
by Ippocratis D. Saltas and Roberto Oliveri

This is a very interesting work that is based on enhancing existing analysis frameworks
(waveform modelling), and improving performance with the use of GPU acceleration
methods. This paper is quite technical, and reads more as a technical report rather than a
typical manuscript. In my view this is totally fine, as I find technical works to be extremely
valuable, because they are easier to understand and reproduce

Therefore, I believe that this paper is worth publishing after addressing some of the points
raised below.

1. First general comment: I find that the text is in need of more detailed discussion on the
comparison of past implementations of EMRI analyses and the one introduced in this
work. I believe that a discussion section (or at least a few paragraphs) should be
written, in order to stress the novel ideas introduced here.

2. In section 2, the authors write "Parameter forecasting for EMRI signals is not an easy
task, because of the challenge to model their waveforms and the high-dimensional
parameter space that needs be explored". This is true, and another challenge is the
multimodality of the likelihood, and possible degeneracies (e.g. see Chua & Cutler
2022). Another is the potential overlap and confusion with other signals (transient or
stochastic, e.g. see works about the Global Fit of the LISA data).

3. End of section 2, item (iv): Up to this point it is not entirely clear which elements of the
analysis are parallelized with GPU hardware. Before section 3, it would be useful to see
a short list of items that the authors have improved with GPU parallelisation (e.g. the
likelihood and/or the different parts of waveform). Otherwise the reader must go through
the complete text, or even the code, in order to read this information.

4. Section 4: Considering the challenges of the analysis of EMRI signals, I believe that the
section 4 is a bit short and lacks details (especially compared to the rest of the
manuscript). In particular, it is not clear whether the analysis is performed by using the
Time Delay Inteferometry (TDI) channels, or it is done directly in h_c (or similar) units.
For the former, a more detailed description is required about the number of channels,

A report on "EMRI_MC: A GPU-based code for Bayesian inference of EMRI
waveforms"

A. Comments on the manuscript

and wether a noise orthogonal TDI combination is adopted (this could be assumed from
eq. 8, but it should be properly described in the text). If the analysis is done in h_c units
it should also be clearly stated and described, because it could introduce simplifying
assumptions in the parameter estimation process. Usually this is done by assuming
ideal instrument and perfect knowledge of the overall system (for example ignoring
transfer function variations for the various noises and signals, as well as other analysis
complications such as correlations between channels). A simple plot of some mock data
in frequency domain could be useful in this section.

5. Same section: It is not stated wether the analysis is "noiseless", or if the instrumental
noise is simulated from the noise curve (or any other method). Maybe it's evident from
the code implementation, but I think it should also be clear in the text.

6. Same section on the 'waveform computation' paragraph: Extrinsic parameters are kept
fixed at true values for the parameter estimation analysis. This is another simplification
in that needs to be stated in the introduction and/or the discussion sections.

7. Same section, 'Functionality overview' paragraph: One can assume that the MCMC
walkers are parallelized with multiprocessing (CPU), but it would be better to clearly
state it in the text for the readers not familiar with the emcee software.

8. Same paragraph as above: The efficiency and performance of the software is reported.
While it's very challenging to directly compare with other software implementations from
previous works, I think it would be beneficial to present some ballpark estimates for
comparison.

9. Figure 2: Crosses that mark the true value (zero in this particular case), are useful in
order to visually check for correlations directly from the figure. Also, the authors state
that "The constraints are somewhat tighter than those in the literature [13], as our
MCMC exploration covers a smaller EMRIs’ parameter space". This is indeed probably
one of the reasons to get smaller relative errors on the parameters, but other simplifying
assumptions on the analysis (as speculated in previous points) could also contribute.
Another reason could be the different version of instrumental noise. The one used here
is quite outdated. In summary, I believe that more possible explanations should be
added here and in the main text as a short discussion on the results.

In this section of the review I comment on the implementation of the software that
accompanies this work. I should note here that I am not an expert on software development.
For that reason, all the comments below are purely suggestive, and up to the authors to
decide wether they want to implement them for a revised version of the manuscript, or leave
them for a future update of the software.

1. I believe that there are many benefits when (at least part of) the code is pip-installable.
In my eyes, the most important element is the waveform implementation, which could
be used as a direct plugin in other likelihoods and analysis pipelines. This could also

B. Comments on the software

expand the potential user-base of the software.
2. About the likelihood computation: Unless I am mistaken, the likelihood function is

computed serially for each of the walkers. However, the emcee (or similar MCMC
implementations) support vectorized likelihood outputs. This means that it is possible to
build a likelihood function that has as input a matrix of parameter values [n_walkers x
n_parameters], computes an array of residuals [n_walkers x n_datapoints] and then
outputs a vector of likelihood [n_walkers,] values, each corresponding to each walker.
This allows for even higher efficiency with the GPU hardware, which is ideal for such
vectorized operations.

3. From the code it is clear that the analysis is performed on 'noiseless' data, i.e. no noise
is simulated. Then, the likelihood can be simplified to (d|h) - 0.5 (h|h) . E.g.
see eq. (31) from Cañizares et al 2013.

4. Unless I am mistaken, the noise is computed at each iteration, which is probably
redundant, unless the noise is to be inferred from the data. A solution would be to
precompute it and use it like the rest of the global constants. Another idea would be to
transform the likelihood function into a likelihood class, which would compute the noise
vector once and store it for use at each evaluation.

5. A very useful idea (but would require some extra work), is to make the code CPU/GPU
agnostic. At the beginning of the script one can check if a GPU device is detected. If
not, then the usual numpy library can be imported as import numpy as cp , and
continue with the computations using the available CPUs. This adjustment would make
the software more robust, and probably quite useful to the potential users with no
access to GPUs.

