SciPost Submission Page

On the R-matrix realization of quantum loop algebras

by A. Liashyk, S. Z. Pakuliak

Submission summary

As Contributors: Stanislav Pakuliak
Arxiv Link: https://arxiv.org/abs/2106.10666v1 (pdf)
Date submitted: 2021-06-23 07:41
Submitted by: Pakuliak, Stanislav
Submitted to: SciPost Mathematics
Academic field: Mathematics
Specialties:
  • Mathematical Physics

Abstract

We consider $\rm R$-matrix realization of the quantum deformations of the loop algebras $\tilde{\mathfrak{g}}$ corresponding to non-exceptional affine Lie algebras of type $\widehat{\mathfrak{g}}=A^{(1)}_{N-1}$, $B^{(1)}_n$, $C^{(1)}_n$, $D^{(1)}_n$, $A^{(2)}_{N-1}$. For each $U_q(\tilde{\mathfrak{g}})$ we investigate the commutation relations between Gauss coordinates of the fundamental $\mathbb{L}$-operators using embedding of the smaller algebra into bigger one. The new realization of these algebras in terms of the currents is given. The relations between all off-diagonal Gauss coordinates and certain projections from the ordered products of the currents are presented. These relations are important in applications to the quantum integrable models.

Current status:
Editor-in-charge assigned


Submission & Refereeing History

You are currently on this page

Submission 2106.10666v1 on 23 June 2021

Login to report or comment