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Abstract

Accurate and efficient detector simulation is essential for modern collider experiments.
To reduce the high computational cost, various fast machine learning surrogate mod-
els have been proposed. Traditional surrogate models for calorimeter shower model-
ing train separate networks for each particle species, limiting scalability and reuse. We
introduce AllShowers, a unified generative model that simulates calorimeter showers
across multiple particle types using a single generative model. AllShowers is a contin-
uous normalizing flow model with a Transformer architecture, enabling it to generate
complex spatial and energy correlations in variable-length point cloud representations
of showers. Trained on a diverse dataset of simulated showers in the highly granular ILD
detector, the model demonstrates the ability to generate realistic showers for electrons,
photons, and charged and neutral hadrons across a wide range of incident energies and
angles without retraining. In addition to unifying shower generation for multiple par-
ticle types, AllShowers surpasses the fidelity of previous single-particle-type models for
hadronic showers. Key innovations include the use of a layer embedding, allowing the
model to learn all relevant calorimeter layer properties; a custom attention masking
scheme to reduce computational demands and introduce a helpful inductive bias; and
a shower- and layer-wise optimal transport mapping to improve training convergence
and sample quality. AllShowers marks a significant step towards a universal model for
calorimeter shower simulations in collider experiments.
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1 Introduction27

Simulations of particle detectors in high-energy physics (HEP) experiments incur high com-28

putational costs, which are expected to increase beyond available resources in the near fu-29

ture [1,2]. Fast generative models must substitute the most expensive MC simulation steps to30

achieve sufficient statistics with the available computing resources. To fully realize the physics31

potential of new experiments with higher event rates and highly granular calorimeters, more32

accurate and efficient fast generative models must be developed.33

Many techniques for fast calorimeter simulation have been explored for existing or simi-34

lar to existing experiments; generative adversarial networks (GANs) [3–16], variational au-35

toencoders (VAEs) [14, 17–19], classical normalizing flows (NFs) [20–30], auto-regressive36

models [31], and diffusion and continuous flow models [32–40]. Even the highly granular37

pixel vertex detector of Belle II has been simulated using a GAN [41]. Future calorimeter de-38

signs have also been specifically targeted in various generative modeling projects including;39

GANs [42], VAEs [43–48], NFs [49,50] and continuous flow models [47,51–56].40

These methods can be seen in comparison in a recent taxonomy of detector simulation [57],41

and for the simulation of current detector designs, the accuracy and efficiency of many variants42

was compared in the CaloChallenge 2022 [58].43

The model put forward in this paper breaks new ground; to the best of our knowledge44

no previous model has captured the response of both the electromagnetic calorimeter (ECAL)45

and hadronic calorimeter (HCAL) with such a comprehensive set of particle species, let alone46

for a highly granular Higgs factory detector.1 This combination of twelve particle types in a47

single model would be challenging at current granularities, but is even more challenging with48

the high granularity expected in future calorimeters.49

1When preparing this manuscript for submission, [56] was released. It attempts a similar task, albeit for a
smaller set of different particles.
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A multi-particle model, such as this one, is needed for three reasons: firstly, in production50

environments, maintaining code infrastructure uses significant human and computational re-51

sources, and by handling twelve particles together we simplify the codebase, reducing the52

cost of both validation and maintenance. Secondly, fast calorimeter simulation occurs within53

full scale MC simulations, so the models must share local memory resources with many other54

components, which quickly becomes a limitation on model size and therefore performance. By55

combining particle types, common physics behavior will be shared between particles resulting56

in better use of local memory, and so facilitating more accurate modeling. Finally, it is hoped57

that fast calorimeter simulation might benefit a wider range of users than just the production58

environments at major experiments. These users could save energy and compute time on more59

dedicated small scale tasks that might require custom installations. A comprehensive model60

for all particle showers reduces the technical overhead of setup and installation, increasing the61

utilization and usefulness of the model for these users.62

To achieve this, we introduce AllShowers, a continuous normalizing flow (CNF) model with63

a Transformer architecture. AllShowers is trained on a diverse dataset of simulated showers64

in the highly granular calorimeters of the International Large Detector (ILD) [59]. The model65

consists of two components: the PointCountFM, which predicts the number of points per layer66

conditioned on incident particle information, and the CNF-transformer, which generates the67

position and energy of each point additionally conditioned on the layer index of each point.68

AllShowers has several significant improvements compared to its predecessor models [47,54].69

Using an embedding layer for the calorimeter layer index allows the model to learn all rele-70

vant calorimeter layer properties, such as material budget and distance from the calorimeter71

surface, from data. A custom attention masking scheme is employed to reduce computational72

demands and introduce a helpful inductive bias, allowing points to attend only to points in73

nearby layers. Additionally, a shower- and layer-wise optimal transport mapping is used to74

improve convergence during training and sample quality.75

The layout of this paper is as follows. In the next section, section 2, the dataset is described.76

This includes a summary description of the detector chosen as an example of a detector sys-77

tem with high granularity calorimeters, the particle gun used for shower generation, and the78

data preprocessing. Following this, in section 3, the architecture of the AllShowers model is79

presented, along with a description of the training process. Then the results are presented in80

section 4. Finally, in section 5, the paper is concluded with a discussion of the findings.81

2 Dataset82

We used the International Large Detector (ILD) [59] as an example of a detector with highly83

granular sampling calorimeters. The ILD was initially designed for the International Linear84

Collider (ILC), a proposed electron-positron collider, and could be adapted for other future85

colliders. The ILD detector design is optimized for particle-flow algorithms, which reconstruct86

particles with high precision by combining information from multiple subdetectors.87

The ILD calorimeter system consists of a highly granular electromagnetic calorimeter88

(ECAL) [60] and a hadronic calorimeter (HCAL). Both of which sit within a superconduct-89

ing coil generating a magnetic field of 3.5 T strength. The ECAL is composed of 30 layers with90

tungsten absorbers and silicon sensors with about 5 × 5 mm2 pads. For mechanical reasons91

and to reduce dead material, two active layers are always mounted on either side of a tung-92

sten support. This results in a small modulation in measured energy in even and odd layers.93

To improve energy resolution at low energies while preserving good confinement of most EM94

showers, two different absorber thicknesses are used: a smaller one for the first 20 layers and95

a larger one for the last 10 layers. The HCAL consists of 48 layers with stainless steel absorbers96
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and polystyrene scintillator tiles measuring about 3× 3 cm2.97

As in earlier work [54, 61], we use a regularized readout geometry without insensitive98

gaps between calorimeter modules. This broadens the model’s applicability to other incident99

point locations. Hits, which the model produces in inactive material, will be dropped when100

integrated into the full simulation chain.101

Using Geant4 [62] and the DD4hep [63] framework, we simulated a dataset of four million102

showers originating from twelve different incident particle types, namely: e−, e+, π−, π+, K−,103

K+, K0
L , p, p̄, n, n̄, and γ. The incident particle type is randomly chosen for each shower with104

equal probability. We cover all incident angles of particles originating at the interaction point105

(IP) and reaching the calorimeter barrel region, including magnetic-field effects. This means106

that the angular bounds depend on the incident particles charge and energy. The energy of107

the incident particles is uniformly distributed between 5 GeV and 130 GeV. A random sample108

of 50k showers is used as a validation set. For testing, we simulated several datasets with the109

incident particle distributions and statistics given in the results section.110

2.1 Data Representation111

The calorimeter shower data are represented as a 4D point cloud of energy depositions (Geant4112

steps) in active material, where each point is represented as a tuple (x , y, z, e). Here, x and y113

denote the local coordinates in millimeters, with x aligned along the direction of the magnetic114

field, and z indicates the layer index, ranging from 0 to 77 (covering both ECAL and HCAL115

layers). e represents the deposited energy.116

To reduce the number of points while preserving geometry independence, the energy de-117

positions are binned into a grid that is three times finer in the two transversal dimensions, i.e.,118

nine times higher granularity, than the respective readout pads [51]. For each non-empty bin,119

a point is created using the x and y coordinates of the highest energy deposition within the120

bin, and the total energy within the bin.121

We counteract the incident angle dependence of the shower shape by shifting the x and y122

coordinates of each point such that the incident particle always appears to enter the calorimeter123

perpendicularly at the origin. While this transformation does not eliminate all angle depen-124

dencies, it significantly simplifies the model’s learning task. To further reduce the number of125

points, we remove all points with an energy deposit below 10 keV or with a time of over 200126

ns (bunch crossing window). The time constructed is already applied before clustering. We127

place a quadratic bounding box around the shower core removing all points outside this box.128

The side length is chosen to be the side length of the octagon formed by the ECAL surface (c.a.129

1500 mm). This will exclude most of the points for which the flat layer assumption breaks.130

The excluded energy depositions are far away from the shower core and typically low in en-131

ergy. After these preprocessing steps, the average number of points per shower is 2306, with132

a maximum of 6006.133

For preprocessing, the x and y coordinates are rescaled to have standard deviation one134

and mean zero (Standardization), z is kept as the discrete layer index, and the logarithm of135

the energy is also standardized. Points are zero-padded to a maximum of 6016 points per136

shower for batch training. 6016 is a multiple of 128, making the computation of attention137

masks easier and more efficient.138

3 Model and Training139

The AllShowers model consists of two main components: the PointCountFM and the CNF-140

transformer, as illustrated in figure 1. The PointCountFM is responsible for generating the141

number of points per layer conditioned on the incident particle information (particle type,142
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PointCountFM

Incident particle

Points per Layer

CNF-transformer Shower

Figure 1: Schematic overview of the AllShowers model architecture. The Point-
CountFM predicts the number of points per layer, which are then used by the CNF-
transformer to generate the full shower. The incident particle information is provided
to both models. The point layer index, needed by the CNF-transformer, can be com-
puted from the number of points per layer.

energy and angle). After initializing as many points as demanded by PointCountFM, the CNF-143

transformer generates the position within the layer and the energy of each point, again con-144

ditioned on the incident particle information. The layer index is provided as an additional145

condition. Splitting the model into two components in this way is inspired by CaloFlow [20]146

where the layer-wise energy depositions are generated first and has been used in various other147

works.148

Both models use the continuous normalizing flow (CNF) [64] paradigm as a means to149

model the complex distributions of calorimeter showers. In CNFs, the transformation from150

latent to physics space is modeled as the solution of an ordinary differential equation (ODE)151
dxt
d t = vc(x t , t), where vc(xt , t) is a neural network that predicts the vector field, t is the integra-152

tion variable, and c is the condition. x0 is the initial condition, a sample from the latent space.153

x1 is a physics space sample. Note that x denotes the spacial coordinate in the calorimeter154

while xt denotes an entire data sample. During generation a numerical ODE solver is used.155

A likelihood based training of CNFs is possible [64], but computationally inefficient. In-156

stead, we use the recently proposed conditional flow matching (FM) [65] approach. In FM,157

the vector field is constructed as the expectation value of all straight lines connecting physics158

and latent space samples. This mean squared error is evaluated using Monte Carlo integration159

over physics and latent space. FM has been shown to be more efficient than likelihood-based160

training for CNFs [65].161

3.1 PointCountFM162

The PointCountFM was already introduced in CaloHadronic [47]. It is responsible for gener-163

ating the number of points per layer, 78 integers in total, conditioned on the incident particle164

information (type, energy, angle). The type is given as a one-hot encoded vector, the energy165

is converted to logarithmic scale and standard scaled, and the angle is represented by a vector166

on the unit sphere. This is a generalization of the approach taken in CaloHadronic, where only167

fixed angle and particle type were considered.168

As an additional improvement, we no longer use dequantization noise during training.169

While dequantization is essential for classical likelihood-based training of flows on discrete170

data, it is not necessary for FM. We found that removing the dequantization noise leads to a171

significant improvement in performance especially for low point counts. Dequantization works172

well when a change by one in the discrete value has no significant effect on the downstream173
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Input
xt

Embedding ⊕ 4 Encoder
Blocks

Head
Output
vc(xt, t)

Condition
t, c

Embedding

Figure 2: Schematic overview of the CNF-transformer architecture. The input xt for
t = 0 is a standard normal sample, for t = 1 it is the preprocessed shower. Since
the calorimeter layer is a condition, xt is a three-dimensional point-cloud (xk, yk, ek).
The condition c includes the incident particle information and the layer index. t is
the time variable of the neural ODE. The output vc(xt , t) is the vector field used in
the CNF, e.g. the right-hand side of the neural ODE.

task. However, in our case, a change from zero to one point in a layer can confuse the CNF-174

transformer significantly, as it has to generate a point in an unexpected layer.175

A complete list of hyper-parameters can be found in Appendix C.176

3.2 CNF-Transformer177

After PointCountFM has predicted the number of points per layer (ni), as many latent space178

points as requested are initialized. The first n0 points are assigned to layer 0, the next n1179

points to layer 1, and so on. Each point is initialized with a standard normal sample in the180

x , y , and log(e) dimensions. The layer index, z, is provided as an additional condition. Then181

CNF-transformer transforms these points into a calorimeter shower.182

An overview of the CNF-transformer architecture is shown in figure 2. The input is the183

point cloud, xt , at ODE time t. For t = 0, this is a standard normal sample, and for t = 1, it is184

the preprocessed shower. The output is the vector field vc(xt , t) used in the CNF, i.e. the right-185

hand side of the neural ODE. We can split the condition on global conditioning information186

and point-wise conditioning information. The global conditioning information includes the187

incident particle type, energy, and angle, while the point-wise conditioning information is the188

layer index. Input, time, and conditions are embedded and element-wise summed. The result-189

ing representation is processed by four transformer encoder blocks. Finally, a head network190

produces the output vector field.191

3.3 Embeddings192

The main purpose of the embeddings is to map the different inputs to a common feature space.193

Input Embedding The input xt is a point cloud of shape (N , 3), where N is the number of194

points. We embedded each point independently using a single linear layer going from 3 to 64195

dimensions.196

Time Embedding For the time embedding, we used the standard Fourier feature mapping [66]197

with 3 frequencies, followed by a linear layer going from 6 to 64 dimensions.198
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Figure 3: 2D t-SNE [67] visualization of the learned 64 dimension particle type
embeddings. Small circles indicate electromagnetic showers, large circles indicate
hadronic showers. One can see four distinct clusters: one for electromagnetic show-
ers, one for positively charged hadrons, one for negatively charged hadrons, and one
for neutral hadrons.

Condition Embedding The global conditional information includes the incident particle199

type, energy, and direction. The model explicitly learns 12 embedding vectors, one for each200

particle type. Figure 3 shows a t-SNE [67] visualization of these embeddings. The prepro-201

cessed energy and direction are concatenated and passed through a linear layer going from 4202

to 64 dimensions. Since the point layer is provided as point-wise information, the model has203

an implicit conditioning on the number of points per layer. To make it explicit, we also provide204

the number of points per layer as global information. The number of points per layer is passed205

through a feedforward network with one hidden layer of size 128 with ReLU activation, going206

from 78 to 64 dimensions.207

Layer Embedding The calorimeter layer index is provided as point-wise conditional input.208

The model explicitly learns 78 embedding vectors, one for each of the 78 layers. This allows the209

model to learn layer-specific features like distance from the ECAL surface, material budgets,210

and typical energy deposition.211

After embedding, the global features are repeated for each point and all features are summed212

element-wise.213

3.4 Fast Attention Masking214

One major drawback of transformers is their quadratic complexity in the number of input to-215

kens. In our dataset, the number of points per shower can be up to 6016, which would require216

more than 36 million attention weights. In the computer science literature, various methods217

for masking attention weights have been proposed. Most notably, the Sparse Transformer [69],218

Longformer [70], and BigBird [71] architectures. However, these methods have been devel-219

oped in the context of natural language processing, where the input is a sequence. In our case,220

the input is a point cloud without any inherent ordering.221

We developed a custom attention masking scheme that takes advantage of the fact that222

points are grouped by calorimeter layer. We allow points that are up to two layers apart to223

attend to each other. This means that points in layer i can attend to points in layers i−2, i−1,224
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Figure 4: Examples of attention masks for three different showers. Shown is a part
of the full 6016 × 6016 attention matrix where each entry indicates whether two
points can attend to each other. Red entries indicate allowed attention, white en-
tries indicate masked attention. The black lines indicate the 128× 128 blocks flex-
attention [68] will compute. White entries within these blocks are computed but
then masked out.

i, i + 1, and i + 2. In combination with padding masking [72], this leads to a high degree of225

sparsity in the attention weights for our dataset. To utilize this sparsity, we used PyTorch’s [73]226

built-in FlexAttention [68]module. For this to work efficiently, input points are sorted by layer227

index before starting the training. An example of attention masks for three different showers228

is shown in figure 4.229

This attention masking scheme leads to a significant speed-up during training and infer-230

ence; roughly a factor of twenty which is roughly considered with the sparsity of the attention231

weights. This allowed us to train the CNF-transformer for more epochs leading to better per-232

formance. We also found improved performance with the same number of training epochs,233

indicating that the inductive bias introduced by the attention masking is beneficial.234

3.5 Layer-wise Optimal Transport Mapping235

In continuous normalizing flows and diffusion models, the sampling process involves trans-236

forming samples from a simple latent distribution (e.g., a standard normal distribution) to237

match the complex data distribution. To do so, an ordinary or stochastic differential equation238

(ODE or SDE) is solved, which can be resource intensive. The number of function evaluations239

(NFE) necessary to get good results is strongly correlated with the curvature of the trajectories240

taken by samples during the transformation κ = |ẍt |, where ẍt is the second derivative of the241

sample with respect to the integration variable t.242

The main reason CNFs have curvature in their trajectories is the random mapping of data243

points to latent points during training. To overcome this problem, batch-wise optimal transport244

(OT) mapping has been proposed [74]. The idea is to approximate the optimal mapping245

between data points and latent points which would lead to straight trajectories. To achieve246

this, the optimal transport problem is solved for each batch during training. However, this247

approach is only feasible for generative problems without or with simple conditioning.248

Instead of mapping data and latent points, we map physics point-cloud points to latent249

point-cloud points exploiting the permutation invariance. Since the calorimeter layer condi-250

tioning breaks permutation invariance, the OT mapping is only applied per shower and layer.251

We solve the OT problem using the Python Optimal Transport (POT) library [75]. The cost252

function is the Euclidean distance in the 3D space of preprocessed points.253

The layer-wise OT mapping leads to shorter trajectories, faster training convergence, and254

better results.255
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3.6 Training Details256

We trained the CNF-transformer using the Lookahead optimizer [76] with RAdam [77, 78]257

as the inner optimizer and decoupled weight decay [79]. We found this combination, also258

known as Ranger [80], to be especially robust against training instabilities, leading to reliable259

convergence in our experiments. We wrote a custom Ranger implementation in PyTorch to fit260

our needs. As learning rate scheduler, we used a cosine annealing schedule. Since RAdam has261

an integrated warm-up phase, we did not use an additional warm-up schedule. We trained262

the model with a batch size of 256 for 200 epochs. The training took less than 24 hours on 16263

Nvidia A100 GPUs. A complete list of hyper-parameters can be found in Appendix C.264

3.7 Energy Calibration265

After training, we found that the total energy per shower generated by the CNF-transformer266

was too low by approximately 3.3% on average. While a simple rescaling of the point energies267

could fix this, it would influence other distributions in a negative way. Instead, we rescale the268

incident energy we provide as condition to the CNF-transformer by a factor of 1.033 during269

inference. This simple calibration step fixes the total energy per shower without negatively270

impacting other distributions.271

4 Results272

In the following section, the performance of the model is presented on multiple levels. Begin-273

ning at the single event scale, in section 4.1, the ability of the model to generate realistic de-274

tailed events is shown. Secondly, in section 4.2, the ensemble-level distributions of the model275

are compared to the targets they seek to replicate. Following this, in sections 4.3 and 4.4, the276

ensemble-level distributions are compared to other models with similar objectives, and finally,277

section 4.5 looks at the inference speed of this model.278

In order to render all comparisons fair, the same post processing is applied to the output of279

all models. Hits produced by the models are clustered into regular grids intended to resemble280

the granularity of the calorimeter in question; so in the ECAL, hits have been clustered into281

cells of 5× 5 millimeters, and in the HCAL, into cells of 30× 30 millimeters. Each model has282

used its own conventions for training data preprocessing, and we do not wish the relationship283

between the grid in post processing and any grids imposed on the training data to introduce284

artifacts, therefore we add a random offset to the post processing grid in each event. Finally,285

cells with energy below half the energy deposited by a Minimum Ionizing Particle (MIP) are286

conventionally removed before reconstruction to reduce electronics noise, so we remove these287

cells in the post processing as well.288

4.1 Individual Showers289

One of the more exciting features of a high granularity calorimeter is how distinctly it resolves290

particle showers from different particle types. In figure 5, we can see examples of six particle291

types, each shown once as simulated by Geant4 (upper) and once by AllShowers (lower). The292

direction and energy chosen is the same for each model, and the number of points per layer293

is fixed to be that chosen by the Geant4 simulation, that is to say, for AllShowers, only the294

CNF-transformer is used, PointCountFM does not run. Thus the two models are compelled to295

generate events with similar depth for each shower, and the results are directly comparable.296

In each image, a gap can bee seen at about z = 2015 mm where the ECAL ends and the HCAL297

has yet to start.298
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Figure 5: Comparison of individual showers simulated with Geant4 and with All-
Showers for different incident particles, energies and angles. The point size indicates
the energy of each hit. For these showers, the number of points per layer was taken
from the Geant4 simulation rather than generated by the PointCountFM to allow for
a more direct comparison of the spatial and energy distribution of hits.
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Figure 6: Histograms comparing Geant4 and AllShowers for different incident parti-
cle types and angles. The incident energy is fixed to 100 GeV. From left to right: cell
energy spectrum, longitudinal energy distribution, and radial energy distribution.
The solid lines represent Geant4 and the dashed lines AllShowers. The lower panels
of each plot show the ratio of AllShowers over Geant4. For the cell energy spectrum,
the Poisson error and for the longitudinal and radial energy distributions, the stan-
dard deviation of the mean is shown as error bars. Per particle type and generator,
10k showers were simulated/generated.

It is clear from these images that the embeddings (see section 3.3) used to encode the299

particle type are sufficient for AllShowers to produce appropriately tailored behavior in each300

shower. By eye, not only is each particle type distinct, but the features align well with those301

seen in the Geant4 simulation. The electromagnetic showers of the γ and e+ each have the302

typical cloud-like distribution, well contained in the ECAL. The charged pions (π+ and π−)303

each have well defined MIP tracks in AllShowers, which correctly point to the start of the304

shower. For the π−, this requires traversing right through the ECAL into the HCAL. Each pion305

shows a mild bend of the MIP track in opposite directions to account for the response to the306

magnetic field. Both pions then shower, with AllShowers displaying marginally fewer defined307

secondary tracks than Geant4, but still providing some, and displaying a very plausible shower308

pattern. The neutron (n) event produced by AllShowers also replicates the overall shower309

cone well, again perhaps showing fewer secondaries. Finally, as appropriate for a neutral310

particle, AllShowers does not generate a MIP track for the K0
L particle. The fetcher of neutral311

hadrons is is hidden for the neutron shower shown here since it starts showering immediately312

upon entering the calorimeter. The K0
L shower develops in AllShowers with good substructure,313

including visible internal secondary tracks, and a correct funnel shape. The shower start is314

marginally less aggressive in AllShowers than in Geant4, but it is a very plausible K0
L shower.315

4.2 Distributions316

While having visually credible individual showers is clearly an asset, almost all physics anal-317

ysis happens on the ensemble-level. In figure 6, we present histograms comparing kinematic318
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behavior of Geant4 and AllShowers for selected particles; e−, γ, π+ and n. Other particles319

have similar accuracy, but are omitted for clarity in the plots.320

In the top panels, both AllShowers (dashed line) and Geant4 (solid line) are shown for each321

of three quantities: cell energy spectrum, longitudinal energy distribution and radial energy322

distribution. For most values, the top plot shows no observable difference between Geant4323

and AllShowers. In the lower plot, ratios of AllShowers to Geant4 are shown.324

The most striking aspect of these plots is the clear dimorphism of electromagnetic showers325

(e− and γ) and hadronic showers (π+ and n). This bimodal behavior is well known, and that326

AllShowers accurately captures both variants demonstrates its flexibility.327

In the cell energy spectrum on the left, AllShowers is within 10% of Geant4 for most of328

the range in all particle types. It makes a good replication of the MIP peak near 10−1 GeV,329

and does not significantly deviate until we reach the sparsely populated tails of the spectrum.330

The high energy tails tend to be somewhat overpopulated in AllShowers, the poor modeling331

is likely due to scarcity of this region in the training data.332

In the longitudinal energy distribution in the centre, the same dimorphism between elec-333

tromagnetic and hadronic showers is clear. AllShowers’s behavior here is strongly influenced334

by the performance of the PointCountFM, and the agreement with Geant4 is within 10% for335

all but the extreme tails. This plot emphasizes the value of also modeling the HCAL for elec-336

tromagnetic showers: γ showers in particular are not always well contained to the ECAL, and337

AllShowers manages to capture the tail that bleeds into the HCAL.338

Finally, we see the dimorphism again in the radial distribution on the right. This radial339

distribution shows remarkably good agreement for the bulk of the shower. At the innermost340

core, some deviation is visible; but still within 10% of Geant4 for all particles. While there is341

more deviation in the tails, there are very few particles in these regions to work with, so it is342

expected that model performance may not be optimal here.343

4.3 Comparison to CaloClouds3344

For the case of photons only, we can compare the performance to the performance of the345

CaloClouds3 model [54]. CaloClouds3 is a fast generative diffusion model, specialized to346

only photon showers, trained on the ECAL only. As current generative models would not be347

applied in regions where different layer orientations meet, we also restrict the comparison348

data to photon showers, with 45◦ < θ < 135◦ and 79◦ < φ < 109◦. An energy range is chosen349

such that it sits comfortably inside both models training regions; 10 to 90 GeV.350

In figure 7 the standard three kinematic profiles are shown for both fast models and Geant4.351

On the left, the cell energy spectrum for AllShowers is notably better aligned with Geant4 than352

CaloClouds3, in particular, AllShowers has a well formed replication of the MIP peak near353

10−1 GeV. Neither model quite fits the high energy tail, but with very few data points, this is a354

challenging region to learn.355

In the centre, CaloClouds3 and AllShowers perform equally well on the longitudinal energy356

distribution. CaloClouds3 is a little better at replicating the alternating layer pattern, but tends357

to overpopulate the start and end of the shower. On the right hand side of this plot, a grey358

band indicates the HCAL, for which only AllShowers has training data. This region is about as359

populated as the smallest bin in the ECAL, so its contribution is not negligible, and AllShowers’s360

capacity to capture this information would be valuable in advanced reconstructions.361

Finally, in the radial distribution on the right, AllShowers is significantly better than Calo-362

Clouds3. It maintains a flat ratio to Geant4 right out into a long distribution tail, and only363

marginally misrepresents the centre of the shower. CaloClouds3 is unable to keep a flat ratio,364

and deviates significantly from Geant4 towards the tail. While the deviation of CaloClouds3365

in the tail here seems very large, it should be noted that the comparison of machine learning366

models ultimately will have to be done on physics observables, computed after a full event367
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Figure 7: Comparison of AllShowers and CaloClouds3 on photon showers with inci-
dent energies uniformly distributed between 10 GeV and 90 GeV. Incident angles are
distributed over the intersection of the respective training regions. From left to right:
cell energy spectrum, longitudinal energy distribution and radial energy distribution.
Per generator, 50k samples are used.

reconstruction has been applied, and that as shown in [61] the CaloClouds3 model performs368

reasonably well on π0-reconstruction.369

Conceptually, the key distinction between AllShowers and CaloClouds3 is that the diffu-370

sion model in CaloClouds3 generates points which are independent and identically distributed371

(iid). There are longitudinal correlations, imposed by the normalising flow component of Calo-372

Clouds3, but these are not known to the diffusion model, and they only describe the macro373

features, energy per layer and points per layer. This means that CaloClouds3 cannot capture374

point-to-point correlations. By contrast, AllShowers entertains correlations between points375

themselves. All these distributions demonstrate that even for a photon shower, the ability to376

capture subtle substructure can substantially improve the performance of the model.377

The linearity of the reconstructed energy is always a key feature for a calorimeter, and378

must be well replicated in simulations. In figure 8 the linearity of photons as simulated by379

AllShowers and CaloClouds3 is plotted against a Geant4 reference. The simplified energy380

reconstruction is a linear sum of the energy deposits, with different scaling factors for sections381

of the calorimeter with different properties. Three scaling factors are chosen; one for the382

energy sum of the first 20 ECAL layers, then a second for energy sum of the last 10 ECAL383

layers, and finally a factor for the energy sum of the HCAL. All factors are chosen to minimize384

the mean squared error of the reconstructed Geant4 energies and then applied to both the385

Geant4 and the two ML model data.386

In the reconstructed energy on the left AllShowers produces agreement with Geant4 on387

most points, however, some energies show significant deviations. AllShowers does not make388

energy predictions in PointCountFM, there is only a single energy correction factor applied,389

see section 3.7. This correction factor can raise or lower all points collectively, but cannot390

alter the relative height. By contrast, CaloClouds3 is performing very well across the whole391

range. Two elements contribute to this, the basic flat profile is achieved by the normalising392

flow in CaloClouds3, which predicts energy per layer for the model. Then in order to obtain393

the best mean value for all points, a single correction factor is applied, in the same way as for394

AllShowers.395

For the energy resolution on the right, the range of reconstructed energies from AllShowers396

simulations is significantly too wide. This results in higher values (more variance) in the397
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Figure 8: Linearity of rescaled energy sum for photon showers. Incident energies are
chosen in steps of 10 GeV between 10 GeV and 100 GeV. Per energy and generator
10k samples are used. Incident angles are distributed over the intersection of the
respective training regions.

resolution plot. By comparison, CaloClouds3 has a slight deviation in the lower energies,398

but is otherwise well matched to Geant4. The strong performance here is produced by the399

dedicated energy per layer predictions made by the normalising flow in CaloClouds3, which400

models the variations in energy accurately.401

To improve the linearity and energy resolution of AllShowers it would be possible to add an402

energy per layer prediction to PointCountFM, in the same manner as is done in CaloClouds3.403

As AllShowers includes hadronic showers, it is desirable to retain correct energies for points in404

MIP tracks, and so a simple rescaling of the energy from PointCountFM would be detrimental.405

It is possible to conceive of various schemes that could rescale the energy per layer, while406

leaving the energy of MIPs intact, but we leave the exploration of these options to a future407

work.408

4.4 Comparison to CaloHadronic409

Another specialized model, which offers a comparison point for π+ showers, is410

CaloHadronic [47]. CaloHadronic is trained only on π+ that enter the calorimeter at a per-411

pendicular angle, so both models will be asked for perpendicular incident angles. The energy412

range chosen is the full range that CaloHadronic was trained on: 10 to 90 GeV.413

In figure 9 the standard three kinematic profiles are shown for both fast models and Geant4.414

On the left, in the cell energy spectrum, both fast models make a reasonably good approxima-415

tion of the two MIP peaks (one in the ECAL and one in the HCAL). CaloHadronic significantly416

overestimates the high energy tail of the cell energy spectrum, while AllShowers manages to417

maintain a closer fit to Geant4 for significantly more of the distribution.418

In the centre, the longitudinal energy distribution for AllShowers is notably better aligned419

with Geant4 than CaloHadronic. AllShowers can accurately capture the alternating layer pat-420

tern, and also shows better replication of the initial layers of the HCAL. Conditioning on the421

layer index and allowing to learn the layer properties in an embedding vector (see section 3.3)422

likely helps here. Overall, the longitudinal distribution created by AllShowers is remarkably423

well modelled.424
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Figure 9: Comparison of AllShowers and CaloHadronic on π+ showers with inci-
dent energies uniformly distributed between 10 GeV and 90 GeV. All pions enter the
calorimeter perpendicularly. From left to right: cell energy spectrum, longitudinal
energy distribution and radial energy distribution. Per generator, 50k samples are
used.

Finally, on the right, we compare the radial distribution for AllShowers and CaloHadronic.425

In this distribution, CaloHadronic and AllShowers are more closely matched. CaloHadronic426

slightly overestimates the centre of the shower, and underestimates a significant portion of427

the bulk. AllShowers performs well in the centre, with only minor fluctuations in the first few428

bins, then tends to underestimate the tail.429

Reconstructed energy of pions offers important insight into the relationship between en-430

ergy deposits in the ECAL and HCAL for individual showers. In figure 10, we show the linearity431

and resolution of the reconstructed energy ofπ+ showers generated by the two fast models and432

Geant4. The energy reconstruction is performed in the same way as for photons in section 4.3.433

AllShowers offers a good reconstructed energy, marginally underestimating the energy of434

low energy π+ showers, whereas CaloHadronic consistently overestimates the pion energy.435

Looking at the resolution of the reconstructed energies, neither model is performing well. In436

both cases, the distribution of the reconstructed energies is too wide at all incident energy437

points. AllShowers’s performance is better, being within 50% of Geant4 for all incident ener-438

gies, but both models leave a lot to be desired in this metric.439

Overall, AllShowers clearly provides better kinematic descriptions of π+ showers, with440

both the performance of the CNF-transformer in the radial direction and the combination of441

the PointCountFM and the CNF-transformer in the longitudinal direction demonstrating un-442

precedented accuracy on π+ showers.443

4.5 Timing444

When comparing the timing of AllShowers to other models, we provide both the time for445

the execution of all 32 function evaluations used in the current version of the model, and a446

speculative time needed for a model with only 1 function evaluation. A reasonable future447

investigation for AllShowers would be to distill the model. A distilled model could require as448

little as a single function evaluation to attain similar performance, but at this point we have449

yet to achieve this optimization. So the timings for 32 function evaluations correspond to the450

current performance, and the timings for 1 function evaluation are speculative, but provide a451

good estimate of what timing performance might be attained by the next likely optimization.452
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Figure 10: Linearity of rescaled energy sum for π+ showers. Incident energies are
chosen in steps of 10 GeV between 10 GeV and 100 GeV. Per energy and generator
10k samples are used. All pions enter the calorimeter perpendicularly.

To get the timing for 1 function evaluation, we generate showers with a single euler step.453

In table 1, we compare the timing of AllShowers to CaloClouds3 and Geant4 on photon454

showers. Timings are measured for photons at 9 fixed incident energies; from 10 GeV to 90455

GeV in steps of 10 GeV. The photons are all fired perpendicular to the calorimeter, and 100456

batches are simulated per incident energy. Time of the first two batches is discarded, as the457

warm-up step may have longer, and more erratic timing dependant on memory allocation and458

“just in time” compilation. Times are only for the model’s point generation itself, they do not459

include any overhead for moving data to or from the GPU or projecting hits into the detector460

geometry. This slightly complicates the comparison to Geant4, which by design places hits in461

sensitive cells only, and inherently incurs the overhead of the full detector geometry. To allow462

for a fair comparison, we force our models to use a single computational thread on CPU, as463

Geant4 does not support parallelism within a single event simulation.464

All CPU timings are performed on an single core of an AMD EPYC 7402 processor with465

512GB RAM. All GPU timings are performed on NVIDIA’s A100.466

CaloClouds3 is a fully distilled model, so 1 function evaluation is all that is ever used.467

It has also been aggressively optimized for the specific case of photons, including leveraging468

photon specific behaviors, such as the lack of significant substructure in the showers. With469

an iid assumption on the points, larger batch sizes become particularly efficient. AllShowers’s470

current format prohibits specialized treatment of photons, and being the first generation of471

this model design, it has not undergone such significant optimization as CaloClouds3, so it472

is expected that AllShowers cannot compete in inference time with CaloClouds3. Indeed,473

CaloClouds3 is at least two orders of magnitude faster on CPU. On the GPU the difference474

is less dramatic, but overall it is seen that CaloClouds3 will remain significantly faster until475

AllShowers is distilled or otherwise optimized.476

In table 2, a similar timing comparison is shown for pion showers. This time CaloHadronic477

is used as a comparison point, and for CaloHadronic, the NFE is also a tunable parameter.478

In the table, timings are shown for both a hypothetical distilled version with one function479

evaluation and for the number of function evaluations used in the current versions of the480

models. As with the photon timings, π+ showers are all fired perpendicular to the calorimeter,481
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Hardware Model NFE Batch Size Time / Sample [s] Speed-factor

CPU Geant4 - 1 2.88 1.0x

CaloClouds3 1 1 0.014 194.3x
16 0.0041 654.5x

AllShowers 1 1 0.17 16.7x
16 0.16 17.6x

32 1 5.0 0.6x
16 5.1 0.6x

GPU CaloClouds3 1 1 0.014 208.3x
16 0.00088 3256. x

AllShowers 1 1 0.014 209.3x
16 0.0010 2806. x

32 1 0.045 64.3x
16 0.0050 581.6x

Table 1: Timing comparison between Geant4, CaloClouds3, and AllShowers on pho-
ton showers.

and 9 fixed energies are simulated between 10 and 100 GeV. Here the comparison is closer, as482

both models are compelled to deal with substructure in hadronic showers.483

As CaloHadronic was a pilot model, designed to demonstrate the potential to combine484

ECAL and HCAL simulation, its code was never restructured to allow compilation. Thus, if485

CaloHadronic were timed including preprocessing of input data and postprocessing of gen-486

erated outputs, it would be unrealistically slow. Instead, only the evaluation of the PyTorch487

model itself was timed, as this would dominate the timing in a more realistic deployment. Due488

to the omission of all other elements from the timing, the times for CaloHadronic can be re-489

garded as mildly optimistic. Despite this, AllShowers comes out as faster than CaloHadronic,490

both at a single function evaluation, and with the NFE that is customary for the model. This491

shows all round more efficient use of resources, including good GPU performance.492

5 Conclusion493

We have presented AllShowers, a novel generative model for high-granularity calorimeter494

shower simulation. AllShowers is the a unified generative model capable of generating multi-495

ple particle types, encompassing both electromagnetic and hadronic showers, within a single496

architecture. This can help reduce the memory footprint, a significant bottleneck in large-scale497

Monte Carlo production, by allowing loading a single model for all particle types. Moreover,498

the model is conditioned on incident angle and energy, enabling broad applicability, and it can499

simultaneously simulate energy depositions across both ECAL and HCAL, thereby enabling500

end-to-end calorimeter response generation.501

AllShowers shows strong agreement with Geant4 across a range of individual-shower fea-502

tures, including aspects of the fine spatial structure accessible with highly granular calorime-503

ters, as well as for ensemble-level distributions spanning multiple particle species. In com-504

parisons at the shower level, its performance is competitive with specialized baselines —505

CaloClouds3 for photons and CaloHadronic for pions — often yielding closer agreement on506
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Hardware Model NFE Batch Size Time / Sample [s] Speed-factor

CPU Geant4 - 1 2.09 1.0x

CaloHadronic 1 1 0.59 3.5x
16 0.73 2.8x

59 1 34.8 < 0.1x
16 43.3 < 0.1x

AllShowers 1 1 0.12 16.7x
16 0.12 18.0x

32 1 3.5 0.6x
16 3.6 0.6x

GPU CaloHadronic 1 1 0.0086 243.0x
16 0.0033 633.3x

59 1 0.40 5.3x
16 0.15 13.7x

AllShowers 1 1 0.013 157.3x
16 0.0010 1990.5x

32 1 0.044 47.7x
16 0.0047 447.7x

Table 2: Timing comparison between Geant4, CaloHadronic, and AllShowers on pion
showers. Geant4 and CaloHadronic times are taken form [47].

several observables. For photons, the absence of an iid assumption leads to slower generation507

than CaloClouds3, while potentially capturing additional correlations in the shower develop-508

ment. However, a definitive assessment of the trade-off between computational performance509

and physics fidelity for these models ultimately requires evaluating realistic physics observables510

after full detector reconstruction. For pions, AllShowers achieves comparable or improved511

agreement relative to CaloHadronic, while also providing faster sampling.512

Looking forward, we aim to improve the energy resolution of AllShowers either by gener-513

ating layer-wise energy deposits similar to CaloClouds3 or by applying a postprocessing step.514

Additionally, we plan to distill the model to reduce the number of function evaluations (NFE)515

required at sampling time and to extend AllShowers to additional detector geometries, further516

broadening its applicability to high-energy physics simulation workflows.517
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A Code and Data Availability533

The code written for this work is available in the following Git repositories:534

CNF-transformer: https://github.com/FLC-QU-hep/AllShowers535

PointCountFM: https://github.com/FLC-QU-hep/PointCountFM536

Ranger-Light optimizer: https://github.com/FLC-QU-hep/ranger-lite537

Collection of shower IO utilities: https://github.com/FLC-QU-hep/ShowerData538

The training datasets simulated for this work are available at:539

AllShowers Dataset: https://doi.org/10.5281/zenodo.18020348540

B Number of Trainable Parameters541

Model Layer-level model Point-level model Total

AllShowers 351,822 263,491 615,313
CaloClouds3 6,026,520 69,640 6,096,160
CaloHadronic 349,905 1,784,724 2,134,629

Table 3: Number of trainable parameters for AllShowers, CaloClouds3, and Calo-
Hadronic.

In table 3, we compare the number of trainable parameters for AllShowers, CaloClouds3,542

and CaloHadronic. Shown are the number of parameters in the layer-level model (Point-543

CountFM for AllShowers and CaloHadronic, and the normalizing flow for CaloClouds3), the544

point-level model (CNF-transformer for AllShowers, and the diffusion models for CaloClouds3545

and CaloHadronic), and the total number of parameters. It is evident that AllShowers has546

a significantly smaller total number of parameters compared to both CaloClouds3 and Calo-547

Hadronic.548

C Hyper-Parameters549

All hyper-parameters used to train PointCountFM can be found in table 4 and those used to550

train the CNF-transformer in table 5.551
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Type Parameter Value

Data Preprocessing incident particle type one-hot encoding
incident energy Standard Scaling of Einc
incident angle unit sphere representation
point per layer Standard Scaling of log(0.5+ Ni)

Model hidden layers 5
hidden dims 128, 256, 512, 256, 128
activation ReLU

Training optimizer Adam
learning rate scheduler OneCycle
maximum learning rate 10−3

batch size 1024
epochs 1000

Sampling ODE solver Heun
NFE 100

Table 4: Hyper-parameters used for the PointCountFM model.

Type Parameter Value

Data Preprocessing point x , y Standard Scaling
point energy Standard Scaling of log(E)
incident energy Standard Scaling of log(Einc)
flow time faure embedding with 3 frequencies
incident angle unit sphere representation
OT mapping layer-and-shower-wise

Model embedding dim 64
transformer encoder blocks 4
attention heads 4
feedforward dim 256
attention masking custom calorimeter-layer-based

Training optimizer Ranger (Lookahead + RAdam)
learning rate scheduler cosine annealing
initial learning rate 10−3

weight decay 10−2

gradient clipping 0.2
batch size 256
epochs 200

Sampling ODE solver midpoint
NFE 32

Table 5: Hyper-parameters used for the CNF-transformer model.
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