## SciPost Submission Page

# Solvable lattice models for metals with Z2 topological order

### by Brin Verheijden, Yuhao Zhao, Matthias Punk

### Submission summary

As Contributors: | Matthias Punk |

Arxiv Link: | https://arxiv.org/abs/1908.00103v1 |

Date submitted: | 2019-08-02 |

Submitted by: | Punk, Matthias |

Submitted to: | SciPost Physics |

Domain(s): | Theoretical |

Subject area: | Condensed Matter Physics - Theory |

### Abstract

We present quantum dimer models in two dimensions which realize metallic ground states with Z2 topological order. Our models are generalizations of a dimer model introduced in [PNAS 112, 9552-9557 (2015)] to provide an effective description of unconventional metallic states in hole-doped Mott insulators. We construct exact ground state wave functions in a specific parameter regime and show that the ground state realizes a fractionalized Fermi liquid. Due to the presence of Z2 topological order the Luttinger count is modified and the volume enclosed by the Fermi surface is proportional to the density of doped holes away from half filling. We also comment on possible applications to magic-angle twisted bilayer graphene.