
SciPost Physics Submission

QGOpt: Riemannian optimization for quantum technologies

I. A. Luchnikov1,2,3*, A. Ryzhov2, S. N. Fillipov1,4,5 H. Ouerdane2

1 Moscow Institute of Physics and Technology, Institutskii Pereulok 9, Dolgoprudny,
Moscow Region 141700, Russia

2 Center for Energy Science and Technology, Skolkovo Institute of Science and Technology,
Moscow 121205, Russia

3 Russian Quantum Center, Skolkovo, Moscow 143025, Russia
4 Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina Street 8,

Moscow 119991, Russia
5 Valiev Institute of Physics and Technology of Russian Academy of Sciences, Nakhimovskii

Prospect 34, Moscow 117218, Russia
* Ilia.Luchnikov@skoltech.ru

February 5, 2021

Abstract

Many theoretical problems in quantum technology can be formulated and ad-
dressed as constrained optimization problems. The most common quantum me-
chanical constraints such as, e.g., orthogonality of isometric and unitary matri-
ces, CPTP property of quantum channels, and conditions on density matrices,
can be seen as quotient or embedded Riemannian manifolds. This allows to use
Riemannian optimization techniques for solving quantum-mechanical constrained
optimization problems. In the present work, we introduce QGOpt, the library
for constrained optimization in quantum technology. QGOpt relies on the un-
derlying Riemannian structure of quantum-mechanical constraints and permits
application of standard gradient based optimization methods while preserving
quantum mechanical constraints. Moreover, QGOpt is written on top of Tensor-
Flow, which enables automatic differentiation to calculate necessary gradients for
optimization. We show two application examples: quantum gate decomposition
and quantum tomography.

Contents

1 Introduction 2

2 Overview of the Riemannian optimization 3

3 Riemannian manifolds in quantum mechanics 5

4 QGOpt API 9
4.1 Manifolds API 9
4.2 Optimizers 10

1

ar
X

iv
:2

01
1.

01
89

4v
2

 [
qu

an
t-

ph
]

 4
 F

eb
 2

02
1

SciPost Physics Submission

4.3 Auxiliary functions 10

5 Examples of application of QGOpt 11
5.1 Quantum gate decomposition 11
5.2 Quantum tomography 12

6 Optimization over an arbitrary Cartesian product of manifolds. 15

7 Discussion and concluding remarks 17

A Underlying geometry of manifolds implemented in the QGOpt library 18

B Complexity of algorithms and comparison with other libraries 22

References 23

1 Introduction

Many quantum-mechanical problems can be solved using optimization methods as illustrated
by the following examples. The ground state of a quantum system with Hamiltonian H can
be found using the variational method, which is akin to an optimization problem [1]:

|Ω〉 = argmin
|ψ〉

〈ψ|H |ψ〉
〈ψ|ψ〉 , (1)

where |ψ〉 is a trial, non-normalized state, |Ω〉 is the non-normalized ground state. This
formulation of a ground state search problem was successfully used for the study of many-
body quantum systems [2, 3]. In particular, the ground state of a correlated spin system
can be found in the following forms: matrix product states [4–6], projected entangled pair
states [7,8] or neural networks [9–11]. To perform optimization of variational energy one can
utilize optimization algorithms such as the density matrix renormalization group [12,13], the
time evolving block decimation [14–16] for tensor network architectures, the quantum natural
gradient [17], and adaptive first order optimization methods like the Adam optimizer [18] for
neural-networks-based quantum parametrization.

Problems of reconstruction of quantum states, quantum channels and quantum processes
from measured data can also be formulated as optimization problems. For example, the state
of a many-body quantum system can be reconstructed with neural networks by maximization
of the logarithmic likelihood function on a set of measurement outcomes [19–22]. The Choi
matrix of an unknown quantum channel can be reconstructed in a tensor network form via
the minimization of the Kullback-Leibler divergence [23]. Non-Markovian quantum dynamics
can be reconstructed from measured data in different ways [24, 25] by use of optimization
algorithms.

Some quantum mechanics problems require keeping certain constraints valid while min-
imizing or maximizing of an objective function. For example, quantum phase transitions

2

SciPost Physics Submission

can be described using an entanglement renormalization technique, which requires an opti-
mization over matrices with orthogonality constraints, i.e. isometric matrices. To solve this
problem, Vidal and Evenbly suggested an algorithm [26–28] that does not have analogs in
standard optimization theory. Another example of a constrained optimization problem emerg-
ing in quantum mechanics is quantum channel tomography. It requires preservation of natural
“quantum” constraints, i.e. the completely positive and trace preserving (CPTP) property
of quantum channels [29]. Constraints preservation here can be achieved by using a partic-
ular parametrization or by adding regularizers that ensure that the constraints are satisfied.
There are also specialized algorithms such as the Vidal–Evenbly algorithm for entanglement
renormalization that however is suitable for a limited set of problems only.

Adding regularizers into a loss function merely provides approximate preservation of con-
straints, and a naive parametrization may lead to over-parametrization and result in the
optimization slowing down. One therefore needs a universal approach to quantum technology
optimization. As many natural “quantum” constraints can be seen as Riemannian manifolds,
Riemannian optimization can become a candidate well-suited for the role of universal frame-
work for constrained optimization in quantum mechanics. In the present work, we introduce
QGOpt (Quantum Geometric Optimization) [30], the library for Riemannian optimization in
quantum mechanics and quantum technologies. It allows one to perform an optimization with
all typical constraints of quantum mechanics.

This article is organized as follows. In Sec. 2, we give an overview of Riemannian op-
timization. We then turn to Riemannian manifolds in quantum mechanics in Sec. 3. In
Sec. 4, we present the QGOpt application programming interface (API), and we illustrate its
utilization in Sec. 5, with two examples: quantum gate decomposition and quantum channel
tomography.

2 Overview of the Riemannian optimization

While optimizing an objective function defined on the Euclidean space, one performs a se-
quence of elementary operations like points and vectors transportation. We call these elemen-
tary operations optimization primitives. For example, one iteration of the simplest gradient
descent method involves an update of the current estimation of the optimal point xt as follows:
xt+1 = xt + vt, where vt = −η∇f(xt) is a vector tending to improve the current estimation, t
is the number of previous iterations, and η is the step-size. This update can be seen as a trans-
portation of a point xt along a vector vt. More sophisticated algorithms may require keeping

additional information about the function landscape in terms of vectors {m(0)
t , . . . ,m

(N)
t }

drawn from the current point xt. These vectors should be transported together with xt to a
new point and then updated according to a particular algorithm. However, as transportation
of vectors in a Euclidean space is trivial, i.e. the identity transformation, it may be safely
skipped. Optimization on curved spaces requires a generalization of optimization primitives in
a certain way. As an example of optimization algorithms we consider a gradient descent with
momentum [31] and its Riemannian generalization [32,33]. Here, we keep our overview simple.
For an in-depth introduction into the topic, we recommend the following references [34,35].

Let us assume that we aim to minimize the value of a function f : Rn 7−→ R, and that
we have access to its gradient ∇f(x). In the Euclidean space Rn, a gradient descent with
momentum consists of the following steps wrapped into a loop:

3

SciPost Physics Submission

1. Calculation of the momentum vector mt+1 = βmt + (1− β)∇f(xt),

2. Taking a step along the direction of a momentum vector xt+1 = xt − ηmt+1,

where the initial momentum vector m0 is the null vector, β is a hyperparameter whose value
is usually taken around β ≈ 0.9, and η is the size of the optimization step. The sign before η
indicates whether we search for a local minimum or maximum.

Let us assume now that a function f is defined on a Riemannian manifold M that is
embedded in the Euclidean space: f :M 7−→ R. Then we can no longer apply the standard
scheme of gradient descent with momentum, because it clearly takes xt out of the manifold
M. This scheme can be generalized step by step. First, we have to generalize the notion
of a gradient. The standard Euclidean gradient is not a tangent vector to a manifold and it
does not take into account the metric of a manifold. One may then introduce the Riemannian
gradient that can be constructed based on the standard gradient ∇f(x). The Riemannian
gradient lies in the space tangent to a point x and properly takes the metric of a tangent
space into account. Although an optimization algorithm takes a step along a tangent vector
to a manifold, it still takes a point out of the manifold. In order to fix this issue, one can
replace a straight line step with a proper curved line step. In the Riemannian geometry the
generalization of the straight line step is given by the notion of exponential map that reads

xout = Expxin(v) = γ(1), (2)

where γ(t) is a geodesic [36] such that γ(0) = xin and dγ(t)
dt

∣∣
t=0

= v, xin is an initial point
on a manifold, xout is a final point. However, in practice the calculation of a geodesic is
often computationally too inefficient. In these cases, one can use a retraction instead of an
exponential map, which is a first-order approximation of a geodesic:

x̃out = Rxin(v), (3)

where x̃out also lies in a manifold and ‖x̃out − xout‖ = O(‖v‖2). A retraction is not unique
and usually can be chosen to be computationally efficient.

The gradient descent with momentum also requires to transport the momentum vector at
each iteration from a previous point to a new point. The Euclidean version of the gradient
descent with momentum does not have an explicit step with transportation of the momentum
vector because in the Euclidean space transportation of a vector is trivial. However, this step
is necessary in the Riemannian case, where the trivial Euclidean vector transportation takes
a vector out of a tangent space. A vector transport τx,w(v) is the result of transportation of
a vector v along a vector w which takes into account that a tangent space varies from one
manifold’s point to another in the Riemannian case. The overall Riemannian generalization
of the gradient descent with momentum can be summarized as follows:

1. Calculation of the momentum vector m̃t+1 = βmt + (1− β)∇Rf(xt),

2. Taking a step along a new direction of the momentum xt+1 = Rxt(−ηm̃t+1),

3. Transport of the momentum vector to a new point xt+1: mt+1 = τxt,−ηm̃t+1(m̃t+1).

Other first-order optimization methods can be generalized in a similar fashion.

4

SciPost Physics Submission

3 Riemannian manifolds in quantum mechanics

Many objects of quantum mechanics can be seen as elements of smooth manifolds. However,
their mathematical description, suitable for numerical algorithms, may involve some abstract
constructions that should be clarified. In this section we consider an illustrative example of
a set of Choi matrices and describe this set as a smooth quotient manifold. We restrict our
consideration to a plain description of all necessary mathematical concepts. At the end of the
section, we also list all the manifolds implemented in the QGOpt library and describe their
possible use.

The evolution of any quantum system that interacts with its environment can be described
by a quantum channel. Here, we consider quantum channels defined as the following CPTP
linear map: Φ : Cn×n 7−→ Cn×n. Any quantum channel can be represented through its
Choi matrix [29]. A Choi matrix is a positive semi-definite operator C ∈ Cn2×n2

that has
a constraint Trp(C) = 1, where Trp is a partial trace over the first subsystem and 1 is the
identity matrix. To make the notion of the partial trace less abstract, let us consider a piece
of the TensorFlow code, which computes a partial trace of a Choi matrix. First, we apply a
reshape operation to a Choi matrix that changes the shape of a matrix as follows

1 C_resh = tf.reshape(C, (n, n, n, n)).

The tensor Cresh ∈ Cn×n×n×n is an alternative representation of the Choi matrix. Further
in the text, we distinguish two equivalent representations of a Choi matrix: C and Cresh.
The partial trace of a Choi matrix can be calculated using Cresh as follows [Trp(C)]i1i2 =∑

j [Cresh]i1ji2j . Practically it can be done by running the following line of code:

1 tf.einsum(’ikjk ->ij’, C_resh),

which means that we take a trace over the first and third indices (with numeration of indices
starting from 0).

The Choi–Jamio lkowski isomorphism [37] establishes a one-to-one correspondence between
quantum channels and Choi matrices. One can calculate the Choi matrix of a known quantum
channel as follows

C = 1⊗ Φ |Ψ+〉 〈Ψ+| , (4)

where |Ψ+〉 =
∑n

i=1 |i〉 ⊗ |i〉 and {|i〉}ni=1 is an orthonormal basis in Cn. In order to show
that the Choi matrix essentially is a quantum channel itself, we consider the representation
of Eq. (4) in terms of tensor diagrams [38, 39]. The reshaped version of a Choi matrix
[Cresh]i1j1i2j2 is shown in Fig. 1. The tensor diagrams in Fig. 1 show that |Ψ+〉 and 1 in the
definition of the Choi matrix lead only to relabeling of multi-indices.

The set of all Choi matrices of size n2 × n2 (the corresponding quantum channel acts on
density matrices of size n× n) Cn is the following subset of Cn2×n2

Cn =
{
C ∈ Cn

2×n2∣∣C ≥ 0, Trp(C) = 1
}
, (5)

where C ≥ 0, and Trp(C) = 1 corresponds to the CPTP property of the corresponding quan-
tum channel. This subset can be described as a Riemannian manifold that admits different
Riemannian optimization algorithms. In order to describe Cn as a Riemannian manifold, we
may parametrize the Choi matrix with an auxiliary matrix A ∈ Cn2×n2

:

C = AA†. (6)

5

Michael

SciPost Physics Submission

Figure 1: a) Diagrammatic representation of the Choi matrix. The block denoted by 1

represents the identity map in the definition of the Choi matrix. b) One can note that the
state of a two-component quantum system |Ψ+〉 can be seen as the identity matrix. c) Finally,
we note that the Choi matrix is a quantum channel itself.

Figure 2: a) Decomposition of a Choi matrix into A and A†. b) Diagrammatic representation
of the isometric property of A.

The matrix C is positive semi-definite by construction. We also distinguish A ∈ Cn2×n2
and

its reshaped version Aresh ∈ Cn×n×n2
that are connected by the reshape operation. The

condition on a partial trace of a Choi matrix transforms to the following equality:

[Trp(C)]i1i2 = [Trp(A
†A)]i1i2 =

∑
kj

[Aresh]∗ki1j [Aresh]ki2j = δi1i2 , (7)

and its diagrammatic form is given in Fig. 2. One can see that if in Eq. (7) we recast the two
indices k and j into one index q, we then end up with the following relation:∑

q

[Aresh]∗qi1 [Aresh]qi2 = δi1i2 , (8)

which means that [Aresh]qi is an isometric matrix and the corresponding tensor [Aresh]kij is
a reshaped isometric matrix. The corresponding diagrammatic representation of Eq. (8) is
given in Fig. 3. We call such a tensor, obtained by reshaping an isometric matrix, an isometric
tensor. The set of all complex isometric matrices of fixed size forms a Riemannian manifold
called complex Stiefel manifold [40] that we denote as St. Equations (7) and (8), and the
diagram Fig. 3 show that the set of tensors Aresh can be seen as a complex Stiefel manifold.

At first glance, it looks like we have shown that the set of Choi matrices can be seen as a
Stiefel manifold, but there is a problem that invalidates this statement: the matrices A and

6

SciPost Physics Submission

R
es

ha
pe

Figure 3: Diagrammatic representation of the reshape operation turning the tensor Aresh into
an isometric matrix.

Figure 4: Diagrammatic representation of Eq. (9).

AQ, where Q is an arbitrary unitary matrix, correspond to the same Choi matrix; in other
words we have an equivalence relation AQ ∼ A. Indeed

C = AQQ†A† = AA†. (9)

A diagrammatic version of Eq. (9) is depicted in Fig. 4. It shows that for any A there is a family
of equivalent matrices [A] = {AQ|Q ∈ Cn2×n2

, Q†Q = QQ† = 1}, which is called equivalence
class of A, and leads to the same Choi matrix. One can eliminate this symmetry by turning to
a quotient manifold St/Q = {[A]|A ∈ St}, which consists of equivalence classes. This rather
abstract construction can be imagined as a projection of a manifold along surfaces representing
equivalence classes (see Fig. 5). Having a map π(A) = [A] and a map called horizontal lift [34],
that connects tangent spaces of St/Q and tangent spaces of St, one can describe the abstract
manifold St/Q through St. The quotient manifold St/Q can be further identified with the set
of Choi matrices Cn. It allows one to perform a Riemannian optimization on Cn, by using the
parametrization C = AA†. Mathematical details of this construction are given in Appendix
A.

The example of the quotient manifold representing the Choi matrices through their parametriza-
tion shows all the necessary steps that emerge while building the mathematical description
of quantum mechanical manifolds. The set of all manifolds implemented in QGOpt library is
listed below.

• The complex Stiefel manifold Stn,p =
{
V ∈ Cn×p|V †V = 1

}
is a set of all isometric

matrices of fixed size. A particular case of this manifold is a set of all unitary matrices
of fixed size; therefore, this manifold can be used for different tasks related to quan-
tum control. Some architectures of tensor networks may include isometric matrices as
building blocks [41,42]; thus, one can use this manifold to optimize such tensor networks.

• The manifold of density matrices of fixed rank

%n,r =
{
% ∈ Cn×n

∣∣∣% = %†, Tr(%) = 1, % ≥ 0, rank(%) = r
}

is a set of all fixed-rank Her-

mitian positive semi-definite matrices with unit trace. Since density matrices represent

7

SciPost Physics Submission

Figure 5: Graphical representation of the transition from the manifold St of all matrices A,
to the quotient manifold St/Q that eliminates undesirable symmetry of the parametrization.
The red curve represents a particular equivalence class F that is also called a fiber.

states of quantum systems, one can use this manifold to perform state tomography and
optimization of initial quantum states in different quantum circuits. This manifold is
implemented through a parametrization with a quotient structure on top of it.

• The manifold of Choi matrices of fixed rank
Cn,r =

{
C ∈ Cn2×n2

∣∣∣C = C†, Trp(C) = 1, C ≥ 0, rank(C) = r
}

is a set of all fixed-

rank Hermitian positive semi-definite matrices with auxiliary linear constraint (equality
of the partial trace to the identity matrix). Choi matrices are used as representations
of quantum channels; hence, one may use this manifold to perform quantum channel
tomography and optimization of quantum channels in different quantum circuits. This
manifold is implemented through a parametrization with a quotient structure on top of
it.

• The manifold of Hermitian matrices Hn =
{
H ∈ Cn×n

∣∣∣H = H†
}

is essentially a linear

subspace of a space Cn×n. Since Hermitian matrices represent measurable physical
operators in the quantum theory, one can use this manifold to perform a search of
optimal measurable physical operators in different problems.

• The manifold of Hermitian positive definite matrices Sn++ =
{
S ∈ Cn×n

∣∣∣S = S†, S � 0
}

is a set of all positive definite matrices of fixed size. One can use it to search the optimal
non-normalized quantum state in different tasks.

• The manifold of positive operator-valued measures (POVMs) with full rank elements

POVMm,n =

{
{Ei}mi=1 ∈ Cm×n×n

∣∣∣∣∣Ei = E†i , Ei ≥ 0,

m∑
i=1

Ei = 1, rank(Ei) = n

}
can be considered

as a tensor with Hermitian positive semi-definite full-rank slices that sum into the iden-
tity matrix. Since POVMs describe generalized measurements in quantum theory, one
can use this manifold to perform a search of optimal measurements that give the largest
information gain. This manifold is implemented through a parametrization with a quo-
tient structure on top of it.

Mathematical details of the implementation of manifolds are given in Appendix A.

8

SciPost Physics Submission

4 QGOpt API

4.1 Manifolds API

In this section we discuss the API of the version 1.0.0 of the QGOpt library. The central class
of the QGOpt library is the manifold base class. All particular manifold types are inherited
from the manifold base class. All manifold subclasses admit working with the direct product
of several manifolds. Optimization primitives of each particular manifold are implemented as
methods of the corresponding class describing a manifold. This list of methods allows one not
to pay particular attention to the details of the underlying Riemannian geometry.

Let us consider basic illustrative examples. First, one needs to import all necessary li-
braries and create an example of a manifold. As an example we consider the complex Stiefel
manifold.

1 import QGOpt as qgo

2 import tensorflow as tf

3

4 # example of complex Stiefel manifold

5 m = qgo.manifolds.StiefelManifold ()

Here, m is an example of the complex Stiefel manifold that contains all the necessary infor-
mation on the manifold’s geometry. Some manifolds allow one to specify a type of metric and
retraction as well. Using this example of a manifold one can sample a random point from a
manifold:

1 u = m.random ((4, 3, 2))

Here, we sample a random tensor u, that is a complex valued TensorFlow tensor of size
4 × 3 × 2. This tensor represents a point from the direct product of four complex Stiefel
manifolds. The first index of this tensor enumerates a manifold and the last two indices are
matrix indices. Therefore, the tensor u can be seen as a set of four isometric matrices. One
can generate a random tangent vector drawn from u.

1 v = m.random_tangent(u)

Here, v is a complex valued TensorFlow tensor of the same size and type as u, and represents
the random tangent vector drawn from u. Now let us assume that we have a random vector
w which is of the same size and type, but is not tangent to u. One can make the orthogonal
projection of this vector on the tangent space of u:

1 w = m.proj(u, w)

The updated vector w is an element of the tangent space of u now. The projection method of
quotient manifold performs the projection on the horizontal space. To get the scalar product
of two tangent vectors one can use the following line of code:

1 wv_inner = m.inner(u, w, v)

Here we pass u to the inner product method to specify the tangent space where we compute
the inner product, because in Riemannian geometry the metric and inner product are point-
dependent in general.

To implement first-order Riemannian optimization methods on a manifold one needs to be
able to move points and vectors along the manifold. There are retraction and vector transport
methods for this purpose. As an example let us move a point u along a tangent vector v via
the retraction map:

9

SciPost Physics Submission

1 u_tilde = m.retraction(u, v)

The new point ũ is the result of transportation of u along vector v. To perform transportation
of a vector along some other vector one can run the following line of code:

1 v_tilde = m.vector_transport(u, v, w)

Here we start from point u and transport a tangent vector v along a tangent vector w, and
obtain ṽ that is the result of the vector transportation.

The last important method converts the Euclidean gradient of a function to the Rieman-
nian gradient. The Riemannian gradient replaces the Euclidean gradient, to take into account
the metric of a manifold and the tangent space in a given point. To calculate the Riemannian
gradient one can use the following piece of code:

1 r = m.egrad_to_rgrad(u, e)

where we denote the Euclidean gradient as e and the Riemannian gradient as r.
The numerical complexity of each optimization primitive varies from one manifold to

another. The complexity of all primitives is summarized in Appendix B.

4.2 Optimizers

The Riemannian optimizers implemented in QGOpt are inherited from TensorFlow optimizers
and hence have the same API. The main difference is that one should also pass an example
of manifold while defining an optimizer. An example of manifold guides the optimizer and
preserves the manifold’s constraints. Two optimizers are implemented, that are among the
most popular in machine learning: Riemannian versions of Adam [18] and SGD [43].

If m is a manifold element and lr is a learning rate (optimization step size), then the Adam
and SGD optimizers can be initialized as follows:

1 # Riemannian ADAM optimizer

2 opt = qgo.optimizers.RAdam(m, lr)

3 # Riemannian SGD optimizer

4 opt = qgo.optimizers.RSGD(m, lr).

Note that some other attributes like the momentum value of the SGD optimizer or the AMS-
Grad modification of the Adam optimizer, can also be specified.

4.3 Auxiliary functions

It is important to have in mind that TensorFlow optimizers work well only with real variables.
Therefore, one cannot use complex variables to represent a point on a manifold because they
are being tuned while optimizing. The simplest way of representing a point from a complex
manifold through real tensors is by introducing an additional index that enumerates real and
imaginary parts of a tensor. For example a complex-valued tensor of shape (a, b, c) can be
represented as a real-valued tensor of shape (a, b, c, 2). During calculations, we need to convert
tensors from their real representation to their complex representation and back.

Let us assume that we initialize a complex-valued tensor, which represents a point from
a manifold by using method “random”. In order to make this tensor a variable suitable
for an optimizer, one needs to convert it to the real representation. Then, while building
a computational graph, one may need to have a complex form of a tensor again. To make
this transition simple, we introduced two auxiliary functions that allow performing conversion
from the real representation to the complex and back:

10

SciPost Physics Submission

1 # a random real tensor , last index enumerates

2 # real and imaginary parts

3 w = tf.random.normal ((4, 3, 2),

4 dtype=tf.float64)

5 # corresponding complex tensor of shape (4, 3)

6 wc = qgo.manifolds.real_to_complex(w)

7 # corresponding real tensor (wr = w)

8 wr = qgo.manifolds.complex_to_real(wc)

5 Examples of application of QGOpt

5.1 Quantum gate decomposition

In this subsection we consider an illustrative example of a quantum gate decomposition. It is
known, that any two qubit-quantum gate U can be decomposed in the following way [44]:

U = [ũ11 ⊗ ũ12]UCNOT[ũ21 ⊗ ũ22]× UCNOT[ũ31 ⊗ ũ32]UCNOT[ũ41 ⊗ ũ42], (10)

where UCNOT is the CNOT gate and {ũij}4,2i,j=1 is a set of unknown one qubit-gates. Since

a set {ũij}4,2i,j=1 can be seen as the direct product of 8 complex Stiefel manifolds, one can
use Riemannian optimization methods to find all ũij . First we initialize randomly a trial set

{uij}4,2i,j=1 that will be tuned by Riemannian optimization methods. For simplicity ,we denote
the decomposition introduced above in the following way

D (uij) = [u11 ⊗ u12]UCNOT[u21 ⊗ u22]× UCNOT[u31 ⊗ u32]UCNOT[u41 ⊗ u42] (11)

The problem of gate decomposition can then be formulated as the following optimization
problem:

‖U −D(uij)‖F → min
{uij}4,2i,j=1

(12)

where each uij obeys the unitarity constraint and ‖ · ‖F is the Frobenius distance.
Before considering the main part of the code that solves the problem above, we need to

introduce a function that calculates the Kronecker product of two matrices:

1 def kron(A, B):

2 AB = tf.tensordot(A, B, axes =0)

3 AB = tf.transpose(AB, (0, 2, 1, 3))

4 AB = tf.reshape(AB, (A.shape [0]*B.shape [0],

5 A.shape [1]*B.shape [1]))

6 return AB.

Now, we define an example of the complex Stiefel manifold:

1 m = qgo.manifolds.StiefelManifold ().

As a target gate that we want to decompose, we use a randomly generated one:

1 U = m.random ((4, 4), dtype=tf.complex128).

We initialize the initial set {uij}4,2i,j=1 randomly as a 4th rank tensor:

1 u = m.random ((4, 2, 2, 2), dtype=tf.complex128).

11

SciPost Physics Submission

The first two indices of this tensor enumerate a particular one-qubit gate, the last two indices
are matrix indices of a gate. We turn this tensor into its real representation in order to make
it suitable for an optimizer and wrap it up into the TensorFlow variable:

1 u = qgo.manifolds.complex_to_real(u)

2 u = tf.Variable(u).

We initialize the CNOT gate UCNOT as follows:

1 cnot = tf.constant ([[1, 0, 0, 0],

2 [0, 1, 0, 0],

3 [0, 0, 0, 1],

4 [0, 0, 1, 0]],

5 dtype=tf.complex128).

As the next step, we initialize the Riemannian Adam optimizer:

1 lr = 0.2 # optimization step size

2 opt = qgo.optimizers.RAdam(m, lr),

and run the forward pass of computations:

1 with tf.GradientTape () as tape:

2 # turning u back into its

3 # complex representation

4 uc = qgo.manifolds.real_to_complex(u)

5 # decomposition

6 D = kron(uc[0, 0], uc[0, 1])

7 D = cnot @ D

8 D = kron(uc[1, 0], uc[1, 1]) @ D

9 D = cnot @ D

10 D = kron(uc[2, 0], uc[2, 1]) @ D

11 D = cnot @ D

12 D = kron(uc[3, 0], uc[3, 1]) @ D

13 # loss function

14 L = tf.linalg.norm(D - U) ** 2

15 # is equivalent to casting to a real dtype

16 L = tf.math.real(L).

The final step is to minimize the loss function L = ‖D(uij) − U‖2F calculated during the
previous step. We calculate the gradient of L, using automatic differentiation, with respect
to the set {uij}4,2i,j=1:

1 grad = tape.gradient(L, u),

and pass the gradient to the optimizer:

1 opt.apply_gradients(zip([grad], [u])).

The Adam optimizer performs one optimization step keeping the orthogonality constraints.
We repeat the forward pass, gradient calculation and optimization steps several times, wrap-
ping them into a for loop until convergence and end up with a proper decomposition of the
gate U . The optimization result is given in Fig. 6. One can see that at the end of the opti-
mization process, the error is completely negligible. This section in the form of a tutorial is
available at the QGOpt documentation web-page [45].

5.2 Quantum tomography

Another typical problem that can be addressed by Riemannian optimization is the quantum
tomography of states [46,47] and channels [48,49]. Here, we consider an example of quantum

12

SciPost Physics Submission

0 100 200 300 400 500
iter

10−10

10−8

10−6

10−4

10−2

100

‖D
(u

ij
)
−
U
‖ F

Figure 6: Frobenius distance between a gate and its decomposition. One can see that the
distance rapidly decreases with the number of iteration towards nearly a machine zero.

tomography of channels, because it involves a more complicated structure than quantum
tomography of states.

Let H =
⊗n

i=1 C2 be the Hilbert space of a system consisting of n qubits. Let us assume
that one has a set of input states {ρi}Ni=1, where N is a total number of states, and each ρi is
a density matrix on H. One passes initial states through an unknown quantum channel Φtrue

and observes a set of measurement outcomes
{
M tetra
k1i

⊗ · · · ⊗M tetra
kni

}N
i=1

, where M tetra
k is an

element of a tetrahedral POVM [50]:

M tetra
k =

1

4

(
1 + sTkσ

)
, k ∈ (0, 1, 2, 3), (13)

σ = (σx, σy, σz) , s0 = (0, 0, 1), s1 =

(
2
√

2

3
, 0,−1

3

)
,

s2 =

(
−
√

2

3
,

√
2

3
,−1

3

)
, s3 =

(
−
√

2

3
,−
√

2

3
,−1

3

)
.

One can estimate an unknown channel by maximizing the logarithmic likelihood of measure-
ment outcomes:

N∑
i=1

log
(
M tetra
k1i

⊗ · · · ⊗M tetra
kni

Φ(ρi)
)
→ max

Φ is CPTP
. (14)

For simplicity, we assume that the many-body tetrahedral POVM M is already predefined
and has the shape (22n, 2n, 2n), where the first index enumerates the POVM element. We
also assume that we have a data set that consists of a set of initial density matrices of shape
(N, 2n, 2n) and a set of POVM elements of the same shape that came true after measurements.
In our experiments, an unknown channel has Kraus rank 2 and is generated randomly, initial
density matrices are pure and also generated randomly.

Let us proceed with practical implementation. First, we define an example of the quotient
manifold equivalent to the manifold of Choi matrices:

1 m = qgo.manifolds.ChoiMatrix ().

13

SciPost Physics Submission

Elements of this manifold are connected with Choi matrices via the relation (6). Then we
randomly initialize a point from the quotient manifold:

1 # random initial parametrization

2 A = m.random ((2**(2*n), 2**(2*n)),

3 dtype=tf.complex128)

4 # variable should be real

5 # to make an optimizer work correctly

6 A = qgo.manifolds.complex_to_real(A)

7 # variable

8 A = tf.Variable(A).

Then we initialize the Riemannian Adam optimizer:

1 lr = 0.07

2 opt = qgo.optimizers.RAdam(m, lr),

and calculate the logarithmic likelihood function:

1 with tf.GradientTape () as tape:

2 # Ac is a complex representation of A

3 # shape =(2**2n, 2**2n)

4 Ac = qgo.manifolds.real_to_complex(A)

5

6 # reshape parametrization

7 # (2**2n, 2**2n) --> (2**n, 2**n, 2**2n)

8 Ac = tf.reshape(Ac, (2**n, 2**n, 2**(2*n)))

9

10 # Choi tensor (reshaped Choi matrix)

11 choi = tf.tensordot(Ac,

12 tf.math.conj(Ac),

13 [[2], [2]])

14

15 # turning Choi tensor to the

16 # corresponding quantum channel

17 phi = tf.transpose(choi , (1, 3, 0, 2))

18 phi = tf.reshape(phi , (2**(2*n), 2**(2*n)))

19

20 # reshape initial density

21 # matrices to vectors

22 rho_resh = tf.reshape(rho_in , (N, 2**(2*n)))

23

24 # passing density matrices

25 # through a quantum channel

26 rho_out = tf.tensordot(phi ,

27 rho_resh ,

28 [[1], [1]])

29 rho_out = tf.transpose(rho_out)

30 rho_out = tf.reshape(rho_out ,

31 (N, 2**n, 2**n))

32

33 # probabilities of measurement outcomes

34 # (povms is a set of POVM elements

35 # came true of shape (N, 2**n, 2**n))

36 p = tf.linalg.trace(povms @ rho_out)

37

38 # negative log likelihood (to be minimized)

39 L = -tf.reduce_mean(tf.math.log(p)).

14

SciPost Physics Submission

0 100 200 300 400
iter

10−2

10−1

100

1 2n
‖C

tr
u

e
−
C

es
t‖

tr

n = 1 qubit

n = 2 qubits

n = 3 qubits

Figure 7: Dependence between Jamio lkowski process distance and number of iteration. Num-
ber of measurement outcomes N = 600000 for all experiments.

The complexity of the code above can be reduced by choosing the optimal order of tensors
contraction; however, it becomes more raveled in this case, and is not suitable for the tutorial.
Finally, we calculate the logarithmic likelihood gradient with respect to the parametrization
of the Choi matrix:

1 grad = tape.gradient(L, A),

and apply the optimizer to make an optimization step that does not violate the CPTP con-
straints:

1 opt.apply_gradients(zip([grad], [A])).

We repeat the calculation of the logarithmic likelihood function, gradient calculation and op-
timization steps several times, wrapping them into a for loop, until convergence is reached. To
evaluate the quality of an unknown quantum channel estimation, we calculate the Jamio lkowski
process distance [51]:

J(Φtrue,Φest) =
1

2n
‖Ctrue − Cest‖tr, (15)

where Φtrue(Φest) is the true (estimated) quantum channel, Ctrue(Cest) is the corresponding
Choi matrix, ‖·‖tr is the trace norm and 0 ≤ J(Φtrue,Φest) ≤ 1. One can see in Fig. 7 that the
Jamio lkowski process distance converges to some small value with the number of iterations
and we end up with a reasonable estimation of an unknown quantum channel. This section
in the form of tutorial is available at QGOpt documentation web-page [45].

6 Optimization over an arbitrary Cartesian product of mani-
folds.

In the general case, it is possible to perform optimization over the Cartesian product of
different manifolds. The QGOpt library allows solving the following problem

f(A)→ max
A∈M

, (16)

whereM is an arbitrary Cartesian product of manifolds, implemented in the QGOpt library,
f is a function that can be evaluated within the TensorFlow framework.

15

SciPost Physics Submission

Let us consider the following example. Assume that one needs to perform optimization
over the following manifold

M = %n1,n1 × %n2×n2 × %n2×n2 × Cn,r × Cn,r, (17)

where × denotes the Cartesian product. In other words it means that one has one manifold
of full-rank density matrices of size n1×n1, two manifolds of full-rank density matrices of size
n2 × n2 and two manifolds of Choi matrices of size n2 × n2 of rank r. Let us define examples
of manifolds, that are building blocks of M.

1 m_choi = qgo.manifolds.ChoiMatrix ()

2 m_dens = qgo.manifolds.DensityMatrix ()

The next step is to define variables representing points on manifolds. First, we define a
variable representing a point from %n1,n1

1 # random initialization

2 A_rho_1 = m_dens.random ((n1 , n1),

3 dtype=tf.complex128)

4 # variable should be real

5 # to make an optimizer work correctly

6 A_rho_1 = qgo.manifolds.complex_to_real(A_rho_1)

7 # variable

8 A_rho_1 = tf.Variable(A_rho_1)

Then we define a variable representing a point from %n2,n2 × %n2,n2

1 # random initialization

2 A_rho_2 = m_dens.random ((2, n2 , n2),

3 dtype=tf.complex128)

4 # variable should be real

5 # to make an optimizer work correctly

6 A_rho_2 = qgo.manifolds.complex_to_real(A_rho_2)

7 # variable

8 A_rho_2 = tf.Variable(A_rho_2)

where we take advantage of the fact that both matrices are of the same size, and we can
represent them as one tensor. Let us group these two variables into one list

1 A_rho = [A_rho_1 , A_rho_2]

which is passed to the Riemannian optimizer on the manifold of density matrices. One also
needs to define a variable representing a point from Cn,r.

1 # random initialization

2 A_choi = m_choi.random ((n**2, r))

3 # variable should be real

4 # to make an optimizer work correctly

5 A_choi = qgo.manifolds.complex_to_real(A_choi)

6 # variable

7 A_choi = tf.Variable(A_choi)

Now one needs to define optimizers

1 # learning rate

2 lr = 0.01

3 # optimizer over density matrices

4 opt_dens = qgo.optimizers.RAdam(m_dens , lr)

5 # optimizer over choi matrices

6 opt_choi = qgo.optimizers.RAdam(m_choi , lr)

16

SciPost Physics Submission

and perform an optimization step

1 with tf.GradientTape () as tape:

2 L = f(A_rho_1 , A_rho_2 , A_choi)

3 # gradient over all variables

4 grad_total = tape.gradient(L, A_rho + [A_choi])

5 # gradient over variables representing

6 # density matrices

7 grad_rho = grad_total [:2]

8 # gradient over the variable representing

9 # Choi matrix

10 grad_choi = grad_total [-1]

11 # optimization step

12 opt_dens.apply_gradients(zip(grad_rho , A_rho))

13 opt_choi.apply_gradients(zip([grad_choi],

14 [A_choi]))

where we assume that the function f is predefined. In order to iterate optimization steps
until convergence, one can wrap the code above into a loop. This general scheme can be used
for optimization over an arbitrary set of different manifolds.

7 Discussion and concluding remarks

The range of application of the QGOpt library to different problems of quantum technology
is not limited to quantum gate decomposition and quantum tomography. The six manifolds
implemented in QGOpt give rise to different interesting scenarios of constrained optimization
usage in quantum technology. For example, the complex Stiefel manifold can be used to
address different control problems [52–54], where one needs to find an optimal set of unitary
gates driving a quantum system to a desirable quantum state. It is also possible to use a
complex Stiefel manifold to perform entanglement renormalization [41, 42], machine learning
by unitary tensor networks [55] or non-Markovian quantum dynamics identification [24]. Be-
sides, quantum tomography, quotient manifolds of density matrices and Choi matrices can
be used to maintain natural quantum constraints in different tensor network architectures.
Quotient manifold of POVMs can be used for searching an optimal generalized measurement
scheme that gives maximal information gain. Finally, all these manifolds can be combined in
one optimization task, which allows to address multi-component problems.

Although as of yet the QGOpt library includes only first-order optimization methods, we
plan to extend the list of optimizers by including quasi-Newton methods such as the Rieman-
nian BFGS [56], the recently developed quantum natural gradient descent [17] generalized to
the case of embedded and quotient manifolds, to name a few.

To conclude, we introduce the QGOpt library that is aimed at solving constrained op-
timization problems with natural quantum constraints. We introduce and discuss quite an
abstract concept, such as quotient manifolds, which lie under the hood of QGOpt. We go
through QGOpt API and cover the most important features of it. We also sort out two
examples of code solving two illustrative quantum technology problems.

17

SciPost Physics Submission

Acknowledgements

The authors thank Stephen Vintskevich and Mikhail Krechetov for fruitful discussions.

Funding information The authors thank Stephen Vintskevich and Mikhail Krechetov for
fruitful discussions. I.A.L. and S.N.F. thank the Foundation for the Advancement of Theo-
retical Physics and Mathematics “BASIS” for support under Project No. 19-1-2-66-1. The
authors also thank anonymous referees and Michael H. Goerz who provided very useful reports
on the manuscript.

A Underlying geometry of manifolds implemented in the QGOpt
library

In this appendix, we consider some mathematical aspects of the implementation of manifolds
in the QGOpt library. First, we discuss how one can identify complex matrices, which are
elements of all manifolds implemented in the QGOpt library, with real matrices. Any complex
matrix A can be represented as follows

Ã =

[
Re(A) Im(A)
−Im(A) Re(A)

]
. (18)

The following correspondences between operations with complex matrices and operations with
their real representations

A† → ÃT , AB → ÃB̃, A+B → Ã+ B̃, 2Re(Tr(A)) = Tr(Ã), (19)

allow us to work with certain sets of complex matrices as with Riemannian manifolds of real
matrices [57]. The QGOpt library contains six manifolds: three implemented as embedded
manifolds and three implemented as quotient manifolds.

Table 1 summarizes the geometry lying under the hood of a high-level description of the
embedded manifolds in the QGOpt library.

We also summarize the geometry of the manifolds that are implemented as quotient manifolds.
In our summary, we follow the book by Nicolas Boumal [34], which provides a very instructive
presentation of the optimization on quotient manifolds.

Having an optimization problem on a quotient manifold, one works with two sets M and
M that are connected as follows

M =M/ ∼= {[x]|x ∈M}, (20)

where [x] = {y|y ∈M, y ∼ x} is the equivalence class of x,M is some Riemannian manifold
and M is its quotient. We call a map π a canonical projection if it maps any x from M to
its equivalence class:

π(x) = [x]. (21)

For M to be a manifold, one requires π to be smooth and its differential Dπ(x) : TxM →
T[x]M must have a constant rank r = dim (M) for all x ∈M. We call Vx a vertical space at

18

SciPost Physics Submission

Manifold Description Inner product Riemannian gradient Retraction
Vector trans-
port

Complex
Stiefel mani-
fold Stn,p

Embedded manifold of
complex isometric ma-
trices.

Two types of inner prod-
uct [40, 41], induced by
embedding, are available in
the QGOpt library: Eucle-
dian inner product 〈v, w〉u =
Re(Tr(v†w)), and canoni-
cal inner product 〈v, w〉u =
Re

(
Tr

(
v†

(
I − 1

2
uu†

)
w
))

.
These two types of inner
product induce the same
orthogonal projection [40].

The Riemannian
gradient for the Eu-
clidean inner product
takes the following
form [40] ∇Rf(u) =
1
2
u(u†∇f(u) −
∇f(u)†u) + (I −
uu†)∇f(u), the Rie-
mannian gradient
for the canoni-
cal inner product
takes the following
form [40] ∇Rf(u) =
∇f(u)− u∇f(u)†u.

Three types
of retraction
are available
in the QGOpt
library: SVD
decomposition
based retrac-
tion [35], QR
decomposition
based retrac-
tion [35] and
Cayley retrac-
tion [33,35].

Vector trans-
port is induced
by a retraction.
It is imple-
mented as the
orthogonal
projection of
a vector on
the tangent
space of a
point obtained
via a retrac-
tion. [33,35].

Manifold of
Hermitian pos-
itive definite
matrices Sn++

Embedded manifold
of complex Hermitian,
positive definite ma-
trices. Two different
inner products are
introduced in a way
that the manifold is
complete. Inner prod-
ucts are not extended
on the ambient space,
which does not allow
the orthogonal projec-
tion on the tangent
space of a point. How-
ever, for this manifold
we do not use the
orthogonal projection
at all.

Two types of inner product are
available in the QGOpt library:
Log–Cholesky inner product
[41, 58] and Log–Euclidean in-
ner product [41]. Both in-
ner products keep the manifold
complete.

The Riemannian gra-
dient for both inner
products that are used
in the QGOpt library is
derived in [41].

Instead of a
retraction, one
uses the expo-
nential map
for both inner
products in the
QGOpt library.
Closed form of
the exponential
map for the
Log–Euclidean
inner product
can be found
in [41], for the
Log–Cholesky
inner product
in [41,58].

Instead of a
vector trans-
port, one uses
the parallel
transport for
both inner
products in the
QGOpt library.
The closed
form of the
parallel trans-
port for the
Log–Euclidean
metric can be
found in [41],
for the Log–
Cholesky met-
ric in [41, 58].

Manifold of
Hermitian
matrices Hn.

Embedded manifold
of Hermitian matrices
that also is a lin-
ear subspace of the
ambient space.

Only the Euclidean inner prod-
uct is available in the QGOpt
library; it reads 〈v, w〉u =
Re(Tr(v†w)). The inner prod-
uct is induced by the embed-
ding.

The Riemannian
gradient for the Eu-
clidean inner product
takes the following
form ∇Rf(u) =
1
2

(
∇f(u) +∇f(u)†

)
.

Instead of a
retraction,
one uses the
exponential
map, which is
a trivial trans-
portation along
a straight line.

Instead of a
vector trans-
port, one uses
the parallel
transport,
which is the
identity trans-
formation.

Table 1: Summary of the geometry of embedded manifolds implemented in the QGOpt library.

x ∈M if it is the kernel of Dπ(x), i.e.

Vx = ker (Dπ(x)) , (22)

then, one can decompose the tangent space TxM at a point x as follows

TxM = Hx ⊕ Vx, (23)

where Hx is the orthogonal complement of Vx also called the horizontal space. The restricted
linear map Dπ(x)|Hx : Hx → T[x]M is bijective by construction and can be used to represent
a vector from T[x]M as a vector from Hx. This representation is called horizontal lift and
reads

v = (Dπ(x)|Hx)−1[ξ] = liftx(ξ), (24)

where ξ is a vector from T[x]M and v is its representation from Hx.

19

SciPost Physics Submission

Having introduced all the objects above, one can try to construct all primitives for opti-
mization algorithms on a quotient manifold through the same primitives on a total manifold
(see table 2).

Inner product
〈ξ, ζ〉[x] = 〈liftx(ξ), liftx(ζ)〉x, where 〈·, ·〉x is an inner

product in TxM and ξ, ζ ∈ T[x]M

Retraction
R[x](ξ) = π

(
Rx(liftx(ξ))

)
, where R is an retraction on

M

Vector transport
τ[x],ξ(ζ) = lift−1

Rx(liftx(ξ))

(
PHRx(liftx(ξ))

(liftx(ζ))
)

, where

PS is the orthogonal projection operator on a subspace
S

Function f = f ◦ π, where f :M→ R and f :M→ R
Riemannian gradient ∇Rf([x]) = lift−1

x

(
∇Rf(x)

)
Table 2: Optimization primitives of M expressed through optimization primitives of M.

These primitives are correct if they do not depend on a choice of a particular point from
an equivalence class, i.e. for all [x] ∈ M and ξ, ζ ∈ T[x]M if x ∼ y the following statements
are true

〈liftx(ξ), liftx(ζ)〉x = 〈lifty(ξ), lifty(ζ)〉y, (25)

π
(
Rx(liftx(ξ))

)
= π

(
Ry(lifty(ξ))

)
, (26)

lift−1
Rx(liftx(ξ))

(
PHRx(liftx(ξ))

(liftx(ζ))
)

= lift−1
Ry(lifty(ξ))

(
PHRy(lifty(ξ))

(lifty(ζ))
)
, (27)

where ∼ denotes equivalence relation between elements of M. It is also worth noting that in
practice there is no need to go back fromM toM after application of each primitive. Instead
one can work only with objects from M, which makes optimization algorithms on M almost
identical to algorithms on M.

Manifolds %n,r, Cn,r and POVMm,n in the QGOpt library are implemented using the above
idea. The quotient geometry of the real version of the manifold %n,r is described in [59] and
also is implemented in the Manopt library [60]. The alternative approach to optimization
on POVMm,n is considered in [61] and implemented in Manopt. To the best of the authors’
knowledge, the manifold Cn,r has not been considered from the Riemannian optimization
point of view.

Let us consider total manifolds that are used to build quotient manifolds implemented in
the QGOpt library. They read

%n,r =
{
A ∈ Cn×r∗

∣∣Tr(AA†) = 1
}
, (28)

Cn,r =
{
A ∈ Cn

2×r
∗

∣∣∣Trp

(
AA†

)
= 1

}
, (29)

POVMm,n =

{
{Ai}mi=1

∣∣∣∣∣
m∑
i=1

AiA
†
i = 1, Ai ∈ Cn×n∗

}
, (30)

where Cp×q∗ is the set of complex full-rank matrices of size p × q. One can note that the
manifold %n,r is a sphere with the additional condition on the rank of A, manifolds Cn,r and

20

SciPost Physics Submission

POVMm,n are complex Stiefel manifolds with the additional condition on the ranks of A and
Ai. Any element of total manifolds above corresponds to either a density matrix, a Choi
matrix, or a POVM. Indeed

% = AA†, if A ∈ %n,r, (31)

C = AA†, if A ∈ Cn,r, (32)

Ei = AiA
†
i , if A ∈ POVMm,n, (33)

where % is some density matrix, C is some Choi matrix and Ei is an element of some POVM.
However, there is ambiguity:

% = AA† = AQQ†A†, for any unitary Q of the appropriate size, (34)

C = AA† = AQQ†A†, for any unitary Q of the appropriate size, (35)

Ei = AiA
†
i = AiQiQ

†
iA
†
i , for any set {Qi}mi=1 of unitary matrices of the appropriate size.(36)

In order to lift the ambiguity we introduce equivalence classes

[A] = {AQ|Q ∈ Cr×r, QQ† = 1}, for %n,r and Cn,r, (37)

[{A}mi=1] = {{AiQi}mi=1|Qi ∈ Cn×n, QiQ†i = 1}, for POVMm,n, (38)

and the corresponding quotient manifolds

%n,r/ ∼=
{

[A]
∣∣A ∈ %n,r} , (39)

Cn,r/ ∼=
{

[A]
∣∣A ∈ Cn.r} , (40)

POVMm,n/ ∼=
{

[{Ai}mi=1]
∣∣{Ai}mi=1 ∈ POVMm,n

}
. (41)

To identify quotient manifolds with those that are introduced in the main text, we introduce
the following maps

φ% : %n,r/ ∼→ %n,r : [A] 7→ AA†, (42)

φC : Cn,r/ ∼→ Cn,r : [A] 7→ AA†, (43)

φPOVM : POVMn,m/ ∼→ POVMn,m : [{A}mi=1] 7→ {AiA†i}mi=1. (44)

These three maps are bijections. It follows from Proposition 2.1 in [62] that is proved for real
matrices, but generalization to the complex case is straightforward. They are also differen-
tiable, as well as their inverses, which implies that these three maps are diffeomorphisms. It
is enough to identify quotient manifolds with those introduced in the main text and turn to
the optimization on quotient manifolds.

Now to perform optimization on %n,r, Cn,r and POVMm,n it is enough to introduce appro-
priate primitives for %n,r, Cn,r and POVMm,n that additionally satisfy Eqs. (25), (26), and
Eq. (27), and the projection on the horizontal space. The total manifolds equipped with the
following inner products induced by inner products of ambient spaces

〈v, w〉A = Re
(

Tr(vw†)
)
, where w, v ∈ TA%n,r, (45)

〈v, w〉A = Re
(

Tr(vw†)
)
, where w, v ∈ TACn,r, (46)

〈{vi}mi=1, {wi}mi=1〉A = Re

(∑
i

Tr(viw
†
i)

)
, (47)

where {wi}mi=1, {vi}mi=1 ∈ T{Ai}mi=1
POVMm,n,

21

SciPost Physics Submission

satisfy the condition (25) as shown in [34]. The projections on the horizontal space for total
manifolds read

PHA(v) = PTA%n,r(v)− PVA(v), for %n,r, (48)

PHA(v) = PTACn,r(v)− PVA(v), for Cn,r, (49)

PH{Ai}mi=1
({vi}mi=1) = PT{Ai}mi=1

POVMn,m
({vi}mi=1)− PV{Ai}mi=1

({vi}mi=1), (50)

for POVMn,m,

where projections on tangent spaces are known for total manifolds that essentially are sphere
and complex Stiefel manifolds; and projections on the vertical spaces can be found by solving
the Sylvester equation [63]. One can introduce several different retractions for total manifolds
that, however, may not satisfy the condition Eq. (26). Since manifolds Cn,r and POVMm,n

essentially are complex Stiefel manifolds we can use SVD-based retraction for them. One can
show that SVD-based retraction satisfies the condition Eq. (9) (see [34]). For the manifold %n,r
one can use retraction on a sphere (see Example 4.1.1 in [35]). This retraction also satisfies
the condition Eq. (26). Vector transports (see Table 2) induced by retractions above also
satisfies the condition Eq. (27). The Riemannian gradients for %n,r, Cn,r and POVMm,n are
known and can be used without modifications for optimization on quotient versions of these
manifolds.

We thus have all optimization primitives for total manifolds, quotient manifolds, and
equivalence between quotient manifolds and manifolds from the main text, which allows us
to perform optimization on %n,r, Cn,r and POVMn,r.

B Complexity of algorithms and comparison with other li-
braries

In this appendix, we discuss questions of scalability of optimization algorithms presented in
the QGOpt library and compares the QGOpt library with other frameworks. To address the
scalability of optimization algorithms, one needs to estimate the asymptotic complexity of
primitives used in those algorithms. Table 3 shows the complexity of optimization primitives
for all manifolds. Let us compare the complexity of algorithms from the QGOpt library
with some state of the art algorithms in quantum technologies. For example, let us consider
quantum channel tomography, which can be implemented via optimization on Cn,r. Under
the assumption that a particular algorithm uses all the optimization primitives, one step of
an optimization algorithm scales like O(n3r), where n is the dimension of a Hilbert space and
r is Kraus rank. It follows from Table 3. In general, the Kraus rank r is equal to n2, which
means that the maximal complexity is O(n5); however, if we know prior information that r
is small, then one can sufficiently reduce the complexity of an algorithm. One can compare
the one-step complexity of Riemannian-optimization-based algorithms for quantum channel
tomography with the one-step complexity of an algorithm suggested in [48] that is based on
the orthogonal projection on the set of CPTP maps. In turn, the orthogonal projection on
the set of CPTP maps is implemented through repeated averaged projections on CP and TP
sets of maps. The projection on the CP set has complexity O(n6) that is larger than the
complexity of Riemannian-optimization-based algorithms. Let us also compare the QGOpt
library with other libraries for Riemannian optimization. Table 4 shows an incomplete list of

22

SciPost Physics Submission

Manifold Retraction Vector transport
Riemannian
gradient

Inner product Projection

Cn,r O(n3r) O(max(n2r2, n3r)) O(n3r) O(n2r) O(max(n2r2, n3r))

Stn,p

For QR and
SVD retrac-
tions O(np2),
for Cayley
retraction
O(n3)

O(np2) O(np2)

For Euclidean
metric O(np),
for canonical
metric O(np2)

O(np2)

POVMm,n O(mn3) O(mn3) O(mn3) O(mn2) O(mn3)

%n,r O(nr) O(nr2) O(nr) O(nr) O(nr2)

Hn O(n2) O(n2) O(n2) O(n2) O(n2)

Sn++ O(n3) O(n3) O(n3) O(n3) O(n2)

Table 3: Complexity of optimization primitives for all manifolds implemented in the QGOpt
library.

the most related libraries. One can see that QGOpt suits best quantum technologies problems
in terms of the number of quantum manifolds.

Library Language
Specific “quantum” mani-
folds

QGOpt Python
Manifolds of density matri-
ces, POVMs, Choi matrices,
complex Stiefel manifold

Manopt
Matlab,
Python, Julia

POVMs, complex Stiefel
manifold

Geoopt Python No

mctorch Python No

Table 4: Comparison of the QGOpt library with other libraries for Riemannian optimization
in terms of number of “quantum” manifolds.

References

[1] J. Toulouse, R. Assaraf and C. J. Umrigar, Introduction to the variational and diffusion
monte carlo methods, In Advances in Quantum Chemistry, vol. 73, pp. 285–314. Elsevier
(2016).

[2] D. Ceperley, G. V. Chester and M. H. Kalos, Monte carlo simulation of a many-fermion
study, Physical Review B 16(7), 3081 (1977), doi:10.1103/PhysRevB.16.3081.

[3] D. Bressanini, G. Morosi and M. Mella, Robust wave function optimization procedures in
quantum monte carlo methods, The Journal of chemical physics 116(13), 5345 (2002),
doi:10.1063/1.1455618.

[4] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Annals of physics 326(1), 96 (2011), doi:10.1016/j.aop.2010.09.012.

[5] D. Pérez-Garćıa, F. Verstraete, M. M. Wolf and J. I. Cirac, Matrix product state repre-
sentations, Quantum Inf. Comput. 7(5), 401 (2007).

23

https://doi.org/10.1103/PhysRevB.16.3081
https://doi.org/10.1063/1.1455618
https://doi.org/10.1016/j.aop.2010.09.012

SciPost Physics Submission

[6] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Annals of Physics 349, 117 (2014), doi:10.1016/j.aop.2014.06.013.

[7] F. Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair
states, and variational renormalization group methods for quantum spin systems, Ad-
vances in Physics 57(2), 143 (2008), doi:10.1080/14789940801912366.

[8] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems
in two and higher dimensions, arXiv preprint cond-mat/0407066 (2004).

[9] G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural
networks, Science 355(6325), 602 (2017), doi:10.1126/science.aag2302.

[10] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko and J. Carrasquilla, Recur-
rent neural network wave functions, Physical Review Research 2(2), 023358 (2020),
doi:10.1103/PhysRevResearch.2.023358.

[11] K. Choo, T. Neupert and G. Carleo, Two-dimensional frustrated j 1- j 2 model stud-
ied with neural network quantum states, Physical Review B 100(12), 125124 (2019),
doi:10.1103/PhysRevB.100.125124.

[12] S. R. White, Density matrix formulation for quantum renormalization groups, Physical
Review Letters 69(19), 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[13] U. Schollwöck, The density-matrix renormalization group, Reviews of modern physics
77(1), 259 (2005), doi:10.1103/RevModPhys.77.259.

[14] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys-
ical Review Letters 91(14), 147902 (2003), doi:10.1103/PhysRevLett.91.147902.

[15] G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Physical
Review Letters 93(4), 040502 (2004), doi:10.1103/PhysRevLett.93.040502.

[16] R. Orus and G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary
evolution, Physical Review B 78(15), 155117 (2008), doi:10.1103/PhysRevB.78.155117.

[17] J. Stokes, J. Izaac, N. Killoran and G. Carleo, Quantum natural gradient, Quantum 4,
269 (2020), doi:10.22331/q-2020-05-25-269.

[18] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2014), 1412.6980.

[19] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko and G. Carleo,
Neural-network quantum state tomography, Nature Physics 14(5), 447 (2018),
doi:10.1038/s41567-018-0048-5.

[20] P. Cha, P. Ginsparg, F. Wu, J. Carrasquilla, P. L. McMahon and E.-A. Kim, Attention-
based quantum tomography, arXiv preprint arXiv:2006.12469 (2020).

[21] J. Carrasquilla, G. Torlai, R. G. Melko and L. Aolita, Reconstructing quantum states with
generative models, Nature Machine Intelligence 1(3), 155 (2019), doi:10.1038/s42256-
019-0028-1.

24

https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevResearch.2.023358
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.22331/q-2020-05-25-269
1412.6980
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1038/s42256-019-0028-1

SciPost Physics Submission

[22] I. A. Luchnikov, A. Ryzhov, P.-J. Stas, S. N. Filippov and H. Ouerdane, Variational
autoencoder reconstruction of complex many-body physics, Entropy 21(11), 1091 (2019),
doi:10.3390/e21111091.

[23] G. Torlai, C. J. Wood, A. Acharya, G. Carleo, J. Carrasquilla and L. Aolita, Quan-
tum process tomography with unsupervised learning and tensor networks, arXiv preprint
arXiv:2006.02424 (2020).

[24] I. Luchnikov, S. Vintskevich, D. Grigoriev and S. Filippov, Machine learning non-
markovian quantum dynamics, Physical Review Letters 124(14), 140502 (2020),
doi:10.1103/PhysRevLett.124.140502.

[25] L. Banchi, E. Grant, A. Rocchetto and S. Severini, Modelling non-markovian quantum
processes with recurrent neural networks, New Journal of Physics 20(12), 123030 (2018),
doi:10.1088/1367-2630/aaf749.

[26] G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Physical Review
B 79(14), 144108 (2009), doi:10.1103/PhysRevB.79.144108.

[27] G. Evenbly and G. Vidal, Algorithms for entanglement renormalization: bound-
aries, impurities and interfaces, Journal of Statistical Physics 157(4-5), 931 (2014),
doi:10.1007/s10955-014-0983-1.

[28] G. Vidal, Entanglement renormalization, Physical Review Letters 99(22), 220405 (2007),
doi:10.1103/PhysRevLett.99.220405.

[29] A. S. Holevo, Quantum systems, channels, information: a mathematical introduction,
vol. 16, Walter de Gruyter, doi:10.1515/9783110273403 (2012).

[30] I. Luchnikov, M. Krechetov and A. Ryzhov, https://github.com/LuchnikovI/QGOpt

(2020).

[31] S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint
arXiv:1609.04747 (2016).

[32] G. Bécigneul and O.-E. Ganea, Riemannian adaptive optimization methods, arXiv
preprint arXiv:1810.00760 (2018).

[33] J. Li, L. Fuxin and S. Todorovic, Efficient riemannian optimization on the stiefel manifold
via the cayley transform, arXiv preprint arXiv:2002.01113 (2020).

[34] N. Boumal, An introduction to optimization on smooth manifolds, Available online
(2020).

[35] P.-A. Absil, R. Mahony and R. Sepulchre, Optimization algorithms on matrix manifolds,
Princeton University Press (2009).

[36] P. Pokorny, Geodesics revisited, Chaotic Modeling and Simulation pp. 281–298 (2012).

[37] A. Jamio lkowski, Linear transformations which preserve trace and positive semidefinite-
ness of operators, Reports on Mathematical Physics 3(4), 275 (1972), doi:10.1016/0034-
4877(72)90011-0.

25

https://doi.org/10.3390/e21111091
https://doi.org/10.1103/PhysRevLett.124.140502
https://doi.org/10.1088/1367-2630/aaf749
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1515/9783110273403
https://github.com/LuchnikovI/QGOpt
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0

SciPost Physics Submission

[38] J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive dance: an introductory
course on tensor networks, Journal of Physics A: Mathematical and Theoretical 50(22),
223001 (2017), doi:10.1088/1751-8121/aa6dc3.

[39] J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv preprint quant-
ph/arXiv:1708.00006 (2017).

[40] A. Edelman, T. A. Arias and S. T. Smith, The geometry of algorithms with orthogonal-
ity constraints, SIAM journal on Matrix Analysis and Applications 20(2), 303 (1998),
doi:10.1137/S0895479895290954.

[41] I. Luchnikov, M. Krechetov and S. Filippov, Riemannian optimization and automatic dif-
ferentiation for complex quantum architectures, arXiv preprint arXiv:2007.01287 (2020).

[42] M. Hauru, M. Van Damme and J. Haegeman, Riemannian optimization of isometric
tensor networks, arXiv preprint arXiv:2007.03638 (2020).

[43] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathe-
matical Statistics 22(3), 400 (1951).

[44] V. V. Shende, I. L. Markov and S. S. Bullock, Minimal universal two-
qubit controlled-not-based circuits, Physical Review A 69(6), 062321 (2004),
doi:10.1103/PhysRevA.69.062321.

[45] I. Luchnikov, M. Krechetov and A. Ryzhov, https://qgopt.readthedocs.io/en/

latest/ (2020).

[46] R. Blume-Kohout, Optimal, reliable estimation of quantum states, New Journal of
Physics 12(4), 043034 (2010), doi:10.1088/1367-2630/12/4/043034.

[47] Y. S. Teo, Introduction to quantum-state estimation, World Scientific, doi:10.1142/9617
(2016).

[48] G. C. Knee, E. Bolduc, J. Leach and E. M. Gauger, Quantum process tomography via
completely positive and trace-preserving projection, Physical Review A 98(6), 062336
(2018), doi:10.1103/PhysRevA.98.062336.

[49] M. Mohseni, A. Rezakhani and D. Lidar, Quantum-process tomography: Re-
source analysis of different strategies, Physical Review A 77(3), 032322 (2008),
doi:10.1103/PhysRevA.77.032322.

[50] J. M. Renes, R. Blume-Kohout, A. J. Scott and C. M. Caves, Symmetric informationally
complete quantum measurements, Journal of Mathematical Physics 45(6), 2171 (2004),
doi:10.1063/1.1737053.

[51] A. Gilchrist, N. K. Langford and M. A. Nielsen, Distance measures to com-
pare real and ideal quantum processes, Physical Review A 71(6), 062310 (2005),
doi:10.1103/PhysRevA.71.062310.

[52] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff,
I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen et al., Training schrödinger’s
cat: quantum optimal control, The European Physical Journal D 69(12), 1 (2015),
doi:10.1140/epjd/e2015-60464-1.

26

https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1103/PhysRevA.69.062321
https://qgopt.readthedocs.io/en/latest/
https://qgopt.readthedocs.io/en/latest/
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1142/9617
https://doi.org/10.1103/PhysRevA.98.062336
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1063/1.1737053
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1140/epjd/e2015-60464-1

SciPost Physics Submission

[53] M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich
and C. P. Koch, Krotov: A python implementation of krotov’s method for quantum
optimal control, SciPost physics 7 (2019), doi:10.21468/SciPostPhys.7.6.080.

[54] M. H. Goerz, F. Motzoi, K. B. Whaley and C. P. Koch, Charting the circuit qed de-
sign landscape using optimal control theory, npj Quantum Information 3(1), 1 (2017),
doi:10.1038/s41534-017-0036-0.

[55] D. Liu, S.-J. Ran, P. Wittek, C. Peng, R. B. Garćıa, G. Su and M. Lewenstein, Machine
learning by unitary tensor network of hierarchical tree structure, New Journal of Physics
21(7), 073059 (2019), doi:10.1088/1367-2630/ab31ef.

[56] W. Huang, P.-A. Absil and K. A. Gallivan, A riemannian bfgs method for nonconvex op-
timization problems, In Numerical Mathematics and Advanced Applications ENUMATH
2015, pp. 627–634. Springer, doi:10.1007/978-3-319-39929-4 60 (2016).

[57] H. Sato, Riemannian conjugate gradient method for complex singular value decomposition
problem, In 53rd IEEE Conference on Decision and Control, pp. 5849–5854. IEEE,
doi:10.1109/CDC.2014.7040305 (2014).

[58] Z. Lin, Riemannian geometry of symmetric positive definite matrices via cholesky de-
composition, SIAM Journal on Matrix Analysis and Applications 40(4), 1353 (2019),
doi:10.1137/18M1221084.

[59] M. Journée, F. Bach, P.-A. Absil and R. Sepulchre, Low-rank optimization on the cone
of positive semidefinite matrices, SIAM Journal on Optimization 20(5), 2327 (2010),
doi:10.1137/080731359.

[60] N. Boumal, B. Mishra, P.-A. Absil and R. Sepulchre, Manopt, a matlab toolbox for opti-
mization on manifolds, The Journal of Machine Learning Research 15(1), 1455 (2014).

[61] B. Mishra, H. Kasai and P. Jawanpuria, Riemannian optimization on the simplex of
positive definite matrices, Tech. rep., arXiv preprint arXiv:1906.10436 (2019).

[62] E. Massart and P.-A. Absil, Quotient geometry with simple geodesics for the manifold of
fixed-rank positive-semidefinite matrices, SIAM Journal on Matrix Analysis and Appli-
cations 41(1), 171 (2020), doi:10.1137/18M1231389.

[63] S. Yatawatta, Radio interferometric calibration using a riemannian manifold, In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3866–
3870. IEEE, doi:10.1109/ICASSP.2013.6638382 (2013).

27

https://doi.org/10.21468/SciPostPhys.7.6.080
https://doi.org/10.1038/s41534-017-0036-0
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1007/978-3-319-39929-4_60
https://doi.org/10.1109/CDC.2014.7040305
https://doi.org/10.1137/18M1221084
https://doi.org/10.1137/080731359
https://doi.org/10.1137/18M1231389
https://doi.org/10.1109/ICASSP.2013.6638382

	1 Introduction
	2 Overview of the Riemannian optimization
	3 Riemannian manifolds in quantum mechanics
	4 QGOpt API
	4.1 Manifolds API
	4.2 Optimizers
	4.3 Auxiliary functions

	5 Examples of application of QGOpt
	5.1 Quantum gate decomposition
	5.2 Quantum tomography

	6 Optimization over an arbitrary Cartesian product of manifolds.
	7 Discussion and concluding remarks
	A Underlying geometry of manifolds implemented in the QGOpt library
	B Complexity of algorithms and comparison with other libraries
	References

