topologically non-trivial B-field. Using (2.24), we find that under S-transformations

k f̂k

(
− 1

NT

)
=

kN−1∑
µe=0

ĥ0,k,µe,k

(
− 1

T

)

=
e

πi
4
[cα(4kα−cα)+1]

kN

kN−1∑
µ′
e=0

kN−1∑
k′=0

kN−1∑
µe=0

exp
(
−2πi

N

[
k′

k

(
µe − kℓ

N

)
+ µ′

e

])
ĥ0,k,µ′

e,k
′ (T )

=(−1)cαk
α

e
πi
4
(χB−3)

kN−1∑
µ′
e=0

exp

(
−2πiµ′

e

N

)
ĥ0,k,µ′

e,0 (T ) .

(5.38)
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This suggests that f∨
k (T ) also admits a modular completion f̂∨

k (T ), that satisfies

kf̂∨
k (T ) =

kN−1∑
µe=0

exp

(
−2πiµe

N

)
ĥ0,k,µe,0 (T ) . (5.39)

Perhaps the most striking aspect of this relation is that the two sides a priori count

objects on different geometries.

More generally, the SL(2,Z) orbit of f̂k(T ) is composed of topological string

free energies associated to different genus one fibrations that share the same relative

Jacobian fibration with X and carry different B-field topologies [35, 40]. By applying

suitable combinations of the T - and S-transformations (2.24), it is possible to obtain

relations analogous to (5.37) and (5.38) for all of those string backgrounds. However,

while these relations will be interesting to explore further, they would take us too

far afield and we will leave this for future work.

5.3 Comments on the black string SCFT

We now comment on the growth of D4-D2-D0 indices, and its relation to the central

charge of the black string SCFT obtained by wrapping an M5-brane on the corre-

sponding divisor [94]. First, let us consider the generating series of genus 0 GW

invariants (which have the same growth as genus 0 GV invariants)

fH(T ) = −∆2N(T )
rH/NφH(T, 0)

η(NT )12c1(B)·H . (5.40)

Since fH(T ) :=
∑

n CH(n)q
n is a Γ1(N) weak quasimodular form of negative weight,

the growth of its Fourier coefficients is controlled by the most polar term q′−∆max in

the Fourier expansion around the cusp at T = 0 (where q′ := e−2πi/T ),

CH(n)
n→+∞∼ exp

(
4π
√

∆maxn
)
. (5.41)

Using the fact that ∆2N(T ) is regular near T = 0 27, while η(NT ) behaves as q′
1

24N ,

we find

∆max =
cαC

αβkβ
2N

. (5.42)

This should be contrasted with the pole at T = i∞, which has order ℓαC
αβkβ/(2N).

Going back to (5.7) and identifying the Fourier mode n with ke − ℓαCαβkβ
2N

= −Nq̂0,

we find that the D4-D2-D0 indices with p = (0, Cαβkβ) grow as

Ωp,µ(q̂0) ∼ exp

(
2π
√

2cαCαβkβ(−q̂0)

)
. (5.43)

27Following [35, (4.21)], one finds that T 2N∆2N

(
− 1

NT

)
= T 2N exp

(
2πi
NT

)
ϕ−2,1

(
− 1

T ,−
1

NT

)−N
=

ϕ−2,1

(
T,− 1

N

)−N
= [2i sin(π/N)]

−2N
+O(q′).
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This agrees with the macroscopic Bekenstein-Hawking entropy

SBH = 2π

√
p3 + c2 · p

6
(−q̂0) (5.44)

upon noting that p3 := κabcp
apbpc = 0 and cα = 1

12
c2,α. As explained in [94], this

growth is consistent with the central charge of the (0, 4) superconformal field theory

obtained by wrapping an M5-brane on a very ample divisor28

c′L =χ(D) = κabcp
apbpc + c2,ap

a = 12c1(B) · C ,

c′R =6χ(O(D)) = κabcp
apbpc +

1

2
c2ap

a = 6c1(B) · C .
(5.45)

However, as emphasized in [95, 96], the divisor D = π−1(C) is not ample and

the formulae (5.45) for the central charges do not apply. In particular, the odd

cohomology of D does not in general vanish, rather it is given by the arithmetic

genus of the curve C,

h1,0(D) = hD :=
1

2
(C2 − c1(B) · C) + 1 . (5.46)

Using the Euler number χ(D) and the signature σ(D) given by

χ(D) = 2− 4h1,0(D) + 2h2,0(D) + h1,1(D) = 12c1(B) · C ,

σ(D) = 2 + 2h2,0(D)− h1,1(D) = −8c1(B) · C , (5.47)

χ(OD) = 1− h1,0(D) + h2,0(D) = c1(B) · C ,

we deduce the even cohomology of D,

h2,0(D) =
1

2

(
C2 + c1(B) · C

)
,

h1,1(D) =C2 + 9c1(B) · C + 2 .
(5.48)

Recall that the Hodge numbers h2,0, h1,1 are related to the number of self-dual and

anti-self-dual two-forms by

b+2 (D) = 2h2,0(D) + 1 , b−2 (D) = h1,1(D)− 1 , (5.49)

while the holomorphic Euler number χ(OD) =
1
4
(χ(D) + σ(D)) determines the co-

homology of the line bundle L = OX(D),

χ(OD) =
3∑

i=0

(−1)i dimH i(X,L) . (5.50)

28The prime is used to distinguish this result, based on the ampleness assumption, from the

correct result in (5.51) below.
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For a very ample line bundle, h1,0(D) vanishes and χ(OD) = dimH0(X,L) gives the
complex dimension (plus one) of the moduli space MD of the divisor D inside X.

More generally however, the real dimension of MD is given by dD = 2h2,0(D).

The (0, 4) SCFT obtained by wrapping an M5-brane on D (or a D3-brane on

C in F-theory) is, at least at large volume, a non-linear sigma model whose target

space is a Narain bundle of signature (b−2 − 1, b+2 − 1) over MD, along with a center

of motion factor R3×S1. The central charges (including the center of motion factor)

are given by [95, 96]

cL =dD + b−2 +
1

2
× 4h1,0(D) + 3 = 3C2 + 9c1(B) · C + 6 ,

cR =dD + b+2 +
1

2
× 4h2,0(D) + 5 = 3C2 + 3c1(B) · C + 6 .

(5.51)

In terms of the arithmetic genus (5.46), this is rewritten as

cL = 6hD + 12c1(B) · C , cR = 6hD + 6c1(B) · C , (5.52)

which differs from (5.45) by an additional term 6hD on both sides (recall that the

difference cL − cR is fixed by the gravitational anomaly [97]).

This presents a puzzle, since the growth of the D4-D2-D0 indices is controlled by

c′L, in agreement with the macroscopic entropy, rather than by cL. The most obvious

resolution is that even though the central charge of the SCFT is given by (5.51),

the Cardy formula involves the effective central charge ceff = cL − 24hmin, where

hmin is the conformal dimension of the lowest conformal primary, which reduces to

c′L if one identifies hmin = 1
4
hD, which is recognized as the energy of the Ramond

ground state for 4hD real fermions. We note that the difference (cL − c′L, cR − c′R)

can also be understood as the contribution of one unit of D4-brane charge pe along

the base; on the F-theory side, this corresponds to one unit of Taub-NUT charge,

and is consistent with the 4D/5D lift [98, 99].

On the other hand, the authors of [96] presented some support for the formulae

(5.51) from the growth of the Fourier coefficients of the meromorphic Jacobi form

ZH(T, λ) =
∑

n,r C(n, r)qnyr, tentatively identified as the elliptic genus of the SCFT.

In particular, in [96, §A] is is argued that for a meromorphic Jacobi form of index

k under SL(2,Z), Fourier coefficients grow as C(n, r) ∼ exp(π
√
4kn− r2) (similarly

as for a weak Jacobi form of the same index). The same arguments show that for a

meromorphic Jacobi form of index k under Γ1(N) (for example one obtained from a

SL(2,Z) modular form by rescaling (T, λ) → (NT, λ)), Fourier coefficients grow as

C(n, r) ∼ exp(π
√

4kn
N

− r2). Setting k = hD − 1 and taking the large n limit at fixed

r, we get

log |C(n, r)| n→+∞∼ 2π

√
(C2 − c1(B) · C + 2)n

2N
. (5.53)
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Let us compare this result with the macroscopic entropy of a static BMPV black

hole, given by [100]

S5D(qa) = 2π

(
1

6
κabct

atbtc
)

, qa =
1

2
κabct

btc , (5.54)

where ta corresponds to the Kahler modulus at the attractor point. For genus one

fibrations on P2, with charge qa = (n,C), setting n̂ = n− ℓ·C
2N

we find

S5D(n,C) =
2π
√

n̂N −
√

N (n̂2N − κ̃C2)

3
√
κ̂N3

(√
N (n̂2N − κ̃C2) + 2n̂N

)
(5.55)

provided |n̂| ≥
√

κ̂
N
|C|. In the Cardy regime ñ ≫ |C|, we get

S5D(n,C) = 2π

√
n̂C2

2N
− πκ̂(C2)3/2

3(2Nn̂)3/2
+ · · · ≃ 2π

√
n̂C2

2N

(
1− κ̂C2

24Nn̂
+ . . .

)
. (5.56)

The N -dependence at leading order is consistent with the expectation for Γ1(N)

Jacobi forms, but the microscopic origin of the O(κ̂C2/m̃) corrections is obscure.

Subleading corrections proportional to c1(B) were matched in [101, (5.33)], by noting

that higher-derivative couplings of the form cαAα∧R∧R term in 5 dimensions (where

R is the Riemann tensor and Aα the graviphotons) induce a shift qα 7→ qα + 1
8
c2α,

which amounts at leading order to shifting C2 7→ C2 + 3c1(B) · C as in the central

charge cL in (5.51).

The upshot of this discussion is that the central charge (5.51) appears to control

the growth of indices counting 5D black hole in the Cardy limit, or PT indices

counting 4D black holes with one unit of D6-brane charge, but that the growth

of indices counting D4-D2-D0 black holes wrapping the genus-one fiber is instead

controlled by the MSW central charge (5.45), even though the pulled back divisor is

not ample but only nef. It would be very interesting to reproduce the full black hole

entropy (5.55) from microscopic counting.

6. Discussion and open problems

In this work, we have revisited the modular properties of generating series of various

enumerative invariants of torus-fibered Calabi-Yau threefolds, restricting for simplic-

ity to fibrations with trivial Mordell-Weil group and no fibral divisors (hence at most

discrete gauge symmetries in the corresponding F-theory vacua, see [40]). Our main

result is a derivation of the Jacobi property of the generating series of PT invariants

at fixed base degree, assuming the wave function property of the topological string

partition function Ztop(t
a, λ) under a suitable monodromy. This wave function prop-

erty is physically well motivated, but far from being established mathematically, and
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our work can be viewed as further evidence for its validity for general projective CY

threefolds (see e.g. [102, 103, 104] for rigorous results in this direction for toric CY

singularities and [105] for a proof of the BCOV equations for the quintic).

While we have only considered Ztop(t
a, λ) (or rather its logarithm) as an asymp-

totic series in the topological string coupling λ, the wave-function property is ex-

pected to hold for the putative non-perturbative completion of the topological string

amplitude, potentially fixing it uniquely, and it would be extremely interesting to un-

derstand its consequences for the resurgent structure of the asymptotic series, along

the lines of [106, 107, 108].

Notably, a key step in our derivation of the Jacobi properties was to introduce a

variant Zmod(t
a, λ) of the topological string amplitude, which is both holomorphic and

modular invariant, up to a multiplier system entirely determined by the topological

data of the fibration. This was made possible by the introduction of the improved

Kähler moduli S̃α (4.49), which transform simply by an additive constant under

Γ1(N). As an asymptotic series in λ, Zmod is essentially determined by the depth-

zero part of the quasimodular series of GW invariants at arbitrary degree and genus.

A better understanding of its analytic properties might open the way to determine

all-genus GV invariants at higher degrees than currently available.

On the other hand, our derivation heavily hinges on the structure (3.1) of the

base degree zero GV invariants, as well as on the relations (2.36) to the intersection

numbers of the fibrations. In the elliptic case, i.e. N = 1, the relations (3.1) follow

from [83, Theorem 6.9], the proof of which relies on the fact that for elliptic fibrations,

the smooth generic Weierstraß fibration is isomorphic to the corresponding relative

Jacobian fibration. We expect that the relations for N > 1 can be proven along

the same lines but using the twisted derived equivalence of the smooth genus one

fibered Calabi-Yau with its relative Jacobian fibration [54, Theorem 5.1]. Clearly, it

would be interesting to generalize our results to general fibrations with fibral divisors

and/or non-trivial Mordell-Weil group (see [109] for new results in this direction).

It was proposed in [35] and further elaborated on in [41, 40], that the Γ1(N)-

modular properties of Ztop extend to vector valued modular properties under the full

modular group, when taking into account the topological string partition functions

on all genus one fibered Calabi-Yau threefolds that share the same Jacobian fibration.

This requires including suitable flat but topologically non-trivial B-field backgrounds

on fibrations that exhibit Q-factorial terminal singularities, see also [36, 37, 38].

Lemma 2, together with Lemma 4 and 5, can be used to prove this vector valued

modularity for the vertical invariants under the Fricke involution T → −1/(NT ),

assuming the Ansatz for the topological string partition function in the presence of a

flat but topologically non-trivial B-field in terms of torsion refined Gopakumar-Vafa

invariants from [35]. More generally, it should be possible to generalize these results
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to understand the full vector valued modularity for the vertical invariants and to use

the wave function property of the topological string partition function to extend this

beyond base degree zero.

Our second main result was to relate the generating series of genus zero Gromov-

Witten invariants at fixed base degree H (which, up to multi-cover effects, count

BPS bound states of D2-D0 branes wrapped on H + nF ) to the generating series

of rank 0 rational DT invariants supported on the pulled-back divisor D = π−1(H)

(which, up to different multi-cover effects, count BPS bound states of D4-D2-D0

branes wrapped on D). Restricting for simplicity to genus one fibrations over P2, the

proposed relation (5.22) (extending the earlier proposal of [26] to the case of genus

one fibrations with N -sections) arises by following DT invariants under the same

relative conifold monodromy, assuming the absence of wall-crossing. It is clearly

an important problem to prove this assumption, and extend the relation (5.22) to

more general torus fibrations. If this relation is correct, the fact that the generating

series fH are quasimodular forms under Γ1(N) implies that the generating series

hD,µ transform as vector-valued mock modular forms under SL(2,Z), exactly as

predicted in [15, 14], given the fact that for isotropic charge vectors, mock modularity

reduces to quasimodularity. This is similar to the case of K3-fibrations, where the

modularity of the generating series of vertical rank 0 DT invariants can be reduced

to the modularity of generating series of Noether-Lefschetz invariants [23, 22].

Clearly, both in the case of torus and K3-fibrations, it would be very interesting to

compute rank 0 DT invariants for general divisor classes with non-trivial support on

the base, so as to provide further support to the S-duality conjectures, and possibly

obtain new constraints on higher genus GV invariants, along the lines of [12, 13].

While it is known that in the case of a smooth elliptic fibration over a del Pezzo

surface B, rank 0 DT invariants supported on For [D] = r[B] coincide with rank r

Vafa-Witten invariants on B [110, 111, 112], and therefore have modular generating

series, it is an interesting problem to generalize this to the case of torus fibrations

with N -sections. Similarly, it would be interesting to clarify the relation (if any)

between GV invariants supported on the basis of a torus fibration with N -section,

and GV invariants of the non-compact CY threefold given by the total space of the

canonnical bundle KB. We hope to return to some of these questions in future work.

A. Modular forms for Γ1(N)

In this appendix, we review basic facts about modular forms for the congruence

group Γ1(N), introduce Eisenstein series with Dirichlet character and their holomor-

phic Eichler integrals, and obtain new results for their transformation under Fricke

involutions. The results are used in Section 3 to understand the modular proper-

– 57 –



ties of the base degree zero contributions to the topological string free energies of a

generic genus one fibered CY threefold.

The congruence subgroup Γ1(N) ⊂ SL(2,Z) is defined as

Γ1(N) :=

{(
a b

c d

)
∈ SL(2,Z)

∣∣∣∣ a, d ≡ 1 mod N , c ≡ 0 mod N

}
. (A.1)

For 1 ≤ N ≤ 4, the group Γ1(N) is generated by the two elements
(

1 1

0 1

)
and

(
1 0

N 1

)
.

More generally, the minimal number of generators is given by 2g(N) + nc(N) − 3

in terms of the genus g(N) and the number of cusps nc(N) of the modular curve

X1(N) = H/Γ1(N). We have listed sets of generators for N = 5, 6, 7 in Table 1.

N Generators of Γ1(N)

5

(
1 1

0 1

)
,

(
1 0

5 1

)
,

(
11 −4

25 −9

)
6

(
1 1

0 1

)
,

(
1 0

6 1

)
,

(
7 −3

12 −5

)
7

(
1 1

0 1

)
,

(
1 0

7 1

)
,

(
15 −4

49 −13

)
,

(
−13 5

−21 8

)
,

(
22 −9

49 −20

)

Table 1: Generators of the group Γ1(N) for 5 ≤ N ≤ 7, obtained using the algo-

rithm described in [113, Section 1.4] and implemented in Sage [114] with the command

Gamma1(N).generators().

We denote the corresponding ring of modular forms by M(N) and let Mw(N) ⊂
M(N) be the subspace of modular forms of weight w. Since Γ1(1) = SL(2,Z), we
have M(1) = ⟨E4, E6⟩ in terms of the Eisenstein series E4(τ),E6(τ). Using (3.8), it

is easy to see that

eN,2(τ) := NE2(Nτ)− E2(τ) , (A.2)

is a modular form of weight 2 for Γ1(N). A basis for the ring of modular forms for

Γ1(N) with N ≤ 5 have been constructed for example in [35, Appendix B] and we

briefly summarize the relevant forms in Table 2.

A.1 Dirichlet characters, Bernoulli numbers and L-series

Let us first recall some definitions and properties of Dirichlet characters, generalized

Bernoulli numbers and Dirichlet L-series from [115, Chapter 3].

We denote the group of Dirichlet characters with modulus N by

D[N ] := ̂(Z/NZ)× . (A.3)
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N Generators of M(N) ∆2N

1 e1,4 = E4, e1,6 = E6

2
e2,2 = 2E2(2τ)− E2(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + . . .

e2,4−e22,4
192

e2,4 = E4

3
e3,1 =

(
η(τ)9

η(3τ)3
+ 27η(3τ)9

η(τ)3

) 1
3
= 1 + 6q + 6q3 + 6q4 + . . . e23,3

e3,3 =
η(3τ)9

η(τ)3
= q + 3q2 + 9q3 + 13q4 + . . .

4
e4,1 =

η(2τ)10

η(τ)4η(4τ)4
= 1 + 4q + 4q2 + 4q4 + . . . − e24,1(e

2
4,1−e2,2)3

4096

e2,2

5
e5,1 =

(q;q)2∞
((q;q5)∞(q4;q5)∞)5

= 1 + 3q + 4q2 + 2q3 + q4 + . . . e65,1ẽ
4
5,1

ẽ5,1 =
q (q;q)2∞

((q2;q5)∞(q3;q5)∞)5
= q − 2q2 + 4q3 − 3q4 + . . .

Table 2: Generators of the ring M(N) of modular forms for Γ1(N) with N ≤ 5, and

canonical modular form ∆2N for 2 ≤ N ≤ 5. We denote by eN,w or eN,w,• a modular form

for Γ1(N) of weight w and (a; q)n is the q-Pochhammer symbol (a; q)n =
∏n−1

k=0(1− aqk).

Since χ(−1)2 = χ(1) = 1, we have that χ(−1) ∈ {−1, 1}. We denote by D[N ]± ⊂
D[N ] the subgroup of Dirichlet characters with modulus N and χ(−1) = ±1. Given

a character χ with modulus N , the conductor mχ ∈ N of χ is the smallest positive

integer such that χ(m) = χ(n) for all m,n ∈ Z with gcd(m,N) = gcd(n,N) = 1 and

m ≡ n mod mχ. The conductor always divides the modulus, mχ|N .

A character χ ∈ D[N ] is called primitive if N = mχ. If χ is not primitive, there

is a unique primitive character χ⋆ ∈ D[mχ], such that

χ(n) =

{
χ⋆(n) if gcd(n,N) = 1

0 if gcd(n,N) ̸= 1
. (A.4)

The so-called principal character χN,0 is given by

χN,0(n) :=

{
0 if gcd(n,N) ̸= 1

1 if gcd(n,N) = 1
, (A.5)

and always has conductor 1. The associated primitive character is the trivial char-

acter χ ∈ D[1] with χ(n) = 1. The number of Dirichlet characters of modulus N is

given by Euler’s totient function

φ(N) = N
∏
p|N

(
1− p−1

)
, (A.6)

where the product is over prime factors of N .
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The generalized Bernoulli numbers Bk,χ are defined via the relation 29

N∑
a=1

χ(a)
xeax

eNx − 1
=

∞∑
k=0

Bk,χ
xk

k!
. (A.7)

Expanding the left-hand side of (A.7) in x, we can introduce βk,χ,a via the relation

Bk,χ =
N∑
a=1

χ(a)βk,N,a ,

∞∑
k=0

βk,N,a
xk

k!
=

xeax

eNx − 1
, (A.8)

and note that βk,rN,ra = rk−1βk,N,a. We have the relation

Bk,χ =Bk,χ⋆

∑
d|N

µ(d)dk−1χ⋆(d) = Bk,χ⋆

∏
p|N

(
1− pk−1χ⋆(p)

)
, (A.9)

in terms of the Möbius function

µ(n) =


1 if n = 1

(−1)k if n has k distinct prime factors

0 if n is divisible by a square greater than one

. (A.10)

The Dirichlet L-series is defined as

L(s, χ) =
∞∑
n=1

χ(n)

ns
. (A.11)

One has the relation

L(s, χ) = L(s, χ⋆)
∏
p|N

(
1− χ⋆(p)

ps

)
, (A.12)

where the product is over the prime factors of N . If χ ∈ D[N ]+ (χ ∈ D[N ]−), the

only zeros L(s, χ) with s ∈ Z are simple zeros at the even (odd) negative integers.

We will also need that

L(0, χ⋆) =

{
0 if mχ > 1

−1
2

if mχ = 1
. (A.13)

If χ is a primitive character with modulus N > 1, and δ ∈ {0, 1} satisfies

χ(−1) = (−1)δ, then L(s, χ) satisfies the functional equation

L(s, χ) = W (χ)2sπs−1N1/2−s sin
(π
2
(s+ δ)

)
Γ(1− s)L(1− s, χ) . (A.14)

29Compared to [115], we extend the definition of Bk,χ to the case that χ is not necessarily

primitive.
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where χ is the complex conjugate character of χ, and

W (χ) =
τ(χ)

iδ
√
N

, (A.15)

in terms of the Gauss sum

τ(χ) =
N∑
a=1

χ(a)e
2πia
N . (A.16)

With this, one can show that L(s, χ), for primitive χ with modulus N > 1, is an

entire function of s. One then also has [115, Theorem 3.3.4]

L(k, χ) = (−1)1+(k−δ)/2W (χ)

2iδ
(2π/N)k

Bk,χ

k!
, L(1− k, χ) = −Bk,χ/k . (A.17)

A.2 Eisenstein series with character

We summarize and extend some results about Eisenstein series from [115, Chapter

7], see also [113, Chapter 5].

Definition 1. Let χ ∈ D[N ] be a Dirichlet character with modulus N ≥ 1 and let

k > 0 be such that χ(−1) = (−1)k. We define the Eisenstein series

Ek,χ(τ) :=− Bk

2k
δ1,N +

∑
m≥1

∑
n|m

χ(m/n)nk−1qm , (A.18)

Ẽk,χ(τ) :=− Bk,χ

2k
+
∑
m≥1

∑
n|m

χ(n)nk−1qm , (A.19)

Êk,χ(τ) :=N
k
2
−1

−Bk

2k
δ1,N +

∑
m≥1

∑
n|m

N∑
a=1

χ(−a)nk−1e
2πiam
nN qm

 . (A.20)

We can then show the following:

Proposition 1. Let χ and k be as in Definition 1.

1. If N > 1 or k ̸= 2, Ẽk,χ(τ) is a modular form of weight k for Γ1(N). If N = 1

and k = 2, it is the weight 2 quasimodular form Ẽ2,χ1,0(τ) = − 1
24
E2(τ).

2. If k ̸= 2 or χ ̸= χN,0, Ek,χ(τ), Êk,χ(τ) are modular forms of weight k and

E2,χN,0
(τ), Ê2,χN,0

(τ) are quasimodular forms of weight 2 for Γ1(N).
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Proof. We first focus on Ẽk,χ(τ) and assume that k ̸= 2 or mχ > 1. If χ is primitive,

the modular properties of Ẽk,χ(τ) follow from [115, Theorem 7.1.3], [115, Theorem

7.2.12] and [115, Theorem 7.2.13], together with [115, Lemma 7.1.1] and [115, Lemma

7.2.19]. If χ is not primitive, we observe that for any function f : Z × Z → C one

has ∑
m≥1

∑
n|m

χ(n)f(n,m) =
∑
d|N

µ(d)χ⋆(d)
∑
m≥1

∑
n|m

χ⋆(n)f(dn, dm) . (A.21)

Together with (A.9), this implies that

Ẽk,χ(τ) =− Bk,χ

2k
+
∑
d|N

µ(d)dk−1χ⋆(d)

(
Ẽk,χ⋆(dτ) +

Bk,χ⋆

2k

)
=
∑
d|N

µ(d)dk−1χ⋆(d)Ẽk,χ⋆(dτ) .
(A.22)

We then observe that Ẽk,χ⋆(τ) is a modular form of weight k for Γ1(mχ) and in the

sum χ⋆(d) is zero unless d|N/mχ. If k = 2 and χ = χN,0, we can write

Ẽ2,χ(τ) =− 1

24

∑
d|N

µ(d)dE2(dτ) = − 1

24

∑
d|N

µ(d) (E2(τ) + ed,2(τ))

=− 1

24

δN,1E2(τ) +
∑
d|N

µ(d)ed,2(τ)

 ,

(A.23)

where in the last step we have used that
∑

d|N µ(d) = δ1,N .

The modular properties of Ek,χ(τ) for k ̸= 2 or mχ ̸= 1 again follow from [115,

Theorem 7.1.3] and [115, Theorem 7.2.13], together with [115, Lemma 7.1.1] and [115,

Lemma 7.2.19]. For k = 2, χ = χN,0 we use again (A.21) and observe that

E2,χN,0
(τ) =− 1

24

∑
d|N

µ(d)E2(dτ) . (A.24)

We can rewrite this again as

E2,χN,0
(τ) =− 1

24

∑
d|N

µ(d)

d
(E2(τ) + ed,2(τ))

=− 1

24

φ(N)

N
E2(τ)−

1

24

∑
d|N

µ(d)

d
ed,2(τ) .

(A.25)

where in the last step we have applied Möbius inversion to the divisor sum formula∑
d|N

ϕ(d) = N to obtain that
∑

d|N µ(d)/d = ϕ(N)/N .

The modular properties of Êk,χ(τ) follow from Lemma 1 below.
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Lemma 1. With χ, k as in Definition 1 and L := mχ we have

Êk,χ(τ) =
N

k
2

L
χ(−1)W (χ⋆)

∑
d|N

µ(d)d−1χ⋆(d)Ek,χ⋆

(
Nτ

Ld

)
. (A.26)

Proof. We first calculate the non-constant part and define

f(τ) := W (χ⋆)
∑
d|N

µ(d)d−1χ⋆(d)

(
Ek,χ⋆

(
Nτ

Ld

)
+

Bk

2k
δ1,N

)
. (A.27)

Inserting the definition of Ek,χ(τ), we can rewrite this as

f(τ) =W (χ⋆)
∑
d|N

µ(d)d−1χ⋆(d)
∑
m≥1

∑
n|m

χ⋆(m/n)nk−1q
Nm
Ld

=W (χ⋆)
∑
d|N/L

µ(d)d−1χ⋆(d)
∑
m≥1

∑
n|m

χ⋆(m/n)nk−1q
Nm
Ld

=
L

N
W (χ⋆)

∑
d|N/L

dµ

(
N

Ld

)
χ⋆

(
N

Ld

)∑
m≥1

∑
n|m

χ⋆(m/n)nk−1qdm ,

(A.28)

where in the second line we use that χ⋆(d) can only be non-zero if d|N/L and in the

third line we use
∑

d|N f(d) =
∑

d|N f(N/d). Exchanging the order of summation,

and summing over dm instead of m, leads to the expression

f(τ) =
L

N
W (χ⋆)

∑
m≥1

∑
n|m

∑
d|(N/L,m/n)

dµ

(
N

Ld

)
χ⋆

(
N

Ld

)
χ⋆
(m
dn

)
nk−1qm

=
L

N

∑
m≥1

∑
n|m

N∑
a=1

χ(a)nk−1e2πiam/(nN)qm ,

(A.29)

where in the second line we have used [115, Lemma 3.1.3]. To take care of the

constant part, we just note that

−χ(−1)W (χ⋆)
∑
d|N

µ(d)

d
χ⋆(d)

Bk

2k
δ1,N = −Bk

2k
δ1,N . (A.30)

The result follows after comparing with (A.20).

Lemma 2. Given χ ∈ D[N ] and k ≥ 1, the (quasi) modular forms Ẽk,χ(τ) and

Êk,χ(τ) are related via the Fricke involution

Ẽk,χ

(
− 1

Nτ

)
= (

√
Nτ)kÊk,χ(τ) + δN,1δk,2

iN

4π
τ . (A.31)
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Proof. Let L = mχ be again the conductor of χ. We first assume that k ≥ 3.

From [115, Lemma 7.1.2] one then obtains

Ẽk,χ⋆

(
− 1

Lτ

)
= τ k

Lk

W (χ⋆)
Ek,χ⋆(τ) , (A.32)

where L is the conductor of the primitive character χ⋆. We also have [115, Lemma

3.1.1]

W (χ⋆)W (χ⋆) = χ⋆(−1)L . (A.33)

Together with (A.22), this gives

Ẽk,χ

(
− 1

Nτ

)
= τ k

Nk

L
W (χ⋆)

∑
d|N

µ(d)d−1χ⋆(−d)Ek,χ⋆

(
Nτ

Ld

)
. (A.34)

Together with Lemma 1 the claim follows. The result can easily extended to k = 1, 2,

using [115, Theorem 7.2.13] and [115, Theorem 7.2.12].

A.3 Polylogarithms and Eisenstein series with character

The (quasi) modular Eisenstein series Ek(τ) for even k ≥ 2 can be expressed as

E2k−2(τ) = 1− 2(2k − 2)

B2k−2

∑
m≥1

Li3−2k(q
m) . (A.35)

On the other hand, one also has

∂3
τ

∑
m≥1

Li3(q
m) =

1

240
(E4(τ)− 1) , ∂τ

∑
m≥1

Li1(q
m) =

1

24
(1− E2(τ)) . (A.36)

In this section we want to generalize these relations, using the Eisenstein series from

Definition 1.

First, recall that the indicator function fN,a(n) is given by

fN,a(n) :=

{
1 n ≡ a mod N

0 n ̸≡ a mod N
, (A.37)

and we also define gN,a(n) := fN,a(n) + fN,−a(n).

Our goal is to understand the modular properties of the following objects:

Definition 2. Given a,N ∈ N, we define

ϕ
(g)
N,a(τ) :=

∑
m≥0

N∑
k=1

gN,a(k)Li3−2g

(
qmN+k

)
, (A.38)

ϕ̂
(g)
N,a(τ) :=N1−g

∑
m≥1

N∑
k=1

gN,a(k)Li3−2g

(
e

2πik
N qm

)
. (A.39)

– 64 –



We can relate these to the Eisenstein series defined in Appendix A.2 using the

following lemma.

Lemma 3. Given N, a ∈ N with gcd(N, a) = 1, one has

gN,a(n) =
2

φ(N)

∑
χ∈D[N ]+

χ(n)

χ(a)
. (A.40)

Proof. The indicator function can be written as

fN,a(n) =
1

φ(N)

∑
χ∈D[N ]

χ(n)/χ(a) , (A.41)

which allows us to express gN,a(n) as

gN,a(n) =fN,a(n) + fN,−a(n) =
1

φ(N)

∑
χ∈D[N ]

(1 + χ(−1)))χ(n)/χ(a) . (A.42)

The result then directly follows from the fact that χ(−1) ∈ {−1, 1}.

Using Lemma 3, it is easy to show the following:

Lemma 4. Given N, a ∈ N with r := gcd(N, a) and g ≥ 2, one has

ϕ
(g)
N,a(τ) =

B2g−2

2g − 2
δ1,N/r +

2

φ(N/r)

∑
χ∈D[N/r]+

χ(r)

χ(a)
E2g−2,χ(rτ) , (A.43)

ϕ̂
(g)
N,a(τ) =

(N/r)1−gB2g−2

2g − 2
δ1,N/r +

2N

rφ(N/r)

∑
χ∈D[N/r]+

χ(r)

χ(a)
Ê2g−2,χ(rτ) . (A.44)

Proof. Let us first assume that gcd(a,N) = 1. We can rewrite the Eisenstein series

E2g−2,χ(τ) as

E2g−2,χ(τ) =− B2g−2

2(2g − 2)
δ1,N +

∑
m≥1

∑
n|m

χ(m/n)n2g−3qm

=− B2g−2

2(2g − 2)
δ1,N +

∑
m≥0

N∑
k=1

∑
n≥1

χ(k)n2g−3qn(mN+k)

=− B2g−2

2(2g − 2)
δ1,N +

∑
m≥0

N∑
k=1

χ(k)Li3−2g

(
qmN+k

)
.

(A.45)
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Similarly, we can rewrite

Ê2g−2,χ(τ) =N g−2

− B2g−2

2(2g − 2)
δ1,N +

∑
m≥1

∑
n|m

N∑
a=1

χ(−a)n2g−3e
2πiam
nN qm


=N g−2

(
− B2g−2

2(2g − 2)
δ1,N +

∑
m,n≥1

N∑
a=1

χ(−a)n2g−3e
2πiam

N qmn

)

=N g−2

(
− B2g−2

2(2g − 2)
δ1,N +

∑
m≥1

N∑
a=1

χ(−a)Li3−2g

(
e

2πia
N qm

))
.

(A.46)

In both cases the result then follows from Lemma 3. If r = gcd(a,N) ̸= 1 we have

ϕ
(g)
N,a = ϕ

(g)
N/r,a/r(rτ) and ϕ̂

(g)
N,a = ϕ̂

(g)
N/r,a/r(rτ).

Lemma 5. Given N, a ∈ N with r := gcd(a,N) and g ∈ {0, 1}, one has

(2πi)2g−3∂3−2g
τ ϕ

(g)
N,a(τ)

=
β4−2g,N/r,a/r

4− 2g
+

2

φ(N/r)

∑
χ∈D[N/r]+

χ(r)

χ(a)
Ẽ4−2g,χ(rτ) ,

(2πi)2g−3∂3−2g
τ ϕ̂

(g)
N,a(τ)

=

(
N

r

)1−g
B4−2g

4− 2g
+

2

φ(N/r)

∑
χ∈D[N/r]+

χ(r)

χ(a)
Ê4−2g,χ(rτ) .

(A.47)

Proof. We first rewrite

(2πi)2g−3∂3−2g
τ ϕ

(g)
N,a(τ) =

∑
m≥0

N∑
k=1

gN,a(k)(mN + k)3−2gLi0(q
mN+k)

=
∑
m≥1

∑
n|m

gN,a(n)n
3−2gqm .

(A.48)

Using Definition 1, this can be expressed as

(2πi)2g−3∂3−2g
τ ϕ

(g)
N,a(τ)

=
2

φ(N)

∑
χ∈D[N ]+

χ(a−1)

(
Ẽ4−2g,χ(τ) +

B4−2g,χ

2(4− 2g)

)

=
2

φ(N)

∑
χ∈D[N ]+

χ(a−1)

[
Ẽ4−2g,χ(τ) +

1

2(4− 2g)

N∑
b=1

χ(b)β4−2g,N,b

]

=
β4−2g,N,a

4− 2g
+

2

φ(N)

∑
χ∈D[N ]+

χ(a−1)Ẽ4−2g,χ(τ) .

(A.49)
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Similarly, we first rewrite

(2πi)2g−3∂3−2g
τ ϕ̂

(g)
N,a(τ) =N1−g

∑
m≥1

N∑
b=1

gN,a(b)m
3−2gLi0

(
e

2πib
N qm

)
=N1−g

∑
m≥1

∑
n≥1

N∑
b=1

gN,a(b)m
3−2ge

2πinb
N qnm .

(A.50)

Using again Definition 1, this can be expressed as

(2πi)2g−3∂3−2g
τ ϕ̂

(g)
N,a(τ)

=
2

φ(N)

∑
χ∈D[N ]+

χ(a−1)

(
Ê4−2g,χ(τ) +N1−g B4−2g

2(4− 2g)
φ(N)δmχ,1

)
=N1−g B4−2g

4− 2g
+

2

φ(N)

∑
χ∈D[N ]+

χ(a−1)Ê4−2g,χ(τ) .

(A.51)

A.4 Eichler integrals

In this appendix we generalize the relations (3.11) and (3.14) and derive the modular

properties of the functions ϕ
(g)
N,a(τ) for g = 0, 1.

Let us first make the following definitions.

Definition 3. Given g ∈ {0, 1} and N, a ∈ N we define

Φ
(g)
N,a(τ) :=c

(g)
N,aτ

3−2g + ϕ
(g)
N,a (τ) ,

Φ̂
(g)
N,a(τ) :=ĉ

(g)
N τ 3−2g + ϕ̂

(g)
N,a (τ) ,

(A.52)

with

c
(g)
N,a := − (2πi)3−2gβ4−2g,N,a

(4− 2g)[(3− 2g)!]
, ĉ

(g)
N := −(2πi)3−2gN1−gB4−2g

(4− 2g)[(3− 2g)!]
, (A.53)

as well as

φ
(g)
N,a(τ) := (2πi)2g−3∂3−2g

τ Φ
(g)
N,a(τ) , φ̂

(g)
N,a(τ) := (2πi)2g−3∂3−2g

τ Φ̂
(g)
N,a(τ) . (A.54)

Note that Φ
(0)
1,1(τ) = Φ̂

(0)
1,1(τ) = 2Ẽ−2(τ)− ζ(3) and Φ

(1)
1,1(τ) = Φ̂

(1)
1,1(τ) = −2Ẽ0(τ).

From Lemma 5, we know that both φ
(g)
N,a(τ) and φ̂

(g)
N,a(τ) are (quasi) modular

forms of weight 4− 2g for Γ1(N). Moreover, Lemma 2 implies that they are related

via the Fricke involution

φ
(g)
N,a(τ) = (

√
Nτ)2g−4φ̂

(g)
N,a

(
− 1

Nτ

)
+ δg,1δN,1

1

2πiτ
. (A.55)
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Our goal in this section is to study the transformation behavior under this Fricke

involution of Φ
(g)
N,a(τ) and Φ̂

(g)
N,a(τ) and to use this to deduce the modular properties

of Φ
(g)
N,a(τ). More precisely, we want to show the following:

Theorem 1. Given N, a ∈ N, and r := gcd(N, a), one has

Φ
(0)
N,a (τ + 1) =Φ

(0)
N,a (τ) + c

(0)
N,a(3τ

2 + 3τ + 1) ,

(Nτ + 1)2Φ
(0)
N,a

(
τ

Nτ + 1

)
=Φ

(0)
N,a (τ)−

iπ3

90

[
2(15a2 − 15aN + 2N2)τ 2 − 3Nτ − 3

]
− ζ(3)τ(τ + 2)δ1,N/r ,

as well as

Φ
(1)
N,a (τ + 1) =Φ

(1)
N,a (τ) + c

(1)
N,a ,

Φ
(1)
N,a

(
τ

Nτ + 1

)
=Φ

(1)
N,a (τ)− δ1,N/r log (Nτ + 1)− ĉ

(1)
N,a .

Proof. The behavior under τ 7→ τ + 1 is trivial. Deriving the transformation under

τ → τ/(Nτ + 1) will occupy us for the rest of this section.

If gcd(N, a) = r, with r > 1, then Φ
(0)
N,a (τ) = Φ

(0)
N ′,a′ (rτ), with N ′ = N/r and

a′ = a/r. We can therefore assume that gcd(a,N) = 1 and the general result follows

as well.

Since Φ
(g)
N,a(τ) and Φ̂

(g)
N,a(τ) are Eichler integrals of the modular forms φ

(g)
N,a(τ) and

φ̂
(g)
N,a(τ), we know that

Φ
(g)
N,a(τ)− (

√
Nτ)2−2gΦ̂

(g)
N,a

(
− 1

Nτ

)
= P

(g)
N,a(τ) , (A.56)

in terms of the functions

P
(0)
N,a(τ) =

2∑
k=0

α
(0)
N,a,kτ

k , P
(1)
N,a(τ) = α̃

(1)
N,a log(τ) + α

(1)
N,a,0 , (A.57)

with complex coefficients α̃
(1)
N,a, α

(1)
N,a,0 and α

(0)
N,a,k for k = 0, 1, 2. This also implies

Φ̂
(g)
N,a (τ)− (

√
Nτ)2−2gΦ

(g)
N,a

(
− 1

Nτ

)
=− (

√
Nτ)2−2gP

(g)
N,a

(
− 1

Nτ

)
. (A.58)

Following the strategy laid out in [89], we define

g
(g)
N,a(y) =(−1)gic

(g)
N,ay

3−2g + Φ
(g)
N,a(iy) =

2

φ(N)

∑
χ∈D[N ]+

χ(a−1)g
(g)
N,χ(y) ,

ĝ
(g)
N,a(y) =(−1)giĉ

(g)
N y3−2g + Φ̂

(g)
N,a(iy) =

2

φ(N)

∑
χ∈D[N ]+

χ(a−1)ĝ
(g)
N,χ(y) ,

(A.59)
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in terms of

g
(g)
N,χ(y) =

∑
m≥0

N∑
k=1

χ(k)Li3−2g

(
e−2π(mN+k)y

)
,

ĝ
(g)
N,χ(y) =N1−g

∑
m≥0

N∑
k=1

χ(k)Li3−2g

(
e2πik/Ne−2πmy

)
.

(A.60)

From (A.56) we then obtain

g
(g)
N,a(y) = (−1)1−g(

√
Ny)2−2gĝ

(g)
N,a

(
1

Ny

)
+R

(g)
N,a(y) , (A.61)

in terms of

R
(0)
N,a(y) =

3∑
k=−1

A
(0)
N,a,ky

k , R
(1)
N,a(y) = Ã

(1)
N,a log(y) +

1∑
k=−1

A
(1)
N,a,ky

k , (A.62)

with

A
(0)
N,a,−1 =iĉ

(0)
N /N2 , A

(0)
N,a,0 = α

(0)
N,a,0 , A

(0)
N,a,1 = iα

(0)
N,a,1 ,

A
(0)
N,a,2 =− α

(0)
N,a,2 , A

(0)
N,a,3 = ic

(0)
N,a ,

(A.63)

as well as

Ã
(1)
N,a =α̃

(1)
N,a , A

(1)
N,a,−1 = iĉ

(1)
N /N ,

A
(1)
N,a,0 =α

(1)
N,a,0 +

1

2
πiα̃

(1)
N,a , A

(1)
N,a,1 = −ic

(1)
N,a .

(A.64)

In order to determine the coefficients A
(g)
N,a,k, we calculate the poles of the Mellin

transform

g̃
(g)
N,χ(s) =

∞∫
0

ys−1g
(g)
N,χ(y)dy . (A.65)

More precisely, if we denote the residue of g̃
(g)
N,χ(s) at s = −k by A

(g)
N,χ,k, we have

A
(g)
N,a,k =

2

φ(N)

∑
χ∈D[N ]+

χ(a−1)A
(g)
N,χ,k , (A.66)

After rewriting

g
(g)
N,χ(y) =

∑
m≥0

N∑
k=1

∑
n≥1

χ(k)
e−2πn(mN+k)y

n3−2g
=
∑
m≥1

∑
n|m

χ(m/n)

n3−2g
e−2πmy , (A.67)
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we obtain

(2π)sg̃
(g)
N,χ(s) =(2π)s

∑
m≥1

∑
n|m

χ(m/n)

n3−2g

∞∫
0

ys−1e−2πmydy

=Γ(s)
∑
m≥1

∑
n|m

χ(m/n)

n3−2g+s(m/n)s
= Γ(s)

∑
m≥1

∑
n≥1

χ(n)

n3−2g+s(n)s

=Γ(s)ζ(3− 2g + s)L(s, χ) .

(A.68)

Using the relation (A.12), we can further rewrite this as

g̃
(g)
N,χ(s) = (2π)−sΓ(s)ζ(3− 2g + s)L(s, χ⋆)

∏
p|N

(
1− χ⋆(p)

ps

)
. (A.69)

If the conductor of χ is greater than one, the Dirichlet L-series L(s, χ⋆) is an

entire function of s. Otherwise, we have χ = χN,0 and

L(s, χN,0) = ζ(s)
∏
p|N

(
1− p−s

)
. (A.70)

Recall that the only pole of ζ(s) is a simple pole at s = 1 with residue 1 and the

zeros on the real axis lie at the even negative integers. The gamma function Γ(s)

has simple poles at values s = −n, n ∈ N, with residue

Res(Γ,−n) =
(−1)n

n!
. (A.71)

Case g = 0. We first consider g = 0. Then g̃
(g)
N,χ(s) has potential (simple) poles at

s ∈ {−3, . . . , 1}. One immediately gets

A
(0)
N,χ,3 =

4

6
π3L(−3, χ) , A

(0)
N,χ,1 = −1

3
π3L(−1, χ) , A

(0)
N,χ,0 = ζ(3)L(0, χ) , (A.72)

and, using (A.70),

A
(0)
N,χ,−1 =

 0 if χ ̸= χN,0
π3

180

∏
p|N

(1− p−1) if χ = χN,0
. (A.73)

To obtain A
(0)
N,χ,2, we first use (A.14) and note that for primitive χ ∈ D[N ]+ one has

L(ϵ− 2, χ) = −N
5
2W (χ)

4π2
L(3, χ)ϵ+O(ϵ2) , (A.74)

such that

A
(0)
N,χ,2 = −1

2
m

5
2
χW (χ)L(3, χ) . (A.75)
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Using the relation (A.66), as well as (A.13), we then obtain

A
(0)
N,a,3 =− π3

3
β4,N,a , A

(0)
N,a,1 =

π3

3
β2,N,a ,

A
(0)
N,a,0 =− ζ(3)δ1,N , A

(0)
N,a,−1 =

π3

90N
,

(A.76)

and this fixes

α
(0)
N,a,0 = −1

2
ζ(3)δ1,N , α

(0)
N,a,1 = −i

π3

3
β2,N,a . (A.77)

We can now use these results to calculate

(Nτ + 1)2Φ
(0)
N,a

(
τ

Nτ + 1

)
= (Nτ + 1)2Φ

(0)
N,a

(
− 1

N
(
− 1

Nτ
− 1
))

=(
√
Nτ)2Φ̂

(0)
N,a

(
− 1

Nτ
− 1

)
+

2∑
k=0

α
(0)
N,a,kτ

k(Nτ + 1)2−k

=Φ
(0)
N,a (τ)−

ĉ
(0)
N

N

[
3 + 3Nτ +N2τ 2

]
+

2∑
k=0

α
(0)
N,a,kτ

k
[
(Nτ + 1)2−k − 1

]
=Φ

(0)
N,a (τ)−

iπ3

90

[
2(15a2 − 15aN + 2N2)τ 2 − 3Nτ − 3

]
− ζ(3)τ(τ + 2)δ1,N .

(A.78)

Case g = 1. The case g = 1 works analogously and g̃
(1)
N,χ(s) has simple poles

s ∈ {−1, 1} and a potential double pole at s = 0. We immediately obtain the

residues

A
(1)
N,χ,1 = πL(−1, χ) , A

(1)
N,χ,−1 =

 0 if mχ ̸= 1
π
12

∏
p|N

(1− p−1) if mχ = 1 , (A.79)

such that

A
(1)
N,a,1 = −πβ2,N,a , A

(1)
N,a,−1 =

π

6N
. (A.80)

Around the double pole, we expand

g̃
(1)
N,χ(s) =

1

s2
Ã

(1)
N,χ +

1

s
A

(1)
N,χ,0 +O(1) , (A.81)

and, after comparing with (A.69), we find that

α̃
(1)
N,χ = Ã

(1)
N,χ =

{
0 if N > 1

−1
2

if N = 1
, (A.82)
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where we have used (A.13). Since for s > 0 one has

∫ 1

0

log(y)ys−1dy = − 1

s2
, (A.83)

we can identify

Ã
(1)
N,a = − 2

φ(N)

∑
χ∈D[N ]+

χ(a−1)Ã
(1)
N,χ . (A.84)

It follows that

Ã
(1)
N,a =

{
0 if N > 1

1 if N = a = 1
. (A.85)

We skip the calculation of A
(1)
N,χ,0 as it won’t be necessary for our purpose.

We can now use these results to calculate

Φ
(1)
N,a

(
τ

Nτ + 1

)
=Φ

(1)
N,a

(
− 1

N
(
− 1

Nτ
− 1
))

=Φ̂
(1)
N,a

(
− 1

Nτ
− 1

)
+ α̃

(1)
N,a log

(
τ

Nτ + 1

)
− α

(1)
N,a,0

=Φ̂
(1)
N,a

(
− 1

Nτ

)
− ĉ

(1)
N + α̃

(1)
N,a log

(
τ

Nτ + 1

)
− α

(1)
N,a,0

=Φ
(1)
N,a (τ)− α̃

(1)
N,a log (τ) + α̃

(1)
N,a log

(
τ

Nτ + 1

)
− ĉ

(1)
N

=Φ
(1)
N,a (τ)− δN,1 log (Nτ + 1)− ĉ

(1)
N .

(A.86)

A.4.1 Extra generators

Here, we record conjectural identities for the transformation of the genus 0 and genus

1 Eichler integrals under the additional generators
(
11 −4

25 −9

)
for N = 5 and

(
7 −3

12 −5

)
for

N = 6, respectively. While these identities have been checked numerically, we have
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not attempted to prove them:

(25τ − 9)2Φ
(0)
5,0

(
11τ − 4

25τ − 9

)
− Φ

(0)
5,0(τ) =

(2πi)3

144

(
−123 + 635τ − 800τ 2

)
(25τ − 9)2Φ

(0)
5,1

(
11τ − 4

25τ − 9

)
− Φ

(0)
5,1(τ) =

(2πi)3

720

(
−399 + 2263τ − 3232τ 2

)
(25τ − 9)2Φ

(0)
5,2

(
11τ − 4

25τ − 9

)
− Φ

(0)
5,2(τ) =

(2πi)3

720

(
681− 3737τ + 5108τ 2

)
(12τ − 5)2Φ

(0)
6,0

(
7τ − 3

12τ − 5

)
− Φ

(0)
6,0(τ) =− 3(2πi)3

400

(
984τ 2 − 888τ + 197

)
(12τ − 5)2Φ

(0)
6,1

(
7τ − 3

12τ − 5

)
− Φ

(0)
6,1(τ) =

(2πi)3

1600

(
−5781τ 2 + 5207τ − 1153

)
(12τ − 5)2Φ

(0)
6,2

(
7τ − 3

12τ − 5

)
− Φ

(0)
6,2(τ) =

(2πi)3

450

(
333− 1502τ + 1666τ 2

)
(12τ − 5)2Φ

(0)
6,3

(
7τ − 3

12τ − 5

)
− Φ

(0)
6,3(τ) =

27(2πi)3

6400

(
341− 1539τ + 1707τ 2

)

(A.87)

Φ
(1)
5,0

(
11τ − 4

25τ − 9

)
− Φ

(1)
5,0(τ) =

5

12
2πi− log(25τ − 9)

Φ
(1)
5,1

(
11τ − 4

25τ − 9

)
− Φ

(1)
5,1(τ) =− 11

60
2πi

Φ
(1)
5,2

(
11τ − 4

25τ − 9

)
− Φ

(1)
5,2(τ) =

1

60
2πi

Φ
(1)
6,0

(
7τ − 3

12τ − 5

)
− Φ

(1)
6,0(τ) =

1

6
2πi− log(12τ − 5)

Φ
(1)
6,1

(
7τ − 3

12τ − 5

)
− Φ

(1)
6,1(τ) =− 1

12
2πi

Φ
(1)
6,2

(
7τ − 3

12τ − 5

)
− Φ

(1)
6,2(τ) =

1

6
2πi

Φ
(1)
6,3

(
7τ − 3

12τ − 5

)
− Φ

(1)
6,3(τ) =− 1

12
2πi

(A.88)

B. Relative conifold monodromy

In this section, we derive the action (4.24) of the relative conifold monodromy on

the Chern characters of a basis of branes. We use the same notation as in the main

text, but distinguish the quantities

aα = c1(TB) ∩ Ďα , cα =
1

12
c2(TX) ∩Dα , α = 1, . . . , b2(B) . (B.1)

since we cannot prove that they are equal in general.
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Let us denote the two projections from X×BX to X by πi, i = 1, 2. As discussed

in [33, Section 3.3], the relative conifold monodromy U acts on the Chern character

of a brane E• ∈ Db(X) as

U : ch(E•) 7→ ch(E•)− π2,∗
[
π∗
1

(
ch(E•)Td(TX/B)

)]
, (B.2)

where TX/B is the virtual relative tangent bundle of the fibration. The Chern class

of the virtual relative tangent bundle TX/B is given by

c(TX/B) =
1 + c1(TX) + c2(TX) + c3(TX)

1 + c1(TB) + c2(TB)

=1− c1(TB) + c1(TB)
2 − c2(TB) + c2(TX)− c1(TB)c2(TX) + c3(TX) .

(B.3)

and the corresponding Todd genus takes the form

Td(TX/B) =1− c1(TB)

2
+

2c1(TB)
2 − c2(TB) + c2(TX)

12
− c1(TB)c2(TX)

24
. (B.4)

A Q-basis of the cohomology of X is given by the classes

{ 1, De, Dα, F, DeDα, V } , (B.5)

where F is the 4-form that is Poincaré dual to the generic fiber and V is the volume

6-form that is dual to a point on X. They satisfy the relations

D2
e =

1

N

(
κ− 1

N
ℓαℓβC

αβ

)
F +

1

N
ℓαC

αβDβDe , DαDβ = CαβF ,

D3
e =κV , D2

eDα = ℓαV , DeDαDβ = NCαβV , DαDβDγ = 0 ,

FDe =NV , FDα = 0 .

(B.6)

We can interpret π2,∗π
∗
1 as an endomorphism of H•(X,Q), where it acts as

1 7→ 0 , Dα 7→ 0 , F 7→ 0 , De 7→ N , DeDα 7→ NDα , V 7→ F . (B.7)

The base B is assumed to be a generalized del Pezzo surface and therefore ratio-

nal. This implies that the only non-vanishing Hodge numbers are h1,1(B) = b2(B)

and h0,0(B) = h2,2(B) = 1. Then c2(TB) = (2 + b2(B))F and Noether’s formula,

together with the fact that the holomorphic Euler characteristic of a rational surface

is χ(OB) = 1, implies that c1(TB)
2 = aαaβC

αβ = (10− b2(B))F .

As a result, we can rewrite the Todd genus as

Td(TX/B) =1− 1

2
aαDα +

(
1

4
aαaβC

αβ − 1

)
F +

1

12
c2(TX)− 1

2
cαa

αV . (B.8)

By demanding that c2(TX) ∩ (De, Dα) = (c2,e, 12cα), we also obtain that

c2(TX) =
12

N
cαC

αβDβDe +
1

N

(
c2,e −

12

N
cαC

αβℓβ

)
F . (B.9)
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D6-brane: The Chern character of the structure sheaf is ch(OX) = 1. We then

obtain

π2,∗
[
π∗
1

(
ch(OX)Td(TX/B)

)]
= cαC

αβDβ −
1

2
cαa

αF . (B.10)

The Chern character of a brane OD that is supported on a Cartier divisor D is given

by

ch(OD) = 1− exp(−D) = D − 1

2
D2 +

1

6
D3 . (B.11)

We can therefore express the right-hand side of (B.10) as

cαC
αβ ch(ODβ

) +
1

2
cαC

αβDβ (Dβ − c1(TB))

=cαC
αβ ch(ODβ

) +
1

2
cαC

αβ (cββ − aβ)F .
(B.12)

D4-brane on De: The Chern character of a brane ODe that is supported on the

N -section De is given by

ch(ODe) =1− exp(−De)

=S − 1

2

[
1

N
ℓαD

αDe +
1

N

(
κ− 1

N
ℓαℓβC

αβ

)
F

]
+

1

6
κV ,

(B.13)

such that

ch(ODe)Td(TX/B)

=De −
1

2

[
(aα + ℓα)C

αβDβDe +
1

N

(
κ− 1

N
ℓαℓβC

αβ

)
F

]
+

[
N

4
(6− b2(B)) +

1

12
c2,e +

1

4
ℓαa

α +
1

6
κ

]
V .

(B.14)

Then

π2,∗
[
π∗
1

(
ch(ODe)Td(TX/B)

)]
=N − N

2

(
aα +

1

N
ℓα

)
CαβDβ +

[
N

4
(6− b2(B)) +

1

12
c2,e +

1

4
ℓαa

α +
1

6
κ

]
F

=Nch(OX)−
N

2

(
aα +

1

N
ℓα

)
Cαβch(ODβ

)

+

[
−N

4

(
aα +

1

N
ℓα

)
CαβCββ +

N

4
(6− b2(B)) +

1

12
c2,e +

1

4
ℓαa

α +
1

6
κ

]
F .

D4-brane on Dα: The Chern character of a brane ODα that is supported on the

vertical divisor Dα is given by

ch(ODα) =1− exp(−Dα) = Dα − 1

2
cααF . (B.15)
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The relevant terms of the product with the Todd genus are

ch(ODα)Td(TX/B) =
1

N
cγC

γβDβDαS + . . . , (B.16)

such that

π2,∗
[
π∗
1

(
ch(ODα)Td(TX/B)

)]
= cγC

γβCβαF = cαF . (B.17)

D2-brane on Cα: The relevant terms of the product with the Todd genus are

ch(Cα)Td(TX/B) =Cα − 1

2
aβDβC

α + . . . = Cα − 1

2
aαV + . . . , (B.18)

such that

π2,∗
[
π∗
1

(
ch(Cα)Td(TX/B)

)]
=Dα − 1

2
aαF = Cαβch(ODβ

) +
1

2
Cαβ(Cββ − aβ)F .

(B.19)

D2-brane on F : We have

π2,∗
[
π∗
1

(
ch(OF )Td(TX/B)

)]
= 0 . (B.20)

D0-brane: We have

π2,∗
[
π∗
1

(
ch(Opt.)Td(TX/B)

)]
= F . (B.21)

Result We choose the following basis of the charge lattice

{ ch(OX), ch(ODe), ch(ODα), ch(OE), ch(Cα), ch(Opt.) } , (B.22)

where ch(OE) =
1
N
ch(OF ). The end result then takes the form

U =



1 0 −cβ N
2
cγ(aγ − Cγγ) 0β 0

−N 1 N
2

(
aγ +

1
N
ℓγ
)
Cγβ ρ 0β 0

0α 0α δβα −Ncα 0αβ 0α
0 0 0β 1 0β 0

0α 0α −Cαβ N
2
Cαγ (aγ − Cγγ) δαβ 0α

0 0 0β −N 0β 1


, (B.23)

with

ρ =N2 +
N

4
(ℓα +Naα)C

αβ(Cββ − aβ)−
N

12
(2κ+ c2,e) . (B.24)

If the curves in the classes Cα are rational one can use that cαα − aα = −2 to obtain

the expression

ρ = −N

1
2

b2(B)∑
β=1

(Naβ + ℓαC
αβ)−N +

1

6
κ

+
1

12
c2,e . (B.25)
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C. Genus one fibrations

In this section we will discuss the construction of genus one fibered CY threefolds

π : X → B that exhibit an N -section for N = 1, . . . 5. We assume that the base B

is a generalized del Pezzo surface and that X is smooth with b2(X) = b2(B) + 1.

For N = 1, i.e. when the fibration admits a section, the topology of the fibration

is uniquely determined by the choice of basis B. It can be realized as a fibration of

Weierstraß curves, that is a hypersurface

{ y2 = x3 + fxz4 + gz6 } ⊂ P
(
L2 ⊕ L3 ⊕OB

)
, (C.1)

where the CY condition requires L to be the anti-canonical bundle on B and the

Weierstraß coefficients f, g are respectively sections of L4 and L6. All of the fibers

of X are irreducible and the topological invariants are listed in Table 3.

The situation becomes more interesting for fibrations that only admit an N -

section with N ≥ 2. The fibration will then exhibit isolated I2-fibers, where the

torus degenerates into two rational curves that intersect in two points. Since the

N -section by definition intersects the generic smooth fiber N times, it intersects

the two rational curves of a given I2-fiber respectively q and N − q times for some

1 ≤ q ≤ ⌊N
2
⌋. 30 We will denote the number of such I2-fibers by n±q ∈ N. It

is related to the multiplicity Nk of fibral curves intersecting the N -section k times,

that has been introduced in Section 2.4, via n±q =
1
2
(Nq+NN−q). The topology of the

fibration then depends not only on the base B, but also on the numbers of I2-fibers

n±q for 1 ≤ q ≤ ⌊N
2
⌋ and, as was observed in [41] for N = 3, on the height-pairing of

the N -section.

As we will describe below, for N ≥ 2 the fibration can always be realized as a

double cover (for N = 2) or a subvariety of a PN−1-bundle on B. For 2 ≤ N ≤ 4,

this follows from a fiberwise application of the constructions summarized in [116],

for N = 5 from the construction discussed in [117] and for N ≥ 6 from the results

from [118]. For 2 ≤ N ≤ 5 we will derive closed expressions for the topological

invariants of the fibration in terms of the invariants of a set of vector bundles that

appear in this construction. The resulting expressions are also listed in Table 3.

30Strictly speaking, q could be negative if the N -section degenerates and wraps a 1-dimensional

component of the I2-fiber. However, we don’t encounter this situation for 2 ≤ N ≤ 5.
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N Description Bundles Invariants

1
Hypersurface in

P (L2 ⊕ L3 ⊕OB)
L = −KB

χX −60c1(B)2

κ c1(B)2

ℓα Ďα ∩ c1(B)

D −c1(B)

c2 12 + 10c1(B)2

2
Double cover of

P1-bundle P(V )
rk(V ) = 2

χX −4 (7c1(B)2 − 2∆(V ))

κ 2 (c1(V )2 − c2(V ))

ℓα −2Ďα ∩ c1(V )

D 2c1(V )

c2 24− 6c1(B)c1(V )− 2∆(V )

n±1 4 (4c1(B)2 +∆(V ))

3
Hypersurface in

P2-bundle P(V )
rk(V ) = 3

χX 3∆(V )− 18c1(B)2

κ 2c1(V )2 − c1(B)c1(V )− 3c2(V )

ℓα Ďα ∩ (c1(B)− 2c1(V ))

D 2c1(V )− c1(B)

c2 36− 4c1(B)c1(V )−∆(V )

n±1
1
2
(42c1(B)2 + 3∆(V ))

4

Complete intersection

of two relative

quadrics

in P3-bundle P(V )

(vanishing locus of

section of F )

rk(V ) = 4

rk(E) = 2

χX −13c1(B)2 +∆(V ) + 3∆(E)

κ
2c1(V ) (c1(V )− c1(B))

−4c2(V ) + c2(E)

ℓα 2Ďα ∩ (c1(B)− c1(V ))

D 2 (c1(V )− c1(B))

c2
48− 1

2
[c1(B) (c1(B) + 6c1(V ))

+∆(V ) + ∆(E)]

n±1 4 (4c1(B)2 +∆(E))

n±2
1
2
(15c1(B)2 +∆(V )− 5∆(E))

5

Pfaffian variety in

P4-bundle P(V )

(rank 2 locus of

skew-symmetric

map (C.35))

rk(V ) = 5

rk(E) = 5

χX −10c1(B)2 +∆(E)

κ
1
5
(3c1(B)2 − 9c1(B)c1(V )

+13c1(V )2 − 25c2(V ) + 1
2
∆(E)

)
ℓα Ďα ∩ (3c1(B)− 2c1(V ))

D 2c1(V )− 3c1(B)

c2
60− 1

5
[6c1(B) (c1(B) + 2c1(V ))

+∆(V ) + ∆(E)]

n±1 13c1(B)2 +∆(E)− 1
2
∆(V )

n±2 12c1(B)2 − 1
2
∆(E) + 1

2
∆(V )

Table 3: Topological invariants of generic genus one fibered CY threefolds with an N -

section for N ≤ 5.
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C.1 Projective bundles

To construct generic genus one fibrations it will be useful to first recall some generic

properties of projective bundles. Given a vector bundle πV : V → B of rank r on a

base B, the projectivization is a Pr−1-bundle πP(V ) : P(V ) → B on the same base. 31

If the Brauer group of B is trivial, which is the case for generalized del Pezzo surfaces,

every projective bundle arises as the projectivization of a vector bundle.

The space P(V ) is equipped with a relative tautological line bundle OP(V )(−1)

and the inverse is the relative hyperplane bundle OP(V )(1). The so-called tautological

exact sequence takes the form

0 → OP(V )(−1) → π∗
P(V )(V ) → Q → 0 , (C.2)

in terms of the relative quotient bundle Q on P(V ). The relative tangent bundle of

P(V ) over B is given by

TP(V )/B = OP(V )(1)⊗Q , (C.3)

and fits into the short exact sequence

0 → TP(V )/B → TP(V ) → π∗
P(V )TB → 0 . (C.4)

The cohomology of P(V ) is generated by the class HV = c1
(
OP(V )(1)

)
together

with pullbacks of classes from B, subject to the relation

Hr
V +Hr−1

V π∗
V (c1(V )) + . . .+ π∗

V (cr(V )) = 0 . (C.5)

By combining (C.2), (C.3) and (C.4) one can show that the canonical class of P(V )

takes the form

KP(V ) = −rHV + π∗
P(V ) (KB − det (V )) . (C.6)

Given any line bundle L on B, we denote VL := V ⊗ L. One then has an

isomorphism f : P(V ) → P(VL) and the corresponding relative hyperplane bundles

are related as

OP(V )(1) = π∗
V (L)⊗ f ∗(OP(VL)(1)) . (C.7)

Therefore, the projective bundle itself is invariant under a twist of the vector bundle

but the relative hyperplane bundle depends on the concrete choice of V . The so-called

Bogomolov discriminant

∆(V ) = 2rc2(V )− (r − 1)c1(V )2 , (C.8)

31We are following the convention that P(V ) is, as a complex manifold, the fiberwise projec-

tivization of V . This differs from the convention, often used in algebraic geometry, that P(V ) is the

fiberwise projectivization of V ∨. When comparing with expressions from the literature the reader

is advised to check which conventions have been adopted.
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does not depend on the choice of twist, i.e. ∆(V ) = ∆(VL) for all line bundles L on

B. It is therefore an invariant of the projective bundle P(V ). One can always find a

line bundle L′ on B such that HVL′ , together with the vertical divisors that arise via

pullback from the base, forms a basis of the Kähler cone on P(V ).

We denote a basis of vertical divisors on P(V ) by Jα = π∗
P(V )Ďα for α =

1, . . . , b2(B).

C.2 2-sections

We start by discussing the construction of a generic genus one fibered CY threefold

π : X → B with a 2-section De.

The restriction DΣ = De|Σ of the 2-section to the generic fiber Σ is a divisor of

degree 2 on Σ. Recall that the line bundle that is associated to a divisor of degree

d on a curve of genus 1 always has d global sections. We can therefore denote the

global sections of nDΣ for n = 1, 2 by

Γ (Σ, DΣ) ={X, Y } ,
Γ (Σ, 2DΣ) ={Z, X2, XY, Y 2 } .

(C.9)

Then 4DΣ has eight sections but there are nine monomials of weighted degree four

in X, Y and Z. As a result, Σ can be realized as a hypersurface of degree four in

P2
112.

Without loss of generality, 32 we can write this as

Σ = {Z2 = Q(X, Y ) } ⊂ P2
112 , (C.10)

where Q(X, Y ) is a homogeneous polynomial of degree four in X, Y . Since [0 : 0 :

1] /∈ Σ, we have a projection

π̃dc : Σ → P1 , [X : Y : Z] → [X : Y ] , (C.11)

which identifies Σ as a double cover of P1. The double cover is ramified over the four

points

{Q(X, Y ) = 0 } ⊂ P1 . (C.12)

This construction can be applied fiberwise to π : X → B and we see that X can

be realized as a Calabi-Yau double cover of a P1-bundle over B. 33 Assuming that

32The coefficient of Z2 is not allowed to vanish because Σ is smooth and the terms linear in Z

can then be removed by a coordinate redefinition.
33For a general genus one fibration π : X ′ → B with a 2-section that has b2(X

′) > b2(B) + 1 this

construction would give a threefold that is only birationally equivalent to X ′. This is because X ′

then exhibits additional N -sections, fibral divisors or non-flat fibers and, as a consequence, some

components of reducible fibers are contracted in the double cover.
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the Brauer group of B is trivial we can then find a rank two vector bundle V such

that the P1-bundle takes the form P(V ). Using (C.5) and (C.6) we obtain

HV ∩HV ∩HV =HV ∩ π∗
V

[
c1(V )2 − c2(V )

]
=
(
c1(V )2 − c2(V )

)
,

HV ∩HV ∩ Jα =− Ďα ∩ c1(V ) , HV ∩ Jα ∩ Jβ = Ďα ∩ Ďβ .
(C.13)

Let us denote the double covering map by πdc : X → P(V ). By twisting V with a

line bundle if necessary, we can assume that the relative hyperplane class HV is part

of a Kähler cone basis on P(V ) and, in particular, HV is effective. Then π∗
dc(HV ) is

also effective and we can assume that De = π∗
dc(HV ).

With (C.13), the non-trivial intersection numbers on X are given by

κ = 2
(
c1(V )2 − c2(V )

)
, ℓα = −2Ďα ∩ c1(V ) , κeαβ = 2Ďα ∩ Ďβ . (C.14)

This implies that the height pairing of the 2-section is

D = −π∗π∗(DeDe) = 2c1(V ) . (C.15)

Using for example the method of GV-spectroscopy [82], one can deduce that the

Euler characteristic χX and the number n±1 of I2-fibers of X are given by

χX = −4
(
7c1(B)2 − 2∆(V )

)
, n±1 = 4

(
4c1(B)2 +∆(V )

)
, (C.16)

in terms of the Bogomolov discriminant

∆(V ) = 4c2(V )− c1(V )2 . (C.17)

Using (C.16) with the relations (2.36) from [40], we find that

κ̂ = −1

2
∆(V ) . ĉ2 = 24− 2∆(V ) . (C.18)

The expression for κ̂ can easily be checked against (C.14). On the other hand, from

the expression for ĉ2 we can then deduce that

c2 = 24− 6c1(B)c1(V )− 2∆(V ) . (C.19)

Note that we could also just calculate c2 directly, which for N = 2 would only

require slightly more work. The benefit of this indirect method is that it significantly

simplifies the calculation of c2 for N ≥ 4, as long as the multiplicities of I2-fibers n±q

can be deduced using GV-spectroscopy.
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C.3 3-sections

Let us now consider the case where π : X → B exhibits a 3-section De. We can

denote the global sections of the restriction DΣ = De|Σ by

Γ (Σ, DΣ) ={X, Y, Z } . (C.20)

One then notes that 3DΣ has nine global sections but there are ten monomials of

degree three in X, Y and Z. As a result, Σ can be realized as a hypersurface of

degree three in P2.

Again this construction can be applied fiberwise to π : X → B. In this way one

obtains a fibration X ′ that is birationally equivalent or, if X is sufficiently generic,

isomorphic to X. To simplify the exposition, we will again assume that X ′ is iso-

morphic to X. We then see that X can be realized as an anti-canonical hypersurface

in a P2-bundle over B.

We can then find a rank three vector bundle V such that the P2-bundle takes

the form P(V ) and the restriction of the relative hyperplane class is De = HV |X .
Using (C.5) we obtain

κ =HV ∩HV ∩HV ∩ (−KP(V )) = 2c1(V )2 − c1(B)c1(V )− 3c2(V ) ,

ℓα =HV ∩HV ∩ Jα ∩ (−KP(V )) = Dα ∩ (c1(B)− 2c1(V )) .
(C.21)

This implies that the height pairing of the 3-section is

D = −π∗π∗(DeDe) = 2c1(V )− c1(B) . (C.22)

Using for example the method of GV-spectroscopy [82], one can deduce that the

Euler characteristic χX and the number n±1 of I2-fibers of X are given by

χX = 3∆(V )− 18c1(B)2 , n±1 =
1

2

(
42c1(B)2 + 3∆(V )

)
, (C.23)

in terms of the Bogomolov discriminant

∆(V ) = 2
(
3c2(V )− c1(V )2

)
. (C.24)

Using (C.16) with the relations (2.36) from [40], we find that

κ̂ = −1

4

(
c1(B)2 + 2∆(V )

)
, ĉ2 = 36− 2c1(B)2 −∆(V ) . (C.25)

Again, the expression for κ̂ can easily be checked against (C.21) and from the ex-

pression for ĉ2 we can deduce that

c2 = 36− 4c1(B)c1(V )−∆(V ) . (C.26)
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C.4 4-sections

The restriction DΣ = De|Σ of the 4-section De to a generic fiber Σ is a divisor of

degree 4 on Σ. We can therefore denote the global sections of DΣ by

Γ (Σ, DΣ) ={W, X, Y, Z } . (C.27)

One then notes that 2DΣ has eight global sections but there are ten monomials of

degree two inW,X, Y and Z. As a result, Σ can be realized as a complete intersection

of two quadrics in P3.

Again this construction can be applied fiberwise to π : X → B in order to

identify X with a complete intersection in a P3-bundle on B. We can find a rank

four vector bundle V such that the P3-bundle takes the form P(V ). One can then

find a rank two vector bundle E on B such that X is the vanishing locus of a generic

section of

F = OP(V )(2)⊗ π∗
P(V )(E) . (C.28)

The Calabi-Yau condition takes the form

c1(E) = c1(B) + c1(V ) . (C.29)

We assume again that V is chosen such that HV is effective and the restriction

of the relative hyperplane class is De = HV |X . Using (C.5) we obtain

κ =HV ∩HV ∩HV ∩ c2(F )

=2c1(V ) (c1(V )− c1(B))− 4c2(V ) + c2(E) ,

ℓα =HV ∩HV ∩ Jα ∩ c2(F ) = 2Ďα ∩ (c1(B)− c1(V )) .

(C.30)

This implies that the height pairing of the 4-section is

D = −π∗π∗(DeDe) = 2 (c1(V )− c1(B)) . (C.31)

Using the method of GV-spectroscopy [82], one can deduce that the Euler charac-

teristic χX and the numbers n±1, n±2 of I2-fibers of X are given by

χX =− 13c1(B)2 +∆(V ) + 3∆(E) ,

n±1 =4
(
4c1(B)2 +∆(E)

)
,

n±2 =
1

2

(
15c1(B)2 +∆(V )− 5∆(E)

)
.

(C.32)

Using (C.32) with the relations (2.36) from [40], we find that

κ̂ =− 1

4

(
2c1(B)2 + 2∆(V )−∆(E)

)
,

ĉ2 =
1

2

(
96− 7c1(B)2 −∆(V )−∆(E)

)
.

(C.33)
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The expression for κ̂ can again be checked against (C.30) and from the expression

for ĉ2 we deduce that

c2 =
1

2

(
96 + 5c1(B)2 − 6c1(B)c1(E)−∆(V )−∆(E)

)
. (C.34)

C.5 5-sections

The case where the fibration π : X → B only exhibits a 5-section De is the first

that requires us to go beyond complete intersections. A detailed study of such CY

threefolds was carried out in [34].

One can show that a curve of degree 5 can always be realized as the vanishing

locus of the Pfaffian of a skew-symmetric 5 × 5 matrix with entries that are linear

homogeneous polynomials in the homogeneous coordinates on P4 [117]. The genus

one curve is then the locus of codimension 3 inside P4 where the rank of the matrix

drops to two. Since the matrix is skew-symmetric, the locus where the rank is strictly

less than two is equal to that where the rank is zero. This locus has codimension 10

in the space of skew-symmetric 5× 5 matrices and is therefore avoided by the curve,

if the entries of the matrix are sufficiently generic.

Lifting this construction to fibrations, one can always represent a generic genus

one fibration with a 5-section (up to birational equivalence) as the rank 2 locus D2(ϕ)

of a skew-symmetric map

ϕ : π∗
P(V )E → π∗

P(V ) (E
∨ ⊗ L)⊗OP(V )(1) , (C.35)

where V is a vector bundle of rank 5 on B, E is a vector bundle of rank 5 on B and

L is a line bundle on B. The Calabi-Yau condition takes the form [34]

c1(L) =
1

5
(2c1(E) + c1(V ) + c1(B)) . (C.36)

In order to calculate the cohomology class of the degeneracy locus D2(ϕ) we

use [119, Theorem 8], which implies that

[D2(ϕ)] = det

(
c2 c3
c0 c1

)
, (C.37)

where, using [119, Theorem 10], we formally define

ci = ci
(
OP(V )(1/2)⊗ π∗

P(V )

(
E∨ ⊗ L1/2

))
. (C.38)

One then obtains

[D2(ϕ)] =HV

(
5H2

V − 3HV (2c1(E) + 5c1(L)) + 2c1(E)2

+c2(E)− 12c1(E)c1(L) + 15c1(L)
2
)
.

(C.39)
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We again assume that V is chosen such that HV is effective and therefore the

restriction De = HV |X corresponds to a 5-section on X. We denote the restriction of

the relative hyperplane class by De = HV |X . One can always choose V , by twisting

with a line bundle if necessary, such that De is part of a Kähler cone basis of X. It

is then in particular effective and corresponds to a 5-section of the fibration.

Using (C.39) and (C.36) together with (C.5), we obtain

κ =HV ∩HV ∩HV ∩ [D2(ϕ)]

=
1

5

(
3c1(B)2 − 9c1(B)c1(V ) + 13c1(V )2 − 25c2(V ) +

1

2
∆(E)

)
,

ℓα =HV ∩HV ∩ Jα ∩ [D2(ϕ)] = Ďα (3c1(B)− 2c1(V )) ,

(C.40)

where we have used the Bogomolov discriminant of E,

∆(E) = 2
(
5c2(E)− 2c1(E)2

)
. (C.41)

This implies that the height pairing of the 5-section is

D = −π∗π∗(DeDe) = 2c1(V )− 3c1(B) . (C.42)

In [34] the method of GV-spectroscopy [82] was used to deduce that the Euler char-

acteristic χX and the numbers n±1, n±2 of I2-fibers of X are given by

χX =− 10c1(B)2 +∆(E) ,

n±1 =13c1(B)2 +∆(E)− 1

2
∆(V ) ,

n±2 =12c1(B)2 − 1

2
∆(E) +

1

2
∆(V ) ,

(C.43)

where the Bogomolov discriminant ∆(V ) of V also takes the form (C.41).

Using (C.16) with the relations (2.36) from [40], we find that

κ̂ =
1

20

(
−15c1(B)2 − 10∆(V ) + 2∆(E)

)
,

ĉ2 =
1

5

(
300− 24c1(B)2 −∆(V )−∆(E)

)
.

(C.44)

The expression for κ̂ can be checked against (C.40) and from the expression for ĉ2
we can deduce that

c2 =
1

5

(
300− 6c1(B)2 − 12c1(B)c1(V )−∆(V )−∆(E)

)
. (C.45)

Relative homologically projective dual fibrations As was discussed in [34],

a genus one curve of degree 5 also admits a dual realization as a codimension five

complete intersection in the Grassmanian Gr(2, 5).
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At the level of the genus one fibered threefolds with a 5-section, the fiberwise

application of this duality leads to a second fibration π∨ : X∨ → B that also exhibits

a 5-section but is, in general, topologically different from X. However, both geome-

tries share the same relative Jacobian fibration and are therefore elements of the

same Tate-Shafarevich group. The geometries X and X∨ are related by a relative

version of homological projective duality [120] and they correspond to different large

volume limits in the same stringy Kähler moduli space.

The fibration X∨ can be constructed as a complete intersection in a Grassmanian

bundle on B and the bundles that are involved in this construction are closely related

to the bundles V and E that determine X itself [34]. However, we can use the 5-

section on X∨ to obtain a second realization as a Pfaffian variety in a P4-bundle

P(V ′) on B, with a rank five bundle E ′ and a line bundle L′ taking the place of E

and L.

We are currently not able to determine V ′, E ′ and L′ directly in terms of V ,

E and L. However, it was observed in [34] that the fibrations X and X∨ share the

same Euler characteristic but the corresponding values of n±1 and n±2 are exchanged.

Formally, this can be achieved by assuming that

c1(E
′) =− c1(E) , c2(E

′) = c2(E) , c1(V
′) = c1(V )− c1(E) ,

c2(V
′) =

1

5

(
c1(B)2 + 2 (c1(E)− c1(V ))2 − 1

2
∆(V ) +

3

2
∆(E)

)
,

(C.46)

with c1(L
′) again being determined by the Calabi-Yau condition (C.36). This choice

also ensures that the intersection numbers (C.40) associated to the bundles are inte-

gral. In fact, we have checked that – up to a change of basis – the involution (C.46)

together with (C.40) and (C.45) correctly reproduces the topological invariants for

X∨ in all of the examples that have been provided in [34, Table 19].

We therefore make the following conjecture:

Conjecture 1. Let π : X → B be a smooth genus one fibered CY threefold with a

5-section over a generalized del Pezzo surface B with b2(X) = b2(B) + 1. Assume

that this is the degenaracy locus D2(ϕ) of a generic skew-symmetric map (C.35) that

is associated to the rank five vector bundles V , E and the line bundle L on B. Then

there exist rank five vector bundles V ′, E ′ on B with Chern classes (C.46), and a

line bundle L′ satisfying the Calabi-Yau condition

c1(L
′) =

1

5
(2c1(E

′) + c1(V
′) + c1(B)) , (C.47)

such that the corresponding genus one fibered CY threefold π∨ : X∨ → B is the

relative homological projective dual of X.
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C.6 Projective bundles from monad bundles

In order to study the topological string free energies using mirror symmetry, we

would like to work with geometries that can be constructed using the tools from

toric geometry. However, given a toric base B, the only projective bundles on B that

are themselves toric varieties are projectivizations of sums of line bundles. To obtain

a somewhat larger class of geometries we will also consider projective bundles that

are complete intersections in toric ambient spaces.

We will therefore use monad bundles V , that are defined via a short exact se-

quence

0 → V → W
f−→ U → 0 , (C.48)

where W and U are vector bundles of respective rank rW and rU , with rU < rW ,

such that the rank r = rV of V is rV = rW − rU . Let us assume that B is a smooth

toric variety and that the divisors Ďα, α = 1, . . . , b2(B) form a basis of the Kähler

cone. 34 We choose W and U to take the form

W =OB

(
−wα

1 Ďα

)
⊕ . . .⊕OB

(
−wα

rW
Ďα

)
,

U =OB

(
uα
1 Ďα

)
⊕ . . .⊕OB

(
uα
rU
Ďα

)
,

(C.49)

in terms of wα
i , u

α
j ∈ Nb2(B) for i = 1, . . . , rW and j = 1, . . . , rU . In order for V to be

a vector bundle, we have to require that uα
j ≥ −wα

i for all i, j, α and that the map f

is chosen to be sufficiently generic, see for example [121, 122].

D. Generic genus one fibrations on P2

In this section we will construct a large number of generic genus one fibered CY

threefolds over P2 that have an N -section with 2 ≤ N ≤ 5.

To construct the vector bundles that appear in the constructions for different N

we will use monad bundles as described in Section C.6. Over P2, the vector bundles

W,U take the form

W =OP2(−w1)⊕ . . .⊕OP2(−wrW ) ,

U =OP2(u1)⊕ . . .⊕OP2(urU ) ,
(D.1)

for w⃗, u⃗ ∈ N. Using the exact sequence (C.48), we find the Chern classes of V ,

c1(V ) = − (e1(w⃗) + e1(u⃗)) , c2(V ) = e2(w⃗) + e1(u⃗)e1(w⃗) + e1(u⃗)
2 − e2(u⃗) , (D.2)

in terms of the i-th elementary symmetric polynomials ei. In fact, we will sometimes

relax the condition that the entries of w⃗ are non-negative u⃗. In those cases we have

checked that the corresponding Calabi-Yau is still smooth and has h1,1 = 2.
34Or, if the Kähler cone is non-simplicial, a suitable simplicial subcone of the Kähler cone.
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D.1 2-sections

Without loss of generality we can restrict to rW = 5, rU = 3, as well as w4 = w5 = 0,

and write

W =OP2(−w1)⊕OP2(−w2)⊕OP2(−w3)⊕O⊕2
P2 ,

U =OP2(u1)⊕OP2(u2)⊕OP2(u3) .
(D.3)

The toric data associated to the Calabi-Yau double cover X of P(V ) is given in

Table 4, where we have introduced

p = 3− e1(w⃗)− e1(u⃗) . (D.4)

In order for X to be smooth we have to impose e1(w⃗)+e1(u⃗) ≤ 3. For all inequivalent

values of u⃗, w⃗ that satisfy this inequality we use CohomCalg [123, 124] to check if

h1,1(X) = 2. The resulting geometries, together with their topological invariants,

are listed in Table 5.



p⃗ ∈ Z7 l(1) l(2)

1 0 0 0 0 0 0 2 p

0 1 0 0 0 0 0 1 −w1

0 0 1 0 0 0 0 1 −w2

0 0 0 1 0 0 0 1 −w3

0 0 0 0 1 0 0 1 0

−2 −1 −1 −1 −1 0 0 1 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 1

−p w1 w2 w3 0 −1 −1 0 1

0 0 0 0 0 0 0 1 u1

0 0 0 0 0 0 0 1 u2

0 0 0 0 0 0 0 1 u3

0 0 0 0 0 0 0 4 2p


Table 4: The toric data associated to the genus one fibered CY threefolds over P2 with a

2-section listed in Table 5.
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# χX N1/2 κ ℓ c2 c1,V c2,V w1 w2 w3 u1 u2 u3

2.1 −284 128 8 4 68 −2 0 2 0 0 0 0 0

2.2 −260 140 2 2 44 −1 0 1 0 0 0 0 0

2.3 −252 144 0 0 24 0 0 0 0 0 0 0 0

2.4 −228 156 0 2 36 −1 1 0 0 0 0 1 0

2.5 −220 160 4 4 52 −2 2 1 0 0 0 1 0

2.6 −196 172 10 6 64 −3 4 1 1 0 0 1 0

2.7 −188 176 2 4 44 −2 3 0 0 0 1 1 0

2.8 −164 188 8 6 56 −3 5 1 0 0 1 1 0

2.9 −156 192 0 4 36 −2 4 0 0 0 0 2 0

2.10 −132 204 6 6 48 −3 6 1 0 0 0 2 0

2.11 −100 220 4 6 40 −3 7 0 0 0 1 2 0

Table 5: Some CY threefolds with h1,1 = 2 that exhibit a genus one fibration over P2 with

a 2-section.
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D.2 3-sections

Without loss of generality we can restrict to rW = 6, rU = 3, as well as w4 = w5 =

w6 = 0, and write

W =OP2(−w1)⊕OP2(−w2)⊕OP2(−w3)⊕O⊕3
P2 ,

U =OP2(u1)⊕OP2(u2)⊕OP2(u3) .
(D.5)

The toric data associated to the Calabi-Yau double cover X of P(V ) is given in

Table 7, where we again use

p = 3− e1(w⃗)− e1(u⃗) . (D.6)

In order for X to be smooth we again have to impose e1(w⃗) + e1(u⃗) ≤ 3. For all

inequivalent values of u⃗, w⃗ that satisfy this inequality we use CohomCalg [123, 124]

to check if h1,1(X) = 2. The resulting geometries, together with their topological

invariants, are listed in Table 8.

Note that for geometry 3.2 the vector w⃗ contains a negative entry. We make this

choice in order for the divisor that is induced by the relative hyperplane class of the

projective bundle P(V ) to be part of a Kähler cone basis of the Calabi-Yau. However,

the CY threefold itself is equivalent to the one that is associated to w⃗ = (2, 1, 0),

u⃗ = (0, 0, 0). On the other hand, the geometry 3.14 is associated to a P2-bundle that

does not admit a monad bundle construction of this type. Instead we have obtained

this geometry via a flop transition from the geometry 5.7a in Table 13.



p⃗ ∈ Z7 l(1) l(2)

1 0 0 0 0 0 0 1 −w1

0 1 0 0 0 0 0 1 −w2

0 0 1 0 0 0 0 1 −w3

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 1 0

−1 −1 −1 −1 −1 0 0 1 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 1

w1 w2 w3 0 0 −1 −1 0 1

0 0 0 0 0 0 0 1 u1

0 0 0 0 0 0 0 1 u2

0 0 0 0 0 0 0 1 u3

0 0 0 0 0 0 0 3 p


Table 7: The toric data associated to the genus one fibered CY threefolds over P2 with a

3-section listed in Table 8.
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# χX N1,2 κ ℓ c2 c1,V c2,V w1 w2 w3 u1 u2 u3

3.1 −186 177 14 7 68 −2 0 2 0 0 0 0 0

3.2 −180 180 3 3 42 0 −1 1 0 −1 0 0 0

3.3 −168 186 5 5 50 −1 0 1 0 0 0 0 0

3.4 −168 186 11 7 62 −2 1 1 1 0 0 0 0

3.5 −162 189 0 3 36 0 0 0 0 0 0 0 0

3.6 −150 195 2 5 44 −1 1 0 0 0 0 0 1

3.7 −150 195 8 7 56 −2 2 1 0 0 0 0 1

3.8 −144 198 15 9 66 −3 4 1 1 0 0 0 1

3.9 −132 204 5 7 50 −2 3 0 0 0 0 1 1

3.10 −132 204 23 11 74 −4 7 1 1 1 0 0 1

3.11 −126 207 12 9 60 −3 5 1 0 0 0 1 1

3.12 −114 213 2 7 44 −2 4 0 0 0 0 0 2

3.13 −108 216 9 9 54 −3 6 0 0 0 1 1 1

3.14 −96 222 29 13 74 −5 12 (flop of 5.7a)

3.15 −90 225 6 9 48 −3 7 0 0 0 0 1 2

Table 8: Some CY threefolds with h1,1 = 2 that exhibit a genus one fibration over P2 with

a 3-section.
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D.3 4-sections

To construct genus one fibered CY threefolds with a 4-section over P2, we restrict to

rW = 7, rU = 3, as well as w5 = w6 = w7 = 0, and write

W =OP2(−w1)⊕ . . .⊕OP2(−w4)⊕O⊕3
P2 ,

U =OP2(u1)⊕OP2(u2)⊕OP2(u3) .
(D.7)

We also choose E = OP2(q1)⊕OP2(q2), such that the Calabi-Yau condition takes the

form

e1(q⃗) = 3− e1(w⃗)− e1(u⃗) . (D.8)

The toric data associated to the CY threefold X inside P(V ) is given in Table 4.

One way to obtain smooth CY threefolds with h1,1 = 2 is to consider all inequiv-

alent choices w⃗ ∈ N4, u⃗ ∈ N3 and q⃗ ∈ N2 that satisfy (D.8) and then use the package

CohomCalg [123, 124] to check if h1,1(X) = 2. We also obtain some geometries for

which some of the entries of w⃗ and q⃗ are negative and in those cases we check ex-

plicitly that one still obtains a smooth complete intersection. Two of the geometries,

4.19 and 4.21, are complete intersections in projective bundles that do not fall under

our monad construction and those are related via flop transitions to the respective

fibrations 5.11ab and 5.9a from Table 13.



p⃗ ∈ Z8 l(1) l(2)

1 0 0 0 0 0 0 0 1 −w1

0 1 0 0 0 0 0 0 1 −w2

0 0 1 0 0 0 0 0 1 −w3

0 0 0 1 0 0 0 0 1 −w4

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 1 0

−1 −1 −1 −1 −1 −1 0 0 1 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1

w1 w2 w3 w4 0 0 −1 −1 0 1

0 0 0 0 0 0 0 0 1 u1
0 0 0 0 0 0 0 0 1 u2
0 0 0 0 0 0 0 0 1 u3
0 0 0 0 0 0 0 0 2 q1
0 0 0 0 0 0 0 0 2 q2


Table 10: The toric data associated to the genus one fibered CY threefolds over P2 with

a 4-section listed in Table 11.
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# χX N1,3 N2/2 κ ℓ c2 c1,V c2,V c1,E c2,E q1 q2 w1 w2 w3 w4 u1 u2 u3

4.1 −156 108 84 0 2 36 2 0 5 4 1 4 −2 0 0 0 0 0 0

4.2 −140 128 72 0 0 24 3 2 6 8 4 2 −2 −1 0 0 0 0 0

4.3 −132 128 76 23 12 74 −3 3 0 −1 −1 1 1 1 1 0 0 0 0

4.4 −132 128 76 8 8 56 −1 0 2 0 0 2 1 0 0 0 0 0 0

4.5 −132 140 64 20 10 68 −2 0 1 0 0 1 2 0 0 0 0 0 0

4.6 −128 140 66 6 6 48 0 −1 3 2 1 2 −1 1 0 0 0 0 0

4.7 −128 144 62 4 4 40 1 −1 4 4 2 2 1 −1 −1 0 0 0 0

4.8 −124 128 80 4 8 52 −1 1 2 0 0 2 0 0 0 0 0 0 1

4.9 −124 140 68 16 10 64 −2 1 1 0 0 1 1 1 0 0 0 0 0

4.10 −120 140 70 2 6 44 0 0 3 2 1 2 0 0 0 0 0 0 0

4.11 −120 144 66 9 8 54 −1 0 2 1 1 1 1 0 0 0 0 0 0

4.12 −120 144 66 0 4 36 1 0 4 4 2 2 −1 0 0 0 0 0 0

4.13 −116 140 72 12 10 60 −2 2 1 0 0 1 1 0 0 0 0 0 1

4.14 −112 144 70 20 12 68 −3 4 0 0 0 0 1 1 0 0 0 0 1

4.15 −112 144 70 5 8 50 −1 1 2 1 1 1 0 0 0 0 0 0 1

4.16 −108 140 76 8 10 56 −2 3 1 0 0 1 0 0 0 0 0 1 1

4.17 −104 144 74 37 16 82 −5 11 −2 1 −1 −1 1 1 1 1 0 0 1

4.18 −104 144 74 16 12 64 −3 5 0 0 0 0 1 0 0 0 0 1 1

4.19 −100 156 64 29 14 74 −4 7 −1 1 (flop of 5.11ab)

4.20 −100 140 80 4 10 52 −2 4 1 0 0 1 0 0 0 0 0 0 2

4.21 −96 144 78 33 16 78 −5 12 −2 1 (flop of 5.9a)

4.22 −96 144 78 12 12 60 −3 6 0 0 0 0 1 0 0 0 0 0 2

4.23 −88 144 82 8 12 56 −3 7 0 0 0 0 0 0 0 0 0 1 2

Table 11: Some CY threefolds with h1,1 = 2 that exhibit a genus one fibration over P2

with a 4-section.
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D.4 5-sections

A large number of genus one fibered CY threefolds with a 5-section over P2 and

h1,1 = 2 was constructed in [34]. We will reproduce those geometries here in terms of

the data described in Section C.5. To this end, we can restrict to the case V = W ,

such that rW = 5 and rU = 0, and write

W =OP2(−w1)⊕ . . .⊕OP2(−w5) . (D.9)

We also choose

E = OP2(−e1)⊕OP2(−e2)⊕OP2(−e3)⊕O⊕2
P2 , (D.10)

The line bundle L is determined by the Calabi-Yau condition (C.36).

This allows us to construct the geometries 5.nb, for n = 1, . . . , 12 listed in Ta-

ble (13), with the exception of 5.3b. To construct 5.3b one has to consider a rank 5

bundle V that is not a sum of line bundles, as was explained in [34].

The fibrations 5.na, that are conjecturally fiberwise homologically projective dual

to the fibrations 5.na have also been constructed in [34]. The Chern classes of the

corresponding bundles V and E are determined by (C.46) and (C.47).

In each case we have performed a suitable twist of V such that the restriction of

the relative hyperplane divisor of P(V ) to the CY threefold is part of a Kähler cone

basis.
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# χX N1,4 N2,3 κ ℓ c2 c1,V c2,V c1,E c2,E w1 w2 w3 w4 w5 e1 e2 e3
5.1a −90 100 125 10 15 64 −3 7 0 0

5.1b −90 125 100 5 5 38 2 0 0 0 1 0 −1 −1 −1 0 0 0

5.2a −90 105 120 15 15 66 −3 6 0 0

5.2b −90 120 105 0 5 36 2 1 0 0 0 0 0 −1 −1 0 0 0

5.3a −90 110 115 20 15 68 −3 5 0 0

5.3b −90 115 110 25 15 70 −3 4 0 0 (exceptional)

5.4a −94 105 118 51 21 90 −6 16 −1 0

5.4b −94 118 105 10 9 52 0 −1 1 0 1 0 0 0 −1 −1 0 0

5.5a −94 108 115 42 19 84 −5 11 1 0

5.5b −94 115 108 13 11 58 −1 0 −1 0 1 0 0 0 0 1 0 0

5.6a −94 110 113 8 11 56 −1 1 −1 0

5.6b −94 113 110 5 9 50 0 0 1 0 0 0 0 0 0 −1 0 0

5.7a −96 103 119 94 27 112 −9 34 3 3

5.7b −96 119 103 26 13 68 −2 0 −3 3 2 0 0 0 0 1 1 1

5.8a −96 104 118 65 23 98 −7 21 2 1

5.8b −96 118 104 7 7 46 1 −1 −2 1 1 0 0 −1 −1 1 1 0

5.9a −96 108 114 33 17 78 −4 7 −2 1

5.9b −96 114 108 21 13 66 −2 1 2 1 1 1 0 0 0 −1 −1 0

5.10a −96 109 113 16 13 64 −2 2 2 1

5.10b −96 113 109 2 7 44 1 0 −2 1 0 0 0 0 −1 1 1 0

5.11ab −100 110 110 29 15 74 −3 3 0 −1 1 1 1 0 0 −1 1 0

5.12a −104 108 110 9 9 54 0 −1 1 −1

5.12b −104 110 108 17 11 62 −1 −1 −1 −1 1 1 0 0 −1 1 1 −1

Table 13: Some CY threefolds with h1,1 = 2 that exhibit a genus one fibration over P2

with a 5-section, first constructed in [34].
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# Base degree 1

5.1a 5∆10e1ẽ
2
1 (−108e21ẽ1 + 343e1ẽ

2
1 − 2ẽ31 + 10e31)

5.1b 5∆10ẽ
3
1 (343e

2
1ẽ1 + 108e1ẽ

2
1 + 10ẽ31 + 2e31)

5.2a 15∆10e1ẽ
2
1 (−14e21ẽ1 + 35e1ẽ

2
1 − 8ẽ31 + 2e31)

5.2b 15∆10ẽ
3
1 (35e

2
1ẽ1 + 14e1ẽ

2
1 + 2ẽ31 + 8e31)

5.3a 5∆10ẽ
2
1 (2e

3
1ẽ1 − 14e21ẽ

2
1 − 24e1ẽ

3
1 + ẽ41 + 3e41)

5.3b 5∆10ẽ
2
1 (24e

3
1ẽ1 − 14e21ẽ

2
1 − 2e1ẽ

3
1 + 3ẽ41 + e41)

5.4a ∆
3/5
10 e31ẽ

3
1 (49e

3
1ẽ1 − 275e21ẽ

2
1 + 569e1ẽ

3
1 − 11ẽ41 + e41)

5.4b ∆
2/5
10 e31ẽ

5
1 (569e

3
1ẽ1 + 275e21ẽ

2
1 + 49e1ẽ

3
1 − ẽ41 + 11e41)

5.5a ∆
2/5
10 e41ẽ

4
1 (48e

3
1ẽ1 − 35e21ẽ

2
1 − 302e1ẽ

3
1 + 13ẽ41 + 2e41)

5.5b ∆
3/5
10 e21ẽ

4
1 (302e

3
1ẽ1 − 35e21ẽ

2
1 − 48e1ẽ

3
1 + 2ẽ41 + 13e41)

5.6a ∆
3/5
10 e31ẽ

4
1 (−24e21ẽ1 + 137e1ẽ

2
1 − 52ẽ31 + 41e31)

5.6b ∆
2/5
10 e41ẽ

5
1 (137e

2
1ẽ1 + 24e1ẽ

2
1 + 41ẽ31 + 52e31)

5.7a ∆
1/5
10 e51ẽ

4
1 (−24e41ẽ1 + 386e31ẽ

2
1 − 1548e21ẽ

3
1 + 153e1ẽ

4
1 + 2ẽ51 + e51)

5.7b ∆
4/5
10 ẽ31 (153e

4
1ẽ1 + 1548e31ẽ

2
1 + 386e21ẽ

3
1 + 24e1ẽ

4
1 + ẽ51 − 2e51)

5.8a ∆
4/5
10 e21ẽ

2
1 (4e

3
1ẽ1 + 195e21ẽ

2
1 − 986e1ẽ

3
1 + 14ẽ41 + e41)

5.8b ∆
1/5
10 e41ẽ

6
1 (986e

3
1ẽ1 + 195e21ẽ

2
1 − 4e1ẽ

3
1 + ẽ41 + 14e41)

5.9a 3∆
1/5
10 e51ẽ

5
1 (29e

3
1ẽ1 − 65e21ẽ

2
1 + 74e1ẽ

3
1 − ẽ41 + e41)

5.9b 3∆
4/5
10 e1ẽ

3
1 (74e

3
1ẽ1 + 65e21ẽ

2
1 + 29e1ẽ

3
1 − ẽ41 + e41)

5.10a ∆
4/5
10 e21 (2e1 − ẽ1) ẽ

3
1 (62e1ẽ1 − 83ẽ21 + 8e21)

5.10b ∆
1/5
10 e51ẽ

6
1 (2ẽ1 + e1) (62e1ẽ1 − 8ẽ21 + 83e21)

5.11ab ∆10ẽ
2
1 (138e

3
1ẽ1 + 234e21ẽ

2
1 − 138e1ẽ

3
1 + ẽ41 + e41)

5.12a ∆
2/5
10 e41ẽ

5
1 (507e

2
1ẽ1 − 386e1ẽ

2
1 + ẽ31 + 22e31)

5.12b ∆
3/5
10 e31ẽ

4
1 (386e

2
1ẽ1 + 507e1ẽ

2
1 − 22ẽ31 + e31)

Table 14: Modular generating series f̃1 for genus 0 GW invariants for models with 5-

sections. The notations e1, ẽ1 are shorthand for the weight 1 Eisenstein series e5,1, ẽ5,1.
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#
B
a
se

d
eg

re
e
2

5
.1

5 1
2
∆

2 1
0
e2 1

ẽ4 1

( −
7
1
7
0
e7 1

ẽ 1
+

9
2
1
6
9
e6 1

ẽ2 1
−

5
4
6
7
4
8
e5 1

ẽ3 1
+

1
4
3
8
3
6
5
e4 1

ẽ4 1
−

1
4
9
9
0
3
6
e3 1

ẽ5 1
+

7
8
5
0
0
0
e2 1

ẽ6 1
−

5
5
4
2
e 1

ẽ7 1
−

1
1
ẽ8 1

+
2
7
7
e8 1

)
5
.2

5 1
2
∆

2 1
0
ẽ6 1

( 5
5
4
2
e7 1

ẽ 1
+

7
8
5
0
0
0
e6 1

ẽ2 1
+

1
4
9
9
0
3
6
e5 1

ẽ3 1
+

1
4
3
8
3
6
5
e4 1

ẽ4 1
+

5
4
6
7
4
8
e3 1

ẽ5 1
+

9
2
1
6
9
e2 1

ẽ6 1
+

7
1
7
0
e 1

ẽ7 1
+

2
7
7
ẽ8 1

−
1
1
e8 1

)
5
.3

1
5 4
∆

2 1
0
e2 1

ẽ4 1

( −
2
1
4
e7 1

ẽ 1
+

2
9
6
0
e6 1

ẽ2 1
−

1
3
8
7
4
e5 1

ẽ3 1
+

2
8
5
9
5
e4 1

ẽ4 1
−

3
7
3
7
8
e3 1

ẽ5 1
+

4
3
1
1
2
e2 1

ẽ6 1
−

3
6
0
0
e 1

ẽ7 1
+

1
9
2
ẽ8 1

+
1
1
e8 1

)
5
.4

1
5 4
∆

2 1
0
ẽ6 1

( 3
6
0
0
e7 1

ẽ 1
+

4
3
1
1
2
e6 1

ẽ2 1
+

3
7
3
7
8
e5 1

ẽ3 1
+

2
8
5
9
5
e4 1

ẽ4 1
+

1
3
8
7
4
e3 1

ẽ5 1
+

2
9
6
0
e2 1

ẽ6 1
+

2
1
4
e 1

ẽ7 1
+

1
1
ẽ8 1

+
1
9
2
e8 1

)
5
.5

5 1
2
∆

2 1
0
ẽ4 1

( −
2
7
0
e9 1

ẽ 1
+

8
1
7
0
e8 1

ẽ2 1
−

8
5
8
2
e7 1

ẽ3 1
+

5
0
7
2
9
e6 1

ẽ4 1
−

9
9
1
5
4
e5 1

ẽ5 1
+

9
7
8
9
0
e4 1

ẽ6 1
−

3
0
5
3
0
e3 1

ẽ7 1
+

3
4
8
6
e2 1

ẽ8 1
−

4
2
e 1

ẽ9 1
+

4
ẽ1

0
1

+
2
7
e1

0
1

)
5
.6

5 1
2
∆

2 1
0
ẽ4 1

( 4
2
e9 1

ẽ 1
+

3
4
8
6
e8 1

ẽ2 1
+

3
0
5
3
0
e7 1

ẽ3 1
+

9
7
8
9
0
e6 1

ẽ4 1
+

9
9
1
5
4
e5 1

ẽ5 1
+

5
0
7
2
9
e4 1

ẽ6 1
+

8
5
8
2
e3 1

ẽ7 1
+

8
1
7
0
e2 1

ẽ8 1
+

2
7
0
e 1

ẽ9 1
+

2
7
ẽ1

0
1

+
4
e1

0
1

)
5
.7

1 1
2
∆

6
/
5

1
0

e6 1
ẽ6 1

( −
2
6
e9 1

ẽ 1
+

2
2
1
6
e8 1

ẽ2 1
−

2
0
4
9
5
e7 1

ẽ3 1
+

3
6
3
9
8
9
e6 1

ẽ4 1
−

1
7
1
2
6
8
5
e5 1

ẽ5 1
+

3
5
1
6
5
7
8
e4 1

ẽ6 1
−

2
3
2
6
0
9
3
e3 1

ẽ7 1
+

4
0
8
7
2
5
e2 1

ẽ8 1
−

5
9
6
2
e 1

ẽ9 1
+

7
7
ẽ1

0
1

+
2
e1

0
1

)
5
.8

1 1
2
∆

4
/
5

1
0

e6 1
ẽ1

0
1

( 5
9
6
2
e9 1

ẽ 1
+

4
0
8
7
2
5
e8 1

ẽ2 1
+

2
3
2
6
0
9
3
e7 1

ẽ3 1
+

3
5
1
6
5
7
8
e6 1

ẽ4 1
+

1
7
1
2
6
8
5
e5 1

ẽ5 1
+

3
6
3
9
8
9
e4 1

ẽ6 1
+

2
0
4
9
5
e3 1

ẽ7 1
+

2
2
1
6
e2 1

ẽ8 1
+

2
6
e 1

ẽ9 1
+

2
ẽ1

0
1

+
7
7
e1

0
1

)
5
.9

1 1
2
∆

4
/
5

1
0

e8 1
ẽ8 1

( −
5
4
e9 1

ẽ 1
+

3
2
2
3
e8 1

ẽ2 1
+

1
3
7
8
4
e7 1

ẽ3 1
+

2
1
4
7
4
0
e6 1

ẽ4 1
−

6
2
7
5
8
8
e5 1

ẽ5 1
+

1
8
5
2
5
5
2
e4 1

ẽ6 1
−

7
3
7
7
3
4
e3 1

ẽ7 1
+

1
4
8
5
0
8
e2 1

ẽ8 1
−

2
9
9
0
e 1

ẽ9 1
+

1
0
4
ẽ1

0
1

+
5
e1

0
1

)
5
.1
0

1 1
2
∆

6
/
5

1
0

e4 1
ẽ8 1

( 2
9
9
0
e9 1

ẽ 1
+

1
4
8
5
0
8
e8 1

ẽ2 1
+

7
3
7
7
3
4
e7 1

ẽ3 1
+

1
8
5
2
5
5
2
e6 1

ẽ4 1
+

6
2
7
5
8
8
e5 1

ẽ5 1
+

2
1
4
7
4
0
e4 1

ẽ6 1
−

1
3
7
8
4
e3 1

ẽ7 1
+

3
2
2
3
e2 1

ẽ8 1
+

5
4
e 1

ẽ9 1
+

5
ẽ1

0
1

+
1
0
4
e1

0
1

)
5
.1
1

1 1
2
∆

6
/
5

1
0

e6 1
ẽ8 1

( −
2
5
3
2
e7 1

ẽ 1
+

1
9
9
0
1
1
e6 1

ẽ2 1
−

7
9
1
5
4
e5 1

ẽ3 1
+

2
6
0
4
7
5
e4 1

ẽ4 1
−

4
8
7
7
2
6
e3 1

ẽ5 1
+

3
7
1
8
9
6
e2 1

ẽ6 1
−

1
1
5
8
8
e 1

ẽ7 1
+

1
4
4
2
ẽ8 1

+
9
0
2
e8 1

)
5
.1
2

1 1
2
∆

4
/
5

1
0

e8 1
ẽ1

0
1

( 1
1
5
8
8
e7 1

ẽ 1
+

3
7
1
8
9
6
e6 1

ẽ2 1
+

4
8
7
7
2
6
e5 1

ẽ3 1
+

2
6
0
4
7
5
e4 1

ẽ4 1
+

7
9
1
5
4
e3 1

ẽ5 1
+

1
9
9
0
1
1
e2 1

ẽ6 1
+

2
5
3
2
e 1

ẽ7 1
+

9
0
2
ẽ8 1

+
1
4
4
2
e8 1

)
5
.1
3

1 1
2
∆

2
/
5

1
0

e1
0

1
ẽ8 1

( −
1
0
8
e1

1
1
ẽ 1

+
2
5
8
4
e1

0
1
ẽ2 1

−
3
4
4
8
8
e9 1

ẽ3 1
+

2
9
1
5
5
6
e8 1

ẽ4 1
−

1
2
3
8
1
3
4
e7 1

ẽ5 1
+

1
8
4
9
1
7
8
e6 1

ẽ6 1
+

2
3
0
1
3
3
0
e5 1

ẽ7 1
+

7
5
8
5
1
9
4
e4 1

ẽ8 1
−

4
1
8
5
9
8
e3 1

ẽ9 1
+

1
0
0
7
9
e2 1

ẽ1
0

1
+

1
9
8
e 1

ẽ1
1

1
−

ẽ1
2

1
+

2
e1

2
1

)
5
.1
4

1 1
2
∆

8
/
5

1
0

ẽ6 1

( −
1
9
8
e1

1
1
ẽ 1

+
1
0
0
7
9
e1

0
1
ẽ2 1

+
4
1
8
5
9
8
e9 1

ẽ3 1
+

7
5
8
5
1
9
4
e8 1

ẽ4 1
−

2
3
0
1
3
3
0
e7 1

ẽ5 1
+

1
8
4
9
1
7
8
e6 1

ẽ6 1
+

1
2
3
8
1
3
4
e5 1

ẽ7 1
+

2
9
1
5
5
6
e4 1

ẽ8 1
+

3
4
4
8
8
e3 1

ẽ9 1
+

2
5
8
4
e2 1

ẽ1
0

1
+

1
0
8
e 1

ẽ1
1

1
+

2
ẽ1

2
1

−
e1

2
1

)
5
.1
5

1 1
2
∆

8
/
5

1
0

e4 1
ẽ4 1

( −
7
4
e9 1

ẽ 1
+

1
6
7
5
e8 1

ẽ2 1
−

1
5
4
3
6
e7 1

ẽ3 1
+

2
2
4
4
4
4
e6 1

ẽ4 1
−

1
2
7
8
2
4
6
e5 1

ẽ5 1
+

4
3
3
7
0
7
2
e4 1

ẽ6 1
−

4
1
6
6
9
9
0
e3 1

ẽ7 1
+

1
2
9
9
7
1
8
e2 1

ẽ8 1
−

1
5
5
0
2
e 1

ẽ9 1
+

9
5
ẽ1

0
1

+
2
e1

0
1

)
5
.1
6

1 1
2
∆

2
/
5

1
0

e8 1
ẽ1

2
1

( 1
5
5
0
2
e9 1

ẽ 1
+

1
2
9
9
7
1
8
e8 1

ẽ2 1
+

4
1
6
6
9
9
0
e7 1

ẽ3 1
+

4
3
3
7
0
7
2
e6 1

ẽ4 1
+

1
2
7
8
2
4
6
e5 1

ẽ5 1
+

2
2
4
4
4
4
e4 1

ẽ6 1
+

1
5
4
3
6
e3 1

ẽ7 1
+

1
6
7
5
e2 1

ẽ8 1
+

7
4
e 1

ẽ9 1
+

2
ẽ1

0
1

+
9
5
e1

0
1

)
5
.1
7

3 4
∆

2
/
5

1
0

e1
0

1
ẽ1

0
1

( 4
e9 1

ẽ 1
+

7
7
6
e8 1

ẽ2 1
+

5
4
0
8
e7 1

ẽ3 1
+

4
1
1
5
7
e6 1

ẽ4 1
−

9
0
0
3
5
e5 1

ẽ5 1
+

1
9
5
2
8
8
e4 1

ẽ6 1
−

5
5
8
3
3
e3 1

ẽ7 1
+

4
3
5
6
e2 1

ẽ8 1
−

5
1
e 1

ẽ9 1
+

ẽ1
0

1
+

e1
0

1

)
5
.1
8

3 4
∆

8
/
5

1
0

e2 1
ẽ6 1

( 5
1
e9 1

ẽ 1
+

4
3
5
6
e8 1

ẽ2 1
+

5
5
8
3
3
e7 1

ẽ3 1
+

1
9
5
2
8
8
e6 1

ẽ4 1
+

9
0
0
3
5
e5 1

ẽ5 1
+

4
1
1
5
7
e4 1

ẽ6 1
−

5
4
0
8
e3 1

ẽ7 1
+

7
7
6
e2 1

ẽ8 1
−

4
e 1

ẽ9 1
+

ẽ1
0

1
+

e1
0

1

)
5
.1
9

1 1
2
∆

8
/
5

1
0

e4 1
ẽ6 1

( 3
3
2
e7 1

ẽ 1
+

6
7
8
7
0
e6 1

ẽ2 1
+

1
2
6
6
8
8
e5 1

ẽ3 1
+

5
3
1
9
0
0
e4 1

ẽ4 1
−

5
8
9
1
5
6
e3 1

ẽ5 1
+

8
6
8
2
9
9
e2 1

ẽ6 1
−

4
5
7
2
0
e 1

ẽ7 1
+

3
7
6
1
ẽ8 1

+
1
5
2
e8 1

)
5
.2
0

1 1
2
∆

2
/
5

1
0

e1
0

1
ẽ1

2
1

( 4
5
7
2
0
e7 1

ẽ 1
+

8
6
8
2
9
9
e6 1

ẽ2 1
+

5
8
9
1
5
6
e5 1

ẽ3 1
+

5
3
1
9
0
0
e4 1

ẽ4 1
−

1
2
6
6
8
8
e3 1

ẽ5 1
+

6
7
8
7
0
e2 1

ẽ6 1
−

3
3
2
e 1

ẽ7 1
+

1
5
2
ẽ8 1

+
3
7
6
1
e8 1

)
5
.2
1

1 1
2
∆

2 1
0
ẽ4 1

( ẽ2 1
+

e2 1

)( 7
2
e7 1

ẽ 1
+

1
1
6
7
9
e6 1

ẽ2 1
+

1
8
9
6
3
6
e5 1

ẽ3 1
+

1
2
7
0
9
0
0
e4 1

ẽ4 1
−

1
8
9
6
3
6
e3 1

ẽ5 1
+

1
1
6
7
9
e2 1

ẽ6 1
−

7
2
e 1

ẽ7 1
+

2
ẽ8 1

+
2
e8 1

)
5
.2
2

1 1
2
∆

4
/
5

1
0

e8 1
ẽ1

0
1

( 1
0
6
7
4
e7 1

ẽ 1
+

4
6
7
3
2
2
e6 1

ẽ2 1
+

9
3
9
6
4
6
e5 1

ẽ3 1
+

2
9
2
7
1
1
5
e4 1

ẽ4 1
−

1
6
0
0
0
4
8
e3 1

ẽ5 1
+

1
0
5
2
3
8
e2 1

ẽ6 1
−

3
2
6
e 1

ẽ7 1
+

2
ẽ8 1

+
2
5
1
e8 1

)
5
.2
3

1 1
2
∆

6
/
5

1
0

e6 1
ẽ8 1

( 3
2
6
e7 1

ẽ 1
+

1
0
5
2
3
8
e6 1

ẽ2 1
+

1
6
0
0
0
4
8
e5 1

ẽ3 1
+

2
9
2
7
1
1
5
e4 1

ẽ4 1
−

9
3
9
6
4
6
e3 1

ẽ5 1
+

4
6
7
3
2
2
e2 1

ẽ6 1
−

1
0
6
7
4
e 1

ẽ7 1
+

2
5
1
ẽ8 1

+
2
e8 1

)
T
a
b
le

1
5
:
M
o
d
u
la
r
ge
n
er
at
in
g
se
ri
es

f̃ 2
fo
r
ge
n
u
s
0
G
W

in
va
ri
an

ts
fo
r
m
o
d
el
s
w
it
h
5-
se
ct
io
n
s
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D.5 Extended Kähler cone and effective cone for fibrations over P2

For the purposes of this paper, it is sufficient to restrict attention to the Kähler cone

(or its closure, the nef cone). However, it is useful to map out the extended Kähler

cone, as it provides useful information on the support of GV invariants as well as on

the effective cone, which determines the possible divisors that a D4-brane can wrap.

Note that the effective cone, unlike the Kähler cone, can depend on the complex

structure of the Calabi-Yau manifold.

With a single exception, all of the models constructed above have a Kähler cone

given by the upper right quadrant t := ImT > 0, s := ImS > 0.35 The boundary at

t = 0 coincides with a boundary of the effective cone, which is therefore a boundary

of the geometric phase. At the other boundary, i.e. s = 0, the mass of M2-branes

wrapped on nH goes to zero. Several things may happen, in increasing degree of

severity [125, 126, 61]:

1. a set of P1’s in class n[C] may shrink to zero size;

2. a divisor fibered by those P1’s may shrink to a genus g curve Σ of A1 singular-

ities;

3. a divisor D may shrink to a point, at the same time as the P1’s shrink to zero

size;

4. the whole CY three-fold may shrink to a point.

The first three cases necessarily occur at finite distance in moduli space, while the last

one occurs at infinite distance, so corresponds to an asymptotic boundary, similar to

the one occurring at t = 0.

The first case occurs when there exists some kmax. ∈ N such that the GV in-

variants GV
(0)
(0,k) vanish for all k > kmax.

36 (i.e, the vector (0, 1) is a nilpotent ray

as defined in §2.1), but further requires that the vector (0, 1) is not a generator of

the infinity cone (i.e. the GV invariants GV
(0)
(k1,k2)

vanish for k2 > αk1 + β, with

α a positive number). Crossing such a wall corresponds to a flop transition, lead-

ing to a birationally equivalent geometry with the same Betti numbers but different

intersection numbers, namely

κ222 7→ κ222 −
∑
k≥1

k3GV
(0)
0,k , c2,2 7→ c2,2 +

∑
k≥1

kGV
(0)
0,k . (D.11)

35The model 3.14, in the basis where the base degree GV invariants are periodic modulo 3, has

a larger Kähler cone t > min(0,−2s).
36In most cases kmax. ∈ {1, 2}, but the example 5.10b exhibits a length 3 flop and kmax. = 3.
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The Kähler cone of this new model lives in a subset of the lower half-plane s < 0,

and can be glued to the Kähler cone of the original model at s = 0. The effective

cone is unchanged, since it is invariant under birational transformations.

The GV invariants GV
(g)
(k1,k2)

of the new geometry are, up to a change of basis,

the same as the original ones, except for the invariants GV
(g)
(0,k) on the nilpotent ray,

which are now formally attached to the vectors (0,−k) outside the positive quadrant.

One may then perform a linear transformation (T, S) 7→ (T + xS,−S) such that all

GV invariants are now inside the positive quadrant, and study the boundary of its

Kähler cone by the same method as above. In general, the flop does not preserve the

genus one fibration, although it is possible to obtain a new genus one fibration (or

even an isomorphic one, or a K3-fibration) after one or several flops. 37

The second case, referred to a ‘Zariski wall of type a’ in [126], requires that the

class (0, 1) is both nilpotent and is a generator of the infinity cone, in other words

GV
(0)
(0,k) is non-zero for a finite number of wrappings k, but there exists (k1, k2) such

that GV
(0)
(k1,k2+k) ̸= 0 for an infinite set of integers k. Physically, M2-branes wrapped

on the vanishing P1’s lead to an enhanced SU(2) gauge symmetry along with g

hypermultiplets in the adjoint of SU(2), as well as NF fundamental hypermultiplets

if the P1 fibration degenerates at 2NF points on Σ. Formally, the flop transition

leads to an isomorphic geometry, identified with the original one under the Weyl

group Z2.

The third case, referred to a ‘Zariski wall of type b’ in [126], may occur when an

infinite set of genus 0 invariants GV
(0)
(0,k) are non-zero. The contracting divisor D is

typically associated to the boundary of the effective cone, and its volume vanishes

quadratically in s, whereas it vanishes only linearly for a Zariski wall of type a.

Physically, the M5-brane wrapped on D leads to a tensionless string, accompanied

with an infinite tower of massless particles corresponding to the M2-branes wrapped

on C. The Kähler cone cannot be extended beyond such a wall, which therefore

signifies a boundary of the extended Kähler cone. As shown in [126, §3.2], in the

case of two-parameter models a necessary condition for a type b Zariski wall to arise

is that the cubic form κabct
atbtc has a single zero in RP2.

Defining the hyperextended Kähler cone as the union of the images of the ex-

tended Kähler cone under the Weyl reflections due to Zariski walls of type a, one of

the main results of [61] is that the infinity cone is dual to the hyperextended Kähler

cone. This gives important information on the support of GV invariants. Moreover,

the effective cone is claimed to be dual to the union of the images of the Kähler

37However, in the case b2(X) = 2 each birationality class can only contain at most two fibration

structures [127]. This is because the large base limit always corresponds to a wall of the extended

Kähler cone and the cone has exactly two walls.
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cones of the CY threefolds in the birational orbit of X under the quadratic map38

ta 7→ t̂a = 1
2
κabct

btc [128, 61]. This result, while still conjectural, is based on the

expectation that each boundary of the effective cone should correspond to an M5-

brane of suitable charge becoming tensionless. Assuming the validity of this claim,

this gives an efficient way of computing the effective cone, which can then be checked

by line bundle cohomology computations. The results are reported in Tables 16– 18

below. As an illustration, we discuss a few models in great detail below:

1.1. Let us first consider the simplest model, the smooth elliptic fibration over

P2, realized for example as a degree 18 hypersurface in weighted projectve space

P4
9,6,1,1,1[18], with (κ, ℓ,N, c2) = (9, 3, 1, 102). In the usual basis such that GV invari-

ants are supported in the right positive quadrant, the Kähler cone is s > 0, t > 0,

bounded by the rays (0, 1) and (1, 0). There are no nilpotent rays, thus no flop. The

boundary at t = 0 is an asymptotic boundary, while the boundary at s = 0 is a

Zariski wall of type b. On this wall, the tension of an M5-brane with charge (1,−3)

vanishes quadratically,

t̂− 3Ŝ =

(
9

2
t2 + 3st+

1

2
s2
)
− 3

(
3

2
t2 + st

)
=

1

2
s2 (D.12)

The image of right positive quadrant in the (t̂, Ŝ) plane is the wedge 0 < t̂ < 3Ŝ,

from which one deduces that the effective cone is bounded by (0, 1) and (1,−3).

2.6. This model admits one nilpotent ray, GV
(0)
(0,k) = 2 for k = 1 and zero otherwise,

which we denote by (0, 1)2. The initial Kähler cone is s, t > 0 and its image in

dual coordinates is the wedge 0 < ŝ < 3
5
t̂. After flopping the curve of degree (0, 1),

one finds a new phase with Kähler cone 0 < −s < t, which is mapped to the

positive quadrant s′, t′ > 0 under the variables change (t′, s′) = (t + s,−s). In

these coordinates, one recognizes the intersection form of a fibration by degree 4

K3 surfaces with κ′ = 10, c′2 = 64, which we denote by [K310,2,64]. The image of

the new Kähler cone in dual coordinates (using the quadratic map associated to

the intersection form after the flop) is the wedge 0 < 3
5
t̂ < ŝ < t̂. The union of

the images of the two Kähler cones is the wedge 0 < ŝ < t̂, which shows that the

effective cone is bounded by (0, 1) (as for all models) and (1,−1). The boundary of

the extended Kähler coincides with the boundary of the effective cone (1,−1), which

therefore corresponds to an asymptotic boundary. The dual of the extended Kähler

cone gives the infinity cone 0 ≤ k2 ≤ k1, which is consistent with the support of GV

invariants. Upon restricting to S = 0, we observe that the genus 0 GV invariants∑
0≤k2≤k1

GV
(0)
k1,k2

= {920, 50520, 5853960, . . . } coincide with the invariants of the CY

operator #51 in the AESZ database, which indicates that this model has a conifold

transition to a one-parameter model described by that operator.

38Note that the map is only locally quadratic, since the intersection form κabc changes along the

birational orbit.
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4.4. This model admits one nilpotent ray with GV
(0)
(0,1) = 24, GV

(0)
(0,2) = −2, which

we denote by (0, 1)24,−2. The initial Kähler cone is the first quadrant s, t > 0 and its

image in dual coordinates is the wedge 0 < ŝ < t̂. The wall at s = 0 is a Zariski wall

of type a. A flop with respect to the curves of degree (0, 1) and multiples thereof

corresponds to a Weyl symmetry (t, s) 7→ (t + s,−s), identifying the first quadrant

with its image −t < s < 0. The union of these two covers the effective cone bounded

by (0, 1) and (1,−1), consistently with the image of the initial Kähler cone in dual

coordinates. The support of the GV invariants GV
(0)
(k1,k2)

extends to arbitrary large

k2 for fixed k1, but we observe that the free energy fk1(S) =
∑

k2≥1GV
(0)
(k1,k2)

Li3(q
k2
S )

at fixed degree k1 is a rational function of qS, invariant under qS 7→ 1/qS, with a pole

of degree 2k1 at qS = −1. E.g. for k1 ≤ 2,

f1(S) =
128 + 1280qS + 2304q2S + 1280q3S + 128q4S

(1 + qS)2
,

f2(S) =
168 + 13632qS + 118528q2S + 356160q3S + 502192q4S + 356160q5S + · · ·+ 168q8S

(1 + qS)4

(D.13)

etc. As a result, the limit S → 0 is smooth, and we find that it reduces to the free

energy of a one-parameter with genus 0 GV invariants {1280, 92288, 15655168, . . . },
which we recognize as the hypergeometric model X4,2.
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Figure 1: Extended Kähler cone (left) and its image in dual coordinates (right) for models

1.1, 2.6, 4.4 (from top to bottom). The light red region indicates the effective cone for

generic complex structure. On the left side, we have superposed the two components of

the discriminant locus in blue and magenta.
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X χX Nilp. rays Eff.cone Ext.cone Flop Conifold Ref.

1.1 −540 [P2] (1,−3) (1, 0)
P4

9,6,1,1,1[18]

[25, 26, 30]

2.1 −284 [F0] (1,−2) (1, 0) [129][35, §6.2]
2.2 −260 [dP7] (1,−1) (1, 0) [129]

2.3 −252 [K3] (1, 0) (1, 0) [33, §7.2.1]
2.4 −228 [Sym] (1, 0) (1, 0) double fib.

2.5 −220 (0, 1)20,−2 (2,−1) (1, 0) Za X6,2

2.6 −196 (0, 1)2 (1,−1) (1,−1) → K310,2,64
AE
SZ51

2.7 −188 (0, 1)56,−2 (2,−1) (1, 0) Za X8

2.8 −164 (0, 1)6 (1,−1) (2,−1) → [dP7] X4,2

2.9 −156 [4.1] (1, 0) (1, 0) double fib.

2.10 −132 (0, 1)12 (2,−1) (2,−1) isoflop X4,3

2.11 −100 (0, 1)20,2 (3,−1) (3,−1) isoflop X4,4

3.1 −186 (0, 1)−2 (1,−2) (1, 0) Za [126, (18, 1)]

3.2 −180 [dP6] (1,−1) (1, 0)

3.3 −168 (0, 1)18,−2 (1,−1) (1, 0) Za X5 [126, (10, 1)]

3.4 −168 (0, 1)1 (1,−1) (1,−1) → K311,2,62

3.5 −162 [Sym] (1, 0) (1, 0)

(
P2 3

P2 3

)
#7884

[130, §B.2]

3.6 −150 (0, 1)72,1 (5,−1) (5,−1) isoflop X8

(
P2 2 1

P3 3 1

)
#7883

3.7 −150 (0, 1)13 (1,−1) (4,−1) → [P2] X4,2

3.8 −144 (0, 1)3 (1,−1) (1,−1) → K315,3,66
AE
SZ24

3.9 −132
(0, 1)34
(1, 4)−2

(2,−1) (4,−1) flop + Za X5

(
P2 1 1 1

P3 3 1 1

)
#7868

3.10 −132 (0, 1)1 (1,−1) (1,−1) → [4.3]

3.11 −126 (0, 1)9 (1,−1) (2,−1) → [dP6] X3,2,2

3.12 −114 (0, 1)64,27 (7,−1) (7,−1) isoflop X8

(
P2 2 1

P3 1 3

)
#7833

3.13 −108 (0, 1)18 (2,−1) (2,−1) isoflop X3,3

(
P2 0 1 1 1

P5 3 1 1 1

)
#7808

3.14 −96 (1, 2)1 (1,−1) (1,−1) → [5.7a]

3.15 −90 (0, 1)30,3 (3,−1) (3,−1) isoflop X4,3

(
P2 0 2 1

P4 3 1 1

)
#7668

Table 16: Nilpotent rays, boundaries of the effective cone and extended Kähler cone,

allowed flops and conifold transitions for 1,2 or 3-section fibrations on P2. The notation

[dPn] indicates a genus one fibration whose horizontal GV invariants are those of a del

Pezzo surface dPn (similarly for [P2] and [F0]). [K3] indicates a model admitting both a

genus one and a K3 fibration, while [Sym] indicates a model invariant under S ↔ T . The

notation → K3κ,m,c2 indicates a flop transition to a fibration by degree 2m K3 surfaces,

with c111 = κ and c2,1 = c2.
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X χX Nilp. rays Eff.cone Ext.cone Flop Conifold Ref.

4.1 −156 [2.9] (1, 0) (1, 0) double fib

4.2 −140 [K30,2,36] (1, 0) (1, 0)

4.3 −132 (0, 1)1 (1,−1) (1,−1) → [3.10]

4.4 −132 (0, 1)24,−2 (1,−1) (1, 0) Za X4,2 [35, §7.2]
4.5 −132 (0, 1)−2 (1,−2) (1, 0) Za

4.6 −128 (0, 1)16,−2 (1,−1) (1, 0) Za X4,3

4.7 −128 [dP5] (1,−1) (1, 0)

4.8 −124 (0, 1)64,2 (4,−1) (4,−1) isoflop X6,2

(
P2 0 2 1

P4 2 2 1

)
#7853

4.9 −124 (0, 1)2 (1,−1) (1,−1) → K316,3,64 X2,2,2,2

4.10 −120 (0, 1)80,8 (6,−1) (6,−1) isoflop X8

(
P2 2 1

P3 2 2

)
#7844

4.11 −120 (0, 1)12 (1,−1) (4,−1) → [P2] X3,3

4.12 −120 [Sym] (1, 0) (1, 0)

4.13 −116 (0, 1)14 (1,−1) (3,−1) → [F0] X3,2,2

4.14 −112 (0, 1)4 (1,−1) (1,−1) → K320,4,68
AE
SZ25

4.15 −112
(0, 1)44
(1, 4)1

(3,−1) (3,−1) → K328,4,76 X5

(
P2 1 1 1

P4 2 2 1

)
#7821

4.16 −108
(0, 1)34
(1, 3)12,−2

(2,−1) (3,−1) flop + Za X4,2

(
P2 0 1 1 1

P5 3 1 1 1

)
#7807

4.17 −104

(0, 1)1
(1, 1)76,20
(9, 8)1

(7,−8) (7,−8) isoflop

4.18 −104 (0, 1)12 (1,−1) (2,−1) → [dP5] X2,2,2,2

4.19 −100 (0, 1)1 (1,−1) (1,−1) → [5.11ab]

4.20 −100 (0, 1)62,16 (5,−1) (5,−1) isoflop X6,2

(
P2 0 2 1

P4 2 1 2

)
#7758

4.21 −96 (0, 1)3 (1,−1) (1,−1) → [5.9a]
AE
SZ198

4.22 −96 (0, 1)24 (2,−1) (2,−1) isoflop X3.2.2

(
P2 0 0 1 1 1

P6 2 2 1 1 1

)
#7725

4.23 −88 (0, 1)40,4 (3,−1) (3,−1) isoflop X4,2

(
P2 0 0 2 1

P5 2 2 1 1

)
#7643

Table 17: Nilpotent rays, boundaries of the effective cone and extended Kähler cone,

allowed flops and conifold transitions for 4-section fibrations on P2. Notations similar as

in Table 16
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X χX Nilp. rays Eff.cone Ext.cone Flop Conifold Ref.

5.1a −90 (0, 1)50,5 (3,−1) (3,−1) isoflop AE
SZ51

5.1b −90 [dP4?] (1, 0) (1, 0)

5.2a −90 (0, 1)30 (2,−1) (2,−1) isoflop AE
SZ24 [34]

5.2b −90 [Sym] (1, 0) (1, 0) [131, 34]

5.3a −90 (0, 1)15 (1,−1) (2,−1) → [dP4?]
AE
SZ25

5.3b −90 (0, 1)5 (1,−1) (1,−1) → K325,5,66
AE
SZ101

5.4a −94

(0, 1)1
(1, 1)70,11
(7, 6)1

(5,−6) (5,−6) isoflop

5.4b −94 (0, 1)11 (1,−1) (4,−1) → [P2]
AE
SZ210

5.5a −94

(0, 1)2
(1, 1)88,13
(9, 8)2

(7,−8) (7,−8) isoflop AE
SZ27

5.5b −94 (0, 1)13 (1,−1) (3,−1) → [F0]
AE
SZ99

5.6a −94
(0, 1)41
(1, 3)52,1

(11,−4) (11,−4) → [5.6b] X4,2

5.6b −94
(0, 1)52,1
(1, 4)41

(11,−3) (11,−3) → [5.6]a X5

5.7a −96 (0, 1)1 (1,−2) (1,−2) → [3.14]

5.7b −96 (0, 1)−2 (1,−2) (1, 0) Za

5.8a −96

(0, 1)1
(1, 1)26,−2

(4, 3)1

(2,−3) (2,−3) isoflop

5.8b −96 (0, 1)14,−2 (1,−1) (1, 0) Za
AE
SZ109

5.9a −96 (0, 1)3 (1,−1) (1,−1) → [4.21] AE
SZ198

5.9b −96 (0, 1)3 (1,−1) (1,−1) → K321,4,66
AE
SZ193

5.10a −96
(0, 1)16
(1, 3)−2

(1,−1) (3,−1) flop + Za X2,2,2,2

5.10b −96 (0, 1)83,16,1 (7,−1) (7,−1) isoflop X8

5.11ab −100 (0, 1)1 (1,−1) (1,−1) → [4.19]

5.12a −104 (0, 1)22,−2 (1,−1) (1, 0) Za X3,3

5.12b −104 (0, 1)1 (1,−1) (1,−1) → K317,3,62

Table 18: Nilpotent rays, boundaries of the effective cone and extended Kähler

cone, allowed flops and conifold transitions for 5-section fibrations on P2. Nota-

tions similar as in Table 16. The notation [dP4?] refers to a list of GV invariants

{10,−10, 15,−40, 135,−510, 2100,−9280, 43245, . . . } which we tentatively identify as those

of a dP4 surface, complementing the list of vanishing 4-cycles in [27, Table 6].
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AESZ X̃ χX̃ κ c2 X

24 X2,5
O(1)⊕2⊕O(3) [132, 133, 22] −150 15 66 3.8, 5.2a, X

[2,1]
5

25 X2,5
O(1)⊕O(2)⊕2 [132, 36, 22] −120 20 68 4.14, 5.3a,X

[1,1]
5

26 X2,6
O(1)⊕4⊕O(2) [132, 133, 22] −116 28 76 X

[1,1]
7

27 X4,6
S∨(1)⊕O(1) [133] −98 42 84 5.5a

29 X2,5
S∨(1)⊕O(2) [133, 22] −116 24 72 X

[1,1]
6

42 X3,6∧2 S∨⊕O(1)⊕2⊕O(2)
[133, 22] −116 32 80 X

[1,1]
8

51
Smooth d.c. of Fano 3-fold

B5 = X2,5
O(1)⊕3 [36, 22]

−200 10 64 2.6, 5.1a, X
[2,2]
5

99 Pfaffian in P6 [134, 135, 136, 36] −120 13 58 5.5b

101
X3,5

(
∧2 S∨)⊗O(1)

, def. equivalent to

(Gr(2, 5) ∩Gr(2, 5)) ⊂ P9 [137, 133]
−100 25 70 5.3b

109 −120 7 46 5.8b

185 X5,7∧4 S∨⊕O(1)⊕O(2)
[133, 22] −120 36 84 X

[1,1]
9

193 Derived dual of X2,6
S∨(1)⊕O(1)⊕3 [138] −102 21 66 5.9b

198∗ X2,6
S∨(1)⊕O(1)⊕3 [133] −102 33 78 4.21, 5.9a

210 Pfaffian in P6
1111112 [134, 135, 36] −116 10 52 5.4b

4.3.31
Smooth d.c. of Fano 3-fold

A22 = X3,7

(
∧2 S∨)⊕3 [22]

−128 44 92 X
[1,1]
11

Table 19: One-parameter Calabi-Yau threefolds X̃ with mirror periods associated to

non-hypergeometric AESZ [139] operators, obtainable from two-parameter genus-one or

K3-fibered models through a conifold transition. The Euler numbers are related by

χ
X̃

= χX − 2
∑

d≥1GV
X(0)
(0,d) . We use the notation Xk,n

E for complete intersections in Grass-

manians Gr(k, n) and X
[i,j]
m for K3-fibered CY threefolds from [22]. The geometries X̃ were

identified by comparing topological and enumerative invariants after the transition. For

AESZ operators marked with a star, the relevant periods are obtained after a change of

sign of the complex structure coordinate.

E. Some examples over bases with higher Picard rank

In this appendix we will discuss examples of genus one fibered CY threefolds over

bases F0 = P1 × P1, F1 and dP2. Other examples can also be found in [33, Section

5.3], [140] and [34, Appendix D].
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E.1 Elliptic fibrations over Fk

Recall that the Hirzebruch surface Fk is the projectivization of the O(0) ⊕ O(−k)

bundle over P1. We denote by ĎF , ĎB the divisors on F1 that are respectively asso-

ciated to the generic P1 fiber and the base of the P1-bundle. In the basis (ĎF , ĎB),

the intersection form and canonical class are given by

Cαβ =

(
0 1

1 k

)
, cα = (2, k + 2) , (E.1)

such that

Cαβ =

(
−k 1

1 0

)
, cα = (2− k, 2) . (E.2)

Note that F0 is the product P
1 ×P1, and F1 is the blow-up of P2 at one point, with

H = ĎF +ĎB the hyperplane class of P2 and ĎB the exceptional divisor. Fk is Fano

for k = 0, 1 and almost Fano for k = 2. As usual, we denote by S1, S2 the Kähler

moduli associated to the pull-back divisors (DF , DB), and by T the moduus of the

elliptic fiber.

The smooth elliptic fibration over F0, known as the STU-model, has been inten-

sively studied, as one of the first examples of heterotic-type II duality [130, 141, 142,

143] [144, §6.10]. Its Euler characteristic and non-trivial Hodge numbers are

χX = −480 , h1,1 = 3 , h2,1 = 243 . (E.3)

while the intersection numbers are determined by

κ = 8 , ℓα = (2, 2) , c2 = 92 , cα = aα = (2, 2) (E.4)

Denoting S = S2 and U = T + S1, one recognizes the intersection numbers of a

fibration by Picard rank 2 K3 surfaces. The moduli S and (T, U) correspond to the

heterotic axio-dilaton and torus moduli, respectively.

Generating series for low base degree (k1, k2) were found in [144, (6.68)] (although

expressions for k1k2 = 0 were omitted). At genus 0, using the symmetry under

exchange k1 ↔ k2, we have

f
(0)
1,0 = −2

E4E6

η24
, f̃

(0)
2,0 = f

(0)
2,0 = −

E4E6

(
17E4

3 + 7E6
2
)

96η48
,

f̃
(0)
1,1 = −

E4E6

(
67E4

3 + 65E6
2
)

36η48
,

f̃
(0)
1,2 = −

E4E6

(
7751E4

6 + 23178E4
3E6

2 + 5551E6
4
)

6912η72
.
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For primitive base degree, the topological string partition function is recognized as

the elliptic genus of the heterotic string,

ZĎB
(T, λ̌) = ZĎF

(T, λ̌) =
2E4E6

η24ϕ−2,1

. (E.5)

We now turn to the smooth elliptic fibration over F1, or KMV model [27, 26],

studied more recently in [128, §7.3]. Its Euler characteristic and Hodge numbers are

the same as for the STU model, but the intersection numbers are now

κ = 8 , ℓα = (2, 3) , c2 = 92 , cα = aα = (2, 3) . (E.6)

At genus 0, we find

f
(0)
0,1 = −2

E4E6

η24
, f

(0)
1,0 =

E4

η12
,

f̃
(0)
0,2 = f

(0)
0,2 = −

E4E6

(
17E4

3 + 7E6
2
)

96η48
, f̃

(0)
2,0 =

2E4E6

24η24
,

f̃
(0)
1,1 =

E4 (31E
3
4 + 105E2

6)

48η36
,

f̃
(0)
2,1 = −5E4E6 (E

2
6 + E3

4)

288η48
,

f̃
(0)
1,2 =

E4 (15935E
6
4 + 161186E3

4E
2
6 + 70175E4

6)

55296η60
. (E.7)

For base degree (0, 1), the topological string partition function is again the elliptic

genus of the heterotic string, For base degree (1, 0), it is the elliptic genus of the

E-string,

ZĎB
(T, λ̌) =

2E4E6

η24ϕ−2,1

, ZĎF
(T, λ̌) = − E4

η12ϕ−2,1

. (E.8)

E.2 Fibration with 2-section over F0

We now take X to be the geometry (q1, q2) = (4, 3) from [33, Section 5.3], which has

also appeared as X(I0) in [145], as the dual of a CHL heterotic string model.

In terms of the general construction discussed in Section C.2, we choose the base

B = F0 with the bundle V being V = OF0(−2,−1)⊕OF0 → F0. The pullback of the

relative hyperplane class on P(V ) to the double cover gives a 2-section on X and the

fibration does not exhibit a section, such that N = 2. For convenience, we denote by

Ď1 = ĎF , Ď1 = ĎB the divisors on F0 = P1 × P1 that are respectively represented

by the first and the second P1 factor. The Chern classes of the bundle V are

c1(V ) = −2Ď1 − Ď2 , c2(V ) = 0 , (E.9)
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and we have c1(V )2 = 4, c1(V )c1(B) = −6 and c1(B)2 = 8. Using the expressions

from Table 3 we obtain the Euler characteristic and the non-trivial Hodge numbers

χX = −256 , h1,1 = 3 , h2,1 = 131 , (E.10)

as well as the intersection numbers

κ = 8 , ℓα = (2, 4) , c2 = 68 , cα = aα = (2, 2) , (E.11)

and the height-pairing of the 2-section

D = −π∗π∗(DeDe) = −(4D1 + 2D2) . (E.12)

The curves on F0 dual to Ď1, Ď2 are Ď1 = ĎB and Ď2 = ĎF . At genus 0, we

find the generating series of GV invariants of base degree (1, 0), (0, 1) and (1, 1),

f
(0)

ĎB
(T ) = −

2e2,2
(
2e22,2 − e2,4

)
η(T )8η(2T )8

,

f
(0)

ĎF
(T ) = −

32
(
e22,2 − e2,4

)
3η(T )12

,

f̃
(0)

ĎB+ĎF
(T ) =

4(3e32,4 − 4e22,4e
2
2,2 − 3e2,4e

4
2,2 + 4e62,2)

9η(T )20η(2T )8
(E.13)

Using information from genus 1 GV invariants we find the base degree (1, 0) and

(0, 1) topological string partition functions

ZĎB
(T, λ̌) =− 1

96

e2,2
(
e22,2 − e2,4

) (
2e22,2 − e2,4

)
η(2T )24ϕ−2,1(2T, λ̌)

,

ZĎF
(T, λ̌) =− 1

18

∆
1
2
4

(
e22,2 − e2,4

)2
η(2T )24ϕ−2,1(2T, λ̌)

.

(E.14)

We refrain from displaying the base degree (1, 1) topological string partition function.

E.3 Fibration with 3-section over F1

We now take X to be a smooth anti-canonical hypersurface in P2 × F1 with the

induced torus fibration π : X → F1. The hyperplane class of the P2 induces a

3-section on X and there is no N ′-section with N ′ < 3, such that N = 3.

In terms of the construction discussed in Section C.2 this corresponds to the

choice V = O⊕3
F1
, such that c1(V ) = c2(V ) = 0. The modular properties of the

corresponding topological string partition function have been studied for example

in [146].

– 112 –



Using the expressions from Table 3, as well as c1(B)2 = 8, we obtain the Euler

characteristic and the non-trivial Hodge numbers

χX = −144 , h1,1 = 3 , h2,1 = 75 . (E.15)

while the intersection numbers are determined by

κ = 0 , ℓα = (2, 3) , c2 = 36 , cα = aα = (2, 3) , (E.16)

and the height-pairing of the 3-section is

D = −π∗π∗(DeDe) = −(D1 + 2D2) . (E.17)

where D1, D2 are the pull-back of Ď1 = ĎF and Ď2 = ĎF + ĎB and De is the

3-section divisor on X The curves on F1 dual to Ď1, Ď2 are Ď1 = ĎB, Ď
2 = ĎF .

At genus 0, we find the generating series of GV invariants of base degree (1, 0),

(0, 1) and (1, 1),

f̃ĎB
=

9∆
2
3
6

η(3T )12
, f̃ĎF

=
54∆

1
3
6 e

2
3,1e

2
3,3

η(3T )24
, f̃ĎB+ĎF

=
27∆6 e

3
3,3(13e

3
3,1 + 108e3,3)

2η(3T )36

(E.18)

Using information from genus 1 GV invariants we find the base degree (1, 0) and

(0, 1) topological string partition functions

ZĎB
(T, λ̌) = − 9∆

2
3
6

η(3T )12ϕ−2,1(3T, λ̌)
, ZĎF

(T, λ̌) = −
54∆

1
3
6 e

2
3,1e

2
3,3

η(3T )24ϕ−2,1(3T, λ̌)
. (E.19)

We again refrain from displaying the base degree (1, 1) topological string partition

function.

E.4 Fibration with 4-section over dP3

We will now discuss an example where the Kähler cone of the base is not simplicial.

To this end we choose the base to be B = dP3 with b2(dP3) = 4. The del Pezzo

surface is a toric variety and we summarize the toric data in Table 20.

The toric divisors are simultaneously the curves that generate the Mori cone of

dP3, such that Ď′
i = Č ′

i for i = 1, . . . , 6. The intersection number Ď′
i ∩ Č ′

j is the

entry corresponding to the divisor Ď′
i in the linear relation among the points that

corresponds to the curve Č ′
j in Table 20. It is easy to check that in terms of

Ď1 = Č ′
1 − Č ′

2 , Ď2 = Č ′
2 , Ď3 = Č ′

3 − Č ′
2 , Ď4 = Č ′

5 , (E.20)

we have

Č ′
1 =Ď1 + Ď2 , Č ′

2 = Ď2 , Č ′
3 = Ď2 + Ď3 ,

Č ′
4 =Ď1 + Ď4 , Č ′

5 = Ď4 , Č ′
6 = Ď3 + Ď4 ,

(E.21)
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

Divisor p⃗ ∈ ∆◦ Č ′
1 Č ′

2 Č ′
3 Č ′

4 Č ′
5 Č ′

6

Ď′
1 1 0 −1 0 0 0 1 1

Ď′
2 0 1 0 −1 0 1 0 1

Ď′
3 −1 −1 0 0 −1 1 1 0

Ď′
4 −1 0 0 1 1 −1 0 0

Ď′
5 0 −1 1 0 1 0 −1 0

Ď′
6 1 1 1 1 0 0 0 −1

−KdP3 0 0 −1 −1 −1 −1 −1 −1


Table 20: The toric data of dP3.

and the dual divisors Ďi, i = 1, . . . , 4, such that Ďi ∩ Ďj = δji , are

Ď1 =Ď′
2 + Ď′

6 , Ď2 = Ď′
1 + Ď′

5 + Ď′
6 ,

Ď3 =Ď′
1 + Ď′

5 , Ď4 = Ď′
1 + Ď′

2 + Ď′
6 .

(E.22)

We see that the divisors Ďi, i = 1, . . . , 4 form a basis of the Picard lattice as well as a

basis of a simplicial subcone of the Kähler cone of dP3 and we have c1(B) = Ď2+Ď4.

The intersection numbers Cαβ = Ďα ∩ Ďβ are

Cαβ =


0 1 1 1

1 1 1 2

1 1 0 1

1 2 1 1

 . (E.23)

We apply the construction from Section C.4 and choose X to be the 4-section

fibration that corresponds to the bundles

V = O⊕4
dP3

, E = OdP3(Ď2)⊕OdP3(Ď4) . (E.24)

Using the Chern classes

c1(V ) = c2(V ) = 0 , c1(E) = c1(B) , c2(E) = Ď2Ď4 = 2 , (E.25)

as well as c1(B)2 = 6, together with the expressions from Table 3, we obtain the

Euler characteristic and the non-trivial Hodge numbers

χX = −72 , h1,1 = 5 , h2,1 = 41 . (E.26)

as well as the intersection numbers

κ = 2 , ℓα = 2cα = 2aα = (4, 6, 4, 6) , c2 = 44 , (E.27)
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and the height-pairing of the 4-section

D = −π∗π∗(DeDe) = −2(Ď2 + Ď4) . (E.28)

We find the base degree one topological string partition functions

ZČ′
i
(T, λ̌) =

1

217
∆

1
4
8 e

2
4,1

(
e24,1 − e2,2

)
5
(
2e24,1 − e2,2

)
η(4T )36ϕ−2,1(4T, λ̌)

, i = 1, . . . , 6 . (E.29)
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