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Preface

These are the notes for the 4.5-hour course with the same title that I de-
livered in August 2025 at the Les Houches summer school “Exact Solvability
and Quantum Information”. In these notes I pedagogically introduce the
setting of brickwork quantum circuits and show that it provides a useful
framework to study non-equilibrium quantum many-body dynamics in the
presence of local interactions. I first show that brickwork quantum circuits
evolve quantum correlations in a way that is fundamentally similar to local
Hamiltonians, and then present examples of brickwork quantum circuits
where, surprisingly, one can compute exactly several relevant dynamical
and spectral properties in the presence of non-trivial interactions.

If you find an error please report to b.bertini@bham.ac.uk.

Recommended material
Most of the material discussed in this notes is reviewed in the recent article

• “Exactly solvable many-body dynamics from space-time duality” (Bertini,
Claeys, & Prosen, 2025)

Other relevant reviews on quantum circuits and their use in quantum
many-body physics — more focussed on the case of random circuits — are

• “Entanglement Dynamics in Hybrid Quantum Circuits” (Potter &
Vasseur, 2022).

• “Random Quantum Circuits” (Fisher, Khemani, Nahum, & Vijay,
2023).

For a general review on quantum quenches I suggest

• “Quench dynamics and relaxation in isolated integrable quantum spin
chains” (Essler & Fagotti, 2016).

Other references, relevant to the specific topics I will touch upon, will
be given in the course of the discussion.
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Lecture 1

1.1 Introduction

When studying non-equilibrium quantum physics our goal is to understand/
characterise/describe the dynamics of quantum many-body systems. One
might ask what is there to understand since we already know the laws of
quantum mechanics. The answer, of course, is a resounding “everything!”.
The quantum mechanical description of a many-body system is so com-
plicated and inefficient that it does not offer any conceptual or practical
understanding: we need an “emergent” (in the sense of (Anderson, 1972))
macroscopic theory to really make sense of the physics of quantum systems
at mascroscopic scales. For systems at equilibrium an example of such an
emergent theory is classical thermodynamics — which we can derive from
the microscopic laws via equilibrium statistical mechanics. For systems out
of equilibrium, however, such an emergent theory is currently unknown.

The goal of these lectures is to discuss a setting — brickwork quantum
circuits — where quantum many-body dynamics can be studied efficiently
and its main properties can be thoroughly characterised. In analogy with
(few body) classical systems, we will also try to define whether the dynamics
of a quantum many-body system are “integrable” or “chaotic”.

1.1.1 Concrete Setting: Quantum Quench

A concrete protocol that we can use to generate quantum many-body dy-
namics is the so-called “Quantum Quench” (Calabrese & Cardy, 2006). It
can be implemented as follows:

(i) Prepare the system in the ground state |Ψ0⟩;

(ii) Suddenly change (quench) a parameter in the Hamiltonian (e.g. switch
on an interaction or an external field) H0 7→ H;

(iii) Let the system evolve without any other external intervention, i.e.,
|Ψt⟩ = e−iHt |Ψ0⟩.

3



4 LECTURE 1.

In fact, one can generally simplify the protocol by just considering a state
|Ψ0⟩ and evolving it with a Hamiltonian H of which it is not an eigenstate.
In general, however, to observe non-trivial phenomenology one has to re-
quire that |Ψ0⟩ has non-zero overlap with a number of eigenstates of the
Hamiltonian that is that is exponentially large in the volume. Moreover we
will generally consider states |Ψ0⟩ with low entanglement. These properties
are automatically verified in a Quantum Quench (i)–(iii) where both H0 and
H feature local (sufficiently short-ranged) interactions.

The questions that one can ask in this situation can be grouped in two
main classes: those concerning the finite-time behaviour of the system or
those concerning the long-time behaviour. Examples of questions in the first
class are

Q: Are there some “universal features” that are common in the evolu-
tion of different systems?’ If so what controls them? Are there some new
out-of-equilibrium phenomena occurring at finite times?

Instead, examples of questions in the second class are:

Q: Is there a form of relaxation/stationary behaviour emerging despite
the fact that the dynamics is purely unitary? If so what are its mechanisms?
Is it possible to develop a statistical mechanical description of the putative
steady state?

All these questions are extremely difficult to answer because we have no
general theory to describe quantum many-body systems in the presence of
non-trivial interactions. For instance, no low-energy description is applic-
able and perturbative approaches break down at large enough times. Also our
computational approaches are severely limited: exact approaches scale ex-
ponentially with the number of particles in the system (see, e.g., (Feynman,
2018)’s take on the problem), while even our best approaches to treat numer-
ically large one-dimensional systems (based on tensor networks, cf. Frank
Verstraete’s lectures) are hampered by the rapid growth of entanglement
(almost unavoidable after a quantum quench).

So, what can we do? We need to come up with new ideas. In the next
section I will discuss a setting that, it turns out, allows us to make interesting
progress.

1.2 Brickwork quantum circuits

Let us begin by focussing on a one dimensional setting (we will see that the
discussion can be directly generalised to higher dimensions). Specifically,
we consider 2L “qudits”, i.e., quantum systems with d ≥ 2 states (qubits

4



LECTURE 1. 5

for d = 2), arranged along a one-dimensional line and evolved by discrete
applications of the unitary operator

U = UeUo, Ue =
L−1⊗
x=0

U
(x)
x,x+1/2, Uo =

L⊗
x=1

U
(x−1/2)
x−1/2,x . (1.1)

Here we labelled the chain’s sites using half integers (in Z2L/2) and took
periodic boundary conditions by setting L ≡ 0. The operator U (x)

y,z ∈ U(d2L)
acts as U (x) ∈ U(d2) on the qudits at position y and z and as the identity on
all the others. We see that Ue/o couples nearest neighbours (either integer
sites to half-odd-integer ones (e) or half-odd-integer to integer ones (o)) with
a coupling that can depend on the position (U (x) depends explicitly on x).

More explicitly, by “evolved by discrete applications of U” I mean that
|Ψt⟩ — the state of the system after t ∈ N steps of evolution — is given by

|Ψt⟩ = U |Ψt−1⟩ . (1.2)

Using the language of quantum computation, a system evolving accord-
ing to a U of the form in Eq. (1.1) is often referred to as brickwork quantum
circuit (BQC) (the generic term “quantum circuit” is used for any system of
qudits with discrete time evolution and the specific way according to which
the gates are applied is called “architecture” — in this language we can say
that Eq. (1.1) has a brickwork architecture). In the same vein one can refer
to U (x) as the “local gate”, to 2L as the “width” of the circuit, and 2t as
its “depth”. On the other hand, one can think of U as the operator imple-
menting one period of evolution — Floquet operator — in a periodically
driven system in continuous time. In general one can consider BQCs where
U (x) has a larger support (i.e., acts on more than two qubits) but for these
lectures we will exclusively focus on nearest-neighbour cases.

Before continuing with the discussion of the basic physical properties of
this discrete-time evolution, it is useful to represent it in a more intuitive,
graphical form.

1.2.1 Diagrammatic representation

States and observables in quantum circuits can be represented diagram-
matically using a graphical notation very similar to the one used in tensor
network theory (again cf. Frank’s lectures). In particular, we have three
main rules:

(a) Operators are represented as shapes with legs indicating the qudits they

5



6 LECTURE 1.

act upon. For instance

U (x) 7−→ (1.3)

(U (x))† 7−→ (1.4)

1 7−→ (1.5)

|ψ⟩ ∈ Cd 7−→ (1.6)

When representing different operators of the same kind at different positions,
e.g., U (y) ̸= U (x), I will use different shades of the same colour.
(b) Joining legs corresponds to summing over indices. For instance

= = , (1.7)

represents the unitarity of U (x).

(c) Time-evolution goes bottom to top.

|Ψt⟩ = Ut |Ψ0⟩ =

“width”

“depth”
. (1.8)

Where we took (L = 4, t = 3) and, for simplicity, we represented the case
where U (x) = U for all x and

|Ψ0⟩ =
2L⊗

j=1
|ψ⟩ . (1.9)

6



LECTURE 1. 7

1.2.2 Basic physical properties of BQC

Using the diagrammatic representation introduced above we can easily see
that:

1. We see from Eq. (1.8) that the evolution in a BQC really looks as a
quantum version of a boolean circuit, where the boxes — local gates —
implement unitary transformations. Also, the local gates are applied
in brickwork pattern, motivating its name.

2. Quantum circuits have a strict causal light cone for the propagation
of correlations. For instance, considering a local operator OL/2 and
evolving it in time in the Heisenberg picture we have

OL/2(t) = O . (1.10)

All gates out of the yellow light cones can be simplified using the
unitarity conditions in Eq. (1.7). All BQC described by the Floquet
operator in Eq. (1.1) have a speed of light vmax = 1 in our units.

3. Everything discussed above can be immediately generalised to dimen-
sion D ≥ 1 by replacing 2d shapes with (D+1)d shapes. For example,
squares 7→ hypercubes.

1.3 Relation between BQC and Hamiltonian sys-
tems

The dynamics of BQC are closely related to those of Hamiltonian systems
with local interactions in that both these classes of systems can propagate

7



8 LECTURE 1.

correlations at most ballistically. To see this, consider a local Hamiltonian
with nearest-neighbour interactions 1

H =
∑

x∈Z2L/2
hx,x+1/2, (L ≡ 0), (1.11)

and also assume
h̄ ≡ max

x
∥hx,x+1/2∥ = C < ∞, (1.12)

where ∥ · ∥ is the operator norm and C does not depend on L (this is the
case, e.g., for systems of fermions or spins, not for bosons). In this case
one characterise the spreading of correlations by means of the famous Lieb
Robinson bound (Lieb & Robinson, 1972). We can express it as follows

Theorem (Lieb and Robinson (1972)). Let OX be an operator acting non-
trivially in the block X and let A and B be two blocks at distance ℓ. Then

∥[OA(t),OB(0)]∥ ≤ D exp
[
−(ℓ− vt)

ξ

]
, (1.13)

where D, v, and ξ are system-dependent constants (D also depends on A,
B, and the operators).

In words, the above result states that the commutator of the two oper-
ators OA(t) and OB(0) is exponentially suppressed for times smaller than
ℓ/v, with ℓ being the distance between the regions they act upon at time
0 and v an intrinsic maximal velocity for the spreading of correlations in
the system 2. This does indeed show that — up to exponentially small cor-
rections — correlations propagate at most ballistically in the Hamiltonian
system characterised by Eq. (1.11). To make more stringent the analogy
with BQC, it is useful to make a restatement of the Lieb-Robinson bound
due to Bravyi, Hastings, and Vestraete (Bravyi, Hastings, & Verstraete,
2006). Namely, one can show that Eq. (1.13) implies

∥OA(t) − O(ℓ)
A (t)∥ ≤ D′ exp

[
−(ℓ− vt)

ξ

]
, (1.14)

where D′ is again a constant, we defined the “truncated operator”

O(ℓ)
A (t) = trS [OA(t)] ⊗ 1S

trS [1S ] , (1.15)

and S is a region whose distance from A is at least ℓ, see Fig. 1.1.
1I am again considering the one-dimensional setting for simplicity but all statements

directly carry over to any dimension.
2This statement has later been generalised both to systems interacting over a longer

range and to unbounded h̄ (see, e.g., (Kuwahara & Saito, 2021) for a recent account of the
possible extensions) but for the purposes of these lectures the original statement above is
sufficient.
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SS A
ℓ ℓ

Figure 1.1: Setting in the one dimensional case.

The meaning of Eq. (1.14) is that at any time t, the time evolving op-
erator OA(t) can be approximated arbitrary well by an operator acting non
trivially only within the effective light cone [−v′t+a, b+v′t], where we took
v′ > v and A = [a, b]. Specialising this statement to the case where A is
the single point x = 0 this means that one can approximate O0(t) with
an operator acting non-trivially only in [−v′t, v′t]. This is very similar to
Eq. (1.10)! The difference is that Eq. (1.10) is an exact statement while
Eq. (1.14) involves an (exponentially small in time) error, see Fig. 1.2

To make this intuition more quantitative I will now show how the time-
evolution operator generated by the local Hamiltonian H can be written
in terms of an appropriate BQC. I will present two methods ordered by
simplicity.

1.3.1 Suzuki–Trotter decomposition

The simplest way to write the time evolution operator of H in terms of a
BQC is the “Suzuki–Trotter” decomposition (Trotter, 1959; Suzuki, 1990).
To express it, we begin by with the following rewriting

e−itH =
(
e−i t

n

∑2L−1
x=0 hx/2,(x+1)/2

)n

=
(
e−i t

n

∑L−1
x=0 hx,x+1/2e−i t

n

∑L

x=1 hx−1/2,x

)n

+ ϵ,

(1.16)

where n ∈ N is an arbitrary natural number and in the second step we
introduced

ϵ=
(
e−i t

n

∑2L−1
x=0 hx/2,(x+1)/2

)n

−
(
e−i t

n

∑L−1
x=0 hx,x+1/2e−i t

n

∑L

x=1 hx−1/2,x

)n

. (1.17)

t

xO

1 1

BQC
t

xO

1+O(e−αt) 1+O(e−αt)

local Hamiltonian

Figure 1.2: Schematic depiction of the light cone of a local operator in a
BQC (left) and local Hamiltonian system (right).
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10 LECTURE 1.

t t

Figure 1.3: The light cone opens up when increasing n for fixed t.

Note that the first term on the second line of Eq. (1.16) is precisely the n-th
power of the BQC in Eq. (1.1) written in terms of the local gates

U (x) = e−i t
n

hx,x+1/2 , x ∈ Z2L/2. (1.18)

The basic observation now is that the Baker–Campbell–Hausdorff formula
guarantees that for large n the operator norm of ϵ — the “error” — is
O(1/n). Therefore, the evolution generated by a local Hamiltonian can be
approximated arbitrary well by a carefully chosen BQC, provided the latter
is sufficiently deep, i.e.,

∥e−itH − (UeUo)n ∥ = O

( 1
n

)
. (1.19)

As shown by (Suzuki, 1990), the approximation can be improved by repla-
cing UeUo in the above expression by a more complicated function of Ue and
Uo. For example, considering

UeUo 7→ U1/2
e UoU1/2

e , (1.20)

gives ∥ϵ∥ = O(1/n2).
The problem of this approximation is that, for it to become accurate, one

really needs a very deep BQC (made of gates that are infinitesimally close to
the identity). More precisely, to achieve a fixed error ∥ϵ∥ one needs n = O(L)
even when t = O(L0). Also note that, in this construction, the “trivial”
light cone of the BQC — i.e. the light cone appearing as a consequence of
unitarity as in Eq. (1.10) — is not related to the Lieb–Robinson light cone
of the Hamiltonian system. While the latter is fixed, the former becomes
increasingly more “open” as n increases, see Fig. 1.3. This is because in the
special BQC described by the gates in Eq. (1.18) correlations are effectively
restricted within a much smaller light cone (with speed O(1/n)). This, and
not the trivial one, is the light cone approaching the Lieb–Robinson light
cone in the large n limit.

1.3.2 Osborne Construction

A more refined construction is the one proposed by (Osborne, 2006) for 1D
systems (see also (Haah, Hastings, Kothari, & Low, 2023) for a generalisation
to higher dimensions). In essence, the main idea is to proceed in three steps

10



LECTURE 1. 11

a. “Block together” Ω sites

Ω
Cd ⊗ · · · ⊗ Cd CdΩ

(1.21)

b. Define operators W (ℓ) ∈ U(d2Ω) acting as local gates on the blocked
sites.

c. Write the time evolution operator for a time τ as

e−iτH =
L/Ω−1⊗

x=0
W

(x)
x,x+1/2

L/Ω⊗
x=1

W
(x−1/2)
x−1/2,x + ϵ. (1.22)

Using the Lieb–Robinson bound one can show that the error can be bounded
by

∥ϵ∥ ≤ aL

Ω ebτ−cΩ, a, b, c > 0. (1.23)

This means that considering Ω = O(logL) we can control the error for any
fixed τ . Therefore we can write

e−itH =
(
e−iτH

)t/τ
=

L/Ω−1⊗
x=0

W
(x)
x,x+1/2

L/Ω⊗
x=1

W
(x−1/2)
x−1/2,x

t/τ

+ ϵ, (1.24)

where the error is bounded by

∥ϵ∥ ≤ exp
(
atL

Ωτ e
bτ−cΩ

)
− 1, a, b, c > 0. (1.25)

Namely, it can be controlled for any fixed τ without the need of taking the
limit τ → 0. This means that in this case the local gates do not need to be
close to the identity and the light cone of the quantum circuit approaches
the Lieb-Robinson light cone.

General strategy of these lectures. In this section we discussed how
the dynamics of BQCs are fundamentally similar to those of local Hamilto-
nians in the way they spread correlations. We also showed two explicit con-
structions to obtain the latter from the former. In the rest of the lectures,
however, we will study BQCs as independent quantum dynamical systems
— with general local gates in U(d2) — without thinking about them as
approximations of continuous time Hamiltonian dynamics.

11



12 LECTURE 1.

1.4 Dynamics in BQC: a first look

Let us now begin to study the dynamics generated by BQCs — we will
look at a very simple example that will help clarifying what we mean by
relaxation in systems evolving unitarily.

Consider the “Floquet XX model”: the BQC described by the evolution
operator in Eq. (1.1) with d = 2 and local gates

U (x) = ei ω
4 (XX+Y Y ), ∀x, (1.26)

where I use X,Y , and Z to denote the Pauli matrices, and initialise the
circuit in the “Néel state”

|Ψ0⟩ =
L⊗

x=1
|01⟩ , (1.27)

with |0⟩ and |1⟩ the two eigenstates of Z (corresponding respectively to
eigenvalues +1 and −1).

Let us now ask whether this BQC shows any form of relaxation. Consider
first the case L = 1 (two qubits) — in this case we can immediately find the
state at time t to be

|Ψt⟩ = eiωt |+⟩ + e−iωt |−⟩√
2

, (1.28)

where we set |±⟩ = (|01⟩±|10⟩)/
√

2. This means that the expectation value
of any observable O can be written as

⟨Ψt|O|Ψt⟩= 1
2

{
⟨+|O|+⟩+⟨−|O|−⟩+ei2ωt ⟨−|O|+⟩+e−i2ωt ⟨+|O|−⟩

}
. (1.29)

Therefore, either the expectation value is time independent or it oscillates
indefinitely: no form of relaxation can be observed. The oscillations are due
to the off-diagonal terms.

Let us now move to consider L > 1. Crucially, we can still find a closed-
form expression for the expectation values of relevant observables. This
is because for our special choice of local gates (cf. Eq. (1.26)) the BQC
evolution operator can be mapped into a quadratic form of free fermions
and the Néel state in Eq. (1.27) is Gaussian with respect to them (see, e.g.,
Sec. D of the supplemental material of (Vernier, Bertini, Giudici, & Piroli,
2023) for details). For instance, after a simple (but lengthy) calculation we
obtain

⟨Ψt|Zx|Ψt⟩= (−1)x

2L

L∑
n=0

{
g

(2π
L
n, ω

)
+f

(2π
L
n, ω

)
cos

(
2tε

(2π
L
n, ω

))}
, (1.30)

12
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where we introduced

f(k, ω) = cos(Φ(k, ω))2, g(k, ω) = sin(Φ(k, ω))2,

Φ(k, ω) = arctan(tan(ω/2) sin(k)) + πθH

(
k − π

2

)
,

ε(k, ω) = arctan


√

sin4 (
ω
2

)
sin2(2k) + sin2(ω) cos2(k)

cos2 (
ω
2

)
− sin2 (

ω
2

)
cos(2k)

.
(1.31)

The expression in Eq. (1.30) does still not relax at large times — its t → ∞
does not exist —, however, if we first consider its “thermodynamic limit”
(L → ∞) we obtain

lim
L→∞

⟨Ψt|Zx|Ψt⟩= (−1)x

4π

∫ π

0
dk {g(k, ω) + f(k, ω) cos(2tε(k, ω))}. (1.32)

This expression attains a well defined limit for t → ∞!
This is a general fact. In order to attain a well defined infinite-time

limit one needs a perfect destructive interference between the phases of the
off diagonal terms. This can only occur in the limit where the spectrum
becomes continuous and if the observable has non zero overlap with almost
all the eigenstates within a given energy window. This means that local
in-space observables will typically relax while non-local ones will typically
not. A simple example is

O = |n⟩⟨m| + |m⟩⟨n| , (1.33)

where |n⟩ and |m⟩ are two eigenstates such that En −Em = O(L0). In this
case one has

⟨Ψt|O|Ψt⟩ = 2 Re[⟨Ψ0|n⟩ ⟨Ψ0|m⟩∗ ei(En−Em)t]. (1.34)

This is the same general phenomenology that one observes after quenches
in short-range interacting Hamiltonian systems (Essler & Fagotti, 2016).

13
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Lecture 2

In the last lecture we showed that BQC encode the physics of local interac-
tions and show relaxation in the thermodynamic limit (L → ∞). Namely,
one generally has

lim
t→∞

lim
L→∞

tr[ρA(t)OA] → lim
L→∞

tr[ρstOA], (2.1)

where A is a finite region and ρA(t) = trĀ[|Ψt⟩⟨Ψt|] is its reduced state.
Analogously to local Hamiltonian systems (Essler & Fagotti, 2016), the sta-
tionary state ρst can be described à la Gibbs, based on the number of local
conserved operators (or “conservation laws”) in the system. The latter are
a special kind of conserved operators written as

Q =
∑

x

qx, (2.2)

with qx acting non-trivially only around x, and are the only ones effectively
constraining the dynamics of local subsystems 1.

As opposed to Hamiltonian systems that have always at least H as local
conservation laws, generic BQCs have no local conservation laws. Therefore
we expect them to relax to the infinite temperature state

ρst = 1

tr[1] , (2.3)

which is typically disdained by physicists as featureless and “boring”. This
is not always the case of course: you saw the lectures of Fabian Essler and
Balázs Pozsgay about integrable models, where the number of local conser-
vation laws is ∝ L and the manifold of possible states is much richer (Essler
& Fagotti, 2016). Importantly, integrable systems exist also in BQC form (a
simple example is the Floquet XX model that we encountered in the previ-
ous lecture). Here, however, I want to focus on the generic case — where ρst
is given by Eq. (2.3) — and ask what happens for finite times. Specifically,
I will discuss some general features of the dynamics of many-body systems
that can be quantitatively understood in BQCs.

1In fact, it has been shown that also operators written as Eq. (2.2) but where the
support qx decays exponentially away from x — quasi local — need to be taken into
account in order for Eq. (2.1) to hold (Ilievski, Medenjak, Prosen, & Zadnik, 2016).
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16 LECTURE 2.

SA(t)

t∝ |A|

thermodynamic entropy of ρst,A

Figure 2.1: Leading-order evolution of the entanglement entropy in generic
systems with local interactions.

2.1 Finite-time evolution
When trying to describe “general features” of the many-body dynamics the
first question that we are facing is “where should we look?”, i.e., what ob-
servable should we study to identify them? This is a difficult question as it
is clear that by looking at the dynamics of the expectation value of a specific
observable it will always be hard to disentangle the specific features of the
observable from the general properties of the system. One way to solve this
problem would be to study the dynamics of all possible local observables,
however, it would be very impractical. A more convenient way to proceed
is to probe the evolution of ρA(t) itself, e.g., characterising the evolution of
its spectrum by computing its von-Neumann entropy

SA(t) = − tr[ρA(t) log ρA(t)]. (2.4)

This quantity has also an important quantum information theoretical mean-
ing: Whenever the state of the full system is pure — which is the one of
interest for us — SA(t) measures the entanglement between A and the rest of
the system. For this reason, it is typically called the entanglement entropy.

It turns out that SA(t) has a strikingly similar evolution in essentially
all systems characterised by local interactions, regardless of dimensional-
ity, number of conservation laws, the discrete or continuous nature of space
or time, or any other specific properties of the system such as masses or
coupling strengths (perhaps cases of strong disorder causing real-space loc-
alisation or similar extreme situations) — borrowing a term from the theory
of critical phenomena we can say that the dynamics of SA(t) is univer-
sal. The typical evolution of the entanglement entropy following a quantum
quench is sketched in Fig. 2.1: there is an initial linear growth character-
ised by a system-dependent slope (or “entanglement velocity”) followed by

16



LECTURE 2. 17

a relatively sharp relaxation to a value that is extensive in the size of the
subsystem and corresponds to the thermodynamic entropy of the stationary
state ρst reduced to the subsystem 2. Therefore, one can give a compact
description of the equilibration process of a subsystem as the one turning
entanglement entropy into thermodynamic entropy (cf. (Calabrese, 2020)).

This universal phenomenon inevitably attracted the attention of many
theoretical physicists with particular attention being devoted to the linear
growth of entanglement observed at early times. Indeed, the latter suggests
a ballistic behaviour that is not expected in generic systems. However, com-
puting SA(t) in the presence of interactions is far from easy and the progress
was stagnant. The achievement of exact results in BQSs was instrumental to
provide a better characterisation of this phenomenon and (partially) explain
it (Nahum, Ruhman, Vijay, & Haah, 2017; Zhou & Nahum, 2020; Bertini,
Klobas, Alba, Lagnese, & Calabrese, 2022) (see also Romain Vasseur’s lec-
tures).

Before illustrating how these exact results can be obtained, however, it
is useful to simplify the object of interest. Indeed, one feature that makes
the calculation of SA(t) difficult is the presence in Eq. (2.4) of the logarithm
of the reduced density matrix. To avoid this issue one can employ a “replica
trick”, i.e., obtain SA(t) as the limit of quantities that are easier to compute.
Specifically, we introduce the so called “Rényi entropies” given by

S
(n)
A (t) = 1

1 − n
log tr[ρn

A(t)], (2.5)

and fulfilling
lim
n→1

S
(n)
A (t) = SA(t). (2.6)

Rényi entropies are easier to compute as they only involve logarithms of real
numbers rather than of an operator. Moreover, they also turn out to behave
“universally” and in fact their evolution is typically very similar to the one
of SA(t) (there are however interesting exceptions, see, e.g. (Rakovszky,
Pollmann, & von Keyserlingk, 2019; Huang, 2020)).

In the following I will discuss how to compute S(n)
A (t) in the particularly

simple case of n ∈ N and n ≥ 2. Whenever we can obtain the analytic
2The first account of such “universal” behaviour was given in the context of (1 + 1)-

dimensional conformal field theory (Calabrese & Cardy, 2005), where it was explained
postulating that the entanglement is carried though the system by pairs of “correlated
quasiparticles” produced at each point in space by the non-equilibrium initial state at the
beginning of the evolution. This semiclassical description became known as the “quasi-
particle picture” and has later been extended to characterise the dynamics of entanglement
in other models with stable quasi-particles such as free (Fagotti & Calabrese, 2008) and
interacting integrable models (Alba & Calabrese, 2017). A few years later, however, the
same behaviour was also found in systems with no quasiparticles such as holographic con-
formal field theories (Liu & Suh, 2014), and generic interacting systems (Kim & Huse,
2013; Läuchli & Kollath, 2008).
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18 LECTURE 2.

dependence on n the results for these quantities can be used to compute
SA(t) via analytic continuation 3.

2.1.1 Rényi entropies in BQCs

Employing the diagrammatic representation discussed in the previous lec-
ture we can represent the reduced density matrix of a block of qudits A 4 as
follows

ρA(t) =

2|A|

, (2.7)

where we made no assumption on the structure of the initial state repres-
enting it as a white box with 2L legs (the gray box denotes its complex

3In fact, due to the discreteness of space, the results for {S
(n)
A (t)}n∈N>1 characterise

the full spectrum of ρA(t). This means that, if one can compute them exactly, Rényi
entropies with integer index give access to SA(t) without the analytic continuation.

4we denote the number of qudits in A by 2|A| because our lattice spacing is 1/2
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conjugate). Therefore, the trace of its n-th power can be written as

tr[ρn
A(t)] = n...

...
...

...
...

...
...

... . (2.8)

This representation can be made more compact by folding the 2n replicas
of the time evolution on top of each other in such a way that each copy of
the backward evolution (blue) is underneath the nearest forward one (red).
We then introduce a symbol for stacks of n local gates alternated with its
complex conjugate as follows

(U ⊗ U∗)⊗n =
2n

= n . (2.9)

Analogously, we introduce a symbol for piles of n initial states alternated
with its complex conjugate

(|Ψ0⟩ ⊗ |Ψ0⟩∗)⊗n = 2n = . (2.10)
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20 LECTURE 2.

Finally, we introduce special symbols to represent special states in the replic-
ated space that correspond to contractions between the replicas. Specifically,
labelling the 2n replicas as (1, 1∗, 2, 2∗, . . . , n, n∗) we define 5

| ⟩ =
d∑

i1,...,in=1
|i1, i1, i2, i2, . . . , in, in⟩ ≡ , (2.11)

| ⟩ =
d∑

i1,...,in=1
|i1, i2, i2, i3, . . . , in, i1⟩ ≡ . (2.12)

In this way Eq. (2.8) is represented as

tr[ρn
A(t)]=

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

.(2.13)

It is also useful to recall that, in this notation, the unitarity condition for
the local gate (cf. Eq. (1.7)) is expressed as

n = , n = , (2.14)

(2.15)

n = , n = . (2.16)

In fact, we have many more conditions coming from unitarity. For any
“pairing state” indexed by a permutation σ of n elements as

|σ⟩ =
d∑

i1,...,in=1

∣∣∣i1, iσ(1), . . . , in, iσ(n)
〉

≡ σ , (2.17)

we have

n

σσ

=
σσ

, n

σσ
=

σ σ
. (2.18)

The states | ⟩ and | ⟩ are just 2 of these n! states.

5The number of replicas of the space where these states are defined is clear for the
context. I will not report it on the states for brevity.
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Going back to Eq. (2.13) and using multiple times the condition Eq. (2.16)
we find

tr[ρn
A(t)]=

n n n

n n n n

n n n n n

n n n n n n

2|A|

2t
. (2.19)

This diagram is a tensor network whose size scales linearly with t and |A|
(and the local Hilbert space is dn dimensional): contracting it for generic
choices of the unitary gates is very hard. As I discuss in the next section,
however, there are some interesting choices of gates for which this is possible.
Plugging back into Eq. (2.5) this gives the desired Rényi entropies.

2.2 Circuits with solvable entanglement dynamics

In last decade two different strategies have emerged to find solvable (but
generically non-integrable) instances of BQCs:

(i) Averaging over random gates.

(ii) Imposing particular conditions (or symmetries) on the gates.

These two strategies are somewhat antithetical — one is based upon reducing
the constraints on (“the structure of”) the dynamics to a minimum and the
other upon applying more constraints. Nevertheless, as we shall see, they
both lead to interesting solvable examples.

2.2.1 Random unitary circuits

The idea of considering quantum circuits made of random unitary gates
has appeared several times in the quantum information theoretic literat-
ure (see, e.g., (Žnidarič, 2008; Harrow & Low, 2009)), however, to the best
of my knowledge the first reference considering them as a bona fide quantum
many-body system has been (Nahum et al., 2017). In essence, the logic un-
derlying this choice is the same that motivates random matrix theory (see,
e.g., (Mehta, 2004)): when the properties of an individual system are out of
reach one can make progress by averaging over ensembles of similar systems.
From this point of view one can think of random unitary circuits as a spe-
cial kind of random matrix theory encoding spatial locality. Here I will only
discuss the microscopic calculation of Eq. (2.34) in these systems, while a
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22 LECTURE 2.

more extensive discussion is provided in Romain Vasseur’s lectures (see also
the reviews (Potter & Vasseur, 2022; Fisher et al., 2023)).

The simplest random unitary circuit with brickwork architecture is ob-
tained considering the evolution operator in Eq. (1.1) where, at each time,
each {U (x)}x∈Z2L/2 is drawn independently from U(d2) with a probability
proportional to the Haar measure. The focus is then on computing averaged
quantities. For example in the case of tr[ρn

A(t)] we have

tr[ρn
A(t)] −→ E[tr[ρn

A(t)]] =
∫

U(d2)
tr[ρn

A(t)]
2L−1∏
x=0

2t∏
τ=1

dµH(U (x/2,τ/2)), (2.20)

where dµH is the normalised Haar measure. Because of the independence
of random unitaries at different space-time points E[tr[ρn

A(t)]] can still be
expressed as a tensor network like Eq. (2.34) where the local gate is changed
as

n −→ n =
∫

U(d2)
(U ⊗ U∗)⊗n dµH(U)

=
n!∑

i,j=1
[Wg]i,j |σiσi⟩⟨σjσj | , (2.21)

where in the second step we used that the integral over the unitary group
can be computed exactly (see, e.g., (Collins, Matsumoto, & Novak, 2022)):
the states appearing in there are the “pairing states” in Eq. (2.17) and
the matrix of the coefficients, [Wg]i,j , is known as Weingarten matrix (see
Romain’s lecture for more details).

Note that, after averaging, the effective local dimension passes from d2n

to n! 6. This means that for n = 2 the local space is effectively 2-dimensional
and the treatment becomes much easier. Indeed, Eq. (2.21) implies

2 = d

d2 + 1 + d

d2 + 1 , (2.22)

where I used the specific values of the Weingarten matrix to find the coef-
ficients 7. This equation can be used to directly contract the diagram
starting from the top: it ensures that the state on the m-th horizontal
cut (m = 0, . . . , 2t) is a linear combination of “domain wall states” of the
form

|ℓ1, ℓ2, ℓ3⟩ = |
ℓ1︷ ︸︸ ︷
. . .

ℓ2︷ ︸︸ ︷
. . .

ℓ3︷ ︸︸ ︷
. . . ⟩ , ℓ1 + ℓ2 + ℓ3 = |A| + 2m, (2.23)

6At least for d ≥ n, otherwise the pairing states start to be linearly dependent.
7The states appearing in the expansion, however, are set by Eq. (2.21).
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where the coefficients can be easily determined recursively (see, e.g., (Klobas,
Rylands, & Bertini, 2025)). The treatment further simplifies for initial states
in product form and |A| > 2t: in this case Eq. (2.21) directly gives

E[tr
[
ρ2

A(t)
]
] =

( 2d
d2 + 1

)4
E[tr

[
ρ2

A(t− 1/2)
]
]. (2.24)

Noting that E[tr
[
ρ2

A(0)
]
] = 1 we then have

E[tr
[
ρ2

A(t)
]
] =

( 2d
d2 + 1

)4t

. (2.25)

Similar exact calculations are possible for other quantities involving two
replicas of the time-evolution, e.g., out-of-time-order correlators (Potter &
Vasseur, 2022; Fisher et al., 2023).

For n > 2 the analogue of Eq. (2.21) produces more terms: this complic-
ates the treatment severely enough to prevent an exact contraction of the
diagram. As shown in by (Zhou & Nahum, 2019), however, can still analyse
it in the limit of large d and obtain

E[tr[ρn
A(t)]] ≃ exp

[
−4t(n− 1) log d+O((log d)0)

]
. (2.26)

Random unitary circuits can be made “less random” by restricting the in-
tegration measure in Eq. (2.20). For instance, one can consider “Floquet
random unitaries” (Chan, De Luca, & Chalker, 2018a) where {U (x)}x∈Z2L/2
are chosen at random for t = 1 but then are kept fixed in time, or even
“space-time translational invariant” (Chan, Shivam, Huse, & De Luca, 2022)
random circuits where one chooses one unitary matrix U ∈ U(d2) at ran-
dom and then sets U (x) = U keeping this choice for all times. Doing this,
however, makes these systems increasingly less solvable and exact results
are restricted to the large-d limit.

2.2.2 Dual-unitary circuits

A possible motivation for approach (ii) — imposing more constraints —
comes from the symmetry of BQCs under the exchange of space and time.
The basic observation is that, since BQCs involve local interactions and
evolve in discrete steps, the exchange of space and time in a BQC produces
another system with the structure of a BQC. For instance, considering the
diagram in Eq. (2.13) and exchanging the roles of space and time, i.e., ro-
tating it by 90 degrees, we obtain a diagram representing the evolution of a
BQC (albeit with strange boundary conditions) — this is made more trans-
parent by the choice of representing the gates’ legs “diagonally” that I made
in these lectures. Generically, however, the BQC-like system obtained by
such a “swap” of space and time is not described by unitary gates. Therefore
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the symmetry is “broken”: space-like and time-like dynamics are not equival-
ent. This suggests that the case in which this symmetry is instead preserved
should be special and perhaps solvable. At the same time, this symmetry
does not have an obvious relation with integrability. We are then left with
the fascinating prospect of finding a family of solvable non-integrable models
— this is certainly a good enough reason for considering this case.

Let us begin by defining more specifically what we mean by space-time
swap. For a given local gate U we define its space-time swapped counterpart,
Ũ , through the following reshuffling of matrix elements

⟨ij|Ũ |kℓ⟩ =

i k

j ℓ

= ⟨jℓ|U |ik⟩ . (2.27)

The meaning of Ũ is now clear: while the four-legged tensor in the above
equation acts like U going from bottom to top, it acts as Ũ going from left
to right. Requiring unitarity in both the temporal (upwards) and spatial
(rightwards) directions leads to the following constraints

UU † = 1 = Ũ Ũ †, (2.28)

which in the compact diagrammatic representation of the previous section
are expressed as

n

σσ

=
σσ

, n

σσ
=

σ σ
, (2.29)

n

σ

σ
=

σ

σ
, n

σ

σ
=

σ

σ
. (2.30)

These constraints — which turn out to have non-trivial solutions for all d ≥ 2
— define the family of so-called dual-unitary gates (Bertini, Kos, & Prosen,
2019b; Gopalakrishnan & Lamacraft, 2019). An interesting subfamily is
given by

U = (u1 ⊗ u2) · S · eiJS3⊗S3 · (u3 ⊗ u4), uj ∈ U(d), (2.31)

where S is the SWAP gate and S3 is the d-dimensional representation of the
third generator of SU(2). This family is exhaustive in d = 2 while for d > 2
larger (but non-exhaustive) families are known (Bertini et al., 2025).

The BQCs built of dual-unitary gates — called dual unitary circuits
— are generically strongly interacting and generate non-integrable dynam-
ics (although they do have integrable points), nevertheless, many of their
non-equilibrium properties can be characterised exactly. In this and the next
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lecture I will present a few of these exact results, however, for a comprehens-
ive account I direct you to (Bertini et al., 2025). The review also discusses
how the dual-unitarity condition can be systematically relaxed while retain-
ing some solvability — this research direction is still ongoing and I will not
discuss it here.

Considering again the evolution of Rényi entropies, let us specialise the
treatment to a dual-unitary circuit prepared in an initial state that is com-
patible with the spatial unitarity condition, i.e., that provides a boundary
condition preserving unitarity. For example, consider a product of Bell pairs
of the form

|Ψ0⟩ =
L⊗

x=1
|ψ0⟩ , |ψ0⟩ ≡

d∑
i=1

|i⟩x ⊗ |i⟩x+1/2√
d

. (2.32)

Representing it diagrammatically

|Ψ0⟩ = 1
dL/2

L

, (2.33)

we see that from the point of view of the space evolution the state in
Eq. (2.32) implements (unitarity conserving) open boundary conditions at
t = 0. Writing Eq. (2.34) for this state we have

tr[ρn
A(t)]= 1

dn(|A|+2t+1)

n n n

n n n n

n n n n n

n n n n n n

2|A|

2t
. (2.34)

By repeated application of Eqs. (2.29) and (2.30) we then immediately find

tr[ρn
A(t)] = ⟨ | ⟩min(4t+2,2|A|) ⟨ | ⟩max(0,|A|−2t−1) ⟨ | ⟩max(0,2t+1−|A|)

dn(|A|+2t+1)

= d−2(n−1)(min(2t+1,|A|)) , (2.35)

where in the second step we used ⟨ | ⟩ = ⟨ | ⟩ = dn and ⟨ | ⟩ = d.
Specialising this equation to n = 2, we see that in dual unitary circuits the
purity decays faster than in random unitary circuits because( 2d

d2 + 1

)
>

1
d
. (2.36)

Moreover, plugging Eq. (2.35) into Eq. (2.5) we find

S
(n)
A (t) = 2 min(2t+ 1, |A|) log d , ∀n = 2, 3, . . . , (2.37)
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and in fact this result can be extended to any n ∈ R+ (Bertini et al.,
2025). The entanglement growth described by this equation, i.e., 2 log d per
time step, is the maximal possible growth achievable in a BQC (this can
be seen using the minimal cut bound (Bertini, Kos, & Prosen, 2019a)). In
fact, (Zhou & Harrow, 2022) have shown the converse implication: if a gate
generates the maximal increase of entanglement then it is dual-unitary. This
is a manifestation of the special nature of dual-unitary circuits: because of
their space-time swap symmetry correlations (and entanglement) propagate
maximally fast in these systems.

The exact calculation above can be repeated for all states preserving the
unitarity of the space evolution, which have been introduced and classified
by (Piroli, Bertini, Cirac, & Prosen, 2020). In particular, these states can
always be written as “two-site” matrix-product states of the form

|Ψ0(M)⟩ = 1
dL/2

d∑
i1,i2,...=1

tr
[
Mi1,i2Mi3,i4. . .

]
|i1, i2, . . . , i2L⟩

= 1
dL/2 , (2.38)

where the matrix

⟨ij|Γ|kℓ⟩ =
i k

j ℓ
(2.39)

is unitary. Moreover, (Foligno & Bertini, 2023) have shown that — even
when the initial state is not of this form — for almost all dual-unitary
circuits the entanglement growth eventually approaches the maximal rate
at large times.
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Lecture 3

In the previous lecture we saw that BQCs can be used to characterise univer-
sal properties of quantum many-body dynamics, in some cases even exactly.
In this lecture we will discuss how to use BQCs to distinguish different kinds
of quantum many-body dynamics based on their complexity.

The basic question is how to define complexity or chaos in the quantum
realm and whether one can establish in this setting something analogous to
the ergodic hierarchy occurring in classical systems. This question is fam-
ously hard because of the inherent differences between quantum and classical
mechanics. For instance, in quantum mechanics there are no trajectories —
ruling out the intuitive notion of chaos in terms of sensitivity to the initial
conditions that we all heard about in pop science. In extreme summary, the
many different approaches proposed to address this problem in the last fifty
years can be organised in two main groups

1. “Spectral” (historical): Chaos is indirectly linked to some features of
the system’s spectrum (set of eigenvalues of the Hamiltonian/evolution
operator): chaos ⇐⇒ spectrum similar to that of a random matrix.

2. “Dynamical” (modern): Chaos is directly linked to features of the sys-
tem’s dynamics. The most utilised ones are the ability of the dynamics
to scramble quantum information (make local (in space) information
increasingly more non-local) or to the computational complexity of
their classical simulation.

Remarkably, BQCs have allowed us to make key progress in both these
directions. In this final lecture I will discuss two examples, showing that in
the case of dual-unitary circuits one can even obtain exact results.

3.1 Dynamical chaos via local operator entangle-
ment

Let us begin by discussing the dynamical approach. I this lecture I will con-
sider a “practical” definition of dynamical quantum chaos based the hardness
of classical simulations.
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As we saw in the previous lecture the entanglement of quantum states
grows very quickly after quantum quenches in almost all scenarios. There-
fore, it does not provide a good criterion to characterise the complexity of
the dynamics. One can, however, ask what happens if instead of states we
evolve operators, i.e., we adopt the Heisenberg picture. For example, let us
consider a local operator OL/2 acting non-trivially only at position x = L/2
and evolve it in time

OL/2(t) = U−tOL/2Ut, (3.1)

and imagine to expand it in a basis of operators “in product form” containing
O — for example for d = 2 one can imagine to take O = X and expand
in the Pauli basis. If the dynamics is particularly simple — for example
a BQC composed only of SWAP gates — this expansion will only contain
one term. Conversely, for more complicated dynamics one can expect that
the number of terms in the expansion will grow very fast with time as the
support of the operator grows. (Prosen & Žnidarič, 2007; Prosen & Pižorn,
2007) proposed to quantify this process using an appropriate entanglement
measure.

To define it let us look at this operator as a state of a larger (doubled)
system — formally this is achieved by an operator-to-state mapping acting
on an operator basis as

|n1, . . . , n2L⟩⟨m1, . . . ,m2L| 7−→ |n1,m1, . . . , n2L,m2L⟩ , (3.2)

where {|n⟩}d
n=0 is a given basis of Cd and the symbols for state placed

next to each other represent tensor products |n,m⟩ = |n⟩ ⊗ |m⟩. In fact
this mapping is nothing but the folding mapping discussed in the previous
lecture (cf. Sec. 2.1.1) specialised to the one-replica case (n = 1). Under
this mapping the local operator of interest transforms as

OL/2(t) 7−→ |OL/2(t)⟩ = (OL/2(t) ⊗ 1) | ⟩⊗L , (3.3)

where the state | ⟩⊗L is known as “Choi state” in quantum information
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theory. Diagrammatically we have

OL/2(t) = O 7−→ |OL/2(t)⟩ =

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

O

, (3.4)

where we introduced the symbol

O = |O⟩ = O ⊗ 1 | ⟩ , (3.5)

to denote the folded version of O.

Now that we have |OL/2(t)⟩, following (Prosen & Žnidarič, 2007; Prosen
& Pižorn, 2007), we compute its entanglement over an arbitrary (but con-
tiguous) spatial bipartition A∪Ā. For instance, proceeding as in the previous
lecture the second Rényi entropy can be expressed as

S
(2)
O,A(t) = − log tr

[
ρ2

O,A(t)
]
, (3.6)
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where the operator purity tr
[
ρ2

O,A(t)
]

is given by

tr
[
ρ2

O,A(t)
]

= 1
d4L

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

O

. (3.7)

In the diagram above I introduced two special paring states

| ⟩ =
d∑

i1,...,i4=1
|i1, i2, i2, i1, i3, i4, i4, i3⟩ ≡ , (3.8)

| ⟩ =
d∑

i1,...,i4=1
|i1, i2, i3, i4, i4, i3, i2, i1⟩ ≡ , (3.9)

and used the diagram in Eq. (3.5) to denote the replicated version of the
folded local operator (O ⊗ 1 7→ (O ⊗ 1⊗ O† ⊗ 1)⊗n=2).

The entanglement of |OL/2(t)⟩ is often succinctly referred to as local
operator entanglement (LOE). Besides quantifying the complexity of im-
plementing the Heisenberg evolution of local operators with tensor net-
work methods, LOE is indeed believed to distinguish integrable and non-
integrable dynamics. All the examples that we could characterise so far
have shown (or suggested) that for integrable systems the growth of LOE
entropies is sub-linear (bounded by a term ∝ log t) while for non-integrable
systems is linear.

As we will now see, BQCs (and especially dual-unitary ones) can be used
to provide analytical support to these statements.

3.1.1 Local operator entanglement in dual-unitary circuits

Let us now embark on a more explicit calculation of local operator entan-
glement. For simplicity, consider the second Rényi entropy of LOE (the
discussion, however, generalises directly to all n ≥ 2).

We begin by using the unitarity relations (cf. Eq. (2.29)) fulfilled by the
local gates to reduce the diagram for the operator purity to the causal light
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cone. Conveniently rotating it by 45 degrees we have

tr
[
ρ2

O,A(t)
]

= 1
d2t

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

t+ x

t− x

O

, (3.10)

where I denoted by x the distance between L/2 (which we assumed to be
integer) and last site belonging to the subsystem A. Note that — differ-
ently from what happened in last lecture’s state entanglement calculation
(see Sec. 2.2.2) — even when specialising the treatment to dual-unitary cir-
cuits, and hence acquiring the additional relations in Eq. (2.30), the diagram
cannot be directly contracted. We should have expected this as the dual-
unitarity relations are fulfilled both by integrable (e.g. the SWAP gate) and
non-integrable gates — see the parameterisation in Eq. (2.31) — while we
believe the operator purity to behave differently in the two cases.

To make progress, one can note that the diagram above can be expressed
as follows

tr
[
ρ2

O,A(t)
]

= ⟨ . . .︸ ︷︷ ︸
x−

|R ,x−(Rx−)x+−1| . . .︸ ︷︷ ︸
x−

⟩ (3.11)

= ⟨ . . .︸ ︷︷ ︸
x+−1

|(Lx+)x− | . . .︸ ︷︷ ︸
x+

⟩ , (3.12)

where I introduced the “light cone coordinates” x± = t±x and the transfer
matrices

Rx = 4 4 4 4 4

x

, (3.13)

R ,x = 4 4 4 4 4

x

O, (3.14)

Lx = 4 4 4 4 4

x

. (3.15)

I now state and prove two simple lemmas that help characterising these
matrices
Lemma 1. For all unitary local gates {U (x)} the transfer matrix Tx =
Rx, R ,x, Lx fulfils

∥Tx∥ ≤ d2. (3.16)
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Proof. Without loss of generality I prove it for Rx. First note that, by
appropriate unfolding, the matrix can be written as

Rx = 2 2 2 2 2
2 2 2 2 2

x x

, (3.17)

where in green I depicted the hermitian conjugate of the gate, i.e.,

n =
2n

= (U∗ ⊗ U)⊗n . (3.18)

Next, using the sub-multiplicativity of the operator norm and the unitarity
of the gates we have

∥Rx∥ ≤ ∥ 2 ∥x∥ 2 ∥x ⟨ | ⟩ = d2. (3.19)

Lemma 2. For dual-unitary local gates {U (x)} there are at least x+1 eigen-
vectors (left and right) of Rx and Lx corresponding to eigenvalue d2. They
are explicitly given by

{|ry⟩ = | · · ·︸ ︷︷ ︸
y

· · ·︸ ︷︷ ︸
x−y

⟩ , y = 0, . . . , x} for Rx, (3.20)

{|ℓy⟩ = | · · ·︸ ︷︷ ︸
y

· · ·︸ ︷︷ ︸
x−y

⟩ , y = 0, . . . , x} for Lx. (3.21)

When the local gates are not dual unitary |r0⟩ and |ℓ0⟩ continue to be right
eigenvectors and ⟨rx| and ⟨ℓx| left eigenvectors.

Proof. The proof follows immediately from the (dual) unitarity relations in
Eqs. (2.29) and (2.30) specialised to |σ⟩ = | ⟩ , | ⟩ , | ⟩.

These lemmas imply that the leading eigenvalue of both Rx and Lx is
d2 for all unitary gates 1, and provide a characterisation of the correspond-
ing eigenspace. Therefore, we can hope to use them to at least evaluate
Eq. (3.12) in the limit where one of x± is kept fixed and the other is large
— which means focussing on bipartitions AĀ where the boundary between
A and Ā is close to either the left or right edge of the causal light cone.
Indeed, this limit can be characterised by making the replacement

T x 7−→ d2x
∑

y

|vy⟩⟨wy| , (3.22)

1The operator norm bounds the spectral radius from above.
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where {vy} and {wy} are bi-orthonormal bases of the leading eigenvalue
eigenspace of T = R,L.

The question then is whether the eigenvectors identified in Lemma 2
exhaust the leading-eigenvalue eigenspace. They do not do so in all cases:
for example, when all the local gates are SWAPs the matrices Rx and Lx

become proportional to the identity matrix that has d8x “leading” eigen-
vectors. However, for generic enough dual unitary circuits — for example
when U is picked at random from the family in Eq. (2.31) — numerics in-
dicates that the family of Lemma 2 is indeed exhaustive. This statement
is still unproven but I suspect that a proof can be found reasoning along
the lines of (Foligno & Bertini, 2025), where it is shown that for randomly
picked dual unitary gates the matrix

1
d

1 1 1 1 1

x

, (3.23)

has a unique leading eigenvalue for all x.
The above observations motivate us to formulate the following definition.

Definition 1. A family of dual-unitary local gates {U (x)} is completely
chaotic if the only eigenvectors of Rx and Lx corresponding to eigenvalue
d2 are those listed in Lemma 2. The corresponding circuit is a completely
chaotic dual-unitary circuit.

Using Eq. (3.22) we then have that for completely chaotic dual-unitary
circuits the operator purity fulfils

lim
x−→∞

tr
[
ρ2

O,A(t)
]

= 1
d2x+

x+∑
y=0

⟨ · · ·︸ ︷︷ ︸
x+−1

|ℓ̃y⟩ ⟨ℓ̃y| · · ·︸ ︷︷ ︸
x+

⟩ (3.24)

= d2−2x+

d2 − 1 , (3.25)

where I introduced the orthonormalised family of vectors

|ℓ̃0⟩ = 1
d2x

|ℓ0⟩ , |ℓ̃y≥1⟩ = d2 |ℓy⟩ − |ℓy−1⟩
d2x

√
d2 − 1

, (3.26)

used ⟨ · · · |ℓ̃y⟩ = δy,0, and ⟨ℓ̃0| · · · ⟩ = 1.
The result in Eq. (3.25) shows that — up to the order one contribution

d2/(d2−1) — the purity is minimal in this limit. In other words, the operator
state |OL/2(t)⟩ almost maximally entangled if one takes a bipartition that is
close to the left edge of the causal light cone (see Fig. 3.1). The fact that the
entanglement is not exactly maximal can be understood from the behaviour
of dynamical two-point functions in dual-unitary circuits (Bertini et al.,
2025). Indeed, for an operator prepared in an integer site, the correlation is
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non-zero only if computed exactly at the left edge of the causal light cone.
This means that expanding OL/2(t) in a product-operator basis there can
be no contribution with the identity operator at the left edge of the light
cone. This constraint limits the entanglement (increasing the purity by a
factor d2/(d2 −1)). I also remark that if one uses the same logic — assuming
that the eigenvector of Lemma 2 are exhaustive — also for non-dual-unitary
circuits, one immediately has tr [ρ2

O,A(t)] = 1. This result is boring but
makes sense: for non-dual-unitary circuits the spreading of correlations is
slower and the regions close to the light cone edge are not entangled. To
find a non-trivial result in this case one would need to place the cut deeper
into the light cone.

An analogous (but slightly more involved) calculation gives the following
result for the other edge of the light cone

lim
x+→∞

tr
[
ρ2

O,A(t)
]

= 1
d2x−

x−∑
y=0

⟨ . . .︸ ︷︷ ︸
x−

|R ,x− |r̃y⟩ ⟨r̃y| . . .︸ ︷︷ ︸
x−

⟩ (3.27)

=
x−∑
y=1

(ck(O)2 − ck−1(O)2)d2−2k + c0(O)2 , (3.28)

where I again introduced the orthonormalised family of eigenvectors (same
definition as in Eq. (3.26) with ℓ 7→ r) and set

ck(O) = 1
d2(x−k) 1 1 1 1

1 1 1 1

x− k x− k

OO
. (3.29)

When x− becomes large this result simplifies further to

lim
x+→∞

tr
[
ρ2

O,A(t)
]

≃
{

|λ|4x− |λ| ≥ d−1/2

d−2x− |λ| ≤ d−1/2 , (3.30)

where λ is the leading sub-leading eigenvalue of the matrix in Eq. (3.23) for
x = 1. Interestingly, in this case the state is maximally mixed only if |λ| is
small enough. This phenomenon can again be connected to the behaviour
of two-point functions, indeed, it turns out that |λ| is the factor controlling
their exponential decay (Bertini et al., 2025). Therefore, Eq. (3.28) implies
that for to cuts close to the right light-cone edge |OL/2(t)⟩ is maximally
mixed only when correlations decay sufficiently fast (cf. Fig. 3.1).

Putting all together, we that the Rényi-2 entropy of LOE fulfils

S
(2)
O,A(t) ≃


2x+ log d x− → ∞
4x− log(1/|λ|) x+ → ∞ & λ ≥ d−1/2

2x− log d x+ → ∞ & λ ≤ d−1/2
. (3.31)
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t

xO

maximally mixed generically not
maximally mixed

Figure 3.1: Causal light cone.

Namely it has volume law scaling in the limits considered. In fact, (Bertini,
Kos, & Prosen, 2020a) have argued that Eqs. (3.25) and (3.30) describe the
leading order scaling of S(2)

O,A(t) also away from these limits. More precisely,
one has

S
(2)
O,A(t) ≃ − log[Eq. (3.25) + Eq. (3.30)] = O(t). (3.32)

This volume law scaling should be compared to the result for integrable
dual-unitary circuits, for which (Bertini, Kos, & Prosen, 2020b) have shown
that S(2)

O,A(t) is bounded by a constant.
An analogous picture is observed for all LOE Rényi entropies with n ≥ 2.

The only difference is that the change of behaviour in Eq. (3.30) occurs for
λ = d(1−n)/n. This means that the LOE entanglement entropy (n → 1) is
always maximal (Bertini et al., 2020a).

3.2 Spectral chaos via spectral form factor
The first investigations of “quantum chaos” date back to the end of the
1970s with an intense research effort continuing throughout 1980s. In those
days, by studying numerous specific examples, researchers observed that, in
the semiclassical limit, few particle systems that are classically chaotic show
strong correlations among the eigenvalues of their evolution operator. These
correlations were seen to coincide with those occurring in a random matrix
with the same anti-unitary symmetries (e.g. time-reversal). At the same
time, it was noted that the semiclassical spectrum of few particle classic-
ally integrable models showed no correlations, i.e., it was a Poisson process.
These behaviours were then taken to be the defining feature of integrability
and chaoticity in the quantum realm (Casati, Valz-Gris, & Guarnieri, 1980;
Bohigas, Giannoni, & Schmit, 1984; Berry & Tabor, 1977) and their occur-
rence in the semiclassical regime was partially explained by means of periodic
orbit theory (Müller, Heusler, Braun, Haake, & Altland, 2004; Müller et al.,
2004).
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K(t)

t

CUE

COE

Poisson

N

N

Figure 3.2: Schematic behaviour of the SFF for N × N random unitary
matrices in two of the circular ensembles (COE/CUE) and a collection of
N uncorrelated levels (Poisson).

With the improvement of computers, however, numerical investigations
started to show that such a sharp difference in the spectral correlations
is also present between integrable and non-integrable quantum many-body
systems far from any semiclassical limit — like spin-1/2 chains. In this case
the origin of this difference remained long unexplained. As a final part of
this lecture I want to show how BQCs allow us to resolve the impasse and
give an analytical characterisation to this behaviour.

I will consider a simple measure of “spectral correlations” — known as
spectral form factor (SFF) — which is defined as

K(t) = E

 N∑
j,j′=1

ei(φj−φj′ )t

 = E
[

|trUt|2
]
, (3.33)

where N is the size of the evolution operator (dimension of the Hilbert
space). The phases {φj} appearing in the above equation are the eigenvalues
of the time evolution operator U (sometimes called quasi-energies), while the
average E[·] is over an ensemble of similar systems, or a moving time average.
The explicit average is needed to extract the universal part of the SFF as
the latter is not self-averaging (Prange, 1997).

The SFF can be directly computed when the average is taken over the
standard ensembles of random unitary matrices (Mehta, 2004). In particu-
lar, I report three relevant examples in Fig. 3.2. The red curve corresponds
to the SFF averaged over random unitary matrices distributed according to
the flat Haar measure — this ensemble is not time reversal invariant and
is known as circular unitary ensemble (CUE). For the blue curve the av-
erage is taken over symmetric unitary matrices UTU , with U distributed
according to the Haar measure — this is a time reversal invariant ensemble
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known as circular orthogonal ensemble (COE). Finally, the green line cor-
responds to an average over uncorrelated quasi-energies (Poisson process).
The main feature signalling spectral correlations is the presence of the ini-
tial slope (“the ramp”) in the first two curves — this is a hallmark of “level
repulsion”. Specifically, for large N we have

K(t) =


t+O(t/N ), CUE
2t+O(t/N ), COE
N , Poisson

. (3.34)

To compare with this result, let us now compute the SFF in a BQC.
Considering a U of the form in Eq. (1.1) we can write Eq. (3.33) as

K(t)= E


11111

11111

11111

11111

11111

11111

2L

2t



, (3.35)

where I am again using the folded representation discussed in the previous
lecture (Sec. 2.1.1) and I conveniently defined the average E[·] to be over
random local gates {U (x)} (not necessarily distributed according to the Haar
measure) with two important properties

a. Gates at different spatial sites are independent;

b. Gates are correlated in time, i.e., each vertical column has the same
matrix (same shade of colour in the above diagram);

The second property ensures that this random BQC has a well defined time-
evolution operator. The first, instead, implies that the average factorises in
space and we can write the SFF as

K(t) = tr
[
TL

]
, (3.36)
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where I introduced the left-to-right operating space transfer matrix

T = E

 1

1

1

1

1

1


. (3.37)

The problem of computing the SFF is then mapped into that of character-
ising the spectrum of T. This was done for different choices of random gates
in the large d limit (see, e.g., (Chan et al., 2018a; Chan, De Luca, & Chalker,
2018b)) and exactly for dual unitary circuits (Bertini, Kos, & Prosen, 2018,
2021). In the following I will briefly discuss the latter case.

3.2.1 Spectral form factor in dual-unitary circuits

In the case of dual unitary circuits one considers random local gates of the
form

= (u(x) ⊗ 1)W (w(x) ⊗ 1), (3.38)

where W is an arbitrary dual-unitary gate parameterised as in Eq. (2.31),
while u(x) and w(x) are random and independently distributed according to
some smooth, but arbitrary distribution in U(q). The dual-unitary gate W
can be taken to be position dependent but, for simplicity, in the following I
will consider the spatially homogeneous case.

For this choice (Bertini et al., 2021) proved the following Theorem.

Theorem. For any (smooth) distribution of ux, wx and any dual-unitary
gate W in Eq. (2.31) with J ̸= 0

lim
L→∞

K(t) = t . (3.39)

This theorem guarantees that, in the thermodynamic limit, the dual-
unitary BQC recovers the result obtained for non-T-symmetric random unit-
ary matrices (CUE) of infinite size. The thermodynamic limit is considered
to aid the analytical derivation (see below) while the fact that we recover the
CUE result makes sense since the circuit defined by the gates in Eq. (3.38)
is not T-symmetric. In fact, (Bertini et al., 2018) proved an analogous
theorem for a particular example of T-symmetric dual-unitary circuit (the
self-dual kicked Ising model). In that case t → 2t in agreement with the

38



LECTURE 3. 39

COE result. One can also constrain the setting described above to gener-
ate a T -symmetric circuit (cf. (Bertini et al., 2021)) but for this setting the
analogue theorem is still unproven (see Remark 1. below).

The proof of the above theorem is rather convoluted and I will not dis-
cuss it in detail here. However, I will conclude this lecture giving an idea
of the proof strategy focussing on the case d = 2. In essence, one should
proceed in three main steps.

Step 1. Bound the spectral radius 2 of T. This is done by writing the
matrix in Eq. (3.37) explicitly as

T = (W̃ ⊗r W̃∗)O†(ΠW̃Π† ⊗r Π∗W̃∗ΠT )O , (3.40)

where Π is the one-site shift operator of the 2t-site temporal lattice, ⊗r is
the tensor product between forward and backward time sheet and I set

W̃ = W̃⊗t, O = E
[
(v ⊗ w)⊗t ⊗r (v∗ ⊗ w∗)⊗t

]
. (3.41)

Writing v and w in terms of the SU(2) generators, O can be expressed
explicitly as

O=
∫

d3θd3φ f(θ)g(φ)eiθ·(M0⊗1−1⊗M∗
0 )eiφ·(M1⊗1−1⊗M∗

1 ), (3.42)

where I introduced the temporal sub-lattice magnetisations

[Mι]a ≡ Ma,ι =
t−1∑
τ=0

σa
τ+ ι

2
, (3.43)

with {σa} Pauli matrices, ι = 0 denoting to the integer sublattice, and ι = 1
the half-odd-integer sublattice. From the form in Eq. (3.40) we can then
conclude the spectral radius of T is bounded by one.

Step 2. Reformulate the problem. Show that maximal-eigenvalue problem
for T, i.e.,

T |A⟩ = eiα |A⟩ , (3.44)

can be recast into a set of commutation identities. Namely, show that |A⟩ ∈
Cd4t solving Eq. (3.44) is in 1-1 correspondence with A ∈ End(Cd2t) solving

[A,Ma,ι] = 0, [A,Mab,ι] = 0 , a, b ∈ {x, y, z}, ι ∈ {0, 1} , (3.45)

where I introduced the temporal sub-lattice double magnetisations

Mab,ι =
t−1∑
τ=0

σa
τ+ ι

2
σb

τ+ ι+1
2
. (3.46)

2The maximal magnitude of the eigenvalues.
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In doing so one also shows that Eq. (3.44) has solutions only for α = 0.

Third. Show that {Ma,ι,Mab,ι} generate the full algebra of 2-site shit in-
variant operators on the temporal lattice. Therefore, the only operators
commuting with them are the powers of Π2, i.e.

Π2n, n = 0, . . . , t− 1. (3.47)

This shows that we indeed have t eigenvalues.

Let me conclude with two final remarks:

1. One can repeat the first two steps for a T-symmetric circuit, show-
ing that Ma,ι and Mab,ι are replaced by Ma,ι + RMa,ιR and Mab,ι +
RMab,ιR, where R is the operator implementing a reflection of the
temporal lattice about its centre. The third step, however, is still
open.

2. A similar approach can be used to compute the higher moments of the
SFF, i.e.

Kn(t) = E
[

|trUt|2n
]
. (3.48)

which also show a universal behaviour in agreement with random mat-
rix theory. In this case one needs to find the commutant of K⊗n (where
K algebra generated by {Ma,ι,Mab,ι}). This problem is also still open.
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