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Abstract

We introduce version 2.0 of the SmoQyDQMC. j1 package, a Julia implementation of
the determinant quantum Monte Carlo algorithm. SmoQyDQMC. j1 supports generalized
tight-binding Hamiltonians with local and extended Hubbard and generalized electron-
phonon (e-ph) interactions, including non-linear e-ph coupling and anharmonic lattice
potentials. Our implementation uses an optimized hybrid Monte Carlo method with ex-
act forces to efficiently sample the phonon fields, enabling the simulation of low-energy
phonon branches, including acoustic phonons. The SmoQyDQMC. j1 package also uses
a flexible scripting interface, allowing users to adapt it to different workflows and in-
terface with other software packages in the Julia ecosystem. The code for this package
can be downloaded from our GitHub repository at https://github.com/SmoQySuite/
SmoQyDQMC.jl or installed using the Julia package manager. The online documenta-
tion, including examples, is found at https://smoqysuite.github.io/SmoQyDQMC.jl/
stable/.
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1 Introduction

1.1 Overview & Scope

This paper introduces version 2.0 of SmoQyDQMC. j1, a user-friendly Julia implementation
of the determinant quantum Monte Carlo (DQMC) algorithm [1,2], and its associated auxil-
iary packages.! The SmoQyDQMC. j1 package is capable of simulating a broad class of tight-

!The names for both the SmoQyDQMC. j1 package, and the overarching SmoQy Suite GitHub organization it
lives in, are inspired by the Great Smoky Mountain range running along the Tennessee-North Carolina border in
the southeastern United States.
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binding Hamiltonians with local and extended Hubbard and/or generalized electron-phonon
(e-ph) interactions. Model Hamiltonians can be defined on arbitrary lattice geometries and
a wide variety of measurements can be performed in simulations, including density-density,
spin-spin, bond-bond, and current-current correlation functions and pairing for different sym-
metries. The code has been designed with a scripting interface inspired by packages like
ITensor. jl [3], rather than a configuration file-based workflow commonly found in other
open-source implementations of DQMC [4, 5]. This design allows users to easily incorpo-
rate SmoQyDQMC. j1 into complex workflows and directly interface it with the Julia program-
ming language’s rich ecosystem of scientific computing and machine learning packages. Cru-
cially, our implementation accomplishes this flexibility without sacrificing performance, with
SmoQyDQMC. j1 achieving ideal O(BN3) scaling in computational complexity in the system
size N and inverse temperature f3.

This document provides detailed descriptions of SmoQyDQMC. j1’s design philosophy and
underlying algorithms, including changes made in the 2.0 release. It is also intended to serve
as a cite-able document when using this code for research. This document is not intended to
serve as a detailed user manual for the package. Instead, we encourage readers to consult our
online documentation, which will be maintained as a living document with new examples and
reference material added continuously over the package’s lifetime.

1.2 Background and Motivation

Quantum Monte Carlo (QMC) algorithms are a powerful family of methods for performing
numerically exact nonperturbative simulations of quantum many-body systems. These meth-
ods have been successfully applied in many different fields physical science, ranging from
lattice gauge theory [6, 7] and nuclear physics work [8, 9], to quantum chemistry [10, 11]
and, our focus here, condensed matter physics research [12-42]. These methods come in
many flavors, including zero temperature projection and variational Monte Carlo methods, to
finite-temperature auxiliary field methods like DQMC or continuous-time QMC and beyond.

DQMC is an auxiliary-field QMC method [1, 2], which calculates expectation values of a
quantum system within the grand canonical ensemble. The method has been applied to a broad
class of problems in condensed matter physics, including single- [2,43-52] and multi-band
Hubbard models [53-59], negative-U models [60-63], e-ph coupled Hamiltonians like the
Holstein [64-68] and Su-Schrieffer-Heeger (SSH) models [69-74] and their strongly corre-
lated counterparts [75-78], and topological systems [ 79-84]. It has also been used to simulate
ultra-cold atom experiments [85-90], quantum entanglement [91-93] and beyond [94-97].

Several open-source implementations of the DQMC algorithm have been developed over
the years with support for different classes of Hamiltonians. Perhaps the most popular and
well-known are the Algorithms for Lattice Fermions (ALF) [5] and QUantum Electron Simu-
lation Toolbox (QUEST) [4] projects. The QUEST package supports single- and multi-orbital
Hubbard Hamiltonians defined on arbitrary lattice geometries. The ALF package provides
support for a much broader class of Fermionic interactions, as well as coupling to classical
or quantum bosonic fields, which enables simulations of standard e-ph Hamiltonians like the
Holstein model. Both QUEST and ALF are currently implemented in Fortran90, which hinders
their integration with modern machine learning and scientific computing packages; however,
PyALF [98], a high-level python wrapper for ALE is available.

The SmoQyDQMC. j1 package is a Julia implementation of the DQMC algorithm, with sup-
port for tight-binding Hubbard Hamiltonians with and without e-ph interactions. The code
leverages hybrid Monte Carlo (HMC) methods [99-103] to sample the phonon fields, which
allows it to treat a much broader class of e-ph interactions. The package also includes addi-
tional features that are useful in various DQMC applications, but are not commonly available.
Specifically, this package includes support for
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1. arbitrary lattices and bases in zero-, one-, two-, and three-dimensions;

2. intra- and inter-orbital Hubbard interactions in any site/orbital in the lattice, as well as
extended Hubbard interactions;

3. real or complex hopping parameters, including twisted boundary conditions, to enable
the introduction of magnetic fields or mitigate finite size effects;

4. Hamiltonians with spin-dependent tight-binding and e-ph interaction parameters;

5. momentum-dependent e-ph interactions, including long-range Holstein- and SSH-like
couplings;

6. coupling to multiple phonon branches, either via the same or different microscopic cou-
pling mechanisms;

7. low-energy optical and acoustic phonon branches;

8. nonlinear e-ph interactions and anharmonic lattice potentials up to fourth order in the
atomic displacements;

9. dynamical tuning of the chemical potential to archive a targeted density (n);
10. spatial disorder in any Hamiltonian parameter; and

11. support for measuring a wide range of common observables on arbitrary lattice geome-
tries.

Importantly, SmoQyDQMC. j1 is user friendly and utilizes a scripting interface rather than
more traditional workflows based on input configuration files. This design allows users to im-
plement straightforward parallelization at the script level, adapt the package to their existing
workflows, and more readily interface SmoQyDQMC. j1 with the rich ecosystem of scientific
computing packages being actively developed in the Julia programming language. For exam-
ple, it can be readily coupled to existing machine learning and artificial intelligence packages
to enable new research in this direction [104-106].

If the SmoQyDQMC. j1 package is unable to meet the needs of a particular user, we have also
released two lower-level supporting packages to expedite the development of custom imple-
mentations. The first package, JDQMCFrameworks. j1, implements the core computational
kernel of the DQMC algorithm. The second package, JDQMCMeasurements. j1, implements a
set of functions for measuring various correlation functions for arbitrary lattice geometries in a
DQMC simulation. This package also exports several additional utility functions for transform-
ing measurements from position space to momentum space, and also measuring susceptibili-
ties by integrating correlation functions over the imaginary time axis. These two lower-level
packages were used to develop the SmoQyDQMC. j1 package, and provide the tools necessary
for a user to develop their own specialized implementations of the DQMC algorithm.

1.3 Relevant Links, Documentation, and Reporting

The source code for the SmoQyDQMC. j1 package and its associated auxiliary packages can be
found on the SmoQy Suite’s GitHub page [107]. As a package registered with Julia program-
ming language’s General registry, the package can also be installed using the Julia package
manager by issuing the command

julia> ]
pkg> add SmoQyDQMC

The package’s documentation, including examples, can be found in the online documenta-
tion [108]. It includes a full API and a growing list of example scripts that can be used to run
simulations of different model Hamiltonians. The source code for the JDQMCFrameworks. j1
[109] and JDQMCMeasurements. j1 [110] packages can also be found on the SmoQy Suite’s
GitHub page.
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2 Supported Hamiltonians

2.1 Specifications

This section describes the class of Hamiltonians currently supported by the SmoQyDQMC. j1
package, and how the various terms appearing in the Hamiltonian are parameterized within
the code base. Throughout this section, we use bold roman indices (e.g., i, j, ...) to index
the unit cells within a cluster, and Greek symbols (e.g., v, v, W, ...) to index the different
atomic orbitals and phonon modes within each unit cell. We also normalize i = 1 and denote
N =N-n (N, =N -np,) as the total number of orbitals (phonon modes) in the lattice, where
N is the number of unit cells, and n (nph) is the number of orbitals (phonon modes) per unit
cell.
For our purposes, it is convenient to partition the full Hamiltonian into three terms

HAH=U+K+V, €))

where U describes the non-interacting lattice (phonon) degrees of freedom and K and V are
the total electron kinetic and potential energies, respectively. Note that both K and V can
depend on the dynamical lattice coordinates, leading to an e-ph coupling that is either diagonal
or off-diagonal in the orbital basis. V also includes any contributions from local intra- and
inter-orbital Hubbard repulsion or extended Hubbard interactions.

The non-interacting lattice terms are further subdivided into the sum of three terms

Z/’? = Z/Alqho + Z/A[anh + Z/A{disp. (2)
The first term
N 1 1
uqho :Z[ZM' + M Qz vX1 v] (3)

i,v

describes the placement of local quantum harmonic oscillator (QHO) modes in a cluster, i.e.
an Einstein solid, while the second term

A 1 A
Uanh = z :[2_4Miyvgi,i,1/Xi‘,‘vj| )
i,v

introduces anharmonic contributions to the oscillator potential. The third term

" Mi oMy T sy o ¢ )2+ 1 &2 o o V4
Udisp = ; Mi,a n Mj’y [QO,(i,a),U,Y)(Xi;V _Xj,)/) 12 Qa (00,0, Y)(Xi,v _Xj,}’) :| (5)
ir

introduces coupling (or dispersion) between the QHO modes. The sums over i (j) and v (y)
run over unit cells in the lattice and phonon modes within each unit cell.
The position and momentum operators for each QHO mode are )A(l » and ﬁi,v respectively,

with corresponding phonon mass M; ,,. The spring constant is K , = M; Q(Z) i with Qg ; , spec-

ifying the phonon frequency. 4, then introduces an anharmonic X f ’ contrlbutlon to the QHO
potential energy that is controlled by the parameter Q,; ,. Similarly, QO,(i,a),(j,}/) (fza,(i,a),ﬁ,y))
is the coefficient controlling harmonic (anharmonic) dispersion between QHO modes. Note
that unlike harmonic parameters Q,; ,, and QO,(i,a),(j,y): the anharmonic parameters Q; ,, and
Qa)(i’a)’o)y) do not have units of frequency, but instead include an additional factor of inverse
length squared.
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The electron kinetic energy is conveniently expressed as

S

K= 160 + ]essh = Z 160,0 + Z IeSSh,O" (6)

The first term describes the non-interacting spin-o electron kinetic energy

S

_ AT a
ICO,O’ = Z I:tU,(i,V),(j,Y)Ca,i,vca,j,y + h.C.] ’ 7)
i,v
by

where t  ,),y) iS the spin-o hopping integral from orbital y in unit cell j to orbital v in unit
cell i, and may be real or complex. The second term describes the interaction between the
lattice degrees of freedom and the spin-o electron kinetic energy via a Su-Schrieffer-Heeger
(SSH)-like coupling mechanism [111,112]

4

¢ — > Y. ym . . AT n

]Cssh,o - Z Z(Xi,v XJ,Y) [ao,m,(l,v,n),(l,)/,p)co,i,nco,j,p + h.c.:l. (8)
i,v,n m=1
Byp

Here, the modulations of the spin-o hopping integrals to m™ (= 1—4) order in displacement
are controlled by the parameters a p, i ».n),(.y,p)- NOte that if the corresponding bare hopping
amplitude t; (i ) (j,0) 1 complex, then the a; iy, (,y,p) Parameter is defined to share the
same complex phase. This convention ensures that e-ph interaction defined in Eq. (8) only
modulates the magnitude of the hopping amplitude and not the phase.

Lastly, the electron potential energy is expressed as

V= Vo + Vol + Voo + Vexn = Z Voo + Z Voo + Vhub + Vexns )
o) [0}
where
]>0,0' :Z [(ea,i,v_.ua)ﬁa,i,v] (10)
i,v

is the non-interacting spin-o electron potential energy. Here, u, is the spin-o chemical po-
tential and €, ; , is the spin-o on-site energy for orbital v in unit cell i.
The second term

; kM. 1 o pmap
Zg,v [Zmzl,B Ko,m,1,v),G,7) Xi,v(ncm,y 3)+ Zm:2,4 Ko,m,i,7),G,7) Xi,v”o,J,Y]
iy

4 om
25 2am=1 Kom, @, Go) X1y log.y
1Y

A

Vholo =

(11)

is the contribution to the spin-o electron potential energy that results from a Holstein- or
Frohlich-like coupling to the lattic? degrees of freedom. The parameter K 1, (i »),j,y) CONtrols
the strength of this coupling in the ;) , term. It is important to note that the two parametriza-
tions shown in Eq. (11) that are available in SmoQyDQMC. j1 are inequivalent, with the first
being particle-hole symmetric in the atomic limit.

The third term

]A/h b= {Zi,v Ui,v(ﬁT,i,v - %)(ﬁl,i,v - %) (12)
u A A
Zi,v Uiy iy
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defines the intra-orbtial /local Hubbard interaction, where U ,, is the interaction strength. Note
that SmoQyDQMC. j1 allows the user to parameterize the Hubbard interaction using either
functional form for V. The top-most is particle-hole symmetric and is often useful at half-
filling.

Lastly, the fourth term

Zl .o V(1 V), (J’)/)( Ng iy — %)(ﬁU'J,Y_ %)

Ve = 3 7 (13)
T Zive VanGnfioisforny
jr.o

introduces extended Hubbard interactions with V(; ,) (j ;) subject to the constraint V; , ;i ,) = 0.
Note, however, that local inter-orbital Hubbard interactions can still be treated using Eq. (13)
by defining an interaction within a single unit cell i = j between a pair of orbitals v # y that
share the same basis vector r, = r,.. In this case, the parameter V(; ,) ) is typically denoted
Ui,y As with the local Hubbard 1nteract10n users can parameterize the extended Hubbard
interaction using either a particle-hole symmetric (top) or asymmetric (bottom) form.

2.2 A Flexible Approach to Electron-Phonon Coupling

The class of Hamiltonians supported by SmoQyDQMC. j1 is flexible enough to accommodate
the simulation of most standard e-ph model Hamiltonians. For example, the canonical single-
band Holstein model with coupling to a single Einstein phonon branch can be obtained by
placing a QHO mode in each unit cell and setting 4,,;, = L{dlsp = K, = 0, while retaining the
Vhol term [113]. Similarly, extended Holstein or Frohlich models can be treated with suitably
chosen x4 (i ),iy) values [114,115]. The optical single-band SSH model in D-dimensions
[72] can be arrived at by setting U, = Z/Aldisp = Vot = 0 but requires D QHO modes per
unit cell. The bond SSH model can also be expressed by coupling pairs of QHO modes, one
with finite mass and the other with infinite mass, effectively associating the finite mass QHO
mode with a bond [72,116]. The acoustic SSH model can be expressed by introducing QHO
modes with zero frequency (Q;, = 0), that are then coupled together with the Z/A{disp term
[112]. Importantly, SmoQyDQMC. j1 allows users to define Hamiltonians that combine these
various models, enabling the simulation of systems with multiple phonon branches that can
each couple to the electrons in different ways.

3 Algorithm Details

This section provides details on the various algorithms used in the SmoQyDQMC. j1 package.
Here, we have taken an axiomatic approach and focused on describing what the algorithms
do rather than providing detailed derivations or justifications for their correctness. Instead,
we have provided several references throughout the text for any reader who is interested in
the relevant derivations.

3.1 Formulation of DQMC Algorithm

DQMC is an auxiliary field QMC method for simulating systems of itinerant fermions on a
lattice in the grand canonical ensemble [1,2]. For an inverse temperature = 1/T (kg = 1),
the algorithm adopts a discrete imaginary time grid T = A7 - [, where [ = 1,..., L, indexes
the imaginary time-slice and At = 3/L.. Using this grid, DQMC then expresses the partition
function as a path-integral in imaginary time

Z=Tr[B], (14)
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—ATH

where B=e is the imaginary-time propagator over the discretization interval A~.

Next, the Suzuki-Trotter (ST) approximation is applied to all imaginary-time slices [ to fac-
torize the various terms appearing in the exponentiated Hamiltonian [117,118]. The resulting
form for the partition function is

ZaTr []%LT] +0(AT?), (15)
where the B ~ B + O(At>) approximation

., _Ate o Ary

B=ez ke 2V 2 b (16)

is used. By applying cyclic property of the trace it is straightforward to see that Eq. (15) is left
unchanged if the lower order B ~ B + O(A12) approximation

é :e—ATVe—ATIC (17)
is used instead. SmoQyDQMC. j1 can run simulations based on applying either Eq. (16) or (17).

In cases where the kinetic energy operator K is static, a formulation based on Eq. (17) is
usually preferable as the computational overhead is lower. However, when e-ph interactions
modulate the hopping amplitudes and the checkerboard approximation [119] is applied, it
is better to use a formulation based on Eq. (16) as it improves the efficacy of this additional
approximation; this aspect is discussed in greater detail in Sec. 3.5.

At this point, the only terms in the Hamiltonian that are not quadratic in Fermion creation
and annihilation operators are V4, and V.y,. To handle these terms, the local and extended
Hubbard interactions are decoupled using a HS transformation of the from

e_ATU(ﬁT_%)(ﬁl_%) = Z e_Shub(S)_AT\A/hub(s) (18)

S

and

e ATV hI- (ﬁo,i_%)(ﬁa’,j_%) — Z e_Sexh(sl)_AT‘A/exh(sl). (19)

v

In Eq. (19) we have assumed that i # j as the extended Hubbard interaction is between
a distinct pair of electronic orbital states. Here, V;,,(s) and V,,(s") are fermionic bilinear
operators that depend on the HS fields s and s’, respectively, and the specific HS transformation
used to decouple each interaction. Likewise, Sy, (s) and S.,,(s”) are scalar functions of the HS
fields that depend on which HS transformation was used. The different HS transformations
that are available in SmoQyDQMC. j1 are described in Appendix A.

Next, we evaluate the trace over the lattice degrees of freedom. This task is best accom-
plished in the position basis where we can analytically integrate out the phonon momentum
operators f’i,v. This allows the phonon position operators )A(i,,, to be replaced by the scalar
phonon fields x; ; for all phonon modes i = (i, ») and imaginary-time slices [ [64,69,71,75].

After these operations are performed, the resulting term that appears in the exponentiated
Hamiltonian is a fermion operator that is bilinear in the electron annihilation and creation
operators of the form

écr,l = éj;'OO',léO" (20)

a

where ég = [6;1,1, cee, 6(';7N7 .] is a row-vector of creation operators for each of the A orbitals
in the system, and ¢, is the corresponding column vector of annihilation operators. Therefore,
Oy, is a N'x N Hermitian matrix.

The resulting expression for the partition function is

LT
Zny J Dx &5 [ Tro|: éa,l], (21)
=1

5,8’ o=T,l
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with ZS’S, and f Dx denoting the path integral over all HS fields s; ; , and s{’i’v, and all phonon
fields x; ; ,, respectively. Here, Sp(s,s’,x) is the bosonic action and will be defined below in
Eq. (30). The remaining trace Tr,, runs over the spin-o fermion degrees of freedom for a fixed
HS and phonon field configuration (s,s’, x).

The propagator operators now explicitly depend on the spin o and imaginary-time slice [
and are given by

A Atp b _AT
B, =¢e 2 Kote=A™Vo1e=2 Kol (22)

5 J
or . .
Bo’,l — _ATVa,le_AT/Ca,l, (23)

depending on whether the approximation from Eq. (16) or Eq. (17) is used, respectively. The
dependence on the fields s; ; ,, and x; ; , appear as

Iea,l = []@0,0 + Iessh,o(xl,i,v)] 24)

in the electron kinetic energy, and

A,

VO',Z = I:],)O,a + Vhol,a (Xl,i,v) + f)hub,a (sl,i,v) + ]A}exh,a (szl,i,v):l (25)

in the electron potential energy, respectively.

Employing the Blankenbecler, Scalapino and Sugar (BSS) relation [1], we integrate out
the remaining Fermionic degrees of freedom to arrive at our final expression for the partition
function

Z~ Zf Dy ¢ 58" l_T[l detM, (1) + O(AT?). (26)
o=1,

Here, M, (7) is the spin-o Fermion determinant matrix given by

s,s’

MO-(T) = I + BO‘,ZBO‘,I—]_ .o 'BO',lBO',LT .o 'BO',Z+1’ (27)

where I is an A/ x N identity matrix and B,, ; are the spin-o propagator matrices for imaginary-
time slice [. Note that det M (7) is the same for all values of T. The propagator matrices take
a similar form to the propagator operators appearing in Eq. (22) and Eq. (23), with

AT AT

BO‘,Z = e_TKa,l e_ATVo,le_TKa,l , (28)

or

—ATV,

B, =e lemAKe1 (29)

where K,; ; and V;, ; are the spin-o electron kinetic and potential energy matrices for imaginary-
time slice [, respectively. Each K, ; is strictly off-diagonal and Hermitian, while the V,, ; matri-
ces are diagonal.

In the most general case, the total bosonic action Sg(x) appearing in Eq. (26) can be
conveniently expressed as a sum of three terms

Sp(5,5"X) = Spyp(s) + Sexn(s") + Spn (). (30)

The first two terms arise as a result of the HS transformations used to decouple the local and
extended Hubbard interactions. Note that Sy;,(s) and Sy, (s’) may in general be complex.
The third term Sp;,(x) is the total non-interacting phonon action, and is a strictly real valued
function. The total phonon action itself can be conveniently expressed as the sum of four terms

Sph(x) = tho(x) + Sann(x) + Sdisp(x) + Shol (X). (3D

9
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The first term

M. X =X 2
i,v 0 i,v i,v I+1,i,v Li,v
qho(x)—ATE E [ iyt = ( - ) } (32)

is the contribution to the bosonic action arising from the QHO term Z/A{qho in the Hamiltonian,
as defined by Eq. (3) The term

anh(x)—ArZZ S T 2t (33)

corresponds to the anharmonic lattice potential term V,,;, defined in Eq. (4). The third term

> ~ 2 1 . 4
Saisp(x) = AT Z M, + ]:,[Y [ g(i,v),(j,y)(xl,i,v - Xl,j,r) + ﬁgi,(i,v),(j,y)(xl,i,v - Xl,j,r) ]
J,Y
(34)
arises from dispersive couplings between QHO modes described by Z/A{disp, defined in Eq. (5).
The final term

3
A3 i Dy (Ko m G Xt + Ko D)
Shol = Y (35)

arises due to the manner in which the Holstein-like interactions appearing in IA)hol are param-
eterized in Eq. (11).

The high-dimensional integral appearing in Eq. (26) is not analytically tractable but lends
itself to a numerical solution. In particular, DQMC simulations perform a Monte Carlo sampling
of the HS fields s and s” and phonon fields x, where the argument of the integral in Eq. (26)
is the Monte Carlo weight

W(s,s',x) = ™56 [T detM, (7). (36)
o=1,1

We note, however, that these Monte Carlo weights are not guaranteed to remain strictly pos-
itive. They can take on both positive and negative values in many cases, and can become
complex if complex hopping amplitudes appear in the Hamiltonian or complex HS transfor-
mations are used to decouple the Hubbard interactions. This aspect leads to the well-known
Fermion sign problem [120-122]. To circumvent this issue, DQMC instead takes the absolute
value of Eq. (36) as the Monte Carlo weights

W(s,s',x) = [W(s,x)| = e RelSC9} T deem, (7). (37)
o=l

Specifically, applying the Metropolis Hastings criteria, the acceptance probability for updating
the field configuration from (sl., ,X;) to (s I f’ ) is given by

Wisp s f))

38
W(si,si,xi) G8)

P(siisgrxi)_)(sf ’S}!Xf) = min (1

However, using W (s, s’, x) necessitates employing a reweighting procedure to recover unbiased
measurements from a simulation; Sec. 3.10 discusses this procedure in more detail.

10
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3.2 DQMC Simulation Overview

This section briefly outlines the overarching structure of a DQMC simulation. By design, this
structure closely mirrors how scripts using SmoQyDQMC . j1 are written to perform simulations.
We have provided numerous examples of such scripts in the online documentation, and Algo-
rithm (1) provides an overview of what this structure might look like.

The goal of a DQMC simulation is to faithfully sample the relevant fields according to
the probability distribution described by Eq. (37). In the case of SmoQyDQMC. j1, these fields
correspond to either HS fields that result from decoupling the Hubbard interactions or the
phonon fields. The fields are typically initialized to a random configuration at the beginning
of a simulation. Then, updates to the field configurations are proposed using various methods,
which are either accepted or rejected with a probability given by Eq. (38). Sec. 3.7 outlines an
efficient procedure for updating the HS fields, whereas Secs. 3.8 and 3.9 describe methods
for efficiently updating the phonon fields.

Another important part of the simulation is making measurements as field configurations
are sampled. However, measurements should not be performed at the start of a simulation
as the initial field configuration is typically far from the target equilibrium distribution de-
scribed by Eq. (37). Therefore, the fields are first updated Ny, times during an initial
thermalization period to equilibrate the field configurations to the target distribution. The
remainder of the simulation is then broken into Ny, intervals, with ny;, updates performed
per interval, as shown in Algorithm (1). After each set of updates to the field configurations,
measurements are made and recorded. Electronic correlation measurements are made using
the single-particle electron Green’s function (which is defined and discussed in Sec. 3.3). At
the end of each interval, the average of the previous n;;, measurements are written to the file.
At the end of the simulation, these interval-averaged measurements are processed to generate
final estimates for the expectation value of measured observables; the details of this analysis
are discussed in Sec. 3.10. Algorithm (1) also shows how the chemical potential can be up-
dated during a simulation to achieve a target electron density. Sec. 3.11 gives more details on
this functionality.

Finally, the algorithms for updating fields and measuring electronic correlation functions
require reliably calculating the single-particle electron Green’s function matrices defined in
Sec. 3.3. A naive approach to performing these calculations often results in numerical insta-
bilities, rendering the result unreliable. Sec. 3.4 describes efficient algorithms for suppressing
these numerical instabilities that would otherwise prevent the DQMC algorithm from func-
tioning correctly.

3.3 Single-Particle Electron Green’s Functions

A central quantity in DQMC simulations is the imaginary-time single-particle Green’s function.
This section provides a brief review of the definitions of this quantity and its properties.
The spin-o electron Green’s function in the orbital basis is given by
A AT / : /
(co’i’v(’r)ca’j,y(’r )) ift>7

AT /\A . /
—(ca’j’y(r )Ca,i,v(T» ift <7,

Goli(w,7) =(T¢, ; (DL, () = { (39)

J oy

where 7™ is the imaginary-time ordering operator. Eq. (39) describes the creation of a spin-o
electron at orbital y in unit cell j at imaginary-time 1’, and annihilation at orbital v in unit
cell i at imaginary time 7. The imaginary-time axis spans the interval 0 < (7,7”) < 8, and the
electron Green’s function is additionally subject to the aperiodic boundary condition

gv,Y‘(T_ﬂ)T/) = _gv,y'(/t) T/) (40)

0,i,j 0,i,j
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Algorithm 1 Overview of DQMC simulation structure

Initialize Ising HS fields s and phonon fields x to random initial configuration.
forie[1,Nyerm | do
Update Ising HS field s using algorithm from Sec. 3.7.
Update phonon fields x using algorithms from Secs. 3.8 and 3.9.
Update chemical potential; see Sec. 3.11.
end for
for bin € [1, Ny,;,,] do
forie[1,n,] do
Update Ising HS field s using algorithm from Sec. 3.7.
Update phonon fields x using algorithms from Secs. 3.8 and 3.9.
Make measurements; see Sec. 3.3.
Update chemical potential; see Sec. 3.11.
end for
Write average value of measurements in current bin to file.
end for
Average binned measurements to get final estimates for measured observables; see Sec. 3.10.

when 7 # 7.
Given a fixed set of field configurations s, s, and x, the equal-time Green’s function can be
related to the matrix elements of the Fermion determinant matrix by

Gy(7,7) =M. (7) =[I +By(7,0)B,(8,7)] ", (41)
where we have used the short-hand notation
B,(7,7)=B, By —1---Byi1, (42)

with B, (7,7 — A7) =B, and B, (7, 7) = I. Therefore,

_ -1
Gy(0,0)=[I+B,(8,0)] ' =[I+By 1 By 1---Bo1] . (43)
subject to the boundary condition

Go(B,B) = G,(0,0). (44)

The equal-time Green’s function matrix G, (7, T) can be propagated to adjacent imaginary-time
slices in the forward and reverse directions using the relations

G,(t+AT,T+AT)=B G, (7,7)B,} (45)

o,l+1 o,l+1

and

G,(T—AT,7—AT) =BG (7,7)B (46)

o,l?

respectively. These relationships between the Green’s functions on adjacent time-slices are
the basis for an efficient updating scheme when performing Metropolis-Hastings or Heat-bath
sampling [2], as discussed in Sec. 3.7.

The time-displaced (or unequal-time) Green’s functions Q;”iy’j(r,O) and gg’}’j(o, T) corre-
spond to the matrix elements of

G,(7,0) =B,(7,0)G,(0,0) (472)
=[B,(7,0)+B,(,7)]"" (47b)

12
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and

G,(0,7) = G,(0,07)B,"(7,0)
=—[I1-G,(0,0)1B,"(r,0) (482)
=—[B;'(B,7) +B,(7,0], (48b)
respectively, where we have applied the boundary condition

G,(0,07) = lin% G,(0,7) =—[I—G,(0,0)]. (49)

In similar fashion to the equal-time Green’s function matrices, the time-displaced Green’s func-
tion matrices can be propagated in the forward and reverse imaginary-time directions using
the relations

B G (v/,0) ifp>t>1">0
GG(T’O):{ ‘ZET’/T) (T ,/ ) 1 B r/ T (50)
B_'(7,71)G,(7',0) ifp>1">71>0
and
G (0,7)B (1,7 ifp>t>1">0
GU(OJT): U( /) 7 (/ ) . /5 / (51)
G,(0,7)B_ (7",7) ifp>1">1>p.

Specific boundary conditions arise as a result of the aperiodic boundary condition set by
Eq. (40), and the definition of the Fermionic Green’s function in Eq. (39). In particular, the
time-displaced Green’s function matrices satisfy

G,(f,0) = 1in/1j G,(t,0)=1—G,(0,0) (52)

Gy (0,8) = 1111}3 G,(0,7) =—G,(0,0), (53)

where it is again assumed that 7 > 0.

Lastly, again assuming a fixed HS and phonon field configuration, higher order correlation
functions can be measured by applying Wick’s theorem to express them as sums of products
of the single-particle electron Green’s functions [19, 123].

3.4 Numerically Stable Framework for DQMC Simulations

The procedure for updating the HS (s;; ,) and phonon (x; ,, ) fields requires calculating the
equal-time Green’s function matrices G, (7, 7) for all imaginary time slices [ € [1,L.]. Simi-
larly, performing measurements of any imaginary time-displaced correlation functions requires
calculating the imaginary time-displaced Green’s functions G, (7,0) and G4 (0, 7).

A straightforward approach for computing these quantities is outlined in Algorithm 2. Un-
fortunately, this naive approach fails due to well-documented [2, 124-127] numerical insta-
bilities associated with evaluating the ill-conditioned products of B, ; matrices. Specifically,
repeated matrix multiplication by the propagator matrices B, ; accumulates numerical errors
that quickly become severe. These numerical errors appear both when attempting to evalu-
ate the B,(f3,0) term appearing in Eq. (43), and also as a result of repeated applications of
Egs. (45), (50), and (51). The errors are then further amplified when matrix inversions are
performed, as in Eq. (43).

Practical implementations of the DQMC algorithm have to overcome these numerical insta-
bilities by introducing stable matrix factorizations [2,124-127]. The SmoQyDQMC. j1 package
uses stabilization procedures based on those introduced in Ref. [125] and further discussed in
Ref. [127]. Our package also stores intermediate matrix products to improve the algorithm’s
efficiency [5, 128, 129], an approach described in greater detail below. To outline this proce-
dure, we first introduce the L DR matrix factorization, which represents products of propagator
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matrices B, ; and is based on the column-pivoted QR factorization. For a non-singular square
matrix A, its column-pivoted QR factorization is given by

AP =QR/, (54)

where Q is a unitary matrix, R’ is an upper-triangular matrix, and P is a permutation matrix.
The corresponding A = LDR factorization is then defined as product of matrices

L=qQ, (55a)
D = |Diag(R’)|, and (55b)
R = |Diag(R)|'R'PT. (55¢)

Here, both the unitary matrix L and matrix R are well-conditioned matrices, and D is a diagonal
matrix. To further improve numerical stability; it is useful to factorize D as

D= Dmax Dmin’ (56)

where D,,,, = max(D, 1) and D,,;, = min(D, 1) [125].

Next, the imaginary-time axis of length L is split into N; = L. /n, intervals of length n,.
The relative position within interval n € [1, N,] is given by [,, € [1, n,], where the correspond-
ing imaginary-time slice is | = [,, + (n — 1)n,. For simplicity’s sake, here we have assumed
mod(L,,n;) = 0. While this will not be the case in general, it is relatively straightforward to
generalize the algorithms outlined below to the case that this assumption does not hold.

The composite propagator matrix associated with an interval n is given by

Bcr,n = Ba,nnsBa,nns—l cee Bo,(n—l)ns+1

(57)
=B,(At nn,, At (n—1) ny),

with the product of B, , matrices represented by

Ba,n,n’ = Ba,nBa,n—l s Ba,n’+1
= Ba,nnsBo,nns—l . 'Ba,n’ns+1 (58)

=B, (AT nn,, At n’ ny),

where n>n’ and B, , ,_1 = B, ,. The corresponding LDR factorization for B,, , ,» is denoted
by

Fa,n,n’ =L ’Da,n,n’RU,n,n" (59)

o,n,n

Algorithm 2 Numerically Unstable Forward Propagation Framework for DQMC Simulations

Calculate G, (0,0) using Eq. (43): G,(0,0):=[I +B,(f,0)] .
Initialize G4 (7, 7): G,(7,7) := G,(0,0).
Initialize G,(7,0): G,(7,0) := G,(0,0).
Initialize G, (0, T) by applying Eq. (49): G,(0, 1) :=—[I —G,(0,0)].
forlel,2,...,L  do

Apply Eq. (45): G,(7,7) := B, G, (t—AT,T—AT) B;ll

Apply Eq. (50): G,(7,0) := B, G,(T—AT,0).

Apply Eq. (51): G,(0,7):=G (0,7 — A1) B;}l.

[oa

[Insert Updates to Fields or Time-Displaced Correlation Measurements Here.]

end for

14
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Algorithm 3a Numerically Stable Forward Propagation Framework for DQMC Simulations

Input: G,(0,0).
Input: F, = [FU’NS,O s Fonas s FU,NS,NS—l]'
forlel,2,...,L.—1,L, do
Calculate | — (n,1,,).
Apply Eq. (45): Go(7,7) =B, G (T —AT,7—AT)B_}.
Apply Eq. (50): G,(7,0):=B,; G,(t—AT,0).
Apply Eq. (51): G,(0,7) := G, (0,7 —AT) B_}.

(oa

[Insert Updates to Fields or Time-Displaced Correlation Measurements Here.]

if [, == n, then
Calculate B, ,.
if n ==1 then
Calculate F; 1 g := B, ;.
else
Retrieve F,; 1 o =F,[n—11].

Calculate F,; , o := B, ,F, ,_10 using stabilization routine B.1.

end if
Set Fy[n]:=F, 0.
if | ==L, then

Evaluate Eq. (43) using routine B.4: G,(0,0) := [1 + FG,NS,O]_l-
Evaluate Eq. (52): G,(,0) :=1—G,(0,0).
Evaluate Eq. (53): G,(0,B) :=—G,(0,0).
else
Retrieve F, v , =F,[n+1].
Evaluate Eq. (41) using routine B.3: G, (7,7):=[I+ Fa,n,oﬁg,z\g,n]_1~
_ _ -1
Evaluate Eq. (47b) using routine B.5: G,(7,0) := [F;}1 ot FG,NS’H]
_ _ -1
Evaluate Eq. (48b) using routine B.5: G,(0,7) :=— [F;}V 2t Fa,n,o] .
end if
end if
end for

Output: FU‘ = [FO',I,O 5 FU‘,Z,O s ey FO’,NS,O]'
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Algorithm 3b Numerically Stable Reverse Propagation Framework for DQMC Simulations
Input: G,(0,0).
Input: F, =[F, 10, Fyo0, - FO',NS,O]'
forlel ,L,—1,...,2,1do
Calculate | — (n,1,,).
if | ==L, then
Apply Eq. (52): G,(3,0) :=1—G4(0,0).
Apply Eq. (53): G, (0, B) := —G,(0,0).
else if [, # n, then
Apply Eq. (46): G,(7,7) := l+1G (T+AT,T+AT)B, L1
Apply Eq. (50): G,(7,0):= B_l+1 G, (T +A7,0).
Apply Eq. (51): G,(0,7) := G, (0, T+AT)By 141
end if

[Insert Updates to Fields or Time-Displaced Correlation Measurements Here. ]

if [, ==1 then
Calculate B, ,.
if n == N, then
Calculate F,, y n 1 := B .
else
Retrieve F, v , = Fa[n +1].
Calculate Fa N1 = FU N,, nBU ., using stabilization routine B.2.
end if
Set Fa[n] a Ng,n—1-
if | ==1 then
Evaluate Eq. (43): G,(0,0) :=[1+F, y o]
Evaluate Eq. (52): G,(,0) :=1—G,(0,0).
Evaluate Eq. (53): G,(0,B) :=—G,(0,0).
else if [, == 1 then
Retrieve F,, 1 o =F,[n—1].
Evaluate Eq. (41) using routine B.4: G, (t—AT, 7—AT) :=[I+F, o 1 0Fon n1]

-1

-1

Evaluate Eq. (47b) using routine B.5: G,(7 — A7,0) —[ 1n +FUN . 1] 1.
Evaluate Eq. (48b) using routine B.5: G,(0,T—AT) := [13 }v 1t Fa,n—l,O] 1.
end if
end if
end for
output: F, =[Fon 0, Fon1s - Fonn—1]-
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Finally, F, denotes an array of LDR factorizations of length N; to store sequential F,, , ,, fac-
torizations.

With these definitions in hand, we now turn our attention to Algorithms (3a) and (3b)
for propagating the equal-time and time-displaced Green’s function matrices in the forward
(t=0—- 7 =) and reverse (T = 5 — 7 = 0) directions, respectively, in imaginary-time. In
particular, note that the input state of that array F in Algorithm (3b) matches the output state
from Algorithm (3a). Likewise the input state of F in Algorithm (3a) matches the output state
from Algorithm (3b). Therefore, it is necessary to alternate the application of Algorithms (3a)
and (3b). This results in a DQMC updating procedure that alternates sweeping forward and
backward in imaginary time rather than cyclically. The advantage of this approach is that it
allows the DQMC algorithm to retain a computational cost that scales linearly with 3, while
remaining numerically stable [128]. The parameter n, is now understood to be the period
in imaginary-time with which the Green’s function matrices are re-computed using a more
expensive, but numerically stable procedure.

In practice, it is important to monitor the numerical stability of a simulation to determine
whether n, needs to be decreased to increase numerical stability, or increased to reduce com-
putational overhead. To accomplish this task, let Gf;able(f, 7) correspond to the equal-time
Green’s matrix that is recomputed using a numerically stable procedure, while G;*V*(7, 7)
represents the same matrix, but generated via simple propagation in imaginary time using
Eq. (45) or Eq. (46). We then keep track of the maximum element-wise difference

6G, = max(IGf;able(T,T)—Ggaive(f,'r)l) (60)

during a simulation. We would like 6 G, remain below some maximum threshold 6 G, < 6 Gy,
with §G,,, ~ 107° a sufficient upper bound in most cases. Typical values for the period of
numerical stabilization that satisfy this stability condition are n, ~ 5— 10, but depend on the
strength of the interactions, inverse temperature 3, and At. When this condition is being
violated during a DQMC simulation, it is an indication that n; may need to be reduced. Con-
versely, if 6G, < 6 G,y throughout the simulation, then n, can often be increased to reduce
the simulation’s run time. SmoQyDQMC. j1 offers useful functionality for reducing n, dynam-
ically during a simulation if instances of 6G, > &G, are detected too frequently. However,
it is worth noting that DQMC simulations performed with SmoQyDQMC. j1 retain a compu-
tational cost that scales linearly with 8 for any n,. Rather, reducing n, simply increases the
computational prefactor associated with the linear dependence on .

3.5 The Checkerboard Approximation

The SmoQyDQMC. j1 package makes heavy use of the checkerboard approximation [130]. For
example, this approximation is necessary for efficiently simulating optical SSH e-ph interac-
tions, where the hopping integrals are modulated by the atomic displacements of phonon
modes defined to live on the sites of the lattice [116]. Note that SmoQyDQMC. j1 does allow
users to run simulations without the checkerboard approximation, but this will slow the code
down significantly. The checkerboard approximation is also essential for computing exact HMC
forces when simulating SSH models (see Sec. 3.8.1).
The checkerboard approximation is motivated by the observation that the exact exponen-
tiated kinetic energy matrices
I, (A7) =e 2ol (61)

appearing in the definition of the propagator matrices B, ; are dense ' x A matrices. As a re-
sult, evaluating the product of B, ; with another dense matrix scales as O(N* %), and constitutes
one of the leading computational costs in DQMC simulations. Moreover, when SSH-like e-ph
interactions are present (arising from the Iessh term in the Hamiltonian), updating a phonon
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field x; ,,  necessitates diagonalizing the corresponding spin-o kinetic energy matrix K, ; in
order to re-exponentiate it. If this diagonalization is performed at every update, it would
introduce an exorbitant additional computational cost and significantly slow the simulation.
To ameliorate these computational hurdles, we introduce the order O(At2) checkerboard ap-
proximation, which replaces the I, ;(A7) dense matrices with sparse matrix representations.
Applying this approximation reduces the cost of multiplying a dense matrix by B, ; from O(N %)
to O(N2). But more importantly, it reduces the cost of exponentiating the K, matrices when
a phonon field is updated from O(N?) to O(N).

Consider a spin-o kinetic energy matrix K, (; jy = —t ; j, Where t ; ; is the total hopping
amplitude associated with the bond connecting orbitals i and j in the lattice. This matrix can
be expressed as a sum of bond matrices K, = )., k, . Here, b indexes each bond in the
lattice, and the corresponding bond matrix is of the form

0 .. —t

Uxib:jb
kop = : e f ; (62)
—tr . 0

O,1p5]p

where a hopping amplitude may in general be complex, t;;, ; = ePoin.iv |to';ib;jb | For each
bond matrix k, 5, a corresponding bond operator lAca,b =—> ta,ib,jbég ibéjb +h.c.] can be
defined. Exponentiating k,, ; results in
1 : :
o i o
cosh(AT|ta’ib,jb|) e "%ibib smh(AT|t0’ib’jb|)
e ATkop = : 1 :
e Poivib sinh (AT |tg,ib,jb |) cosh (AT |t0,ib,jb |)
B : : 1
(63)

Next, the bonds must be sorted into groups, or colors, such that the bonds of a given color do
not overlap or touch. This condition corresponds to the bond operators IA<b (and corresponding
matrices k) of the same color all mutually commuting with one another.

The task of constructing these groups can be reduced to the edge coloring problem in
graph theory. It is important that the minimum number of colors is used, as this improves the
accuracy of the checkerboard approximation. However, the precise composition of each color
is not unique, and some coloring schemes are better than others. In this code, the colors are
assigned by systematically iterating over the unit cells in the lattice, and assigning a color to
each bond with a site contained in the current unit cell; for more information, we refer the
reader to our Checkerboard. j1 package [131].

Having assigned a color to each bond in the lattice, the total kinetic energy matrix may be

expressed as
N, N,
Z Z [Z ko b] (64)

bec
where K, . is the kinetic energy matrix associated with just the bonds b assigned the color c,
with N, the number of colors. Absent any approximation, the exponential of a single color
matrix K, . is given by

I, (A7) = 2Koe = l_[ e A%kop, (65)

bec
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With these definitions in hand, the checkerboard approximation is given by

I (A7)~ T, (AT)+0(AT?), (66)

where
I,(AT) =T, v (A7)...T, (AT)...T, 1(AT) (67)

is the checkerboard matrix. A simple and efficient method for multiplying a dense matrix by
I, (A7) is given by Algorithm 2 in Ref. [130].

The efficacy of the checkerboard approximation deteriorates in models with longer range
hopping. This occurs due to the increase in the average coordination number with distance,
increasing the number of color groups needed to parition the bonds. Moreover, while I, (A7)
is Hermitian, the checkerboard matrix I, (A7) is not. In order to mitigate concerns regarding
the accuracy of the checkerboard approximation, a symmeterized form 1:;(%) . IN“U(%) can
be used instead. This form results in a Hermitian checkerboard matrix and significantly im-
proves the overall accuracy of the checkerboard approximation [132]. In a DQMC simulation,
this corresponds to using the checkerboard approximation in conjunction with the symmetric
definition for the propagator matrices B, ;, as defined by Eq. (28).

SmoQyDQMC. j1 has support for both the asymmetric or symmetric checkerboard approx-
imation. When performing simulations models that include SSH interactions, it is recom-
mended that the symmetric checkerboard approximation be used in order to help ensure the
efficacy of the approximation.

3.6 Twisted Boundary Conditions

Version 2.0 of SmoQyDQMC. j1 provides convenient integrated support for twisted boundary
conditions (TBC) [133-137]. For a finite-size periodic lattice, the momentum grid is given by

D
k=Y b, (68)

d=1 Ly

for all integers n; € [0, L;), where D is the dimensionality of the lattice, a; are the lattice
vectors, b, are the corresponding reciprocal lattice vectors, and L, is the extent of the lattice
in unit cells in the a4 direction. Next, consider the hopping amplitude ¢, g ,) ;) in Eq. (7),
which connects orbital y in unit cell j to orbital v in unit cell i. Applying TBC corresponds to
the transformation

10516060 ¢

Eo .G =€ oG, Gor)> (69)

where 1,y jy) = (i+1,)—(j+r,) is the displacement vector separating the pair of orbitals, and
0 is the applied twist. This transformation effectively shifts the spin-o electron momentum
grid to

k,=k+80, (70)
where the twist is parameterized as
D
No,d
0, = — by. 71
o ;1 L b (71)

The parameters 7, 4 € [0, 1) control the twist angle, with n, 4 = 0.0 (0.5) corresponding to
periodic (aperiodic) boundary conditions. Note that this transformation is also applied to the
SSH-like e-ph coupling term in the Hamiltonian such that the coupling constant is transformed
as

&U,m,(i,v,n),(j,}’,P) = e_iog.r(i’v)’(j’y) Ao ,m,(1,%,1),G,7.0) (72)
in Eq. (8).
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3.7 Efficient Local Updates of Hubbard-Stratonovich Fields

In this section, we outline a well-known method for efficiently updating HS fields like those
introduced in Sec. 3.1 to decouple Hubbard interactions [2]. We will describe this method
within the context of the discrete spin-channel HS transformation introduced in Ref. [138]
and defined in Appendix A.1.1. Note, though, that this same approach may be adapted to the
other types of HS transformations used to decouple the local and extended Hubbard interac-
tions [139, 140]. For a more general discussion on how to define and update HS transforma-
tions for other types of fermionic interactions, we refer readers to Refs. [19] and [123].

A naive, or brute-force, approach to updating the HS fields consists of re-calculating the
fermion determinants from scratch each time an update to a field s; ; ,, is proposed. Updating a
single field would then scale as O(N?), with the resulting computational cost to update all HS
fields in space and imaginary time scaling as O(BN™). It is possible, however, to reduce the
cost of updating a single HS field from O(N?) to O(N?) by taking advantage of the fact that
the e~2%Yo. matrices that appear in the definition of the propagator matrices are diagonal [2].
This property allows one to reduce the computational complexity of updating all HS fields
from O(BN*) to O(BAN?).

We will assume an asymmetric form for the B, ; matrices in the following discussion, as
defined in Eq. (29). Given an update to a single HS field (s;;, — s{’i’v), the corresponding
change in the propagator matrix may be expressed as

B(/T,l = [I + AU(T) i)]BU,l: (73)

where

Ay(t,i) = eoelstim) _q (74)

0

is a matrix with a single non-zero matrix element at index i on the diagonal. Employing the
Sherman-Morrison matrix identity, one can show that the change in the corresponding fermion
matrix determinant is given by the scalar equation

detG,(7,7)
= det G/ (7,7)
=det[I + A, (7,1))IT —G,(7,7))]
=1+A,,;(7,))(1—-Gs,i(7,7)).

/
Rcr(sl,i,v - 51,1,1,)

(75)

The updated Green’s function matrix can then be efficiently calculated from the old one using
the rank-1 update

G;_(T, T) = GO‘(TJ T) I:I _RglAO‘(T) l) (I - Go‘(TJ T))] > (76)
which in terms of matrix elements is
G:T,J',k(f’ 7) = Ggji(7,7) —R}! Go,j,i(T,T) A i(T,1) [5i,k — G ix(7, ]. (77)

Additional gains in efficiency can also be made by accumulating these updates in a delayed
updating scheme [141].

This local updating scheme forms the basis for efficiently sampling HS fields across all
spatial sites and imaginary times. One begins by proposing and accepting/rejecting updates
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to the HS fields for a single time slice, requiring O(N3) operations. After all of the updates have
been proposed for this imaginary time, the Green’s function is advanced to the next time slice
using Eq. (45), and the process is repeated. In practice, the imaginary time axis is sequentially
iterated over, and Eq. (75) and Eq. (77) are used to efficiently update the HS fields at each
imaginary time slice. While algorithms (3a) and (3b) are used to iterate over the imaginary
time slices, the order the HS fields are iterated over at each time-slice is randomized to help
reduce autocorrelation times. Note that a similar approach may be used to sample the fields
when the symmetric definition for the B, ; matrices [Eq. (28)] is used. However, in this case
the Green’s function matrix appearing in egs. (75) to (77) is replaced by

Go(T,7)= e 7K G, (7, T)e_%Kl. (78)

Finally, we note that the same updating scheme can be used to sample the phonon fields
in certain types of electron-phonon models (e.g. the Holstein model). However, it is not
straightforward, or even necessarily possible, to formulate an efficient local updating scheme
for arbitrary types of electron-phonon interactions. Moreover, even when local updates can
be used they are inefficient at de-correlating the phonon fields, particularly when the phonon
energy is much smaller than the electronic hopping (Q/t 5 0.5) [75,142,143]. Various alter-
native sampling methods have been proposed, including self-learning Monte Carlo [142,143]
and Langevin and HMC methods [100, 102, 144, 145], which can reduce the autocorrelation
time associated with sampling the phonon fields. SmoQyDQMC. j1 uses an optimized HMC
method for sampling the phonon fields, as outlined in the next section.

3.8 HMC Updates of Phonon Fields

In the SmoQyDQMC. j1 package, specialized hybrid Monte Carlo (HMC) updates are used to
sample the phonon fields in DQMC simulations of e-ph models. The HMC method, also fre-
quently referred to as Hamiltonian Monte Carlo, was first developed by the lattice gauge theory
community [100], and has since become a widely used tool for sampling continuous random
variables more broadly [145]. In an HMC update, the phonon fields evolve according to a
fictitious Hamiltonian dynamics to construct proposed global updates to every phonon field
simultaneously.
To define the fictitious Hamiltonian dynamics, the DQMC Monte Carlo weight defined in
Eq. (37) is re-expressed as
W(s,s',x) = e S6s"x), (79)

where
S(s,s’,x) = Sg(s,s’, x) + Sg(s,s’, x) (80)

defines an effective action. The first term Sg(s,s’, x), given by Eq. (30), is the purely bosonic
contribution to the total action. The second term Sg(s,s’, x) describes the fermionic contribu-
tion, and is given by

SF(S:SI:X) = ZSF,U(S>S/) X) = Zlog|detGO’(T: T)l > (81)
[} g

valid for all T. Moving forward, we shall suppress reference to the HS fields s and s’, as they
will be treated as a constant while updating the phonon fields x.

Next, a conjugate momentum p is introduced for each phonon field x, allowing us to define
an effective Hamiltonian

H(x,p)=S(x)+ %pTM‘lp, (82)
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which may be interpreted as the sum of “potential” and “kinetic” energies, where M is a
positive-definite dynamical mass matrix. The corresponding Hamiltonian equations of motion
are

,__oH__as
T 9x  Ox
. OH B (83)
XxX=—=M D,

op

defining a symplectic, time-reversible, and energy-conserving dynamics.
The first step in performing an HMC update is to directly sample the momentum according
to the equilibrium Boltzmann distribution exp(—p” M~!p/2) according to

p=+vVMR, (84)

where each element of the random vector R is drawn from a standard normal distribution.
In the simplest approach, the dynamical mass matrix is set to the identity, M = I. Next, the
Hamiltonian dynamics are evolved for N, time-steps using the leapfrog integration method

At
Dt+1/2 =Dt t+ 7ft

X1 =X+ At-/\/l_lpt+1/2 (85)

At
Dt+1=Dt+1/2+ 7fr+1:

where At is the integration step size and

fe= _o5 (86)
9x;
is the force driving the dynamics. Like the underlying Hamiltonian dynamics, the leapfrog in-
tegration method is symplectic and time-reversible. As a result, absent numerical instabilities,
the total energy H(x) will be conserved to O(At?) for arbitrarily long trajectories. Lastly, the
final state (x;,py) of the HMC trajectory replaces the initial state (x;, p;) with a probability
given by the Metropolis-Hastings criteria

P =min(1,e %), (87)

where AH = H(xy,ps) —H(x;,p;). Crucially, the HMC method exactly satisfies detailed bal-
ance as a result of the leapfrog integration method being time-reversible and symplectic.
The most expensive part of performing an HMC update is evaluating the derivative of the
action
dS JSp 0Sg
ox _ ax ax’

More specifically, evaluating the fermionic contribution to the derivative % is the dominant
cost, scaling as O(BN?); Sec. 3.8.1 discusses how to evaluate this derivative.

Unfortunately, applying the basic HMC method outlined in this section still results in long
autocorrelation times that stem from the disparate timescales introduced to the Hamiltonian
dynamics by the bosonic action Sg(x). Sec. 3.8.2 introduces a refined HMC method that uti-
lizes two complementary methods for addressing this issue. Sec. 3.9 discusses intermittently
supplementing the HMC updates with other types of global updates to help further reduce
autocorrelation times and mitigate ergodicity concerns in certain situations. Lastly, while one
might consider decoupling the Hubbard interaction using continuous HS fields which could
then be sampled with HMC updates, the absence of a bosonic contribution coupling those
fields in the imaginary time direction is known to make the approach challenging in prac-
tice [99,101].

(88)
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3.8.1 Evaluating the Derivative of the Action

The most computationally expensive aspect of performing a HMC update is calculating the
derivative of the action at each time step during the HMC trajectory. The derivative of the
bosonic action Sg(x) is straightforward and fast to evaluate, with a computational cost that
scales as O(SN).

Taking the derivative of the fermionic action for a single spin species Sg(x) is both more
involved, and more computationally expensive, scaling as O(BN?). The derivative of the
fermionic action for just a single spin species Sg ,(x), as defined in Eq. (81), is

2S oB
£9 _Re {Tr[—"’lB;}l(Ga(r, T)—I)}} , (89)

axl,n axln

where [ is the imaginary time slice and n specifies the phonon mode.
In the case that the propagator matrices B,, ; are defined using the asymmetric definition
given in Eq. (29), then Eq. (89) becomes

aSF,(T aAcr,l _ al—‘cr,l — _
o =Re{Tr[ax1’n A (Go(T,7)=T) [} +ReqTr aXl’nl"O}(AllGo(T,T)Al—I) )
(90)

where A, ; = exp(—A7TV, ;) and I, | = exp(—A7TK, ;). If the B, ; matrices are instead defined
using the symmetric definition given in (28), then Eq. (89) instead becomes

as orT, aA
O _ Re {Tr [ axj’l I (Go(r,7) —1)]} +Re {Tr [ﬁ/\;}l(rgj%(r, )L, —1)}}

axl,n n

oT!
I — 1o
2 (AZAT 1GU(T,T)FUJAGJ—1) ,

+Re | Tr 3xl o,l ol o,l
n

(oD
where A, ; = exp(—A7TV, ;) and I, ; = exp(—A7TK;/2).
At this point, the diagonal structure of the exponentiated potential energy matrix A, ;
allows for the simplification

JA A%
Tr| —ZLATA | =—Ar Tr| —22A (92)
axl’n g, axlm

to be applied to equations (90) and (91), where A is an A/ x N matrix. In the case of the exact
exponentiated kinetic energy matrix I, ;, on the other hand, only an approximate simplifica-
tion

or,; 0K, )
Tr ~T_A|l~—AT Tr ~A |+ O(ATY) (93)
Ox1n & 00X pn

can be made. However, if the checkerboard approximation is used, then repeated application
of the chain rule and cyclic property of the trace results in the exact expression

ot, N NN Ne 8Ko1e, . G, ou
Tr dx FO',Z =—AT Z Tr axl (Fa,l,c+1 T FO',Z,NC 1—‘o,l,NC T 1—‘o,l,c+1) ’ (94)
n

Ln c=1

where f‘cr,l is the checkerboard approximation matrix for I; ; as defined in Eq. (67). The above

equation holds because [aK"’Z’E Kcr,l,c] = 0 for any color matrix K, ; . as defined in Eq. (64).

oxip
Similarly, the simplification

af‘; [ =—v = aI<0' Le -1 —1
| Gt = —ATY | Tr 3x (e T AT, T ) (95)
>1 c=1 B

23



SciPost Physics Codebases Submission

can be made as well.

In practice, to evaluate the derivative of the action, we sequentially iterate over the imag-
inary time axis using Algorithm (3a) or (3b), generating each equal-time Green’s function
matrix G, (7, 7). This matrix is then used to calculate the derivative of the action with re-
spect to the phonon fields for the current imaginary time slice. Doing this for each imaginary
time slice, we evaluate the derivative of the action with respect to all the phonon fields while
retaining O(BN?) scaling in the DQMC simulations.

3.8.2 Resolving Disparate Timescales in the Bosonic Action

In this section, we consider an isolated QHO with mass M; generalizing this discussion to a
collection of QHOs is straightforward.

An important cause of long autocorrelation times in DQMC simulations of e-ph models is
the QHO action S,(x), defined in Eq. (32). The action associated with a single QHO is

MQ? M (X141 — X \2
tho(X)ZATZ[TXIZ-FE(%) ], (96)
!

with the resulting the resulting forces in a corresponding Hamiltonian dynamics given by

3Sq
fapoy =— 3;10 =—AtM [szl +(2x; —x144 —X1—1)/A72]- (97)

Next, defining the discrete Fourier transform in imaginary time as

~ s 21

1 —i%Enl
n=F fi=—— Lz 98
f fi T El e fi (98)

and applying it to fqp,; results in

o 4 . mn -~
fahon = —ATMQ? [1 + Ar22 sin’ (Z)] Xp, (99)

for n € [0,L;) and T = [ - At. The dynamical modes X,, are the Fourier transform of the
phonon fields in imaginary time x;.

The resulting Hamiltonian equations of motion in frequency space associated with S,,(x)
are given by )
" ~k_"1 o (100)
Xn =M, P,

which describes a system of L, independent harmonic oscillators with spring constants

b= arM?| 1+ —F iz (7). (101)
" AT202 L.

The resulting ratio of the magnitude of the forces for the fastest (X, ;) and slowest (¥,)
dynamical modes is

i.r2 =[1+L]>>1, (102)
ko AT2Q2
demonstrating that Sqp,(x) introduces disparate timescales to the dynamics, especially as one
must choose A7 small to preserve the accuracy of the Trotter approximation.

This situation results in standard HMC updates needing to use a small integration time-step
At to resolve the high frequency dynamical modes, resulting in long autocorrelation times for
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the low frequency dynamical modes. Similarly, when performing local updates, the proposed
change to a phonon field needs to be small relative to the QHO characteristic length scale
AX = 1/+/2MS to attain a reasonable acceptance rate. Reducing the size of these changes
will again give rise to long autocorrelation times.

One successful approach for addressing this issue is the Fourier acceleration method, whereby
carefully selected values for the dynamical mass M, appearing in Eq. (100) are selected so as
to reduce autocorrelation times [67, 102,144,146, 147]. Specifically, the dynamically masses
are given by

M, :ATMQZ[H Lsinz(@)], (103)
AT202 L,
where Qe, = /1+ T)fegQ and 7., € Ry acts as a regularization parameter. Transforming
back to imaginary time, this corresponds to a dynamical mass matrix, as appears in Eq. (83),
given by

M=F'MF, (104)

where M is a diagonal matrix with the values along the diagonal given by Eq. (103). In the case

that 1), = 0, the dynamical frequencies &, = k, /M, for the harmonic oscillators described
by Eq. (100) all get normalized to unity, resulting in all the dynamical modes X,, evolving at
the same rate. In the opposite limit that 1),.; = 00, the dynamical mass matrix simply reduces
to the scalar value M = ATMQ2. Intuitively, decreasing Treg from infinity to zero should be
thought of as increasing the mass of the high-frequency dynamical modes, thereby slowing
them down so that they evolve at the same rate as the low-frequency dynamical modes.

SmoQyDQMC. j1 uses a modified version of the exact Fourier acceleration hybrid Monte
Carlo (EFA-HMC) method that first introduced in Ref. [148] and then improved upon in
Ref. [103]. This approach takes advantage of the fact that the equations of motion in Eq. (100)
are analytically integrable using the solution

2n(£) =%,(0) cos(@yt) + Pn(0) sin(@yt) / (M)

Bu(t) =Ba(0) cos(@nt) — £,(0) sin(@nt) x (ycdy), (105)

given the initial conditions X,(0) and p,(0) for each dynamical mode. This analytic integra-
tion of the phonon fields and conjugate momentum, referred to as exact Fourier acceleration
(EFA), is outlined in Algorithm (4). The full EFA-HMC method used in SmoQyDQMC. j1 is then
presented in Algorithm (5). An important detail in Algorithm (5) is that the time-step is ran-
domized at the start of each HMC trajectory, with the amount of randomization controlled
by the parameter & € (—1,1). This practice helps avoid ergodicity concerns that can arise as
the result of quasi-periodic behavior, an issue that can occur when the electrons only weakly
couple to the high frequency modes in the dynamics [149].

It should be noted that when 7,,, = 00 and 6 = 0, Algorithm (5) becomes nearly equiv-
alent to the version of the EFA-HMC method originally introduced in Ref. [148]. In prac-
tice, a good starting place for performing EFA-HMC updates is to use a trajectory length
T, = N At ~ 1/2 with N; ~ 8, 1, = 0.0 and 6 = 0.05 [103]. If the acceptance rate is
low (< 60%), the first thing to try is decreasing At and increasing N, such that the trajectory
length T, is held fixed. If the acceptance rate is very large (Z 95%) it may be worth decreasing
N, while increasing At.

3.9 Reflection, Swap and Radial Updates

While HMC updates improve the decorrelation of phonon fields, other factors can increase
the autocorrelation time. In the case of the Holstein model, the e-ph interaction induces an
effective phonon mediated electron-electron attraction, giving rise to heavy bipolaron physics
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Algorithm 4 EFA
Inputs: x(t), p(t), At.
Calculate regularized harmonic frequency: Qe =,/1+ nfeg Q.
Fourier transform phonon fields: ¥(t) = F - x(t).
Fourier transform conjugate momentum: p(t) = F - p(t).
forne[0,L,—1]do
Calculate dynamical spring constant: k, = ATM§? [1 + 5457 sin? (’L[—:l)]

Calculate dynamics mass: M, = ATM [1 + ﬁ sin? (%)]
reg T

Calculate dynamical harmonic frequency: &, = v/ k,/M,.
Evolve phonon fields: %,(t + At) = %,(t) cos(®,At) + p,, sin(@d,At) / (M,,).
Evolve conjugate momentum: p,(t+At) = p,(t) cos(d,At) — &, sin(d,At)x(M,d,).
end for
Inverse Fourier transform conjugate momentum: p(t + At) = F' - p(t + At).
Inverse Fourier transform phonon fields: x(t + At) = F' - %(t + At).
Output: x(t + At), p(t + At).

at moderate to large coupling, also resulting in long autocorrelation times. Likewise, DQMC
simulations of the repulsive Hubbard with strong interactions (U/t > 1) contend with low
acceptance rates for local updates as the HS fields develop a tendency to align in the imaginary
time direction [150].

Another potential issue that can arise is a formal ergodicity problem if only HMC updates
are used to sample the phonon fields. In particular, the Fermion determinant det M, going to
zero corresponds to the action S(x) diverging. Thus, contours of det M, = 0 in the phonon
configuration phase space describe nodal surfaces that separate regions of det M, > 0 and
det M, < 0 by an infinite potential energy barrier S(x) — oo. A typical HMC update cannot
cross these surfaces [101, 151], which introduces a formal ergodicity problem that is both
difficult to predict a priori and challenging to diagnose. There is no general guarantee that
prevents this from occurring, and the issue has been observed in simulations of e-ph models
in the anti-adiabatic limit (Q/t > 1) [147].

For these reasons, SmoQyDQMC. j1 includes three additional types of updates, termed re-
flection, swap and radial updates. In the case of a reflection update, the phonon fields of a
randomly chosen phonon mode in the lattice are reflected about the origin for all imaginary
times simultaneously. In a swap update, two phonon modes in the lattice are randomly chosen,
and their phonon fields are interchanged, or “swapped,” for all imaginary-time slices [102].
Similar updates can be used for the discrete HS fields which decouple the Hubbard inter-
action [150]. The utility of these types of updates lies in the fact that they propose large,
discontinuous changes to multiple degrees of freedom simultaneously, allowing simulations to
cross regions of phase space that would otherwise be inaccessible using smaller, incremental
updates.

Lastly, phonon field configurations can also be updated using the recently introduced ra-
dial update [152,153]. Here, the phonon fields are all multiplied by a random factor sam-
pled from a lognormal distribution. The update is then accepted or rejected using a modified
Metropolis-Hastings rule. Radial updates allow for discontinuous changes to every phonon
degree of freedom simultaneously while retaining a high acceptance rate even as the system
size is increased. In Ref. [153], introducing radial updates was shown to resolve ergodicity
issues in Hubbard model DQMC simulations with continuous Gaussian HS fields sampled via
HMC updates, in which the ergodicity breaking originates from nodal boundaries of the type
described above.
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Algorithm 5 EFA-HMC
Input: x, At, N, 6.
Randomize time-step: At :=[1+ Uniform(—6,6)] x At.
Record initial phonon configuration: x; := x.
Sample a vector of standard normal random numbers: R ~ N(0, 1).
Initialize momentum p using Eq. (84): p := v MR.
Calculate initial energy: H; := S(x;) + % pT Mp.
fort €[1,Nt] do
Apply algorithm (4): (x,p) := EFA(x, p, At/2).
Calculate relevant force: f :=— (g—i — agih" )
Update the momentum: p :=p + At - f.
Apply algorithm (4): (x,p) := EFA(x, p, At/2).
end for
Calculate final energy: H; :=S(x;) + %p}f/\/lpf.
Calculate change in energy: AH :=H; —H;.
Calculate acceptance probability: P := min(1,e 2
Sample r ~ Uniform(0, 1).
if r < P then
Accept final phonon configuration: x := x;.
else
Revert to initial phonon configuration: x := x;.
end if
Output: x.

H).

3.10 Error Estimation and Reweighting

This section will review how SmoQyDQMC. j1 computes the error associated with measured
observables using the binning method and how the sign problem is addressed with reweighting
[154] and the Jackknife algorithm [19].

To reliably calculate the error associated with the sample mean for a measured observable,
effectively independent samples are required. However, the sequence of states generated by
Markov chain Monte Carlo (MCMC) algorithms like DQMC is highly correlated. A standard
approach to addressing this issue is the binning, or blocking method [19]. In this approach, the
sequence of measurements generated in a MCMC simulation is partitioned into equally sized
bins, or intervals, and the average value is computed for each bin. Once the bins become suffi-
ciently large, containing a number of sequential measurements larger than the autocorrelation
time, the average values associated with each bin may be treated as statistically independent
samples. To calculate the error, one then calculates the sample standard deviation of the mean
associated with the binned averages.

Version 2.0 of SmoQyDQMC. j1 introduces several changes to how I/O is structured within
a given simulations. A DQMC simulation using the current version of SmoQyDQMC. j1 is struc-
tured such that N.,; measurements are made during the simulation, which are aggregated
and written to HDFS5 file Ny, times using the HDF5. j1 package [155]. Therefore, each set
of measurements written to file is the average of Nyjpsize = (Nmeas/Npins) individual measure-
ments, where it is assumed that mod(N,eas, Npins) = 0. Once the simulation is complete, and
as long as the binary data files persist, the mean and error for any measurement can be cal-
culated using ny;,, bins, where ny;, < Np;ps and mod(Nying, Mpins) = 0. Note, SmoQyDQMC. j1
2.0 simulations can also be configured to hold all the binned data in memory during the simu-
lation, which is useful when treating smaller systems where frequent writes to file would can
cause significant latency issues.
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The binning method outlined above is a generic method for calculating the error associated
with estimates generated by a MCMC simulation. However, the situation in a generic DQMC
simulation is more complicated. The expectation value of an observable O is given by

Tr[e_/m O]
T Tr[epA]

(106)

which is reformulated as
Zstx W(s,s’,x) O

B Zs f Dx W(s,s’,x) ’

where W(s,s’, x) is defined in Eq. (36). Ideally, this expression would be directly evaluated
by performing a MCMC simulation with W(s,s’, x) used as the Monte Carlo weights. Unfor-
tunately, the sign problem prevents this direct approach, which manifests as W(s,s’, x) not
remaining a strictly positive real number. As a result, SmoQyDQMC. j1 instead uses W (s,s’, x)
as the Monte Carlo weight in DQMC simulations, as defined in Eq. (37). The severity of the
sign problem is then characterized by the average sign S = (S), where

(0) (107)

W /
g— _(s,s ,X)’ (108)
W(s,s’, x)
and we have adopted the notation
— > [DxW(s,s',x)0
(0)= 3l (109)

Zs f Dx W(s,s',x) ’

In the absence of a sign problem, S = 1. The sign problem then becomes progressively worse
as S approaches zero. The origin and behavior of the sign problem is not entirely understood,
but it is known to be particularly sensitive to increasing the system size, inverse temperature,
and Hubbard interaction strength [121].

In this scenario, the reweighting method is used to extract the correct expectation value
for an given observable according to

(0)y=(08) / {s)=(08) / S. (110)

At this point the Jackknife algorithm is used to correctly propagate errors. The Jackknife
algorithm is a method for evaluating functions of expectation values, as in Eq. (110), and is
used in conjunction with the binning method. For more information, we refer the reader to
Ref. [19] for a thorough description and derivation.

3.11 Chemical Potential Tuning

The DQMC method is formulated in the grand canonical ensemble, where the average charge
density (n) is determined by the chemical potential u. The SmoQyDQMC. j1 package provides
two modes of operation to control the average particle number. The first mode is the traditional
approach, where the chemical potential u is fixed during the simulation, and (n) converges
to its equilibrium value. Using this approach, one typically performs several runs at different
values of u to determine the value needed to produce the desired charge density (n). The
second mode automates this process, dynamically adjusting the chemical potential u to obtain
a target value for the charge density (n) specified by the user. This automation is achieved using
the algorithm described in Ref. [156] and has been implemented as a stand-alone package
MuTuner. j1 [157] that SmoQyDQMC. j1 uses to incorporate this functionality.
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Figure 1: The average time per Monte Carlo update sweep, including the time needed
for measurements of the time-displaced Green’s function, for the one-dimension (1D)
Hubbard (black o), Holstein (red O), and optical SSH (blue A) chains. The left panel
plots results as a function of the chain length N at a fixed 8 = 4/t. The right panel
shows results as a function of inverse temperature f3 for a fixed chain length ' = 256.
All results have been normalized to the largest time and the dashed line shows the
ideal O(BN?) curve.

The u tuning algorithm can be utilized in simulations with and without a Fermion sign
problem; however, we have found that the chemical potential tuning can become unstable if
the average value of the Fermion sign becomes too small. When this occurs, we recommend
reverting to the fixed u mode of operation.

4 Performance

Figure 1 assesses the performance of the SmoQyDQMC. j1 package for three representative
models, namely the single-band Hubbard, Holstein, and optical SSH Hamiltonians, defined on
1D chains of length N. The dimension of the system is unimportant with respect to measuring
the scaling of the DQMC algorithm, which nominally scales as the cube of the total number of
orbitals in the system N, independent of the dimension.

Figure 1 reports the simulation run time, including the time needed to perform measure-
ments of the time-displaced Green’s function and normalized by the number of updates that
were performed. All simulations were performed at half-filling (u = 0) with fixed At = 0.1
and adopting only nearest neighbor hopping t. For the Hubbard model, we set U = 4t to place
the system in the Mott insulating regime in one dimension. For the Holstein and optical SSH
simulations, we set the phonon energy Q2 = t and e-ph coupling a = t, giving rise to charge
ordered states. We note, however, that we have obtained similar performance measures when
simulating low-energy optical and acoustic phonon modes [72], which are traditionally very
challenging for conventional QMC approaches [142,143]. Finally, the asymmetric form for the
propagator matrices was used in the Holstein and Hubbard simulations without the checker-
board approximation. For the simulations of the optical SSH model, we adopted the symmetric
propagator definition and checkerboard approximation.
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Figure 1 demonstrates that SmoQyDQMC. j1 achieves the nominal O(8N?) scaling of the
DQMC algorithm for all three cases. This result confirms that our HMC updates for the phonon
fields are efficient and bypass the typical increase in computational complexity normally asso-
ciated with performing global or block updates of the phonon fields [75].

It is also straightforward to parallelize SmoQyDQMC. j1 simulations with MPI using the
MPI. j1 package [158]. SmoQyDQMC. j1 does not list this package as a dependency, but rather
the parallelization is introduced at the script level. Examples demonstrating this functionality
are included in the online documentation. Additionally, when simulations are parallelized
using MPLjl, final estimates for measured observables are obtained by averaging results over
all walkers simulated in parallel.

5 Summary & Future Directions

The SmoQyDQMC. j1 package, implemented in the Julia programming language, exports a
user-friendly implementation of the DQMC method for simulating Hubbard and e-ph interac-
tions without sacrificing performance. By adopting a scripting interface, SmoQyDQMC. j1 is
unique relative to similar DQMC software packages, opening the door to integrating the ex-
ported functionality into more complicated workflows that leverage the growing Julia ecosys-
tem of scientific computing and machine learning packages. With extensive online documenta-
tion that includes an ever-growing list of examples, SmoQyDQMC. j1 will help make the DQMC
method accessible to a broader community of researchers.

Moving forward, one obvious direction for future development is expanding the class of
Hamiltonians that SmoQyDQMC. j1 can simulate. Adding support for user-defined Fermion in-
teractions, and couplings to classical degrees of freedom are all planned for future releases.
Adding support for an arbitrary number of Fermion spin species, and asymmetric couplings
to each spin sector is also planned. Longer term goals include developing a suite of compan-
ion packages that export other QMC variants, including the dynamical cluster approximation
that uses DQMC as a solver [31,159], linear-scaling QMC methods for simulating e-ph mod-
els [102], the zero-temperature projector QMC method [13,124], and constrained path QMC
algorithms for tackling the sign problem [37,160].
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A Supported Hubbard-Stratonovich Transformations

This appendix reviews the different HS transformations that are available in SmoQyDQMC. j1 to
decouple the local and extended Hubbard interactions. Before proceeding, it is useful to define
the generic Gaussian Hubbard-Stratonovich (GHS) and Gauss-Hermite Hubbard-Stratonovich
(GHHS) transformations for decoupling interactions of the form 202, where A is the coupling
constant and

6=>¢o0,, 6, (111)
n,m
is a fermionic bilinear operator. The GHS transformation may be expressed as
—ata0r_ 1 e ds e~ SensE)—ATTp(s)
e —mf_oo se 8 ghs'S) (112)
where
Vens(s) =s v/—22/A7 O (113)
and
§2
Sehs(s) = > (114)

noting that 4/—2A/A~ is imaginary when A > 0 and real when A < 0.
The GHHS transformation approximates the GHS transformation in Eq. (112) as

e—ATlOZ A % Z e—Sghhs(s)—ATVghhs(s) +O([AT7L]4), (115)

s=+1,42

where the HS field s is now rendered discrete. In the above expression,

. —21 .
Vs () = ;—N —~ (30-v6)+2V6ls]) 0 (116)
and
Senns(s) = —log(1+v/6[1—2Is]]), (117)

noting that the coefficient of O in Eq. (116) is imaginary when A > 0 and real when A < 0 [5,
161-163].
A.1 Hubbard Interaction Hubbard-Stratonovich (HS) Transformations

Here we review the various HS transformations available for decoupling the local Hubbard
interaction. Decompositions using either the spin or density channel are available, and they
are all based on either the Hirsch Hubbard-Stratonovich (HHS) or GHHS transformations.

A.1.1 Hubbard Spin-Channel Hirsch HS Transformation

The local Hubbard interaction can be decoupled in SmoQyDQMC. j1 using a spin-channel HHS
transformation of the form

e~ ATU(R—3)(R1—3) — y Z e Vns(s), (118)
s==1
with )
Vins(s) = as(fiy — 1)), (119)
where y = 3¢ 727U/* and a = 5= cosh™* (e27Y/2) [138]. Note that a is real when U > 0 and

imaginary when U < 0.
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A.1.2 Hubbard Spin-Channel Gauss-Hermite HS Transformation

The local Hubbard interaction can be expressed as

Uiy —3)(fy — 5) =—3 (R —7))* + 4, (120)
which can be decoupled using the GHHS transformation defined in Eq. (115) with & = (—ny)
and A =-U/2.
A.1.3 Hubbard Density-Channel Hirsch HS Transformation

The local Hubbard interaction can be decoupled in SmoQyDQMC. j1 using a density-channel
HHS transformation of the form

e~ ATU(R—3)(A1—3) — v Z e AT Vhing(s) (121)
s==+1
with
thS(S) = as(ﬁT + ﬁl - 1), (122)

1

ATU/4 1
AT

where y =e and a = <= cosh™ (e_ATU/Z) [138]. Note that a is imaginary when U > 0

and real when U < 0.
A.1.4 Hubbard Density-Channel Gauss-Hermite HS Transformation

The local Hubbard interaction can be expressed as
Uhy = 3)(A, —3) = gy + iy = 1) = &, (123)

which can be decoupled using the GHHS transformation defined in Eq. (115) with O = (A +a;—1)
and A=U/2.

A.2 Extended Hubbard Interaction Hubbard-Stratonovich (HS) Transformations

In this section, we discuss two HS transformations for decoupling the extended Hubbard in-
teraction

V(i — 1A —1) =V D> (o — 30— 3) (124)

o,0’

with fi; = (fi; ; + f1; | ), one using the spin channel and the other the density channel.

A.2.1 Extended Hubbard Spin-Channel Hirsch HS Transformation

The extended Hubbard interaction can be decoupled in SmoQyDQMC. j1 using a spin-channel
HHS transformation of the form

e_ATV Zg’gl(ﬁi,a_%)(ﬁj,al_%) — l_[ y Z e_ATths(So,o/) (125)
o,0’ So o =%1
with
ths(so,a’) = asa,o’(ﬁi,a - ﬁj,a’), (126)
where y = %e‘ATV/“ and a = % cosh™! (eATV/Z). Note that a is real when V > 0 and imagi-

nary when U < 0 [138,139].
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A.2.2 Extended Hubbard Density-Channel Gauss-Hermite HS Transformation

The extended Hubbard interaction can be expressed as

R R R R \% (127)
V(i = $)gy = 3) = Vi = Ay — )= 5,

where the second and third terms describe renormalization to the existing local Hubbard in-
teractions. The first term can then be decoupled using the GHHS transformation defined in
Eq. (115) by setting O = (fi; + fi;—2) and A = V /2. A nice aspect of this HS transformation is
that there exist very clear criteria for when the sign problem will remain absent [140].

A.3 HS Transformation Selection Guidance

Here we provide some general guidance and advice for selecting which HS transformation to
use in DQMC simulations. Depending on the Hamiltonian being simulated, the electron den-
sity, and what quantities are most important to measure precisely, certain HS transformations
may outperform others [164-166]. While we provide some general advice below, it is also
worth testing different HS transformations for a given model to see which one works best.

In the general case of a sign problem or phase problem, it typically advantageous to select
a real-valued HS transformation over a complex-valued one, as the latter results in a phase
problem that produces far noisier measurement signals. For instance, when simulating re-
pulsive Hubbard models with a sign problem, it is reasonable to expect that the spin-channel
HS transformations defined in Secs. A.1.1 and A.1.2 will outperform their density-channel
counterparts defined in Secs. A.1.3 and A.1.4. This recommendation would then be inverted
when simulating an attractive Hubbard model, in which case the density-channel HS trans-
formations avoids a sign problem. Likewise, when deciding which HS transformation to use
when simulating a doped model with extended Hubbard interactions, the spin-channel HS
transformation defined in Sec. A.2.1 will likely work better for repulsive interactions while the
density-channel one defined in Sec. A.2.2 will be better for attractive interactions.

In the absence of a sign or phase problem (as a result of some underlying symmetry), the
decision on which HS transformation to use can be more subtle. For instance, when simulating
a particle-hole symmetric half-filled repulsive Hubbard model, previous work has found that
density-channel HS transformations that preserve SU(2) spin-symmetry result in less noisy
spin-correlation measurements [164]. In contrast, spin-channel HS transformations for the
same model are better when measuring density correlations and most other types of measure-
ments [166]. Again, we recommend testing different HS transformations to see which works
best in a given use case.

B Numerical Stabilization Routines

This section summarizes the numerical stabilization routines required to evaluate the various
Green’s function matrices in a DQMC simulation. Note that any intermediate matrix inversions
are performed with an LU factorization with partial pivoting.

B.1 Routine for Stable Left Matrix Multiply
The routine outlined below updates an LDR factorization from F = LDR to F’ = L’D’R’ when
left multiplied by a matrix U:
LoDoRo L D’ R 8
—~ AN AN AN 12
F'=UF =U[LDR]= L, D, RoR =L'D'R. (128)
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B.2 Routine for Stable Right Matrix Multiply

The routine outlined below updates an LDR factorization from F = LDR to F' = L’D’R’ when
right multiplied by a matrix U:

LoDoRo ;’\ D’ R 1o
F'=FU=[LDRJU=1LL, D, R, =L'D'R. (129)

B.3 Routine for Stable Evaluation of Eq. (41)

Below is a numerically stable routine for evaluating Eq. (41) to calculate the matrix G, (7, 7),
where the matrices B, (7, 0) and B, (3, 7) are represented by the LDR factorization F; = L;D;R;
and Fy = LoDyR respectively:

G =[I+F F,]}
M

A

=R51D_1 [D7, LTREID* + Dy minR1 LODO,min]_lD_l

O,maxt~"1,max "1 0,max 1,max

(130)
Ly

=Ry'D;t M7p7L Ll

0,max 1,max—1"

B.4 Routine for Stable Evaluation of Eq. (43)

Below is a numerically stable routine for evaluating Eq. (43) to calculate the matrix G, (0, 0),
where the matrix B, (f3,0) is represented by the LDR factorization F:

G=[I+F]!
M
_p—1p—-1p—1p—1 -1 (131)
=R Dmax[R Dmax+LDm1'n]

=R'D-! M~

max

B.5 Routine for Stable Evaluation of Eq. (47b) and Eq. (48b)

Below is a numerically stable routine for evaluating Eq. (47b) to calculate the matrix G, (7, 0),
where the matrices B, (7,0) and B, (3, ) are represented by the L DR factorization F; = L1D;R;
and F, = LyDyR, respectively:

G=[F{'+F,]""

AN

—_p—1p—1 -1 Tp—1n—1 -1 (132)
_RO DO,max[Dl,maxLiRO Dl,max +Dl,mianLODO,min:| 1,minR1

_p—1p—-1 -1

_RO DO,maxM Dl,mian'

This same routine can be used to help evaluate Eq. (48b) to calculate the matrix G, (0, 7),
except in this case B, (7,0) corresponds to the factorization F, and B (f3,7) corresponds to
F;.
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