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Abstract

We propose a new way to relate the black hole thermodynamics and geometry by generalizing the Eu-
clidean formalism to include ‘virtual geometries’, which do not necessarily satisfy Einstein equations. This
provides a physically well motivated route to study black hole criticality and obtain the Landau–Ginzburg
potential. We compute the ‘virtual thermodynamic potential’ and show that it satisfies a modified quan-
tum statistical relation that is compatible with the first law of black hole thermodynamics supplemented
with an extra term, interpreted as virtual work in previous literature. The novelty is that, within our
formalism, we can explicitly compute this term as the first derivative of the virtual thermodynamic poten-
tial with respect to the horizon radius that is considered as the order parameter. Imposing the physical
condition that the first derivative vanishes is at the basis of the matching between the first law of black
hole thermodynamics and (one of the) Einstein equations evaluated at the horizon. Interestingly, imposing
the physical conditions that the second and third derivatives vanish, we can concretely study the criticality
and existence of swallow tails. As a specific example, we apply this formalism to an exact 4−dimensional
asymptotically flat hairy black hole, namely the generalized Kaluza-Klein (KK) black hole when the dilaton
potential is included, and show that it is thermodynamically stable and has a non-trivial critical behaviour
corresponding to an inverted swallowtail.
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1 Introduction

Explaining the thermodynamic nature of black holes must be an essential feature of any complete quantum
theory of gravity. Providing tools similar with the ones used for non-gravitational quantum systems to investi-
gate the thermodynamics, phase diagram, and criticality of black holes is essential for this line of inquiry. The
seminal work of Gibbons and Hawking [1] is an example of how the gravitational path integral and partition
function can be used to extract thermodynamic and statistical insights about quantum gravity. The thermal
aspects of black holes can then be studied by the Euclidean path integral that has two parts: the gravitational
contribution, which is the Euclidean action evaluated on the spacetime geometry and quantum contribution,
which is obtained by computing the partition function of the quantum fields living on this geometry.1 In this
context, the subtle relationship between thermodynamics and geometry is revealed: the temperature is the pe-
riodicity of the Euclidean time once the conical singularity is removed and thermodynamic potential is related
to the regularized Euclidean action. In this way, the quantum statistical relation in (grand) canonical ensemble
[1], which is compatible with the first law of thermodynamics when the black hole entropy is determined by
1/4 of the event horizon area (in theories without higher derivative corrections) [3, 4, 5], can be obtained.2

The black hole thermodynamics makes sense only in a theoretical framework in which the black holes are
thermodynamically stable. This is not the case for black holes in flat spacetime. However, a scalar field with
self-interaction thermodynamically stabilizes the black hole [7, 8, 9, 10]. Intuitively, the dilaton potential plays
the role of a box and so, since the backreaction is relevant sufficiently close to the horion, only the small
hairy black holes are thermodynamically stable. While this is a toy example, it could very well be that the
dark matter has the same effect. Elucidating this aspect could be relevant for understanding the existence of
supermassive black holes that can not be formed by gravitational collapse. One can imagine a scenario where,
in the early universe, small black holes exist in a suitable environment that makes them thermodynamically
stable, e.g. surrounded by dark matter. Then, after a long time, they can grow up to become supermassive if
there is enough matter around they can absorb.

Various interesting attempts to understand the thermodynamic origin of gravity were put forward [11, 12,
13, 14], though a clear and complete understanding is still lacking. Particularly useful for our work is the
proposal of Padmanabhan [12, 13] to interpret Einstein equation as a thermodynamic identity for a virtual
displacement of the horizon. While this expression is compatible with the first law of thermodynamics up to
a virtual work term, it is again completely local and it was derived quite differently from the usual first law
of black hole thermodynamics. Since General Relativity is a classical field theory of gravity and the black
hole thermodynamics is inherently a quantum effect, one would expect to understand the origin of the virtual
term (and, also, the appearance of Planck constant) directly from the Euclidean formalism. This hints to the
fact that the ‘virtual geometries’, which encode the horizon fluctuations of a black hole, could play a role in
elucidating the puzzle of the relation between thermodynamics and dynamics (encoded in Einstein equations)
of the gravitational field.

1Some issues related to the Euclidean Einstein-Hilbert action are discussed in the recent paper, [2].
2In the last years, there is also important progress in understanding the entropy of Hawking radiation, see [6] for a nice review.
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Our main goal here is to provide another concrete application of Euclidean gravity action to study black
hole criticality and obtain the Landau-Ginzburg potential. Interestingly, using this method, we are able to
also solve the puzzle mentioned above. That is, we have to consider an infinite family of virtual geometries,
evaluate the corresponding regularized Euclidean action (including counterterms), interpret in a consistent way
the virtual work term, and only then impose the physical constraint. From all virtual geometries, only the one
that satisfies Einstein equations evaluated at the horizon is compatible with the first law of thermodynamics
when the virtual work vanishes. The relevance of the horizon becomes clear by the fact that its radius, which
is used as the order parameter (that distinguishes between different phases) in our formalism, controls the
virtual work term.

Specifically, our proposal resembles the virtual work techniques used in solid bodies. A kinematically
admissible displacement field is defined to be one that does not violate the boundary conditions. Such a
displacement field would induce some stress field within the body, though it might not satisfy the equations
of motion. The virtual displacements, even if physically impossible, must be compatible with the geometry
of the original structure, which in our case is the spacetime geometry itself. We therefore consider changing
the black hole metric by virtual transformations, which preserve the asymptotic structure and existence of the
horizon, but not the black hole temperature. In this way, we provide a general formalism to study the black
hole criticality.

Finally, as a concrete application, we are going to apply this formalism to an exact hairy black hole solution,
namely a generalization of the Kaluza-Klein black hole [15] for which the dilaton is endowed with a potential
that originates from an electromagnetic Fayet-Iliopoulos (FI) term in N = 2 extended supergravity in four
spacetime dimensions. This solution is part of a more general class of exact hairy black hole solutions [16],
which can be embedded in supergravity [17, 18] and exist also in flat spacetime [19]. Surprisingly, these
asymptotically flat hairy black hole solutions are thermodynamically [7, 8] and dynamically [9, 10] stable. We
prove that there exists a critical point in the grand canonical ensemble and find that the corresponding critical
behaviour is of an inverted swallowtail with the stable black hole region appearing on the lower part of the
curve instead of the upper part.

2 Virtual thermodynamic potential

2.1 The model

The theory under consideration is an Einstein-Maxwell-dilaton model endowed with a particular supergravity
dilaton potential [17, 18]. It is described by the action:

Ibulk =
1

16π

∫
M
d4x

√
−g

[
R− eγϕF 2 − 1

2
(∂ϕ)2 − V (ϕ)

]
≡ 1

16π

∫
M
d4x

√
−gL (1)

where ϕ is the scalar field with self-interaction potential V (ϕ), and (∂ϕ)2 ≡ gµν∂µϕ∂νϕ. The field strength is
defined as Fµν = ∂µAν − ∂νAµ, where Aµ is the gauge potential, and F 2 ≡ FµνF

µν . We have also adopted
the natural units G = c = 1, so that the gravitational coupling constant is κ = 8π, and ϵ0 = (4π)−1.

While, in principle, our proposal of integrating the Euclidean action can be used for this general theory, in
what follows we shall be focusing on the concrete case γ =

√
3 when the dilaton is endowed with the potential

discussed in [17, 18], which has the form:

V (ϕ) = α

[
sinh

(√
3ϕ

)
+ 9 sinh

(
ϕ√
3

)
− 12ϕ√

3
cosh

(
ϕ√
3

)]
(2)

where α is a dimensionful parameter, with dimensions of ℓ−2, where ℓ is the dimensional unit of length. It
was shown that the model (1) with the potential (2) is a consistent truncation of N = 2 supergravity in four
spacetime dimensions, coupled to a vector multiplet and deformed by a Fayet-Iliopoulos term [17, 18].

The advantage of considering the dilaton superpotential (2) is that the theory supports an exact asymp-
totically flat hairy black hole solution [19] (the generalization of KK black hole) that, surprisingly, is thermo-
dynamically stable [7, 8, 9, 10].

2.2 Virtual geometry

A deformation of the black hole horizon by a virtual transformation is defined as a ‘virtual geometry’ that
preserves the boundary conditions and existence of the horizon, though its temperature is arbitrary. The
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‘virtual thermodynamic potential’ is obtained from the regularized Euclidean action, including the countert-
erms [20, 21, 22],3 evaluated on a virtual geometry and is compatible with a modified first law of black hole
thermodynamics that includes a virtual work term.

Let us consider a general asymptotically flat spacetime geometry, which corresponds to the following static
spherically symmetric ansatz4

ds2 = Ω(x)

[
−f(x)dt2 + η2dx2

f(x)
+ dθ2 + sin2 θdφ2

]
(3)

where x is a dimensionless coordinate related to the usual radial one, which is compatible with the canonical
asymptotically flat Arnowitt-Deser-Misner (ADM) structure [29, 30, 31, 32], by the following transformation:

x = 1 +
1

ηr
+ · · · (4)

with x > 1, where x → 1 represents the location of the boundary at r → ∞ and x → ∞ corresponds to
r = 0 (e.g., the singularity of the hairy black hole). For computational reasons, we have also introduced
in a non-usual way the integration constant η with the dimensional unit dim η = ℓ−1. As we will show in
Section 4, while such a rescaling is trivial for Reissner–Nordström black hole, it can be interpreted as one of
the integration constants for charged hairy black holes. The metric function f(x) has then the dimensional
unit dim f = ℓ−2, such that the expression in the parentheses is dimensionless. Without loss of generality, we
assume η > 0.

The metric functions should consistently behave at the boundary as

Ω(x) = r2 + · · · = 1

η2(x− 1)2
+ · · · , −gtt = f(x)Ω(x) = 1 + · · · ⇒ f(x) = η2(x− 1)2 + · · · (5)

Since the dilaton equation of motion,

Eϕ ≡ ∇µ∇µϕ− dV (ϕ)

dϕ
−
√
3e

√
3ϕF 2 = 0 (6)

is not an independent equation for the metric (3), the full system of equations is determined by the independent
Einstein equations Eµν = 0, where

Eµν ≡ Rµν −
1

2
Rgµν −

1

2
∂µϕ∂νϕ+

1

2
gµν

[
1

2
(∂ϕ)2 + V (ϕ)

]
− 8πTEM

µν (7)

where TEM
µν ≡ 1

4π e
√
3ϕ(FµρFν

ρ− 1
4gµνF

2). Therefore, we have a system of three independent equations, namely

Ett = Exx = Eθθ = 0, for three variable functions, namely f(x), ϕ(x), and Ω(x). In what follows, however, we
will impose only two of these equations, which determine ϕ(x) and Ω(x), while f(x) will remain unspecified.

To be concrete, we can interpret this geometry as a black hole with an event horizon at xh when f(xh) = 0,
though it can be any geometry that contains a null surface. The advantage of using this specific ansatz is that
it provides us exact asymptotically flat hairy black hole solutions in a nice analytic form [19].

Lacking a satisfactory quantum description of the gravitational interaction, quantum field theory in curved
spacetimes is the adequate framework to describe the interaction of quantum fields with the space-time cur-
vature. The thermal aspects of black holes can be studied on the Euclidean section [1] obtained by ‘rotating’
real time to imaginary time by the usual Wick rotation, t → −iτ . Once the quantum fluctuations are traded
for thermal fluctuations, the temperature can be computed as the inverse of the periodicity of τ . What is
important for us is that we can still compute the temperature associated with virtual black hole geometry
(3), there is no need of using Einstein equations. That is, under the physical assumption that the Euclidean
geometry is smooth, the conical singularity can be removed by demanding a periodicity β of the Euclidean
time, and so

β ≡ ℏ
kBT

=
4πη

|f ′(xh)|
⇒ T =

ℏ
kB

|f ′(xh)|
4πη

(8)

where f ′(x) ≡ d
dxf(x), ℏ is the reduced Planck constant, and kB is the Boltzmann constant.

3We emphasize that, since the asymptotic value of the dilaton is fixed by the potential, there is no need of extra counterterms,
which should take care of such a variation [23].

4The ansatz (3) has been extensively considered in the context of hairy black holes, e.g. [16, 17, 18, 19, 24, 25, 26, 27, 28].
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2.3 Euclidean action and thermodynamics of virtual geometry

We are interested in Einstein-Maxwell-dilaton theory (1), where the metric (3) is considered as a virtual
geometry. The virtual displacement of the horizon is encoded in f(x). From a physical point of view, the
thermodynamic mass associated to a virtual displacement is the sum of a heat energy, namely the temperature
multiplied by the change in entropy, and the work done during this virtual deformation of the horizon. From
a mathematical point of view, the virtual work can be computed as a horizon contribution of the Euclidean
action evaluated on the virtual geometry.

The total Euclidean action, including the Gibbons-Hawking boundary term and gravitational counterterm,
is

I = IEbulk + IEGH + IEct = IEbulk −
1

8π

∫
∂M

d3x
√
hEK +

1

8π

∫
∂M

d3x
√
hE

√
2R (9)

where K is the trace of the extrinsic curvature tensor Kµν ≡ h αµ h
β
ν ∇αnβ with the unit normal to the

hypersurface x = constant, given by nµ = − δxµ√
gxx , and R = 2

Ω(x) is the Ricci scalar on that hypersurface with

the induced metric hab.
The gravitational counterterm, I E

ct , was added to remove the divergent contributions of the Euclidean
action for asymptotically flat spacetimes [20, 21]. The quasilocal formalism supplemented with counterterms
in flat spacetime and the corresponding regularized quasilocal stress tensor was used in [33] to obtain the
thermodynamics of the dipole black ring [34]. However, this formalism was put on a firm ground by Mann
and Marolf in [22], where they have shown that the addition of an appropriate covariant boundary term to
the gravitational action yields a well-defined variational principle for asymptotically flat spacetimes. This
becomes the standard tool that leads to a natural definition of conserved quantities at spatial infinity, e.g.
[35, 36, 37, 38, 39, 40, 41].

We consider the exact hairy black hole solution associated to the dilaton potential (2) for which the dilaton
and conformal factor are [19]

ϕ(x) =
√
3 ln(x) , Ω(x) =

4x

η2(x2 − 1)2
(10)

The Maxwell equation can be integrated in the electrostatic regime yielding to

F = dA = q exp
(
−
√
3ϕ

)
dt ∧ dx (11)

Using (11), the physical electric charge can be then expressed in terms of the integration constants as,

Q(η, q) =
1

4π

∮
s2∞

⋆
(
e
√
3ϕF

)
=
q

η
(12)

and further, using (10), we can explicitly obtain the electric field as Ftx = ηQ/x3. We fix the gauge such that
the electric potential vanishes at the horizon and matches the conjugate potential at the boundary:

A =

[
q(1− x2)

2x2
+Φ

]
dt , Φ =

ηQ(x2h − 1)

2x2h
(13)

Now, we evaluate the Euclidean action for an arbitrary function f(x) corresponding to a virtual fluctuation
of the horizon. The temperature (8) was computed, as usual, by eliminating the conical singularity, and so
the equations of motion are not used in any way in this computation. The conformal factor, obviously, do
not enter in the expression of the temperature and so it can be fixed while the temperature can be still kept
arbitrary.

We define the virtual thermodynamic potential as

G(T,Φ, xh) ≡ β−1IE =M − TS − ΦQ (14)

where, within this formalism, we identify

M(η, q) =
1

4η

(
x2h + 3

x2h − 1
+
x2h − 1

x2h
q2
)
+

[
x4h − 8x2h − 17

6(x2h − 1)2
+

2 lnxh(3x
2
h + 1)

(x2h − 1)3

]
α

η3
(15)

as the ‘virtual thermodynamic mass’ of the system, and S ≡ kB
4ℏA, where A = 4πΩ(xh) is the horizon area. We

emphasize that the virtual thermodynamic mass is not the quasilocal mass of the physical solution. However,
we are going to prove in Section 4 that, when the virtual work term vanishes, the virtual themodynamic mass
matches the quasilocal mass.
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3 Thermodynamic structure of the spacetime and the relation with
the previous literature

In this section, we prove that the thermodynamic relation presented in [12, 13], which contains a virtual
work term, is equivalent with the first law of thermodynamics for the virtual geometry (3). With this new
interpretation, there is no problem related to the existence of a non-zero electromagnetic energy-momentum
tensor in the right hand side of Einstein equations when the extra electrostatic contribution should be added
to the mass [13].

In Section 5.1 of [13] entitled ‘An unexplained connection between horizon thermodynamics and gravi-
tational dynamics’, Padmanabhan proved that Einstein equations can be reinterpreted as a thermodynamic
identity for a virtual displacement of the horizon by an infinitesimal amount. Even if the entire description is
local, this identity is compatible with the usual first law of black hole thermodynamics up to a virtual work
term, which allows obtaining the expressions for energy and entropy. Besides the appearance of the virtual
term, one problem with this interpretation is that the Planck constant appears only in using the Euclidean
extension of the metric to fix the form of temperature. Otherwise, it would be quite strange to use the dy-
namics of classical gravity to obtain the black hole thermodynamics that is quantum in origin. Due to the
equivalence principle, another obvious problem is that the concept of localized energy is challenging to define.
An understanding of the first law of black hole thermodynamics requires a definition of the thermodynamic
potential (and energy) that is coming from a computation of the action including the boundary terms and so
a complete apprehension of thermodynamics, at the semiclassical level, demands relating computations at the
horizon and black hole boundary.

In what follows, we relate the results from the previous section with Padmanabhan’s proposal [12, 13]. That
is, we explicitly show that the virtual geometries are compatible with the thermodynamic identity arising out
of infinitesimal virtual displacements of the horizon. In other words, we are going to demonstrate that, in
fact, this thermodynamic relation corresponds to a modified first law dM − TdS − ΦdQ = δWvirtual when
considering the virtual thermodynamic potential. The usual first law of thermodynamics, when δWvirtual = 0,
is recovered only when the Einstein equations are satisfied at the horizon.

From the definition of the virtual thermodynamic potential (14), we obtain

dG =

(
∂G
∂T

)
Φ,xh

dT +

(
∂G
∂Φ

)
T,xh

dΦ+

(
∂G
∂xh

)
Φ,T

dxh = −SdT −QdΦ+

(
∂G
∂xh

)
Φ,T

dxh (16)

compatible with a modified first law of black hole thermodynamics:

dM − TdS − ΦdQ =

(
∂G
∂xh

)
Φ,T

dxh (17)

We emphasize that, since we have only fixed the scalar field and conformal factor in the metric, leaving f(x)
arbitrary, one of the equations of motion, e.g. Ett = 0 of (7), still remains unsolved. The essential observation
is that the partial derivative of the virtual potential with respect to the horizon radius that appears on the
right-hand side of eq. (17) is(

∂G
∂xh

)
Φ,T

= −πkB
ℏ

Ω′(xh)(T − T0) =
1

2
ηΩ2(xh)Ett (xh) (18)

where

T0 ≡ ℏ
2πkB

ηΩ(xh)

Ω′(xh)

[
q2e−

√
3ϕh

η2Ω(xh)
+

Ω(xh)V (ϕh)

2
− 1

]
(19)

with ϕh ≡ ϕ(xh). Therefore, by imposing the on-shell condition at the horizon, Ett (xh) = 0, we obtain the
usual first law of black hole thermodynamics.

While the mathematical expression of the first law for hairy black holes [42] is correct, its physical inter-
pretation is problematic. This point was clarified in [23].

In string theory, by changing the asymptotic values of the moduli, the theory is changed and so the correct
interpretation is that the same black hole configuration is considered when the couplings of the theory are
changed. The black hole energy should change accordingly. On the other hand, from a General Relativity
point of view, we indeed obtain a modified first law, though this result is still physically incorrect. There is no
conserved charge associated with the hair and so the scalar charges should not appear in the first law. Once
the correct variational principle is considered, it was shown in [23] that the quasilocal mass satisfies the usual
first law without extra terms.
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Importantly, we would like to point out that, since in the presence of the dilaton potential its asymptotic
value, ϕ∞, is fixed, the results of [42] and [23] do not apply to our case. However, if we consider the parameter
of the potential, α, as a modulus and its variation, we obtain a modified Smarr formula similar with the
extended thermodynamics in AdS [43, 44] when the cosmological constant is variable:

M − 2TS − ΦQ+ 2αB =
2Ω(xh)

Ω′(xh)

(
∂G
∂xh

)
Φ,T

(20)

where

B =
(x2h − 1)(17 + 8x2h − x4h)− 12 lnxh(3x

2
h + 1)

6η3(x2h − 1)3
(21)

is the conjugate5 to the parameter α that control the self-interaction of the scalar field. This result should be
again interpreted as the change in the energy of a specific black hole configuration under the moduli variation.
On-shell, we recover the usual Smarr relation of hairy black holes with a dilaton potential, M −2TBHS−ΦQ+
2αB = 0.

4 Criticality of KK BH with a supergravity potential

In what follows we are going to use the virtual thermodynamic potential formalism to study the criticality of
KK black hole with a non-trivial dilaton potential. For simplicity, in this section we fix ℏ = 1, kB = 1.

We consider the exact hairy black hole solution,

f(x) = α

[
2 lnx+

1

2
(x2 − 1)(x2 − 3)

]
+
η2

4
(x2 − 1)2

[
1− q2

x2
(x2 − 1)

]
(22)

presented in [19] when γ =
√
3 (in Appendix, we provide a different way to obtain this exact solution by using

the integrability of the action). We can use (22) to obtain the black hole temperature

TBH =
(x2h − 1)2

4πηxh

[
η2q2(2x2h + 1)

4x2h
− 1

2

η2x2h
x2h − 1

− α

]
(23)

Interestingly, we can compute this temperature in a different way without using the full bulk solution. If
we consider the left hand side of the dilaton equation (6) at the horizon

Eϕ(xh) ≡
4πϕ′(xh)

ηΩ(xh)
(T − Tϕ) (24)

where

Tϕ ≡ − 1

4π

ηΩ(xh)

ϕ′(xh)

[
dV (ϕ)

dϕ

∣∣∣∣
ϕh

− 2
√
3q2e−

√
3ϕ(xh)

η2Ω2(xh)

]
(25)

then, the condition T0 = Tϕ is equivalent with the constraint f(xh) = 0. Crucially, we have not imposed the
individual equations Ett = 0 or Eϕ = 0, but only a relation between them:

Eϕ(xh) =
2Ω(xh)ϕ

′(xh)

Ω′(xh)
Ett (xh) (26)

and therefore the bulk function f(x) remains unsolved. Concretely, using T0 = Tϕ in the expression for the
virtual thermodynamic mass (15) to eliminate the xh dependence, we recover the correct quasilocal mass
associated to the physical solution,

Mquasilocal =
q2

η
− 1

2η
− 4α

3η3
(27)

In the previous section, we have obtained the virtual thermodynamic potential, G(T,Φ, xh). We have also
shown that setting (∂G/∂xh)T,Φ = 0 places the system on-shell. We now assert that imposing the vanishing
of the first three derivatives, i.e.,(

∂G
∂xh

)
Φ,β

= 0 ,

(
∂2G
∂x2h

)
Φ,β

= 0 ,

(
∂3G
∂x3h

)
Φ,β

= 0 (28)

5B ≡
(

∂M
∂α

)
S,Q

is required because of the presence of a dimensionful parameter, α, in the action [45].
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Figure 1: Left panel: G vs T displaying a standard swallowtail structure. The vertical lines indicate three representa-
tive isotherms. Right panel: The corresponding Landau-Ginzburg potential, Ψ vs ρ̂, for the same isotherms. For the
leftmost isotherm (red vertical line in the left panel), the globally stable phase is the small black hole branch, identified
by the global minimum of the uppermost curve in the right panel. As the temperature increases, the global minimum
shifts, and for the rightmost isotherm in the left panel the large black hole branch becomes the globally stable phase.
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Figure 2: Figure 2: Left panel: G = G(T ) for Φ = 0.70388, for which the inverted swallowtail structure occurs. The
cross, dot, and circle markers denote small, intermediate, and large black hole branches, respectively, intersecting the
isotherms at T ≃ 0.0601, T ≃ 0.0602, and T ≃ 0.0603. Right panel: The corresponding Landau–Ginzburg potential,
Ψ = Ψ(ρ̂), for ψ̂ ≃ 0.00057 (Φ = 0.70388), shown for the same three isotherms as in the left panel.

provides a criterion to obtain critical points, equivalent to the standard condition for criticality, ∂T/∂xh = 0
and ∂2T/∂x2h = 0. Solving the conditions (28), we find that the charged hairy black hole in the asymptotically
flat spacetime under consideration has a critical point in the phase space of the grand canonical ensemble 6

Tc ≈ 0.0617
√
α , Φc ≈ 0.70348 , Gc ≈ −0.1142√

α
(29)

Usually, the critical points are accompanied by normal swallowtails [46, 47, 48] with a corresponding Landau-
Ginzburg potential as schematically shown in Fig. 1. However, in special situations, e.g. when there exist
reentrant phase transitions [49, 50] the swallowtail is inverted as it is shown in Fig. 2. Since the swallowtail
is flipped, the stable regions appear on the lower part of the curve instead of the upper part. This clearly
indicates stable temperature regions for a system that would otherwise be unstable. In Fig. 3, we have
depicted the behavior of the on-shell thermodynamic potential G(T,Φ), where we can observe the appearance
of inverted swallowtails. The dilaton potential is essential for the existence of thermodynamically stable black
holes in flat spacetime.

To complete the analysis of the criticality, let us obtain the Landau-Ginzburg potential Ψ, by expanding
the virtual thermodynamic potential around the critical point. The first step is to introduce the following local
variables

ρ̂ ≡ 0.1643

(
xh
xc

− 1

)
− 144.1874ψ̂ + 4.7054β̂ (30)

and

ψ̂ =
Φ

Φc
− 1 , β̂ =

β

βc
− 1 (31)

6The other critical thermodynamic quantities are well-defined:

Mc = 0.5927α− 1
2 , Sc = 0.00351α−1 , Qc = 1.0046α− 1

2
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Figure 3: Left panel: 3D plot of G vs T and Φ. Right panel: Constant-Φ curves. Near the critical point, the
free energy surface develops a characteristic swallowtail structure, but in this case it appears inverted, with the ‘tail’
pointing downward.

where β = 1/T is arbitrary. The critical point is now located at ρ̂ = ψ̂ = β̂ = 0. In particular, the variable ρ̂
plays the role of an order parameter, as shown below. The second step is to expand the virtual thermodynamic
potential around the critical point up to the fourth order in ρ̂,

G ≈ Gc − 0.029ρ̂4 + (0.051β̂ − 1.583ψ̂)ρ̂2 + (−0.004β̂ + 0.172ψ̂)ρ̂+ 0.0002β̂ − 0.707ψ̂ (32)

We now define Ψ, the Landau-Ginsburg potential, as

Ψ ≡ G − Gc
|Gc|

(33)

In the expansion around the critical point, we obtain

Ψ(ρ̂) ≈ −1

4
ρ̂ 4 +

(
0.4464β̂ − 13.8596ψ̂

)
ρ̂2 −

(
0.0355β̂ − 1.5033ψ̂

)
ρ̂+ 0.0019β̂ − 6.1857ψ̂ (34)

In Fig.2, we have depicted Ψ vs ρ̂, for a fixed ψ̂ and for some values of β̂. The expression (34) has the standard
form of the Landau-Ginzburg potential presented in [51],

Ψ(ρ̂) = − ρ̂
4

4
− τ ρ̂2 +Hρ̂− C (35)

whereH represents an external field, τ is the deviation of the critical temperature, and ρ̂ is the order parameter.
One important difference is the negative sign of the ρ̂4 term that is positive in the standard form. This

suggests that there should be a higher-order term in the expansion with a positive coefficient to ensure that
the potential is stable and bounded from below. However, it is important to concretely check first if that is
indeed the case. Particularly, when there exist reentrant phase transitions the swallowtail is inverted and so
it is useful to check the usual thermodynamic potential for the existence of stable black holes.

In Fig. 2, three isotherms are depicted for a sensible value of Φ. The lower part of the inverted swallowtail
contains thermodynamically stable black holes. These configurations are located at the minimum of the
Landau-Ginzburg potential for the corresponding values of β̂. Unlike the AdS spacetime, there are no reentrant
phase transitions for asymptotically flat hairy black holes, there exists only a phase of stable black holes that
occurs within an interval T1(Φ) ≤ T ≤ T2(Φ), for the range

Φc ≈ 0.7035 < Φ <
1√
2
≈ 0.7071 (36)

where the inverted swallowtail forms.
Since the Landau-Ginzburg potential was obtained using the virtual thermodynamic potential, the on-shell

condition becomes (near the critical point) the equation of state,(
∂Ψ

∂ρ̂

)
β̂,ψ̂

≈ −ρ̂3 − 2τ ρ̂+H = 0 (37)
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Figure 4: G(T ) for decreasing conjugate potentials Φ = 1√
2

≈ 0.70711, 0.70710, 0.705, and Φc ≈ 0.70348, from

left to right. In particular, the second panel zooms into the physically relevant region with T1 < T ∗, where the
thermodynamically favoured black hole branch dominates over flat space.

where the number of real roots for ρ̂ is determined by the sign of discriminant ∆ = −32τ3−27H2. In Fig. 2 we
present a situation with ∆ > 0, for which there are three real solutions, i.e., three configurations extremizing
Ψ (two maxima and one minimum), with the minimum representing the stable black hole configuration. In
the cases ∆ ≤ 0, there is a single real solution corresponding to one local maximum in Ψ vs ρ̂. In this situation
swallowtails do not form and the configurations become all locally unstable.

5 Conclusions

We have provided a new formalism to study the black hole criticality. That is, we generalize the Euclidean
formalism by including virtual geometries with an arbitrary temperature. Within this general framework, we
explicitly complete the analysis of Padmanabhan [12, 13] and correctly interpret the extra term in the first
law of black hole thermodynamics as a virtual work term, which is related to the first derivative of the virtual
thermodynamic potential with respect to the horizon radius. We obtain this result by evaluating the regular-
ized Euclidean action, supplemented with boundary counterterms, on a virtual geometry corresponding to an
arbitrary fluctuation of the horizon. Once we impose physical conditions on the virtual thermodynamic poten-
tial, we can obtain the critical points, investigate the existence of swallow tails by computing the associated
temperatures, and determine the Landau-Ginzburg potential.

While our proposal can be, in principle, generally used for any gravity theory that contains black holes, a
concrete computation of the virtual thermodynamic potential can be done only if some integrability conditions,
which are specific to the chosen model, are imposed. This is why, for concreteness, we have focused on a specific
Einstein-Maxwell-dilaton theory with a dilaton potential obtained from the N = 4 supergravity with FI terms
[17, 18]. The embedding in supergravity provides a consistent theoretical framework for which the theory has
a well defined ground state. Interestingly, the theory contains analytic hairy black hole solutions that are
thermodinamically stable and, unexpectedly, they have non-trivial criticality.

The criticality of KK black hole with a dilaton potential is described in Figs. 2, 3, and 4. The inverse
swallowtail is reminiscent from the AdS case for which it is known that there exist reentrant phase transitions
[50]. T ∗ represents the temperature for which the black holes start to be the favorable states, though they are
not thermodynamically stable. However, within the temperature range T2 ≥ T ≥ T1, there exists thermody-
namically stable black holes in flat spacetime. We would like to point out that there is a small range of the
conjugate potential for which T2 ≥ T ∗ ≥ T1 and so this corresponds to a zero-order phase transition.

Our new approach provides a unified perspective with which to explicitly investigate black hole criticality in
various theories, e.g. when there exists a non-trivial cosmological constant and/or including higher derivative
corrections [52, 53]. We are going to present some related results in the near future.
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A Integrability of Euclidean action

In this appendix, we present a general discussion of the Euclidean action’s integrability. A similar computation
of the Euclidean action in Einstein-Maxwell theory, without using Einstein equations, was presented in Section
3 of [12], though we consider the general action including the counterterms that regularize it.

To obtain the thermodynamic potential and quantum statistical relation, the action should be integrable,
e.g. [1, 54, 55] and references therein. Therefore, we could also impose a similar integrability condition for
virtual spacetime geometries.

We are interested in Einstein-Maxwell-dilaton theory where the metric (3) is a virtual geometry that is
not necessarily a solution of Einstein equations. We proceed now to compute the Euclidean action without
using these equations of motion. Obviously, there is no a priori reason of why should be possible to completely
integrate the Euclidean action off-shell. Indeed, when evaluating the Euclidean action on the virtual spacetime
geometry (3), we have to deal with an integrability condition that depends of the theory. The integrability
condition is a differential equation that involves only the conformal factor Ω(x) and scalar field ϕ(x) and, once
it is solved, it provides a different way to obtain exact hairy black hole solutions.

Let us first compute the bulk part of the action evaluating (9) on the ansatz (3). We conveniently arrange
the final result as√

gELE = − sin θ

η

[
Υ′ + η2Ω (ΩV − 2)− 2q2e−

√
3ϕ − Ω2(ϕ′)2 + 2ΩΩ′′ − 3(Ω′)2

2Ω
f

]
(38)

where, to simplify its form, we introduce
Υ ≡ 2fΩ′ +Ωf ′ (39)

The reason we work with this expression is that, since we have to keep f(x) as an arbitrary function, we split
the terms containing f(x) in one that is integrable, Υ, and another one proportional to f(x) that is not. On
general grounds, to be able to integrate the action, we can consider the coefficient of f(x) in the last term of
(38) as an integrability condition,

Ω2(ϕ′)2 + 2ΩΩ′′ − 3(Ω′)2 = 0 (40)

We observe that, eq. (40) is in fact equivalent to the combination Ett −Exx = 0, as can be explicitly verified
from

Ett =
Ω2(ϕ′)2 + 4ΩΩ′′ − 3(Ω′)2

4η2Ω3
f +

ΩV − 2

2Ω
+

2q2e−
√
3ϕ +Ω′f ′

2η2Ω2
(41)

and

Exx =
3(Ω′)2 − Ω2(ϕ′)2

4η2Ω3
f +

ΩV − 2

2Ω
+

2q2e−
√
3ϕ +Ω′f ′

2η2Ω2
(42)

yielding

Ett − Exx =
Ω2(ϕ′)2 + 2ΩΩ′′ − 3(Ω′)2

2η2Ω3
f (43)

Importantly, once we solve this differential equation, two of the three unknown functions, namely ϕ(x)
and Ω(x), are fixed, while f(x) is still an arbitrary function, which is consistent with our definition of virtual
geometry. Due to the specific coupling between the electric field and dilaton, we choose the ansatz ϕ = a ln(x),
where a is a constant that can be fixed so that Ω(x) has the simplest form,

ϕ(x) = a lnx ⇒ Ω(x) =
(a2 + 1)x

√
a2+1−1

η2(x
√
a2+1 − 1)2

(44)

namely a =
√
3.

Therefore, we get the following concrete expressions:

ϕ(x) =
√
3 ln(x) , Ω(x) =

4x

η2(x2 − 1)2
(45)

We emphasize that we can obtain the exact solution by using only the integrability condition and one of the
Einstein equations, e.g. Ett = 0. Replacing (45) into Ett = 0, one can integrate this equation to determine the
metric function f(x), matching the exact hairy solution of [19] for γ =

√
3.
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