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Abstract

Magnetic Resonance Spectroscopy (MRS) is a powerful non-invasive tool for metabolic
tissue analysis but is often degraded by patient motion, limiting clinical utility. The RE-
CENTRE project (REal-time motion CorrEctioN in magneTic Resonance) presents an AI-
driven, real-time motion correction pipeline based on optimized GRU networks, inspired
by tagging and fast-trigger algorithms from high-energy physics. Models evaluated on
held-out test sets achieve good predictive performance (R2>0.87) and overall positive
framewise displacement (FD) gains. These results demonstrate feasibility for prospec-
tive scanner integration; future work will complete in-vivo validation.

Copyright attribution to authors.
This work is a submission to SciPost Phys. Proc.
License information to appear upon publication.
Publication information to appear upon publication.

Received Date
Accepted Date
Published Date

1

Contents2

1 Introduction 23

2 Neural Network and Framewise Displacement approach 24

3 Results 35

1

mailto:email1


SciPost Physics Proceedings Submission

4 Conclusions 46

References 57

8

9

1 Introduction10

Magnetic Resonance (MR) is a well-established, non-invasive modality for the study of tissue11

structure and function. Magnetic Resonance Spectroscopy (MRS) [1] extends MR to metabolic12

and biochemical assessment, with potential clinical applications. However, patient motion re-13

mains a critical obstacle: even modest displacements produce spectral distortions, baseline14

shifts and loss of quantification that reduce reproducibility and limit diagnostic value. The15

RECENTRE project proposes a real-time motion correction [2] [3] [4] pathway for MRS based16

on compact deep recurrent networks. The design is inspired by algorithmic techniques from17

high-energy physics, such as tagging and fast-triggering [5], which enable low-latency deci-18

sions on streaming data. Training and evaluation emphasise two complementary goals. First,19

the model must accurately [6] predict motion-related parameters that can be used for prospec-20

tive adjustment during the acquisition. Second, the training objective explicitly favours reduc-21

tions in framewise displacement while preserving spectral fidelity.22

2 Neural Network and Framewise Displacement approach23

Recurrent neural networks (RNNs) are naturally suited for modeling sequential data, as they24

capture temporal dependencies across consecutive observations. Among their variants, Gated25

Recurrent Units (GRUs) provide an effective balance between modeling capacity and com-26

putational efficiency, achieving performance comparable to long short-term memory (LSTM)27

networks with fewer parameters and reduced training time. Within the RECENTRE project,28

a GRU-based architecture was therefore adopted to predict motion corrections directly from29

short temporal sequences of MR acquisitions.30

Dataset31

The data used for training were obtained from the Human Connectome Project (HCP) [7]. A32

total of 1113 subjects were scanned on Siemens 3T MRI systems with a repetition time (TR)33

of 720 ms and an echo time (TE) of 33.1 ms. Three acquisition types have been included34

in this work, differing in the number of frames per sequence: Resting State (1200 frames),35

Working Memory (316 frames), and Language (405 frames). The motion parameters used as36

input to the network consist of three translations and three rotations, extracted through rigid37

realignment during post-processing of the MRI data. As illustrated in Fig. 1, the network input38

was formed by 7 sequences of two data points each (14 in total), then the model predicts the39

following 15th point.40

Framewise displacement gain41

Framewise displacement (F D) was employed as a subject-specific index of motion, providing42

a scalar measure of head movement at each time point.43

F D was computed both from the ground-truth (Eq. 1) and the predicted motion parameters44
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Figure 1: Each input sample consists of 7 sequences, each covering two consecutive acquisition points
(for a total of 14 time points). The model is trained to predict the subsequent 15th point.

(Eq. 2).45
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where Ti denote the translational motion parameters (in mm) and Ri the rotational motion46

parameters (in rad), with the index i = 1,2, 3 corresponding to the three spatial directions.47

The quantities T̂i and R̂i denote the corresponding predicted parameters. The F D gain was48

then defined as:49

F Dgain =
F Dtotal − F Dpredicted

F Dtotal
. (3)

A positive F Dgain indicates an improvement, i.e. reduced motion relative to the original se-50

quence.51

Neural network model and training objective52

The adopted model is composed of a GRU layer with hidden size 128, followed by normal-53

ization, non-linear activations and two fully connected layers. The total number of trainable54

parameters is approximately 270k. The network outputs the predicted motion parameters to-55

gether with their associated uncertainty estimates. Training was performed with the Adam56

optimizer and early stopping based on validation performance. The loss function combined a57

probabilistic negative log-likelihood (NLL) term with a term (βF Dgain) that promote positive58

F D gains and effective motion reduction on motion reduction:59

L= NLL− β F Dgain β = 0.1 (4)

This design enforces both predictive accuracy and effective reduction of head motion. The60

corresponding training and validation loss curves for the three acquisition types are reported61

in Fig. 2.62

3 Results63

Results were obtained on the held-out test set across the three acquisition types (Resting State,64

Working Memory, and Language), as described in Section 2.65

Training curves (Fig. 2) demonstrate stable convergence of the loss across all acquisition types.66

No significant overfitting was observed.67
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Figure 2: Training and validation loss curves for the three acquisition types: on the left Resting state
set, in the middle Working memory set and on the right Language set.

Prediction accuracy was evaluated by comparing the predicted motion parameters with the68

corresponding ground-truth values, scatter plots show good agreement, as illustrated in Fig. 3.69

Quantitative performance was assessed using the coefficient of determination (R2), computed70

between predicted and ground-truth parameters on the test sets. Across all tasks, R2 values71

consistently exceeded 0.87, indicating reliable predictive performance.72
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Figure 3: Predicted vs. true motion parameters on the test set for the Resting State acquisition. The
figure reports the six estimated motion parameters, namely the three rotational displacements (in rad)
and the three rotational angles (in mm).

The effectiveness of the network in reducing apparent motion was quantified using the FD73

gain metric (see Eq. (3)). Positive FD gains were consistently observed across all acquisition74

(Fig. 4), demonstrating improved motion estimates. Results were comparable among Resting75

State, Working Memory, and Language tasks.76
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Figure 4: Mean FD gain per patient (average over all predictions). Negative FD gains indicate that
the network sometimes slightly overestimates motion.

4 Conclusions77

The GRU-based predictor achieves high predictive accuracy (R2 > 0.87) across evaluated di-78

mensions, capturing both large and subtle motion patterns. FD-gain analysis shows mostly79

positive values, reflecting a net reduction of estimated motion for the majority of patients, with80

only occasional slight overestimation. The GRU network will be integrated into the Siemens81

syngo MR MAGNETOM workflow, where the Siemens Image Calculation Environment (ICE)82

will use the predicted roto-translation parameters for motion-corrected image reconstruction.83

The model will run on the Siemens Framework for Image Reconstruction Environment (FIRE)84

with deployment on the Siemens MARS workstation, leveraging on-board GPUs to accelerate85

prediction. Validation will be performed on in-vivo data acquired with the Siemens 3T Prisma86

scanner at IRCCS Santa Lucia in Rome.87
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