SciPost logo

SciPost Submission Page

Many-body perturbation theory for strongly correlated effective Hamiltonians using effective field theory methods

by Raphaël Photopoulos, Antoine Boulet

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Antoine Boulet · Raphaël Photopoulos
Submission information
Preprint Link: https://arxiv.org/abs/2402.17627v3  (pdf)
Date accepted: 2024-11-18
Date submitted: 2024-11-04 13:33
Submitted by: Boulet, Antoine
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Atomic, Molecular and Optical Physics - Theory
  • Condensed Matter Physics - Theory
  • Nuclear Physics - Theory
  • Quantum Physics
Approach: Theoretical

Abstract

Introducing low-energy effective Hamiltonians is usual to grasp most correlations in quantum many-body problems. For instance, such effective Hamiltonians can be treated at the mean-field level to reproduce some physical properties of interest. Employing effective Hamiltonians that contain many-body correlations renders the use of perturbative many-body techniques difficult because of the overcounting of correlations. In this work, we develop a strategy to apply an extension of the many-body perturbation theory starting from an effective interaction that contains correlations beyond the mean field level. The goal is to re-organize the many-body calculation to avoid the overcounting of correlations originating from the introduction of correlated effective Hamiltonians in the description. For this purpose, we generalize the formulation of the Rayleigh-Schr\"odinger perturbation theory by including free parameters adjusted to reproduce the appropriate limits. In particular, the expansion in the bare weak-coupling regime and the strong-coupling limit serves as a valuable input to fix the value of the free parameters appearing in the resulting expression. This method avoids double counting of correlations using beyond-mean-field strategies for the description of many-body systems. The ground state energy of various systems relevant for ultracold atomic, nuclear, and condensed matter physics is reproduced qualitatively beyond the domain of validity of the standard many-body perturbation theory. Finally, our method suggests interpreting the formal results obtained as an effective field theory using the proposed reorganization of the many-body calculation. The results, like ground state energies, are improved systematically by considering higher orders in the extended many-body perturbation theory while maintaining a straightforward polynomial expansion.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block

Published as SciPost Phys. 18, 003 (2025)

Login to report or comment