Article Report: scipost-2112.09117 (v1)

Date: 15/05/2022

Title: Machine Learning Kreuzer—Skarke Calabi—Yau Three-
folds
Author(s): Per Berglund, Ben Campbell, Vishnu Jejjala

Arxiv: 2112.09117

Summary This paper computes Hodge numbers and linear combinations thereof for
Kreuzer-Skarke Calabi-Yau 3-folds using neural networks. This is an interesting prospect
as it extends the range of applications of machine learning for computing properties of
Calabi-Yau manifolds and string compactifications. In particular, the input data does not
contain all the information defining the geometry. This submission does not meet the criteria
of Physics, but does meet those of Physics Core, where it could be published. Before, several
points need to be clarified, especially, the fact that neural networks do not seem to be needed
to reach the conclusions of the paper.

Strengths
1. New application of machine learning techniques to Calabi-Yau manifolds.

2. Excellent introduction.

Limitations
1. Weak motivation for using neural networks compared to linear regression.
2. A better comparison with previous analytic formulas should be provided.

3. The authors do not provide the code.

Review

1. p. 5, §2: What dictated the choice of architecture? There seems to be some margin
of improvement for some results, so why not consider more complicated architectures
(convolutions, dropout, early stopping. ..)?

2. p. 5, §2: The structure of the predictions should be made clearer. It is said that the
activation functions are ReLU, but the loss function is the logit cross-entropy. Does it
mean that the last activation function is in fact a sigmoid/softmax? Is there a single
network predicting all quantities at the same time (multi-tasking) — which seems to be
the case from sec. 1, §1 —, or four independent networks? In both cases, if classification
is used, how is the outputs represented (categorical or one-hot)?

Note that using a classification task means that one assumes knowledge of the boundary,
so this assumption must be clearly stated.

—Page 1 of 2 -


http://arxiv.org/abs/2112.09117

scipost-2112.09117

3. p. b, last § The usual ML methodology requires setting aside a test set and performing
training and hyperparameter tuning using only a training set (split as training and
validation, or using cross-validation as in the paper), evaluating the performance on
the test set at the end. Since the authors have used the same set for all steps, there is a
risk of overfitting. Hence, the authors should perform again the analysis with a proper
training/test split + k-fold cross-validation on the training set only (statistics on the
predictions for the test set can still be obtained using the & = 100 cross-validated
models).

Moreover, I don’t understand why the authors are considering only a subset of 10°
polytopes instead of using all the remaining polytopes as a test set.

(This would still allow studying general random data and data only on the boundary:
in the second case, first exclude the data in the center, then do the same thing as
above.)

4. p. 7, §2: T am surprised that the accuracy for all quantities but x are so low (32% to
46%). The small error seems to indicate that many predictions are off by only a little,
but could better architectures (see above) improve these results?.

5. p. 7, last § I don’t understand why the accuracy are higher in this paragraph compared
to the previous paragraph? The change seems higher than the previously quoted
deviation of the accuracy. Moreover, you could get the confusion matrix directly
from the network trained in the previous paragraph. Is it because you trained a new
single-tasking network to predict only x?

6. p. 9, §1: I don’t think that 46% accuracy is a sufficiently high for “[suggesting] the
existence of approximate analytic formulae”, especially in the presence of possible
overfitting (see previously).

I am also intrigued by the fact that the linear formulas in (4.2) and (4.3) are as precise
as the results from the neural network (both accuracy and absolute errors are almost
equal). Do they work both for the same polytopes or on different ones? In the first
case, what is the use of neural networks if linear regression performs as good? It would
have been more traditional from an ML perspective to first do a linear regression, and
then try to beat it with neural networks.

Could you also comment by comparing with known analytic formulas, for example
corollary 4.5.1 in [7]?

7. p. 9, §2: The same comment holds for (4.5): why bothers using neural networks if linear
regression works better? There can be a case for h!'! + h?! since linear regression is
significantly less performant in that case, but then using a neural network for only that
quantity could give better performance than the ones obtained previously.

8. p. 11: Formula (5.9) was given in Theorem 4.5.3 from [7], and it seems that (5.12)
follows quite directly from the identities (5.7) and (5.8) from [48], and (5.11) from
[54]. This looks like a rewriting of known formulas in a slightly different form, and it
does not seem that ML did really help. Finally, from the previous point, it is not clear
what’s the role of using neural networks if linear regression is sufficient.

— Page 2 of 2 -



