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Abstract

The simulation of calorimeter showers presents a significant computational
challenge, impacting the efficiency and accuracy of particle physics oxperi-
ments. While generative ML models have been effective in enhancing and ac-
celerating the conventional phy=sics simulation processes, their application has
prodominantly been constrained to fixed detector readont geomaotries, With
CaloPointFlow we have presented one of the first models that can gencrate
a calorimeter shower as a point cloud, This study describes CaloPointFlow
I1, which exhibits several significant improvements compared to its prede-
cessor. This includes a novel deguantization technigue, roeferred to as CDF-
Dequantization, and a normalizing flow architecture, referred to as DecpSot-

Flow. The pew model was evaluated with the fast Calorimeter Simulation
Challenge (CaloChallenge) Dataset 11 and I11.
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1 Introduction

Aceurately simmlating particle interactions in detectors is a fundamental part of modern
high-energy physics ([HEP ) experiments, such as those performed at the Large Hadron
Collider (LHC). These simulations are essential for physicists to produce data that can
b compared with cxperimental results, aiding o the search for new physics phenomens
or in making more precise measurements of known physical properties. The planned high
Inminosity upgrade of the LHC [1] will see experimental data taken at more and more
inereasing rates, presenting significant challenges for coping with the simulation needs.
Among the various components of a detector, calorimeters are especially demanding in
sitilation. Calorimeters are used to measure the energy of incoming particks by detecting
the cascade of secondary particles they produce. To simlate these processes, detaited mnd
complex multistep computations are necessary,

Conventionally, simulations snch as GEANTA [2] are employed to accurately replicate
these intricate interactions. While these methods offer unmatched acenracy, they are come-
putationally intensive, often requiring seconds per event on a conventional CPU. This high
computational demamnd creates a bottheneck, especially as we move ate an cra of highe-
lnminosity experiments that will produce larger volumes of data, feature more complex
deteetor geometries, and demond simulations of waprecedented seale aod gquality, hMore-
aver, the projected computing budgets at large experiments are difficult to peconcile with
the: increasing smount of simulated events peedsd, given the current capabalities of Monte
Carlo simulations [3, 4. The detailed simmlations consume a significant portion of the
ecomputational budget in many large-seale experiments, further sharpening the challenge,

Given these constraints, it is increasingly impossible to ran full, detailed detector
siomilations for each event to be simulated. The use of fost ssmwlation methods is on
the vise, as they approximate high-fidelity simulations while ocenpying less computational
power. However, conventional fast simulation frameworks, which are mostly based on
parametric models [3-14], often fail fo capture subtle details of calorimeter interactions.
This lack of precision can lead to discrepancies in results when performing physics analyses,
which emphasizes the peed for a more efficient, yvet acourate, alternative,

To tackle these challenges, there is an increasing effort to develop generative machine
learning models s: o more computationally efficient yet aceurate method for calorimeter
sinmlation. The objective is to develop models that ean precisely reproduce the dis-
tribution of calorimeter responses while significantly reducing computational time and
resonroes, Such an approach pot only reduces the burden on the computational infras.
triscture but also has the potential to enable more imtricate and precise analvses than those
currently feasible.

To address these sspacts, there 15 8 growing feld of research abont deep learming based
surrogate models [15-23, 23-149] such as Generative Adversarial Networks (GANs) [15-23,
23, 26, 27, 36, 39, 4048, 48], Variational Autoencoders (VAEs) [21, 26, 33, 43], normalizing
flows [24,25, 31,34, 35, 43, 45, 46], and diffusion models [28, 20,37, 38, 41,42, 47], that have
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been developed for detector siimmlations,

These models replicate the output of traditional simulations, such as GEANTA, and
are designed to enmnilate the complex interactions of particles within calorimeters, This 1=
achieved with significantly fewer computational resources, This progress is particularly im-
portant in high-energy physics (HEP) experiments, as it not only mitigates computational
bottlenecks but also enables more comprehensive and detailed investigations,

Most of these models are based on a fixed data geometry, where a calorimeter is
represented by o collection of voxels, Each voxel corresponds to o single calorimeter sensor,
High gramular calorimeters are composed of several million sensor cells. For example. the
proposed upgrade for the CMS Calorimeter, known as the HGCAL [50), s expected to
feature aroumd 6 million sensor cells. However. it is commonly observed that particle
showers deposit their energy in only a small portion of the total mumber of cells, resulting
in a sparsely populated voxel representation.

Therefore, it is more efficient 1o model the distribution of hits, which represent the
locations where energy is actually deposited, rather than attempting to represent every
single cell. These "hits' can be conceptuslized as points in o four-dimensional space,
combining three spatial dimensions with an additional epergy component. The mumber of
points detected by the calorimeter corresponds to the total pumber of hits,

This approach iz consistent with previous stucdies o particle physics that have nvesti-
gated generative models based on point clouds [34,37, 38, 41.49.51-61]. Previous research
hae also explored the use of these models for ealorimeter simulations [34,37, 38,41, 49].

We have developed CALOPOINTFLOW, one of the first point cloud-based sirrogate
models specifically designed for calorfmeter simulation [34]. Building on this model, we
present here the advanced version of the original model, which we have named CaLo-
FoinrFrow 11 CaroPointFrow T1 has been tailored for the Fast Calorimeter Sim-
ulation Challenge (CALOCHALLENGE) [62], and incorporates several sigmificant updates
comparnsd to the original CaLoPointFLow architecture, They are described below:

. A major boost in CaroPomwTFLow 11 is the introduction of a novel dequantiza-
b technigue, called CDEF-DeEgQuanTizaTion. This technigue is o solution to the
commot problems in deguantization, ensuring that the marginal distributions are
normally distribated.

2. Another major development in CALOPOINTFLOW 1T is the creation of a new Normal-
ing Flow architecture, referred to as DEEPSETFLOW, This architecture allows the
maodeling of point-to-point correlations. Such correlations were difficult to capture

in the previons model, but DEEPSETFLOW overcomes this limitation.

O Ine addition, CaroPomstFrow 11 leverages the rotational svometry inherent in
the datasets, This method mitigates the "omltiple hit® problem. which has been a
podabile obstacke in sccurately simalating the behavior of showers within calorimeters,

Chur paper is structured as follows. First, we describe the datasets nsed in Section 2.
Then we describe our madel in Section 3 and briefly line out our pre- s post-prooessing
in Section 4. Next, we introduee CDF-DEQUANTIZATION in Section 5. In Section § we
explain details of DEEPSETIFLOW and in Section 7. we describe our mitigation strategy
for the mnltiple hit problem. In Section 5 we present the results and evaluate the model.
Fioadly, we summarize the paper with conculsions in Section 9.

"l el for this study can be Bund ot glibob,com/simonschinnke Calo Polng Flow,
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2  Datasets

In our research, we exclusively wsed the second and thivd dataset from the CaLoChar-
LENCE [62]. Each shower in the dataset eontains the incident energy of the incoming par-
ticle and a vector containing the voxel cocrgics, The incident coergy B 5 log=-uniformly
distributed between 11 GeV and 11 TeV. Each dataset comsists of 200,000 showers initiated
by electrons, These dataseds are equally divided for teaining and evaluation puarposes.

Datasets 2 [G3] and Dataset 3 [60] are simulated wsing the same physical detector,
which consists of coneentric ovlinders with 90 layers of absorber and sensitive (active)
materials, specifically tungsten (W) and silicon (Si), respectively. Each sub-laver consists
of 141 mm of W and 0.31 mm of 8§, resulting in a total detector depth of 1581])mm. The
detector's inner radius is 801 cm.

The readout sepmentation = determined by the direction of the particle entering the
calorimeter, This divection defines the z-axis of the eyvlindrical coordinate system, with the
entrance position in the calorimeter set as the origin (0, 0.0). The voxels (readont cells)
in both datasets 2 and 3 have identical sizes along the z-axis but differ in segmentation in
rading [r} and angle [o).

For the -axis, the voxel size is 3.4mm, corresponding to twnd plivsical lavers (W-5i-1W-
51}, Considering only the absorber value of the radiation length 1 Xq(W = $.5041 mm,
thi s-cell size oquates o 2 x % = 5] Xg. In the radial dimension, the coll sizes
are 23251 mm for dataset 3 and G651 mm for dataset 2. Approcimately, considering
the Molitre radius of Tungsten (W) only, this cormesponds to 00251 [y, for dataset 3 and
0.51 Ry, for dataset 2. The minimmm energy threshold for the readout per voxel in datasets
2 ond 3 s set to 15.15keV.

The calorimeter geometry of Dataset 2 comprises 45 concentric cylindrical layors
stacked along the direction of particle propagation (z). Each laver is further divided
into 16 angular bins (o) and nine radial bins (0], resnlting in a total of 45 % 16 % 9 = G480
voxels ineach shower.

Dataset 3 from the CALOUCHALLENGE features o higher granularity compared to Dataset
2. Each layer in Distaset 3 consists of 18 radial bins and 50 angular bins, resulting in a
todal of 45 = 50 % 18 = 40500 voxels in cach ghower,

For both datasets, we adbered to the CALOUHALLENGE's specifications by dividing
th: svadlable cvents eoually between traiming amd evalostion.



Submission

3 Model
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Figure 1: A schematic view of the model. Part a) displays the training setap.
The *Encoder® encodes the points into the latent vepresentation 2. The *Latent-
Flow® is optimized to learn 2z, while the *PoitFlow® is optimized to learn the
distribution of points r; conditioned on 2. Part b} displays the sampling setup.
First, the conditional variables E. ., and sy are generatid. Then, the *Latent-
Flow® generates the lntent representation 3, which is used (o generate the points
with the *Point Flow®.

The msdel presented in this section is a continued development from our previons ol
[54]. It is evolved from the basics of the PointfFlor model, which was introdueed by Yang
et al, [63].

The target of the model is to generate point elonds with the probability density p{ X',
where X are the possible showers, The schematic lavout of the dats flow in the training
process can be seen in Figure 1o, The model is considered a variational aufeencoder
(VAE) [66], with the PoimtFlow serving as the decoder and the LetentFlow transforming
the encoded distribution. To train the model, the Evidence Lower Bound (ELBO) s
muaximized. The encoder g {z|X) and decoder pp(X|z) can be trained simultancously
over the probability distribation of the latent variable p(z) with this loss-funetion

L= E.].*_.|,-|_'|,'][|-H]"E|:.‘|.'|¢. CH = ﬂRL{h[:’!.‘:]”H:lfn (1)
= Equis1x) [Impol X2, C)] + B, (s I palICY] — i (2.X)). (2]
':I:uh L.::l-'-.'l

The loss-funetion consists of three parts. The first part £, 5 the reconstmction error
of the shower X, Minimizing Lo @5 cgual to generating hits of the shower with o high
likelihood, The second part £, is the expectation value of the prior distribution obeying
the approximated distribution of the encoder. Minimizing £, is oqual to gonerating a
latent vector 2 with a high probahility, The last term H{r.l,;{; X)) is the entropy of the
encoded values, It s a regularization on the latent space z.

Here the encoder q.(z|x) approximates : conditioned on X, To efficiently optimize
the ELDQ, sampling from g..(z|x) is done by reparametrizing z as 2 = p (X )+ o.(X) -«
where € ~ A0, L).

Sinee we approximate the prior pe{X) as locally normal distributed. the entropy is
given by
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Hig.(z]X)) = g[l +f2m)) + ¥ Ina,. ()

fm=l

To mwwlel n more complex lotent distribution plz), the latent space @ is transformed
by the LatentFlow. The LatentFlow consists of multiple neural spline coupling lavers [G7]
that transform the distribution to a normal distribution, Therefore, the expectation value
of the pricr distribution can be written as

ot - (4)

1f~YzC
Lpetoe = Eq (z)%) []“]-'i.-r (2,C)) + In %” .

The conditional probability density of the entire shower is approximated by the PodotF e,
which is implemented as a DEEPSETFLOW, described in Section 6.

Ereecn = By i) [lnfr[.u HX.2.€) + In

g 5[.'..a.vl'l]| 2
dot — A ] (3l

A schematic view of the sampling process is shown in Figure 1. For each shower, first
Eime Myie are sampled by the CondFlow, A latent vector z is sampled by the Latent Floa,
At last, fippe points are generated by the PointFlow,

4 Pre- and Post-Processing

W transform the voxel based datasets to point cloud datisets. Each shower is represented
by a combination of the coordinates ({2, o, e)) and the enerey (2) of all voxels for which
e = 0 To normalize the showers, we divide ench eoergy value ¢ by the sum of all coerpgios
in the shower F,,p. The energy fraction is min-max-scaled and transformed with the logit
Sunction.

For the coordinates, we remove the a=component, for further information, see Section 7,
We deguantize z and r with the CDF-DEQuUanTizaTiON, deseribed in Section 5.

The conditional variables e consists of the transformed mumber of hits e and Eae

e (.I'ul:nlli.fﬂ +:":||"l'b"' ~in (6]
f-"l-.llilln' l:-":.u

Here Eiy, is the energy of the initial electron and the nnmber of hits is dequantized by
nclding & ~ L7{0, 1}.

Both, ¢ and the transformed calorimeter hits are normalized to have a mean of 0 and
o stamdard deviation of 1.

For sampling, wi resert the transformation applied above (o the generabed points and
corrditions] varinbles, The a-component 15 reintroduced, as explained o Seetion 7.

5 CDF-Dequantization

Normmalizing flows are invertible transformations utilized in machine leaming to map prob-
ability cdistributions to the normal distribution, primarily designed for continoous data,

The application to discrete data. however, includes complexities,



Submission

Transforming discrete dats into contimeons omes 15 called dequantization. For the new
model we developed a novel method called CDF-DEQUANTIZATION, which utilizes the in-
verse fransform method, or Seeirnoe Fansform, (o map any Anite discrete one dimensional
distribution toa normal distribation. We split the transformation in two parts, The first
15 8 muapping to the uniform distribution between 0 and 1, here denoted as U7, The second
i= o mapping from 7 to the normal distribuation A

Conventionally, dequantization involves the addition of uniformly distributed noise, as
proposed by Urinet al. [68]. and subsequent scaling of discrete values to form a continuomis-
space dataset. The iwverse of this process combines a back scaling operation with a fleor
operation, This method of degquantization assigns deosities over vpercabes around data
points, an essential step to prevent the density model from approximating a degenerate
mixture of point masses,

However, modeling such hypercubes with smooth function approximators poses signif-
icant challenges, To overcome this, Ho et al. [69) introduced variational degquantization.
Rather than assigning nniform noise, this technigue inecorporates an additional normaliz-
ing flow that learns and applics o structured, noo-uniform poise to the data, effectively
increasing the modelimg complexity.

Dinh et al. [T0], added another dimension to dequantization. They proposed applying
o logit transformation to the dequantized variables, transforming the support from the
interval [0, 1] to [ —oo, o).

The logit transformation, when applied to o ~ U7, maps 1o o logistic distribution.
The challenge imposed to the normalizing flow is then to learn to convert this logistic
distribution into s normal distibuation, a task complicated by substantinl differences in
the distributions’ tails. For further details, please refer to Appendix A.

Transforming o wniform distribstion into any distribution canses a notewaorthy problem
in the domain of statistics and data science. One solution is using the inverse tramsform
'Il'li-ltu',l = inf{x|Fy(x) = u}. This transform maps I = X, where X is any distributions.
A proof for the case of a continmons distribution is provided in Appendix B or can he
found in the statistics literature,

For our current focus, we are interested in mapping the standard uniform distribation
onto the mormal distribution, sod also being able to reverse this process. To define these
mappings, we rely on the comnlative distnbation function [(CDE7) and fes inverse, the
quantile function. The CDF of a standard normal distribution, denoted A, is given by

Frlr) = % [l +1~rf(%)l. (7)

where erf(ic) i the error funetion. This function provides the probability that o mo-
dom variable from a standard normal distribution is less than or egual to x, Conversely,
the quantile function of the standard normal distribuation, often referred to as the prolat
function, is

Fit (i) = v2erf (25 — 1), (8)

where erf '{x) is the inverse error funetion. This function returns the value corre-
sponding to a given probability g, such that the probability of & random variable from a
standard normal distribution being less than or equal to this value is y.

It is important to pofe that exact evalustions of the CDF and its ioverse for the
normal distribution are computationally expensive. However, approximations to these
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furections can be found in most momerical software libraries, making it efficient to perform
the mapping between the woiform and pormal distributions,

Lt us extend our previeus discussions to the scenario where we reguire a mapping from

a given discrete probability distribution to the standard uniform distribution. To achieve

this, we nesd to establish the validity of the ivverse transform for discrete distributions.

A proof s given in Appendix )

& 1] ,_II.H"U &5 BLESILTS E
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Figure 2: A schematic of the CDF-DEQUANTIEATION

The Smirmov transform gives us an approach to map the stamdard noniform distribuation
L1 1) to a diserete distribution by ereating a decomposition of the mterval [0, 1] into »
sub-intervals, each baving a size equivalent to the corresponding probability p;.

This forms a surjective mapping where intervals in [0, 1] are associated with specific dis-
erete values. Notably, Nielsen et al. [T1] ilhestrated how variational antoencoders (VAEs),
normalizing Hows, and surjective mappings can be integrated into one anified Tamnework.
They have shown that surjective mappings can be used if a sufficient stochastic inverse is
fouaned,

Within this framework, Nielsen ot al. have shown that the act of adding uniform poise
ean e interpreted as o stochnstic nverse of the foor operation, desoted as | o], This im-
plies that p{r|z) = &, ;. Itsstochastic inverse, g{z|x), has support in B{x) = {r+u|u € [0, 1]}

In the context of CDF-DEQUANTIZATION, the density plodn) = 8 Fyir) < u < Fylzig))
i= o delta fonction that triggers if u lies in the nterval [Fyle), Fyl(eia )], Tis stochastic
inverse, gl ulr;), & supportsd over

B = {u|Fyir) < u < Fy(zig)} (9
= {Fyl(z) + 6|0 £ u< Fylria)— Fxlal} {10)
= {Fyx(a:) +uld < u < ) (11)
= {Fy(x) + v -pilu € [0,1]] (1)

For our mapping to be accurate, the disteribation of @ valoes should be aniform across
[0.1). Therefore, we can compose the stochastic mapping as $x () = Fy(z) 4w
whepe e~ D0, 1],

If we havve access to all py, this transformation provides a straightforward mapping from
discrete doata to a unifori distribution, The ioverse transform can be found through a
simple search across the probability intervals. 'We can simply approximate p; by connting
the frequencies of x; in the data,

In summary, we have constructed a relatively simple transformation that can map
discrete data to s normal distribution. In doing so, we have significantly eased the task of
the normalizing Aow, which is now left with only the responsibility to learn the correlations
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in the data and oot the general shape, This enhances the efficiency and effectiveness of
machine learning models dealing with diserete data. For a visual representation, see
Figuare 2

We provide the algorithms for both directions of the CDF-DEQUANTIZATION helow.

Algorithm 1 Forward Transformation  Algorithm 2 loverse Transformeation

(X =N} N = X)
for r; € X do for 4, £ Y do
satmple w = [0, 1) tiy = Farlni)
W= J-:...'(CIJF[,r,] + PDF () - 1) i = find first CDF > u;
el for e for
Return ¥ = {u ... 0} Return X = {r)...2,}

This dequantization strategy is universal. For owr CatoPontFLow 1T model we
apply 1t to both the r and & dimensions of the points. The method trests each dimmenston
independently and is thereby only altering the marginal distributions.

6  DeepSetFlow

The previous version of PeertFlow atilized o system of coupling blocks to transform the
features of points. This system divided the features into two equal parts, with one half
unsdergoing transformation based on the other half. While permutation iovariant and
capahle of handling varving cardinality, it lacked a mechanism for enabling information
exchange among the points, resulting in an mability to mosdel inter-point cormelation,

To address this, we introduce a new Normalizing Flow architecture ealled DEEPSET-
Frow. The architecture integrates DeepSets [T2] in each conpling lnyer. In the coupling
layer, the part of all point features that is wod farther transformed is aggregated into
n latent representation. The per-point transformation uses the latent representation 6s
ancther comnditional feature,

Craphically, our architecture resembles a central node that gathers information from
all nodes, It distribuates the information evenly sod is lnear in the mumber of points,

The new flow architecture is able to capture the point-to-point correlations This ap-
proach shares similarities with previous work by Bulmann et al, [31] who constructed the
EPIC-GAN, a model that applied DeepSets to create a permntation equivariant generative
madel. Mikuni et al. [54] also emploved a similar technique of information aggregation
within a diffusion model to learmn point clonds.

In another instance, Kich et al, [53] developed o model that combines all information
into a single node, referred to as the mean fiecld, Their models main distinguishing factor
from previous ones is the wse of cross attention to update the mformation of the mean
fieled,

Finally, Liu et al. [73] erafted a Graph Normalizing Flow. In creating a conpling layer
for graphs, they sugeested the same feature-splitting across points as in our model,

7  Multiple Hit Workaround

The dataset consists of voxels, thus only one it per ealorimeter eell s allowed. Point
clond-based models, however, generate peints in continuons space and inherently have po
limitation that only ome point can exist within the space of a cell. Therefore, the madel
often produces mmltiple pointg per calorimeter cell, which is incompatible with the data,
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Sa far, o sdequate solution to this problem is kiwn and we have developed & oovel
approach to solve this problem.

We make use of the otational syounetry of the calorimeter and geperate the points
without an a-component. We distribute the points randomly in o, and if there are more
points than cells. these are randomly added to the oceupied a-positions. Here, we sssume
that there i no internal shower structure in o, This is, of course, fupdamentally incoroect.,
However, in our experiments; it improves the modelling of the electron showers.

& Results

In this scction, we assess the maodel’s performanee by comparing the geperated showers
with those simmlated by GEARNTA, using data that was ot used in training. 1f not stated
otherwise, we compare histograms of distribations in the figures below. The red dashed
lines represent the original GeEANTA data, while the blue lines represent the distribution
produeed by the CaLoPointFrow 1T model, To provide a clearer perspective, smaller
plots are included below each main figure. where the differonce between the two distribu-
tions is expressed as o ratio,
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Fipure 3 The distribution of the sum of all energies in the calorimeter divided
by the energy of the incident electron for bath datasets,

Figure 3 show the distribution of the sum of all energies in the calorimeter cells di-
vided by the energy of the mitial particle. A good agreement between GEANTA ancd
CaroPointFrow 11 is concluded from this comparison.

10
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Cell Encrgy [MeW]

Figure 4: The distribution of cell energies for both datasets,

In Figure 4 we present the energy distributions of mdividual cells in the two different
datasets, These figures show congistency within the balk of the distributions across both
datasets. However, one observation can be made regarding the tails of these distribuitions.
In both eases, the CaLtoPomwtFrow 11 model shows o tendeney to overshoot and aoder-
shoot in energy. This phenomenon is particularly pronounced in Dataset 111, where the
deviations from the expected values are more pronounced in the tail regions,
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Figure 3 The distribation of mymber of bits for both datasets,

The figures Figure 5 show the distribution of the number of hits in both data sets. The
Tpumber of hits” is defiped sz the number of calorimeter cells that have an energy value
greater than zero for a given shower., A key observation in hoth datasets is the generally
accurate modeling of the overall distribution of hits, However, a closer examinstion of
Figure 5 reveals a limitation in the models ahility to reproduce the highest sumber of

11
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hits. This problem is most likely due to the multiple hits workaround, In scenarios where
maost detector cells are hit, the probahility of mapping nmltiple points to a single oell
increnses significantly. This results in o discrepancy in the tail of the distribation, where
the model fails to generate the extreme values observed in the real data, Conversely, for
Dataset 11T ehis particular problem is not apparent. This dataset is characteribax] by a
smadler proportion of total cells being Bit, This obserwtion suggests that the problem
of accurately modeling the highest momber of hits is less pronounced in more gramular
cilorimeters,

- i

H -
7N
1 .

Figure G: The marginal profiles of the average shower shapes in oz, o snd v for
both datasets.

Figure  show the marginal profiles of the avernge shiower for the second and third data
sets, respectively. The first plots in Figare 6 show the longitudinal shower profile. We
observe minimal variation between the two distributions, indicating a stromg agreement
in the longitudinal profile. MMoving on to the second plots in Figure 6, we examine the
flat distribution of a. That both distributions appear to be uniformly fiat s an inherent
properiy of our construction. Finally, the third plot in both Agores examines the radial
distribution, where we find that both distributions have similiar decreasing strocture.

12
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Figure 7: The energy distribution in different lavers of the detector for both
datasets,

Fignre T provide a detailed view of the distribution of total epergy in different areas
of the detector. Each figure consists of five plots, each showing the energy distribution
in five suceessive lovers of the detector, A consistent pattern observed in these fgares
is the accurate modeling of the energy distributions in the initial layers of the detector.
However, there is a notable discrepancy in the nter layers. In these lwers, there i a
significant absence of higher energy values in the model resules,
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Figure % The Pearson correlation coeficients between all cells of the detector
are displayed for both datasets,

Figure # show the Pearson correlation coefficients, which guantifv the relationships
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between the energies of all eells in the detector.  For visualization purposes, the throe-
dimensional structure of the detector is fattened, resulting in a recwrring pattern within
the displaved data, Each fgure is divided into three distinet sections: the left section
shwwvs the energy distribution as simmlatesd by GeanTd, the middle section illhustrates
the results from the CapoPomwrFrow 11 moddel, and the right section highlihes the
differences between the two medels, A key observation from these figures is the overall
effective modeling of the correlation coefficients by the CaLoPomntFrow 11 model. This

sipggests that the mode] is able to capture the inter-cell energy relationships within the
detector.
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Figure % Energy-weighted shower center distribution in all three dimensions for
bosth dlatasces,

Fignre o show the energy-weighted mean of the shower in Dataset I1 and 111, respec-
tively, The means gy are ealeulated as

= T {13]
where l:j are the 3-dimensional coordinate veetor of the hit constitisents of the shower
o ".‘i' are the correspoteding energies,  The modelsd data captures the geoeral trend
of the epergv-weighted mean, but there are some discrepancies with the actnal data,
These differences may indicate lmitations i the models ability to scourately sioolate the
nuanced distribution of energy within the showers,

14



Fipure 10:; The eigenvaloes of the covarianee matrix weightoed by onergy are
presentied for both datasets,

To further explore the structure of the showers in Figure 1L we compute the energy-
wolghted covarisnee matrix for each shower, This is done by first determiniong the deviation
of each cell position vector ¢f from the mean position vector y, of the shower. This
deviation is ::1mmrﬁt as i:_'r = 1::F — 1j. The enorgy-weighted covariance matrix Cjy is then
computed using the formula

Cik = EE;EE:‘;IIC; (14)
i%j

This matrix represents the spread and orientation of the shower i the detector spade,
energyv-weighted. After computing these matrices, we decompose them to extract their
cigenvalies, These eigemnvalues, which represent the principal components of the showers
spread in three dimensions, are then plotted to analyze their distribution.

In analyzing these distribations, we observe o notable contrast between the two deatasets,
For Dataset 11, there is good agreement between the model and the actual data, indicating
that the mode] effectively captures the spatial structure of the showers in this dataset. For
Dataset 111, owever, the dizcrepancies ane more pronouneed.

The performance of the official CALOCHALLENGE classifier is evalunted in Table 1. The
classifier is applied ten times to each dataset and model. The evaluation shows that the
CaroPoinTFrow 11 model outperforms the CaroPoisTFLow 1 model in both low-level
and high=level classifications across all datasets, This significant difference in performance
highlights the advancements and improvements imcorporated in the CAaroPomsTFLow 11
maodel, FPor Datascr D11, there is o noticealde trend where the ow-level classifier is less
effective for distingnishing between ontcomes compared to the high-level classifier. It is
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lowy Teve] classifier high level clussifier
Dataset | Model AUC 15D ML]H{, 15D
1 CPF1 | 0945 £ 0,004 0.604 £ 0,004 | 0927 £ 0,003  0.508 £ D008
CPF IT | 0,826 & 0,006 0275+ 0008 | 0,785 £ 0,000 0,220 + 0.015
n CPF 1 | 0.786 £ 0,019 0.121 + 0.022 | 0.947 + 0,003 0.582 + 0.010 |
CPF I1 | 0.709 £ 0,040 0,107 £ 0,029 | 0934 £ 0003 0,530 £ 0,008

Table 1: CALOCHALLENGE Classifier Score for the CaLoPomwTFLOW 1 and
CaoPoinTtFLow 1T modeal,

possible that further tuning or retraining of the model, with a focus on its handling of
high-level features. conld lead to further improvements.

9 Conclusion

In this study, we have introdnoesd CaroPonTlFoow 1T, a relined generative model that
significantly advances the simulation of calorimeter showers., The utilization of point
elowds, owing to their inherent sparsity, offers a computationally more efficient approach
compared to traditional fixed data structures like 30 images. Building wpon the founda-
tions of the original CaloPoint Flow model, CavoPomwtFrow 11 incorporates innovative
technigues such as a novel dequantization method. referred to as CDF Deguantization, and
o mew pormalizing Aow architecture, named DeepSet Flow, These enhunoements contribate
to & more efficient and accurate modeling of particle interactions in calorimeters, enabling
more efficient and acenrste modeling of complex particle internctions.

The extensive evaluation of CALOPOINTFLOW 1] using the challenging CaLoCHAL-
LERGE datasets [T amcd 111 has proven its efficacy. Ohor model not ouly exhibits superior
performance in both low-level and high-level classifications compared to its predecessor bt
alsn showeases significant improvements in the aceuracy of calorimeter shower simulations.
The results demonsirate nob only its capability to accarately simulate calorimeter show-
ers bt also s marked mprovement o computational efficiency compared to traditional
inethods, The model exhibitz an inpressive balance Between fidelity in the simulation
and the computational demands, especially evident in the precise modeling of the spatial
structure and energy distributions within calorimeter showers,

In comparison to other models, CAaroPoiNTFLow 11 shows notable advancements,
particularly in terms of computational spesd and accuracy. While there remain areas
for fiwther improvement, particularly in aligning the model’s ontput more closely with
resl-world data, the strdes made with CaloPommTFuow 11 are elear. Foutare work could
involve exploring more sophisticated architectural designs for the model to enhance its
performance further.

Furthermare, the wpeoming CALOUHALLENGE summary paper will provide & compre-
hensive comparson of CALOPOINTFLOW IT against other models,
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B Proof Inverse Transformation for continuous distributions

Let's consider X as a random variable that has a eomulative distribntion fanetion (CDF)
represented as Fylr) = PIX < x). The CDF of a random variable is an essential element
in probability and statistics, as it provides the probability that a modom variabbe will take
a value less than or equal to a specific value,

By the properties of the CDF, we know that if ¢ < g, then Fy(x) < Fy(y). becanse the
protmbility that X is less than or equal to r s always less than or equal to the probability
thint X 1% less than or eqgual to g, Moreover, Fy is strictly increasing where the probability
density fanetion Py{x) = 0, indicating that the probability increases as the value of X
TETeE,

Now, let’s suppose that Fy is strictly increasing. Then, for any u € (0, 1), the equation
Flr) = u has exactly one solution. We denote this solution as r = Fy Hu), where F_-.;' i
the inverse function of Fy. In such a sitnation, we can say that

1:'_1-1{[!] = inf{x|Fy(x) = u} = nf{z|Fx{x) =u} = .F-'_.,'L-Jl_rrb [13]

This shows that the Smirnov transformation is essentially the mverse of the CDF,
provided Fyis strictly inerensing,

Furthermore, the inverse function F_\i' is also strictly inereasing on the interval {0, 1).
This s bevause if Fy iz strictly increasing, then the inverse function will also preserve this
PrOpeTty.

Let's now define a new random variable ¥ = Fy, Y7 For this random variable, we can
express the comulative distribution function of £ as Fr (Fy(x)) = P(U7 < Fy(x)) = Fx(z).

Ciiven that F'.,.-L ig strictly imcreasing, wo can proceed and apply this property to our
inequality. Specifically, P(U < Fxy(z)) = P(F (U) < FU(Fx (). Sinee Fy ' (Fy(2)
simplifies to x, this can be re-written as P{F(U) < ) = P(Y < x) = Fy(x). Henoe,
wo hawe derived that By (r) = Fy(r).

In concluson, given those results and by the definition of the squality of random
varinbles, we can say that X =Y.

As we've established, the equality X = F.,L-J{U] amd its inverse {7 = E,I.l{.‘l'] provide
an invertible mapping between the standard uniform distribation sl aony contimwons
distribution without caps.

' Proof Inverse Transformation for discrete distributions

Suppose X is a discrete random svardable with p = PIX = o) for § € 1,....0m where
is the probability that X equals x; and n is the total mumber of possible outeomes. The
enmulative distribution function Fy(r,) is given by 377 m.

Let's consider an arbitrary interval [a, b such that 0 < a < b £ 1. In the standard
uniform distribution, the probability that I falls within this interval s

PazsU<h=PU<t)-PU<a)=b-a. [16)

Now, for all indices i < j, we have 0 € Fx(r) £ Fxi{r;) = 1 due to the properties of
the cumulative distribution function. Conseqguently, the probability that U7 lies between
Fx(zi) and Fx{ri.1) equals P(Fx(x) € U £ Fxirii)) = Fxizia) = Fxlri) = piaa.
This probability is precizely the probability thot the diserete random vardable X eguals

il -
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Based on these results, we con constret the following function that acts as the invonse
transform for the diserete distribation

ry, U< Fylx)
ra, if Fylz) € U < Fylaae)

'i’-.,'ll_!rll - ; 2 "‘ll 1 X x I {l-lr:l
Zny U Fy(an-1) S U < Fy{xn)

[n other words, *Ei_,l.l (1) assigns the value x; to w if it falls within the interval [Fy (e ), Fx(eill.
With this piece-wise defipesd function, we can express the ipverse transform as

'I’_-L-'l:arll = inf{x;u < Fyl{r)} (18]
which provides us with the required mapping from the standard uniform distribution {7

to the discrete random variable X, Hence, we have suceessfully demonstrated the invers:
transform method.
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Generating Calorimeter Showers as Point Clouds

Since your NeurlPS title is included in your new title, why not update it
slightly? For example:

CaloPointFlow II:

Improved Generation of Calorimeter Showers as Point Clouds

CaloPointFlow 11

Add ~ to forbid line break

General:

- somewhere you need to discuss the ability of your model to be extended to
calorimeters with irregular cell geometries such as in the ATLAS dataset. Would
you still be able to quantize each point's location so that it aligns with a cell in this
case? How might the granularity of the calorimeter play in?

Textual:

- paragraphs in this paper are on the short side, especially in section 5.
Sometimes it feels like they break up the body of text too much. Please try to join
pairs of paragraphs which share a common idea.

detecting the cascade of secondary particles they produce

This is a bit vague. Suggest: “by instigating a cascade of secondary particles
and absorbing their energy “

seconds per event

More like minutes, no? Can you find a source?

complex detector geometries

Not necessarily more complex, but more granular

However, conventional fast simulation frameworks, which are mostly based on
parametric models [5-14], often fail to capture subtle details of calorimeter
interactions

Add positive statement about the fact that such models are already
successfully implemented in real experiments. Otherwise it sounds like a
failed project
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diffusion models

These models replicate the output of traditional simulations, such as Geant4, and are
designed to emulate the complex interactions of particles within calorimeters

1. "These models aim to replicate "
2. They are designed to serve as “surrogate® models, replicating the behavior
at a high level, but not by mimicking the microscopic behavior

Each voxel corresponds to a single calorimeter sensor.

Not necessarily. “Voxel” and “cell” are not necessarily synonymous (e.g. in
dataset 1 of the calo challenge). If for datasets 2 and 3 "voxel" is synonymous
with "calorimeter cell”, | would suggest stating that this is a special case.

hits
Remove single quotes

additional energy component

gated generative models based on point clouds [34,37,38,41,49,51-61]. Previous
research has also explored the use of these models for calorimeter simulations [34, 37,
38, 41, 49]

Most of the citations are repeated
CaloPointFlow

Move citation to right after the model name
modeling of point-to-point correlations

With DeepSets it's not really point-to-point because you don't actually
compute any correlation between individual points, but only between each
point and the aggregated point representation. Please qualify this.
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"multiple hit”

e Backwards quotes
* you make it sound like the multiple hit problem affects all fast shower
generative models. Doesn’t it specifically affect point cloud based models?

They are described below

line out
outline

Each dataset consists of 200,000 showers initiated by electrons
Is there a magnetic field?

equally divided fo
Sounds like a train-test split of 50%. Please clarify

are simulated

Somewhere you need to state that it's simulated using GEANT4 and that
there is no electronic noise in the simulation.

detector
calorimeter’s
detector
Is it a detector or merely a calorimeter ?

1531]mm

Math problem
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voxels (readout cells)

to two physical layers
Why are two grouped into one? Isn’t the granularity twice this?
Model

Please add a paragraph where you state (1) the number of parameters of
your model, (2) the number of epochs and/or training time as well as the GPU
that was used., (3) the learning rate (scheduler) and whether hyperparameter
optimization was performed.

Figure 1:
weird asterisks in legend
First, the conditional variables Esum and nhits are generated.

add: “using CondFlow”. Also, it would be clearer to write Esum and nhits
directly on the figure, by the arrow coming out of CondFlow

possible
Not merely any possible showers, but showers lying in the true distribution.
the Evidence Lower Bound (ELBO) i
Cite VAE paper
Eqo(X) [In pO(zIC)]
Doesn't this assume that p(z|C) is normal?
pO(X)

p_\theta(z) , no?



[Plaperpile

locally
What does it mean, “locally”?
this loss-function
C not defined
DKL(q¢(X)llp(IC))
What is ||?
is transformed by the LatentFlow
introduce f for the following equation
CondFlow

What is CondFlow?

The conditional variables ¢

How is small c related to big C?
CDF-Dequantization

This section is not very concise, and it's not clear what the relevance is of a
lot of the technical discussion. Neither is it clear to the non-expert how CDF-
guantitation goes beyond existing dequantization methods, or what exactly it
is about the calorimeter shower generation problem that necessitates this
development. Please try addressing these points and making the description
more efficient overall.

The application to discrete data, however, includes complexities.

To help the non-expert reader, add a sentence explaining the dequantization
problem specifically in the context of calorimeter shower data. I.e. what
exactly is discrete in the features of a calorimeter shower?
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For the new model we developed a novel method called CDF-Dequantization

What dequantization did you use in the old CPF model? Can you argue why a
new approach is necessary to improve the model performance?

They proposed applying a logit transformation to the dequantized variables,
transforming the support from the interval [0, 1] to (<co, )

It's unclear why this step helps.
O-1 X (1) = inf{xIFX(x) > u}

It might be worth noting that inf refers to infimum
What is F? The pdf of X?

one dimensional
hyphen
distributions
typo: distribution(s)

Figure 2: A schematic of the CDF-Dequantization

e Needs period.
e please ensure the digits from separate numbers are not too close in the
middle plot. Perhaps you can drop the zero coming before the decimal.

Notably, Nielsen et al. [71] illustrated how variational autoencoders (VAEs),
normalizing flows, and surjective mappings can be integrated into one unified
framework

Did you try using SurVAE? They seem to claim that their model can also
handle discrete variables. They use a simple UniformDequantization method
outlined in their appendix H.2. How does this compare with your CDF-
dequantization method?
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We provide the algorithms for both directions of the CDF-Dequantization below
No paragraph break

This dequantization strategy is universal.

Please add some vertical space between the algorithm blocks and the
subsequent paragraph.

The new flow architecture is able to capture the point-to-point correlations

Missing period? Also it should probably be clarified that point-to-point
correlations in this approach are captured only at the level of the aggregated
point representations. It's an improvement no doubt, but it clearly lacks the
local information exchange offered by self attention or message passing
approaches. Could you argue why such alternatives don't fit this application
well or are perhaps too computationally expensive?

models
Apostrophe

these are randomly added to the occupied a-positions

How often does this spillover happen? If the generated points are intended to
represent cells with nonzero deposited energy in the calorimeter, why not
simply fix their spatial coordinates to the grid of cells? In this case, only the
energy of each cell needs to be modeled.

This is, of course, ﬁlndamentally incorrect. However, in our experiments, it improves
the modelling of the electron showers.

If it's fundamentally incorrect, why is this not captured in some metric?
Wouldn't it be an obvious feature to discriminate between fast-sim and full-

sim showers?
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Results

e Please add a quantitative statement somewhere about how fast CPF is.

e the main contribution of your paper is the set of three algorithm
refinements listed in the introduction. However, the claim that each of
them improves performance cannot be supported based on the results
shown, and thus there appears to be something missing in the scientific
investigation. This gap is partially addressed by the direct comparison of
CPF1 and CPF2 in Table 1. I recommend that you find a way to
demonstrate the individual improvements from CDFDequantization and
DeepSetFlow (the multiple hit workaround is probably less interesting).
One way to do this would be to perform an ablation study where you
drop each component individually in two model variants that are trained
from scratch identically to CPF2. The performance of the two variants can
then be shown alongside CPF2 and CPF1 in Table 1 and potentially also
in the figures.

where the difference between the two distribu- tions is expressed as a ratio
The subpanels are not ratios. They are relative residuals, l.e. (CPF - G4)/G4
Figure 3

Why not write CPF2 or CPF Il instead of CPF in the plot legends throughout?

This phenomenon is particularly pronounced in Dataset III, where the deviations
from the expected values are more pronounced in the tail regions.

Could this be due to the random distribution in alpha of overflow points? l.e.
does it stem from the artifact seen in the high-number of hits distribution?

The energy-weighted covariance matrix Cik is then computed using the formula
There needs to be a k index on the right hand side of this equation
The classifier is applied ten times to each dataset and model

Add: “with the objective of discriminating between Geant4 showers and CPF
showers.”
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Table 1: CaloChallenge Classifier Score for the CaloPointFlow I and CaloPointFlow
II model

e Spell out Jensen—Shannon divergence.
o State that lower AUC is better (normally it's the other way around).

particle interactions in calorimeters

"calorimeter showers" (l.e. you do not actually model the interactions of
secondary particles produced in EM shower).

The model exhibits an impressive balance between fidelity in the simulation and the
computational demands, especially evident in the precise modeling of the spatial
structure and energy distributions within calorimeter showers.

This sentence has too much of a Chat-GPT ring to it. | would suggest
rewording a bit.

In comparison to other models, CaloPointFlow II shows notable advancements,
particularly in terms of computational speed and accuracy

This claim has not been demonstrated in the results of this paper
Furthermore,

Suggest to combine this with preceding paragraph. Also, “further.
Furthermore” is slightly repetitive.

References

There are some capitalization issues in the references such as "HI-lhc",
"Survae"/"vae". Please check.

foril1,...,n

You probably need to state that xi < xj for every i <j
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(17)

This is not a function because U=FX(x1) gets mapped to both x1 and x2.
There should probably be a strict inequality on the left or right.
Also U should be u



