## SciPost Submission Page

# Anomaly Matching in the Symmetry Broken Phase: Domain Walls, CPT, and the Smith Isomorphism

### by Itamar Hason, Zohar Komargodski, Ryan Thorngren

### Submission summary

As Contributors: | Ryan Thorngren |

Arxiv Link: | https://arxiv.org/abs/1910.14039v2 |

Date submitted: | 2020-02-03 |

Submitted by: | Thorngren, Ryan |

Submitted to: | SciPost Physics |

Discipline: | Physics |

Subject area: | High-Energy Physics - Theory |

### Abstract

Symmetries in Quantum Field Theory may have 't Hooft anomalies. If the symmetry is unbroken in the vacuum, the anomaly implies a nontrivial low-energy limit, such as gapless modes or a topological field theory. If the symmetry is spontaneously broken, for the continuous case, the anomaly implies low-energy theorems about certain couplings of the Goldstone modes. Here we study the case of spontaneously broken discrete symmetries, such as Z/2 and T. Symmetry breaking leads to domain walls, and the physics of the domain walls is constrained by the anomaly. We investigate how the physics of the domain walls leads to a matching of the original discrete anomaly. We analyze the symmetry structure on the domain wall, which requires a careful analysis of some properties of the unbreakable CPT symmetry. We demonstrate the general results on some examples and we explain in detail the mod 4 periodic structure that arises in the Z/2 and T case. This gives a physical interpretation for the Smith isomorphism, which we also extend to more general abelian groups. We show that via symmetry breaking and the analysis of the physics on the wall, the computations of certain discrete anomalies are greatly simplified. Using these results we perform new consistency checks on the infrared phases of 2+1 dimensional QCD.