SciPost Submission Page
Anomalous dimensions of potential top-partners
by Diogo Buarque Franzosi, Gabriele Ferretti
This Submission thread is now published as
Submission summary
Authors (as registered SciPost users): | Diogo Buarque Franzosi · Gabriele Ferretti |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/1905.08273v2 (pdf) |
Date accepted: | 2019-08-27 |
Date submitted: | 2019-08-07 02:00 |
Submitted by: | Ferretti, Gabriele |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
We discuss anomalous dimensions of top-partner candidates in theories of Partial Compositeness. First, we revisit, confirm and extend the computation by DeGrand and Shamir of anomalous dimensions of fermionic trilinears. We present general results applicable to all matter representations and to composite operators of any allowed spin. We then ask the question of whether it is reasonable to expect some models to have composite operators of sufficiently large anomalous dimension to serve as top-partners. While this question can be answered conclusively only by lattice gauge theory, within perturbation theory we find that such values could well occur for some specific models. In the Appendix we collect a number of practical group theory results for fourth-order invariants of general interest in gauge theories with many irreducible representations of fermions.
Author comments upon resubmission
List of changes
All the changes are listed and discussed in the replies to the Referees.
Structural changes: Added Table 3,4,5, equation (9) and two references.
Published as SciPost Phys. 7, 027 (2019)
Reports on this Submission
Report
The authors have addressed all my comments and I recommend the paper for publication in SciPost.
There appears to be a typo in footnote 6:
if $N_f$ is the number of Dirac fermions and $N_F$ of Weyl fermions then $N_f=N_F/2$ (and not the other way around,
as the footnote now has).