Preprint typeset in JHEP style - HYPER VERSION

Revisiting the Quantum Geometry of
Torus-fibered Calabi-Yau Threefolds

Boris Pioline! and Thorsten Schimannek?,

L Laboratoire de Physique Théorique et Hautes Energies, CNRS
and Sorbonne Université, Campus Pierre et Marie Curie, 4 place Jussieu,
F-75005 Paris, France

2 Institute for Theoretical Physics & Department of Mathematics,
Utrecht University, 3584 CC Utrecht, The Netherlands

e-mail: pioline@lpthe. jussieu.fr, thorsten.schimannek@gmail.com

ABSTRACT: About ten years ago, Katz, Klemm and Huang conjectured that topolog-
ical string amplitudes on compact, elliptically fibered Calabi-Yau threefolds at fixed
base degree could be expressed in terms of meromorphic Jacobi forms for SL(2,7Z),
giving access to Gromov-Witten invariants at arbitrary genus. This was later gen-
eralized to torus-fibered CY threefolds with N-sections, where topological string
amplitudes are conjecturally governed by meromorphic Jacobi forms under the con-
gruence subgroup I'i(V). In this work, we show that these modularity properties
follow from (and are equivalent to) the wave-function property of the topological
string partition function Zi,, under a relative conifold monodromy, implementing a
particular Fourier-Mukai transformation on the derived category of coherent sheaves.
In particular, we introduce a variant of Zi,, which is both holomorphic and modu-
lar covariant. Under the same relative conifold monodromy, the generating series of
genus 0 Gopakumar-Vafa invariants at fixed base degree is mapped to the generating
series of rank 0 Donaldson-Thomas indices counting D4-D2-D0-brane bound states
wrapped on the torus fiber. We show that the quasimodularity of the generating se-
ries of GV invariants matches the expected mock-modular behavior of the generating
series of D4-D2-D0 indices, despite having different multi-cover contributions. We
analyze and tabulate a large number of CY threefolds fibered over del Pezzo surfaces,
with an N-section for N < 5, including several new examples beyond the realm of
toric geometry.
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1. Introduction

Type II strings compactified on a Calabi-Yau threefold X provide a tractable yet
extremely rich arena to investigate non-perturbative aspects of string theory, with
profound connections to many topics in mathematics including algebraic and sym-
plectic geometry. Topological string theory, obtained by a suitable twist (of A or
B-type) of the superstring worldsheet theory [1, 2], encodes a particular set of pro-
tected couplings in the low energy effective action [3]. Remarkably, it also determines
(at least in principle) the full spectrum of BPS states [4, 5, 6]. Mathematically, the
topological A-model counts holomorphic curves of arbitrary genus in X (more pre-
cisely, computes their Gromov-Witten invariants), while the topological B-model
does not yet have a first principle mathematical formulation beyond genus 0 and 1
(where it reduces to variation of Hodge structure and analytic Ray-Singer torsion,
respectively; see [7, 8] for attempts to define the B-model at all genera). Both models
are related by mirror symmetry, and computable by localization methods when X is
toric (hence non-compact) [9, 10].

When X is a smooth, compact CY threefold, the only currently available method
for computing topological string amplitudes at higher genus, that does not rely on the
existence of a fibration structure, is to exploit the holomorphic anomaly equations [2].
These have to be supplemented by certain boundary conditions in order to fix the



holomorphic ambiguity arising at each genus. Since the number of ambiguities grows
faster than the currently known boundary conditions (including Castelnuovo bounds
at large volume and gap vanishing conditions at conifold points), this puts a bound on
the maximal computable genus, e.g. 53 for the benchmark case of the quintic three-
fold P*[5][11]. Recently, this upper bound was pushed up further for the quintic
threefold and other one-modulus hypergeometric models [12, 13], by exploiting rela-
tions between Gromov-Witten (GW) invariants and rank 0 Donaldson-Thomas in-
variants associated to the derived category of coherent sheaves C = D’ Coh(X) [5, 6],
and enforcing the (mock) modularity of the corresponding generating series of D4-
D2-D0 BPS indices predicted by S-duality [14, 15, 16]. Unfortunately, the infinite
set of additional constraints gained in this way still grows slower than the number of
holomorphic ambiguities. Moreover, despite overwhelming evidence the modularity
properties are still conjectural (see however [17] for some recent progress).

In the case of CY threefolds with K3 or genus one fibrations, one may obtain fur-
ther boundary conditions by exploiting the modularity associated with the fiber. For
example, for CY threefolds fibered by lattice-polarized K3 surfaces, the generating
series of vertical (i.e. zero base degree) Gromov-Witten invariants are known to trans-
form as vector-valued modular forms, being closely related to the Noether-Lefschetz
invariants of the fibration, and can be determined to arbitrary genus [18, 19]. Similar
modularity constraints apply at non-zero base degree, although they are currently
only understood at genus 0 and become increasingly more complicated when the de-
gree increases [20, 21, 22]. Moreover, vertical D4-D2-D0 invariants are determined by
the same Noether-Lefschetz invariants [23], and hence also transform as vector-valued
modular forms, establishing the S-duality predictions in this case.

In this work, we study the case of smooth CY threefolds fibered by genus one
curves'. In this case, it was observed in [24, 25, 26] that generating series of GW
invariants with fixed base degree and genus transform as quasi-holomorphic modular
forms under SL(2,7Z) (in the case of elliptic fibrations), and satisfy holomorphic (or
modular) anomaly equations similar to [2]. Based on this structure, and the duality
with F-theory [27, 28, 29|, it was conjectured in [30] that the topological string
partition function at fixed base degree (but arbitrary genus) can be expressed in terms
of meromorphic Jacobi forms, where the topological string coupling plays the role of
the elliptic parameter. Since the ring of Jacobi forms is finitely generated, this opens
the way to determine the topological amplitude at fixed base degree and arbitrary
genus, provided the order of the poles in the elliptic parameter can be controlled.
While the elliptic transformation property has by now been rigorously proven for
reduced divisor classes in general elliptic fibrations [31], and the holomorphic anomaly

'We reserve the terminology elliptic fibration for a genus one fibration with a section. A general
genus-one fibered CY threefold need only admit a multisection of degree N > 1. We will say that
a geometry exhibits a genus one fibration with an N-section if there is no N’-section with N’ < N.



equations proven in some special cases [32], the modular transformation property
remains conjectural. In [33] these conjectures were extended to the case of genus one
fibrations with an N-section, where the modular group is restricted to the congruence
subgroup I'y (V) C SL(2,7Z) defined in (A.1). It was further observed in [34] that
the topological string partition functions of two smooth genus one fibered Calabi-Yau
threefolds with a 5-section that share the same Jacobian fibration transform into each
other under an Atkin-Lehner involution. More generally, it was proposed that the
topological string partition functions of different torus fibrations that share the same
Jacobian fibration transform as vector valued Jacobi forms under the full modular
group, after taking into account the presence of flat but topologically non-trivial
B-fields that non-commutatively resolve certain singularities [35], see also [36, 37,
38, 39]. This structure has been further clarified and generalized in [40]. Physically,
the vector valued modularity can be understood after relating the topological string
partition function to the twisted-twined elliptic genera of non-critical strings in the
six-dimensional F-theory compactification that is associated to the fibration [35, 41].

Our first main result is to derive the holomorphic anomaly equations and modular
transformation rules for smooth genus one fibrations X = B over a generalized del
Pezzo surface B with A (X)) = h'(B)+1 (in particular no fibral divisors), from the
wave function property of the topological string partition function [42, 43, 44, 45, 46].
Recall that the holomorphic anomaly equations of [2] can be interpreted [42] as
the statement that the full, non-holomorphic topological string partition function
Upcov (%, 1%\, %) can be viewed as the overlap of a background-independent wave
function |Wy,,), living in a finite-dimensional Hilbert space H ~ L?(C*%2)+1) asso-
ciated to the quantization of the even cohomology of X (or middle cohomology of
the mirror X , depending whether one is interested in the A or B-model) against a
family of coherent states ;z(\, z%| parametrized by the background moduli t* spec-
ifying the complexified Kahler or complex structure, respectively. Under a mon-
odromy around the discriminant locus in moduli space, both the state |Uy.,) and
the coherent states ;z(\, x%| transform according to the metaplectic representation
of Sp(2by(X) + 2,Z) = Sp(bs(X), Z), such that their overlap is invariant. In the
limit £* — —ico keeping t* fixed, Upcov (1%, 1%, A, %) reduces to the usual topological
string partition function Zi,,(t*, A). This interpretation was used in [44] to elucidate
the modular properties of topological string amplitudes on local CY manifolds.

In the case of a smooth, compact genus-one fibered CY threefold X with an N-
section, the homology class of the generic fiber is N-divisible. It is therefore natural
to introduce a complexified Kahler parameter T' such that NT' is the complexified
volume of the torus fiber. There is a natural monodromy U, the so called relative
conifold monodromy, which acts on this parameter as T — T'/(1 + NT'), and on the
derived category D’ Coh(X) by a Fourier-Mukai transformation with kernel given



by the ideal sheaf of the relative diagonal [47, 48, 49, 33].2 For N = 1, this can be
combined with large volume monodromies 7"+ T+ 1 to obtain another monodromy
S acting as T" +— —1/T, corresponding to a double T-duality with respect to the
genus-one fiber [51, 52, 53], but in general S is not a symmetry, rather it maps
X to another element in the Tate-Shafarevitch group [54, 35, 40]. Assuming that
Ziop(t*, A) transforms under U according to the metaplectic representation, we shall
derive the Jacobi transformation property of the topological string partition function
at fixed base degree under 7" +— T/(1 + NT), recovering the predictions of [30,
33]. Conversely, this may be taken as evidence that the topological string partition
function (an object whose mathematical definition remains obscure) does transform
according to the metaplectic representation under monodromies. A key step in the
derivation of the Jacobi properties is a new representation of the topological wave
function Zy,0q(t*, A) which is completely free of modular anomalies, and encodes the
‘depth zero’ part of the quasimodular generating series of invariants.

Our second main result is to compute D4-D2-D0 indices (or rank 0 DT invariants)
supported on divisors D = 7*(D) pulled back from the base (i.e. D4-branes wrapped
both along a basis divisor D C B and the generic genus-one fiber) by applying the
same monodromy U to vertical D2-D0 branes. This generalizes the work [26] to
arbitrary genus one fibrations without fibral divisors. In particular, we show that
the holomorphic anomaly equations satisfied by generating series of genus 0 GW
invariants at fixed base degree agree with the modular anomaly equations satisfied

by rank 0 DT invariants, even though multicover effects are different on both sides.

The rest of this work is organized as follows. In §2 we set up notations and
review basic facts and conjectures about various enumerative invariants of genus one
fibered CY threefolds. In §3, we focus on base degree zero Gromov-Witten invari-
ants, which are entirely determined by the Euler numbers of the threefold X and the
base B and by the multiplicities N of fibral curves that intersect the N-section k
times. We express the resulting generating series as linear combinations of Eisenstein
series of ['1(/V), and (in the genus 0 and genus 1 case) holomorphic Eichler integrals
thereof. These results rely on Proposition 1 as well as the Lemmas 4, 5 and Theo-
rem 1, the proofs of which are relegated to Appendix A. In §4.1, after reviewing the
wave function property of the topological string partition function, we compute the
monodromy matrix implementing the Fourier-Mukai transformation with respect to
the ideal sheaf of the relative diagonal, and spell out the resulting transformation
properties of the generating series of Gromov-Witten invariants at fixed base de-

2The usual conifold monodromy, around the locus where the central charge of the 6-brane van-
ishes, corresponds to the Fourier-Mukai transformation with kernel given by the ideal sheaf of the
diagonal A € X x X [50]. The relative conifold mondromy arises around the component of the
discriminant (in the stringy Kéhler moduli space of the Calabi-Yau) where the central charge of
a 2-brane wrapping the torus fiber vanishes and the Fourier-Mukai kernel is the ideal sheaf of the
relative diagonal A C X xp X. For a gentle introduction we refer to [33, Section 3.2-3.3].



gree. For vanishing base degree, we recover the anomalous transformation properties
following from the Eichler integral representations obtained in §3. We introduce a
new ‘modular polarization” where modular anomalies are absent, and use it to estab-
lish the Jacobi properties of the normalized topological string partition function at
fixed base degree. In §5, we study the implications of the invariance under the rel-
ative conifold monodromy on Donaldson-Thomas invariants (assuming the absence
of wall-crossing). In this way we obtain (heuristic) derivations of the elliptic prop-
erty of the generating series of PT invariants, of the periodicity of base degree zero
GV invariants, and of the S-duality property of generating series of MSW invariants
counting D4-D2-D0 branes wrapped on the genus fiber (times a fixed divisor on the
base). In §6 we summarize and discuss a few open questions. The remainder of this
long paper consists of a suite of appendices collecting background material, technical
computations and lots of examples. In §A, we discuss Eisenstein series for I'; (V) and
prove new results for their transformation under Fricke involutions, expressions in
terms of polylogarithms and their holomorphic Eichler integrals. Further details on
the evaluation of the action of the relative conifold monodromy on the Chern classes
of branes are provided in §B. In §C, we discuss the construction of generic genus one
fibrations over generalized del Pezzo surfaces with N-sections for N < 5 and provide
general expressions for their topological invariants (summarized in Table 3). A large
set of examples of generic genus one fibered CY threefolds over P? with hl! = 2 is
collected /constructed in §D, while some examples over other del Pezzo surfaces are
discussed in §E.* In both cases we also provide tables of modular generating series
of GW invariants at base degree 1 and 2.
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cess, a CC-BY public copyright licence has been applied by the authors to the present
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2. Preliminaries

In this section, we first set up notations and review basic properties of enumera-
tive invariants and topological string amplitudes on a general smooth projective CY

3The topological invariants of 72 genus one fibrations over P? are summarized in Tables 5, 8, 11
and 13, and are collected in a Mathematica worksheet available with the source code on arXiv.



threefold X. We then review some of the special properties that have been conjec-
tured to arise in the genus one fibered case.

2.1 Prepotential, topological free energies and Gromov-Witten invariants

Let us denote by {C%}, a = 1...0y(X) = R (X) a basis of effective curves in
Hy(X,7), {H,} the dual basis in Hy(X,Z) such that H, N C® = 6°, by Kape = H, N
Hy N H, the triple intersection numbers, and by ¢, = f H, co(TX) the intersections
with the second Chern class.

At two-derivative order, the low energy effective action describing type ITA string
compactified on X in the vector multiplet sector is determined by the tree-level
prepotential F(O(XA) = (X©)2F(t%), a holomorphic homogeneous function of degree
2 in local coordinates XA A = 0,1,...,by(X) where t* = X%/ X% a=1...by(X) are
the complexified Kahler parameters, such that the complexified Kahler form reads
w=t*H, with Im?* > 0 (here and below, we use the same symbol for an element in
H,(X,7Z) and its Poincaré dual in H%7?(X,7Z)). * In the large volume limit t* — ioco,
one has 5

1 1 2 a
FO () = 6(27ri)3/-cabct“tbtc = 5¢@)xx + > GW) et (2.1)
Ba>0

where GW(ﬁ? are the genus 0 Gromov-Witten invariants counting rational curves in
X of homology class 5,C® (with §, > 0 meaning that 5, > 0 for all a = 1...by(X),
not all vanishing at once). The homogeneous prepotential F'(*) can be understood as
the generating function of a Lagrangian subspace Fjy = 0y F(© inside the complex
vector space C?2(X)+2 ~ [feven( X C) with coordinates V = (Fy, X*) equipped with
the symplectic form w = dX* A dF). As a result, under a monodromy

E)e-EHE). e

where A, B, C, D are square matrices of size by(X) such that
ATD-Cc'B=1, A'C=C"A, BD"=D'"B, (2.3)
the prepotential transforms as [55]

F(XM = FI(X™) = F(XY) — S(XA, X™) (2.4)

41f the Kahler cone is non-simplicial, then H, have to be choosen such that they generate
H?(X,Z) and Imt® > 0 is a simplicial sub-cone of the Kihler cone.

SHere we use a non-integral basis, referred to as primed basis in [46], that differs slightly from
the integral basis typically used in the topological string literature, but which allows to get rid of
quadratic and linear terms in t*.



where, assuming that the matrix C' is invertible,

1

1
S(XA, XM = —5)@(6*—11))@)(E + X200 X"

§X’A(AC‘1)AZX’E (2.5)

satisfies OxaS = Fy,0xnS = —F}, such that the r.h.s. of (2.4) is extremized with
respect to XA,

At higher order in the derivative expansion, special protected couplings are gov-
erned by the topological free energies F(9)(t%,¢*). These observables are not holo-
morphic, but satisfy holomorphic anomaly equations which will be reviewed in §4.1.
The holomorphic free energies F(9) := (X°)2729 F(9)(1%) are defined as the holomor-
phic limit #* — —ico keeping t* fixed. Near the large volume point, the F¥)’s are
determined by the Gromov-Witten invariants GW(BQG) counting stable maps from a
curve of genus ¢g into X with image in the class 5,C%, up to a classical, linear term
at genus 1, and a constant map contribution at genus g > 2,

2 3 a
FO () lecz W10+ Z GW e2mifat®
Ba>0
<_1)g_1BQQB2g—2
(29)(29 —2)(29 — 2)!

(2.6)
Fl922) (t) =

Xx + Z GWéga)ezﬂiﬁ“ta

Ba>0

The topological string partition function on X is defined as a formal asymptotic

series
Zoop (19, N) 1= A0 1 eZgzo AT FO0) (2.7)

where A is the topological string coupling. We note that the yy-dependent terms
are all captured by a power of the MacMahon function®

M) =] —e*)*

k>1

63 1 2gBog—oX2972
— exp _i_?uﬁlog(_A )+ 3yt Bt

)(29—2)(29—2)!
g>2

(2.8)

In §4.1 we shall explain that Zi,, transforms as a wave-function under monodromies
in Kahler moduli space, hence specifying the transformation properties of the respec-
tive holomorphic free energies F'(9).

GW invariants are in general rational numbers, but can be expressed in terms
of the integer-valued Gopakumar-Vafa (GV) invariants GV(B? by the multi-cover

6The asymptotic expansion of the (logarithm of the) MacMahon function was first worked out
in [56, (E.32)], and later rederived in a much simpler way in [57, (4.37)]. The two expressions agree
after correcting ¢’(1) into ¢'(—1) in [57, (4.37)], and using the identity log(27r) — 5= (2)+ 5vE =
—{'(-1) + 1—12 There remains a discrepancy by the additive constant
missed in [56].

12, which was apparently



formula [58, 59, 60]

00 co 00 (9) 29—2

E E GW(Q) e?ﬂ'iﬁata )\29—2 _ § E E Gvﬁi |:2 Sin (@) :| g 627Tik,3ata (2 9)
Ba - k 2 *

9=0 Ba>0 9=0 k=1 >0

At genus 0, this reduces to the standard multicover formula for rational curves
Gng) =5 dlB d%GV(ﬁ?/ 4~ While GW invariants are supported on the Mori cone
Bq > 0, GV invariants are typically supported on a smaller cone, sometimes called
the ‘infinity cone’ [61], up to a few so-called nilpotent rays, which by definition sup-
port a finite number of non-vanishing genus 0 GV invariants. The infinity cone is
given by the intersection of the Mori cones of all CY threefolds birationally equiv-
alent to X, obtained by flopping the curves associated to the nilpotent rays, see
[61] for a more precise statement. Moreover, for fixed class [, GVéga) vanishes when
G > Gmax(Ba) 1s large enough [62].

2.2 BPS states and Donaldson-Thomas invariants

BPS states correspond to stable objects E in the bounded derived category of coher-
ent sheaves C = D’Coh(X). This category is graded by the Chern character ch(E),
related to the electromagnetic charge v = (p°, p% ¢4, qo) (in the ‘primed basis’, see
footnote 5)

p° = chy, PGZ/ chy, Qaz—/ (Ch2+%(3ho), QOZ/(Ch:%‘FCQ(zZX) chy),
o ; X

(2.10)
such that the following quantization conditions are satisfied:

0 a C2:a 0 1 b _c CQ,UL a
7, o €7 — 220" — —koup"p", 7, — 22 2.11
plp" €L, g, € oy P~ gl P’ Qo € R4 (2.11)

We denote by T' ¢ Q%2(X)+2 the lattice specified by these quantization conditions,
and by v = (p°, 0% qu, qo) a generic lattice vector. I' is equipped with an antisym-
metric integer pairing, known as the Dirac-Schwinger-Zwanziger product, or Euler
form,

(7:7) = g0 + 4ap"* — 40" — qop° (2.12)
Donaldson-Thomas invariants depend on a choice of stability condition o = (Z, A),
where Z is a central charge function and A4 an Abelian subcategory of C, determined
locally by Z, satisfying various axioms. Physical stability conditions are those where
the central charge is determined by the tree-level prepotential,

Zi(7) = qo + qat® — p "0 FO — p"2F — 1°0,. F) (2.13)

such that |Z;(y)| measures the mass of a BPS state with electromagnetic charge ~.
In the large volume limit t* — ioco, Z; is determined by the Chern character of the



object F,

e(TX )> (2.14)

Z(E) ~ /X e " He ch(E) (1 + =5

up to terms proportional to ((3)yy, arising from O(a’)? corrections in string theory,
and up to exponentially suppressed terms as t* — ioco, corresponding to worldsheet
instanton corrections. We choose an Abelian subcategory A, compatible” with Z,,
and denote by €2;(v) the Donaldson-Thomas invariant counting semi-stable objects of
charge « for the stability condition o, = (Z;, A;). When oy is generic, this is an integer
number, corresponding physically to the index counting (with signs) BPS states of
charge v € T'. We further define the rational DT invariant Q;(y) = > dy d=2Q4(v/d),
which has simpler behavior under wall-crossing [63]. Importantly, €;(y) and its
rational counterpart are invariant under complex structure deformations, and under
monodromies in Kahler moduli space, in the sense that

Qo (7) = Qgo(v- 9) (2.15)

where ¢ - 0 is the action of the auto-equivalence g € Aut(C) implementing the mon-
odromy (acting conventionally from the left on o), while v - ¢ is its action on the
charge row vector (acting conventionally from the right). In particular, €(v) is
invariant under the large volume monodromy

1
PPl pt e pt 0%, u o — Kaped"€ — ip%abcebec,
1 1
Qo — qo — Qa€” + §/<cabcpaebec + éponabcebecec (2.16)

provided the Kéhler moduli (and the corresponding stability condition) are shifted
as t* — t% + € (for any €* € 7). DT invariants may however jump on certain walls
of marginal stability where the phase of Z;(F) aligns with the phase of one of the
subobjects of E. In particular, the r.h.s. of (2.15) need not be equal to Q,(7y - h).

For p° = p® = 0, the invariant Qa_,i00(0,0; 8, = ¢a,qo) counting semi-stable
sheaves supported on the effective curve C' = 3,C* is expected to be independent
of qo, and to coincide with the genus 0 Gopakumar-Vafa invariant G\/g{? [64]. Note
however that its rational counterpart 2o (0,0;¢q, qo) i not independent of the
DO0-brane charge (or Euler number of the sheaf) gy, and differs from the genus 0 GW
invariant due to different multi-cover effects.

For p° = —1,p* = 0, the invariant Q,_, /s, (—1,0; 8, + S5, —m) in a suitable

large volume, large B-field limit coincides with the invariant PT(f5,, m) counting

"Such an Abelian subcategory, or more precisely heart of t-structure, exists provided X satisfies
the Bayer-Macri-Toda inequality, which remains conjectural for the CY threefolds of interest in this
paper. See [12] for references and introduction to stability conditions on CY threefolds aimed at
physicists.

— 10 —



stable pairs E : Ox = F where F is a pure one-dimensional sheaf with chy(F) =
B,C* and x(F) = m, and s is a section of F' with zero-dimensional kernel [65]. PT
invariants vanish for m < 0, and are related to GV invariants via [5, 66]

Z PT(B,, m) e*™Fat"q H H o) 27r15ata)kGV(0)

Ba>0,m Ba>0 k>0
H Qmﬁﬁ 2ﬁ2 , , (_1)o+e (2972)0{\/(;) (217)
% 1—(— g 71627ri at“) ¢ a
Ba>0 g=1 =0

Upon identifying q = —e™, the right-hand side is recognized as the topological string
partition function, up to a power of the MacMahon function and a polynomial term
coming from classical contributions at genus zero and one,

Zeop(t%,X) = M(N) 5 Moot N PT(, ) 2t +imd (2.18)
/Baﬂn

2.3 Modularity of D4-D2-DO0 indices

In general, the generating series of rational D4-D2-D0 indices with fixed D4-brane
charge p* associated to an ample divisor class D, = p®H, and D2-brane charge f,,
evaluated in the so-called large volume attractor chamber,

hP;M(T) = Z ﬁp;u(éO) e 2miTdo (2.19)
i< X(Pp)
90="31

transforms as a vector valued mock modular form of weight —1— @ under SL(2,7)
(67, 68, 15, 14, 69] (see [70, 71] for early work on this topic, and [72] for a recent
review). Here ¢y is the invariant DO-brane charge

. 1,
G = — 5 "Gaty (2.20)

where k% is the inverse® matrix to kg, = KeeD®, o labels the coset in A*/A (of
cardinality | det (kqp)|), with A = H?(X,Z), such that

1
Qo = Mo + ’fabeb + §Habcpbpc (221)

and x(D,) = KapeD P"p° + C2,ap® is the Euler number of a divisor D, with class p.
More precisely, there exists a canonical completion

p(T) 1= )+ Z Z L ({5}, ) e inT Qn({%:}) H P (T (2.22)

n>27 Etl_l;)/z =1

=)

8When D, is ample, the matrix 4, has signature (1,b9(X) — 1) and is invertible by the Hodge
index theorem.
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where 5 = (p%, q,) denotes the vector of D4 and D2 charges, @, is a quadratic form
of signature ((n — 1)(be(X) —1),n — 1),

Qu({%}) = £%uts = Y K G0t 0 (2.23)
i=1
and R, ({¥i}, ) a sum of products of generalized error functions and derivatives
thereof [73, 74, 75], such that ﬁp;u transforms as a vector valued modular form with
weight —1 — @ in the Weil representation of A*/A. In particular, under the
S:7+— —1/7and T : 7+ 7 + 1 transformations, it transforms by the matrices [14,
Eq.(2.10)] (see also [76, 77, 78, 79])

M;w(T) 7F1<H+ ) —l—12 c2,ap” 5

e
2.24
MV(S) ( 1) (bQ(X) 2) e —2mip-v ( )

VA A| ’
where p - v = k%41, 6, is the Kronecker delta on the discriminant group A*/A,
and x(Op,) = 3(b3 (D,) + 1) is the arithmetic genus given by
1 a, b, c 1
X(ODp) 6 KabeD DD+ E C2 ap (225)
While the modular completion (2.22) is not holomorphic, due to the kernels R,, ({¥;},
its 7-derivative is simply determined by the modular completions of the generating
series of the constituents, as

=5 Y Gt @ @CD [T hyul(r)  (2.26)
n22 =311 i i=1
where the kernels 7, ({%;},72) are again sums of products of generalized error func-
tions, this time leading to a modular theta series, consistent with the fact that 730
raises the modular weight by 2 units.

Up to now, we assumed that the quadratic form k., = Kuep® was invertible, and
that the vector p® had positive norm, rqp®p® > 0. Both conditions are automatically
satisfied when the divisor class p®H, is ample (see footnote 8), however they fail for
the D4-D2-D0 indices related to D2-DO0 indices by a relative conifold monodromy, as
we shall see in §5. Generalizations of the modularity constraints were conjectured
in [80] in the case where kg, is degenerate, and in [72] in the case where the vector
P
while pointing out that it is an open problem to characterize the modular properties

is isotropic, kep®p’ = 0. We now briefly summarize the resulting prescriptions,

of generating series for arbitrary, non-ample effective divisor classes.

Starting with the case where k,;, is degenerate, let {\?} be a set of null vectors,
ie. KpA? =0, and A, C A the sublattice orthogonal to these vectors,

1
Ay ={g. € 7" ¢ 5 Kapp? @ A%qa = 0. (2.27)
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We now introduce the pseudo-inverse quadratic form? x® defined by the conditions
i) rank(s*) = rank(ka), i) £%ke = 0f — >, €M) where e is the inverse of
est = »_, A2A?. Then the claim of [80] is that, upon replacing A by A, and by(X)
by rank(A,), all results previously stated for ample divisors continue to apply. In
particular, the modular weight of the generating function is now —1 — irank(A,). In
the special case where p® itself is a null vector (i.e. kqp® = 0), as happens in the
case of vertical D4-D2-D0 invariants in K3-fibered CY threefolds [22], the modular
anomaly turns out to be absent, so that /ﬁpw coincides with h,,,, for any p, reducible
or not.

Next we turn to the case where p® is an isotropic vector, kgp®p® = 0 with
Kap being non-degenerate. In this case, the modular anomaly is still present but it
significantly simplifies. For simplicity, we assume that p® lies along the boundary
of the effective cone, such that the only allowed splittings involve collinear charges,
p¢ = r;pd where pg is a primitive vector with p3 := kapeplphps = 0. In this collinear
case, only binary splittings occur on the r.h.s. of (2.26) [14, 5.2]. The isotropic case
ps = 0 can be obtained as a limit ¢ — 0 of a positive vector p. = pg + evi, where vy is
any lattice vector with positive inner product & := pg - v; > 0. While the coefficient
Jo is in general proportional to \/p_z’, which vanishes in the limit ¢ — 0, it also
involves a theta series which diverges in the same limit. In [72, §D], it is shown that
the result is finite in the limit ¢ — 0, and given by

~ 1 ~ ~
2 _
T2 aﬂ_'hTPO:H = L E t77’1,7’2 hmpo,u hT2P0,/l (228)
1671
r=ri1+ro
where
ng—1
(€r12) 1

_, > 5 Yo 9 . 2.29
k77”1,7"2 0 H—p1—p2€roho PO'(H!2+7‘12QE\) #%2+T12Q‘J“_ ( )

p1EAT /A1 2 €A5 /A2 A=0

Here rg = ged(rq,r2), r12 = “52; A is the lattice A equipped with the quadratic form

.
Ko.ab = KabeD§, A1 and Ao are the same lattices with quadratic form rescaled by r and

r9, respectively; the lattice Ap) is the two-dimensional sublattice of Ag spanned by
(po,v1), and Ag is its orthogonal complement; the glue vectors (gﬂl, gi),A=1,...n,
generate the quotient Aq/ (A|(|) ® Af), and 5%V is the Kronecker delta on Zy, equal

to 1if m =0 mod N and 0 otherwise. Finally, the factor p; is defined as

1
7o 12,0 = T2f1,0 — T1H42,a + T172K0,ab (Pl{ - pS + 5(7’1 - 7’2)]98) ) (2.30)
where p{, p5 are any integer solutions of
fa — P10 — H2,0 + T172K0,a0Ph = Ko, (T10] + T2p5) (2.31)

9This is also known as the Moore-Penrose inverse.
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(which exist by virtue of the condition u — p; — ps € rolAg). While these various
definitions depend on the choice of vectors vy, p1, p2, the final result does not. Of
course, it is advisable to choose v; in such a way that the number of glue vectors is
minimal. In the case of interest in §5, we shall have to deal at the same time with a
degenerate quadratic form k., and an isotropic vector p?, but the lattice Ag will be
null such that the theta series 19}?2 Frisgh will actually be a constant.

2.4 Genus one fibrations and Jacobi forms

We now assume that X is a CY threefold with a torus fibration F' — X = B over
a generalized del Pezzo surface B. By this we mean that B is either P! x P!, the
Hirzebruch surface IFy or an iterative blow-up of P2 in k = 0, ..., 8 points that are not
necessarily generic but do not lie on any curve of self-intersection —2. For simplicity,
we shall focus on sufficiently generic fibrations such that by(X) = by(B)+1. 19 We also
assume that the complex structure is sufficiently generic, such that the discriminant
divisor in B is reduced and irreducible and has at most isolated nodes and cusps as
singularities. For a more detailed discussion of such geometries, see [40, Section 3].

Let us first introduce some terminology. A divisor S is called an N-section if
7(S) = B and there exists a dense open subset U C B such that S }U is an N-sheeted
branched covering of U. This implies that FF' NS = N. We further assume that
the covering is irreducible and refer to divisors that are unions of N;-sections with
> Ni = N as pseudo N-sections. A 1-section is just a section.

If the fibration has a section it is called elliptic. On the other hand, if it only
exhibits an N-section — and there are no N’-sections with N’ < N — we refer to it
as a genus one fibration with an N-section. We use the term torus fibration if we
want to remain agnostic about the existence of a section. Every torus fibration has
an N-section for some N € N.

We choose a basis {D% a = 1,...,by(B)} of effective curve classes on B, with
intersection form C* = DN D?, and denote by D, = C,3D’ € Pic(B) the dual
basis such that D*N Dy = 05 (here Cyp is the inverse of C; note that det C,5 = 1
as the lattice Hy(B, Z) is self-dual). If the Kahler cone of B is simplicial, we assume
that the divisor classes D, form a basis. If it is not simplicial, we assume that the

D,, span a simplicial sub-cone of the Kéahler cone and that all integral divisors inside

the Kéhler cone are linear combinations with integer coefficients of the D,’s. We
denote by ¢;(B) = aoD* = a®D,, the first Chern class of B.

A basis of effective divisors {D,} = {D.} U{D,,a =1,...,02(B)} in Hy(X,Z)
can be assembled by combining the class of the N-section D, with pullbacks D, =

10This implies in particular that the fibration does not exhibit any fibral divisors, that resolve
singularities over one-dimensional components of the discriminant locus, or additional N-sections
that correspond to a non-zero Mordell-Weil rank of the associated Jacobian fibration.
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(D) of effective divisors on the base. By construction, the divisors D,, have van-
ishing intersections, D,NDgND., = 0, while their intersection with D, is proportional
to their intersection on the base, D. N D, N Dg = NC,g. We denote the intersection
numbers by Kqpe := D, N Dy N D, and introduce k, £, such that

K= Reee s, Lo = FKeea, HKeap=NCop, FKagy =70 (2.32)

and denote the integrals of the second Chern class ¢2(7X) on (D, D,) by

1
Co = Cope, Cq = 1_2027a . (233)

In fact, the coefficients ¢, appear to be always equal to the coefficients a, of the
anti-canonical class on the base, but since we are not aware of a proof in general, we
use a different notation. ' Importantly, while the divisors D, are always nef, and
D, is always effective, D, is not necessarily nef. One can however always shift it by a
linear combination D, — D, + n“D,,, such that the resulting divisor is nef and such
that {D., D,} generates the nef cone (defined as the closure of the Kéhler/ample
cone). Under this shift, the intersection coefficients (2.32) transform as

by V> Lo + QNCagnﬁ, K k~+30,n" + 3N0a377a176 , (2.34)

leaving the following combinations invariant,

Ki=K— %EQCQB&;, Cy 1= Cy — %caﬂa . (2.35)
We will refer to curves that are supported on a single fiber of the fibration as
fibral curves. The fibers of the fibration are irreducible except for Ir-fibers over
isolated points of the base. The Is-fibers consist of two rational curves that intersect
transversely in two points. We denote by Ny, k=1,..., N — 1 the number of fibral
curves that intersect the N-section k times. By comparing the Chern-Simons terms
of the corresponding F- and M-theory vacua, it was conjectured in [40, Conj. 3] that
the invariant combinations (2.35) are determined in terms of these numbers by

N-1
= HTTXBNS - SL K(N — k)N,
k=1
s (2.36)
> = 4(15—xB)N — N 2 k(N — k)N,

HFor elliptic fibrations with a section this is proven for example in [81, Appendix D] and for
certain genus one fibrations with N-sections a proof can be found in [33, Appendix B]. A sketch
of a more general proof is discussed in [40, Section 3.3] and a physical derivation can be found
in [40, Section 4.5] by comparing the Chern-Simons terms of five-dimensional F- and M-theory
compactifications.
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Moreover, the N, ’s along with the Euler numbers x x and x g determine all non-trivial
Gopakumar-Vafa invariants at base degree zero [82]'%]

GViviko, = Neo GVlyne, = —Xx: GVilio, =xp  (237)

forallmeN, k=1,..., N —1. Moreover, the following sum rule

N
> GV, =60(12 - yp) . (2.38)
k=1

is required by the cancellation of gravitational anomalies in F-theory [84]. For N = 1,
this sum rule reduces to xyx = —60(12 — xp). Since the base is a rational surface,
we also have xyp = 12 — a,a”.

Now, we denote by {C*} = {E}U{C* a =1,...by(B)} the basis of curve classes
in Hy(X,Z) dual to {D,}, such that

END.=1, ENDy=C*ND,=0, C*NDy=6. (2.39)

The curve class C°¢ := & is related to the class of the generic fiber F' via F' = N&
such that F'N D, = N, consistent with the fact that D, is the class of the N-section.
The curve classes C* are linear combinations of [’ and of the intersections D, N D,
1 l
C*==0(D.nNDs—L2F). 2.40
ve (. or) (2.40)
Note that C* is an integral class, despite the factors of 1/N appearing in this ex-
pression. For N = 1, i.e. in the presence of a section o, the intersection D.D, is
identical with the embedding o(D,) of the curve on B, but differs from C,sC” by a
multiple of the fiber class.

As in §2.1, the Kéhler form w can be expanded as a linear combination of the
Poincaré dual of the basis of divisors {D., D, },

w=TD,+ 5D, . (2.41)

In order to state the modular properties of the generating series of Gromov-Witten
invariants, it is useful to expand w in a different basis {D. := D, + ﬁD, D,} where
D is the pull-back of the so called height pairing [30, 33],

D = —71*1.(D.D,) = —£,C* Dy , (2.42)

12This statement generalizes [83, Thm 6.9] to the case of torus fibrations. We do not know of
a rigorous mathematical proof in general, but we shall give a heuristic argument of the mod N
periodicity of GVS% using invariance under the relative conifold monodromy in §4.3.
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and parametrize instead the Kéhler form as
2 Qo Qo e T af
w=TD,+ S“D,, S*:=8 +ﬁ0 lg. (2.43)

Although D, is in general not an integral class, it is worth noting that it is invariant
under shifts D, — D, — n®D,, accompanied by the corresponding change (2.34) in
the intersection numbers. In fact, the invariants k and ¢, respectively are the self-
intersection D? and second Chern class D, N ¢y(TX) for the non-integral class D,
which satisfies De N [)6 NnD,=0.

In terms of the parametrization (2.43), one may define generating series of
Gromov-Witten invariants at fixed genus g and base degree k,

(0) (9) ot (n- 251 )
T, (T) = Z GW, cosnp€ (2.44)
n>0
(where the sum over n is bounded from below) such that
FO(T,5%) = FNT, 5% + 3 fO(T) e*rkes” (2.45)

ka>0

where the first term is the contribution of the non-constant polynomial terms that
arise at genus zero and one. In [24, 26, 25], it was observed in a few examples that the
generating series are quasimodular forms of weight 2g —2. A more precise statement
was conjectured for elliptic fibrations in [30], and generalized to torus fibrations
in [33],! in terms of the coefficients Z_ (T, \) appearing in the Fourier expansion of
the topological string partition function Z,, with respect to §°‘, normalized by the
base degree 0 contribution,

Zoop (S, T, \)

—1 Zi (T \) e2™5%ka 2.4
ZO(T,)\) + Z ka( 7)‘)6 ( 6)

ka>0

It will be convenient to use the notations Z;, and Zy interchangeably, where H =
koD is an effective divisor class on the base B. Using (2.18), Zy(T, \) can equiva-
lently be defined as the generating function of PT invariants with fixed base degree
H, normalized by the generating function of PT invariants with zero base degree,

PTka (T7 )‘)

Z. (T \) =
k(T ) PTo(T,\)

(2.47)

. 00, COPE )
PTka (T7 )\) - Z PT(kaCa + nF, m) 6271’1(71— 2N 5 )T+1m)\ .

n,m

13Generalizations for elliptic fibrations with fibral divisors and/or non-zero Mordell-Weil rank
have been proposed in [85, 86, 87] and were also extended to genus one fibrations in [33].
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For base degree zero, the only non-vanishing GV invariants are those listed in (2.37),
so the GV/PT relation (2.17) gives

PTo(T, \) = [ J(1 — &™) ~x»

n>0

N-1 © (2.48)
« H (H H (1 _ (_1>k627ri(,u+nN)T+ik)\)(lH-nN)GV#,o) '

pn=0 \k>0n>0

In terms of the normalized generating functions (2.47), the statement of [30, 33]
is that Zy (T, \) should be a meromorphic Jacobi form of weight 0 and index hy — 1
under the congruence subgroup I'y(N) C SL(2,7Z) defined in (A.1), where

1 1
hup =145 H N (H—c(B) =1+ 5/gacaﬁ(zcﬁ —cp) (2.49)

is the arithmetic genus of the curve class H. This entails several properties of
Zy (T, \) that are most conveniently formulated using X := \/(27) and slightly abus-
ing the notation:

i) Periodicity under A — A+1 and T +— T +1 (up to a phase), which is manifest
from the definition (2.47).

ii) Quasi-periodicity under A — A + mNT for any integer m € Z,
Zy(T, A+ mNT) = ¢ 2ri(hn -0 NT+2m3) 7, {y (2.50)

This was proven in [31] for elliptic fibrations (N = 1) and reduced'* H, but
remains conjectural in general. Note that one could rescale A\ — \/N so as
to enforce quasi-periodicity under A — A +mT, at the expense of introducing

fractional powers of e?™*,

iii) Modular invariance under the generator < ]i, ?) of 't (N),

T h . X2 .
Z — e 2=V 8r 7 (T, N) . 2.51
H(1+NT’1+NT) ¢ T Zu(T,A) (2.51)

iv) For N > 5, similar relations as (2.51) under the remaining generators of I'; (V).
Sets of generators for N = 5,6, 7 can be found in Table 1 on page 58.

We note that ii) follows from i) and iii), for which there is considerable evidence in
explicit models but no mathematical proof yet. In fact, the conjectures in [30, 33]

41e. for any decomposition H = Y H; into effective classes, all H,’s are primitive.

— 18 —



go beyond these Jacobi modular properties, and provide an Ansatz specifying the
analytic structure of Zy (T, \), namely

3 A #
Zu(T, X) = - jf;) )x -
n(NT )12l H 15, 001 (NT, s))

where 7(T) = ¢*/** T](1—¢") with ¢ := €*™7 is the Dedekind eta function, Agpn (7)) is
a specific modular form of weight 2N under T'y(N), ¢ _21(T, z) = =01 (T, 2)*/n°(T)
is a weak Jacobi form of weight —2 and index 1, and @z (T, \) is a weak Jacobi form
of suitable weight and index,' such that (2.52) has weight 0 and index hy — 1, as
specified in (2.49). The modular form A,y (7)) is given explicitly by!®

o (T, \) (2.52)

Aon(T) = e ™Mo o (NT,T) 7"

{ q(1+8+...) N=2 (2.53)

N=1(142Ng+...) N>3

while the exponent ry is determined modulo N by
1 1
ry = §[N201(B) —n(D)]N H mod N = §(N2ca +0,)C%ks mod N, (2.54)

Upon Laurent expanding around A = 0, these properties automatically imply that
the generating series (2.44) are quasimodular forms of weight 2¢g — 2 under I';(N),
which furthermore satisfy a holomorphic anomaly equation of the form

1 ) 1 _
O ST == 52 > (H O H) A = o H O(H = e(B)) £
A,
(2.55)

where the second term is absent for g = 0. For N = 1, this recovers [25] [32, §3.6].

3. Base degree zero modularity and Eichler integrals

In this section, we derive general modular expressions for the base degree zero contri-
butions fég ) (T') to the topological string free energies, based on the simple structure
of the vertical GV invariants summarized in (2.37). This completes and generalizes
the results from [30, Section 4.5] for N = 1 and [33, Section 4.3] for N = 2,3,4,6
to the case of genus one fibered Calabi-Yau threefolds with N-sections for arbitrary
N. These results will also serve as consistency checks for the general transforma-
tion properties of the topological string partition function that will be the subject of
Section 4.

5For example, for an elliptic fibration over B = P2, with hyperplane class H, 7,y = 0 and
nr (T, N) is a weak Jacobi form of weight 16n and index in(n —1)(n+4).
16See [40, §D.4] for a proof of the modularity properties of Agy.
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As reviewed in Section 2.4, the only non-vanishing base degree zero Gopakumar-
Vafa invariants are

GVS?L}V,OQ = XX Gv(m 1)N+a,04 Gvg\/—a,oa = Na, GVSL}V,OQ = XB, (3-1)

for m > 1 and a € {1,...,[§]}. The base degree zero contributions to the
topological string free energies at arbitrary genus are then determined by the GV-
formula (2.9), together with the expansion

m -2 1y2g—2
q . [mA 5 ITINYT2 By,
E E |:2 S1n (7>:| =\ L13 E 2g 2g 2 ] L13*2!](q) ) (32)

m>1 g>1

and the constant map contributions

(—1)7! BagBag—2
2 29(29 —2)[(29 — 2)!]

1
FO’const. == _§C(3)XX7 Fg22|const. = XX - (33)

At genus zero, this leads to the result

FUT) = —xx (@ +3° Li3(mNT)> +3 2 NiLis (¢"VF) | (3.4)

m>1 m>0 k=1

while the higher genus free energies take the form

Ty = 112 [12XB_XX > Liy(g™) +ZZNkL1 mN+’f)] . (3.5)

m>1 m>0 k=1

2 =2(T) =(—1)9+1A)!] <XX

(3.6)

3.1 Elliptic fibrations

Let us first understand the modular properties of these expressions (3.4), (3.5) and
(3.6) in the easiest case N = 1. We start by recalling some well-known properties of
Eisenstein series and their less familiar Eichler integrals.

For even k € N, with k£ > 4, the Eisenstein series

2k
Ei(7) := —B—kZUk 1(n)q" —1——ZL11 K , (3.7)
n=1 K m>1
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is a modular form of weight k for SL(2,7Z). The weight two Eisenstein series Ey(T)
is a quasimodular form for SL(2,7Z) and transforms as [88]

“ Z) € SL(2,Z).  (3.8)

B, <‘” i b) _ (er + d)’ Ey(r) + zl—jic(cr +d), (

ct +d c

Using the relation

Z or_1(m)q™ = Z anflqm = Z nkFtgmm = Z Li;_x(¢™), (3.9)

m>1 m2>1 n|m mn>1 m>1

one can rewrite

Bi(r) =1 = 20 5™ Liv (™). (3.10)

In general, given a holomorphic modular form f(7) = ) a,q" of weight w,
its holomorphic Eichler integral is defined as f(7) = P,_o(7) + > om0 prq"s such
that the iterated derivative (2mi)'"*9%~! = f(7). The constant term P,_i(7) is
polynomial in 7 of degree w—1, unspecified except for its top degree term, determined
by ag. Under v € SL(2,7), f(T) transforms like up modular form of (negative)
weight 2 — w, up to a y-dependent polynomial of degree w — 2 (and a logarithmic
term when w = 2). We are particularly interested in the holomorphic Eichler integral
of the weight four Eisenstein series Fy(7), which we define following [89, (27)] (see
also [90, App. B| and [91, 92])

~ (27i)?
Eoo(r) =15 — 3 g +mz>:1L13 : (3.11)
such that
(2mi) PR E_y(1) = Ey(7). (3.12)

Under SL(2,7), E_o(7) transforms as a weight —2 modular form, up to a quadratic
polynomial in 7,

P2E_y(—1/7) =E_o(r) + —7,
30 (3.13)
~ ~ 17T
E_o(t+1)=E_s(1) — m(l + 37+ 377).

Similarly, the holomorphic Eichler integral of the weight two Eisenstein series Es(7)
takes the form

~ 2
Eo(r) := logn(r ZET—ZLll , (3.14)

m>1
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and satisfies (2m1)7'0,Eo(7) = E,(7). The transformations of the Dedekind eta
function

n(=1/7) = T/(r), n(r+1)=ely(r), (3.15)

imply that the Eichler integral transforms as

Bo(-1/7) = Bo(r) + 3loa(r) = . Bo(r+ D) =Fo(r) 415 (310

Combining the expressions for the base degree zero free energies (3.4), (3.5)
and (3.6), with (3.11), (3.14) and (3.10), and using xx = —60(12 — xp), one obtains
the identities

1) = - (12 o) | L7 0B ()
(1) =4(15 — ) {%T . EO(T)] : (3.17)
15Byy Bog_»

f=20(T) (=17 (12 — Xp) Eago(T) .

(29 —2)[(29 — 2)!]

Further defining

K. . Cy .
J?(OO)(T) = E(QWIT)S + féo)(T), J?(Ol)(T) = —1—;7T1T + fél)(T) (3.18)
and using (2.35) with N = 1, we see that the cubic and linear terms cancel, leading

to

Jo(T) = —60(12 = xp) Eo(T) , [(T) = —4(15 — xp) Eo(T) (319
The transformation properties of these expressions under SL(2,7) can be easily
deduced from (3.8), (3.13) and (3.16). In particular, the third derivative Yy(7T') :=
(27i) 383 1% (also known as Yukawa coupling) is a modular form of weight 4, eft”

is a modular form of weight 2y 5 — 30, f® is a quasimodular form of weight 2 while
£4923) i a modular form of weight 2¢ — 2.

3.2 Genus one fibrations

We shall now generalize the expressions (3.17) to genus one fibrations with N-
sections. To this end, it will be necessary to understand the modular properties
of expressions

V1) =33 gnalk)Lis_ay (¢™VF) | (3.20)

m>0 k=1
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where we use

1 if £k=+a mod N

21
0 else (3.21)

gna(k) = {

We relegate most of the technical work to Appendices A.2-A 4. In §A.3, we prove
Lemma 4, which together with Proposition 1 from §A.2 implies that for g > 2,

BQg 2
29 —

>2
W2 (r) = -

51 N/ ged(N,a) T qua( 7) (3.22)

is a modular form of weight 2g — 2 for I';(N). In Appendix A.3 we also prove
Lemma 5, which implies that for g € {0,1} the expression

(2m1)*B1 g 5
P = g2 () (3.23)

is a holomorphic Eichler integral of a I';(N) (quasi) modular form

905\%)(1(7') = (2#1)29—38;9’_29<I>§3?a(7) : (3.24)

of weight 4 — 2g. For g = {0, 1}, the coefficient 8,_o4 v, defined in (A.8) is given
explicitly by

2 1
B2.N.a :% (% —a(N — a)) . BaNag = % (—];7—0 +a*(N — a)2) : (3.25)

The transformation properties of @%?Q(T) under 7 = 7+ 1and 7 — 7/(N7 + 1) are
determined in Appendix A.4 and summarized in Theorem 1 on page 68.

Genus 0. Using (3.11) and (3.23), we can express (3.4) as

|N/2]
fo(T) =(2mi)*CT® = xxE s Z N (T (3.26)
where the constant C' is defined as

LN/2) N
o o 2
1440 +ZQ4N( +a}(N a)). (3.27)

Using (2.38) and (2.36), we can rewrite this as

/2] N-1
N3 N
_ Sy, a 2_ _ 14 328
1440 | ¥ > 24N —a) 6" (3.28)

a=1 a=1

C
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In terms of the function f\) introduced in (3.18), we therefore have
N N/2)
RUT) = —xxE»(NT) + Y N,@Q,(T). (3.29)

Using Theorem 1 and (3.13), as well as (2.38), we see that this transforms as

TR (%H) Sy
xx(4N*T? —3NT — 3)

5 [N/2] (3.30)
— — ) N, [2(15a° = 15aN + 2N*)T? = 3NT — 3]

=(2mi)? [8(XB —12)(NT +1) + 214N(02 — 12N)T }

as well as :)(0) (T+1) — A(OO) (T) = (271)* R (3T + 3T + 1)/6. The third derivative of
fO(T) is a linear combination of T';(N) Eisenstein series of weight four,

/2]
Yo(T) := (2mi) 203 f\UT) = —xx N*Ey(N7) + Z N $(T) . (3.31)

More generally, under v = (Z Z) e I'1(N), %0) transforms as

2(0) 2
T+ T) + 2T? + T +
Jﬂo) (a b) o (T)+x Yy z (3.32)

O\l +d (cT + d)?

where z,y, z are y-dependent constants, subject to obvious cocycles relations, such

that the third derivative transforms as Yj (g;ﬁl) = (cT + d)*Y,(T).

Genus 1. Using (3.11) and (3.23), we can express (3.5) as

IN/2
f67(1) =2miDT — (XB - E) Eo(NT) + 75 z/:J N @Y (1), (3.33)
where the constant D is defined as
LN/2]

Pl -B) X F (To-n) e

Using also (2.38) and (2.36), we can rewrite this as

1 LN/2] 2

=57 (s +5(12 = xp)) — 5 > Nua(N —a) = 5 (3.35)
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In terms of the function fi" introduced in (3.18), it follows that
LV/2]

AT) = (% - XB> Ey(NT) + o Z N, @Y (7). (3.36)

Using Theorem 1 and (3.16), as well as (2.38) and (2.36), we find that

’31) (Nij:-i-l) o /gl)(T)

[N/2)
X 1
= (1—)2( - XB> {2 log(NT +1) — —} - Z Naéy (3.37)

1 !
— L (tx — 12v5) og(NT + 1) + 57i — Doy,

as well as fgl)(T—i—l)—f(Ol)( T) = —micy/12. More generally, under v = ( ) eI (),

(1)
/o transforms as a modular form of weight % — 2, up to a phase subject to the

group relations. Moreover, the derivative of f(l)(T) is a quasimodular form of weight
two under T'1(N),

LN/2]

(27i) 0 O(T) = N (xp = %) )+ 55 Z Nap@D(T). (3.38)

Genus g > 2. Using (A.35) and (3.20), we can express (3.6) as
1=2(T)

Bay BQQ , LN/ 2] (3.39)

=V g -

For g = 2, one can use Lemma 4, together with the fact that eno(7) := NEy(NT) —
E5(7) is a modular form of weight two for I'y(N), to see that f0(2) (T) itself is a
quasimodular form of weight two for I'y(N). For g > 3, Lemma 4 implies that
fég) (T') is a modular form of weight 2g — 2 for T'; (V).

3.3 Simplified formulae for N =2,3,4,6

For N = 2,3,4,6, the relevant Eisenstein series of I'; (V) can all be obtained in terms
of the Eisenstein series of SL(2,7) with arguments rescaled by divisors of N. In this
way, we get, for N = 2,

(1) =N\ E_o(T) — (xx + Ni)E_o(2T)

Ny + xx — 4yz (3.40)
| 2T
5 ogn(2T),

N,
fo () = — 5 logn(T) +
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for N =3,

f(T) =N, E_5(T) — (xx + Ni)E_5(37T)

N N —4 (3.41)
FV(T) = = “log (1) + XX EXE o0 a7y
12 12
for N =4,
fS(T) =N E_o(T) + (Ny — Ny )E_o(2T) — (xx + Na)E_o(4T), )
N N, — N N. 4 (3.42
fSO(T) = — “logn(T) + ————2logn(2T) + — RERE G262 log n(4T),
12 12 12
and for N =6
RO =N E_y(T) 4 (Ny — Ny) E_y(2T)
+ (N3 — N E_5(3T) — (xx — Ny + Ny + N3)E_,(6T),
N Ny — N. N, — N
Ty = - 1—21 logn(T) + 1TQ log n(2T) + % log n(3T) (3.43)
Ny 4+ Ny — Ny + vx — 4
+ X X og(6T)

For N = 5,6, the transformation properties of ]/{)(0’1) under the extra generator of
['1(N) (see point iv) in §2.4) can be obtained from the transformation properties of
the Eichler integrals conjectured in §A.4.1.

4. Modularity from wave-function property

In this section, we shall derive the modular properties of generating functions of
GW invariants, and the Jacobi properties of PT invariants, from the wave-function
behavior of the topological string partition function under a suitable monodromy.

4.1 Wave-function property of the topological string partition function

First, let us recall the wave function interpretation of the topological string partition
function, following [42, 43, 44, 45, 93]. This interpretation is most transparent in
terms of the topological B-model, which depends only on the complex structure of the
Calabi-Yau manifold, rather than the topological A-model, which depends only on
the complexified Kéhler moduli, but the two are related by mirror symmetry. Thus,
the moduli t* below stand for flat coordinates on the complex structure moduli space
M of the CY threefold X related to X by mirror symmetry. With this in mind, let
us define'”

o0

_ x 1
Upoov(t, G A, z) = A% Lexp (Z Z EA29_2 C'éf?..an(t, t)x® - -xa”> . (40)

g=0 n=0

"In [2], x should be understood as the Euler number of the A-model geometry, x = xx = —x3-
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where C’fﬁ?..an are the topological correlators, which vanish unless 2g — 2 +n > 0.
Those arise as iterated covariant derivatives of the genus g free-energies F9(t, 1) for
g > 1, or of the Yukawa couplings C,,. for ¢ = 0. The topological string partition
function (4.1) satisfies the holomorphic anomaly equations [2, (3.17-18)]

N ooks b O b (9 | 4
Opa — ¢ Caizg™g Sohgme T Imt )\5 + 2%0za | | Ypcov = 0,

0
[ata L Oz

1
+ 8ta/C <>§—i —-1- /\8>\> — 8ma + 8ta]-"1 + 2_)\20abc$bl'c:| \I}BCOV = 0,

(4.2)

where T¢, are Levi-Civita coefficients of the special Kéhler metric g,;dt*d#® with
Kéhler potential K(t,t). As explained in [42, 43], these equations naturally arise
by viewing Wpcov as the wave function of a particular state |Uy.,) in the Hilbert
space obtained by quantizing the symplectic space H 3()? ,R), in a suitable complex

~

polarization determined by the complex structure on X.

More precisely, the real vector space H 3()? ,R) carries a symplectic form w(C, C")
= [ C AC’, and inherits a complex structure (called Griffith’s complex structure)
from the Hodge decomposition

C == [1709370 + I‘GD@Q&O + i’aDaQ&O + ZZ’OQ&O s (43)

where (23 o is a nowhere vanishing holomorphic 3-form on X , depending on the moduli
(t,%). In the complex coordinates z* = (2, 2%), the symplectic form becomes

w=e"* (gagd:c“ Adzb — dz® A dj()) = da™ A diy (4.4)
where Zy 1= (Zo,Zq) = e X(=2, g,37°). Upon quantization, the Darboux coordi-
nates (z,74) become operators'® satisfying the canonical commutation rules

A, Ty = 168, [oM,2%] = [Ts, 7x] = 0. (4.5)

Introducing a basis of (dual) coherent states ;;(z*| which diagonalize the operators

;X, the topological string partition function can be interpreted as the overlap
Upcov(t, £ A, x) =7 (2" [Wiep), (4.6)

where |Wy,,) is a fixed, background independent state (as will become clear below,
the topological string coupling A can be identified with v/% in the Kéhler gauge
X% =1). The indices ¢, indicate that the Hodge decomposition (4.3) depends in a

K %o, which originates from the minus sign in

8Note the unusual hermiticity property 2% = —e™
(4.4) and leads to convergence issues. This can be remedied by exchanging (2°,z"), which amounts

to using Weil’s complex structure rather than Griffith’s, see [45, 46].
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non-holomorphic way on the moduli t*. The resulting dependence of the coherent
states implies the holomorphic anomaly equations (4.2).

On the other hand, after choosing a symplectic basis (¢*, ga) of H3()A(, Z) (also
known as marking, satisfying fX g A gy = 08, fX NG = fXNEJA A gs = 0), one can
alternatively parametrize V' by real Darboux coordinates (¢*,y),

C=CPay — G0, w=d* Adéy (4.7)

such that (¢4, f A) become hermitean operators satisfying the canonical commutation
rules

3Gl =insd, [ 3= G =0 (4.8)
and work in a polarization where the hermitean operator CA is diagonalized, while
Ch = ihOca. The resulting ‘real polarized” wave function UR(¢Y) no longer depends
on a choice of background (¢, ), but it depends on a choice of marking. Under mon-
odromies in M, it transforms under the metaplectic representation of S p(bg()? ), 7).

@) - @ g) (Eﬁ) ’ (4.9)

where A, B,C, D are square matrices of size %bg()A( ) with integer entries satisfying

If the monodromy acts via

(2.3), and if the matrix C is invertible, the wave function should transform as

\IJR(CA) — ‘I’ia(C'A) _ \/ﬁ/es(c,c’)/h\h{(c\) HdCA (4.10)
A
where, similar to (2.5),
SN ¢ = —5¢'CTDC+ (O — A0 (411)

If the matrix C is not invertible, the Gaussian kernel should be replaced by the
product of a delta function along the null directions of C, times a Gaussian kernel
along its orthogonal complement. For example, if C' = 0 and therefore D = A~T,

Wi (¢ = e2¢'BCUgR (D).

The key question is now to relate the real polarized wave function Wg(() to
the BCOV wave function Upcov(t,¢; A, x). For this, following [93], we define the
quasi-homogeneous function

Ut E A ™) =\ Upoov(t, 6 A /20, 2% /2°)

(SR () et )

g=0 n=0
(4.12)
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and take the ‘holomorphic limit’ t* — —ico keeping x® and other variables fixed.
From this limit one arrives at the wave function in holomorphic polarization [93,
(36))1

Upor(t, ;2™ = A%’lef(l)(t”iw)@(t, —ico, ;). (4.13)

Using the fact that C(gi’?_an are covariant derivatives of F9) (¢, %), and that 0,k van-
ishes in this limit, one arrives at

Bt X 2%) = (15 exp (F( 1 5, 3) — B8 (FO 4 20,50 4 2285 79))

(4.14)
where F(1%,0) = 3 oy A9 2F9(t% —ico), and the genus 0 subtractions originate
from the fact that Céf?,,an only includes correlators with 2g — 2 +n > 0.

Now, let us consider the effect of the ‘holomorphic limit’ £ — —ioco on the Hodge
decomposition (4.3). Using

</ g A Qs / gAmg,o) = (XN FY) = X°(1, 4% 2F0 — o FO FO) | (4.15)
X X

where F\”) = 0, F©), .7:(52) = 92,7 one finds that in this limit, the real Darboux
coordinates are related to the coordinates in the Hodge decomposition by
/X0 =a,
Ca/XO :xa 4 t“xo ’
o/ XO =F4 + FQa* + FO2°,
50/Xo —Fo — 19%, + (]_—(50) _ tb]_—ég))xa + (2]:(0) _ t“]—"éo))Co.

(4.16)

This implies that the wave function in the real polarization is related to the wave
function in the holomorphic polarization by

Ul (t, A ™)

0,2
— 7<Xh ) (.7-'<0) (a:O)Q—i-]:éO) xow“-l-%]'—(g?))a:“zb

(4.17)

=e ) UR ("= X" ¢ = X (2" + t"2")) .

Comparing with (4.14) and setting A\ = v/A/X?, we see that the genus 0 subtractions
cancel and one finds

Tr(CM) :(Axo)%_l exp (F (ta + i—z, %))

—(C/ X H L exp (F (5,25 ) (4.18)

19We adjust the normalization by z**-independent factor such that Uy, satisfies the holomorphic
limit of the holomorphic anomaly equations.
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where Zi,, (%, A) was defined in (2.7). Thus, we conclude that the topological string
partition function Zi, is equal to the real polarized wave function, and should
transform under monodromies according to the metaplectic representation (4.10),
with & replaced by (AX%)2. Further renaming ¢* + X% and enforcing the Kihler
gauge choice A = 1/X° we arrive at the transformation property under the mon-
odromy (2.2),

Z/

lp(X™) = SN Zgp (XM T ax (4.19)
A

Tae ]

for Zt0p<XA) = Ztop(Xa/XO 1/X9%) = (X))~ e eXP(Zgzo F(g)(XA))-

We emphasize that Z,,(X*) is only defined as an asymptotic series in powers of
1/X°, and correspondingly the integral in (4.19) should be evaluated using the saddle
point method, by the usual Feynman expansion around extrema of F(X*)—S(X, X’)
with respect to X*. As an example, restricting to a one-parameter model with
T=X'"/X% X=X for simplicity,?

fares (-SG5 s <o () o
950 9>0
with S(X*, X"*) = (X°)2S(T,T") and
FO —(G(T, Ty, G(T,T):=FNT)=S(T,T",
FO = FO — Llog(8°G)

@ _ @ _ 2FOL(OFW)2 | 9 FD 440 FD)(93G) 5(93G)?

202G 8(92G)?2 - 24(0%G)3
FI) — F3) _ 20FO0F@+2F@ | 49*G0F D+ F O 4202 F D)2 440 FOOF D) 44(0F V)20 F 1)
202G 8(62G)2
95G1+120*G02 F() 11204G(0F )2 +2003G93 F) +893G(aF1)3  9F 1 (9°G+89°G2F 1))
— 18(02G)° - 8(9%2G)3
4 496)°+30(9°6)?0° F (D +24(8'G)2 (0F )2 +79°G9°G+320'G9°GOF 1
48(02G)%
30(9%G)30F 1 +2501G(9%G)? | 5(9°G)* (4.21)
18(02G) 16(02G)° * '

where 0 = 0r evaluated at the extremum of G(T,7T") with respect to T, assuming
that this extremum is unique.

4.2 Relative conifold monodromy

In order to derive the modular properties of the generating series of GW and PT
invariants introduced in §2.4, we shall exploit the wave-function transformation prop-
erty of Zi,, under a certain monodromy U in Kéhler moduli space M, which acts

20See [44, (2.11)] for an example of a Feynman expansion up to second order in multi-parameter
models, along with a pictorial representation.
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on the fiber modulus as T — H%, while preserving the large base limit S* — ico.
Together with the large volume monodromy 7" — T + 1, this generates a subgroup

of I'1 (V) which coincides with I'; (N) for N < 4.

Generalizing [49] to the case of genus one fibrations with an N-section, it turns
out that the relevant monodromy U corresponds to an auto-equivalence gy of the
derived category of coherent sheaves C = D’ Coh X given by a Fourier-Mukai trans-
formation with respect to the ideal sheaf of the relative diagonal in the fiber product
X xp X [33, Section 3.3]. Its action on the Chern character of a brane £* € C is
given by

gu : ch(E®) = ch(E*) — o [} (ch(E°)Td(Ty,5))] (4.22)

where Td(T'x/p) is the Todd class of the virtual relative tangent bundle of the fibra-
tion. In Appendix B, we use this relation to compute the action of U on the integral
basis of the charge lattice I'

B = (ch(Ox), ch(Op,), ch(Op,), ch(O¢), ch(C*), ch(Op.))" . (4.23)

The end result then takes the form B +— UB where U is the matrix with integer
coefficients 2!

1 0 —c? T (ay —Cyy) 05 0
-N 1 ¥ (a,+ ééw) P p 0 0
U 0n Oq oy —Nc, 0as Oa ’ (4.24)
0 0 0° 1 05 0
0~ 0~ — (b ZC (ay — C,y) 05 0°
0 0 0° —N 05 1
with C., being the vector of diagonal entries of the matrix C,3, and
N N
p:N2+Z(£Q+Naa)caﬁ(055—a5) - E<2I€+Cg). (425)
If the base B is a del Pezzo surface, then C,, — a, = —2 and we find the simpler
expression
b2(B) 1 1
=-N|= Na*+ C*%lg) — N + —k + —ca| . 4.26
p 2;( a® + 3) +6/£+1202 (4.26)

The combination %/i + 1—1202 is equal to the holomorphic Euler characteristic of the
divisor D, so is integer, and one may check that > (Na®+ C*(z) is always even.
Using F© := (271) 3 F© | we introduce the period vector®?

V =X1,T,8% ~2F9 —Top FO — 5995a FO), —0p FO, —05a FONT (4.27)

21The integrality of % (a,y + %67) C7 is not obvious but implied by the fact that the Fourier-
Mukai transform induces an automorphism of H*(X,Z).
22This differs from the vector V = (Fj, X*) in (2.2) by a basis change.
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associated to the prepotential (in ‘primed’ basis, see footnote 5)

75 T? NT
050 = emi? (P + Do+ BLsocas) + 051wz
where
FOWS7) = 7 QW e 0745, (4.29)
ka>0,n>0
where the constant map contribution is as usual GW((%a = —2xx((3). In terms of

this basis, the monodromy acts as V + U’V with?3

1 N 0s 0 0 O
0 1 0s 0 0 0
1 N
=c® A 5% 0~ 0% —CoP
_ B
_N(124_XB) (XB_48)]\; _% _%ca —-N 1 %Cﬁ
Oa — 5 Ca Oug 04 Oq 5§
The two matrices are related as U = PU'P~! where
0 2 lcs 10 Op
“E-% 5 Hs0 10
P- 2004 Na - jccx Oaﬁ Oa Oa 6a6 (431)
0 1 0w 0 0 0O
0, Oa dap Oa Oq Oqp
-1 0 0O 0 0 0Og

with N, being a vector with all entries equal to N.

Using (4.30), we find that the relative conifold monodromy acts on (7, S%) by

T 1 ce? [T? Ogp f©)
T S S e — =gy + B2 4.32
“iinNT 77 +2C+1+NT(2 5+(2m)3) (4.32)

or in terms of the shifted variable S, defined in (2.43),

ce . da L 1 C*9gs fO)
SO S+ ¢ 4.33
T T T Gnp TIENT (433)
while the (instanton part of the) prepotential f(*)(S®, T) should transform as
©O)(T, 5) (2mi)3 ENT* NT?
O (T, 5) s d L Gy — 12N
SOTS) =G e Y T N [6(1+NT)Jr T ) (30
12 — x5 1 '
- 1+ NT CopOsa fD0gs fO .
g (0T )} TP+ NP f7 050}

Z3Here we used the conjectural equality a, = c,. Note that U’ is not integral in general, unlike U.
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In particular, it follows that the derivative of f(*) with respect to S, (or, equivalently,
with respect to S,) should transform like a modular form of weight —2 under I'y (V),

Don fO — 9o O 1y 052V (4.35)
s T (1+NT)2 ‘
It will be convenient to introduce
) Qa (27“) 3 Qa
T, S%) = G L RT3+ fOT, S (4.36)
whose transformation property is somewhat simpler than (4.34),
700 \3 2
oz, oy o LAY | CriP [NT ey 12
1
_ fl0) 9 710)
 2emip( s vy 005
(4.37)

Lift of a general I';(N) element

: Z) € ['1(IV) can be obtained by suitable prod-

uct of large volume monodromies 7" +— T' + 1, relative conifold monodromies T

More generally, any element v = <

T/(NT + 1) and monodromies around other components of the discriminant locus
when N > 4. The corresponding element g, € Sp(2b2(X) + 2,7Z) in general acts on
T, S* via transformations of the form

o al’' +b
T +d
a o L4 (T —a)(cT +d)] c Caﬁﬁga]?(o) X
S 9% + 2Ne(cT +d) N(cT +d)  (2mi)3 + 0%, (4.38)
]?(O)(S'\oz T) . f(O)(Soc’ T) (27Ti)3 (xT2 +yT + Z) Caﬁaﬂxf(o)agﬁf(o)
; (T + d)? (T + d)? 2(2m1)3(cT + d)?

for some ~-dependent constants 0%, x,y,z subject to the group relations. While
the transformation of S looks complicated, it is such that §“, defined in (2.43),
transforms as

¢ Caplsn fO
N(cT +d) (2mi)3

5% 5% + 6, (4.39)

and the variable S® defined in (4.49) below transforms in an even simpler way,
S +— S+ 6. This product of monodromies is realized by an auto-equivalence
gy € Aut(C) acting on the period vector (4.27) by V' = UV, where U/ is a matrix
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of the form

d C 05 0 0 05
b a 05 0 0 05
a _ bex £(d—a) o B a o ¢ rvap
U do SN —on T 00 dga 0* 0 WNC , (4.40)
v p1 P2 boF N a —b aﬁ —ad
03 P4 —b‘% — douN —c d W + c8?
b6 N —adoN — % —bN,53 04 Og ad’
where
N
p1 =b (y—i—%) — 2az,
1
P == (aézN — 2ay + 4bx + béf) )
% (4.41)
ps =3 (=00 - €+ 4cz — d (6°N +2y)) ,
) 2N (ad - £+ c0*N — 2cy + 4dx + db - £) + bl?
L= —

AN

and 0% = §,0°,8 - ¢ = §,0%, etc. For v = (é i), one recovers the standard action of

the large volume monodromy 7"+ T+ 1,

1 03 0 0 Og
1 1 03 0 0 Og
o 0* 0~ o 0% 0~ 08
T — K K 08
6 2 2 1 —10°
—5 —k =L, 0 1 0°
Lo «a
—% —lo —NCup 0o 0, 65
ga

1 (62—
corresponding to 0% = 5,

(4.42)

(x,y,2) = (K/2,K/2,k/6). While we do not know how

to determine the constants 0, x,y, z for a general group element, an important con-

straint is that the matrix

a —b * * * *
—c d * * * *
0, O ad? x —bNCpyg *
_ ! p—1 __ [e% « o af
C=PEP=1 0 0 o 4 0 —b
0> 0~ —%C’O‘ﬁ * dég‘ *
00 00 —c 0p

: (4.43)

where the stars stand for somewhat complicated but easily computed combinations

of ,y, 2,0, Kk, cq, c2, should have integer entries.
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4.3 Modularity of genus 0 GW invariants

At this point, we can deduce the modular properties of generating series of GW
invariants (2.44) at genus zero, by inserting the Fourier expansion

J/c\(O) (T, §a> _ 27“ RT3 + Z ka) 27rika§a (444)

ka>0

into (4.37). As before, we use the notations f,gg) = fg] ) interchangeably, for any nef
divisor class H = k,D* on B, and in this section omit the genus superscript (0) to
lighten the notation.

First we note that in the large base limit S* — ioco, the quadratic term on
the second line of (4.34) is exponentially suppressed, so we get the transformation
property for the base degree 0,, genus zero generating series

(1+ NT)fo, (er) = fou(T) = (20)° (N;; (6 — 12N) — 22 4 NT))
(4.45)

in perfect agreement with (3.30). In particular, the Yukawa coupling Yo(7T) =
(271)302. fo,, is a modular form of weight 4 under T'y(N), and fo_ (T') is its holomorphic
Eichler integral.

We now turn to the case of non-vanishing base degree, k, > 0. In this case, we
can determine the modular properties of the generating series fi (7T') by inserting
(4.44) into (4.35),

Sﬁ s

D o fra () 275702 b Sl = (1+NT 5 Y Ko fio (T) €757 (4.46)

ka>0 ka>0

and expanding in powers of €2™5° on both sides. The only difficulty is that the
function dgs f appearing in the exponent on the left-hand side is itself a function of
S° which needs to be expanded.?! For primitive curve classes, this complication does
not arise and one immediately concludes that the generating series of genus 0 GV
invariants is a modular form of weight —2 with multiplier system,

e—iwkaco‘ fka (T)

(1+NT)? Joo(T+1) = ef%kafafka (T) (primitive case)

(4.47)
where (¢ := C*?/,. In general however, there are contributions from lower degrees,

fka(1+:?VT> =

leading to a modular anomaly of the form

1
™o (1 4+ NT)? fu(t557) — fua(T) = m}gz: {H}H 1+NT (4.48)

24Such doubly exponential contributions were ignored in [33], but in fact, e =1+e 5+
O(e=29) and such effects are key for the modular properties of the topological string amplitude.
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where ayi,) are rational coefficients (see (4.60) below for some examples). This indi-
cates that fg is in general a quasimodular form of weight —2.

To show this more explicitly, it is useful to introduce yet another shifted version
of the Kahler moduli S%, namely

Go . Go Ey(NT) caﬁasﬁ f©
12 (27i)?

(4.49)

where 5 was defined in (2.43) and E»(T) is the quasimodular Eisenstein series of
weight 2 already encountered in §3.1. Using

NT 12
E = (14 NT)?’Ey(NT) + —(1+ NT 4.
(g = (0 NTPENT) + 5204 NT) (4.50)

which follows from (3.8), we see that S transforms simply with a constant shift
under the relative conifold monodromy,

|
S 5%+ éca. (4.51)
Thus, upon Fourier expanding dg. f as a function of S rather than §a,

N7 ko i (T) 45° = 3™ ke fi, (T) 24057 (4.52)

ka>0 ka>0

the new generating series fy, () (which are polynomials in E5(NT) and in the pre-
vious series fi (7')) are now actual modular forms of weight —2 with a multiplier
system but no modular anomaly,

o~ imkac® ]?ka (T)
(1+ NT)?

Fro(557) = , fr(T+1) = ¥R f (T, (4.53)

In fact, one may integrate the vectorial equation (4.52) to a scalar equation

F8%T) = (1,5 = 0005, 105, = 3 (M) =5 (451
ka>0

To see that the last equality defines the same Fourier modes fka ~o as in (4.52), along
with the zero mode fo, (7'), we use that

of 95% o W BEy(NT)

05« 05 03P (f T Et (4.55)
_95° 67_075E2(NT)8§;E§5f 9 f '
99a \ ° 12 (2mi)?2 )
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together with

BE2<NT> a%aé'\wf
12 (2mi)?

85.5° =68 — (4.56)

From this follows the important fact that dg.f = 8§af Taking derivatives with
respect to Fo(NT) on both sides of the first equality in (4.54), keeping S® fixed, we

get
1

1
12(2mi)? a

Caﬁagﬁf 8§af = aEQ(NT)f 24(277'1)2

C* g5 f Oga f (4.57)

and therefore

Oy () f = C0g. [9gs f (4.58)

- 24(271)?

Further expanding in Fourier modes with respect to §a, we get the genus zero version
of (2.55),
1

O S(T) — —

Yo (0 H)fy) fip) (4.59)

H=H1+H>

confirming that the generating series fg] )(T) (now restoring the genus superscript)
are quasimodular forms of weight —2, and depth given by the maximal number
of elements in possible decompositions of H = >  H; into a sum of effective curve
classes in Hy(B,Z). In contrast, the functions fg)) (T') defined by (4.54) are ordinary
holo(n";orphic modular forms of weight —2 under I'y(IV), given by the depth zero part
of fi(T).

Explicit formulae for genus one fibrations on P?

To illustrate the constructions above, let us consider genus one fibrations with N-
section on P2, For brevity we write fi,(T) := frz(T), where H is the hyperplane class
of P2. Denoting by Ay the left-hand side of (4.48), and setting fy, = fi /(1 + NT),
we find the following anomalous transformations properties of the generating series
of genus zero GW invariants,

Al :07
1.
A2 - - §f127
1. o
Ag=-— gflg +2f1/f2, (4.60)

2 A PO N ~ o~
Ay =— gff* +A4fifa—2f3 — 3f1fs,

2% .. 25 . 15 - e
As = — ﬁff + gfsz’ - 7f3f12 —10f5 f1 + 4fsf1 +6fafs.
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In contrast, the combinations f; defined by (4.52) transform as weakly holomorphic
modular forms of weight —2,

fr=h
fa=fa+ E2(NT) — I,
Fo=fs+ EQ(NT)flfz BT g2,
2
fi=fit ( BN p 4 B2 g BoONEY o, | BRI
~ 4 3
Fo=tot 4257’§g4f5 DU ot BN+ B Fu 4 sBafufy + L Bafol

(4.61)

where in the last line, we left the argument NT of F, implicit. Inverting this tri-
angular system of equations, it is straightforward to check that the f;’s satisfy the
holomorphic anomaly equations

o)
8E2(NT)f T Z Jir(T) fie(T) - (4.62)

k=Fk1+k2

In fact, the ﬂ’s are simply the depth zero part of the quasimodular forms f;.. Using

the ansatz
E(3N2420)

[Aan (T)] 2~
73k (NT)

Je(T) = Pigi—a—r@an240(T), (4.63)

where Ayn (T) is the weight 2N modular form defined in (2.53), we can easily deter-
mine the holomorphic modular form P,, of weight w under I'; (V) from the knowledge
of the GV invariants GVy, x,<x for sufficiently large k;. The power of Ayy in (4.63)
is the lowest one allowed by (2.54), although it can be frequently increased by an
integer by lowering the weight of P, correspondingly. In the simplest case of the el-
liptic fibration over P2, with N = 1, the corresponding modular forms were already
identified up to degree 3 in [25, §D.2] [26, (5.15)], which we record below:

~ 31E{+ 113E,F}

=
=~ 196319E,E% + 755906 E{E¢ + 208991 E] Ej

J2=- 22118477

f3 E4(49789907821 E12+1904214859592 E E2+6966210848730 ES E¢+4311836724416 E§ ES +360744024241E%)

5572562780167,108
(4.64)

Similar expressions for genus-one fibrations with N-section over P? are collected
in Appendix §D. In order to extract from these expressions the genus zero GV
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invariants, it is necessary to invert the system (4.61) so as to express f; in terms of
fx, and then use the multicover formula

REGESY %fk/d(dT) (4.65)
dlk

where p(d) is the Mobius function, equal to (—1)* if d is the product of k distinct
primes, or zero otherwise. For N = 1, this produces

PY(T) = f(T)
= q~3/* (3 — 1080q + 143770q + 204071184q" + 21772947555¢* +...) ,

(1) = fr) - 20y - Lper) (4.66)
= ¢~° (=6 + 2700q — 5745609 + 74810520q" — 49933059660q" + ... ) ,
~ 1~ Eo(T) ~~  FEXT) ~
$Y(T) = B(T) - 5 hen) - 2O AR

= q /% (27 — 17280q + 5051970 — 913383000¢° + 224108858700q" + ... ) .

For N > 1, the same expressions hold (but not the g-expansions) after rescaling the
argument of Fy by a factor of V.

4.4 Modularity at higher genus from the wave-function property

We now turn to the modular properties of generating series of higher genus GW
invariants, and for this purpose study the transformation of the topological string
partition function Z,, under the relative conifold monodromy.

4.4.1 Modular properties of Z,

As reviewed in §4.1, under a general monodromy, the topological string partition
function transforms according to the metaplectic representation (4.19). Now, since
the upper-right block in the matrix U’ (4.30) is not invertible, the definition (4.11)
of the kernel § cannot apply literally. This is simply due to the fact that the trans-
formation 7'+ T'/(1 + NT') does not mix 7" with the conjugate variables

(Fo, Frr, Fsa) := (2F O — TorFO — 8950 F O, 9, F ), 950 F)) . (4.67)

The remedy, already hinted at below (4.11), is that the Gaussian kernel should be
restricted to the variables S¢, while the transformation of T is enforced by a Dirac
delta function 6(7" —T'/(1+ NT')). The appropriate kernel S(S¢, S"®) can be found
by requiring that the prepotential transforms as in (2.4),

(1+ NT)? FO(T', 5) = (FOUT, 5*) — S(S,5)) 5e (4.68)
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where the bracket denotes extremization with respect to S%, and 7", S’® on the Lh.s.
are the transformed variables (4.32). The factor of 1 + N7 on the Lh.s. follows from
the relation X" = c¢X' + dX® = X°cT + d), which implies that the topological
string coupling A = 1/X? should transform as
A

1+ NT'
Moreover, the value of S extremizing (4.68) should be consistent with (4.32). This
determines uniquely the quadratic kernel

A= N =

(4.69)

S =(2ni)? (—l(sa — (14 NT)S"™*)Cos(S” — (1 + NT)S" + )
2 (4.70)

2_
_¥5a0a665+ 12N2402NT2> )

According to the prescription(4.19) in §4.1, the topological string partition function

should thus transform as

ba(S)

_ o feY d «
Ztop(T/,S/a,)\/) _ / o S(SAZS ) Ztop<T7 Sa,)\> i

(4.71)

a=1

Inserting the genus expansion in (2.7) and trading S® for the shifted variable Se
defined in (2.43), we get

exp (Z )\/29—2F/(g) (fIv/7 §/a)) _

920

1+ NT)st 1 . S R
( +)\b2(;) /H dS® exp <_ﬁ 4 Z 2\29-2 (9) (T, Sa)) (4.72)

g9=>0

where, on the r.h.s, the O(1/)\?) terms are given by
14+ NT

FO _ 8 —(2ni)? ( [(5@ — §CL5(S8 — 57 4 ) + NT§'acaﬁ§'ﬂ]

+ET3 12N? — &, N

— _1? (T, 5%).
. ) 105

(4.73)
Computing this integral in perturbation theory around the saddle point So = G _
ler— 13?\/'51’ 852‘;{)(? determines the transformed free energies F"(9)(T", S'*) in terms of

the original ones.

In the classical, leading order approximation, we recover by construction the
transformation property of (T, S%) discussed in the previous subsection. At one-
loop order around the saddle point, we get a factor

(V) (1+ NT))=52

, (4.74)
\/ det (Caﬁ + (27ri)3(11+NT) O3 g0.f (0)>
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up to an overall constant factor, from the fluctuation determinant. Using the fact

that by(B) = xp — 2 for a rational surface, and including the contribution from the
xx g . . .

prefactor A\24 7 in Z,,, , we obtain that the genus one amplitude

~

FO(T, 5o .= —S—Z(zm)T + (T, 5 (4.75)

must transform as

FO(T, 5y =FO(T, 5%) + Xx12x8 Jog (1 + NT) + 5mi — s
. 3 (4.76)
— § 10g det (Caﬁ + magasﬁfm)) :

Here, we have fixed the constant term using the known transformation prop-
erty (3.37) of the generating function of base degree zero, genus 1 Gromov-Witten
invariants, which dominates in the large base limit (where the determinant in (4.76)
is effectively equal to one). Unfortunately, we are not able at this stage to derive
this constant term directly from the wave function behavior (although we suspect it
is related to the choice of steepest descent integration contour). Fourier expanding
with respect to S , one finds that the generating series of genus 1 Gromov-Witten
invariants at non-zero base degree H transforms as a quasimodular form of weight
0 and depth equal to the maximal number of terms in decompositions H = > . H,
into effective divisor classes, plus one.

4.4.2 Introducing the modular covariant wave function Z,,.q

In order to characterize the quasimodular properties more precisely, we find it useful
to introduce a different polarization, making use of the improved Kéahler modulus S¢
introduced in (4.49), which we recall for the reader’s convenience,

ga — S\a . E2(NT) Caﬁﬁsﬁf(o)
12 (27i)2

— S 4 6% (4.77)

Since this definition mixes S® with the derivative Ogs f ), we can view it as a canoni-
cal transformation (at fixed 7'), and ask for the wave function in a polarization where
S is diagonalized: since the latter transforms simply by a constant shift under mon-
odromy, we expect that the new wave function will have much simpler transformation
properties. With this motivation in mind, we define the topological wave function in
‘modular polarization’ as the transform

_ 1 . g go .
Zinod (T, 5%, \) = 5 / Zip(T. 5% N e 2 [[dS*  (4.78)
(\WEQNT) ;
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where H is the quadratic kernel

SR NT ~ R -~ — o~
(57, 5%) = —(2mi)’ -5 CosS” — (2mi)? (5% — §)CLs(S? — §). (4.79)

6
E5(NT)
The first term in (4.79) is chosen to cancel the classical term in the prepotential (4.28),
while the second term combines with the instanton contribution to the prepotential
f© such that the integral has a saddle point precisely when (4.77) is obeyed. The
overall power of Fy(NT') in (4.78) is chosen such the inverse formula takes the same
form,

(D‘“)

- 1
Ziop(T, 5%, \) = 5 / Znoa (T, 5%, A

(WEET)"
Substituting (2.7), we have, more explicitly,
Zomod(T, 5%, \)
e / , (HT?’ 3C,5(5% — §0)(§° — 8%)  &T + %ca§a>
(4.81)

H dS®.  (4.80)

EQ(NT) $b2(B)

62 TiIA2Ey(NT) (27i)?
X exp <Z f(g)(go‘,T))\292> Hdga :
920 «

where we use exp’(z) = exp ((27i)3z). To obtain the transformation property of
Zmod, We need to invert (4.78), apply the transformation (4.71) and then apply
(4.78) again. The result is that Z,0q(S, T, A) transforms into

Zwoa(T, S, \) [ NTS*  3(5—5)?
ne P o T reE(NT
)\3\/E2(NT)E2(NT’)> miA* B (NT)

Zmod(T', 8", X) = /
(

X exp’ ((go‘—(1+NT)§’“)Ca2ﬁ/\(2§5—(1+NT)§’5+c5) + oz 5o w>
NT/§/2 3(5/ _ §I)2 N R _

X N _ dSadS/adSa, 4.89

o < 2N TNZE,(NT') 1;[ (4.82)

Using that 7" =T/(NT +1), N = A\/(1+ NT) and the transformation rule (4.50) of
E5(NT), one finds that the quadratic from in (5S¢, S’) appearing in the product of

exponentials has half-maximal rank, with null space spanned by (FEy(NT), Eo(NT)+
112
27 14+NT

(5%,58) = (1 + NT)Ey(NT)z® + y*, (L2

)z for any r® € R, Decomposing

+ (1 + NT)Ey(NT)) 2™ +y*)  (4.83)
the integral over z* leads to a delta function 8[(14 NT) (5™ — 5 — $¢*) /X%, Setting
Sl =5 4+ %c"‘, the remaining Gaussian integral over y® is peaked at

(1+ NT) (21iEo(NT) + 12)
&
24 ’

2mi

yazgoc_

(4.84)
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with Hessian (14 NT)Cug/ [N E2(NT)Es(
nants, we get

@ e 12N2—coN)T? _
Zmod (1+NT’ S+ 3¢, 1+/J\VT> _exp’ (_( Sine T ng\?w(l + NT))

mod(Sa7T’ )\) (1+NT) XB XX )

where we have also used that yp = 12 — a“a,, and assumed that a® = ¢*. More

T NT)]. Collecting fluctuation determi-

(4.85)

generally, under a I'; (V) monodromy of the form (4.40), a similar computation shows
that Z,,,q transforms as

xx —12xp

Zmod (gig, S+ 6%, CT+d> =(cT +d)~ = exp (%) Zmod(ga’ T, \).
(4.86)

As a result, if we compute (4.81) in perturbation theory around the saddle point
) (T)€27rika§a

and define new topological amplitudes ﬂg)(ga, T):=>. fla via
~ X 271)3RT
Zunoa(T,5%,3) = N5 Voxp [ FTVELT i) G ™ oG w2 | (487)
6N =

it follows that each Fourier coefficient ]?,Ei) (T') will be a modular form of weight
2 — 2g under I';(N), with no anomaly except for ¢ = 0,1. For g = 0, this definition
reproduces (4.54), while for g = 1, it yields

_ o~ ~ 1
f(l)(SO‘,T) :]?(1)(504 T) ~3 log det (Cag — E(QZX?;Z agasﬁf(0)>
_ E(NT) Caﬁ aﬁs f(O)

12(271)2

Taking derivatives with respect to E>(NT') on both sides of (4.88) keeping 5 fixed,
similar to (4.57), and using the genus 0 result (4.58), we obtain

(4.88)

8E2(NT)f(1) = - 12(27’(’ ) Caﬁa:g\af 0)(9§6f(1)
1 (4.89)
- —Caﬁ 2 (O aca 9=
2am’ Osesed 487r ¢ 5o 1
or in terms of the Fourier coefficients,
1 1 0 ]- 0
Omavr St (T) = =57 > (H O Ho)f) fiy) = 52 H O (H —ei(B)fi) (4.90)
H=H:+H>

confirming the quasimodularity of the generating series f [({1 ),

More generally, the series fé?) are quasimodular forms of weight 2g — 2 and
depth equal to ¢ plus the maximal number of elements in possible decompositions
of H =), H; into effective divisor classes, while the series fl(f) are actual modular
forms of weight 2g — 2, equal to the depth zero part of fl(f). See Appendix §D
for many explicit examples. We leave it as an exercise to the reader to derive the
modular anomaly equations at genus g > 1 using the same techniques.
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4.4.3 Jacobi properties of Zy(T, \)

We are now ready to derive the Jacobi property of the normalized generating series
of PT invariants defined in (2.47). Substituting (2.46) in (4.78) and integrating term
by term, we get

ZmOd(T7 5704’ )‘) :Zmod,O(T7 )\) Z Zk;a (T, )\)GQFi(ka_%ca)ga

S gy e
272\° V2 ) B _ =
X exp <)\ Y kaC (kg 265)) s
where
X 2mi)3RTS i 12 —
ZmOd,O(T> )‘) :)‘T)A‘(il exp (% - ECQT + TXB)\QEQUVT>
(4.92)
X exp (Z flo) (T))\QQQ) :
920

Note that we have once more used that be(B) = xp — 2, xp = 12 — a“a, and the
assumption that a® = ¢*. Eq. (4.85) then implies that Zy (7, \) transforms as a
Jacobi form of weight 0, index $H N (H — ¢;(B)) under T' — T/(1 + NT). As
explained below (2.51), the quasiperiodicity property (2.50) then follows from the
manifest periodicity under A — A + 1.

5. Modularity of DT invariants from monodromy

In this section, we discuss the implications of invariance under the relative conifold
monodromy on various types of Donaldson-Thomas invariants. As mentioned in
§2.3, DT invariants are invariant under auto-equivalences of the derived category
g € AutC, provided g acts both on the charge v and on the stability condition o,
see (2.15). In general however, g - 0 and ¢ may not lie in the same chamber, so
the invariants Q,(v) and Q. (7 - g) need not be equal. Here we shall assume that
no wall-crossing takes place between ¢ and ¢ - o, and see what kind of property this
implies for the generating series of DT invariants.

The auto-equivalence of interest is the Fourier-Mukai transformation gy with
respect to the ideal sheaf of the relative diagonal discussed in §4.2. It acts on the
charge row vector v = (p%, p%, 0% G, Ga> Qo) as v + 7y - U with

1 0 Lf _N(A2-xp) 05 12z
2
N 1 %05 _% + (XB—48)N2 —%05 N(124—XB)
U _ EU,_IZ_I _ Oa 0 5? _%CO[ Og Oa (5 1)
0 0 0 1 05 0 '
Oq 00 —Clop %co‘ 5% —%ca
0 0 O0g —N 03 1
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where ¥ is the matrix appearing in the central charge Z = XV,

00 05 —1 0 0g
00 05 0 —1 0g
0 0% Ous 0 0 —49
0105 0 0 0g
0% 0™ &5 0% 0% 03
1005 0 0 0

(5.2)

In view of the action (4.32) on Kéhler moduli, the large volume (LV) limit is mapped
to a phase (T" — %, S* — ico) where the base B is still very large but some fibral
curves have vanishing volume and fractional B-field 1/N. 2°

5.1 Elliptic property of PT invariants

First, we briefly discuss how the invariance of PT invariants under the relative coni-
fold monodromy implies the quasi-periodicity property (2.50), i.e. the ‘elliptic’ part
of the Jacobi properties. Recall from §2.2 that the PT invariant PT(k., k4, m) counts
stable BPS states with charge v = (—1,0,0% —ke + £, —kq + %CO‘, —m) for large vol-
ume and large B-field of suitable sign. Its image under gy is

Further acting by a large volume monodromy (2.16) with (€%, ¢*) = (0, C*?kg—c®), so
as to set the D4-brane charge to zero, we get a PT charge vector v/ = (—1,0,0% —k.+
& —k! + 3¢, —m’) with the same horizontal D2-brane charge k, = ko but with new
vertical D2 and DO brane charges

N
k.= ke + Ekaoaﬁwﬁ —cg) —mN, m' =m—k,C (ks —cz). (5.4)

For N = 1, this reduces to the result in [31, Lemma 9] for the action of the auto-
equivalence ® 5 on the Chern character. As explained in loc. cit., this autoequivalence
maps stable pairs to so-called 7-stable pairs, but wall-crossing is trivial between these

two notions of stability. Assuming that this statement continues to hold for genus
one fibrations, we conclude that

PT(ke, H,m) = PT (ke + N(hyy — 1) = mN,H,m — 2(hg — 1)), (5.5)

where hy = 1+ %l{:aCafB(krﬁ —cp) is the arithmetic genus of the curve class H = k., D®
on the base. As explained in [31, Corollary 1], this implies the quasi-periodicity

Z5Note that the limit (7' — 0, 8% — ioco) is instead expected to correspond to the large volume

limit of the relative Jacobian fibration that, for N > 1, carries a flat but topologically non-trivial
B-field.
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property (2.50) of the generating series of PT invariants Zz. It is worth stressing
that (5.5) is only supposed to be valid for any non-trivial nef divisor class H on B.
In particular it does not apply for H = 0, due to modular anomalies in the base
degree zero sector.

5.2 Modularity of D4-D2-DO0 invariants

We now turn to the action of the relative conifold monodromy on D2-D0 brane BPS
bound states, with charge v = (0,0, 0%; ke, ko, m), where k, > 0 and H = k,D® is an
ample divisor on the base B. As recalled in §2.2, these bound states are counted at
large volume by the genus zero GV invariant GV,(gka, independent of the D0O-brane
charge m. Under the action of gy, the charge vector becomes

N 1
v U= (07 07 _Caﬁka; —Nm + ke + Ecakou kcw m — §kaca> . (56)

After applying an homological shift £ +— &£[1] such that v — —v, we arrive at a
D4-D2-D0 bound state with divisor class p*D,,, D2-brane flux (g, ¢,,) and D0-brane
charge ¢p given by

N 1
p* =C%ky, go = Nm — ke — Ecaka, (o = —ka, qo = §kaca —m. (5.7)
In particular, the D4-brane charge has no component along the section D, (p® =
0). In order to determine the invariants (u, o) introduced in §2.3, we evaluate the
quadratic form kg, := KapeD":

(,C*®ks Nkg
Rab — ( N/{,’a Oalg) . (58)

Note that this matrix has rank 2, signature (1, 1), and that the vector p® is isotropic,
PP’ = Kapep®pPp¢ = 0. This is a consequence of the divisor class D = p®D,, being
not ample. However, D is nef and we therefore expect the modular properties to
be as reviewed in §2.3, assuming that there is no wall-crossing between the chamber
gu - LV and the large volume attractor chamber.

If bo(B) > 1, one needs to follow the prescription summarized below (2.27) and
restrict kg, to the orthogonal complement of the null space spanned by (0, AY) where
A, s =1,...,05(B)—11is a basis of vectors such that A\Sk, = 0, and take its inverse.

In any case, the result is

ke +eaca%
©="N T ToNe

In particular, it is independent of the original DO-brane charge m. Indeed, the

(5.9)

action of a large volume monodromy (2.16) with €¢ = 0 shifts m +— m — k,e® without
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affecting the other charges. Moreover, (5.9) satisfies the Bogomolov-Gieseker bound

~ D,
do S X(24p) —

cacgﬂkﬁ for any k. > 0, so long as the condition
(ba = N?¢a)CPka <0 (5.10)

is obeyed. This inequality implies that n(NT')12c*" f,gz) (T) is regular at T — ico. It
is satisfied in all of our examples but we are not aware of a proof.

The discrete fluxes (pe, f1o) are in turn given by

N

fe = Nm — k, — Eka(k;a +c*) — €k — Ne®ky ,  pia = —ko — Nek,  (5.11)
where €°, €* are arbitrary integers. Modulo these spectral flow parameters, and re-
stricting to the space A%, = 0, the fluxes (fie, fto) are a priori valued in the dis-
criminant group Zyy X Zgy, of cardinality (kN)?, where k is the greatest common
divisor of the k,’s. Note that k,(k* 4 ¢*) = 2k, k® — ko(k® — ¢®). Since ko (k* — %)
is the Euler characteristic of a curve in the class k., which is even, we conclude that
%ka(l{a + ¢*) is an integer multiple of N, as long as the class can be represented by
a smooth curve in B.

The assumption that there is no wall-crossing between gy - LV and the large
volume attractor chamber implies the equality of integer DT invariants

Q50(0,0,0; ke, ko, m) = Gv,g{ka — Qo pespee e (d0) - (5.12)

In particular, the fact that the D2-D0 brane index is independent of the D0O-brane
charge (or holomorphic Euler characteristic) m implies that the corresponding D4-
D2-D0 indices on the r.h.s. of (5.12) are invariant under u. — p. + N, rather than
just pe — pe + kN. While the origin of this invariance is obscure on the D4-D2-
DO side, its effect is to cut down the number of independent fluxes to kN?, further
halved by the symmetry p — —p. For a fixed value of u,, there are effectively N
components, and we shall later argue that only the coset u, = —k, is populated.

Before discussing the implications of the relation (5.12) at the level of generating
series of GW and DT invariants, we remark that for D2-D0 branes wrapping the
genus-one fiber (i.e. for v = (0,0,0% k., 0,m)), the image under the relative conifold
monodromy ¢y has vanishing D4-brane charge,

v-U=1(0,0,0; ke — Nm,0,m) (5.13)

and the corresponding BPS states are counted at large volume by the genus 0 GV
invariant GV,(C?_ Nm,o- Assuming again the absence of wall-crossing, and using the m-
independence of the DT invariant counting the original BPS states of charge v, we
conclude that GV,@O should be invariant under k. — k. + N. This gives a heuristic
derivation of the periodicity property stated above (2.38), although it does not say
anything about higher genus base degree zero GV invariants.
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5.2.1 Relating generating series of GW and rank 0 DT invariants

Now, we explore the relation between the generating series fia(7T') of genus 0 GW
invariants and the generating series hy,,(7) of D4-D2-D0 invariants, which we recall
for convenience,

ke—
f ko (T Z GWke,ka ) hO,k"‘;ue,ua E QOk YRS CIO)

ke>0 x(Dp)
T

Go<

(5.14)
Note that we again drop the genus superscript of f,gg)(T). We further introduce the
generating series of integer D4-D2-D0 invariants,

hg,l;fa;ue,ua Z QOk ,ue,ua ) _q0~ (5.15)

q0<x( Dp)

We will first show that

N-1

FEX(T) = W, (NT) (5.16)

te=0

To this end, note that for p°® = p¢ = 0, p* = k* and p, = —k,, we have

o 1 o e kol
q0:q0+§kak - (%_ 2N2> ) (517)

and since ¢y € Z — %cakz"‘, and k*(k, — ¢o) € 27, we can write

in e ko 0 nt Ke _ kal®
Mok ek (T Z 0.k p1e ko ( n— MN + 2N2) g ¥ N (5.18)

nez
n>nm

where ny, := /N — ko(c®* — */N?)/2. Using (5.12) we then observe that

_ Lak® & ¢ ko Lak®

8 2N — > « € 2N
§ GV ke ka0 = § Qo ke ke ko (— 5 + 552k) ap
ke>0 ke>0
o " (5.19)

V4 o Nn+pe—
= E , E :QoquS_#e:_ka —n — & 2]\?21{5 )

#e:(] nez

The result (5.16) follows after taking into account the symmetry under p — —p.

In order to obtain the relation between genus 0 GW invariants and rational DT
invariants, we use the multicover formulae, which crucially involve different powers
of d in the sum over divisors:

1 _ 1
aw, = Y @sz(i)/d,ka/d C U =) Zu(/d) (5.20)
d|(ke ko) dly
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or equivalently

0 1(d) 0 p(d) <
GV = D B GW e ) =Y B0 (52Y)
d|(ke ka) dly

where p(d) is the Mobius function. Morever, it is important to stress that the
statement of m-independence holds only for the integer DT invariants in (5.12),
rather than for their rational counterparts. Nonetheless, we claim that the relation
between generating series of GW and rational DT invariants is almost identical to

(5.16), namely
kN-1

Efoa(T) = hoge ek (NT) (5.22)

He=0
where we recall that k& is the greatest common divisor of the k,’s.

To show this, we first observe that for a function
F(I) =) a0 a, e C, 9 €Q, (5.23)
n>0
and any N € Nyg, k € {0,..., N — 1}, the restricted sum over n = k mod N is
given by

N—-1
1 _ 2mi b i n
DL (“ N) = 2 o) (5.24)

We can therefore invert the relation (5.16) into

N—-1
. 1 Ti ak®
e, (VT) = 37 D e O AEY (T + 3) (5.25)
b=0
and insert it into the definition of h,,,
1 in
ho ko ko (NT') = Z ﬁho,Za/d;u/d,ka/d(dNT) (5.26)
d| (,k)
1 = tak w(e)
_2miby,, Lak®
— Z _Nd2 e dN (h="55) Z —63 fka/(de) (d@T"‘ %)
df (p,k*) b=0 el(k/d)
1 d iy _271'117(”_@041@&) b
=S | 3 ) e T )
mlk d|(p,m) b=0
Summing over . and using the identities
i kN
vd, Y e = 75,5” ovm, Y ulm/d) = G (5.27)
p=0...kN—1 d|m

dlp

we arrive exactly at (5.22).
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5.2.2 Comparing holomorphic anomaly equations

Let us now compare the holomorphic anomaly equations satisfied by generating series
of GW and rank 0 DT invariants. For simplicity we continue to restrict to genus one
fibrations over P2, such that the index o takes only one value, which we omit.

We assume that the divisor class p* = (0, k) lies on the boundary of the effective
cone, such that the only possible decompositions p = > | p; are of the form p; =
(0, k;). As aresult, only two-term decompositions contribute, k = ki +ks. We denote
ko = ged(ky, ko). According to the prescription (2.28), the holomorphic anomaly for
rank 0 DT invariants is given by?¢

(ko) Nk:klkz/kg)
0= h() AT 167T17'2 E : ko § : 6# 1 —p2 u12
k1+

=k n1€Zp N

H2€Zpy N (5 28)
(ko) D 0 ‘
X Z 5%0—#1,5—/42,5—%(#—#1—#2) hO,kl;Hl,e,#l hO,kz;Hz,e,m
H1,e€ZK N
H2,e€Zk2N
where
kopia = kapiy — kipio + Nkika(p] — ps) (5.29)

with (pf, p5) any integral solutions to
p— i — p2 = N(kip§ + kaps) . (5.30)

Let us focus on the case pn = k. Note that for k = ky + ko one has ged(k, ki) =
ng(kl,kQ) = k(] and introduce k := k/l{?(], ]Cl = ]{71/1{70, k?Q = kg/ko. Then we can
solve (5.30) for p§ and find that the second o-function in (5.28) imposes

kpy — kky + Nkikp$ = 0 mod Nkykok . (5.31)

This implies that ku; — kk; = 0 mod Nkik. Solving (5.30) instead for p¢, one also
obtains that kus — kks = 0 mod Nkok. We therefore find that the sum only receives
contributions from terms with

M1 = ]Cl mod Nkl s Mo = k’g mod Nk’g . (532)

All of these terms are compatible with p{ = p§ = 0 and the holomorphic anomaly
equations take the simplified form

~ 1 (ko N ~
_ E : § : oN)
a?hO,k;ue,k - ) ko 5 —p1,e—12,e hovkﬁﬂl,evklh01k2§ﬂ2,ezk2' (5'33)

2 k1+ko=k Ml,eeZklN
M2,66Zk2N

26For fibrations on P2, the lattice A is trivial and one does not need any non-trivial glue vectors,
song =1,94 = 0.
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In terms of the sum over all residue classes hgy = Y. e €Zn E(Lk;ue’k, this further
simplifies to

O-hox = o 1y Pk - 5.34
0,k 1671'17'2 X Z 0,k1 100,k2 ( )
Identifying ho(NT) = kfo(T), we arrive at
Or fi kik 5.35
Tfk( ) 167T1NT22’€§ i 1 kalka ( )
or equivalently, using Ey(NT) = EQ(NT) 2, OpEs(NT) = 5 T
8E2(NT)]/C\ Z kiks fio fio - (5.36)
k1+k2 k

This reproduces the holomorphic anomaly equation (4.59) for genus 0 GW invariants.
Generalizing this argument to the case of genus-one fibrations on higher del Pezzo
surfaces would require to confront both the isotropicity of p* and non-invertibility of
Kap simultaneously, which we leave for future work.

5.2.3 Vector valued modularity

So far, we have been able to express the genus zero free energies in modular polar-
ization as sums over modular completions of D4-D2-D0 indices

kN—1
kfo(T Z ho gegiee (NT') (5.37)
f1e=0
However, this relation only involves contributions where the coset of the base curve
class € A*/A is equal to the image k of the D4-brane charge in A*. This is closely
related to the fact that ﬁ(T) is a modular form for I';(N) but transforms itself as a
vector valued modular form under the full modular group [34, 35, 40].

In [35] it was proposed that — for N > 1 — the image of fx(7") under the Fricke
involution 7" — —1/(NT) can be interpreted as a genus zero topological string free
energy f/(T) of the relative Jacobian fibration J of X, in the presence of a flat but
topologically non-trivial B-field. Using (2.24), we find that under S-transformations

| AN-1 )
k fi ( NT) Z ho e, pe e (_T)

1e=0
T e (4% —c®) 1] KN 1N —1kN—1

- 59 2 exp (=5 [F (e 5) + p]) b (T) - (5.38)

_0 k'=0 He=
kN—1
o mi 27T1M
cak E e
_( ]_) (xB—3) : OeXp( N )hOk,u/O(T)
He=
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This suggests that f;(7) also admits a modular completion ﬁ;/(T), that satisfies

kN—-1 .
~ 2mifte \ ~
BR(T) =) exp (— - ) B0 (T) - (5.39)

te=0

Perhaps the most striking aspect of this relation is that the two sides a priori count
objects on different geometries.

More generally, the SL(2,7Z) orbit of J?k(T) is composed of topological string
free energies associated to different genus one fibrations that share the same relative
Jacobian fibration with X and carry different B-field topologies [35, 40]. By applying
suitable combinations of the T- and S-transformations (2.24), it is possible to obtain
relations analogous to (5.37) and (5.38) for all of those string backgrounds. However,
while these relations will be interesting to explore further, they would take us too
far afield and we will leave this for future work.

5.3 Comments on the black string SCFT

We now comment on the growth of D4-D2-D0 indices, and its relation to the central
charge of the black string SCFT obtained by wrapping an Mb5-brane on the corre-
sponding divisor [94]. First, let us consider the generating series of genus 0 GW
invariants (which have the same growth as genus 0 GV invariants)

B Aoy (T) 5N oy (T, 0)
D(NT) e (B

fu(T) = (5.40)

Since fu(T) =), Cu(n)qg™ is a I'1 (V) weak quasimodular form of negative weight,
the growth of its Fourier coefficients is controlled by the most polar term ¢/~®max in
the Fourier expansion around the cusp at 7' = 0 (where ¢ := e~ 2™/T),

Cu(n) nerdee exp <47T\/Amaxn> ) (5.41)

Using the fact that Ayy(T) is regular near T = 0 27, while (NT) behaves as ¢z,

we find
Ca Caﬁ k Ié;

2N
This should be contrasted with the pole at T = ico, which has order £,C*ks/(2N).
Going back to (5.7) and identifying the Fourier mode n with k. — Z“‘Cg(;jkﬁ = — Ny,
we find that the D4-D2-D0 indices with p = (0, C*kgs) grow as

Ay = (5.42)

Qp.(do) ~ exp (QW\/2caCa5k5(—qo)) ) (5.43)

2TFollowing [35, (4.21)], one finds that T?N Agn (—ﬁ) =T?N exp (%) h_21 (—%, —ﬁ
N . -
b—21 (T, —ﬁ) = [2isin(7/N)] S O(q).
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This agrees with the macroscopic Bekenstein-Hawking entropy

3 .
Spa = 27?\/%(‘@0) (5.44)

upon noting that p? = Kep®p’p¢ = 0 and ¢, = %62,04' As explained in [94], this

growth is consistent with the central charge of the (0,4) superconformal field theory

obtained by wrapping an M5-brane on a very ample divisor®®

C,L :X(D) = ’fabcpapbpc + C2,apa = 1201<B) : C,
) | . (5.45)
Cr :6X(O(D)) = KabeD PP+ 562(1]7 = 601(3) -C.

However, as emphasized in [95, 96], the divisor D = 7 !(C) is not ample and
the formulae (5.45) for the central charges do not apply. In particular, the odd
cohomology of D does not in general vanish, rather it is given by the arithmetic
genus of the curve C,

1
h170<D) = ]’LD = 5(02 — Cl(B) . O) +1. (546)
Using the Euler number x (D) and the signature o(D) given by

X(D) = 2 = 4h1o(D) + 2hso(D) + h11(D) = 12¢1(B) - C,
0(D) = 2+ 2hy (D) — h11(D) = =8¢1(B) - C', (5.47)
X(Op) = 1 = hio(D) + haoo(D) = 1(B) - C,

we deduce the even cohomology of D,

1
hgyo(D) 25 (02 + Cl(B) . C) s
h1’1<D) :Cz -+ 901(3) : C—|— 2.

(5.48)

Recall that the Hodge numbers hy g, hi ;1 are related to the number of self-dual and
anti-self-dual two-forms by

by (D) = 2ha9(D) +1, by (D) =hi1(D) 1, (5.49)

(x(D) + o(D)) determines the co-

while the holomorphic Euler number x(Op) = 1

homology of the line bundle £ = Ox(D),

X(Op) => (~1)'dim H'(X, L) . (5.50)

=0

28The prime is used to distinguish this result, based on the ampleness assumption, from the
correct result in (5.51) below.
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For a very ample line bundle, hy o(D) vanishes and x(Op) = dim H°(X, L) gives the
complex dimension (plus one) of the moduli space Mp of the divisor D inside X.
More generally however, the real dimension of M, is given by dp = 2k (D).

The (0,4) SCEFT obtained by wrapping an M5-brane on D (or a D3-brane on
C' in F-theory) is, at least at large volume, a non-linear sigma model whose target
space is a Narain bundle of signature (b, — 1,b5 — 1) over Mp, along with a center
of motion factor R? x S'. The central charges (including the center of motion factor)
are given by [95, 96]

1
cr =dp + b + 3 X 4h1o(D) +3 =3C* +9¢,(B) - C +6,

5.51)
1 (
CRr :dD + b;_ + 5 X 4h270(D) +5= 302 + 361(3) -C'+6.
In terms of the arithmetic genus (5.46), this is rewritten as
Cy, :6hD+1201(B) 'O, CR:6hD+601(B) -O, (552)

which differs from (5.45) by an additional term 6hp on both sides (recall that the
difference ¢p, — cp is fixed by the gravitational anomaly [97]).

This presents a puzzle, since the growth of the D4-D2-D0 indices is controlled by
¢, in agreement with the macroscopic entropy, rather than by ¢;. The most obvious
resolution is that even though the central charge of the SCFT is given by (5.51),
the Cardy formula involves the effective central charge c.q = ¢ — 24hni,, where
hmin is the conformal dimension of the lowest conformal primary, which reduces to
¢ if one identifies hpy, = zl;hDv which is recognized as the energy of the Ramond
ground state for 4hp real fermions. We note that the difference (¢, — ¢}, cr — )
can also be understood as the contribution of one unit of D4-brane charge p® along
the base; on the F-theory side, this corresponds to one unit of Taub-NUT charge,
and is consistent with the 4D /5D lift [98, 99].

On the other hand, the authors of [96] presented some support for the formulae
(5.51) from the growth of the Fourier coefficients of the meromorphic Jacobi form
Zu(T,\) =3, C(n,m)q"y", tentatively identified as the elliptic genus of the SCFT.
In particular, in [96, §A] is is argued that for a meromorphic Jacobi form of index
k under SL(2,7), Fourier coefficients grow as C(n,r) ~ exp(mv/4kn — r2) (similarly
as for a weak Jacobi form of the same index). The same arguments show that for a
meromorphic Jacobi form of index k under I'; (N) (for example one obtained from a
SL(2,7) modular form by rescaling (7, \) — (NT, \)), Fourier coefficients grow as
C(n,r) ~ exp(my/ %2 — r2). Setting k = hp — 1 and taking the large n limit at fixed
r, we get

(C? —c1(B)-C+2)n
2N '

log |C(n,r)| "= 27r\/ (5.53)
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Let us compare this result with the macroscopic entropy of a static BMPV black
hole, given by [100]

1 1
S5D(Qa) =27 (g/ﬁabctatbtc> ) Qo = §’§abctbt67 (554)
where t* corresponds to the Kahler modulus at the attractor point. For genus one
fibrations on P?, with charge q, = (n,C), setting 1 =n — % we find

2my /AN — /N (22N — 7C?)
3VAN?

Ssp(n,C) = <\/N (2N — 7C?) + 2ﬁN> (5.55)

provided |n| > \/%|C| In the Cardy regime 1 > |C|, we get

212 =((12)3/2 512 =2
Ssp(n, C) = 21 T;fv - ;ggﬁig/z Fomom % (1 - ;&ﬁ n ) . (5.56)
The N-dependence at leading order is consistent with the expectation for I'y(NV)
Jacobi forms, but the microscopic origin of the O(KC?/m) corrections is obscure.
Subleading corrections proportional to ¢;(B) were matched in [101, (5.33)], by noting
that higher-derivative couplings of the form ¢, A*ARAR term in 5 dimensions (where
R is the Riemann tensor and A® the graviphotons) induce a shift g, — ¢, + %Cga,
which amounts at leading order to shifting C? — C? + 3¢;(B) - C' as in the central
charge ¢y, in (5.51).

The upshot of this discussion is that the central charge (5.51) appears to control
the growth of indices counting 5D black hole in the Cardy limit, or PT indices
counting 4D black holes with one unit of D6-brane charge, but that the growth
of indices counting D4-D2-D0 black holes wrapping the genus-one fiber is instead
controlled by the MSW central charge (5.45), even though the pulled back divisor is
not ample but only nef. It would be very interesting to reproduce the full black hole
entropy (5.55) from microscopic counting.

6. Discussion and open problems

In this work, we have revisited the modular properties of generating series of various
enumerative invariants of torus-fibered Calabi-Yau threefolds, restricting for simplic-
ity to fibrations with trivial Mordell-Weil group and no fibral divisors (hence at most
discrete gauge symmetries in the corresponding F-theory vacua, see [40]). Our main
result is a derivation of the Jacobi property of the generating series of PT invariants
at fixed base degree, assuming the wave function property of the topological string
partition function Z,,(t*, A) under a suitable monodromy. This wave function prop-
erty is physically well motivated, but far from being established mathematically, and
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our work can be viewed as further evidence for its validity for general projective CY
threefolds (see e.g. [102, 103, 104] for rigorous results in this direction for toric CY
singularities and [105] for a proof of the BCOV equations for the quintic).

While we have only considered Z,,(t*, A) (or rather its logarithm) as an asymp-
totic series in the topological string coupling A, the wave-function property is ex-
pected to hold for the putative non-perturbative completion of the topological string
amplitude, potentially fixing it uniquely, and it would be extremely interesting to un-
derstand its consequences for the resurgent structure of the asymptotic series, along
the lines of [106, 107, 108].

Notably, a key step in our derivation of the Jacobi properties was to introduce a
variant Z,q(t*, \) of the topological string amplitude, which is both holomorphic and
modular invariant, up to a multiplier system entirely determined by the topological
data of the fibration. This was made possible by the introduction of the improved
Kihler moduli 5* (4.49), which transform simply by an additive constant under
['1(N). As an asymptotic series in A, Z,0q is essentially determined by the depth-
zero part of the quasimodular series of GW invariants at arbitrary degree and genus.
A better understanding of its analytic properties might open the way to determine
all-genus GV invariants at higher degrees than currently available.

On the other hand, our derivation heavily hinges on the structure (3.1) of the
base degree zero GV invariants, as well as on the relations (2.36) to the intersection
numbers of the fibrations. In the elliptic case, i.e. N = 1, the relations (3.1) follow
from [83, Theorem 6.9], the proof of which relies on the fact that for elliptic fibrations,
the smooth generic Weierstrafl fibration is isomorphic to the corresponding relative
Jacobian fibration. We expect that the relations for N > 1 can be proven along
the same lines but using the twisted derived equivalence of the smooth genus one
fibered Calabi-Yau with its relative Jacobian fibration [54, Theorem 5.1]. Clearly, it
would be interesting to generalize our results to general fibrations with fibral divisors
and/or non-trivial Mordell-Weil group (see [109] for new results in this direction).

It was proposed in [35] and further elaborated on in [41, 40], that the I';(IV)-
modular properties of Z;,, extend to vector valued modular properties under the full
modular group, when taking into account the topological string partition functions
on all genus one fibered Calabi-Yau threefolds that share the same Jacobian fibration.
This requires including suitable flat but topologically non-trivial B-field backgrounds
on fibrations that exhibit Q-factorial terminal singularities, see also [36, 37, 38].
Lemma 2, together with Lemma 4 and 5, can be used to prove this vector valued
modularity for the vertical invariants under the Fricke involution T — —1/(NT),
assuming the Ansatz for the topological string partition function in the presence of a
flat but topologically non-trivial B-field in terms of torsion refined Gopakumar-Vafa
invariants from [35]. More generally, it should be possible to generalize these results
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to understand the full vector valued modularity for the vertical invariants and to use
the wave function property of the topological string partition function to extend this
beyond base degree zero.

Our second main result was to relate the generating series of genus zero Gromov-
Witten invariants at fixed base degree H (which, up to multi-cover effects, count
BPS bound states of D2-D0 branes wrapped on H + nF’) to the generating series
of rank 0 rational DT invariants supported on the pulled-back divisor D = 7~1(H)
(which, up to different multi-cover effects, count BPS bound states of D4-D2-D0
branes wrapped on D). Restricting for simplicity to genus one fibrations over P2, the
proposed relation (5.22) (extending the earlier proposal of [26] to the case of genus
one fibrations with N-sections) arises by following DT invariants under the same
relative conifold monodromy, assuming the absence of wall-crossing. It is clearly
an important problem to prove this assumption, and extend the relation (5.22) to
more general torus fibrations. If this relation is correct, the fact that the generating
series fy are quasimodular forms under I';(N) implies that the generating series
hp, transform as vector-valued mock modular forms under SL(2,7Z), exactly as
predicted in [15, 14], given the fact that for isotropic charge vectors, mock modularity
reduces to quasimodularity. This is similar to the case of K3-fibrations, where the
modularity of the generating series of vertical rank 0 DT invariants can be reduced
to the modularity of generating series of Noether-Lefschetz invariants [23, 22].

Clearly, both in the case of torus and K3-fibrations, it would be very interesting to
compute rank 0 DT invariants for general divisor classes with non-trivial support on
the base, so as to provide further support to the S-duality conjectures, and possibly
obtain new constraints on higher genus GV invariants, along the lines of [12, 13].
While it is known that in the case of a smooth elliptic fibration over a del Pezzo
surface B, rank 0 DT invariants supported on For [D] = r[B] coincide with rank r
Vafa-Witten invariants on B [110, 111, 112], and therefore have modular generating
series, it is an interesting problem to generalize this to the case of torus fibrations
with N-sections. Similarly, it would be interesting to clarify the relation (if any)
between GV invariants supported on the basis of a torus fibration with N-section,
and GV invariants of the non-compact CY threefold given by the total space of the
canonnical bundle K. We hope to return to some of these questions in future work.

A. Modular forms for I';(N)

In this appendix, we review basic facts about modular forms for the congruence
group I'1 (), introduce Eisenstein series with Dirichlet character and their holomor-
phic Eichler integrals, and obtain new results for their transformation under Fricke
involutions. The results are used in Section 3 to understand the modular proper-
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ties of the base degree zero contributions to the topological string free energies of a
generic genus one fibered CY threefold.

The congruence subgroup I'y(N) C SL(2,Z) is defined as

T (N) = { <Z Z) € SL(2,7)

a,d=1mod N, CEOmOdN}. (A.1)

For 1 < N <4, the group I'(N) is generated by the two elements (; ;) and (4 7).
More generally, the minimal number of generators is given by 2g(N) 4+ n.(N) — 3
in terms of the genus g(N) and the number of cusps n.(N) of the modular curve
Xi(N)=H/I'y(N). We have listed sets of generators for N = 5,6, 7 in Table 1.

N Generators of I'1 (N)
5 (1 1) (10) (11—4)
01/)7\51)7\25-9
11 10 7T =3
6 (1) (1) (2 2)
7 (1 1) (10) <15 —4) <—135) (22 —9)
01/)7\71)7\49-13/)7\ —218)7\49 —20

Table 1: Generators of the group I'y(INV) for 5 < N < 7, obtained using the algo-
rithm described in [113, Section 1.4] and implemented in Sage [114] with the command

Gammal (N) .generators ().

We denote the corresponding ring of modular forms by M (N) and let M, (N) C
M (N) be the subspace of modular forms of weight w. Since I';(1) = SL(2,Z), we
have M (1) = (Ej4, Eg) in terms of the Eisenstein series Ey(7),Eq(7). Using (3.8), it
is easy to see that

ena(r) i= NEy(NT) — Eo(7), (A.2)

is a modular form of weight 2 for I';(/N). A basis for the ring of modular forms for
I'y(N) with N < 5 have been constructed for example in [35, Appendix B] and we
briefly summarize the relevant forms in Table 2.

A.1 Dirichlet characters, Bernoulli numbers and L-series
Let us first recall some definitions and properties of Dirichlet characters, generalized
Bernoulli numbers and Dirichlet L-series from [115, Chapter 3.

We denote the group of Dirichlet characters with modulus N by

—

D[N] := (Z/NZ)* . (A.3)
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N Generators of M (N) Aoy
1 €14 = By, e16 = Fg
o[22 = 265(27) — Eo(7) = 1+ 24q + 24¢* + 96¢> + 24¢* + . .. 62’41;;54
62,41: E,
o eon= (s +2T8E) = 1460+ 68 +6g' + .. ¢4
€33 = 27(3:))39 =q+3¢>+9¢> + 13¢* + ...
A €41 = —n(ﬁ)(f;&i)4 — 14 4g+4¢ +4¢* + ... _Caleayena)
€2,2
) 1= ((q;q5)(:;(qq)§?q5goo)5 =14+3q+4¢"+2¢° +¢" + .. eg,léé,l
51 = ey — 1720+ =3¢+

Table 2: Generators of the ring M(N) of modular forms for I'1(N) with N < 5, and
canonical modular form Agy for 2 < N < 5. We denote by en ., or en,u,e @ modular form
for T'1(N) of weight w and (a; q),, is the g-Pochhammer symbol (a;q), = Z;é(l — ag®).

Since x(—1)? = x(1) = 1, we have that x(—1) € {—1,1}. We denote by D[N]* C
D[N] the subgroup of Dirichlet characters with modulus N and x(—1) = +1. Given
a character xy with modulus N, the conductor m, € N of x is the smallest positive
integer such that y(m) = x(n) for all m,n € Z with ged(m, N) = ged(n, N) = 1 and
m = n mod m,. The conductor always divides the modulus, m,|N.

A character x € D[N] is called primitive if N = m,. If x is not primitive, there
is a unique primitive character x* € D[m,], such that

[ x*(n) if ged(n,N) =1
x(n)—{ 0 i ged(n,N) #1 (4.4)

The so-called principal character x o is given by

0 if ged(n,N) #1

xwo(n) = {1 if ged(n, N) =1 (4.5)

and always has conductor 1. The associated primitive character is the trivial char-
acter x € DI[1] with x(n) = 1. The number of Dirichlet characters of modulus N is
given by Euler’s totient function

p(N)=N[[(1-p7), (A.6)

pIN

where the product is over prime factors of V.
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The generalized Bernoulli numbers By, are defined via the relation 2

N ax 0 k
xe x
S g =Y By (A7)
Expanding the left-hand side of (A.7) in =, we can introduce f , , via the relation
N > Z’k et
By = ;X(a)ﬁk,ma, ;@cw,ay = T (A.8)
and note that By ,nrq = rk_15k7N7a. We have the relation
Bk,x :Bkz,x* Z :u(d>dk_lx*(d) = Bk,x* H (1 - pk_lX*Q?)) ) (Ag)
d|N p|N
in terms of the Mobius function
1 ifn=1
p(n) =< (=1)* if n has k distinct prime factors : (A.10)

0  if n is divisible by a square greater than one

The Dirichlet L-series is defined as

Lis,x) =Y x(n). (A.11)

nS

n=1

One has the relation

L(s,x) = L(s,x) | | (1 - X*(p)) : (A.12)

ps
p|N

where the product is over the prime factors of N. If x € D[N]* (x € D[N]7), the
only zeros L(s,y) with s € Z are simple zeros at the even (odd) negative integers.
We will also need that

0 if m,>1
L(Oax*) _{ . X .
—% it m, =1

(A.13)

If x is a primitive character with modulus N > 1, and 6 € {0,1} satisfies
x(—=1) = (=1)%, then L(s, x) satisfies the functional equation

L(s,x) = W(x)2°m* LNY2=5 sin (g@ + 5)) P(1— s)L(1 - 5,X). (A.14)

29Compared to [115], we extend the definition of By, to the case that x is not necessarily
primitive.
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where Y is the complex conjugate character of x, and

Wx) = - (A.15)

in terms of the Gauss sum
T(x) = Zx(a)e% : (A.16)

With this, one can show that L(s,x), for primitive x with modulus N > 1, is an
entire function of s. One then also has [115, Theorem 3.3.4]

oy

_ Bix
Lk, x) = (16020 kx

(2r/N) 2,

L1 —k,x) = —Bp k. (A17)

A.2 Eisenstein series with character

We summarize and extend some results about Eisenstein series from [115, Chapter
7], see also [113, Chapter 5.

Definition 1. Let x € D[N] be a Dirichlet character with modulus N > 1 and let
k > 0 be such that x(—1) = (=1)*. We define the Eisenstein series

B
By (7) = = Sroun + D Y x(m/n)n* g™, (A.18)
m>1 nlm

E _ BkX k 1 m

ex(r) == DD x(n) (A.19)

m>1 n|m

o~ . B N
Fuadr) =N (st S S x| )

m>1 njm a=1

We can then show the following:

Proposition 1. Let x and k be as in Definition 1.

1. If N > 1 ork #2, Ek’X(T) is a modular form of weight k for T1(N). If N =1
and k = 2, it is the weight 2 quasimodular form Es ., ,(T) = — 5 Ea(T).

2. If k # 2 or x # xno, Ery(7), Ek%(r) are modular forms of weight k and
Eoxno(T), Bayyo(T) are quasimodular forms of weight 2 for I't(N).
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Proof. We first focus on EhX(T) and assume that k # 2 or m,, > 1. If x is primitive,
the modular properties of Ek,X(T) follow from [115, Theorem 7.1.3], [115, Theorem
7.2.12] and [115, Theorem 7.2.13], together with [115, Lemma 7.1.1] and [115, Lemma
7.2.19]. If y is not primitive, we observe that for any function f : Z x Z — C one
has

D> X fnym) =Y p(d)x (d) Y D> X (n)f(dn,dm). (A.21)

m2>1 n|m d|N m2>1 n|m

Together with (A.9), this implies that

_ B E P
B (7) = = S 4 D_p(d)d X (@) (E’WW N )
p (A.22)

=" u(d)d* X (d) By e (dr) -

AN

We then observe that Ek,x* (7) is a modular form of weight % for I'y(m, ) and in the
sum x*(d) is zero unless d|N/m,. If k =2 and x = xn, we can write

Bonlr) = — 52 S nld)dEs(dr) =~ 3™ uld) (Ba(r) + ean(r))

24 4
o dIN
| (A.23)
DY OnaEa(T) + E :'u(d)edﬂ(T) ’

dIN
where in the last step we have used that >_, y pu(d) = d1,n-

The modular properties of Ej (1) for k # 2 or m,, # 1 again follow from [115,
Theorem 7.1.3] and [115, Theorem 7.2.13], together with [115, Lemma 7.1.1] and [115,
Lemma 7.2.19]. For k =2, x = xn, we use again (A.21) and observe that

Bops(1) = — = 3 p(d) Ealdr). (A.24)

We can rewrite this again as

EZvXN,U (T> =
(A.25)

where in the last step we have applied Mébius inversion to the divisor sum formula
>~ #(d) = N to obtain that 3,y u(d)/d = ¢(N)/N.

dIN

The modular properties of EhX(T) follow from Lemma 1 below. []
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Lemma 1. With x, k as in Definition 1 and L := m, we have

Bun(r) = A COW OO Spld)i @B (77) - (a2
AN

Proof. We first calculate the non-constant part and define
" 1 % Nt Bk
W) D)@ (B () + o) - (4
N
Inserting the definition of Ej ,(7), we can rewrite this as

() D u(d)d XA d) Y D X (m/m)nt g v

d|N m2>1 n|m

=W(*) Y pld)d™ XM d) Do D X (mfn)nt g T (A.28)

d|N/L m2>1 n|m

'S () (23St e

d|N/L m>1 n|m

where in the second line we use that x*(d) can only be non-zero if d|/N/L and in the
third line we use >,y f(d) = >,y f(N/d). Exchanging the order of summation,
and summing over dm instead of m, leads to the expression

=D Y X () ()% ()t

m2>1 n|m d|(N/L,m/n)

:_ZZZX k 1 27nam/(nN)q ,

m>1 n|m a=1

(A.29)

where in the second line we have used [115, Lemma 3.1.3]. To take care of the
constant part, we just note that

pu(d By
Z —51 N =5 0N (A.30)
d|N
The result follows after comparing with (A.20). O

Lemma 2. Given x € D[N] and k > 1, the (quasi) modular forms EkVX(T) and
Ej (1) are related via the Fricke involution

~ 1 ~ iN
B x (—ﬂ) = (VNT)*Ex(7) + 0,161 21_7TT (A.31)
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Proof. Let L = m, be again the conductor of y. We first assume that k£ > 3.
From [115, Lemma 7.1.2] one then obtains

E —i———k—E—E—() (A.32)
\TIr) T T W) ) '

where L is the conductor of the primitive character y*. We also have [115, Lemma
3.1.1]

WOWKX) = x" (=1L (A.33)
Together with (A.22), this gives
~ 1 L NF . 1 Nt
Ex <—m) =Wl )(HZNM(d)d X (—d) Bz <m) ~ (A.34)

Together with Lemma 1 the claim follows. The result can easily extended to k = 1,2,
using [115, Theorem 7.2.13] and [115, Theorem 7.2.12]. O

A.3 Polylogarithms and Eisenstein series with character

The (quasi) modular Eisenstein series Fy(7) for even k > 2 can be expressed as

2(2k —2)
Egk_2(7'> — ng ) Z L13 Qk . (A35)
m>1

On the other hand, one also has

83 Z L13 % (E4 — ]_ 8 Z L11 (1 — EQ( )) . <A36)

m>1 m>1

In this section we want to generalize these relations, using the Eisenstein series from
Definition 1.

First, recall that the indicator function fu,(n) is given by

1 n=amod N

ﬁmm%={0n¢amﬂN, (A.37)
and we also define gy q(n) = fya(n) + fv—a(n).

Our goal is to understand the modular properties of the following objects:
Definition 2. Given a, N € N, we define

=3 > gva(k)Lis_gg (") (A.38)

m>0 k=1

) :=N'"9 Z ZN: gn,a(k)Liz o (627& qm> : (A.39)

m>1 k=1
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We can relate these to the Eisenstein series defined in Appendix A.2 using the
following lemma.

Lemma 3. Given N,a € N with gcd(N,a) = 1, one has

gna(n) S xn). (A.40)

Proof. The indicator function can be written as

1
fna(n) = WX;D[:N]X(”)/X(@) : (A.41)

which allows us to express gy.(n) as

1
) =Tl + i) = — Xe;m A+ x(-D)x(m)/x(@) . (a49)

The result then directly follows from the fact that y(—1) € {—1,1}. O

Using Lemma 3, it is easy to show the following:

Lemma 4. Given N,a € N with r := ged(N,a) and g > 2, one has

BQQ,Q 2 X(T)
N,a(T) =5 51,N/7~ + Z ~ E2g—2,x(r7_) ) (A.43)
29 — 2 P(N/T) e X(@)

~ =9B,,_ 2N (r) ~
(9) (r :(N/T) 2925 oy 2N X oy (A4
) W S vl el )

Proof. Let us first assume that ged(a, N) = 1. We can rewrite the Eisenstein series
Eog—2,x(T) as

B
Eagan(T) = — (229_22 51N+ZZX m/n)n*9"3q™

m>1 n|m

_ (329 2 51N+ZZZX 29 3gn(mN+h) (A.45)

m>0 k=1 n>1

B
_ 2(229_22 51N+ZZX )Lis s, mN—Hc) _

m>0 k=1
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Similarly, we can rewrite

Baanl) =N [P S i

m>1 n|m a=1

_ B2 2 2miam mn
v (e 5 S )

m,n>1 a=1

N .
:N9_2 _2(559_22) 51,N + Z Z X(_a>Li3—29 <€27]f\;a qm)> .

(A.46)

In both cases the result then follows from Lemma 3. If r = ged(a, N) # 1 we have

¢S\g,)a = ¢§3}r,a/7*<r7-) and ¢S\?,)a - ¢§3}7«7a/7,<7'7').

Lemma 5. Given N,a € N with r := ged(a, N) and g € {0,1}, one has

(2i) 22022900 (7)

54—29 N/r.a/r 2 X(T) '
= e + Z — E4,297X(7”T>,
4-2g PIN/T) e X(@)

(2mi)2720272950) (7)
. N 1=g B4_Qg 2 X(T) -~
-(5) S2ram L2 e

D[N/r]*

Proof. We first rewrite

(2m1)%9 202~ 29¢ Z Z gna(k)(mN + k)3 29Lig(¢™N1F)
m2>0 k=1
=22 owalmn®¥q"
m>1 njm

Using Definition 1, this can be expressed as

(2mi)?0 202206 ()
2 1 = B4—297x
o Z x(a™) (E4—2g,x(7) + m)

90( XED[N]+ 29
1 N
K | Buaanr) + 5y X020
:64—29,N,a_'_ 2 Z X(a_l)E4_2 (7).
4—2g  p(N) "

XE€D[N]*
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Similarly, we first rewrite

N
(200G, (r) =N 37 3 gwa(b)m* 7 Lig (Fg™)

m>1 b=1

N (A.50)
=N TSNS gna(b)mP e g
m>1n>1 b=1
Using again Definition 1, this can be expressed as
(2m1)* 2026, (7)

2 S ) (B + N P05, )

P(N) | SR 2(4 - 29 (A.51)
- o fi;gg + 90(2 ) Xeg[]:\[ﬁ* X(a_ )E\4_29X(T)

O

A.4 Eichler integrals

In this appendix we generalize the relations (3.11) and (3.14) and derive the modular
properties of the functions ¢§3}a(r) for g =0, 1.

Let us first make the following definitions.

Definition 3. Given g € {0,1} and N,a € N we define

PR (7) =T 0L (7)

~ N (A.52)
D, (1) =T+ O, (7).
with
A9 (271)*29By_29, N0 plo) . (271)° 29N "9 By (A.53)
e (4—29)[(3-29)1)" " (4—29)[(3—29)1]
as well as

PNu(r) 1= 2mi) 0T R (7), GRL(r) = (i) PO HOYL (7). (A5Y)

,a

From Lemma 5, we know that both 905\%(7) and @%?Q(T) are (quasi) modular

forms of weight 4 — 2g for I'; (N). Moreover, Lemma 2 implies that they are related
via the Fricke involution

1

~ 1
o9 () = (VR0 (‘_) 9910w

omiT

= (A.55)
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Our goal in this section is to study the transformation behavior under this Fricke
involution of @g\g,)a(T) and @Eg?a (1) and to use this to deduce the modular properties

of @%?G(T). More precisely, we want to show the following:

Theorem 1. Given N,a € N, and r := gcd(N, a), one has
O, (7 +1) =0, (7) + ¢V, (372 + 37 + 1),

3
250 T _30 in 2
(NT+1)*®y, (m) =Py, (T) — 90 [2(15a® — 15aN + 2N?)7* — 3NT — 3]

— C(?))T(T + 2)517]\[” 3
as well as

1 1 1
o) (r+1) =0y (1) + ¢,

1 T 1 A(1
o0 (g ) ~0% () = B log (N7 +1) =

Proof. The behavior under 7 — 7 + 1 is trivial. Deriving the transformation under
T — 7/(N7 + 1) will occupy us for the rest of this section.

If ged(N,a) = r, with r > 1, then Y, (1) = ), (r7), with N’ = N/r and
a’ = a/r. We can therefore assume that ged(a, N) = 1 and the general result follows
as well.

Since <I>§$?a(7) and (/I\)g\g/,a( ) are Eichler integrals of the modular forms (p(g) (1) and
@S\%)a(T), we know that

1
¥0,(r) - VNP8, (— ) = o), (A.56)
in terms of the functions
Z oV PYL(T) = al, log(r) +aly, ., (A.57)

with complex coefficients &S\?a, ag\?a,o and « jg?ayk for k = 0,1,2. This also implies

oY, (1) — (VN7 20, (— 1\17) — (VN2 py) <_NLT) (A.58)

Following the strategy laid out in [89], we define

2
9 (y) =(—1)%1e P + @) (1y) = —— Z a g (),
P(N) S
2 (A.59)
39 (y) =(=1)%160 > + 3 (iy) = Z a Mg\ ().,
D
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in terms of

N
) = 3 SRy )
m>0 k=1

>

N (A.60)
~(9) y) :Nl—g Z Z X(k)LiB—Qg (627rik/Ne—27rmy) )
m>0 k=1
From (A.56) we then obtain
1
00 = O E L () F R (e
in terms of
1
R§8a Z ANa k k’ Rg\lf,)a(y) = Ag\lf,)a log(y) + Z Ag\lf,)a,kyk’ <A62)
k=—1 k=—1
with
0 . (0 0 0 0 . (0
ASV,)G,, 1 :165\7)/]\]'2 AgV)aO = ag\/)a(] ’ AEV,)a,l = 1&§V,)a,1 ’
(0) (0) (0) (0) (A.63)
ANaQ _aNa27 ANa3_lcNa7
as well as
A, =l AL, =i/,
’ ’ (A.64)

1
Ag\lfy)ayo _ag)a 0 + QWIO{E\}V)a ’ Ag\lf)a 1 1c§\7)a :

In order to determine the coefficients Agg)a w» we calculate the poles of the Mellin

transform
~(9) _ s—1 (9) d A 65
Inn(s) = [ v N (w)dy .- (A.65)
0
More precisely, if we denote the residue of gj(\%)x(s) at s = —k by Agg?x,k’ we have
2 —
ANr = o) > x(@HAY, . (A.66)
P epp
After rewriting
() N 6—27rn(mN+k ,
J — —4aTTmy
B = S T g = S M e )
m>0 k=1 n>1 m>1 n|m
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we obtain

(27T> gNX ZZ - 29 / s— 16—2wmydy

m>1 n|m 0

B) )P ISR o) I (DR
n3— 2g+s m/n n3— 29—|—s

m>1 n|m m>1 n>1

I (5)C(3 — 2+ 5)L(s,X).
Using the relation (A.12), we can further rewrite this as

GO() = @2m)T()6(3 — 20+ 5)L(s.x) [ (1 - X—@) | (A.69)

ps
pIN

If the conductor of y is greater than one, the Dirichlet L-series L(s, x*) is an
entire function of s. Otherwise, we have x = xno and

L(s,xno0) = ((s) H (1-p7%). (A.70)

p|N

Recall that the only pole of ((s) is a simple pole at s = 1 with residue 1 and the
zeros on the real axis lie at the even negative integers. The gamma function I'(s)

has simple poles at values s = —n, n € N, with residue
1)
Res(I', —n) = # : (A.71)
n!

Case g = 0. We first consider g = 0. Then g(g) (s) has potential (simple) poles at
s € {=3,...,1}. One immediately gets

1
AR = 67?3L(—3, X), AP = —57 SL(-1,x), AY o =C(B3)L(0,x), (A.72)
and, using (A.70),
) , 0 if X 7’é XN,0
ANy = = I‘ZIV (1—p7 ") if x =xwo - (A.73)
p

To obtain AS\O,?X72, we first use (A.14) and note that for primitive y € D[N]* one has

N3W
Le=2x) = —4—7T2(X)L<3,X)e +0(e), (A.74)
such that
1 s
Ao = —5mW)LEGX).- (A.75)
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Using the relation (A.66), as well as (A.13), we then obtain

O m © _m
AN,a,3 = ?54,N,a ) AN’M = ?62,N,a )
o o 3 (A.76)
AN,a,O == C(B)(;LN? AN,a,—l = 90_N )
and this fixes
1 3
ag\??ap = _§C(3)51,N7 Oég\oﬂ)&l = —1§/827N7a . (A??)
We can now use these results to calculate
(N1 + 1)2(13(0) T = (N7 + 1)2(1)(0) IS S
Na\ Nt +1 Nya N(—ﬁ— )
2
~ 1
=(VN7)?o, (—m ~ 1) +3 al) T N+ 1)
k=0
0 &y ~
=0, (1) = =7 [BH3NT + N2 3 ol (N + 1) 1]
k=0
.3
=0 (1) - 1910 [2(15a% — 15aN + 2N?)7? — 3NT — 3] — ¢(3)7(7 + 2)d1.n -
(A.78)
Case g = 1. The case ¢ = 1 works analogously and f]](\}?x(s) has simple poles
s € {—1,1} and a potential double pole at s = 0. We immediately obtain the
residues
W W 0 if m, #1
AN,X,I =7L(-1,x), AN,X,—l =y 5l —p ) ifm, =1 (A.79)
pIN
such that
1 1 m
ANy = ~mBoxa: AN = o (A.80)
Around the double pole, we expand
- 1~ 1
Iy (5) = AN\ + AN\ o+ 0(1), (A81)
and, after comparing with (A.69), we find that
1) x| 0 ifN>1
aN7XAN7X{_% FN—1 (A.82)
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where we have used (A.13). Since for s > 0 one has

! s—1 ]'
log(y)y* dy = ——,
0 S

we can identify

It follows that

AV(l)_ 0 if N>1
Ne " 11 if N=a=1"

We skip the calculation of A%) as it won’t be necessary for our purpose.

X0

We can now use these results to calculate

=0 (1) — dylog (N7 +1) — & .

A.4.1 Extra generators

(A.83)

(A.84)

(A.85)

(A.86)

Here, we record conjectural identities for the transformation of the genus 0 and genus
1 Eichler integrals under the additional generators (11 :3) for N =5 and (172 :g) for

25

N = 6, respectively. While these identities have been checked numerically, we have
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not attempted to prove them:

(257 — 9)20() (;; - g) — ®)(r) = (21123 (—123 + 6357 — 8007%)
(257 — 9)%®) (;; - 3) - of(r) = (277;)3 (—399 + 22637 — 323277)
(257 — 9)20L) (;: — 3) — ®0)(r) = (277;0)3 (681 — 3737r + 510872)
(127 — 5)°) (17277__35> — o) (r) = — 3%{;)3 (98477 — 8887 +197)  (A.87)
(127 — 5)°0) (172:__35> —o0)(r) = (fgézf (—57817% + 52077 — 1153)
(127 — 5)%0() (172:__35> —®0)(r) = (17;23 (333 — 15027 + 166672)
(127 — 5)%®() (172:__35> —o{)(7) _%&?3 (341 — 15397 + 170777)
ol (;; - 3) —o{)(7) _%m — log(257 — 9)
o) (HT — 4) - CIDéli(T) =— E27Ti
257 — 9 , 60
o) (55— ) - () =2
') (17277__35> —a{)(7) :ém — log(12r — 5) (A.88)
a{) (17277 - 35) - all)(r) = - oni
2} (172: - 35) — a{l)(r) =g
o) (=) - o) = fyem

B. Relative conifold monodromy

In this section, we derive the action (4.24) of the relative conifold monodromy on
the Chern characters of a basis of branes. We use the same notation as in the main
text, but distinguish the quantities

- 1
aa:cl(TB)ﬂDa, Ca:ECZ(TX)mDom O./:]_,...,bQ(B). (B].)

since we cannot prove that they are equal in general.
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Let us denote the two projections from X xg X to X by m;, 7« = 1,2. As discussed
in [33, Section 3.3], the relative conifold monodromy U acts on the Chern character
of a brane £* € D*(X) as

U: ch(&%) = ch(E®) — ma [} (ch(E°)TA(Tx/p))] (B.2)
where T'x/p is the virtual relative tangent bundle of the fibration. The Chern class

of the virtual relative tangent bundle T'y,p is given by

C(T ) _1 + Cl(Tx) + CQ(T)() + Cg(Tx)
X/B) = 1+ Cq (TB> + CQ(TB) (133)
=1 - Cl(TB) + Cl(TB)Z — CQ(TB) + CQ(TX) — Cl(TB)CQ(TX) + Cg(TX) .

and the corresponding Todd genus takes the form

Td(Tx/p) =1 - Cl(gB) | 2ale) - C"‘l(QTB) Tollx) Cl(TB;ff(TX) . (B4

A Q-basis of the cohomology of X is given by the classes
{1, D, D, F, D.D,, V'}, (B.5)

where F'is the 4-form that is Poincaré dual to the generic fiber and V' is the volume
6-form that is dual to a point on X. They satisfy the relations

1 1 1
D?=— (k- — BYVE 4+ —0,0°DgD D.,Ds = F
e N (K, NEO[E/BC ) + Ngoéc Bse al/p Caﬁ )
D} =kV, D?D,=10,V, D.D,Ds=NC,3V, D,DsD,=0,
FD.=NV, FD,=0.

(B.6)

We can interpret my 7} as an endomorphism of H*(X,Q), where it acts as

l—»0, Dy—0, F—0, D.— N, D.D,— ND,, V—F. (B.7)

The base B is assumed to be a generalized del Pezzo surface and therefore ratio-
nal. This implies that the only non-vanishing Hodge numbers are h»'(B) = by(B)
and h*°(B) = h*?(B) = 1. Then c3(Tg) = (2 + b(B))F and Noether’s formula,
together with the fact that the holomorphic Euler characteristic of a rational surface
is x(Op) = 1, implies that ¢;(Tg)? = anasC® = (10 — by(B))F.

As a result, we can rewrite the Todd genus as

1 1 1 1
Td(T/) =1 = 50" Da + (Zaaaﬁcaﬁ - 1) F4 =o(TX) = Sca®V . (BS)
By demanding that co(7X) N (De, Dy) = (2.6, 12¢,), we also obtain that
12 1 12
Cz(Tx) = WCQCQBDIQDQ + N (Cz’e — Ncacaﬁﬁg) F. (B9)
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D6-brane: The Chern character of the structure sheaf is ch(Ox) = 1. We then
obtain

To [ (ch(Ox)Td(Tx/5))] = caC*Ds — %CQCLQF. (B.10)

The Chern character of a brane Op that is supported on a Cartier divisor D is given
by
1 1

ch(Op) =1—exp(—D) =D — 5D2 + ng”. (B.11)

We can therefore express the right-hand side of (B.10) as

1
CQCQB Ch(ODB) + —CacaﬂDB (D,B — Cl(TB))
2
: (B.12)
:CQCQB Ch(ODﬁ) -+ éCaCa'B (Cgﬁ - ag) F.

D4-brane on D.: The Chern character of a brane Op, that is supported on the
N-section D, is given by

ch(Op,) =1 — exp(~D,)

111 1 1 1 (B.13)
_q_ | — « - _ af -
-3 [NeaD De+ <,@ ~lalsC )F} + oV
such that
Ch(ODE)Td<Tx/B)
1 1 1
— _ af = _ af
D, 5 [(aa + Ea) C ZD/BZ)e + N (/{ Nfafgc ) F:| (B14)
N 1 1 o 1
+ {Z (6= 62(B)) + 52 + 7laa® + g“] V.
Then
T2 % [WT (Ch(ODE)Td(Tx/B))}
N 1 N 1 1 1
_N _ - afB - _ . - a4 =
=N 5 <aa+ Nfa) C*Dg + {4 (6 —b2(B)) + 120276—1— 4€aa + 6'{} F

N 1
:NCh(OX) — ? (aa + N€a> Caﬁch(ODﬂ)

N 1 N 1 1 1
_ — of — (6 —by(B — Va*+ k| F
+ { 1 (aa + Nfa) C*Cap + 1 (6 —bs(B)) + 126276 + 4€aa + 6/41 .

D4-brane on D,: The Chern character of a brane Op,_ that is supported on the
vertical divisor D, is given by

1
ch(Op,) =1 —exp(—D,) = D, — §ch. (B.15)
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The relevant terms of the product with the Todd genus are
1
Ch(ODa)Td<Tx/B) :NCWCWﬂD,BDaS + ... s (B16)
such that

T, % [71‘1’K (Ch(ODa)Td(Tx/B))} = CVC’WﬁCﬁOCF = CaF. (Bl?)

D2-brane on C*: The relevant terms of the product with the Todd genus are

1 1
ch(CH)Td(Tx/5) =C* — 5aﬁpﬁca +...=0"— 5@"‘1/ + ..., (B.18)
such that
T2 % [7'('1< (ch(Ca)Td(TX/B))}
L1 s 1 s (B.19)
=D* — 5& F=cC Ch(@p/) + 50 (Cﬁﬁ — ag)F.
D2-brane on F: We have
Upe [7?; (Ch(OF)Td(Tx/B)ﬂ =0. (BQO)
DO-brane: We have
T [} (ch(Ope ) Td(Tx/5))] = F . (B.21)
Result We choose the following basis of the charge lattice
{ch(Ox), ch(Op,), ch(Op,), ch(O¢), ch(C*), ch(Op.) } , (B.22)
where ch(Og) = +¢h(Op). The end result then takes the form
1 0 —c? T (ay —Cyy) 05 0O
—N 1 & (ay++L,) CP p 0 0
0n O 68 —Ne¢ 0up 0
U = @ T « « NN B.23
0 0 0° 1 0 0 |’ (B:23)
0~ 0~ —CoP L0 (ay — C,y) 05 0°
0 0 0? —N 05 1
with
2 N afs N
p=N*+ Z(fa + Nao)C(Cps — ag) — E(Q/{ + ) (B.24)
If the curves in the classes C, are rational one can use that c,, — a, = —2 to obtain
the expression
ey 1 1
_ - B aBy _ Z -
p=-N |3 ;(NCL +0aCP) = N+ k| + Teae (B.25)
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C. Genus one fibrations

In this section we will discuss the construction of genus one fibered CY threefolds
m: X — B that exhibit an N-section for N = 1,...5. We assume that the base B
is a generalized del Pezzo surface and that X is smooth with by(X) = by(B) + 1.

For N =1, i.e. when the fibration admits a section, the topology of the fibration
is uniquely determined by the choice of basis B. It can be realized as a fibration of
Weierstrafl curves, that is a hypersurface

{y’=2"+ foz" +g2°} CP (L2 LD Op) , (C.1)

where the CY condition requires £ to be the anti-canonical bundle on B and the
Weierstraf coefficients f, g are respectively sections of £* and £°. All of the fibers
of X are irreducible and the topological invariants are listed in Table 3.

The situation becomes more interesting for fibrations that only admit an N-
section with N > 2. The fibration will then exhibit isolated I,-fibers, where the
torus degenerates into two rational curves that intersect in two points. Since the
N-section by definition intersects the generic smooth fiber N times, it intersects
the two rational curves of a given I-fiber respectively ¢ and N — ¢ times for some
1 <qg< L%j 3 We will denote the number of such Ir-fibers by ny, € N. It
is related to the multiplicity Ny of fibral curves intersecting the N-section k times,
that has been introduced in Section 2.4, via ny, = %(NQ+NN_q). The topology of the
fibration then depends not only on the base B, but also on the numbers of I,-fibers
nyg for 1 < ¢ < | 4] and, as was observed in [41] for N = 3, on the height-pairing of
the N-section.

As we will describe below, for N > 2 the fibration can always be realized as a
double cover (for N = 2) or a subvariety of a PY~!-bundle on B. For 2 < N < 4,
this follows from a fiberwise application of the constructions summarized in [116],
for N =5 from the construction discussed in [117] and for N > 6 from the results
from [118]. For 2 < N < 5 we will derive closed expressions for the topological
invariants of the fibration in terms of the invariants of a set of vector bundles that
appear in this construction. The resulting expressions are also listed in Table 3.

30Gtrictly speaking, ¢ could be negative if the N-section degenerates and wraps a 1-dimensional
component of the Ir-fiber. However, we don’t encounter this situation for 2 < N < 5.
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N Description Bundles Invariants
Xx | —60c;(B)?
, Kk | c1(B)?
] Hypersurface in -1, ¢ P o B)
P(L2@ L% D Op) @ | Ze T
D | —c¢(B)
¢y | 12+ 10¢;(B)?
vx | —4(7ei(B) — 2A(V))
k| 2(a(V)? = (V)
Double cover of l, | —2D,Nec(V
21 Pobmderv) |V =2 5 oam) =
¢y | 24 —6¢1(B)er (V) —2A(V)
niy | 4 (4ei(B)2 + A(V))
Xx | 3A(V) — 18¢,(B)?
k| 2c1(V)? —c1(B)er (V) — 3ea(V)
Hypersurface in by, | DoN(c1(B) —2¢(V
31 Ppmdlery | V=35 ch(vg —(cl)(B) =
¢y | 36 —4ei(B)er (V) — A(V)
nyi | 3 (42¢(B)* 4 3A(V))
xx | —13¢1(B)* + A(V) 4+ 3A(E)
26 (V) (e1(V) — c1(B)
Complete inters.ection kol des(V) + eo(E)
of two re.latlve to | 2D0 0 (c(B) — (V)
1 ‘ quadrics rk(V) =4 D [2(c(V)—a(B))
in P>-bundle P(V) | tk(E) =2 ! - !
(vanishing locus of Co 18 — 3 [e1(B) (e1(B) + 6er (V)
section of F') +AV) + A(E)]
niy | 4(4e1(B)?* + A(E))
nys | 3 (15¢1(B)* + A(V) — 5A(E))
Xx | —10c1(B)* + A(E)
p 2 (3¢1(B)* = 9¢1(B)cr (V)
Pfaffian variety in +13c1(V)? = 25¢5(V) + %A(E))
P*-bundle P(V) lo | Do (Ber(B) —2¢1(V))
tk(V) =5
5 (rank 2 locus of K(E) = 5 D | 2¢(V)—3c(B)
skew-symmetric 60 — % [6¢1(B) (c1(B) + 2¢,(V))
map (C.35)) 2 LAW) + A®E)
ny | 13¢1(B)* + ( ) — 3A(V)
nys | 12¢1(B)? — LA(E) 4+ sA(V)

Table 3: Topological invariants of generic genus one fibered CY threefolds with an N-

section for N < 5.
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C.1 Projective bundles

To construct generic genus one fibrations it will be useful to first recall some generic

properties of projective bundles. Given a vector bundle 7y : V' — B of rank r on a

base B, the projectivization is a P"~'-bundle mp(y) : P(V) — B on the same base. !

If the Brauer group of B is trivial, which is the case for generalized del Pezzo surfaces,
every projective bundle arises as the projectivization of a vector bundle.

The space P(V) is equipped with a relative tautological line bundle Op(y)(—1)
and the inverse is the relative hyperplane bundle Op(y(1). The so-called tautological
exact sequence takes the form

0 = Op)(—1) = T (V) = Q@ = 0, (C.2)

in terms of the relative quotient bundle ) on P(V'). The relative tangent bundle of
P(V') over B is given by

Tevy/s = Opn)(1) © Q, (C.3)
and fits into the short exact sequence

0— T]p(v)/B — TIP’(V) — WIE(V)TB —0. (C4)

The cohomology of P(V') is generated by the class Hy = ¢; (Oppr(1)) together
with pullbacks of classes from B, subject to the relation

Hi, + H7 'y (a (V) + ..o+ 75 (e (V) = 0. (C.5)

By combining (C.2), (C.3) and (C.4) one can show that the canonical class of P(V)
takes the form

K]P?(V) = —THV + WI;(V) (KB — det (V)) . (06)

Given any line bundle L on B, we denote V;, := V ® L. One then has an
isomorphism f : P(V) — P(V) and the corresponding relative hyperplane bundles
are related as

Op)(1) = (L) @ f*(Op(vy)(1)) - (C.7)

Therefore, the projective bundle itself is invariant under a twist of the vector bundle
but the relative hyperplane bundle depends on the concrete choice of V. The so-called
Bogomolov discriminant

A(V) = 2rcy(V) — (r — 1)ey (V)3 (C.8)

31'We are following the convention that P(V) is, as a complex manifold, the fiberwise projec-
tivization of V. This differs from the convention, often used in algebraic geometry, that P(V) is the
fiberwise projectivization of VV. When comparing with expressions from the literature the reader
is advised to check which conventions have been adopted.
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does not depend on the choice of twist, i.e. A(V) = A(V}) for all line bundles L on
B. Tt is therefore an invariant of the projective bundle P(V'). One can always find a
line bundle L' on B such that Hy,,, together with the vertical divisors that arise via
pullback from the base, forms a basis of the Kéahler cone on P(V).

We denote a basis of vertical divisors on P(V) by J, = W];(V)Da for a =
1,...,ba(B).

C.2 2-sections

We start by discussing the construction of a generic genus one fibered CY threefold
m: X — B with a 2-section D,.

The restriction Dy, = D,|s, of the 2-section to the generic fiber ¥ is a divisor of
degree 2 on Y. Recall that the line bundle that is associated to a divisor of degree
d on a curve of genus 1 always has d global sections. We can therefore denote the
global sections of nDy, for n = 1,2 by

F(Z7D2) :{Xv Y}v

; ) (C.9)
['(Z,2Ds) ={Z, X2, XY, Y2},

Then 4Dy, has eight sections but there are nine monomials of weighted degree four
in X,Y and Z. As a result, ¥ can be realized as a hypersurface of degree four in
Ps-

Without loss of generality, 32 we can write this as
E:{ZZIQ(XaY)}CP%w? (C.10)

where Q(X,Y) is a homogeneous polynomial of degree four in X,Y. Since [0 : 0 :
1] ¢ X, we have a projection

Tge 1 8 — P (X:Y:Z] = [X:Y], (C.11)

which identifies ¥ as a double cover of P!. The double cover is ramified over the four
points

{QX,)Y)=0}CP. (C.12)

This construction can be applied fiberwise to 7w : X — B and we see that X can
be realized as a Calabi-Yau double cover of a P!-bundle over B. 33 Assuming that

32The coefficient of Z2 is not allowed to vanish because ¥ is smooth and the terms linear in Z
can then be removed by a coordinate redefinition.

33For a general genus one fibration m : X’ — B with a 2-section that has ba(X’) > by(B) + 1 this
construction would give a threefold that is only birationally equivalent to X’. This is because X’
then exhibits additional N-sections, fibral divisors or non-flat fibers and, as a consequence, some
components of reducible fibers are contracted in the double cover.
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the Brauer group of B is trivial we can then find a rank two vector bundle V' such
that the P'-bundle takes the form P(V'). Using (C.5) and (C.6) we obtain

HyNHyNHy =Hy Ny, [cl(V)2 — CQ(V)] = (cl(V)2 — CQ(V)) ,

) e C.13
HyNHyNJo=—Doner(V), HynJanJs=D,NDyg. (G13)

Let us denote the double covering map by mg. : X — P(V'). By twisting V' with a
line bundle if necessary, we can assume that the relative hyperplane class Hy is part
of a Kéhler cone basis on P(V') and, in particular, Hy is effective. Then 7 (Hy) is
also effective and we can assume that D, = 7} (Hy ).

With (C.13), the non-trivial intersection numbers on X are given by
k=2 (cl(V)2 — C2(V)) . Uy =—2D, N a(V), Keap = 2D, N D/g. (C.14)
This implies that the height pairing of the 2-section is
D = —7"m.(D.D,) = 2¢,(V). (C.15)

Using for example the method of GV-spectroscopy [82], one can deduce that the
Euler characteristic yx and the number n., of I>-fibers of X are given by

xx = —4(Tar(B)? =2A(V)) , ngy =4 (4 (B)* + A(V)) (C.16)
in terms of the Bogomolov discriminant

A(V) = dey(V) — e (V)2 (C.17)
Using (C.16) with the relations (2.36) from [40], we find that
1
k= —§A(V) L =24 -2A(V). (C.18)

The expression for & can easily be checked against (C.14). On the other hand, from
the expression for ¢, we can then deduce that

¢y =24 —6¢1(B)er (V) —2A(V) . (C.19)

Note that we could also just calculate ¢y directly, which for N = 2 would only
require slightly more work. The benefit of this indirect method is that it significantly
simplifies the calculation of ¢, for N > 4, as long as the multiplicities of Io-fibers n,
can be deduced using GV-spectroscopy.
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C.3 3-sections

Let us now consider the case where m : X — B exhibits a 3-section D,. We can
denote the global sections of the restriction Dy, = D,|s by

I'(S,Ds)={X,Y, Z}. (C.20)

One then notes that 3Dy, has nine global sections but there are ten monomials of
degree three in XY and Z. As a result, ¥ can be realized as a hypersurface of
degree three in P2,

Again this construction can be applied fiberwise to 7 : X — B. In this way one
obtains a fibration X’ that is birationally equivalent or, if X is sufficiently generic,
isomorphic to X. To simplify the exposition, we will again assume that X' is iso-
morphic to X. We then see that X can be realized as an anti-canonical hypersurface
in a P2-bundle over B.

We can then find a rank three vector bundle V' such that the P2-bundle takes
the form P(V') and the restriction of the relative hyperplane class is D, = Hy|x.
Using (C.5) we obtain

k =Hy N Hy N Hy N (—Kpp) = 2c1(V)? = c1(B)er (V) — 3ea(V),

(C.21)
ga IHV N HV M Ja M (—Kp(v)) = Da N (Cl(B) — 261(‘/)) .
This implies that the height pairing of the 3-section is
D = —7"1.(D.D,) = 2¢1(V) — e1(B) . (C.22)

Using for example the method of GV-spectroscopy [82], one can deduce that the
Euler characteristic yx and the number n.; of I>-fibers of X are given by

1
xx = 3A(V) = 18¢;(B)?, niy = 3 (42¢1(B)* 4+ 3A(V)) (C.23)
in terms of the Bogomolov discriminant
A(V) =23 (V) —ar(V)?) . (C.24)

Using (C.16) with the relations (2.36) from [40], we find that
1
K= -1 (ci(B)? +2A(V)) , @ =36—2c(B)* —A(V). (C.25)

Again, the expression for & can easily be checked against (C.21) and from the ex-
pression for ¢, we can deduce that

co =36 — dey (B)er(V) — A(V) . (C.26)
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C.4 4-sections

The restriction Dy, = D.|x of the 4-section D, to a generic fiber X is a divisor of
degree 4 on Y. We can therefore denote the global sections of Dy, by

I'(S,Ds) ={W,X,Y, Z}. (C.27)

One then notes that 2Dy, has eight global sections but there are ten monomials of
degree two in W, X, Y and Z. As aresult, X can be realized as a complete intersection

of two quadrics in P3.

Again this construction can be applied fiberwise to 7 : X — B in order to
identify X with a complete intersection in a P3-bundle on B. We can find a rank
four vector bundle V such that the P3-bundle takes the form P(V). One can then
find a rank two vector bundle E on B such that X is the vanishing locus of a generic
section of

F=0p1H(2)® ﬂ]}i(v)(E) ) (C.28)
The Calabi-Yau condition takes the form

01<E) = Cl(B) + 01<V) . (029)

We assume again that V' is chosen such that Hy is effective and the restriction
of the relative hyperplane class is D, = Hy|x. Using (C.5) we obtain

k =Hy N Hy N Hy Ney(F)
=2c1 (V) (c1(V) = c1(B)) — 4o (V) + eo(E) , (C.30)
lo=HyNHyNJy,Nc(F)=2D,N(c1(B) —c1(V)) .
This implies that the height pairing of the 4-section is
D = —7"1.(D.D) =2 (c1(V) — c1(B)) . (C.31)
Using the method of GV-spectroscopy [82], one can deduce that the Euler charac-
teristic yx and the numbers niy,n4o of Ir-fibers of X are given by
Xx = — 13c1(B)* + A(V) + 3A(E),
na1 =4 (41 (B)* + A(E)) (C.32)
Ny :% (15¢1(B)* + A(V) — 5A(E)) .
Using (C.32) with the relations (2.36) from [40], we find that
k= i (2c1(B)* 4+ 2A(V) — A(E))

. (C.33)
) =5 (96 — 7c1(B)? = A(V) — A(E)) .
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The expression for K can again be checked against (C.30) and from the expression
for ¢y we deduce that

e — % (96 + 5¢1(B)? — 6c1(B)er(E) — A(V) — A(E)) . (C.30)

C.5 5-sections

The case where the fibration 7 : X — B only exhibits a 5-section D, is the first
that requires us to go beyond complete intersections. A detailed study of such CY
threefolds was carried out in [34].

One can show that a curve of degree 5 can always be realized as the vanishing
locus of the Pfaffian of a skew-symmetric 5 x 5 matrix with entries that are linear
homogeneous polynomials in the homogeneous coordinates on P* [117]. The genus
one curve is then the locus of codimension 3 inside P* where the rank of the matrix
drops to two. Since the matrix is skew-symmetric, the locus where the rank is strictly
less than two is equal to that where the rank is zero. This locus has codimension 10
in the space of skew-symmetric 5 x 5 matrices and is therefore avoided by the curve,
if the entries of the matrix are sufficiently generic.

Lifting this construction to fibrations, one can always represent a generic genus
one fibration with a 5-section (up to birational equivalence) as the rank 2 locus Dy(¢)
of a skew-symmetric map

where V' is a vector bundle of rank 5 on B, F is a vector bundle of rank 5 on B and
L is a line bundle on B. The Calabi-Yau condition takes the form [34]

e(L) = % (201(E) + er(V) + 1 (B)) - (C.36)

In order to calculate the cohomology class of the degeneracy locus Dsy(¢) we
use [119, Theorem 8|, which implies that

Dafo)] = der (27 37

Co C1
where, using [119, Theorem 10], we formally define
C; = C; (Op(v)(l/Q) & W;’(V) (EV (%9 L1/2)) . (038)

One then obtains

[Da(¢)] =Hy (5Hy — 3Hy (2¢1(E) + 5¢1(L)) + 2¢1(E)?

(C.39)
+e3(E) — 12¢1(E)er (L) + 15¢1(L)?) .
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We again assume that V is chosen such that Hy is effective and therefore the
restriction D, = Hy|x corresponds to a 5-section on X. We denote the restriction of
the relative hyperplane class by D, = Hy|x. One can always choose V', by twisting
with a line bundle if necessary, such that D, is part of a Kahler cone basis of X. It
is then in particular effective and corresponds to a 5-section of the fibration.

Using (C.39) and (C.36) together with (C.5), we obtain
k =Hy N Hy N Hy N [Dy(0)]
:% <301(B)2 —9¢1(B)er (V) 4+ 13¢1(V)? — 25¢,(V) + %A(E)) : (C.40)
lo =Hy N Hy N J, N [Dy(¢)] = Dy (3¢1(B) — 2¢,(V))
where we have used the Bogomolov discriminant of F,
A(E) =2 (5¢(E) — 2¢1(E)?) . (C.41)
This implies that the height pairing of the 5-section is
D = —7*m.(D.D,) = 2¢1(V) — 3¢1(B) . (C.42)

In [34] the method of GV-spectroscopy [82] was used to deduce that the Euler char-
acteristic yx and the numbers n4q,n4o of Ir-fibers of X are given by

Xx =— 10c1(B)* + A(E),
it =136 (B) + A(E) ~ SA(V), (©.13)
nis =120, (B — SA(E) + SA(V),
where the Bogomolov discriminant A(V') of V' also takes the form (C.41).
Using (C.16) with the relations (2.36) from [40], we find that
Rt (—15¢1(B)* = 10A(V) + 2A(E))

20 (C.44)
G =z (300 — 24¢,(B)* — A(V) — A(E)) .

The expression for & can be checked against (C.40) and from the expression for ¢,
we can deduce that

e — % (300 — 6¢1(B)? — 12,(B)es (V) — A(V) — A(E)) . (C.45)

Relative homologically projective dual fibrations As was discussed in [34],
a genus one curve of degree 5 also admits a dual realization as a codimension five
complete intersection in the Grassmanian Gr(2,5).
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At the level of the genus one fibered threefolds with a 5-section, the fiberwise
application of this duality leads to a second fibration 7" : XV — B that also exhibits
a H-section but is, in general, topologically different from X. However, both geome-
tries share the same relative Jacobian fibration and are therefore elements of the
same Tate-Shafarevich group. The geometries X and XV are related by a relative
version of homological projective duality [120] and they correspond to different large
volume limits in the same stringy Kahler moduli space.

The fibration X can be constructed as a complete intersection in a Grassmanian
bundle on B and the bundles that are involved in this construction are closely related
to the bundles V' and E that determine X itself [34]. However, we can use the 5-
section on XV to obtain a second realization as a Pfaffian variety in a P*-bundle
P(V') on B, with a rank five bundle E’ and a line bundle L’ taking the place of £
and L.

We are currently not able to determine V', E’ and L’ directly in terms of V,
E and L. However, it was observed in [34] that the fibrations X and XV share the
same Euler characteristic but the corresponding values of n4; and n4s are exchanged.
Formally, this can be achieved by assuming that

c(E') =—c(E), c(lf)=c(E), alV)=calV)-all),

V) =3 (@B + 2(a(B) - a(V)) - A1)+ JAE) ).

(C.46)

with ¢1(L') again being determined by the Calabi-Yau condition (C.36). This choice
also ensures that the intersection numbers (C.40) associated to the bundles are inte-
gral. In fact, we have checked that — up to a change of basis — the involution (C.46)
together with (C.40) and (C.45) correctly reproduces the topological invariants for
XV in all of the examples that have been provided in [34, Table 19].

We therefore make the following conjecture:

Conjecture 1. Let 7 : X — B be a smooth genus one fibered CY threefold with a
5-section over a generalized del Pezzo surface B with be(X) = be(B) + 1. Assume
that this is the degenaracy locus Do(d) of a generic skew-symmetric map (C.35) that
15 associated to the rank five vector bundles V', E and the line bundle L on B. Then
there exist rank five vector bundles V', E' on B with Chern classes (C.46), and a
line bundle L' satisfying the Calabi-Yau condition

cgy):%(%gEq+cﬂvq+ch», (C.47)

such that the corresponding genus one fibered CY threefold = : XV — B is the
relative homological projective dual of X .
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C.6 Projective bundles from monad bundles

In order to study the topological string free energies using mirror symmetry, we
would like to work with geometries that can be constructed using the tools from
toric geometry. However, given a toric base B, the only projective bundles on B that
are themselves toric varieties are projectivizations of sums of line bundles. To obtain
a somewhat larger class of geometries we will also consider projective bundles that
are complete intersections in toric ambient spaces.

We will therefore use monad bundles V', that are defined via a short exact se-
quence

05V -owLu=o, (C.48)

where W and U are vector bundles of respective rank ry and ry, with ry < ry,
such that the rank » = ry of V is ryy = ryy — ry. Let us assume that B is a smooth
toric variety and that the divisors Dy, o = 1,...,by(B) form a basis of the Kihler

cone. ** We choose W and U to take the form
W =0gp (—w?Da) ®...00p (—fvfwba) : (C.49)
U =0gp (U?DQ) ®...00p (uﬁ‘UDa) ,

in terms of wf, u¥ € N?2B) for i =1,...,ry and j = 1,...,ry. In order for V to be

a vector bundle, we have to require that u§’ > —w;* for all 4, j, @ and that the map f
is chosen to be sufficiently generic, see for example [121, 122].

D. Generic genus one fibrations on P?

In this section we will construct a large number of generic genus one fibered CY
threefolds over P? that have an N-section with 2 < N < 5.

To construct the vector bundles that appear in the constructions for different N
we will use monad bundles as described in Section C.6. Over P2, the vector bundles
W, U take the form

|74 :Op2<—w1) D...D Op2(—wrw) s
U :OP2<U1> EB e EB OP2(uTU) y
for w, @ € N. Using the exact sequence (C.48), we find the Chern classes of V,

(V) = — (er(@) + (@), ca(V) = ex(w) + e (@)er (W) + ey (@)* — ea(@), (D.2)

(D.1)

in terms of the i-th elementary symmetric polynomials e;. In fact, we will sometimes
relax the condition that the entries of @ are non-negative «. In those cases we have
checked that the corresponding Calabi-Yau is still smooth and has Al = 2.

340r, if the Kihler cone is non-simplicial, a suitable simplicial subcone of the Kihler cone.
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D.1 2-sections

Without loss of generality we can restrict to ry = 5, ry = 3, as well as wy = ws = 0,
and write

w :Opz(—UJl) © OPQ(—U)Q) & O]}DQ(—U}:g) S OE?; s

(D.3)
U =0Op2 (ul) @ Op2 (u2) P Op2 (U3) .

The toric data associated to the Calabi-Yau double cover X of P(V) is given in
Table 4, where we have introduced

p=3—e (W) — e (). (D.4)

In order for X to be smooth we have to impose e; (@) +e; (@) < 3. For all inequivalent
values of w,w that satisfy this inequality we use CohomCalg [123, 124] to check if
hY1(X) = 2. The resulting geometries, together with their topological invariants,
are listed in Table 5.

[ peZ’ [ 12 7
10 0 0 0 0 02 »p
0O 1.0 0 0 0 0|1 —u
0O 01 0 0 0 01 —w
0O 001 0 0 0]1 —ws
O 000 1 0 01 o0
—-2-1-1-1-10 0|1 O
O 000 0 1 0]0 1
O 000 0 0 1]0 1
—p w, wy wy 0 —1-1/0 1
0O 00 0 0 0 0|1 w
0O 00 0 0 0 01 wu
0O 00 0 0 0 0|1 wus
| 0 0 0 0 0 0 04 2p |

Table 4: The toric data associated to the genus one fibered CY threefolds over P? with a
2-section listed in Table 5.
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’ # ‘ XX N1/2‘ kL 02‘01,\/ 02,\/‘@01 w2 wS‘Ul U2 U3‘

21|—-284 128 {8 468/—2 0 (2 0 0|0 0 O
2.2|-260 140 |2 244/ -1 0|1 0 0|0 O O
23(-252 14410 024/ 0 00 O O0O]O0O O O
241-228 156 {0 236/—-1 1 ({0 O 0|0 1 O
25(—220 160 {4 452|-2 2 |1 0 0|0 1 O
26|-196 17210664/ -3 4 (1 1 0|0 1 O
2.7|—-188 176 |2 444|-2 3 (0 0 0|1 1 O
28 |—164 188 |8 656/—3 5 |1 0 01 1 0O
29|-156 19210 436/—-2 4]0 0 00 2 O
2.10{—132 204 |6 648/—3 6 |1 0 0]0 2 O
2.11—100 220 |4 640/—-3 7 |0 0 0|1 2 O

Table 5: Some CY threefolds with h! = 2 that exhibit a genus one fibration over P? with
a 2-section.
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D.2 3-sections

Without loss of generality we can restrict to ry = 6, ry = 3, as well as wy = w5 =
wg = 0, and write
W :Opz(—wl) @ OIPQ(—U}Q) EB OpQ(-’lUg) @ Oggg s
U :Oﬂm <U1> © OPQ ('UQ) © OPQ (Ug) .

The toric data associated to the Calabi-Yau double cover X of P(V) is given in
Table 7, where we again use

(D.5)

p=3—e (W) — e (d). (D.6)

In order for X to be smooth we again have to impose e (W) 4 e (@) < 3. For all
inequivalent values of «, « that satisfy this inequality we use CohomCalg [123, 124]
to check if AM(X) = 2. The resulting geometries, together with their topological
invariants, are listed in Table 8.

Note that for geometry 3.2 the vector w contains a negative entry. We make this
choice in order for the divisor that is induced by the relative hyperplane class of the
projective bundle P(V') to be part of a Kédhler cone basis of the Calabi-Yau. However,
the CY threefold itself is equivalent to the one that is associated to W = (2,1,0),
i = (0,0,0). On the other hand, the geometry 3.14 is associated to a P?-bundle that
does not admit a monad bundle construction of this type. Instead we have obtained
this geometry via a flop transition from the geometry 5.7, in Table 13.

[ peZ’ 12 7
10 0 0 0 0 0|1 —uy
0O 1 0 0 0 0 01 —ws
0O 01 0 0 0 01 —ws
0O 001 0 0 01 0
0O 0o o1 0 01 0

—-1-1-1-1-10 0|1 O

0O 00 0 0 1 00 1

0O 000 0 0 110 1
wy wy w3 0 0 —1—-110 1

0O 00 0 0 0 01 wu

0O 00 0 0 0 01 wu

0O 00 0 0 0 01 wus
0 00 00 0 03 p |

Table 7: The toric data associated to the genus one fibered CY threefolds over P? with a
3-section listed in Table 8.
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’ # ‘ XX ‘NI,Q‘ kL 02‘01,\/ CQ,V‘wl w2 w3‘u1 U2 US‘
3.1|—-186{177(14 7 68|—=2 0 |2 0 0]0 0 O
3.2 |—-180{180|3 3 42 0 —-1|1 0 =10 O O
3.3 |—168[18 |5 5 50{—-1 0 |1 0 00 O O
3.4|-168{186 (11 7 62|—-2 1 |1 1 0]0 0 O
3.5 |—162{189|0 3 36{ 0 0|0 0 0|0 O O
3.6 |—150{195|2 5 44|{—-1 1|0 0 0|0 O 1
3.7|—-150{195|8 7 56{—-2 2 |1 0 0|0 O 1
3.8 |—144|198115 9 66|—-3 4 |1 1 0|0 0 1
3.9—-132|204|5 7 50{—-=2 3 |0 0 00 1 1
3.10|—-132{204 (2311 74|—4 7 |1 1 1|0 0 1
3.111-126/207|12 9 60|-3 5 |1 0 0|0 1 1
3.12|—-114\213|2 7 44|-2 4 /0 0 0|0 0 2
3.13|—108{216|9 9 54/-3 6 |0 0 0|1 1 1
3.14| —96 (22229 13 74| -5 12 (flop of 5.7,)

3.15/ =90 1225/6 9 48|-3 7 |0 0 O ‘0 12

Table 8: Some CY threefolds with h!"! = 2 that exhibit a genus one fibration over P? with
a 3-section.

— 92 —



SUOI109S-¢ )M S[OPOU 10J SIURLIBAUL A\F) () SIS 10] &f ‘If sol1os Suljeiousd IRMPOJN :6 9[qeL

20222699 + T E28 Ea00zrTHT — 5% Ea8L6201 + ' Eot Ea0pEe — m%v EEalEL EEoppeT + [ Eat'tat9g — H,mmo& Efar'etag  |oT'g
€'2,60£9.079 + TE% EaprastoceT — T Eoc0L6LL6 + H,mwmrmmwmmmmm - %%@%3 +1 uﬁv FPlt, oV g €298, + 1 E9E€20L68 — Hrmmmoﬁv T, ov|vTE
Eapeepes — L Ef Eatg0L6s + L EE EagTTaat — FEof Eap09gT + mmwm,mmwwm - b Eareal E'€azg1 + ['Eat'tage — ﬁmmmv E'81'c0g er'e
E'€a9ecg0eLT + | E0F EapgLote0r — 5o Eat00EEE + TE0% 898996 — u%wmv Ffalte. Oy €'€,1%6 + gt ea00eT — ﬁ,w@.@v ¥ v |ere
€8 p1sL1 — VEa Eagpgag + T 5ot Eaggoeg — T 80 Eapgge + Lot tapg — mv Eeareal E'fo1g — I'Eat'tag + ﬁ,muv E'81'c0g e
E'8a9ccezeLe + T Eaf E20006706S — [ Eof €as22209g + T EAE mugmi -1t m% Eap1pel + LEot'tanzT — mmmmv € wmm\md L | (8Eaggy — TEat'eag) + H,mmv BT Ea0y A or’g
EtavLtonyL + T 0% foosLeces — V50T BagLe0s0T + T §ot Ear0Ty — mm%v FPlt, v ©ageL + Torttagie — ore) U, 0 |6®
Efezereet + Bt FacLoz6r + T Eaf Eagg00sT + [ Eat EacaTy + | mwv Eeareal E'agpg — ot tagg + ﬂmmv €8 1'sag 8¢
€'€)2.2L6vC + T £oF Ea91pRe69 + T Eof EagrcrLL + L Eat tapreg + mﬁ:v Ffalta. SV E'Cagap| — T'Eat Cagey + qmwﬁv TP v e
E'€a2882901 — ' Ef Ea0g1g0TT + F §oF EacereL6T + ' EoE EagaTLe + mmuwomv C5oe oV T 22,7 + UEag) EEaT Ea0y A6 9¢
8201929 + T'Eaf EacorLs + TEot a1 + H,mmmmv e e'eapg + T2y ) E€atta g ¢g
'€ap,12L809T + T Eof EapreogssT + TEaf EagT066T + | Eat tagey + mm@mv FPolt ovE FEa9167 + ot Eap60 + Hnmmv ¥, v Ve
E'€a006.8069 + ' Eo€ EagpaphL0e + ' Eot Eanozeis + [ gt tageg T + H%mmmv RS v £€a68T -+ ﬁ,mwmv EEl'EoyAg €e
E'Capgor1 — ' Eat'tag6g] — va AQSSN + ?&v Earea L — €217 + ﬂrmmv E81'e0,g e
EEarpLp0p160 — | Eof Ea06e6018 — [ Eof Eas81g + ot tagrg + | mwv R e Farcger — T Eat'ea0Lg — ﬁrmumv Ffo. ov— 1€
7 92130p oseg 1 99189p aseqg #

— 93 —



D.3 4-sections

To construct genus one fibered CY threefolds with a 4-section over P2, we restrict to
rw =17, ry = 3, as well as ws = wg = wy = 0, and write

W :O]p2<—w1) @ .. P OPZ(—U)4) EB OE‘}?QS y

(D.7)
U =0Op2 (u1) @ Op2 (UQ) @® Opz (U3) .

We also choose E = Op2(q1) ® Op2(qz), such that the Calabi-Yau condition takes the
form

e1(q) = 3 — 1 (@) — e (i) . (D.8)

The toric data associated to the CY threefold X inside P(V') is given in Table 4.

One way to obtain smooth CY threefolds with h! = 2 is to consider all inequiv-
alent choices 1w € N*, @ € N and ¢ € N? that satisfy (D.8) and then use the package
CohomCalg [123, 124] to check if A1 (X) = 2. We also obtain some geometries for
which some of the entries of @ and ¢ are negative and in those cases we check ex-
plicitly that one still obtains a smooth complete intersection. Two of the geometries,
4.19 and 4.21, are complete intersections in projective bundles that do not fall under
our monad construction and those are related via flop transitions to the respective
fibrations 5.11,, and 5.9, from Table 13.

pezd 1M @)
1 0 0 000 0 0|1 —uy
0O 1 00 0 0 0 0|1 —ws
0O 01 0 0 0 0 0]1 —ws
0O 0O 0O1 0 0 0 0]1 —uy
0O 0o o1 00 0j1 0
O 0o oo 1 0 0j1 0
-1-1-1-1-1-10 01 O
O 0 0o OO0 0 1 0j0 1
O 0o 0o 0o 0 1j]0 1
wp w2 wy wg 0 0 —1 -1 0 1
0O 000 0 0 0 01 u
0O 00O 0O 0 0 0 01 wu
0O 000 0O 0 0 01 wus
0O 00O 0O 0 0 02 q
0O 00O 0O 0 0 02 g

Table 10: The toric data associated to the genus one fibered CY threefolds over P? with
a 4-section listed in Table 11.
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| # | xx [Nis|No/2| 5 € es]ery cov]ens copla g |wi we ws wilur vy ug)

41[-156[108] 84 [0 236/ 2 0[5 4|1 4[-20 0 0[0 0 0
42|-140/128| 72 |0 0 24[ 3 2|6 8|4 2|-2-10 0[0 0 0
4.3 (-132/128| 76 (2312 74/-3 3 | 0 -1|-1 1|1 1 1 0|0 0 0
4.4 |-132(128| 76 |8 8 56/—1 0|2 0|0 2|1 0 0 0[0 0 0
4.5 |-132/140| 64 (201068 —2 0 |1 0|0 1|2 0 0 0[0 0 0
4.6 |-128/140| 66 |6 6 48 0 —1[3 2|1 2|-1 1 0 0[0 0 0
47(-128144| 62 |4 440 1 -1|4 4 ]2 2|1 -1-10/0 0 0
4.8 |-124/128| 80 |4 8 52(-1 1|2 0|0 2/0 0 0 0[0 0 1
4.9 |-124/140| 68 [161064/—2 1 |1 0|0 1|1 1 0 0[0 0 0
4.10|-120{140| 70 |2 6 44 0 0 [3 2|1 2/0 0 0 0[0 0 0
4.11|-120{144| 66 |9 8 54/—-1 0|2 1|1 1|1 0 0 0[0 0 0
4.12|-120{144| 66 [0 4 36| 1 0|4 4|2 2|-10 0 0[0 0 0
4.13|-116]140| 72 [121060(-2 2 |1 0|0 1|1 0 0 0|0 0 1
4.14|-112[144| 70 (201268 -3 4 [0 0|0 0|1 1 0 0[0 0 1
4.15(-112|144| 70 |5 8 50(-1 1 |2 1|1 1/0 0 0 0|0 0 1
416|108/ 140| 76 |8 1056(—2 3 [ 1 0|0 1[0 0 0 0[0 1 1
417|-104[144 | 74 [371682( -5 11|-2 1 [-1-1/1 1 1 1|0 0 1
418|104/ 144 | 74 (161264 =3 5[0 0|0 0|1 0 0 0]0 1 1
4.19/-100(156 | 64 (20 14 74| —4 7 |-1 1 (flop of 5.11,)

4.20/—100| 140| 80 {4 1052/-2 4 |1 0|0 1|0 0 0 0[0 0 2
421 —96 [144| 78 (3316 78| -5 12 | -2 1 (flop of 5.9,)

4.22| —96 | 144| 78 [121260(—3 6 [0 0|0 0[1 0 0 0[0 0 2
4.23| —88 |144| 82 [8 1256/—3 7 [0 00 0|0 0 0 0[0 1 2

Table 11: Some CY threefolds with h!'' = 2 that exhibit a genus one fibration over P?
with a 4-section.
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D.4 5-sections

A large number of genus one fibered CY threefolds with a 5-section over P? and
ht! = 2 was constructed in [34]. We will reproduce those geometries here in terms of
the data described in Section C.5. To this end, we can restrict to the case V =W,
such that ry = 5 and ry = 0, and write

w :OPZ(—wl) D...D Op2(—w5) . (Dg)
We also choose
FE = O]p2(—61) D OPQ(—GQ) D OPQ(—€3) D OE?QQ s (DlO)

The line bundle L is determined by the Calabi-Yau condition (C.36).

This allows us to construct the geometries 5.n;, for n = 1,...,12 listed in Ta-
ble (13), with the exception of 5.3;,. To construct 5.3, one has to consider a rank 5
bundle V' that is not a sum of line bundles, as was explained in [34].

The fibrations 5.n,, that are conjecturally fiberwise homologically projective dual
to the fibrations 5.n, have also been constructed in [34]. The Chern classes of the
corresponding bundles V' and E are determined by (C.46) and (C.47).

In each case we have performed a suitable twist of V' such that the restriction of
the relative hyperplane divisor of P(V') to the CY threefold is part of a Kéhler cone
basis.
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7 XX N1,4 N2,3 k L ¢y Ci,v Cv|C1,E Cop|W) W2 W3 Wy W5| €1 €2 €3
5.1, | —90 (1001251015 64| -3 7 | O

5.1, | —901125](100|5 5 38| 2 0| O 1 0 -1-1-1/0 0 O
5.2, | —90|105|120|1515 66 |—3 6 | O

5.2, | —901120(105|0 5 36| 2 1|0 00 0 —-1-110 0 O
5.3, | 90110 115|120 15 68| —=3 5 | O

5.3, | —90 [115|110(2515 70| -3 4 | O (exceptional)

0.4, | —94 105|118 (5121 90 | -6 16 |—1
5.4, | =94 (11810510 9 52| 0 -1 1
0.5, | —94 1081154219 84 | -5 11
5.5y | =94 |115]108 |13 11 58 | -1 0O |—1
0.6, | —94 (1101138 11 56 |—-1 1 |—-1
2.6, | =94 (113 |110|5 9 50| 0 0 | 1
0.7 | =96 {103 |119\94 27 112) -9 34| 3
2.7, | =96 (1191103126 13 68 | -2 0 |—3
0.8, | =96 10411865 23 98 | =7 21| 2
0.8, | =96 [118|104|7 7 46| 1 —1|-2
2.9, | —96 |108 114 (33 17 78 | =4 7
5.9, | =96 |114108{21 13 66 | -2 1
5.10, | =96 [109|113|16 13 64| -2 2 | 2

0

3

10 0 0 -1]-10 O

— R R R mWw W o O ol ol ol oo ol

5.10, | =96 |113(109(2 7 44| 1
5.11,5|—100/110 110129 15 74 | =3
5.12,|—104/108|110{9 9 54| 0 -1, 1 -1
5.12, |—-104| 110|108 1711 62|-1 -1|-1 =141 1 O O =11 1 -1

000 0-1]1T 1 O
-11 0

(@]
|
—_
—_
—_
—
(e
(@]

Table 13: Some CY threefolds with h''! = 2 that exhibit a genus one fibration over P?
with a 5-section, first constructed in [34].
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# Base degree 1
5.1 5A10e162 (—108¢2¢, + 343¢182 — 263 + 10€3)
5.1, 51083 (34326, + 108¢182 + 1083 4 2¢3)
5.2 15A0e182 (—14€26; + 35e,8% — 8&% + 2¢3)
5.2, 1571088 (35¢2¢, 4 146162 + 285 + 8¢%)
5.3, 5A19e7 (2e3¢; — 14e3¢3 — 24e163 + é] + 3e})
5.3b 5A10é% (246?61 - 146%@% - 2616? + 3511’L + 6111)
5.4 A3Pe3E3 (49e36, — 275¢262 + 569¢183 — 1164 + ¢
5.4, A256368 (569636, + 275e26% + 49¢183 — &4 + 11e?)
5.5 AMPedet (48636, — 356282 — 302e,6 + 1364 + 2¢)
5.5, A3Pe284 (302¢36, — 356282 — 48¢,6 + 264 + 13¢)
5.64 AYPe3E4 (24626, + 1376182 — 5283 + 41€d)
5.6, A25e468 (137626, + 24e162 + 4183 + 52¢3)
5.7, AT eEd (—24ele, + 3866362 — 1548¢283 + 153¢,64 + 268 + €F)
5.7, APE (153€16) + 15486362 4 3866283 + 246,88 + & — 267)
5.8, AYPe262 (4636, + 195e262 — 9866183 + 1464 + )
5.8, A eles (986636, + 195e262 — de183 + &4 + 14ed)
5.9 3A 80 (20€38, — 656262 + Tdeyd® — &t + )
5.9, 3APe183 (T4e38, + 656282 + 29¢,63 — &4 + ¢4)
5.10, ALPe2 (2e) — 1) & (62e,6, — 8382 + 8¢2)
5.10, AUPeBE8 (26, + e1) (62e18; — 8% + 83¢?)
5'11ab Aloé% (1386151 + 234€%é% — 138616? + élll + 6%)
5.12, AXPeded (507¢26, — 386e1E2 + &3 + 22¢3)
5.12, A3 (386628, + 50Te182 — 2283 + ¢)

Table 14: Modular generating series fl for genus 0 GW invariants for models with 5-
sections. The notations eq, e; are shorthand for the weight 1 Eisenstein series es5 1, €5 1.
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D.5 Extended Kihler cone and effective cone for fibrations over P2

For the purposes of this paper, it is sufficient to restrict attention to the Kéahler cone
(or its closure, the nef cone). However, it is useful to map out the extended Kéahler
cone, as it provides useful information on the support of GV invariants as well as on
the effective cone, which determines the possible divisors that a D4-brane can wrap.
Note that the effective cone, unlike the Kahler cone, can depend on the complex
structure of the Calabi-Yau manifold.

With a single exception, all of the models constructed above have a Kahler cone
given by the upper right quadrant ¢t :== Im7 > 0,5 := Im S > 0.3> The boundary at
t = 0 coincides with a boundary of the effective cone, which is therefore a boundary
of the geometric phase. At the other boundary, i.e. s = 0, the mass of M2-branes
wrapped on nH goes to zero. Several things may happen, in increasing degree of
severity [125, 126, 61]:

1. a set of P's in class n[C] may shrink to zero size;

2. a divisor fibered by those P!’s may shrink to a genus g curve X of A; singular-
ities;

3. a divisor D may shrink to a point, at the same time as the P!’s shrink to zero
size;

4. the whole CY three-fold may shrink to a point.

The first three cases necessarily occur at finite distance in moduli space, while the last
one occurs at infinite distance, so corresponds to an asymptotic boundary, similar to
the one occurring at ¢ = 0.

The first case occurs when there exists some k... € N such that the GV in-
variants G\/Eg?k) vanish for all k& > kpa.. 3¢ (i.e, the vector (0,1) is a nilpotent ray
as defined in §2.1), but further requires that the vector (0,1) is not a generator of
the infinity cone (i.e. the GV invariants GVEZ)IJCZ) vanish for ky > ak; + (3, with
a a positive number). Crossing such a wall corresponds to a flop transition, lead-
ing to a birationally equivalent geometry with the same Betti numbers but different
intersection numbers, namely

K999 F> K992 — Z k:?’GV[(f,l > €292 — €22 + Z kZGV(()?]l B (Dll)

k>1 k>1

35The model 3.14, in the basis where the base degree GV invariants are periodic modulo 3, has
a larger Kéhler cone ¢ > min(0, —2s).
36In most cases kmax. € {1,2}, but the example 5.10b exhibits a length 3 flop and kpyay. = 3.
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The Kahler cone of this new model lives in a subset of the lower half-plane s < 0,
and can be glued to the Kahler cone of the original model at s = 0. The effective
cone is unchanged, since it is invariant under birational transformations.

The GV invariants GVEZi k) of the new geometry are, up to a change of basis,

the same as the original ones, except for the invariants G\/Eg?k) on the nilpotent ray,
which are now formally attached to the vectors (0, —k) outside the positive quadrant.
One may then perform a linear transformation (7',.5) — (T + xS, —S) such that all
GV invariants are now inside the positive quadrant, and study the boundary of its
Kahler cone by the same method as above. In general, the flop does not preserve the
genus one fibration, although it is possible to obtain a new genus one fibration (or
even an isomorphic one, or a K3-fibration) after one or several flops. 37

The second case, referred to a ‘Zariski wall of type a’ in [126], requires that the
class (0, 1) is both nilpotent and is a generator of the infinity cone, in other words
GVEg)k) is non-zero for a finite number of wrappings k, but there exists (ki, k2) such

(0)
that Gv(kl,k2+k)

on the vanishing P!’s lead to an enhanced SU(2) gauge symmetry along with g

# 0 for an infinite set of integers k. Physically, M2-branes wrapped

hypermultiplets in the adjoint of SU(2), as well as N fundamental hypermultiplets
if the P! fibration degenerates at 2Ny points on ¥. Formally, the flop transition
leads to an isomorphic geometry, identified with the original one under the Weyl
group Zs.

The third case, referred to a ‘Zariski wall of type b’ in [126], may occur when an
infinite set of genus 0 invariants GVES?,C) are non-zero. The contracting divisor D is
typically associated to the boundary of the effective cone, and its volume vanishes
quadratically in s, whereas it vanishes only linearly for a Zariski wall of type a.
Physically, the Mb5-brane wrapped on D leads to a tensionless string, accompanied
with an infinite tower of massless particles corresponding to the M2-branes wrapped
on (. The Kahler cone cannot be extended beyond such a wall, which therefore
signifies a boundary of the extended Kéhler cone. As shown in [126, §3.2], in the
case of two-parameter models a necessary condition for a type b Zariski wall to arise
is that the cubic form kg.t%t"t¢ has a single zero in RIP.

Defining the hyperextended Kahler cone as the union of the images of the ex-
tended Kahler cone under the Weyl reflections due to Zariski walls of type a, one of
the main results of [61] is that the infinity cone is dual to the hyperextended Kéhler
cone. This gives important information on the support of GV invariants. Moreover,
the effective cone is claimed to be dual to the union of the images of the Kahler

3THowever, in the case by(X) = 2 each birationality class can only contain at most two fibration
structures [127]. This is because the large base limit always corresponds to a wall of the extended
Kéhler cone and the cone has exactly two walls.
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cones of the CY threefolds in the birational orbit of X under the quadratic map?®
1 — t, = %Iiabctbtc [128, 61]. This result, while still conjectural, is based on the
expectation that each boundary of the effective cone should correspond to an M5-
brane of suitable charge becoming tensionless. Assuming the validity of this claim,
this gives an efficient way of computing the effective cone, which can then be checked
by line bundle cohomology computations. The results are reported in Tables 16— 18
below. As an illustration, we discuss a few models in great detail below:

1.1. Let us first consider the simplest model, the smooth elliptic fibration over
P2, realized for example as a degree 18 hypersurface in weighted projectve space
P§611.1[18], with (k,€, N,cp) = (9,3,1,102). In the usual basis such that GV invari-
ants are supported in the right positive quadrant, the Kahler cone is s > 0,7 > 0,
bounded by the rays (0,1) and (1,0). There are no nilpotent rays, thus no flop. The
boundary at ¢ = 0 is an asymptotic boundary, while the boundary at s = 0 is a
Zariski wall of type b. On this wall, the tension of an M5-brane with charge (1, —3)
vanishes quadratically,

. ~ 9 1 3 1
t—3S = (§t2 + 3st + 532> -3 (§t2 + st) = 532 (D.12)
The image of right positive quadrant in the (Z, §) plane is the wedge 0 < ¢ < 35 ,
from which one deduces that the effective cone is bounded by (0,1) and (1, —3).

2.6. This model admits one nilpotent ray, GVEg?k) = 2 for k = 1 and zero otherwise,
which we denote by (0,1)s. The initial Kéhler cone is s,¢ > 0 and its image in
dual coordinates is the wedge 0 < § < %f After flopping the curve of degree (0, 1),
one finds a new phase with Kahler cone 0 < —s < t, which is mapped to the
positive quadrant s’,¢" > 0 under the variables change (t,s') = (t + s,—s). In
these coordinates, one recognizes the intersection form of a fibration by degree 4
K3 surfaces with ' = 10,¢, = 64, which we denote by [K319264]. The image of
the new Ké&hler cone in dual coordinates (using the quadratic map associated to
the intersection form after the flop) is the wedge 0 < gf < § < t. The union of
the images of the two Kéhler cones is the wedge 0 < § < ¢, which shows that the
effective cone is bounded by (0, 1) (as for all models) and (1, —1). The boundary of
the extended Kéhler coincides with the boundary of the effective cone (1, —1), which
therefore corresponds to an asymptotic boundary. The dual of the extended Kahler
cone gives the infinity cone 0 < ky < kq, which is consistent with the support of GV
invariants. Upon restricting to S = 0, we observe that the genus 0 GV invariants
S ocrser GV, = {920,50520, 5853960, . .. } coincide with the invariants of the CY
operator #51 in the AESZ database, which indicates that this model has a conifold
transition to a one-parameter model described by that operator.

38Note that the map is only locally quadratic, since the intersection form k4. changes along the
birational orbit.
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4.4. This model admits one nilpotent ray with GVEB?U = 24, GVES?Z) = —2, which
we denote by (0, 1)24 —5. The initial Kéhler cone is the first quadrant s,¢ > 0 and its
image in dual coordinates is the wedge 0 < § < £. The wall at s = 0 is a Zariski wall
of type a. A flop with respect to the curves of degree (0,1) and multiples thereof
corresponds to a Weyl symmetry (t,s) — (t 4+ s, —s), identifying the first quadrant
with its image —t < s < 0. The union of these two covers the effective cone bounded
by (0,1) and (1, —1), consistently with the image of the initial K&hler cone in dual

coordinates. The support of the GV invariants GVEZ)I ko) extends to arbitrary large
ky for fixed ki, but we observe that the free energy fi, (S) = >, o, G\/Eg)l ko) Lis(q%?)

at fixed degree k; is a rational function of ¢g, invariant under gs — 1/qs, with a pole
of degree 2k, at qs = —1. E.g. for ky < 2,

128+ 1280gs + 230442 + 128043 + 128

(1 + qs)2
168 + 13632¢s + 118528(]?9 + 356160(]% + 5021926]45 + 356160(]2 + -+ 168(]%

(1+4s)!

f1(S)

)

f2(5)

(D.13)

etc. As a result, the limit S — 0 is smooth, and we find that it reduces to the free
energy of a one-parameter with genus 0 GV invariants {1280, 92288, 15655168, . .. },
which we recognize as the hypergeometric model X, .
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Figure 1: Extended Kéhler cone (left) and its image in dual coordinates (right) for models
1.1, 2.6, 4.4 (from top to bottom). The light red region indicates the effective cone for
generic complex structure. On the left side, we have superposed the two components of
the discriminant locus in blue and magenta.
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X Xx |Nilp. rays|Eff.cone|Ext.cone|Flop Conifold |Ref.

P [18]
1.1 |-540| [P 1,-3 1,0 201

[ 2] ( ) ) ( ) ) [25’ 26, 30]
2.1 |—284] [Fy) (1,-2) (1,0) [129][35, §6.2]
2.2 |—260| [dP] (1,-1) (1,0) [129]
2.3 |—252| [K3] (1,0) (1,0) [33,87.2.1]
2.4 |—228| [Sym] (1,0) (1,0)|double fib.
2.5 |—220](0,1)20 2| (2,—1) (1,0)|Z, X2
2.6 |—196 (O, 1)2 (1, —1) (1, —1> — K31072,64 §%51
2.7 |—188](0,1)56 2| (2,—1) (1,0)|Z, X3
2.8 |—164] (0,1)¢ (1, =1)| (2,—1)|— [dF¥] Xyo
2.9 |—156| [4.1] (1,0) (1,0)|double fib.
2.10(—132| (0,1)12 | (2,—1)| (2,—1)lisoflop Xug3
2.11|—100{ (0,1)902 | (3,—1)| (3,—1)|isoflop Xya
3.1 |—186] (0,1)—o | (1,-2) (1,0)| Za [126, (18,1)]
3.2 |—180| [dP] (1,-1) (1,0)
3.3 |—168|(0,1)15 2| (1,-1) (1,0)| Za X5 |[126,(10,1)]
3.4 |—168 (O, ].)1 (17 —1) (1, —1> — K31172’62
P23

3.5 |—162| [Sym] (1,0)]  (1,0) (E’Q 3>#7884

(130, §B.2]
3.6 |—150 (0,1)72, | (5,—1)| (5, —1)lisoflop Xy (ﬁi 2 ;)#7883
3.7 |—150 (07 1)13 (1, —1) (4, —1) — [IPQ] X4’2
3.8 |—144] (0,1)3 (1,=1)| (1,=1)|— K3153066| 55,24

(0 1)34 P21 11
3.9 |—132| \ 2. -1 (4,-Dlflop+2, | X ( : )
(1’4)72 ( ) ( ) op + 5 P33 11 47868

3.10|—132| (0,1), (L, -1 (1,-1)|— [4.3]
3.11|—126] (0,1)e (1, =1)| (2,—1)|— [dF§] X322
3.12|—114] (0, 1)ear | (7,—1)| (7, —1)lisoflop X (ﬁif;)#mg
3.13]—108] (0,1)18 | (2,—1)| (2,—1)lisoflop X33 (ﬁs o o
3.14] —96| (1,2); (1,=1)| (1,—-1)|— [5.74]
3.15] —90| (0,1)s05 | (3.—1)| (3.~1)lisoflop Xig | (5] 1)#7668

Table 16: Nilpotent rays, boundaries of the effective cone and extended Kéahler cone,
allowed flops and conifold transitions for 1,2 or 3-section fibrations on PP2. The notation
[dP,] indicates a genus one fibration whose horizontal GV invariants are those of a del
Pezzo surface dP, (similarly for [IPy] and [Fy]). [K3] indicates a model admitting both a
genus one and a K3 fibration, while [Sym] indicates a model invariant under S <> T'. The
notation — K3, ¢, indicates a flop transition to a fibration by degree 2m K3 surfaces,
with ¢111 = k and C21 = C3.

- 106 —



X Xx | Nilp. rays|Eff.cone|Ext.cone|Flop Conifold |Ref.
4.1 |—156] [2.9] (1,0)]  (1,0)|double fib
4.2 [—140] [K30236) | (1,0)]  (1,0)
4.3 |-132] (0,1); | (1,-1D)| (1,-1)|— [3.10]
4.4 [-132(0,1)04_ | (1,-1)] (1,0)|2, X4 [[35,87.2]
4.5 [—132] (0,1)—, | (1,-2)] (1,0)]Z,
4.6 [—128[(0,1)162| (1,—1)] (1,0)|Z, Xu3
4.7 [—128] [dP;] | (1,-1)] (1,0)
4.8 |—124] (0, 1)eaz | (4,—-1)| (4, —1)lisoflop Xoo (];‘Zi 02 1)
#7853
4.9 |=124| (0,1)y | (1,=1)] (1,-1)|— K3i6364| X229
4.10|-120| (0, 1)s0s | (6,—1)| (6, —1)lisoflop X (g:i : ;)#7844
4.111—120 (0, 1)12 (1, —1) (47 —1) — [IPQ} X373
4.12|—120] [Sym] (1,0)] (1,0
4.13|—116 (O, 1)14 (1, —1) (3, —1) — [Fo] X37272
4.14|-112] (0,1), | (1,-1)| (1, =1)|—= K304 4525
(O 1)44 P21 11
415|—112 3, -1 (3,-1)|— K3 X ( : )
( 7 ) ( ) ( ) — 28,4,76 5 Ptl2 21 47801
( ’1) P2
4.16|—108 2.-1) (3.-D|flop+2, | X (0)
(1’3) ( ) ) ( ) ) Op+ 4,2 Po(3 111 47807
(Ov 1)1
4.17|—104] (1,1)76.20 | (7,—8)| (7, —8)lisoflop
(9,8)1
4.18/—104 ( ,1)12 (1, —1) (2, —1) — [dPB] X2,272,2
4.19/—100] (0,1); | (1,=1)] (1,=1)]— [5.114)]
4.20(-100] (0, )26 | (5,—1)] (5, —1)|isoflop Xos (iigf;)
#7758
4.21) —96| (0,1)3 | (1,=1)| (1,—1)|— [5.94] 22198
4.22] —96| (0,12 | (2,-1)| (2,~1)lisoflop X309 (];‘ZZ 0011 1)
#7725
4.23) —88| (0,1)104 | (3,—1)| (3, —1)lisoflop Xio (ﬁi 2211) e

Table 17: Nilpotent rays, boundaries of the effective cone and extended Kéahler cone,
allowed flops and conifold transitions for 4-section fibrations on IP2. Notations similar as
in Table 16
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X x x| Nilp. rays Ext.cone|Flop Conifold |Ref.

5.1, | —90| (0,1)505 (3, —1)lisoflop 51

51y | —90| [dP,?] (1,0)

52, | =90 (0,1)39 (2, —1)|isoflop 2824 |[34]

52, | —90| [Sym] (1,0) [131, 34]

534 | =90 (0,1)5 (2,—1)|— [dPy7)] a0o5

5.3, | =90/ (0,1)5 (1,—-1)|— K395566 45101
(0,1)q

5.4, | —94| (1,1)7011 (5, —6)|isoflop
(77 6)1

5.4, =94, (0,1)11 (4, —1)| = [Py] %210
(0,1),

5.54 | —94| (1,1)s813 (7, —8)lisoflop anor
(9,8)2

55, | —94| (0,1)13 (3,—=1)|— [Fyo] 2899

5.6, | —94 (0:1)as (11, —4)|— [5.64) Xy
(1,3)52.1 ’

5.6, | —94 E?ijl (11, —=3)|— [5.6]a X5

5.7, | —96] (0,1), (1, —2)|— [3.14]

5.7, | —96] (0,1)_, (1,0)|Z,
(0,1)4

5.8, | —96| (1,1)2, 2 (2, —3)|isoflop
(4,3)1

5.8, | —96|(0,1)14 o (1,-1) (1,0)|Z, 22109

59, | —96| (0,1)3 | (1,=1)| (1,-1)|— [4.21] 22198

59 | —96| (0,1)3 | (1,=1)| (1,-1)|— K321466| 55193

5.10, | —96 (0,16 (1,—-1)| (3,=1)|flop+ Z, | X222
(1,3)-2 o

5.10p | —96|(0,1)s3161| (7,—1)| (7,—1)|isoflop Xs

5.114|—100] (0,1); | (1,—=1)] (1,—1)[— [4.19]

5.12, [—104| (0, 1)9, o | (1,=1)|  (1,0)|Z, X33

512, [—104| (0,1); | (1,=1)| (1,=1)]—= K317362

Table 18: Nilpotent rays, boundaries of the effective cone and extended Kéhler

cone, allowed flops and conifold transitions for 5-section fibrations on P2

tions similar as in Table 16.

The notation [dP,?] refers to a list of GV invariants
{10, -10, 15, —40, 135, —510, 2100, —9280, 43245, . . . } which we tentatively identify as those

of a dPy surface, complementing the list of vanishing 4-cycles in [27, Table 6].
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AESZ X Xz | k|2 X

24 X3l eemop 1182, 133, 22]  [-150]15]66] 3.8,5.2,, X[
25 Xoteoe: [132, 36, 22] —120[20[68[4.14, 5.3a, X"
26 X(Qo?l)ea4@0(2) [132, 133, 22] —116/28)76 XEJ]
57 quvﬁ(l)@ou) [133] —98 (42|84 5.9¢
29 X meow [133, 22] G 2] 2 I
5 Fes (133, 22]  |—116[32[s0]  x['T

A2 SVeo(1)®250(2)
Smooth d.c. of Fano 3-fold

51 —200[10|64/ 2.6, 5.1, X1*?

Bs = X005 [36, 22] 5
99 | Pfaffian in P [134, 135, 136, 36] |—120|13[58 5.5

3,5
101 X/\ 2 sv)@0(1 , def. equivalent to _100l25]70 53,
(Cr(2, )ﬂGr(Z 5)) C B9 [137, 133]

109 —120[ 7 |46 5.8,

5,7 [1,1]
185 Xy svsoe00) 133, 22] —120[36|84 x!

193 | Derived dual of sta eoes 138] |—102|21]66 5.9,
198* X3 eoes [133] —102(33[78]  4.21,5.9,
210 | Pfaffian in PS,,,,,, [134, 135, 36] |—116|10/52 5.4,
13.91 Smooth d.c. of Fano 3-fold 198144l02 PRin)
o Agp = X(?)/\? SVv)@3 s 122] - B

Table 19: One-parameter Calabi-Yau threefolds X with mirror periods associated to
non-hypergeometric AESZ [139] operators, obtainable from two-parameter genus-one or
K3-fibered models through a conifold transition. The Euler numbers are related by
Xz = XX —2) d>1 GV()BSS)) . We use the notation Xé’n for complete intersections in Grass-

manians Gr(k,n) and Xr[,i{j ! for K3-fibered CY threefolds from [22]. The geometries X were
identified by comparing topological and enumerative invariants after the transition. For
AESZ operators marked with a star, the relevant periods are obtained after a change of

sign of the complex structure coordinate.

E. Some examples over bases with higher Picard rank

In this appendix we will discuss examples of genus one fibered CY threefolds over
bases Fy = P! x P!, F; and dPy. Other examples can also be found in [33, Section
5.3], [140] and [34, Appendix D].
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E.1 Elliptic fibrations over Ir,

Recall that the Hirzebruch surface Iy is the projectivization of the O(0) & O(—k)
bundle over P;. We denote by Dp, Dp the divisors on F; that are respectively asso-
ciated to the generic P! fiber and the base of the P!-bundle. In the basis (DF, DB),
the intersection form and canonical class are given by

1
Cos = <(1)k> = (2k+2), (E.1)

such that

C“ﬂ:<_k1), = (2-k2). (E.2)
10

Note that IFy is the product P! x P!, and IF; is the blow-up of IP? at one point, with
H = Dp+ Dpg the hyperplane class of P? and Dy the exceptional divisor. I}, is Fano
for kK = 0,1 and almost Fano for £k = 2. As usual, we denote by Sy, Sy the Kéhler
moduli associated to the pull-back divisors (Dp, Dg), and by T' the moduus of the
elliptic fiber.

The smooth elliptic fibration over Iy, known as the STU-model, has been inten-
sively studied, as one of the first examples of heterotic-type II duality [130, 141, 142,
143] [144, §6.10]. Its Euler characteristic and non-trivial Hodge numbers are

xx = —480, h''=3, hn*'=243. (E.3)
while the intersection numbers are determined by
k=8, ly=1(2,2), =92, co=u0a,=(2,2) (E.4)

Denoting S = Sy and U = T + S, one recognizes the intersection numbers of a
fibration by Picard rank 2 K3 surfaces. The moduli S and (7, U) correspond to the
heterotic axio-dilaton and torus moduli, respectively.

Generating series for low base degree (k1, ko) were found in [144, (6.68)] (although
expressions for kiks = 0 were omitted). At genus 0, using the symmetry under
exchange ki <> ko, we have

£O o Bl o) 10 _  EyEs (1TE,* + TEs”)
1,0 7]24 ) 2,0 2,0 967’]48 5
0y EaFs (67E4° + 65E¢°)

fig =— 36,78 ,

w0 BB (TT51E,° 4 23178E,° Es® + 5551 E")

ha == 6912972 '
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For primitive base degree, the topological string partition function is recognized as
the elliptic genus of the heterotic string,

Zp, (TN = Zp (T \) = ——— (E.5)

We now turn to the smooth elliptic fibration over Fy, or KMV model [27, 26],
studied more recently in [128, §7.3]. Its Euler characteristic and Hodge numbers are
the same as for the STU model, but the intersection numbers are now

k=8, ly=1(2,3), =92, cy=ua,=(2,3). (E.6)

At genus 0, we find
(0) QEAE% o  Ea

fO,l == 7724 ) 1,0 — W?

0 w0 EuBs (1TES +7Ee®)  +o  2E,Eg

f0,2 - f0,2 - 967748 ? 2,0 — 24,'724 ?

7o _ E, (31E3 + 105E2)

1,1 487]36 )

s SEuEg (E§ + EY)

21 288n* ’

~0)  Ei(15935E% + 161186 E3E¢ + T0175E;) B
f1,2 - 60 : ( ’ )

552961

For base degree (0, 1), the topological string partition function is again the elliptic
genus of the heterotic string, For base degree (1,0), it is the elliptic genus of the

E-string,
2F, Fg

7724@5_2’1 ’

Ey

ZDB (T7 )\) = _7’]—12¢_2 . .

Zp, (T, \) = (E.8)

E.2 Fibration with 2-section over I

We now take X to be the geometry (¢, ¢2) = (4,3) from [33, Section 5.3], which has
also appeared as X ([p) in [145], as the dual of a CHL heterotic string model.

In terms of the general construction discussed in Section C.2, we choose the base
B =T, with the bundle V' being V' = O, (-2, —1) & O, — Fy. The pullback of the
relative hyperplane class on P(V') to the double cover gives a 2-section on X and the
fibration does not exhibit a section, such that N = 2. For convenience, we denote by
Dy = D, Dy = Dg the divisors on Fy = P! x P! that are respectively represented
by the first and the second P! factor. The Chern classes of the bundle V are

(V)= —=2D;, — Dy, c(V)=0, (E.9)
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and we have ¢;(V)? = 4, ¢;(V)ei(B) = —6 and ¢;(B)? = 8. Using the expressions
from Table 3 we obtain the Euler characteristic and the non-trivial Hodge numbers

xx = —256, h"'=3, h* =131, (E.10)
as well as the intersection numbers
k=8, lo=1(2,4), =068, co=u0a,=1(2,2), (E.11)
and the height-pairing of the 2-section

D = —w*n.(D.D,) = —(4D; + 2Ds) . (E.12)

The curves on Fy dual to Dy, Dy are D' = D and D? = Dp. At genus 0, we
find the generating series of GV invariants of base degree (1,0), (0,1) and (1, 1),

2
262’2 (26272 — 62’4)

0
ouT) = =Ty
70 1) = L)
" 3n(T)"
+0) 4<3€%,4 - 46%,463,2 - 362,433,2 + 463,2)
Ipgp(T) = On(T)205(27)8 (E.13)

Using information from genus 1 GV invariants we find the base degree (1,0) and
(0,1) topological string partition functions

1 ez (63,2 - 62,4) (263,2 - 6274)
96 7(2T)%4¢_o, (27, N)
. 1 A% (6’%,2 - 62,4)2

70N = = g i om0

Zp, (T, \) = —

I

(E.14)

We refrain from displaying the base degree (1, 1) topological string partition function.

E.3 Fibration with 3-section over I,

We now take X to be a smooth anti-canonical hypersurface in P? x F; with the
induced torus fibration 7 : X — ;. The hyperplane class of the P? induces a
3-section on X and there is no N’-section with N’ < 3, such that N = 3.

In terms of the construction discussed in Section C.2 this corresponds to the
choice V' = OF?, such that ¢;(V) = ¢(V) = 0. The modular properties of the
corresponding topological string partition function have been studied for example
in [146].
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Using the expressions from Table 3, as well as ¢;(B)? = 8, we obtain the Euler
characteristic and the non-trivial Hodge numbers

xx =—144, =3, p*1=75. (E.15)
while the intersection numbers are determined by
k=0, l,=1(2,3), =236, co=ua,=(2,3), (E.16)
and the height-pairing of the 3-section is
D = —n*m.(D.D.) = —(Dy + 2D>) . (E.17)

where Dq, Dy are the pull-back of Dy = Dp and Dy = Dp + Dg and D, is the
3-section divisor on X The curves on [y dual to Dl, Dy are D! = DB, D? = Dp.

At genus 0, we find the generating series of GV invariants of base degree (1,0),
(0,1) and (1,1),

0N O VAV IC e P 27N €} 5(13e3 | + 108es3)

fDB - n(37)12 ) Dp — n(37)24 ’ Dp+Dp — 21(37)3

(E.18)
Using information from genus 1 GV invariants we find the base degree (1,0) and
(0,1) topological string partition functions

2 1
5 9A3 . 54A3e2 e?
Zpy(TA) = ———= 7 (T, }) = ——— 2208
n(3T) O_21 (3T, \) n(3T) O_21 (3T, \)

. (E.19)

We again refrain from displaying the base degree (1,1) topological string partition
function.

E.4 Fibration with 4-section over dP;

We will now discuss an example where the Kéhler cone of the base is not simplicial.
To this end we choose the base to be B = dP3 with by(dP3) = 4. The del Pezzo
surface is a toric variety and we summarize the toric data in Table 20.

The toric divisors are simultaneously the curves that generate the Mori cone of
dPs, such that D] = C/ for i = 1,...,6. The intersection number D} N C} is the
entry corresponding to the divisor D) in the linear relation among the points that
corresponds to the curve C’J’- in Table 20. It is easy to check that in terms of

Do, DP=CY, DP—CL—CL, Di=Cl. (B20)
we have
CL=D'+D?, Ch=D* Ch=D+DP

) O E.21
Cy=D'+ D', Ci=D" Ci=D+D", (:21)
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[ Divisor|p e A°|Cy €y € ¢ Ch CY |
Dy |1 0/-10 0 0 1 1

Dy 10 1]/0-10 1 0 1
Dy |-1-1{0 0 -1 1 1 0
Dy -1 0[0 1 1 -10 0
Dy |0 —1{1 0 1 0 —10
D}, 1 1.0 0 0 -1

1 1
—Kqp, |0 0 ]-1-1-1-1-1-1
Table 20: The toric data of dPs.

and the dual divisors D;, i = 1,...,4, such that D; N D’ = 5?, are

Dy =D,+D,, Dy=D,+D.+D.,

=Die Dh, Do ik Dok (52)
We see that the divisors D;, i = 1, ..., 4 form a basis of the Picard lattice as well as a

basis of a simplicial subcone of the Kéhler cone of dP3 and we have ¢;(B) = Dy+Dy.
The intersection numbers Cp = D, N Dg are

0111
1112
1101
1211

Cap = (E.23)

We apply the construction from Section C.4 and choose X to be the 4-section
fibration that corresponds to the bundles

V=035, E=0a,(Ds)® Oap,(Ds). (E.24)
Using the Chern classes
Cl(V) = CQ(V) = O, Cl(E) = Cl(B) y C2(E) = D2D4 = 2, (E25)

as well as ¢;(B)? = 6, together with the expressions from Table 3, we obtain the
Euler characteristic and the non-trivial Hodge numbers

xx =—72, htt=5, ¥l =41. (E.26)
as well as the intersection numbers

k=2, lo=2c,=2a,=(4,6,4,6), co =44, (E.27)
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and

the height-pairing of the 4-section

D = —r*1,(D.D,.) = —2(Dy + Dy) . (E.28)
We find the base degree one topological string partition functions

1 Aé%eil (6121,1 — 62,2) 5 (26?171 — 6272)

Ze(T)N\) = —— 2 , i=1,...,6. (E.29)
¢ 217 77(4T)36¢_271(4T, )\)
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