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We study the lattice version of higher-form symmetries on tensor-product Hilbert spaces. Inter-
estingly, at low energies, these symmetries may not flow to the topological higher-form symmetries
familiar from relativistic quantum field theories, but instead to non-topological higher-form symme-
tries. We present concrete lattice models exhibiting this phenomenon. One particular model is an
R generalization of the Kitaev honeycomb model featuring an R lattice 1-form symmetry. We show
that its low-energy effective field theory is a gapless, non-relativistic theory with a non-topological
R 1-form symmetry. In both the lattice model and the effective field theory, we demonstrate that
the non-topological R 1-form symmetry is not robust against local perturbations. In contrast, we
also study various modifications of the toric code and their low-energy effective field theories to
demonstrate that the compact Z2 lattice 1-form symmetry does become topological at low energies
unless the Hamiltonian is fine-tuned. Along the way, we clarify the rules for constructing low-energy
effective field theories in the presence of multiple superselection sectors. Finally, we argue on gen-
eral grounds that non-compact higher-form symmetries (such as R and Z 1-form symmetries) in
lattice systems generically remain non-topological at low energies, whereas compact higher-form
symmetries (such as Zn and U(1) 1-form symmetries) generically become topological.
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I. Introduction

Symmetry is a fundamental concept in physics, and
in recent years its scope has been extended in vari-
ous directions, including higher-form symmetries [1],
non-invertible symmetries [2, 3], multipole symmetries
[4], and modulated symmetries [5], among others. Re-
views on generalized global symmetries can be found,
for example, in Refs. [6–13]. In this paper, we focus on
higher-form symmetries, which can be defined for both
quantum field theories and lattice systems.
In the context of quantum field theory, we divide

higher-form symmetries into two types, i.e., topological
and non-topological higher-form symmetries. Proto-
typical examples of topological higher-form symmetries
arise in relativistic quantum field theories, with topo-
logical quantum field theories as special cases. In such
theories, a p-form symmetry with p ⩾ 0 is implemented
by topological defects supported on codimension-(p+1)
submanifolds of spacetime. A defect is topological if
correlation functions involving it remain invariant un-
der the smooth deformations of its support, provided
that during such deformations, the defect does not
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touch other operators or generate a Dehn twist. In gen-
eral, a topological p-form symmetry acts on operators
supported on p-dimensional submanifolds in spacetime.
Ordinary symmetries acting on local operators are 0-
form symmetries, and higher-form symmetries corre-
spond to the cases with p ⩾ 1. When p ⩾ 1, the high
codimensionality of the symmetry defects allows them
to freely pass through one another as long as they are
not linked, so these symmetries are Abelian. More-
over, topological higher-form symmetries have no ac-
tion on local operators, so local perturbations cannot
break them.

On the other hand, non-topological higher-form
symmetries are also generated by operators supported
on codimension-(p+1) submanifolds of spacetime, but
they lack the defining topological properties of topo-
logical higher-form symmetries. In particular, their
symmetry operators supported on spatial submanifolds
depend on the detailed shape of those submanifolds,
so operators related by smooth deformations need not
be equivalent. As a result, a non-topological higher-
form symmetry may act on local operators and can
be broken by local perturbations. Examples of non-
topological higher-form symmetries in quantum field
theories can be found in Ref. [14].1 Such quantum field
theories are necessarily non-relativistic.
Higher-form symmetries appear not only in quan-

tum field theories, but also in lattice systems. A
particularly important class of systems where higher-
form symmetries play a key role are topological orders.
As most experimental systems exhibiting evidence of
topological orders are in 2 + 1 dimensions, where the
relevant higher-form symmetries are 1-form symme-
tries, in this paper we will focus on 1-form symmetries
in (2 + 1)-dimensional lattice systems with a tensor-
product Hilbert space. However, the general lessons
we draw also apply to higher-form symmetries of other
form degrees in different dimensions.

How should a 1-form symmetry be defined in such
a lattice system? To mimic the 1-form symmetries in
field theories described above, these lattice 1-form sym-
metries should satisfy the following conditions [15–17]:

1. Symmetry operators are supported on closed loops,
just as 1-form symmetries in continuum field theo-
ries.

2. Symmetry operators on contractible loops mutually
commute. In particular, this condition implies that
lattice 1-form symmetries must be Abelian, in agree-
ment with the topological 1-form symmetries in con-
tinuum field theories.

1 Topological/non-topological higher-form symmetries were re-
ferred to as unfaithful/faithful higher-form symmetries in
Ref. [15] and relativistic/non-relativistic higher-form symme-
tries in Ref. [14].

3. Symmetry operators can be deformed from one loop
to another by the multiplication with symmetry op-
erators on contractible loops.

We will make these notions more precise in the con-
crete examples below, and regard these conditions as
the definition of a 1-form symmetry in a lattice sys-
tem. We emphasize that Condition 3 does not imply
that two symmetry operators that can be deformed
into one another are equivalent. In other words, lattice
1-form symmetries are not topological and can there-
fore act nontrivially on local operators, similar to non-
topological 1-form symmetries in non-relativistic quan-
tum field theories. This non-topological property also
holds for lattice higher-form symmetries of higher form
degrees defined on tensor-factorized Hilbert spaces.

Suppose a lattice system has a higher-form symme-
try satisfying the above conditions, does this symme-
try flow to a topological or non-topological higher-form
symmetry in the low-energy effective field theory? It
is usually expected that such a symmetry flows to a
topological higher-form symmetry at low energies. As-
suming this expectation is correct, then because local
perturbations cannot break a topological higher-form
symmetry within the low-energy effective field theory,
a higher-form symmetry in a lattice system, even if ex-
plicitly broken by certain weak local perturbations, is
expected to reemerge at low energies. This expectation
is indeed true for many solvable models of topologi-
cal orders, such as the toric code model, which flows
to topological Z2 gauge theory at low energies. How-
ever, in this paper we show that the above expecta-
tion can be false, which is exemplified by the models
in Sec. II, Sec. III C, and Sec. IIID. We further argue
that this expectation is generically true if the underly-
ing higher-form symmetry is compact, such as a Zn or
U(1) 1-form symmetry. If the higher-form symmetry is
non-compact, such as an R or Z 1-form symmetry, then
this expectation is false. Our work thus highlights the
physical distinctions between lattice higher-form sym-
metries and topological higher-form symmetries in con-
tinuum field theories, and refines the symmetry-guided
principle for realizing exotic quantum matter [18, 19].

We note that the question we address is different
from that in Ref. [20], which discussed when a quan-
tum state in a lattice system has an emergent higher-
form symmetry. In our discussion, whether a lattice
higher-form symmetry flows to a topological higher-
form symmetry at low energies depends on the Hamil-
tonian, while the discussion in Ref. [20] is about a
state, without any reference to a Hamiltonian. In Sec.
III, we discuss examples of Hamiltonians that can have
some common ground states, which are the ground
states of the standard toric code model. According
to the criterion in Ref. [20], such states have a 1-form
symmetry. However, as we demonstrate, only for some
(but not all) of these Hamiltonians, the lattice 1-form
symmetry flows to a topological one at low energies.

The rest of the paper is organized as follows. In
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Sec. II, we present a concrete solvable lattice model
with an R 1-form symmetry, which does not flow to
a topological R 1-form symmetry at low energies. In
Sec. III, we investigate various modifications of the
toric code to illustrate that a Z2 lattice 1-form symme-
try generically becomes topological. We also analyze
fine-tuned cases where the 1-form symmetry remains
non-topological, which in turn motivate a condition for
the flow to topological 1-form symmetries, discussed in
detail in the next section. In Sec. IV, we argue that
a compact higher-form symmetry in a lattice system
generically flows to a topological higher-form symme-
try, whereas a non-compact higher-form symmetry in
a lattice system does not. We also clarify the rules for
constructing low-energy effective field theories in the
presence of multiple superselection sectors. We end
this paper with some discussions in Sec. V. Various
appendices contain further details. In particular, Ap-
pendix A presents more technical details on the model
discussed in Sec. II, Appendix B computes the spec-
trum of the low-energy effective field theory of this
model, and Appendix C discusses lattice systems with
a Z 1-form symmetry.

II. Lattice model with a non-topological R
1-form symmetry

In this section, we introduce an R generalization of
Kitaev’s honeycomb model that carries an R lattice
1-form symmetry, and show that at low energies this
symmetry does not flow to a topological 1-form symme-
try. In Sec. IV, we address the general question about
when a higher-form symmetry in a lattice system flows
to a topological higher-form symmetry at low energies.
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FIG. 1. Three different types of links in honeycomb lattice
are labelled by X,Y and Z. Red arrows T1 and T2 are
lattice vectors. Two sublattices are labelled by A and B.

The model is defined on a two dimensional honey-
comb lattice, and at each site of the lattice there is an

FIG. 2. When the Ql operators from 3 adjacent elementary
loops (i.e., hexagons) are added together, the operators in
the interior all cancel, and the result is an operator sup-
ported entirely in the exterior, which can be viewed as a
larger loop. It is this condition that allows us to view the
supports of the symmetry operators as closed loops.

oscillator (see Fig. 1).2 We will view each hexagon of
the lattice as an elementary loop, and we assume that
on each of these loops there is a symmetry generator:

Ql = α(p1 − p2 + p4 − p5) + β(x1 − x3 + x4 − x6), (1)

where xi and pi are the position and momentum oper-
ators of the oscillator at site i in Fig. 1, respectively,
and α and β are two non-zero real numbers. Here the
index of the site is defined locally for each hexagon.
For example, site 1 of the middle hexagon in Fig. 1 is
identified with site 5 of the upper left hexagon. Such
a generator generates an R-parametrized symmetry

Wl(t) = eiQlt, (2)

where t ∈ R.
One can check that the symmetry defined above sat-

isfies the definitions of a lattice 1-form symmetry, dis-
cussed in the Introduction. Concretely, in addition to
being supported on closed loops, the generators Ql sat-
isfy two important properties:

1. When multiple Ql’s from adjacent hexagons are
added together, the support of the resulting oper-
ator lies solely on the boundary of the larger loop,
with no support in its interior (see Fig. 2 for an ex-
ample involving three adjacent hexagons).

2. [Ql1 , Ql2 ] = 0 for any pair of elementary loops (i.e.,
hexagons) l1 and l2.

This suggests that the symmetry generated by Ql

should be interpreted as a lattice version of R 1-form
symmetry.

We remark that if the Hamiltonian is local and the
system is put on a torus with periodic boundary condi-
tions along both directions, then the symmetries gener-
ated by Ql in Eq. (1) imply the existence of symmetry

2 Here we slightly abuse the terminology: we mean only that the
Hilbert space at each site is isomorphic to that of a harmonic
oscillator, whereas the Hamiltonian need not take a harmonic-
oscillator form.
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FIG. 3. Non-contractible loops on the honeycomb lattice,
denoted by γ (red loop) and η (green loop), respectively.

generators supported on the two non-contractible loops
of the torus (denoted by η and γ, see Fig. 3):

Qη =
∑
i∈Aη

xi −
∑
i∈Bη

xi,

Qγ =
∑
i∈Aγ

pi −
∑
i∈Bγ

pi,
(3)

where i ∈ Aη (resp. i ∈ Bη) means that the site i is in
the A (resp. B) sublattice on the non-contractible loop
η, and similar for the loop γ. These non-contractible
symmetry generators, together with the contractible
generators Ql on elementary loops, form an algebra:

[Qη, Ql] = [Qγ , Ql] = 0,

[Qη, Qγ ] = 2i,

eiQηtηeiQγtγ = e−2itηtγeiQγtγeiQηtη ,

(4)

where tη,γ ∈ R. The last relation implies that all en-
ergy levels of any Hamiltonian with this R 1-form sym-
metry must be infinitely degenerate on a torus, and
these degenerate states are related by the actions of
the non-contractible symmetry operators eiQηtη and
eiQγtγ .3 It indicates an anomaly in the R lattice 1-
form symmetry.

A class of Hamiltonians with such an R 1-form sym-
metry is the Kitaev-type Hamiltonian:

H =
∑

µ=X,Y,Z

∑
⟨i,j⟩∈µ

Jµfµ(xi, pi, xj , pj). (5)

Here all bonds in the honeycomb lattice are divided
into three types, i.e., X, Y and Z bonds (see Fig. 1),
and ⟨i, j⟩ ∈ µ means that two adjacent sites i and j
are connected by a µ-type bond [21]. The parameters
Jµ > 0, the function fX is any real function of xi + xj
that is bounded from below, fY is any real function of
αpi+βxi+αpj +βxj that is bounded from below, and

3 By deforming the non-contractible 1-form symmetry operators
using the contractible ones, it is straightforward to see that
these degenerate states are locally indistinguishable. Namely,
for any local operator O and any two orthogonal degenerate
states |m⟩ and |n⟩, ⟨m|O|n⟩ = COδmn, where CO is a constant
that depends on O.

fZ is any real function of pi + pj that is bounded from
below. For simplicity, we can take

fX = (xi + xj)
2,

fY = (αpi + βxi + αpj + βxj)
2,

fZ = (pi + pj)
2.

(6)

With this choice, the Hamiltonian describes non-
interacting bosons. We will refer to this particular
Hamiltonian as the R Kitaev model.
Below, we study this R Kitaev model on a torus

with periodic boundary conditions. We will see that all
energy levels are indeed infinitely degenerate, enforced
by the R lattice 1-form symmetry. However, we will
also show that after adding a weak local perturbation,
the resulting model has a unique gapped ground state.
This implies that the R lattice 1-form symmetry does
not flow to a topological R 1-form symmetry, as it does
not reemerge at low energies.

A. Degenerate energy spectrum and its
non-robustness

As we will soon see, it is beneficial to count the num-
ber of independent conserved quantities for the Hamil-
tonian defined in Eqs. (5) and (6). Below, we only
consider conserved quantities that are linear in the x’s
and p’s, like in Eq. (1). Each elementary loop con-
tributes one conserved quantity, Ql, so seemingly we
have L1L2 conserved quantities, if the system is on
a torus with size L1 × L2, where L1,2 is the number
of unit cells along the two translation vectors. How-
ever, these conserved quantities are not independent,
since

∑
lQl = 0 under periodic boundary conditions.

After taking this constraint into account, we only get
L1L2 − 1 independent conserved quantities, and they
all commute with each other. Additionally, there are
two more conserved quantities associated with the two
non-contractible loops, Qη and Qγ in Eq. (3), which
have commutation relations in Eq. (4). Therefore, the
total number of independent conserved charges related
to the R lattice 1-form symmetry is L1L2 + 1.
According to Refs. [22, 23], the quadratic Hamilto-

nian as in Eqs. (5) and (6) can be brought into the
following standard form by a bosonic Bogoliubov trans-
formation:

H =

2L1L2−1∑
a=0

(uax̃
2
a + vap̃

2
a), (7)

where a indexes the normal modes, ua, va ⩾ 0 are con-
stants (which are non-negative as H is bounded from
below), and we sum over all normal modes x̃a’s and
p̃a’s, which are linear combinations of xi’s and pi’s
and satisfy [x̃a1

, x̃a2
] = [p̃a1

, p̃a2
] = 0 and [x̃a1

, p̃a2
] =

iδa1,a2
. The spectrum of the R Kitaev model is deter-

mined analytically in Appendix A, but to gain physical
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insights, we do not need to perform the diagonalization
or to determine the values of ua and va explicitly. No-
tice that in general the normal modes can be classified
into the following 3 types:

(I) If ua, va ̸= 0, this mode behaves as a harmonic
oscillator and contributes a discrete energy spec-
trum. It does not contribute any conserved quan-
tity linear in x’s and p’s.

(II) If either ua = 0, va ̸= 0 or va = 0, ua ̸= 0, this
mode behaves as a free particle and contributes
a continuous energy spectrum. Each such mode
contributes 1 conserved quantity linear in x’s and
p’s. If ua = 0, then p̃a is conserved, and if va = 0,
then x̃a is conserved. Without loss of generality,
below we assume ua = 0 for this type.

(III) If ua = va = 0, this mode is associated with one
(zero-energy) level of infinite degeneracy. Both
x̃a and p̃a are conserved quantities, so each such
zero mode contributes 2 conserved quantities lin-
ear in x’s and p’s, i.e., x̃a and p̃a. Importantly,
these two conserved quantities do not commute
and [x̃a, p̃a] = i.

To recover the number of conserved quantities due
to the R lattice 1-form symmetry and their commuta-
tion relations in Eq. (4), the system must have at least
L1L2 − 1 type II modes and 1 type III mode. Having
additional type II or type III modes would introduce
conserved quantities not due to the lattice 1-form sym-
metry, which can be viewed as a consequence of fine
tuning. In Appendix A, we confirm that this model
has exactly L1L2 − 1 type II modes and 1 type III
mode. The reason is that we find a normal mode for
each momentum k with a level spacing

E1(k) = 2
√
2JxJyJz√

β2

Jx
cos2

k·T12

2
+
α2

Jz
cos2

k·T1

2
+

1

Jy
cos2

k·T2

2
,

(8)

where T12 ≡ T1 −T2. Clearly, E1(k) does not vanish
at any k as long as Jx,y,z > 0 and α, β ̸= 0, so these
modes are of type I. Since the model has in total 2L1L2

normal modes, excluding these L1L2 type I modes, the
remaining L1L2 normal modes must all be of type II
or type III, and there must be exactly L1L2 − 1 type
II modes and 1 type III mode.

Here we arrange these normal modes so that
a = 0 labels the unique type III mode and a =
1, 2, . . . , L1L2 − 1 label the type II modes. From the
commutation relation and lattice symmetries, the type

III mode should be given by4

x̃0 =
1√

2L1L2

∑
η

Qη ∝
∑
i∈A

xi −
∑
i∈B

xi,

p̃0 =
1√

2L1L2

∑
γ

Qγ ∝
∑
i∈A

pi −
∑
i∈B

pi,

(9)

hence the type III mode is actually connected to the
non-contractible loop operators in Eq. (3). Similarly,
conserved momenta p̃a of the L1L2 − 1 type II modes
are related to the generators in Eq. (1) by an invertible
linear map

p̃a =
∑
l

Aa,lQl, (10)

with Aa,l an (L1L2−1)× (L1L2−1) invertible matrix.
Due to the anomaly of the R lattice 1-form symme-

try, the ground states are uncountably infinitely de-
generate (for any system size).5 If these ground states
are taken as the eigenstates of p̃0, then different ground
states are related by applying x̃0. This also means that
the 1-form symmetry is spontaneously broken.

However, this infinite degeneracy is by no means ro-
bust. We can turn all the modes into type I by adding
suitable weak local perturbations that explicitly break
the R lattice 1-form symmetry. For example, we can
add

∑
i Vi with Vi = ϵ(x2i + p2i ) for each site i (where

ϵ is a small positive parameter) to Eq. (5) and then
repeat the above symmetry analysis. We find no con-
served quantity linear in x and p this time, implying
that all modes are of type I. The ground state is there-
fore non-degenerate on the torus, regardless of its size.
In fact, solving the spectrum as explained in Appendix
A, we find two type I modes for each momentum, one
with a level spacing E1(k) in Eq. (8) (to leading order
in ϵ) and another with a level spacing E2(k) satisfying

E2
1(k)E

2
2(k)

4JxJyJz
= 2ϵ

[
α2 sin2

k·T12

2
+β2 sin2

k·T1

2

]
+

ϵ2

[
1

Jy
+
α2+β2 sin2

k·T1

2
Jz

+
β2+α2 sin2

k·T12

2
Jx

]
+O(ϵ3).

(11)

4 To see it, notice that translation symmetry requires these op-
erators have a definite momentum. Moreover, for generic val-
ues of α, β and JX,Y,Z , the model has an inversion symmetry,
which implies that the momentum of the unique type III mode
must be one of (0, 0), (0, π), (π, 0) and (π, π) in the Brillouin
zone. Furthermore, for some specific values of α, β and JX,Y,Z ,
the model has an additional 3-fold rotational symmetry, which
implies that the momentum of the type III mode must be (0, 0)
in this case. Because changing the values of α, β and JX,Y,Z

is not expected to change the momentum of the type III mode
discontinuously, the momentum of this mode should be (0, 0)
for generic values of α, β and JX,Y,Z . Knowing that this type
III mode involves the non-contractible loop operators and has
zero momentum, the expressions of x̃0 and p̃0 then follow.

5 The degenerate ground states can be non-normalizable.
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The level spacing E2(k) is non-zero for every k. It is
of order O(

√
ϵ) at k ̸= 0 and O(ϵ) at k = 0. Thus,

the energy gap above the unique gapped ground state
is of order O(ϵ). In other words, the anomalous R
1-form symmetry, which would imply an infinite level
degeneracy, does not reemerge at low energies if it is
broken explicitly by a weak local perturbation. The
above analysis shows that the R lattice 1-form sym-
metry in this model does not flow to a topological R
1-form symmetry at low energies.

B. Effective field theory

The above discussion of the R 1-form symmetry sug-
gests that the low-energy effective field theory of the R
Kitaev model is an exotic gapless non-relativistic quan-
tum field theory. We propose that it is captured by the
following Lagrangian

L = Ay∂tAx − J(∂xAy − ∂yAx)
2, (12)

where Ax, Ay are R-valued fields. We emphasize that
although Ax, Ay resemble components of a gauge field,
the theory does not have any gauge symmetry.

The equations of motion of the effective field theory
can be recast into current conservation equations

∂tj
tx + ∂yj

yx = 0,

∂tj
ty + ∂xj

xy = 0,
(13)

for an antisymmetric current jµν with components

jtx = Ay, j
ty = −Ax, j

xy = −2J(∂xAy − ∂yAx).
(14)

These current conservation equations resemble those of
an R topological 1-form symmetry in 2+1 dimensions,
except that the condition B ≡ ∂xj

tx + ∂yj
ty = 0 is

missing. As we will show below, they instead describe
a non-topological R 1-form symmetry.

The non-zero operator B is itself a locally conserved
quantity obeying ∂tB = 0, which can be interpreted
as the low-energy version of the Ql operator of the
R lattice 1-form symmetry in Eq. (1). Integrating it
over an open regionM gives a conserved loop operator
supported on the boundary ∂M :

Q(∂M) =

∫
M

B =

∮
∂M

(jtx dy − jty dx). (15)

Since these contractible loop operators are all integrals
of B, they mutually commute as 1-form symmetry op-
erators. However, unlike in the case of topological 1-
form symmetries, they are non-zero operators depend-
ing on the details of ∂M . Thus, they generate a non-
topological R 1-form symmetry, closely paralleling the
R lattice 1-form symmetry in lattice systems.
On a torus, this non-topological R 1-form symmetry

has additional conserved charges wrapping around the

non-contractible cycles,

Qx =

∮
jty dx, Qy =

∮
jtx dy, (16)

matching the non-contractible charges of the R lattice
1-form symmetry in Eq. (3).

Since jty = −Ax and jtx = Ay are conjugate vari-
ables, upon quantization, these two non-contractible
charges do not commute:

[jty(x), jtx(y)] = −iδ2(x−y) ⇒ [Qx, Qy] = −i. (17)

This reproduces the nontrivial commutation relation
on the lattice in Eq. (4) that enforces an infinite de-
generacy at every energy level.

As shown in Appendix B, this effective field theory
also reproduces the low-energy spectrum of the R Ki-
taev model, which has a type II mode at every non-zero
momentum k ̸= 0 and a type III mode at k = 0.

Physically, this theory can be interpreted as coupling
a Chern-Simons theory with gauge group R to a special
matter system with local conservation laws, described
by the following Lagrangian

L = LCS + LM,

LCS = Ay∂tAx +At(∂xAy − ∂yAx),

LM =
1

4J
(∂tϕ−At)

2,

(18)

where Aµ is an R gauge field and ϕ is its Stueckelberg
field that transforms under the R gauge symmetry,

Aµ → Aµ + ∂µα, ϕ→ ϕ+ α. (19)

The R Chern-Simons theory, when not coupled to the
matter, has an R topological 1-form symmetry gener-
ated by the topological Wilson loopsWt = exp(it

∮
A),

t ∈ R. The topological property of the Wilson loops
follows from the equations of motion, which we recast
into the form of current conservation equations:6

∂µj
µν = 0, jµν = ϵµνσAσ. (20)

The matter system is a collection of decoupled oscil-
lators, one for each point, and each of them has an
independent conserved quantity

∂tjt = 0, jt = ∂tϕ. (21)

Coupling the matter system to the R Chern-Simons
theory Higgses the R gauge symmetry in Eq. (19) and
turns the R gauge field to an R-valued vector field as
in Eq. (12). After gauge fixing ϕ = 0 and integrating

6 Strictly speaking, the current jµν = ϵµνσAσ is not gauge in-
variant. Thus, the R 1-form symmetry of the R Chern-Simons
theory is an example of continuous global symmetry without
Noether currents. See Ref. [24] for other such examples.



7

out At, we recover the Lagrangian of the effective field
theory in Eq. (12). Since the matter theory has only
charge density but no local current, coupling it to the
R Chern-Simons theory relaxes only the Gauss law,

∂xj
tx + ∂yj

ty =
1

2J
(∂tϕ−At) ̸= 0, (22)

and keeps intact the other current conservation equa-
tions in Eq. (20). This has the effect of turning the
topological R 1-form symmetry to a non-topological 1-
form symmetry. This mechanism is similar to the one
used in Ref. [14] to construct non-relativistic field the-
ories with non-topological 1-form symmetries.

Lastly, we comment on the robustness of the effective
field theory. The theory can be gapped out to a unique
gapped ground state by adding a weak local perturba-
tion δL = ϵ[(Ax − ∂xϕ)

2 + (Ay − ∂yϕ)
2] that explicitly

breaks the non-topological R 1-form symmetry. This
means that this theory is not robust, in stark contrast
to a pure R Chern-Simons theory, which has no gauge-
invariant local operators and is therefore manifestly ro-
bust. This lack of robustness of the non-topological R
1-form symmetry is consistent with the non-robustness
of the R lattice 1-form symmetry in the underlying mi-
croscopic lattice model.

III. Lattice model with a Z2 lattice 1-form
symmetry

To develop a holistic understanding of lattice higher-
form symmetries, and to contrast with the above model
with a non-compact 1-form symmetry, we now turn to
models with a compact 1-form symmetry. In this sec-
tion, we discuss lattice models with a Z2 × Z2 lattice
1-form symmetry, including the toric code model [25]
and its various modifications [26, 27]. We construct
the low-energy effective field theories for these models
and analyze how the Z2 × Z2 lattice 1-form symmetry
is realized in these low-energy effective field theories.
Along the way, we clarify the rules for constructing
effective field theory in systems with multiple supers-
election sectors, which eventually leads to a necessary
condition for topological higher-form symmetry to be
formulated in the next section.

A. Toric code

We begin by reviewing the toric code and its low-
energy effective theory. Readers familiar with this ma-
terial may skip this subsection.

The toric code is defined on a square lattice with a
qubit placed on each link [25]. On link i, there is a pair
of Pauli operators, Xi and Zi, acting on the qubit. The
Hamiltonian of the toric code is given by

H = −J1
∑
v

Av − J2
∑
p

Bp, (23)

with J1,2 > 0. Here Av =
∏

i∈vXi is a vertex term
with v labeling the vertices of the lattice and the prod-
uct running over links i ∈ v connected to the vertex v.
Bp =

∏
i∈p Zi is a plaquette term with p labeling the

plaquettes of the lattice and the product running over
links i ∈ p forming the plaquette p.

This lattice model has a Z(a)
2 ×Z(b)

2 1-form symmetry
generated by the vertexAv and plaquetteBp operators,
which are supported on closed loops on the lattice and
the dual lattice, respectively. It is easy to check that
for every vertex v, v′ and plaquette p, p′,

[Av, H] = [Bp, H] = 0,

[Av, Av′ ] = [Av, Bp] = [Bp, Bp′ ] = 0,
(24)

and the multiplication of adjacent small loop opera-
tors becomes symmetry operators supported on larger
loops, hence all three conditions for lattice 1-form sym-
metries as laid out in the Introduction are satisfied.
Notably, the Z(a)

2 ×Z(b)
2 1-form symmetry has a mixed

’t Hooft anomaly that can be detected by the non-
contractible loop operators when the system is put on
a torus

Wγ =
∏
i∈γ

Zi , Wη =
∏
i∈η

Zi ,

Tγ̃ =
∏
i∈γ̃

Xi , Tη̃ =
∏
i∈η̃

Xi ,
(25)

where i ∈ γ, η means that the link i belongs to loop
γ, η, and i ∈ γ̃, η̃ means that the link i intersects with
loop γ̃, η̃ (see Fig. 4). These non-contractible operators
obey the following non-commutative algebra

WγTη̃ = −Tη̃Wγ , WηTγ̃ = −Tγ̃Wη, (26)

which indicates a mixed anomaly and further implies
a four-fold degeneracy at every energy level.

FIG. 4. Non-contractible loop operators of toric code sup-
ported on the lattice and the dual lattice.

The toric code has a gapped spectrum with ground
states satisfying

Av = 1, Bp = 1 (27)
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for every vertex v and plaquette p. It means that the

Z(a)
2 × Z(b)

2 lattice 1-form symmetry becomes topolog-
ical in the ground state subspace and hence flows to

a topological Z(a)
2 × Z(b)

2 1-form symmetry in the low-
energy effective field theory.

At low energies, the toric code is described by the
effective Lagrangian of Z2 gauge theory [28, 29]

LZ2 =
2

2π
ϵµνλaµ∂νbλ, (28)

where bµ and aµ are U(1) 1-form gauge fields. Their
equations of motion, respectively

∂µaν − ∂νaµ = 0, ∂µbν − ∂νbµ = 0, (29)

implies that the Wilson loops

WC = exp

(
i

∮
C

a

)
, TC = exp

(
i

∮
C

b

)
, (30)

are topological operators. Furthermore, because U(1)
gauge fields can have non-trivial quantized fluxes
through closed 2-manifolds, after summing over flux
sectors

∮
da,

∮
db ∈ 2πZ, the holonomy are constrained

such that WC , TC = ±1.7 Thus, these Wilson loops

generate a topological Z(a)
2 × Z(b)

2 1-form symmetry,

which is the low-energy image of the Z(a)
2 ×Z(b)

2 lattice
1-form symmetry discussed above. For a contractible
loop C, Eq. (29) implies WC = TC = 1, which corre-
sponds to Eq. (27) on the lattice. On a torus, the Wil-
son loops Wx,y, Tx,y wrapping around non-contractible
cycles in the x, y direction reproduce an algebra iden-
tical to Eq. (26)

WxTy = −TyWx, WyTx = −TxWy, (31)

which again implies a four-fold degeneracy. Impor-
tantly, the topological properties of these Wilson loops
implies that there are no local operators charged un-
der this 1-form symmetry, and thus the lattice 1-form
symmetry is robust against any weak local perturba-
tions. It in particular further implies the robustness of
the four-fold ground-state degeneracy in the thermo-
dynamic limit.

B. Odd toric code

We now discuss the first modification of the toric
code Hamiltonian in Eq. (23), where we take J2 < 0

7 To see this in more detail, consider the spacetime manifold
as M = T 2 × S1 (where T 2 = S1 × S1 is the spatial torus
and S1 is the temporal direction). The exponentiated action

takes the form exp(i
∮
M LZ2

) = exp
[(

i
π

∮
S1 a

) (∮
S1×S1 db

)]
,

where flux-quantization restricts
∮
S1×S1 db ∈ 2πZ. Hence,

upon summing over flux sectors in the partition function, only∮
a ∈ πZ contributes. Similarly,

∮
b ∈ πZ.

while keeping J1 > 0. This model is known as the odd
toric code model [26] because it has a similar gapped
spectrum as the toric code except that its ground states
satisfy

Av = 1, Bp = −1, (32)

for all vertices v and all plaquettes p, with Bp taking
the opposite eigenvalue. Here, we assume that LxLy is
even, so that

∏
pBp = 1 is satisfied.

This Hamiltonian preserves the Z(a)
2 × Z(b)

2 lattice
1-form symmetry generated by Av and Bp, respec-
tively. The commutation relation in Eq. (26) again
implies a four-fold ground state degeneracy. In the

ground state subspace, the Z(a)
2 1-form symmetry be-

comes topological, while the Z(b)
2 1-form symmetry ap-

pears non-topological since Bp = −1, implying that the
expectation value of a contractible symmetry operator
depends on the number of plaquettes it encloses, con-
tradictory to the topological property of a topological
1-form symmetry discussed in the Introduction. This
non-topologicalness is however innocuous since it can
be fixed by redefining the symmetry operator on each
plaquette by a c-number from Bp to B̃p = −Bp. Af-
ter this redefinition, the new symmetry operators are
topological in the ground state subspace. Hence, we

conclude that the Z(a)
2 ×Z(b)

2 1-form symmetry becomes
topological in the ground state subspace.
In fact, when LxLy is even, the odd toric code Hamil-

tonian is related to the original toric code Hamiltonian
by a unitary transformation. Without the lost of gener-
ality, we assume Lx is even. In this case, we can relate
the two Hamiltonians by the unitary transformation

U =

Lx/2∏
i=1

Ly∏
j=1

X
(y)
2i,j . (33)

Here,X
(y)
i,j denotes theX operator on the +y-direction-

oriented link from site (i, j). Under this unitary trans-

formation, Bp is mapped to −Bp and the redefined Z(b)
2

1-form symmetry operators B̃p in the odd toric code is

mapped to the Z(b)
2 1-form symmetry operators Bp in

the original toric code.
At low energies, the odd toric code is described by

the following effective Lagrangian

L = LZ2
− 1

ℓ2
at, (34)

where LZ2
is the Z2 gauge theory Lagrangian in

Eq. (28) and ℓ is a characteristic length scale such that
ℓ2 is the area of a lattice unit cell. The second term can
be interpreted as inserting a mesh of time-oriented Wil-
son lines W = exp(i

∫
atdt) in the underlying Z2 gauge

theory. The equation of motion of bµ is not modified by
the insertions so WC = exp(i

∮
C
a) remains topological

and generates a topological Z(a)
2 1-form symmetry. On
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the other hand, while the equations of motion of ax
and ay remain intact, the equation of motion of at is
modified to

∂xby − ∂ybx =
1

ℓ2
. (35)

It implies that the Z(b)
2 1-form symmetry operator

TC = exp(i
∮
C
b), when defined on a spatial loop C,

is not topological, but instead depends on the area A
enclosed by C as

W(C) = eiπA/ℓ2 . (36)

This reproduces the behavior of the Z(b)
2 1-form sym-

metry operators on the lattice and just as on the lattice,
we can redefine the symmetry operators in the effective
field theory by a c-number as

W̃(C) = exp

[
i

∮
C

(
b− 1

ℓ2
xdy

)]
, (37)

so that the Z(b)
2 1-form symmetry becomes topological.

The topological Z(a)
2 × Z(b)

2 1-form symmetry in the
low-energy effective field theory implies the robustness
of the four-fold ground state degeneracy.

The effective field theory in Eq. (34) is in fact related
to the original Z2 gauge theory by the redefinition by →
by+x/ℓ

2, which is the field theory analog of the unitary
transformation that relates the odd toric code to the
original toric code on the lattice.

C. Toric code without plaquette terms

Next, we consider the second modification of the
toric code code Hamiltonian in Eq. (23), where we fine
tune J2 = 0 while keeping J1 > 0. This Hamilto-

nian still has the Z(a)
2 × Z(b)

2 lattice 1-form symmetry
generated by Av and Bp, respectively. In addition to
this 1-form symmetry, there is an extensive symmetry
generated by Zi on every links. We will see that, in
this fine-tuned model, unlike the toric code, the lattice

Z(b)
2 1-form symmetry remains non-topological in the

low-energy effective field theory.
This fine-tuned model has a drastically different

spectrum compared to the toric code. The spectrum
remains gapped but has an extensive ground state
degeneracy of 2LxLy+1. These ground states satisfy
Av = 1 but can have distinct eigenvalues under Bp.

Thus, in the ground state subspace, the Z(b)
2 lattice 1-

form symmetry remains non-topological, while the Z(a)
2

lattice 1-form symmetry becomes topological. This is
consistent with the fact that the four-fold ground state
degeneracy imposed by the non-commutative algebra
in Eq. (26) is not robust. We can lift the ground state
degeneracy completely by adding a weak local pertur-

bation ϵ
∑

iXi that breaks the Z(b)
2 1-form symmetry.

At low energies, the lattice model is described by the
following effective field theory Lagrangian

L = LZ2
+ LM,

LM =
2

2π
B(∂tϕ− at),

(38)

which can be interpreted as coupling the low-energy
effective field theory of the toric code, i.e. Z2 gauge
theory LZ2

in Eq. (28), to a special matter system
with local conservation laws described by LM. This
is similar to the low-energy effective field theory of the
R Kitaev model discussed in Eq. (18). Here, ϕ is a
compact scalar with position-dependent 2π-periodicity,
ϕ ∼ ϕ+2π[θ(x−x1)− θ(x−x2)][θ(y− y1)− θ(y− y2)]
where θ(y) is the Heaviside theta function, and x1,2
and y1,2 can take arbitrary values. B is another com-
pact scalar with position-dependent periodicity, B ∼
B+2πδ(x−x0)δ(y−y0), where x0 and y0 can take ar-
bitrary values. The matter system when not coupled to
the gauge field at describes a collections of decoupled
qubits and each of them has two independent Z2-valued
locally conserved quantity, eiϕ and ei

∫
M

B , where M is
an open region.8 The coupling has the effect of relax-
ing the Gauss law imposed by the equation of motion
of at, thereby mimicking the presence of ground states
with different Bp eigenvalues in the lattice model.
The full theoru has the following gauge symmetry

aµ → aµ + ∂µα, bµ → bµ + ∂µβ, ϕ→ ϕ+ α. (39)

Using this gauge symmetry, we can gauge fix ϕ = 0
and then integrate out B setting at = 0. In the end,
the full Lagrangian simplifies to

L =
2

2π

[
ay∂tbx + by∂tax + bt(∂xay − ∂yax)

]
(40)

where bµ remains to be a U(1) gauge field while aµ
becomes a vector field without any gauge symmetry.
The equations of motion of bµ,

∂tax = ∂tay = ∂xay − ∂yax = 0, (41)

imply that the spatial Wilson loops WC = exp(i
∮
C
a)

supported on a spatial loop C is conserved and topolog-
ical. Thus, these loop operators generate a topological

Z(a)
2 1-form symmetry in the low-energy effective field

theory, agreeing with the expectation from the lattice
model. In addition to these loop operators, these equa-
tions of motion also implies the conservation of open
line operators exp(i

∫
γ
a) with γ an open path. Note

that a is a vector field without any gauge symmetry, so
these open line operators are gauge invariant. These

8 Following a similar analysis as in footnote 7, summing over the
windings of B and ϕ in the time direction constrains eiϕ = ±1

and ei
∫
M B = ±1, respectively.
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open line operators are the low-energy images of the
additional conserved quantity on every links generated
by Zi in the lattice model. On the other hand, the
equations of motion of aµ,

∂tbx − ∂xbt = ∂tby − ∂ybt = 0. (42)

imply that the spatial Wilson loops TC = exp(i
∮
C
b)

supported on a spatial loop C is conserved. However,
unlike in the pure Z2 gauge theory in Eq. (28), the
condition ∂xby − ∂ybx = 0 is missing, so these loop op-
erators are not topological and hence generate a non-

topological Z(b)
2 1-form symmetry in the low-energy ef-

fective field theory, agreeing with the expectation from
the lattice model. The local operator O = a2x + a2y is

charged under this non-topological Z(b)
2 1-form symme-

try and adding it to the Lagrangian completely gaps
out the theory to a unique gapped ground state.

D. Bravyi-Hastings-Michalakis’s non-robust toric
code

We now turn to discuss another fine-tuned modifica-
tion of toric code proposed in Sec. 2.4 of Ref. [27] by
Bravyi, Hastings and Michalakis. Similar to the toric

code, this is a gapped lattice model with a Z(a)
2 × Z(b)

2

lattice 1-form symmetry, and its ground states are iden-
tical to those of the toric code. However, interestingly,
the ground states are not robust against weak local per-
turbations. We will demonstrate this non-robustness is
related to the existence of a symmetry sector s where
∆(s)/N(s) → 0 in the thermodynamic limit. Here,
∆(s) denotes the lowest excitation energy of this sec-
tor compared to the global ground states and N(s) is
the number of contractible loop eigenvalues that differ
from the ground-state sector. We will further discuss
the low-energy effective field theory for this model and
show that it has a non-topological 1-form symmetry.
This specific example motivates our formulation of a
general criterion for a topological higher-form symme-
try to arise at low energies, as detailed in Sec. IV.

The model is defined on a square lattice, where a
qubit is placed at each link of the lattice, just like the
standard toric code model in Ref. [25]. However, its
Hamiltonian is different from the standard toric code
model, and it is

H = −J1
∑
v

Av − J2Bp0
− J3

∑
⟨p1,p2⟩

Bp1
Bp2

(43)

The coupling constants J1,2,3 > 0. The third term
is a ferromagnetic Ising coupling between any pair of
adjacent plaquettes, while p0 labels a fixed plaquette
and is not summed over. Same as the toric code, this

model has a Z(a)
2 × Z(b)

2 lattice 1-form symmetry gen-
erated by the vertex Av and plaquette Bp operators,
respectively.

For simplicity, suppose that J1 > J3 > J2 and the
system is on a torus with lengths L1 and L2 along the
two directions, where L1L2 is even. Then the Hamil-
tonian has 4 ground states, which satisfy

Av = 1, Bp = 1 (44)

for all vertices v and all plaquettes p. These ground
states are identical to those of the standard toric code
[25]. Moreover, it is straightforward to check that this
Hamiltonian is gapped with a gap

∆ = 2J2, (45)

and the lowest-energy excited states are also four-fold
degenerate and satisfy

Av = 1, Bp = −1 (46)

for all vertices v and all plaquettes p. For the sym-
metry sector s of these lowest-energy excited states,
∆(s) = 2J2 and N(s) = L1L2 (recall N(s) is de-
fined as the number of contractible loop eigenvalues
that differ from those of the ground state). Therefore,
∆(s)/N(s) = 2J2/(L1L2) → 0 in the thermodynamic
limit. Furtheremore, since N(s) = L1L2, this symme-
try sector lies in a superselection sector distinct from
the ground state, i.e., no local operators with finite
support can connect the two.
Now consider the following local perturbation,

V = J4
∑
p

Bp. (47)

As long as J4 > J2/(L1L2), which only requires an in-
finitesimal strength in the thermodynamic limit, the
states satisfying Eq. (46) become the new ground
states, which are identical to those of the odd toric
code. This sudden change of the ground states indi-
cates the non-robustness of the lattice model and is
related to the violation of the condition in Eq. (57),
which we will elaborate more in the next section.
Below we discuss the low-energy effective field the-

ory of the lattice model in Eq. (43). Because the model
is gapped and its ground states are identical to those
of the standard toric code, which is described by a Z2

gauge theory, it might be tempting to conclude that
the low-energy effective field theory of this model is
also a Z2 gauge theory in (28). However, this proposal
is incorrect, because this presumed effective field the-
ory does not capture the non-robustness of the lattice
model. A lattice-scale perturbation Eq. (47) would in-
duce a local perturbation in the low-energy effective
field theory but there are no local operators in the Z2

gauge theory that can trigger a sudden change of the
ground states discussed above. The proper low-energy
effective field theory should actually capture both the
states satisfying Eq. (44) and states satisfying Eq. (46).
To construct the low-energy effective field theory, we

start with the case where J2 = 0. In this particular
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case, there is an accidental Z2 symmetry that maps
Bp → −Bp. In this case, the effective Lagrangian is

L = LZ2 + LSSB − 2

2πℓ2
atφ, (48)

where ℓ is a length scale such that ℓ2 is the size of
the unit cell, LZ2

is the Z2 gauge theory Lagrangian
in Eq. (28) and LSSB is a Z2 symmetry breaking La-
grangian given by

LSSB =
2

4π
ϵµνλBµν∂λφ. (49)

Here, Bµν is a U(1) 2-form gauge field and φ is a U(1)
compact scalar with periodicity φ ∼ φ+ 2π. They are
coupled through another BF-type Lagrangian, which
describe a symmetry breaking phase for the accidental
Z2 symmetry that maps Bp → −Bp. The equation of
motion of Bµν , ∂λφ = 0, constrains φ to be a constant.
Furthermore, summing over flux sectors of Bµν with∮
dB ∈ 2πZ further constrains eiφ = ±1,
so the BF theory has two vacua from the Z2 symme-

try breaking, which are distinguished by their expec-
tation value of the order parameter ⟨eiφ⟩ = ±1.
The full Lagrangian in Eq. (48) couples the Z2 gauge

theory and the Z2 symmetry breaking theory. This
Lagrangian has the following gauge symmetry:

aµ → aµ + ∂µα,

bµ → bµ + ∂µβ,

Bµν → Bµν + ∂µξν − ∂νξµ − α

ℓ2
ϵµνt,

(50)

where α and β are U(1) compact scalar and ξµ is U(1)
1-form gauge field. With this coupling, the equation of
motion of at is modified to

∂xby − ∂ybx =
1

ℓ2
φ. (51)

It implies that the Z(b)
2 1-form symmetry operator

TC = exp(i
∮
C
b) defined on spatial loops C is not topo-

logical but instead depends on the shape of C:

TC = exp

(
i

ℓ2

∫
Ω

φ

)
, (52)

where Ω is the region enclosed by the closed loop. In
the vacuum eiφ = 1, TC = 1 and in the other vacuum
eiφ = −1, TC = exp(iπA/ℓ2) with A the area enclosed
by γ. If ℓ2 is chosen to be the area of the unit cell on
the lattice, then A/ℓ2 can only take integer values and
thus TC = ±1 depending on whether the number of
unit cells C enclosed is even or odd. This reproduces
the property of the lattice mode.

Interestingly, although Z(b)
2 1-form symmetry oper-

ator TC is not topological, we can define a topological

and conserved loop operator in this low-energy effective
field theory

T̃C = exp

[
i

∮
C

(
b− 1

ℓ2
φxdy

)]
, (53)

which generates topological Z2 1-form symmetry in the
effective field theory. On a torus, the non-contractible
symmetry operators of this topological Z2 1-form sym-

metry and the Z(a)
2 1-form symmetry do not commute

T̃xWy = −WyT̃x, WxT̃y = −T̃yWx, (54)

which indicates a mixed-anomaly between the two
topological 1-form symmetries and imposes a robust
four-fold degeneracy. This topological Z2 1-form sym-
metry, however, has not lattice counterpart since the
redefinition is not by a c-number but instead involves
the field φ.
When J2 ̸= 0, the following localized term is added

to the effective Lagrangian

δL = λ2 cosφ(x⃗) δ
(2)(x⃗− x⃗0) (55)

where x⃗0 is a fixed position. This term favors eiφ = 1
(eiφ = −1) if λ2 > 0 (λ2 < 0), which corresponds to
J2 > 0 (J2 < 0). With δL included, states with both
∂xby − ∂ybx = 0 and ∂xby − ∂ybx = 1/ℓ2 remain in
the effective field theory, so the 1-form symmetry is
non-topological.

The perturbation Eq. (47) corresponds to a term

δL′ = λ4 cosφ. (56)

With this term included, for λ4 > 0 (λ4 < 0), the
states with eiφ = 1 is favored (removed) and the states
with eiφ = −1 are removed (favored) in the low-energy
theory, which corresponds to J4 < 0 (J4 > 0). This
reproduces the drastic change of the ground states in
the lattice model and shows that the model is fine-
tuned.

IV. Compact and non-compact higher-form
symmetries

With the concrete models studied in Sec. II and
Sec. III, we are motivated to address a general ques-
tion: When does a higher-form symmetry in a lattice
system flow to a topological higher-form symmetry at
low energies? In this section, we argue that the an-
swer lies in the compactness of the symmetry. We first
establish a necessary condition for a topological higher-
form symmetry to arise at low energies and then argue
that, generically a non-compact higher-form symme-
try in a lattice system does not flow to a topologi-
cal higher-form symmetry. On the other hand, com-
pact higher-form symmetries are generally consistent
with this necessary condition, strongly suggesting that
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compact higher-form symmetries do flow to topolog-
ical higher-form symmetries. Here, compact ones in-
clude Zn and U(1) higher-form symmetries, and non-
compact ones include the R 1-form symmetry discussed
in Sec. II and the Z 1-form symmetry discussed in Ap-
pendix C.

A. Energy spectrum

Our argument is based on the examination of the
energy spectrum of a lattice Hamiltonian with a 1-
form symmetry. Because the 1-form symmetry opera-
tors supported on contractible loops all commute, the
energy eigenstates can be chosen to be simultaneous
eigenstates of all these symmetry operators. In the ex-
ample of model in Eq. (5), these symmetry operators
are precisely the Ql’s in Eq. (1). Each group of energy
eigenstates that share the same eigenvalues under all
these symmetry operators form a symmetry sector. In
general, the energy spectrum of the Hamiltonian may
take the form of either Fig. 5 or Fig. 6. These two
types of spectrum are distinguished by the following
condition in the thermodynamic limit:

lim
L→∞

min
s

{
∆(s)

N(s)

}
> 0, (57)

with Fig. 5 satisfying this condition and Fig. 6 violat-
ing this condition. Here limL→∞ stands for the ther-
modynamic limit, and we have introduced two quan-
tities ∆(s) and N(s) that characterize every symme-
try sector s: ∆(s) is the energy difference between
the lowest-energy state of s and the overall ground
states, and N(s) is the number of elementary con-
tractible loop operators that have eigenvalues different
from those of the ground-state symmetry sector. In
Eq. (57), the minimization is over all possible symme-
try sectors except for the ground-state sector. Note
that N(s) ⩾ 1 by definition. In the example of the
R Kitaev model in Sec. II and the fine-tuned model
in Sec. III C, ∆ ≡ mins{∆(s)} = 0 for any system
size, hence Eq. (57) is violated and the spectrum corre-
sponds to Fig. 6. In contrast, for the famous toric code
model [25], ∆(s) ∼ N(s) (as the excitation energy is
proportional to the number of flipped plaquettes and
vertices by a size-independent constant), so Eq. (57) is
satisfied.

Next, we argue that Eq. (57) is a necessary condi-
tion for the lattice higher-form symmetry to flow to a
topological higher-form symmetry in the low-energy ef-
fective field theory. We first note that Eq. (57) implies
∆ ≡ mins{∆(s)} > 0, and let us begin by explaining
why this is needed. Consider a state |ψ⟩ from the same
superselection sector as a vacuum state in a field theory
with a topological higher-form symmetry.

For any symmetry operator Wl supported on a con-
tractible loop, ⟨ψ|Wl|ψ⟩ = ⟨ψ|ψ⟩ because Wl can be

shrunk and disappear. Suppose O is a local oper-
ator. Then ⟨ψ|O†WlO|ψ⟩ = ⟨ψ|O†O|ψ⟩, where we
have used that Wl can be deformed, shrunk and dis-
appear. Therefore, symmetry operators supported on
contractible loops just act as identity on all the states
from the same superselection sector as a vacuum state.

Coming back to the spectra sketched in Fig. 5 and
Fig. 6, only the part in Fig. 5 with energy scales below
∆ > 0 satisfies this condition.9 Therefore, if the spec-
trum behaves as in Fig. 6, the lattice higher-form sym-
metry cannot flow to a topological higher-form sym-
metry at low energies.

Δ > 0

Δ(𝔰)

energy

𝑁(𝔰)

symmetry sector 𝔰

min
𝔰

{
Δ(𝔰)
𝑁(𝔰)} > 0

FIG. 5. Schematic energy spectrum of a lattice system with
a higher-form symmetry that flows to a topological higher-
form symmetry at low energies, and satisfies Eq. (57). The
horizontal axis represents symmetry sectors characterized
by the collection of eigenvalues under all symmetry opera-
tors supported on contractible loops. Different sectors are
labeled by different colors. Each short line represents an en-
ergy eigenstate. ∆(s) is the energy difference between the
lowest-energy state in sector s and the true ground state,
∆ ≡ mins{∆(s)}, and N(s) is the number of contractible
loop eigenvalues differing from those in the ground-state
sector. The spectrum in the ground-state symmetry sector
(labeled red) can be either gapped or gapless.

However, just having a spectrum of the form of Fig. 5
with the gap ∆ > 0 is still not enough for the lattice
higher-form symmetry to flow to a topological higher-
form symmetry in the low-energy effective field theory,

9 The equation ⟨ψ|Wl|ψ⟩ = ⟨ψ|ψ⟩ appears to further require
that the low-energy states must have eigenvalue 1 under all
Wl operators. However, in Fig. 5, the energy eigenstates with
energies smaller than ∆ may have Wl eigenvalues different
from 1. But this is not an issue, because in this case, one can
always redefine the symmetry operators by a phase factor, so
that the eigenvalues under the new symmetry operators are
1. Then one can regard these new symmetry operators as
the ones that can be deformed and shrunk in the low-energy
effective field theory. This situation is analogous to that of the
odd toric code discussed in Sec. III B.
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min
𝔰

{
Δ(𝔰)
𝑁(𝔰)} = 0

symmetry sector 𝔰

energy

FIG. 6. Schematic energy spectrum of a lattice system with
a higher-form symmetry that does not flow to a topological
higher-form symmetry, and violates Eq. (57). In this figure,
the energy gap within each symmetry sector may be zero or
non-zero, and it is not meant to be reflected in the figure.

and Eq. (57) is further required. This is illustrated by
the non-robust toric code discussed in Sec. IIID, which
has a spectrum as in Fig. 5 and mins{∆(s)/N(s)} = 0
in the thermodynamic limit.

To understand why Eq. (57) is necessary for a topo-
logical higher-form symmetry at low energies, let us
consider violating this condition by having an excited-
state sector s∗ with ∆(s∗) > 0 but ∆(s∗)/N(s∗)=0 in
the thermodynamic limit. This suggests that, while
the energy difference compared to the ground state is
non-zero, it is unnaturally small such that by adding
an arbitrarily weak local perturbation (say, as a sum
of contractible local loop operators, see Eqs. (59) and
(60) in the later discussion) it is possible to turn this
excited-state sector into the ground-state sector, and
turn the original ground-state sector into an excited-
state sector. As such, both sectors should be included
in the low-energy effective field theory. Now because
the low-energy effective field theory includes states that
have different eigenvalues for the contractible loop op-
erators, its higher-form symmetry is not topological.
This phenomenon is demonstrated in the example in
Sec. IIID.

In the rest of this section, we will show that the en-
ergy spectrum of a lattice system with a non-compact
(compact) 1-form symmetry generically takes the form
of Fig. 6 (Fig. 5), with Eq. (57) violated (satisfied) in
the thermodynamic limit. In fact, for a generic Hamil-
tonian with a non-compact 1-form symmetry, we will
argue that ∆ = 0 for any system size, which implies the
violation of Eq. (57). These results imply that, generi-
cally, a higher-form symmetry in a lattice system flows
(does not flow) to a topological higher-form symmetry
if it is compact (non-compact).

B. Non-compact 1-form symmetries

In this subsection, we argue that the spectrum of a
lattice Hamiltonian with a non-compact 1-form sym-
metry generically takes the form of Fig. 6, particularly
with a vanishing gap ∆ = 0. To understand it, the key
is that the eigenvalues of the contractible loop opera-
tors for such a symmetry take continuous values.
To be concrete, consider a bosonic model based on

the setup in Sec. II, which could be interacting, for ex-
ample, by appropriately choosing the functions fX,Y,Z .
As discussed at the beginning of Sec. II A, the R lat-
tice 1-form symmetry implies the presence of L1L2− 1
commuting conserved quantities, associated with con-
tractible loop operators. Denoting the eigenvalues of
these contractible loop operators Ql by ql, the Hilbert
space H and the Hamiltonian H can be decomposed
into symmetry sectors where {ql} take different values,
i.e.,

H =
⊕
{ql}

H{ql}, H =
∑
{ql}

H{ql}. (58)

Importantly, the values of {ql} in each symmetry sector
serve as parameters of the Hamiltonian in this symme-
try sector, H{ql}.
For a non-compact higher-form symmetry, the con-

served quantities ql take continuous values. For exam-
ple, in the case of the R 1-form symmetry discussed in
Sec. II, the eigenvalues of Ql can be arbitrary real num-
bers. Since the lowest energy E(ql) in each symmetry
sector is generically a smooth function of ql, the re-
sulting spectrum typically exhibits the behavior shown
in Fig. 6, unless the Hamiltonian is fine-tuned so that
E(ql) becomes discontinuous in ql with a nonzero gap
∆ > 0.
This implies that an R lattice 1-form symmetry

generically flows to a non-topological R 1-form sym-
metry at low energies and, consequently, is not ro-
bust against weak local perturbations. This conclu-
sion is consistent with Ref. [30], which argued that
an R lattice 1-form symmetry in a lattice model that
naively flows to a Maxwell theory with gauge group
R is not robust due to the presence of gapless elec-
tric charges. The same reasoning applies to other
non-compact higher-form symmetries, such as the Z
1-form symmetry realized in the lattice Hamiltonians
discussed in Appendix C.
Our result suggests that one cannot physically engi-

neer an R Chern–Simons theory by just imposing an
exact anomalous R 1-form symmetry in a lattice sys-
tem. In such systems, the physical Hilbert space ad-
mits a tensor-product structure and the Hamiltonian
does not have any singular dependence on the eigenval-
ues of the contractible loop operators. Theoretically,
one can of course consider a Hamiltonian that contains
a Dirac delta function or impose a hard constraint, such
as Gauss law constraints in gauge theories, that forces
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the system to be in a single eigenvalue sector of the
contractible loop operators (see, e.g., various lattice
regularizations of non-compact Chern-Simons theory
explored recently in Refs. [31–33]), but such systems
do not appear to be physically realizable.

Note that our statement here does not immediately
forbid the emergence of an R Chern-Simons theory in
a condensed matter system. Instead, our claim is that
if an R Chern-Simons theory emerges in such cases,
the R 1-form symmetry associated with it should not
originate from an exact R lattice 1-form symmetry
of the lattice system. An example of emergent R 1-
form symmetries from a discrete system can be found
in gapless infinite-component Chern-Simons-Maxwell
theories constructed in Ref. [34], which is continuous
in all directions except for one discrete direction.

C. Compact 1-form symmetries

In Sec. IVB, we have seen that a lattice Hamiltonian
with a non-compact higher-form symmetry generically
has a spectrum like Fig. 6, due to the fact that the
eigenvalues of the symmetry operators on contractible
loops can take continuous values. In this subsection,
we show that the spectrum of a lattice Hamiltonian
with a compact 1-form symmetry generically takes the
form of Fig. 5 with ∆ > 0, because of the discrete na-
ture of the eigenvalues of the corresponding symmetry
operators on contractible loops. Furthermore, Eq. (57)
is generally satisfied unless fine tuned. Examples of
such fine-tuned Hamiltonian are discussed in Sec. III C
and Sec. IIID.

For concreteness, consider a lattice Hamiltonian with
a Zn 1-form symmetry. Suppose its energy spectrum
takes the form as Fig. 6, which has ∆ = 0 in the ther-
modynamic limit. Then we can add a weak local per-
turbation that respects the 1-form symmetry to lift the
(approximate) degeneracy between the different low-
energy symmetry sectors and select a single sector to
have the lowest energy with ∆ > 0, thereby making
the energy spectrum behaves as Fig. 5. To do so, de-
note the eigenvalues of this singled out sector under
the contractible loop operators Wl by λl, then the per-
turbation can be taken as

δH = −t
∑
l

(λ∗lWl + λlW
†
l ) (59)

with t > 0. Importantly, for a Zn 1-form symmetry,
Wn

l = 1, so the eigenvalues ofWl are n-th root of unity,
which take discrete values. This allows the perturba-
tion to lift the ground state degeneracy. Due to the
constraint

∏
lWl = 1 on a torus, the first excited sector

of the perturbation δH has Wl = λl for most elemen-
tary loops, except two of them. On one of these two
elementary loops, Wl = λle

2πi/n, while on the other
Wl = λle

−2πi/n. As a result, the perturbation opens
a gap at least ∆ = 4t

(
1− cos

(
2π
n

))
> 0 between the

singled out sector and the other sectors.
Similarly, if the 1-form symmetry under consider-

ation is a U(1) symmetry, then different sectors can
be labelled by the eigenvalues under the Ql operators,
which are the generators of U(1) 1-form symmetry sup-
ported on contractible loops. Suppose we want to sin-
gle out a sector with eigenvalue nl under Ql to make
it have the lowest energy, the local U(1) 1-form sym-
metric perturbation can be taken as

δH = t
∑
l

(Ql − nl)
2 (60)

where t > 0. Because nl is an integer, which again
takes discrete values, this perturbation will open a gap
∆ = 2t > 0 between this singled out sector and the
other sectors.

Moreover, in addition to making ∆ > 0, the per-
turbations in Eqs. (59) and (60) would actually satisfy
the condition in Eq. (57). To see it, consider a symme-
try sector s that has different eigenvalues for a number
of N(s) contractible loop operators, and suppose be-
fore adding these perturbations the energy difference
between its lowest-energy state and the global ground
states is ∆0(s). After Eq. (59) (resp. (60)) is added, the
new energy difference between the lowest-energy state
in this sector and the true ground states is at least
∆(s) = ∆0(s) + 2tN(s)

(
1− cos

(
2π
n

))
(resp. ∆(s) =

∆0(s)+tN(s)). Therefore, in the thermodynamic limit
∆(s)/N(s) ∼ t > 0. Since the above argument works
for any excited-state sector, Eq. (57) is satisfied.
Therefore, if the spectrum of a lattice Hamiltonian

with a compact 1-form symmetry behaves as Fig. 6,
there always exists a weak local 1-form-symmetric per-
turbation that converts it into the form of Fig. 5. In
this sense, a lattice system with a compact 1-form sym-
metry generically satisfies Eq. (57). This conclusion
is consistent with the fine-tuned models discussed in
Sec. III C and Sec. IIID, where the Z(b)

2 1-form sym-
metry flows to a non-topological 1-form symmetry in
the low-energy effective field theory. Upon adding the
perturbation in Eq. (59), the system can become ei-
ther a toric code or an odd toric code. In both cases,

the Z(b)
2 1-form symmetry becomes topological in the

low-energy effective field theory.

V. Discussion

In this work, we have discussed a concrete example
of lattice system with an R lattice 1-form symmetry,
and showed that this symmetry does not flow to a topo-
logical R 1-form symmetry in the low-energy effective
field theory that we have constructed. On the other
hand, via an in-depth analysis of various modifications
of the toric code, we have illustrated that an Z2 lattice
1-form symmetry does become topological in the low-
energy effective theory, except for fine-tuned cases that
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we have clarified. We have further established a neces-
sary condition, see Eq. (57), for a lattice higher-form
symmetry to flow to a topological higher-form symme-
try at low energies. From this, we have argued that
a non-compact lattice higher-form symmetry generi-
cally flows to a non-topological higher-form symmetry.
Compact lattice higher-form symmetries, on the other
hand, are generically consistent with this condition.

We remark that we have not rigorously established
that the condition in Eq. (57) is sufficient to ensure that
the lattice higher-form symmetry flows to a topological
higher-form symmetry in the low-energy effective field
theory, although we expect this to be true. An im-
portant consequence of flowing to a topological higher-
form symmetry is the robustness of the higher-form
symmetry. Namely, even when it is explicitly broken
at the lattice scale by arbitrarily weak local pertur-
bations, the higher-form symmetry re-emerges at low
energies. Therefore, to prove the sufficiency of the con-
dition in Eq. (57), one has to at least show that a model
obeying Eq. (57) still has an approximate higher-form
symmetry at low energies under a generic weak local
perturbation. As a first step in this direction, one needs
to prove that the energy gap ∆ in Fig. 5 remains finite
for any weak local perturbations that respect the orig-
inal higher-form symmetry in the unperturbed Hamil-
tonian. However, even this first step is challenging, as
the robustness of the energy gap of a generic quan-
tum many-body Hamiltonian is not fully understood,

although for special Hamiltonians, such as free-fermion
Hamiltonians and some frustration-free Hamiltonians,
this robustness can be proved [27, 35]. We leave these
important open problems to the future studies.
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A. Spectrum of the R Kitaev model

In this appendix, we present an exact analysis of the energy spectrum of the R Kitaev model in Eqs. (5) and
(6) based on the bosonic Bogoliubov transformation [22, 23, 36], which substantiates the R 1-form symmetry
analysis in the main text. We further demonstrate that an explicit breaking of the R 1-form symmetry indeed
lifts the infinite ground state degeneracy on torus.

Let us express the position and momentum operators for the quantum mechanical particle at each site r in

terms of bosonic creation and annihilation operators ([αr, α
†
r′ ] = δr,r′):

xr =
1√
2
(α†

r + αr), pr =
i√
2
(α†

r − αr). (A1)

Upon substitution into Eq. (5) and Fourier transforming to the momentum (k) space,

αk,A/B =
1√
L1L2

∑
Ri

αRi,A/Be
−ik·Ri , (A2)

with Ri labeling the unit cell and A/B labeling the sublattice, our model is rewritten in the Bogoliubov-de Gennes

(BdG) form as H =
∑

k a
†
kHkak, with a†k = (α†

k,A, α
†
k,B , α−k,B , α−k,A) and

Hk =

(
A B
B∗ A∗

)
(A3)

where

A =
1

2

(
Jx + Jy(α

2 + β2) + Jz Jxe
ik·T2 + Jye

ik·(T2−T1)(α2 + β2) + Jz
Jxe

−ik·T2 + Jye
ik·(T1−T2)(α2 + β2) + Jz Jx + Jy(α

2 + β2) + Jz

)
, (A4a)

B =
1

2

(
Jxe

ik·T2 + Jye
ik·(T2−T1)(iα+ β)2 − Jz Jx + Jy(iα+ β)2 − Jz

Jx + Jy(iα+ β)2 − Jz Jxe
−ik·T2 + Jye

ik·(T1−T2)(iα+ β)2 − Jz

)
. (A4b)
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Here nonzero constants α, β ∈ R parametrize the 1-form symmetry, Jx,y,z > 0 are coupling constants and {T1,T2}
are primitive lattice vectors defined in Fig. 1.

To obtain the energy spectrum, we consider a transformation to a new set of bosonic operators bk = T −1ak,
where the bosonic commutation relation demands T to be a para-unitary matrix satisfying the condition

T †Î T = T Î T † = Î , (A5)

where Î := diag(1, 1,−1,−1) is the so-called para-unit matrix. Unlike the fermionic case where the spectrum can
be directly read off from the unitary diagonalization of Hk, here for the bosonic case the situation is more subtle
as there is no guarantee of a para-unitary diagonalization, i.e., T †HkT may never be diagonal. Nonetheless,
in a series of works by Colpa [22, 23, 36], it was proven that through conjugation by a para-unitary matrix a
positive-semidefinite Hk can always reach the so-called standardized form:

T †HkT = Ek ≡


Ee 0e

Iw I ′w
0z 0z

0e Ee

I ′w Iw
0z 0z

 , (A6)

with Ee a positive-definite diagonal square matrix of order e, Iw the unit matrix of order w, I ′w a diagonal matrix
of order w with ±1 diagonal elements, 0z a square zero matrix of order z, and all other unspecified entries are

zero. From H =
∑

k b
†
kEkbk, it is straightforward to express H in terms of a set of independent oscillators of the

form in Eq. (7), where the number of type I, II and III modes are e, w and z, respectively.
From Eqs. (A3) and (A4), we can explicitly check that detHk = 0 for any α, β ∈ R and Jx,y,z. This implies

the existence of either type II modes, which give a gapless spectrum, or type III modes, which give an infinite
ground state degeneracy. The level-spacing of a type I mode, which is a diagonal element of Ee, corresponds to

a positive eigenvalue of ÎHk:

E1(k) = 2
√
2
(
JxJyα

2 cos2
k ·T1

2
+ JyJzβ

2 cos2
k ·T12

2
+ JxJz cos

2 k ·T2

2

) 1
2

, (A7)

where T12 ≡ T1 − T2. It is obvious that E1 > 0 for any k, hence there is e = 1 number of type I mode for
each k, i.e., in total L1L2 number of type I modes.10 The remaining L1L2 modes must either be the type II or
type III zero modes. In Sec. IIA, by the counting of 1-form symmetry generators we have argued that there are
altogether L1L2 − 1 type II modes and 1 type III mode. Below we check this explicitly.

According to Theorem 3.11 in Ref. [22], the algebraic multiplicity of the zero eigenvalue of ÎHk and Hk are

2(z+w) and 2z+w, respectively. The secular equation for ÎHk can be analytically solved to give z+w = 1, while
the algebraic multiplicity of the zero eigenvalue of Hk (due to its hermiticity) equals the number of associated
linearly independent eigenvectors. We find 2z + w = 1 for k ̸= 0, while 2z + w = 2 for k = 0. Thus, the number
of zero modes is given by

(z, w) =

{
(0, 1), for k ̸= 0,

(1, 0), for k = 0,
(A8)

as claimed in Sec. IIA. Furthermore, the two independent zero eigenvectors of Hk=0 can be chosen as (1,−1, 0, 0)T

and (0, 0, 1,−1)T , respectively, which implies that the type III zero mode is associated to the oscillator annihilated

by β0 = αk=0,A−αk=0,B (it contributes 0β†
0β0 toH). The corresponding canonical coordinates, x̃0 = (β†

0+β0)/
√
2

and p̃0 = i(β†
0 − β0)/

√
2, are indeed the two conjugate conserved quantities in Eq. (9).

The R 1-form symmetry implies infinite degeneracy of all energy levels of the model on a torus. The usual
expectation for a lattice version of higher-form symmetry is that it reemerges at low energies, even if it is explicitly
broken by weak local perturbations. If this expectation is correct, then the infinite degeneracy on a torus should
still be present, at least approximately, when weak local perturbations are introduced to the model in Eqs. (5) and
(6). Below we will show the opposite that this infinite degeneracy is lifted upon adding a weak local perturbation.

10 Recall we have assumed α, β ̸= 0, otherwise there can be
E1 = 0 for specific k which leads to additional zero modes

and additional conserved quantities. This is considered as fine-
tuning and hence ignored in our discussion.
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We perturb H by adding a harmonic oscillator term to every site: ϵ(x2r + p2r − 1) = 2ϵα†
rαr, with ϵ > 0. The

perturbed BdG Hamiltonian is then H ′
k = Hk + ϵI4, and it can be directly seen that detH ′

k ∼ O(ϵ) > 0 for all k,
i.e. all normal modes become type I and the ground state is nondegenerate. More specifically, from the positive

eigenvalues of ÎH ′
k, we find the level-spacing of the two type I modes for each k: one has the level-spacing in

Eq. (A7), to leading order in ϵ, while the other has a level-spacing E2(k) satisfying

E2
1(k)E

2
2(k) =8ϵJxJyJz

(
α2 sin2

k ·T12

2
+ β2 sin2

k ·T1

2

)
+

4ϵ2
[
JxJz + JxJy(α

2 + β2 sin2
k ·T1

2
) + JyJz(β

2 + α2 sin2
k ·T12

2
)
]
+O(ϵ3).

(A9)

For a small and finite ϵ, it is clear that E2(k) never vanishes at any k. E2(k) is minimized around k = 0, where
the level-spacing is at order ϵ. The perturbed free-boson model thus possesses a unique ground state with an
energy gap of the order ϵ.

B. Spectrum of the low-energy effective field theory

In this appendix, we compute the spectrum of the low-energy effective field theory in Eq. (12), following an
analysis similar to that of Appendix A. As we will see, the resulting spectrum exactly matches the low-energy
spectrum of the R Kitaev model.

In the low-energy effective field theory, Ax and Ay are conjugate variables. Upon quantization, we obtain the
following commutation relation

[Ax(x), Ay(x
′)] = iδ2(x− x′). (B1)

We can then express these fields in terms of creation and annihilation operators ([ak, a
†
k′ ] = δ2(k − k′)) in

momentum (k) space as

Ax(x) =
1√
2

∫
d2k

2π
(a†ke

−ik·x + ake
ik·x),

Ay(x) =
i√
2

∫
d2k

2π
(a†ke

−ik·x − ake
ik·x).

(B2)

The Hamiltonian

H =

∫
d2x J(∂xAy − ∂yAx)

2, (B3)

when expanded in terms of creation and annihilation operators, takes a BdG form as H =
∫
d2ka†kHkak with

a†k = (a†k, a−k) and

Hk =
J

2

(
k2x + k2y −(kx + iky)

2

−(kx − iky)
2 k2x + k2y

)
. (B4)

Since detHk = 0, the mode at momentum k must be either type II or type III. To determine the exact type, we

consider the eigenvalues of ÎHk and Hk with Î := diag(1,−1). ÎHk has two zero eigenvalues, while Hk has a
zero eigenvalue and another eigenvalue 2(k2x + k2y), which vanishes only at k = 0. Following a similar argument
presented in Appendix A, we conclude that the mode is type III at k = 0 and type II otherwise. This exactly
matches the low-energy spectrum of the R Kitaev model and therefore substantiates our claim of the low-energy
effective theory Lagrangian in Eq. (12).

C. A Rotor model with a Z 1-form symmetry

In this appendix, we discuss a lattice rotor model and its Z 1-form symmetry.
This model is also defined on a honeycomb lattice and we put a rotor on each lattice site (see Fig. 1). More

precisely, the local Hilbert space at each site is constructed by operators {ϕ,L} satisfying

[ϕ,L] = i. (C1)
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Moreover, ϕ is compactified in the sense that ϕ ≃ ϕ + 2π. Given this ambiguity, the operator einϕ only makes
sense when n ∈ Z. Note that Eq. (C1) indicates that

einϕLe−inϕ = L− n,

einϕeiαLe−inϕe−iαL = e−inα,
(C2)

where α ∈ R.
Using α and n as two parameters, the Z 1-form symmetry on each elementary loop (i.e., hexagon) l can be

constructed as follows:

Wl(m) =
(
e−iαL1e−inϕ1eiαL2einϕ3e−iαL4e−inϕ4eiαL5einϕ6

)m
, (C3)

where m ∈ Z is quantized because of the compactification condition on ϕ. When the system is put on a torus
(see Fig. 3), there are two more symmetries along the non-contractible loops:

Wη(m) =
(∏

i∈A

e−iαLi

∏
i∈B

eiαLi

)m

,

Wγ(m) =
(∏

i∈A

einϕi

∏
i∈B

e−inϕi

)m

.
(C4)

These non-contractible symmetry operators satisfy Wη(1)Wγ(1)W
−1
η (1)W−1

γ (1) = e2inα. When e2inα is an N -th
root of unity, each energy level of any Hamiltonian with such a symmetry must be N -fold degenerate on a torus.
By contrast, when eiα is not a root of unity, each energy level of any Hamiltonian with such a symmetry must
be infinitely degenerate on a torus.

A Kitaev-type Hamiltonian with this prescribed symmetry can be taken as

H =
∑

µ=X,Y,Z

∑
⟨i,j⟩=µ

fµ, (C5)

where the summation runs over all links connecting nearest neighbors, the labels of the bonds are defined in
Fig. 1, and

fX = fX(ϕi + ϕj),

fY = fY (αLi + nϕi + αLj + nϕj),

fZ = fZ(Li + Lj),

(C6)

with fX,Y,Z functions that are bounded from below, and, moreover, fX a 2π-periodic function and fY a 2πn-
periodic function. This model cannot be solved analytically due to its interacting nature. However, note that the
operator Wl has a continuous spectrum obtained by shifting the ϕ’s, hence we also expect any Hamiltonian with
such a Z 1-form symmetry has a spectrum of the form of Fig. 6. This Z 1-form symmetry is thus expected to not
flow to a topological 1-form symmetry at low energies.
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